White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Ultra-high temperature steam gasification of biomass

Waheed, Qari Muhammad Khalid (2013) Ultra-high temperature steam gasification of biomass. PhD thesis, University of Leeds.

[img]
Preview
Text
Qari Waheed _PhD Thesis_Ultra-High Temperature Steam Gasification of Biomass.pdf - Final eThesis - complete (pdf)
Available under License Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales.

Download (11Mb) | Preview

Abstract

In this research, hydrogen production from conventional slow pyrolysis, flash pyrolysis, steam gasification and catalytic steam gasification of various biomass samples including rice husk, wood pellets, wheat straw and sugarcane bagasse was investigated at ultra-high temperature (~1000 °C). During flash pyrolysis of the waste wood, the gas yield was improved to ~78 wt.% as compared to ~25 wt.% obtained during slow pyrolysis. The addition of steam enhanced the hydrogen concentration from 26.91 vol.% for pyrolysis to 44.13 vol.% for steam gasification. The comparison of pyrolysis, steam gasification and catalytic steam gasification in a down-draft gasification reactor at 950 °C using rice husk, bagasse and wheat straw showed a significant increase in gas yield as well as hydrogen yield. The hydrogen yield was enhanced from ~2 mmoles g-1 for pyrolysis to ~25 mmoles g-1 during steam gasification using a 10 wt.% Ni-dolomite catalyst. The higher hydrogen yield was due to the enhanced steam reforming of hydrocarbons and thermal cracking of tar compounds at higher temperature. When compared with the other catalysts such as 10 wt.% Ni-dolomite, 10 wt.% Ni-MgO, and 10 wt.% Ni-SiO2, the 10 wt.% Ni-Al2O3 catalyst showed the highest hydrogen yield of 29.62 mmoles g-1. The investigation on gasification temperature showed that the hydrogen yield was significantly improved from 21.17 mmoles g-1 at 800 °C to 35.65 mmoles g-1 at 1050 °C. The hydrogen concentration in the product gas mixture was increased from 50.32 vol.% at 800 °C to 67.41 vol.% at 1050 °C. The increase in steam injection rate from 6 to 35 ml hr-1 enhanced the hydrogen yield from 29.93 mmoles g-1 to 44.47 mmoles g-1. The hydrogen concentration increased from 60.73 to 72.92 vol.%. The increase was mainly due to the shift in the equilibrium of the water gas shift reaction as H2:CO ratio increased from 2.97 to 7.78. The other process variables such as catalyst to sample ratio, carrier gas flow rate showed little or no influence on the gas yield and hydrogen yield. The steam gasification of residual biomass char was performed at 950 °C to recover extra hydrogen. The presence of 10 wt.% Ni-Al2O3 in the gasifier improved the hydrogen yield to ~47 mmoles per gram of biomass as compared to the other catalysts such as 10 wt.% Ni-dolomite and 10 wt.% Ni-MgO. The gasification temperature showed a positive influence on hydrogen yield from 750 °C to 950 °C. The increase in steam injection rate from 6 ml hr-1 to 15 ml hr-1 enhanced the hydrogen yield from 46.81 to 52.10 mmoles g-1 of biomass.

Item Type: Thesis (PhD)
ISBN: 978-0-85731-659-2
Academic Units: The University of Leeds > Faculty of Engineering (Leeds) > School of Chemical and Process Engineering (Leeds)
Depositing User: Repository Administrator
Date Deposited: 02 May 2014 13:22
Last Modified: 01 Feb 2019 01:18
URI: http://etheses.whiterose.ac.uk/id/eprint/5852

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)