Hasan, Madina (2011) The computation of multiple roots of a polynomial using structure preserving matrix methods. PhD thesis, University of Sheffield.
Abstract
Solving polynomial equations is a fundamental problem in several engineering and
science fields. This problem has been handled by several researchers and excellent
algorithms have been proposed for solving this problem. The computation of the
roots of ill-conditioned polynomials is, however, still drawing the attention of several
researchers. In particular, a small round off error due to floating point arithmetic is
sufficient to break up a multiple root of a polynomial into a cluster of simple closely
spaced roots. The problem becomes more complicated if the neighbouring roots are
closely spaced. This thesis develops a root finder to compute multiple roots of an
inexact polynomial whose coefficients are corrupted by noise. The theoretical development
of the developed root solver involves the use of structured matrix methods,
optimising parameters using linear programming, and solving least squares equality
and nonlinear least squares problems.
The developed root solver differs from the classical methods, because it first computes
the multiplicities of the roots, after which the roots are computed. The experimental
results show that the developed root solver gives very good results without the
need for prior knowledge about the noise level imposed on the coefficients of the
polynomial.
Metadata
Awarding institution: | University of Sheffield |
---|---|
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Computer Science (Sheffield) The University of Sheffield > Faculty of Science (Sheffield) > Computer Science (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.543240 |
Depositing User: | EThOS Import Sheffield |
Date Deposited: | 31 May 2016 15:35 |
Last Modified: | 31 May 2016 15:35 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:12817 |
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.