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Abstract 

Starch liquefaction and saccharification are key processing steps in the 

bioethanol industry. The rate-limiting α-amylase plays an important role due 

to its endo-glycosidic activity. Work carried out in this thesis on barley α-

amylase focused on ER retention to boost recombinant protein expression in 

planta and purification of the protein to facilitate a cascade refinery approach 

allowing other high value proteins to be co-produced together with starch for 

bioethanol production. Results obtained generated evidence for context-

dependence of the ER retention motif HDEL, the existence of an HDEL-

independent ER retention mechanism and quantitative data showing toxicity 

or detrimental effects of HDEL overdose. Results also revealed an effect of 

peptide tags on N-linked glycosylation as well as evidence that expression 

levels and systems can strongly affect glycosylation of proteins in the 

secretory pathway. Furthermore, α-amylase endo-glycosidic action on long 

glucan chains was shown not to be rate limiting in starch saccharification but 

the presence of short oligomers and their susceptibility to hydrolysis by 

fungal amyloglucosidase must be considered next. Interestingly, starch 

saccharification using acid hydrolysis was more efficient compared to 

enzyme catalysed hydrolysis. In order to optimise the saccharification 

process further, the research centred on exploring enzymes with raw-starch 

digesting properties at low temperature and increased specificity for low 

molecular weight oligosaccharides. Therefore, an alpha amylase-like gene 

was identified in ripening plantain (Musa acuminata × balbisiana) using 

degenerate primers. The gene encodes a putative protein product with close 

homology to chloroplast α-amylases from Ricinus communis, and 

Arabidopsis thaliana (AtAMY3). 
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Chapter 1 

Introduction  

Life on earth has always depended on energy which facilitates all human 

activities. These include the heating of homes and larger buildings, 

cooking, transport but also refining raw materials and ultimately 

generation of electricity for the growing number of electric devices (Volk, 

2009). Currently, this is mainly supplied by fossil fuels. Coal has been 

used to heat homes and in part facilitated the industrial revolution by 

powering steam engines (Hubbert, 1949; Suranovic, 2013). Nowadays 

the majority of coal is used in large power stations to generate electricity 

(Monticello and Finnerty, 1985). Petroleum based products have 

emerged more recently, but are now dominating the energy sector due to 

the ease with which they can be mined, shipped, stored and refined 

(Hall, 2008).  Diesel, kerosene, petrol and liquid petrol gas (LPG) are 

mostly used in the transport sector (Yuan et al., 2013), whilst a 

significant number of purified side fractions in the refinery process are 

essential feedstock for petro-chemistry, for instance ethylene, which 

forms the basis for polyethylene and polyvinyl chloride manufacturing 

(Sujith and Unnikrishnan, 2005; Yateem et al., 2011). 

  

Liquid fuels have a high energy density and can be stored on small 

scale, making them ideal for cars and airplanes, for which there is an 

increasing demand (Agarwal, 2007). Another side-fraction of the 

petroleum distillation is natural gas, mostly composed of methane, which 

cannot be compressed to liquid and is less suitable for transportation. 

However natural gas finds its use in domestic heating and cooking, 

supported by national gas grids. Natural gas is also used in power 

stations to generate electricity, albeit at much lower scale compared to 

coal powered stations (Akhgari and Kamalan, 2013).  
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Although coal deposits on earth are vast and not likely to run out soon, 

petroleum reserves have been speculated to be depleted by 2050 

(Saxena et al., 2009). Moreover, combustion of coal releases the highest 

amount of carbon dioxide compared to all other fuels and is considered 

to be one of the causes for climate change (Gomez et al., 2008; Escobar 

et al., 2009; Saxena et al., 2009). Taking all arguments together, the use 

of fossil fuel in general is therefore considered unsustainable (Demirbas, 

2007; Koh and Ghazoul, 2008; Demirbas, 2011). Moreover, the supply 

and price of the petroleum based fuels is fluctuating due to political 

instability (McLaren, 2005; Gomez et al., 2008; Philp et al., 2013); 

therefore, diverse sources of energy are required in order to maintain 

energy security (Vanholme et al., 2013). 

 

In order to solve the problems of non-sustainable fossil energy, 

alternatives must be considered that should satisfy today’s demand 

without compromising the needs of the future (Taylor, 2008; Philp et al., 

2013). The chosen alternatives should lead to low level of pollution and 

be fully renewable in the long term (Amigun et al., 2008; Sanchez and 

Cardona, 2008). Currently, renewable energy sources include wind, 

solar, water, tidal and wave power, as well as the so-called biofuels 

(Goncalves da Silva, 2010).  

 

The use of wind and solar energies (in voltaic cells and electricity 

generation) is restricted to instant consumption due to lack of long term 

storage (Baker, 1991; Slootweg and Kling, 2003; Mekhilef et al., 2013; 

Qin et al., 2013). As a result, these two types of renewable energy are 

restricted to local use and cannot satisfy the full spectrum of energy 

requiring activities (Baker, 1991; Mekhilef et al., 2013). Water is the 

biggest form of renewable energy, but it is limited in amount and most of 

the suitable sites have already been exploited in hydro-electric stations 

to produce electricity (Paish, 2002; dos Santos et al., 2006; Lenzen, 

2010). Due to geological considerations it is difficult to construct more 
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dams, therefore this source has a poor potential for growth (King et al., 

2000; Andre, 2012).  

 

Biofuels which are referred to as fuels produced from various crop plants 

and other biomass are also considered. Biofuels are attractive 

alternatives, because they can be produced, stored and deployed on 

demand (Saxena et al., 2009; Yuan et al., 2013). The production and use 

of biofuels has also led to the ''fuel versus food'' debate which will be 

discussed in a later section. Despite the attractive properties of biofuels 

other sources of energy are required to satisfy demand and maintain 

sustainability (Harvey and Pilgrim, 2011). 

 

In the introduction to this section, the indispensable role of energy was 

discussed. Currently, the bulk of energy is provided by fossil fuels which 

are unsustainable and polluting the environment. One of the alternative 

sources of renewable energy with great potential is biofuels (Goncalves 

da Silva, 2010). This introduction will focus on the different types of 

biofuels, the necessary feedstock and the specific production strategies 

involved. This will set the stage for the specific research aims of this 

thesis to improve starch-based bioethanol production strategies. 

1.1 Biofuels 

Biomass is a general term that refers to any living matter; it includes 

plants, algae, micro-organisms and animals. They contain compounds of 

carbon, oxygen, nitrogen and sulphur, comprising significant amounts of 

free energy in the form of chemical bonds (Lora and Andrade, 2009; 

Saxena et al., 2009). These can be released on breaking the intra and 

inter molecular forces to generate heat, which can be converted to 

mechanical work or electricity. Biomass can also be used to produce 

transport fuel if it is transformed into a liquid form. Both food and non-

food biomass can be used to produce fuels commonly referred to as 
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biofuels (Lora and Andrade, 2009). They can either be solid, gas or in 

liquid form; which influences the manner in which they can be deployed.  

 

Solid biofuel is exemplified by the burning of wood for domestic and 

industrial use (Jensen et al., 2004; Demirbas et al., 2009; Vamvuka, 

2011). Methane, carbon dioxide, monoxide, and hydrogen produced from 

microbes are referred to as biogas (Li et al., 2013; Serrano-Lotina and 

Daza, 2013). It also includes gas that is produced from chemical 

cracking of wood referred to as wood gas. Although gas can be used for 

domestic purposes; it is not flexible as transport fuels because large and 

heavy tanks are required for storage. Liquid fuels are more attractive 

because they have high energy densities and can be stored in light-

weight tanks (Muffler and Ulber, 2008). 

