White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Vented gas explosions

Fakandu, Bala Mohammed (2014) Vented gas explosions. PhD thesis, University of Leeds.

Dr Bala Fakandu.pdf - Final eThesis - complete (pdf)
Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (7Mb) | Preview


This investigation generated new experimental data on premixed gas/air vented explosions. A small (0.01 m3) and medium scale (0.2 m3) cylindrical vessels were used with L/D of 2.8 and 2 respectively, with range of vent area coefficients Kv of 2.7-21.7. The initial set of experiments considered free venting, so that the flame propagation during the venting process was laminar and also the short distance of the vessels would reduce the effects of flame self-accelleration. Covered vents were later used with vent static burst pressure Pstat from 35 to 450mb in the 10L vessel. Different gas mixtures were used throughout this work including methane-air (10%), propane-air (4 and 4.5%), ethylene-air (6.5 and 7.5%), and hydrogen-air (30 and 40%) gas mixtures. The ignition position at the far end opposite the vent and central location mid-way the length of the vessels were compared. Current venting guidance is based on experimental vented explosions with central ignition, but this work shows that end ignition opposite the vent is the worst case. The current design procedures for the protection of explosions using venting is shown to be inadequate for hydrogen-air explosions. New data has been presented which indicates that for hydrogen explosions, the vent flow behaves differently as compared to other gas mixtures investigated. Hence, the need for more research in hydrogen-air mixtures in order to have better understanding of hydrogen venting process. Experimental data from the current work also shows that multiple vents and vent shapes have significant effects on explosion overpressure and flame speeds. This is contrary to the assumption of the current venting standards. The effect of static burst pressure on explosion venting was shown to be quite different to that in the design standards, which is supported by other work in larger vessels. Other aspects of vent design that the standards say are not important were shown to be significant: the number of vents, the position of the vent, the shape of the vent, the ignition position. Laminar flame venting theory was shown to be a good predictor of the results and those from the literature where larger vessels were used.

Item Type: Thesis (PhD)
Keywords: Explosion venting, explosion overpressure, flame speed, turbulent length scale, mixture reactivity
Academic Units: The University of Leeds > Faculty of Engineering (Leeds) > School of Chemical and Process Engineering (Leeds)
The University of Leeds > Faculty of Engineering (Leeds) > School of Chemical and Process Engineering (Leeds) > Energy and Resources Research Institute (Leeds)
Identification Number/EthosID: uk.bl.ethos.638860
Depositing User: Dr Bala Mohammed Fakandu
Date Deposited: 24 Feb 2015 11:48
Last Modified: 25 Jul 2018 09:50
URI: http://etheses.whiterose.ac.uk/id/eprint/7340

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)