White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Starch-based bioethanol process innovation

Adam, Ibrahim Khalil (2013) Starch-based bioethanol process innovation. PhD thesis, University of Leeds.

[img]
Preview
Text
Adam_IK_Biology_PhD_2013.pdf - Final eThesis - complete (pdf)
Available under License Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales.

Download (5Mb) | Preview

Abstract

Starch liquefaction and saccharification are key processing steps in the bioethanol industry. The rate-limiting α-amylase plays an important role due to its endo-glycosidic activity. Work carried out in this thesis on barley α-amylase focused on ER retention to boost recombinant protein expression in planta and purification of the protein to facilitate a cascade refinery approach allowing other high value proteins to be co-produced together with starch for bioethanol production. Results obtained generated evidence for context-dependence of the ER retention motif HDEL, the existence of an HDEL-independent ER retention mechanism and quantitative data showing toxicity or detrimental effects of HDEL overdose. Results also revealed an effect of peptide tags on N-linked glycosylation as well as evidence that expression levels and systems can strongly affect glycosylation of proteins in the secretory pathway. Furthermore, α-amylase endo-glycosidic action on long glucan chains was shown not to be rate limiting in starch saccharification but the presence of short oligomers and their susceptibility to hydrolysis by fungal amyloglucosidase must be considered next. Interestingly, starch saccharification using acid hydrolysis was more efficient compared to enzyme catalysed hydrolysis. In order to optimise the saccharification process further, the research centred on exploring enzymes with raw-starch digesting properties at low temperature and increased specificity for low molecular weight oligosaccharides. Therefore, an alpha amylase-like gene was identified in ripening plantain (Musa acuminata × balbisiana) using degenerate primers. The gene encodes a putative protein product with close homology to chloroplast α-amylases from Ricinus communis, and Arabidopsis thaliana (AtAMY3).

Item Type: Thesis (PhD)
ISBN: 978-0-85731-588-5
Academic Units: The University of Leeds > Faculty of Biological Sciences (Leeds)
Identification Number/EthosID: uk.bl.ethos.695921
Depositing User: Repository Administrator
Date Deposited: 15 Nov 2016 14:34
Last Modified: 25 Jul 2018 09:53
URI: http://etheses.whiterose.ac.uk/id/eprint/5744

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)