 

Biofuel production and usage should tackle or address problems of 

environmental concerns. These include sustainability, climate change, 

and biodegradability among others. It should also address air pollution, 

sequestration of carbon, national security, economy and farm economy 

(Balat and Balat, 2009). Man is adventurous in nature, and the 

production and use of biofuels dates back to time immemorial. In 1900, 

Dr Rudolf Diesel’s engine was fuelled with peanut oil but was later 

abandoned due to the discovery of petrol-diesel. Sir Rudolf also 

predicted the use of vegetable oils in the future and that they will be as 

important as petroleum. Historically, in the 1930’s and 1940’s vegetable 

oils were used in place of diesel (Demirbas, 2007). 

 

In the past, the acceptance of biofuels increased due to their potential 

benefits to the environment. Several countries introduced policies on 

biofuels production; leading to a gradual increase in biofuel production 

worldwide. More recently, the public acceptance decreased again due to 

the public concerns that gave rise to ‘food versus fuel’ debate, which will 

be discussed in the following sections (Tan et al., 2008; Philp et al., 

2013). Some of the factors affecting the production of biofuels include 
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the feedstock usage, availability as well as inefficient production 

strategies (Piccolo and Bezzo, 2009). The provision of subsidies by 

different governments may have stimulated investment into the biofuel 

sector but also caused the implementation of inefficient processing of 

feedstock. Another problem affecting the biofuel industry is the high cost 

of enzymes that are required for large scale feedstock processing which 

make the production expensive (Sticklen, 2006; Eijsink et al., 2008; 

Gressel, 2008; Sticklen, 2010). In the following sections, the different 

forms of biofuels and the feedstock used in the production will be 

discussed. 

1.1.1 Biofuel Production Strategies 

Biofuels can be produced using any of the strategic types of feedstock 

which include simple sugars, polysaccharides and lipids (Demirbas, 

2007; Harvey and Pilgrim, 2011). Four generations of biofuels are being 

considered in the literature however this classification is based on the 

different stages of development of biofuel production (Gressel, 2008). In 

the following sections, the four generations of biofuel will be discussed. 

First generation 

First generation biofuels are defined as those utilising food crops as feed 

stock. These include ethanol produced through fermentation from either 

simple sugars derived from crops such as sugar cane and sugar beet, or 

starch crops such as corn, wheat and barley (Table 1.1). They also 

include biodiesel produced through transesterification of plant oils such 

as rapeseed, sunflower, oil palm and animal fats (Festel, 2008; Gressel, 

2008).  

 

The use of food crops for biofuels was suggested to be unsustainable 

and led to the ‘‘food versus fuel debate’’ (Harvey and Pilgrim, 2011). This 

is mainly due to a sharp rise in prices of food most especially cereals and 

oils in 2008 which was erroneously blamed on biofuels. Sugar cane is 
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grown in Brazil and used as a feedstock for bioethanol production and 

less than 1% of the total arable land as shown in Figure 1.1 is used for 

the plantation. The land use for ethanol is low compared to other uses 

and the total available land; therefore this does not affect land available 

for food and feed (Chauhan et al., 2011; Gauder et al., 2011). Corn is 

used in the US for bioethanol, but it is an energy inefficient crop because 

of low harvest index therefore it does not give enough evidence to make 

general deductions (Lal, 2005; Koh and Ghazoul, 2008). These two 

examples illustrate that there is no meaningful competition between fuel 

and food crops, and that the high food prices in 2008 must have 

originated from other economic practices, such as speculation (Harvey 

and Pilgrim, 2011). As a result of the public fear on the impact of biofuels 

on food; non-food crops were considered to be the sole strategies for 

biofuel production (Kendall and Yuan, 2013). However the first 

generation fuels remain a viable alternative because of high yield, and 

ease of processing as will be discussed below. 

 

 

Figure 1.1. The Brazil arable land showing the land usage for different 
purposes. It includes; pasture land (cattle), crops (such as beans, corn, 
etc), and permanent crops (fruit trees), and sugar cane for crystal sugar, 
sugar cane for bioethanol, reforestation (pine, eucalyptus, etc), others 
(include urban centers, lakes, etc), savannah, occupy 9: sum of non-rain 
forest. Source: Latin Business Chronicle, May 18, 2007 
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Second generation 

The strategy is based on the idea of using the whole plant to produce 

fuel; this will ensure hundred percent efficient use of the energy crop 

therefore will provide a higher harvest index. However, it is hard to 

convert the entire crop to fuel. The second generation of biofuel are 

produced from non-food crops; bioethanol and biobutanol from 

lignocelluloses parts of plants such as straw, wood; and biodiesel 

production from non-food crops such as Pongamia pinnata, and Jatropha 

curcas (Gressel, 2008; Demirbas, 2011). The non-food biomass mostly 

considered for bioethanol production is lignocellulose that includes trees 

such as poplar, eucalyptus, miscanthus, switch grass and other grasses 

among others. Another form of the biomass is agricultural wastes; this 

includes rice, wheat, and corn straws; and bagasse among others (Lal, 

2005; Lora and Andrade, 2009; Sarkar et al., 2012). At the moment, the 

wastes are only used for domestic purposes such as animal feeds, and 

domestic fuels among others (Lal, 2005; Sarkar et al., 2012). 

Table 1.1 Sources of biofuels 
Bioethanol Wheat, maize, potato, sugar cane, sugar beet, poplar 

tree, eucalyptus, miscanthus, switch grass 

Biodiesel Oil palm, rapeseed, soybean, peanut safflower, 

Jatropha curcas 

The table shows the different sources of biofuels. Bioethanol can be 
produced from starch crops such as wheat corn and potatoes; and sugar 
crops such sugar beet and sugar cane. Biodiesel is produced from oil 
crops such as oil palm, rapeseed, soybean, peanut and safflower 
 

The lignocellulosic biomass contains three major components: lignin, 

cellulose and hemicelluloses as fractions, and are not directly amenable 

to hydrolysis (Carroll and Somerville, 2009). Currently, there are no 

efficient conversion technologies to break the plant cell wall because of 

its lignin component that makes it resistant to hydrolysis (Himmel et al., 

2007; Sanchez and Cardona, 2008; Carroll and Somerville, 2009; 

Abhary et al., 2011). In spite of the fact that significant research efforts 
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have been put into devising strategies for efficient conversion of 

lignocellulose to sugar, the technology is far from established. For 

instance, some researchers use antisense technology to modify lignin 

composition of alfalfa (Chen and Dixon, 2007; Sticklen, 2010) however, 

the modification did not lead to a significant improvement in the 

conversion process. This and other efforts have not solved the problem 

and much is required to be done; which makes it look unrealistic in the 

near future (Sticklen, 2006; Gressel, 2008; Sticklen, 2010).  

 

Invariantly, the production of bioethanol from lignocellulose requires the 

disassembly of the plant cell walls (Himmel et al., 2007; Arantes and 

Saddler, 2010) as pre-treatment prior to hydrolysis to fermentable sugar. 

The effect of this is that it increases the accessibility of enzymes to the 

complex polysaccharides (Gomez et al., 2008). Pre-treatments can be 

performed using acid and alkali at high temperature. The acidic pre-

treatment leads to the hydrolysis of hemicelluloses with no effect on 

cellulose and lignin; the alkali also disrupts the lignocellulose structure 

(Gray et al., 2006; Himmel et al., 2007; Carroll and Somerville, 2009). In 

summary to produce bioethanol lignocellulosic biomass is mechanically 

and chemically pre-treated prior to enzymatic hydrolysis which adds to 

the production costs (Piccolo and Bezzo, 2009). 

