Matthews, Richard Marc Alexander (2021) Large Cardinals in Weakened Axiomatic Theories. PhD thesis, University of Leeds.
Abstract
We study the notion of non-trivial elementary embeddings j from the set-theoretic universe, V, to itself under the assumption that V satisfies various classical and intuitionistic set theories. In particular, we investigate what consequences can be derived if V is only assumed to satisfy Kripke Platek set theory, set theory without Power Set or intuitionistic set theory.
To do this, we construct the constructible universe in Intuitionistic Kripke Platek without Infinity and use this to find lower bounds for such embeddings. We then study the notion of definable embeddings before giving some initial bounds in terms of the standard large cardinal hierarchy. Finally, we give sufficient requirements for there to be no non-trivial elementary embedding of the universe in ZFC without Power Set.
As a by-product of this analysis, we also study Collection Principles in ZFC without Power Set. This leads to models witnessing the failure of various Dependent Choice Principles and to the development of the theory of the Respected Model, a generalisation of symmetric submodels to the class forcing context.
Metadata
Supervisors: | Rathjen, Michael and Brooke-Taylor, Andrew |
---|---|
Keywords: | Set Theory, Large Cardinals, Intuitionism |
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) > School of Mathematics (Leeds) The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) > School of Mathematics (Leeds) > Pure Mathematics (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.842694 |
Depositing User: | Dr Richard Matthews |
Date Deposited: | 15 Nov 2021 12:22 |
Last Modified: | 11 Jan 2022 10:54 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:29589 |
Download
Final eThesis - complete (pdf)
Filename: Thesis.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.