 

The pre-treatment may lead to undesirable effects such as the 

generation of substances such as furfurals and it must be considered 

that enzymatic hydrolysis is costly. These compounds in turn have 

negative effects on yeast therefore reduce the fermentable sugar yields 

and also decrease the efficiency of fermentation (Gray et al., 2006). 

Another problem often overlooked is the fact that only 30 to 40% of 

lignocellulose leads to fermentable sugar. The presence of non-

fermentable sugars such as pentoses limits productivity of the approach 

(Gray et al., 2006; Carroll and Somerville, 2009). Current research 

focuses on the development of pentose-fermenting microorganisms but 

these studies are still in their infancy. The current technologies only 
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function on a low scale with unacceptable yield and involve high 

production costs. The net effect of the above makes the production of 

bioethanol from lignocelluloses much more expensive than from sugar or 

starch crops (Sims et al., 2010). 

 

Although lignocellulose crop can yield an average annual production of 

50-100 tonnes per hectare in the case of eucalyptus (Henry, 2010); it 

may be more efficient if the biomass is used directly for combustion to 

generate electricity. The biomass can also provide the raw material for 

paper production which has a higher market value than its energy 

content (Jensen et al., 2004; Talebnia and Taherzadeh, 2012; Stephen 

et al., 2013). 

 

Biofuel production from non-food biomass has been claimed not to 

compete with food crops. This is because it is claimed that the 

lignocellulose will be grown on marginal lands; however, the yield of 

crops on those areas may be poor due to low quality of the land 

(Gressel, 2008; Stephen et al., 2013). Moreover, another concern is that 

of harvest from remote areas such as mountains is the lack of adequate 

infrastructure and cost for transportation. This means that in order to 

obtain a sufficient amount of the lignocellulose, lands that are currently 

used for food and feeds will have to be explored therefore leading to 

competition for agricultural land (Gressel, 2008; Escobar et al., 2009; 

Sims et al., 2010). Also, lignocellulose crops typically occupy land for 

many years, reducing flexibility of land use. Moreover, due to lack of crop 

rotation, the long term sustainability of this approach has not been 

evaluated (Sims et al., 2010). 

Third and fourth generation 

The term third generation and fourth generation or advanced biofuels is 

misleading because the two generations represent the same strategy 

(Fiorese et al., 2013). The third generation is defined as the processing 

of algal biomass for biofuel production. It includes the production of 
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hydrogen and electricity using the biomass from algae (Beer et al., 2009; 

Demirbas, 2010). The fourth generation refers to the metabolic 

engineering of algae for producing biofuels from oxygenic photosynthetic 

microorganisms (Beer et al., 2009; Zeng et al., 2011). Algal farming has 

been considered as source of oil which will be converted to diesel. 

However due to the low yield of oil from algae, the production requires 

drastic scaling up to generate biodiesel at meaningful scale (Gressel, 

2008; Beer et al., 2009; Demirbas, 2010; Zeng et al., 2011). In order to 

enhance the yield, some of the options include use of land, or dams, or 

ponds, or rivers or oceans for algal farming. Even when algae are grown 

on commercial scale, only some areas will provide sufficient solar energy 

needed by the cells. The problem of stability and contamination of the 

algal cultures is perhaps the most significant limiting factor preventing its 

commercialisation in the near future  (Gressel, 2008). Therefore, 

production of biodiesel from algae is not currently implemented. 

 

The production of hydrogen is a chemical process that involves catalytic 

breakdown of living matter to obtain hydrogen as a side fraction. In 

practice hydrogen can be produced through a number of processes, 

including electrolysis of water, thermocatalytic reformation of hydrogen-

rich organic compounds, and biological processes (Levin et al., 2004; 

Beer et al., 2009). The scale of hydrogen production is low because 

there is only very limited amount of hydrogen that can be released from 

biomass or from living organisms (Levin et al., 2004). Currently, low 

success has been recorded on this front and appears to be unrealistic 

compared to the liquid fuels biodiesel and bioethanol. The following 

sections of this thesis will focus on oil crop and biodiesel production. 

1.1.2 Oil crops and biodiesel 

Biodiesel is popular because it can be used directly in cars without 

modifications. In principle, it can be produced from any oil crops such as 

oil palm, rapeseed, soybean, and safflower (Bergmann et al., 2013; 
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Bezergianni and Dimitriadis, 2013). The yield of oil crops (see Figure 1.2) 

is low when compared to that of carbohydrate crop such as sugar cane 

of an average of 84 or 148 t/ha/y depending on harvest (Waclawovsky et 

al., 2010). Figure 1.2 shows the average yield of oil crops which has 

reached its optimum at the moment, and will be highly difficult to improve 

(Gressel, 2008). The best production is oil palm which is an annual crop 

with an average yield of 3.74 tonnes per hectare hence low productivity 

per surface of agricultural land (Sumathi et al., 2008; Atabani et al., 

2013; Prasertsit et al., 2013). In addition oil palm takes a number of 

years (5-6) to establish and occupies the land for 15-20 years therefore 

does not allow flexibility of land use because of lack of crop rotation. 

Moreover, the market value of food oil from oil palm is higher than that of 

the combustion oil (Shuit et al., 2009) therefore; it should be used as 

food rather than fuel. For these reasons, biodiesel production is less 

viable and other alternative fuels have to be explored. 

 

 

Figure 1.2. Yield from terrestrial oil crops illustrating the annual yield of 
different oil crops that can be used for biodiesel production. The oil yield 
is in tonnes per hectare of land per crop. Soybean, sun flower, rapeseed 
and oil palm have yields of 0.38, 0.48, 0.67 and 3.74 tonnes per hectare 
per year. 
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1.1.3 Carbohydrate crops and bioethanol 

The term carbohydrate refers to a compound of carbon, hydrogen and 

oxygen. Based on chain length carbohydrates can be divided into three 

types. Firstly, simple sugars which include monosaccharides (such as 

glucose and fructose), disaccharides (such as sucrose and maltose) and 

polyols (sugar alcohols such as sorbitol and maltodextrin) (Cummings 

and Stephen, 2007). The second group is the oligosaccharides which are 

short chain carbohydrates consisting of three to nine sugars, it includes 

α- and non-α-glucans such as raffinose. The last group, the 

polysaccharides consists of polymers that include starch such as 

amylose and amylopectin; and non-starch polysaccharides such as inulin 

(a fructose polymer), cellulose, hemicelluloses (arabinoxylans), and 

pectin (Cummings and Stephen, 2007).  

 

Carbohydrates represent the largest amount of fixed carbon on earth; it 

is present in almost all crops. Crops used starch as a store of energy 

with the exception of oil crops. The starch and sugar crops such as 

wheat, maize, sugar cane and beet; and lignocellulose biomass such as 

eucalyptus, miscanthus and switch grass are referred to as carbohydrate 

crops (Muffler and Ulber, 2008). The simple carbohydrate in sugar crops 

can be directly converted to ethanol by fermentation; however the 

polysaccharides in the starch and non-starch crops must be hydrolysed 

to sugars before being processed further to ethanol. Compared to the 

conversion of lignocellulose, it is relatively simple to hydrolyse starch; the 

principle of which will be discussed in the remainder of this introduction 

(Gray et al., 2006; Chuck-Hernandez et al., 2009; Arapoglou et al., 

2010). 

1.1.4 Conclusion 

In summary, the concept of biofuels, its requirements and production 

have been introduced and the different forms of biofuels and feedstock 
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have also been considered. Currently, only first generation biofuel 

production strategies are successful and the current state of 

development only allows first generation bioethanol to be considered for 

large scale production (Sanchez and Cardona, 2008; Goncalves da 

Silva, 2010). This is because the exploitation of lignocellulose is 

unrealistic due to lack of technology to efficiently convert the biomass to 

sugars (Sticklen, 2006; Carroll and Somerville, 2009; Sims et al., 2010). 

Similarly, the production of biodiesel from oil crops is not viable due to 

poor yield and productivity (Basiron, 2007). The starch crops are more 

productive than the oil crops although corn is a bad example there are 

other crops with high harvest index and yield that have not yet been 

exploited systematically. This thesis is mainly concerned about 

bioethanol production therefore the remainder of this introduction will 

focus on bioethanol, and the use of starch crops as feedstock. 

1.2 Bioethanol 

Bioethanol is a liquid fuel that is currently produced from sugar and 

starch crops as feedstock. The sugar crops are processed by crushing, 

pressing and hot water extraction while starch crops such as corn 

processing is initiated through milling and saccharification. The 

saccharification is accomplished by cooking and enzymatic hydrolysis to 

yield fermentable sugar after milling (Leiper et al., 2006; Chuck-

Hernandez et al., 2009; Arapoglou et al., 2010). This is followed by 

fermentation of the sugars, predominantly by the yeast Saccharomyces 

cerevisiae, and finally distillation to 96% alcohol. The ethanol has a 

range of applications (Calvert, 1997; Burrell, 2003), including its 

popularity in the beverage and food industry, but also in hospitals, to 

manufacture detergents, as solvents and other industrial applications, 

and to provide energy (Gray et al., 2006; Mussatto et al., 2010). 

 

Bioethanol is a fuel that is not only easy to produce; it is also 

conveniently stored in small volumes and can be used on demand. In 
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rural areas it can be used for combustion (heat, cooking) and as 

transport fuel when needed (Gray et al., 2006; Bruni et al., 2010). In 

contrast to the deleterious effect of petroleum spillage and gas explosion 

to the environment, the spillage of ethanol does not lead to 

environmental disasters. These features make it a very important 

renewable and promising alternative to petrol and petrol based products. 

For instance, ethanol can be converted to ethylene by dehydration 

yielding a highly desired feedstock for the plastic industry that could 

replace fossil fuel based plastics (Haro et al., 2013; Zhu et al., 2013). 

Table 1.2. Global bioethanol production (billion litres) 
Country 2005 2006 2008 2009 

USA 15.0 18.3 34.1      40.1 

Brazil 15.0 17.5 24.5      24.9 

China 1.00 1.00 1.90      2.05 

France 0.15 0.25 1.00      1.25 

India 0.30 0.30 0.25      0.35 

Others 1.55 1.65 0.63      6.63 

Total 33.0 39.0 65.4      74.0 

The Table shows the major bioethanol producing countries, and the 
amount of this fuel produced by each country for a period of four years. It 
indicates an increase in the amount of bioethanol produced which were 
33 and 74 billion litres in 2005 and 2009 respectively. This represents 
more than double the initial amount. 
 

Bioethanol has indeed become popular across the globe, and rapid 

growth in the acceptance of bioethanol were recorded as illustrated in 

Table 1.2 (Sorda et al., 2010). It rose from 33 billion litres in 2005 to 74.0 

billion litres in 2009 as shown in Table 1.2. The production was expected 

to reach 100 billion litres by 2015 (Balat and Balat, 2009; Mussatto et al., 

2010). High rate of bioethanol consumption has been reported in the US, 

Brazil and Europe following policies that encourage the use of biofuels. 

The trend shown may continue due to the perceived benefits of the fuels 

in terms lower environmental pollution among others (Balat and Balat, 

2009; Mussatto et al., 2010; Sorda et al., 2010). An issue of concern 
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remains that of sustainability and competition with food production 

(Saxena et al., 2009). 

 

Some of the limiting factors in the production of bioethanol from starchy 

crops are the requirements for enzymes that are used in liquefaction and 

saccharification. These enzymes are expensive therefore make the 

process not cost effective for large scale operation (Smith, 2008). As a 

result there is need for development of more efficient and economically 

viable strategies of ethanol production from starch. Some of the 

strategies include the production of cheaper enzymes, generation of 

transgenics that have high expression of the key starch degradation 

enzymes (Eijsink et al., 2008; Lopez-Casado et al., 2008; Smith, 2008; 

Taylor et al., 2008). If an efficient process technology is developed, it will 

enable the starch conversion to be more cost effective. The following 

sections introduce two main crops used as feedstock for bioethanol 

production and explore high yielding starch crops that have yet to be 

considered for the future. 

1.2.1 Sugar cane as feedstock 

Brazil initiated the bioethanol from biomass specifically the sugar cane 

since 1975 after the oil crisis. The crop is basically made up of 

lignocellulose, water and approximately 20% sucrose, a disaccharide 

that is composed of glucose and fructose (Lora and Andrade, 2009).  

The production of ethanol from sugar crops such as sugar cane involves 

fermentation of the sugar and subsequent distillation to obtain pure 

alcohol (Liang et al., 2008; Patrick et al., 2013).  

 

One of the factors that affect this industrial process is low percentage of 

alcohol in the aqueous broth. This is as a result of pressing and several 

steps of washing the fibre with hot water that dilutes the sugar to a low 

concentration. Therefore, alcohol yields are less than 10% in the 

fermented broth (Leiper et al., 2006), consequently, it is not cost effective 
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to separate alcohol from water under these conditions. The recovery of 

alcohol from the sugar is currently not optimised and the cost of 

distillation is still high due to the amount of material and infrastructure 

used in the process (Rossell et al., 2005; Basso et al., 2008; Son et al., 

2009). However, in Brazil part of the cost is covered by using bagasse, 

the lignocellulosic by-product of sugar cane processing, as renewable 

fuel for distillation, therefore increasing the effective harvest index of the 

crop (Waclawovsky et al., 2010; Dias et al., 2013). Moreover, by 

combining bioethanol production with crystallisation of sugars for the 

food industry, part of the heat energy from the bagasse can be used to 

drive this energetically demanding processing step. Finally, any surplus 

energy remaining is currently used by the refineries to power steam 

generators to generate electricity for retail (Dias et al., 2013), allowing 

sugar cane processing plants to generate three products simultaneously 

and with high economic sustainability (Waclawovsky et al., 2010). The 

strategy is a typical example of the generation of various products from a 

single raw material and can be compared with generation of different 

fractions from petroleum (Hubbert, 1949). 

 

Despite the promising properties of sugar cane, it occupies the land for 

longer periods of six years thereby making the land non-flexible for other 

uses, and only five harvests are made (Waclawovsky et al., 2010). 

These factors make the overall process less attractive, nevertheless 

there is a lot of land available for expansion as Brazil currently only uses 

an insignificant proportion for bio-ethanol production (see Figure 1.1). In 

view of the above, other carbohydrate crops that occupy land for shorter 

period and have higher harvest index and yield are considered for 

bioethanol production (Semencenko et al., 2013; Zhang et al., 2013). 
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1.2.2 Maize as feedstock 

In contrast to sugar cane, maize is an annual crop that is amenable to 

crop rotation, a feature that increases market flexibility and long term 

sustainability. However, edible corn represents only a small proportion of 

the overall crop, and has a significant value as food and animal feed 

(Chuck-Hernandez et al., 2009; Lynch et al., 2012). An attractive feature 

of starch crops such as corn is that higher ethanol amount can be 

produced because the starch can be concentrated by sedimentation to 

ensure higher yield which is not the case with sugar crops (Jeon et al., 

2010; Semencenko et al., 2013). The use of maize as a feedstock for 

industrial processes dates back to conversion of the starch within its 

seeds to the very popular corn syrup produced in the US since 1957. 

The processing of corn starch to bioethanol is a more recent technology 

that was simply derived from its original use. Two methods of conversion 

are used; dry and wet milling of the starch (Chuck-Hernandez et al., 

2009; Piccolo and Bezzo, 2009). The dry milling is simple with ethanol as 

the sole product; in contrast the wet milling is a complicated process but 

yields other valuable side fractions such as protein, oil (corn oil) among 

others (Taylor et al., 2006; Piccolo and Bezzo, 2009).  

 

Despite the success stories in the conversion of corn starch to sugar and 

subsequent fermentation to ethanol, maize is an energy inefficient crop. 

This is because only the seeds are used while the other part of the plant 

such as cob that contain biomass which cannot be easily converted to 

sugar is not exploited  (Waclawovsky et al., 2010). It was based on this 

inefficiency of maize that the speculation was made on the negative 

impact of biofuel crops on food that led to the high prices of food in 2008 

(Pimentel and Patzek, 2005; Lynch et al., 2012). However maize should 

not be used as a model to discredit the potentials of biofuel production 

from food crops thus other potential starch crops that can be used as 

feedstock for bioethanol production will be discussed in the next section. 
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1.2.3 A case for starch as feedstock 

Starch is one of the most important and complex biomolecules of high 

significance in the world due to its diverse roles in life. It is synthesised 

and stored by higher plants in granules in tissues such as leaves, seeds, 

tubers, roots and stems (Buleon et al., 1998; Kossmann and Lloyd, 2000; 

Jeon et al., 2010; Halford et al., 2011). In comparison to the sugar crops, 

more starches are stored by mass in starchy crops due to the compact 

nature of starch than the sugars present in sugar crops (Goncalves da 

Silva, 2010; Halford et al., 2011). This high density of starch makes it an 

attractive feedstock for bioethanol production. Plants store carbohydrate 

as starch because it has low osmotic property and is chemically inert 

compared to sucrose or other sugars (Godin et al., 2013). It is also easy 

to mobilise in vivo and broken down to sugars to provide energy to the 

plant. This can be compared with the storage of blood glucose as 

glycogen in animals which is rapidly mobilised for energy on demand 

(Kossmann and Lloyd, 2000; Cummings and Stephen, 2007; Halford et 

al., 2011). 

 

Starch is stored in photosynthetic tissues during transitory metabolism to 

provide a source of energy during the night. It is also stored in non-

photosynthetic tissues for longer term storage (Graf and Smith, 2011). 

Starch is found in almost all classes of crops; tubers (such as potato, 

cassava and yam); cereals (rice, maize, sorghum, wheat, barley, oat), 

and roots (such as sago). It is also found in fruits such as banana, 

plantains, tomato, apple, pear among others. Starch from cereal 

endosperms represents most of the world’s supply of starch (Abd-Aziz, 

2002; Hannah and James, 2008; Keeling and Myers, 2010).  

 

Starch is used as food and feed as livestock feeds. It finds a variety of 

industrial applications including, beverages, brewery, pharmaceuticals, 

food, and paper. Others include use as adhesives (thickeners and gelling 

agents), and sweeteners and syrups. Starch can be converted to 
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biodegradable plastics (Nigam and Singh, 1995). It serves as a substrate 

for acetone and butanol production; it is hydrolysed to maltose and 

dextrose that are fermented to lactic acid. Finally, starch is also used in 

the production of ethanol through fermentation of sugars. However, not 

every starch crop is suitable for sustainable alcohol production (Buchholz 

and Seibel, 2008). 

 

Although conversion of starch to fermentable sugar is an additional step, 

suggesting a more costly production process compared to sugar crops 

there is specific advantage to the use of starch. One of these is the 

ability to sediment the starch prior to conversion to sugars. This means, 

that high concentration of sugar syrup can be produced, leading to a 

higher percentage of alcohol and cheaper refinery by distillation (Gryta, 

2001; Leiper et al., 2006; Basso et al., 2008; Son et al., 2009). In 

addition, the average yield of some starch crops such as potato, sweet 

potato and cassava is higher than that of sugar produced by sugar cane 

and sugar beet (Clough, 1994; Lynch et al., 2012). Most high yielding 

starch crops are annual crops, amenable to crop rotation which promotes 

sustainability and flexibility to satisfy changing market demands (Clough, 

1994; Goncalves da Silva, 2010; Lynch et al., 2012). Furthermore, the 

sugar crops such as sugar cane takes approximately thirteen months to 

grow while starch crops like potato only require a maximum of five 

months thus offering flexibility (Waclawovsky et al., 2010). This makes 

the starch crops more attractive than sugar crops as the land can be 

used for other purposes after harvest (Waclawovsky et al., 2010; Lynch 

et al., 2012). In the temperate region of the world more land is available 

for the growth of starch crops such as potato than that available for the 

growth of sugar crops in the tropics (Harvey and Pilgrim, 2011). 

 

The popularity of starch and its use in various industries which is affected 

by the properties of the polymer therefore has led to several research 

efforts at improving starch. The properties that are targets for 

improvements include composition and digestibility of the polymer. In 
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addition there are also efforts to enhance the process of starch 

conversion to sugar, the aim of which is to ensure maximum yield of 

alcohol (Slattery et al., 2000; Burrell, 2003; Sonnewald and Kossmann, 

2013).  

1.2.4 Exploring potatoes 

Key advantages of potato are the short growth period, the high harvest 

index, and the ease of harvesting, transportation and storage as well as 

existing wet-milling procedures to refine starch industrially. The starch 

can be used as food and to generate fuel, offering flexibility because 

such food crop will serve different purposes (Clough, 1994; Alvani et al., 

2011; Blahovec and Lahodova, 2013). These properties make potato an 

attractive but yet unexplored feedstock for bioethanol production, 

glucose syrup, and pharmaceuticals (Ryffel, 2010; Alvani et al., 2011). 

This implies potato can be compared to petroleum that is used to 

generate a range of products which include petrol, diesel, kerosene, 

asphalt and petrochemicals. Also, potato is a good model system for 

genetic engineering because it has a storage organ that can be 

manipulated quite easily (Kossmann and Lloyd, 2000).  

 

The host laboratory has started to develop a cascade-refinery strategy to 

use potatoes for the production of hydrolases and other industrial 

enzymes, with starch based alcohol as side fraction (Jing An and 

Denecke, unpublished). The strategy of using potato for protein 

production or enzyme and its starch for bioethanol will ensure efficient 

use of resources. This is because if implemented, land can be used for 

the rest of the season to grow other crops. Furthermore, crop rotation 

practices will enhance the long term sustainability of the strategy (Festel, 

2008; Gressel, 2008). In order to appreciate the limiting factors in starch 

conversion, I will introduce the reader to the structure of starch and its 

biosynthesis. 
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1.3 Starch biosynthesis 

Starch has been described as the most abundant storage carbohydrate 

in plants. In order to use starch as a feedstock for bioethanol, there is a 

need to understand starch, its composition and structure. The reason for 

this is because the form of starch affects its digestion to simple sugars 

and consequent conversion to ethanol. The following chapter will focus 

on the molecular architecture of starch. 

1.3.1 Starch structure 

Starch is a macromolecule that consists of two glucose polymers, 

amylose and amylopectin as its major components. Amylose is a linear 

polymer of glucose residues that are linked mostly by α-1,4 glycosidic 

bonds with very low branching (of α-1,6 glycosidic bonds) of about 0.1% 

(Denyer et al., 2001). Amylopectin is a high molecular weight compound 

of about 107-109 that is highly branched and consists of glucose residues 

linked through both α-1,4 glycosidic bonds and α-1,6 glycosidic bonds as 

shown in Figure 1.3 (Kossmann and Lloyd, 2000; Zeeman et al., 2010). 

Typically between 5-6% of the bonds represent branch points. 

 

The two main components of starch have different chemical and physical 

properties. For instance, amylose is insoluble in water while amylopectin 

is water soluble. Hence, the form and characteristics of starch is a 

function of its components. Both amylose and amylopectin are 

responsible for the semi-crystalline nature of starch (Copeland et al., 

2009), typically found as spheres or ovoid of 0.5 – 100 µm in diameter. 

The granule size and relative proportions of amylose and amylopectin is 

highly variable and depends on the crop species (Denyer et al., 2001; 

Zeeman et al., 2010; Santelia et al., 2011). In a typical starch granule, 

approximately 20-30% of the starch molecule is made up of amylose 

while 70-80% is amylopectin (Kossmann and Lloyd, 2000; Keeling and 

Myers, 2010). Though starch generally contains both types, starch 
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granules have been observed that are composed of amylopectin only 

(Buleon et al., 1998). 

 

 

Figure 1.3. The Structure of starch showing the repeating units of 
glucose linked by α-1,4-glycosidic bonds and α-1,6-glycosidic bond at 
branch points.  
 

The amylose to amylopectin ratio of starch strongly affects its physical 

characteristics. Starches subjected to heating in water form thick pastes, 

the long linear amylose chains are mainly responsible for the texture and 

viscosity of cooked starches (Zhang et al., 2005). Starch with an amylose 

composition of 20-30% forms a turbid paste and rapidly aggregates due 

to crystallization of amylose. In contrast, starch that is free from amylose 

gelatinises with ease forming clear liquid pastes of lower viscosity. 

Furthermore, starch digestibility by enzymes is also affected by its 

physical and chemical properties; they include granule size and shape, 

source, the ratio of amylose to amylopectin. The molecular interaction 

between the components, chain length, crystallinity and the availability of 

complexes of amylose-lipid can all be important factors (Zhang et al., 

2005; Fuentes-Zaragoza et al., 2010; Alsaffar, 2011). It has been 

postulated that starch with high amount of amylopectin is hydrolysed 

more easily by the amylases compared to amylose-rich starch (Denyer et 

al., 2001; Soares et al., 2011). 
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1.3.2 Biosynthesis of starch 

The energy from sunlight is converted into chemical energy by the Calvin 

cycle during the process of photosynthesis. CO2 is first reduced to 

glucose which then forms the feedstock to synthesise polysaccharides, 

lipids, nucleic acids and proteins. Plants do not store glucose because it 

is a chemically and osmotically active compound in contrast to starch, 

and it is not efficient for the long term storage of large amounts of 

energy. Starch is a preferred form of storage because it is osmotically 

inert and exhibits a higher energy density when condensed into starch 

granules. In plants, it is used as an energy buffer in a variety of 

conditions (Smith et al., 2005; Munoz et al., 2006; Fettke et al., 2009).  

 

Starch is synthesised and stored temporarily in the chloroplast of 

photosynthetic tissues such as leaves of plants and is referred to as 

transitory starch. Because starch cannot be transported from the leaves 

to the storage tissues, it is hydrolysed to maltose and glucose that are 

further converted to sucrose for long distance transport from leaves to 

the root, tuber, and stems (Smith et al., 2003; Smith et al., 2005; 

Orzechowski, 2008). Sucrose is a non-reducing, low viscous, more 

neutral and chemically less interactive disaccharide which make it a 

medium of choice for sugar transportation in plants (Winter and Huber, 

2000; Halford et al., 2011; Stitt and Zeeman, 2012). On translocation, 

sucrose is converted through a series of biochemical reactions back to 

starch that is stored in seeds, fruits, stems and tubers, often referred to 

as reserve starch. In the non-photosynthetic tissues the starch is stored 

in amyloplast, a plastid belonging to the same family as chloroplasts but 

devoid of pigments. 

 

The biosynthesis of starch is not a straightforward process and involves 

several structural modifications that include elongation, branching, 

debranching. These are then followed by the final assembly of the 

components until the complete molecule is produced, therefore the 
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structure of a starch granule depends on both synthesis and degradation 

(Mukerjea et al., 2002; Mukerjea and Robyt, 2005b, a; Mukerjea et al., 

2009). For simplicity and to aid in understanding the synthesis, the 

process will be described in separate steps. 

Initiation of Starch Synthesis 

The process is initiated by the synthesis of ADP-glucose which is the first 

committed step in the pathway. (Buleon et al., 1998; Denyer et al., 2001). 

As shown in Figure I.4, phosphoglucose isomerase (PGI) converts 

fructose 6-phosphate to glucose 6-phosphate, which is further converted 

to glucose 1-phosphate by the action of phosphoglucomutase (PGM). 

Other hexose phosphates can also be converted to glucose-1-phosphate 

by PGM (Smith, 2012). The enzyme ADP-glucose pyrophosphorylase 

(AGPase) located in the cytosol catalyses the conversion of glucose-1-

phosphate into ADP-glucose in the presence of ATP (Figure 1.4) which 

serves as a donor of the adenosine di-phosphate. In contrast AGPase is 

located in the amyloplast in the storage organs of some starch. The 

ADP-glucose produced is transferred into the amyloplast of the 

endosperm of cereal crops. This implies that the synthesis of ADP-

glucose can occur in the cytosol or directly in the amyloplast (Tetlow, 

2006; Streb et al., 2009; Zeeman et al., 2010). 

 

ADP-glucose pyrophosphorylase (AGPase) activity is rate-limiting in 

starch biosynthesis and is subject to regulations by different metabolites. 

In the plastid, AGPase is activated by low concentrations of 3-

phosphoglycerate and inhibited as the concentration of 3-

phosphoglycerate, inorganic orthophosphate and pyrophosphate 

increases. In contrast, cereal endosperm starch synthesis is controlled 

by the availability of ADP-glucose that is synthesised by the cytosolic 

AGPase which has less sensitivity to the allosteric regulation of the 

metabolites described above (Tetlow et al., 2004; Ihemere et al., 2006; 

Orzechowski, 2008). In some plants, AGPase has been reported to be 

controlled by light and sugar levels. Consequently, the synthesis of ADP-
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glucose or otherwise is a major determinant of the pathway of starch 

synthesis (Stark et al., 1992; Orzechowski, 2008). 

 

 

Figure 1.4. The pathway of starch biosynthesis, the process begins with 
the conversion of fructose-6-phosphate to glucose 6-phosphate in a 
reaction catalysed by phosphoglucoisomerase (PGI). Glucose 6-P is 
converted to Glucose 1-P by phosphoglucomutase (PGM). It accepts 
ADP from ATP in a reaction catalysed by ADP-glucose 
pyrophosphorylase (AGPase) to produce ADP-Glucose. In the presence 
of glucan donor, as series of synthases (GBSS and SS) assemble the 
products to amylose and amylopectin respectively. At this stage, 
branching enzymes and isoamylases are involved in the creation of 
branched glucans. Debranching enzymes (DEB) and starch 
phosphorylase are involved in the final modification of the glucan to 
produce starch. 
 

Elongation of Starch Structure 

The ADP-glucose produced is subsequently transferred onto pre-existing 

glucan chains by the action of starch synthase, ADP-glucose: [1-4]-α-D-

glucan 4-α-D-glucosyltransferase (Beck and Ziegler, 1989; Kossmann 

and Lloyd, 2000; Keeling and Myers, 2010). This prompts the question 

regarding the first synthesis of the acceptor molecule. Is a starch 

precursor available from the haploid ovary cells, or can it be de novo 

synthesised? Starch synthases transfer glucosyl-residues from ADP-

glucose to the reducing end of an acceptor molecule, an α-1,4-linked 

glucan chain leading to amylose and amylopectin synthesis (Zeeman et 

al., 2010).  
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In higher plants, five gene classes encode the starch synthases; 

Granule-bound starch synthase (GBSS) binds tightly to the starch 

granule during amylose synthesis. (Orzechowski, 2008; Zeeman et al., 

2010). In contrast to GBSS, starch synthases I, II, III, and IV (SSI, SSII, 

SSIII and SSIV) are soluble isoforms of the protein that are responsible 

for the generation of amylopectin chains. It has been shown that in 

amylopectin synthesis, there is preferential elongation of short, medium, 

and long chains by SSI, SSII and SSIII classes respectively (Tomlinson 

and Denyer, 2003). Among the starch synthases, only GBSS has been 

reported to have principal role in amylose synthesis, this is evident from 

the fact that mutants lacking amylose lack GBSS activity. One of the 

obvious distinctions of GBSS from other isoforms of starch synthase is 

localisation; some are present in the plastid while others are found in the 

cytosol (Denyer et al., 2001; Emes et al., 2003).  

 

In 2010, BASF patented an ‘amylopectin’ potato approved for growth in 

the EU. Inactivation of the GBSS gene results in modification of starch 

phosphorylation, and prevents amylose synthesis. This affects starch 

degradation and lead to reduction in taste characteristics of the 

transgenic potato (tuber) starch (Lorberth et al., 1998), therefore altering 

starch composition usually lowers the yield. The use of biotechnology to 

improve the starch is not yet possible due to lack of understanding of the 

main factors that affect starch properties.  

Branching in Starch 

A very important structural feature of starch that affects its characteristics 

is the presence of branches (Kossmann and Lloyd, 2000). The branching 

in starch is created by the coordinated action of branching enzymes (BE, 

α-1,4-glucan: α-1,4-glucan-6-glucosyltransferase EC 2.4.1.18). The BE 

cuts α-1,4-glycosidic bond on an existing α-1,4-glucan chain (Keeling 

and Myers, 2010; Zeeman et al., 2010). The cleaved segment of six or 

more glucose units is transferred to C6 position of a glucosyl residue of 

the same or another glucan chain. The BEs are classified into two 
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classes, class I and II (also referred to as B and A respectively). Class B 

enzymes transfer longer chains than the A class. Thus, class A enzymes 

preferentially act on amylopectin while the B enzymes act on amylose 

(Buleon et al., 1998; Slattery et al., 2000; Tomlinson and Denyer, 2003).  

 

Debranching enzymes (DBEs) modulate starch synthesis by cleaving the 

α-1-6-branch points. In plants, two types of DBEs have been reported; 

the isoamylase (ISA, EC 3.2.1.68) and pullulanase or limit dextrinase 

(LDA, EC 3.2.1.41) (Hussain et al., 2003; Tetlow et al., 2004). The 

isoamylase (ISA) has three classes; ISA1, ISA2, and ISA3 with ISA1 and 

ISA2 having critical roles in amylopectin synthesis. The limit-dextrinases 

and ISA3 may also have roles in starch degradation. ISA1 has 

preferential activity on glucans with long external chains while LDA and 

ISA3 act more on glucans with short external chains. ISA2 is reported to 

be inactive but may play modulatory roles on ISA1 (Hussain et al., 2003; 

Tetlow et al., 2004; Zeeman et al., 2010).  

 

The reversible transfer of glucose units from glucose-1-phosphate 

(Glc1P) to the non-reducing end of α-1,4-linked glucan chains is 

catalysed by the starch phosphorylase (SP; EC 2.4.1.1). The SP present 

in the plastid has higher affinity for amylopectin than amylose. 

Experimental evidence has indicated the probable role of plastidic SP 

(Pho1 or L-form) in starch synthesis. However, more explanation is 

needed to fully elucidate the roles of the SP in starch metabolism in 

higher plants (Tetlow et al., 2004; Orzechowski, 2008). 

 

In summary, despite a relatively simple structure consisting of just two 

glycosidic bonds, a large number of enzymes of the biosynthetic pathway 

have been discovered and full understanding of the process of starch 

synthesis is far from established. There are suggestions that the 

enzymes of starch biosynthesis interact as multi-enzyme complexes 

(Tetlow, 2006; Hennen-Bierwagen et al., 2008). This may be due to the 

complexity of starch synthesis and the roles played by the various 
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enzymes. However the reason for the association may be to make the 

process of synthesis efficient. This means it is difficult to study and 

understand the pathway of starch biosynthesis by reductionist 

approaches, whether they be biochemical or genetic in nature. 

1.4 Starch degradation 

Starch degradation is the process of the breakdown of starch to liberate 

simple sugars for metabolism. It takes place in vivo (in the cell) to 

mobilise energy during the night or during fruit ripening or seed 

germination. It can also occur extracellularly, usually when starch is 

decomposed by another organism, i.e. bacteria or fungi that depend on 

plant starch for their own survival (Smith et al., 2003; Orzechowski, 

2008). In this section, the in vivo degradation referring to the breakdown 

of transitory and reserve starch will be discussed first 

1.4.1 Degradation of transitory starch 

Initiation of Starch Degradation 

Transitory starch degradation occurs in the chloroplast, as introduced 

earlier. The circadian rhythm is crucial to mobilise starch in order to 

provide energy for the tissues during the night. Starch degradation can 

be divided into initiation of degradation and subsequent digestion into 

maltose, and glucose (Smith et al., 2003; Orzechowski, 2008). The 

process of hydrolysis of transitory is illustrated in Figure 1.5.  

 

In this section, the discussion will focus on transitory starch degradation 

in the leaves. In the chloroplast; glucan water dikinase (GWD) and 

phosphoglucan water dikinase (PWD) phosphorylate starch prior to 

degradation. The phosphorylation is evident by the presence of 

phosphates at C-6 and C-3 position of amylopectin (Buleon et al., 1998). 

The enzymes GWD and PWD catalyse starch phosphorylation in the 

presence of ATP (Ritte et al., 2004; Zeeman et al., 2007b). The 
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mechanism of phosphorylation is as follows; ATP is the donor of 

phosphate group that is first transferred to a conserved histidine residue 

on the dikinases (GWD and PWD). The phosphate group is 

subsequently transferred to a glucose unit of the amylopectin (Fettke et 

al., 2009). The phosphorylation of starch molecule leads to disruption of 

its structural organization (Blennow et al., 2002; Santelia et al., 2011), 

therefore making it more amenable to the action of isoamylase and beta 

amylase (Buleon et al., 1998; Zhang et al., 2005).  

 

 

Figure 1.5. Transitory starch degradation in the chloroplast. Starch is 
attacked by the glucan water dikinase (GWD), phosphoglucan water 
dikinase (PWD), isoamylase and beta-amylase to maltose which is 
transported by the maltose transporter, MEX1 from the chloroplasts to 
cytosol, maltase hydrolyse it to glucose which is converted t glucose 1-P 
and further to glucose 6-P and finally to sucrose. 
 

In a mutagenic experiment, it was reported that inactivation of GWD 

leads to more than 7-fold accumulation of starch compared to the wild 

type plant (Yu et al., 2001). In another report, mutants with defects in 

GWD were observed to accumulate excessive amounts of starch as 

opposed to 7-fold more (Ritte et al., 2004). A PWD identified in the 

leaves of Arabidopsis phosphorylates the C3 position of amylopectin in 

contrast to GWD that phosphorylates C6 and C3. Because transgenic 

plants with low expression of PWD showed starch accumulation this may 

imply a reduction in hydrolysis (Kotting et al., 2005). In Arabidopsis, an 

isoform that was identified and designated as AtGWD3 (or PWD) 

preferentially phosphorylates glucose at C3 position which indicates that 
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it may complement the activity of AtGWD1 (Baunsgaard et al., 2005; 

Kotting et al., 2005). 

Debranching of starch 

Starch degradation in leaves is not only restricted to hydrolytic and 

phosphorolytic processes that were described in the previous section, it 

also involves the dis-assembly of the polymer which takes place in the 

form of debranching. The debranching enzyme Isoamylase (ISA3) acts 

on the 1,6-glycosidic linkages in starch whereas β-amylase acts on 1,4-

glycosidic bonds in the linear chains releasing maltose from the non-

reducing ends of the glucan chains (Orzechowski, 2008; Andriotis et al., 

2010) to release maltose. The disaccharide is exported to the cytosol by 

a transporter known as MEX1; and is subsequently converted to sucrose 

in steps (Zeeman et al., 2004). Indeed maltose was found to be the 

major sugar exported from the plastid to the cytosol at night when 

degradation of transitory starch occurs. A transglucosidase 

(disproportionating enzyme; DPE, EC 2.4.1.25) converts maltose to 

glucose. The glucose moieties are phosphorylated to glucose 1-

phosphate by a cytosolic glucan phosphorylase, PHS2 (Weise et al., 

2004). A glucose transporter referred to as GLT exports glucose (Weber 

et al., 2000; Andriotis et al., 2010). Moreover, GWD and DPE2 

(transglucosidase) are highly significant in the control of starch 

breakdown. Further evidence has shown DPE deficient species to have 

a high accumulation of maltose (Chia et al., 2004). 

Note on glycogen metabolism in animals 

In contrast to plants, animals store glucose in the form of glycogen, it 

also consists of α-1,4 glycosidic bonds and α-1,6 at the branch points. 

Compared to starch, glycogen has a higher degree of branching that 

occurs every 8 to 12 residues and it is more compact than starch. When 

animals feed on starch, glucose is converted to glycogen and stored in 

liver and muscle. However, glycogen is more abundant in the liver, and 

the granules are associated with enzymes of glycogen synthesis and 
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degradation, it is hydrolysed and transferred to tissues when energy is 

needed (Nelson and Cox, 2005). Muscle glycogen is used during 

exercises therefore it may be stored longer than the liver equivalent. 

Glycogen only has one reducing end with branch points of non-reducing, 

thus on hydrolysis by the phosphorylase glucose is released from the 

non-reducing ends until four glucose residues are left. The complete 

hydrolysis of glycogen involves two additional enzymes, the debranching 

enzyme and phosphoglucomutase thus glycogenolysis is less complex 

compared to amylase catalysed starch hydrolysis. Therefore, glycogen in 

the hepatocyte is the equivalent of transitory starch in plant leaves 

(Nelson and Cox, 2005). 

1.4.2 Degradation of reserve starch 

In addition to transitory starch which undergoes continuous synthesis, 

branching, debranching and hydrolysis to maltose, plant cells also 

accumulate starch for long term storage. Degradation of this type of 

starch does not occur in a circadian manner. Starch will be synthesized 

over a long period of time, usually not in the tissue in which CO2 fixation 

took place, but after long distance traffic of sucrose from the 

photosynthetic tissue towards a storage organ. This can either be seeds 

or fruits but also stems, roots or tubers. In this chapter, the degradation 

of reserve starch will be discussed using two examples, i.e. seeds of 

cereals and fruits containing significant levels of starch, to illustrate the 

complexity of the process. 

Starch degradation in seeds 

In germinating cereal endosperm, a secreted form of α-amylase converts 

starch to linear and branched glucans (Beck and Ziegler, 1989; Kotting et 

al., 2010). The oligosaccharides are hydrolysed further by the actions of 

enzymes; limit dextrinase attacks the α-1,6 linkages and while β-amylase 

hydrolyse the linear oligosaccharides from the ends. Maltose and 

glucose are released; and are exported to the scutellum. The maltose is 
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further broken down to glucose by α-glucosidase (Lao et al., 1999; 

Weise et al., 2004; Lu and Sharkey, 2006) while the glucose is directly 

converted to glucose 1-phosphate and subsequently to glucose 6-

phosphate. In a series of further reactions the synthesis of sucrose 

needed for embryonic growth, development and long distance energy 

transport to the growing plant is achieved (Smith et al., 2004; Smith et 

al., 2005). 

Disruption of starch by phosphorylation 

In addition to the initial hydrolysis of starch by α-amylase, a minor 

pathway can occur via phosphorylation. Glucan water dikinase (GWD) 

and phosphoglucan water dikinase (PWD) phosphorylate starch prior to 

degradation (Ritte et al., 2004; Zeeman et al., 2007b). The mechanism of 

phosphorylation has been described in the previous section and leads to 

disruption of structural organization of starch, making it more amenable 

to the activities of the hydrolases (Blennow et al., 2002; Santelia et al., 

2011).  

 

 

Figure 1.6. Degradation of reserve starch illustrating the pathway of 
starch degradation in the amyloplast. Starch is acted upon by alpha 
amylase which initiates the degradation, and glucans are generated. In a 
minor pathway, the starch is phosphorylated by GWD and PWD and is 
acted by ISA3. These glucans can be converted to sucrose and glucose. 
The combined cleavage by isoamylase and beta-amylase releases 
maltose which is transported by the maltose transporter, MEX1 to the 
cytosol, where it is further converted to glucose.  Glucose 1-phosphate 
can also be released and is further converted to glucose 6-P and finally 
to sucrose. 

 



Chapter 1: Introduction 

33 

 

Debranching  

The debranching enzyme Isoamylase (ISA3) cleaves the α-1,6-glycosidic 

bonds in starch to release linear sugar chains. Then β-amylase acts on 

1,4-glycosidic bonds from the non-reducing ends of the linear glucan 

chains to release maltose (Orzechowski, 2008; Andriotis et al., 2010). 

The disaccharide maltose is exported to the cytosol by a transporter 

known as MEX1; where is further converted to glucose (Zeeman et al., 

2004). In addition the action of β-amylase may also release glucose. The 

glucose moieties are phosphorylated to glucose 1-phosphate by a 

cytosolic glucan phosphorylase, PHS2 (Weise et al., 2004). On the other 

hand, the glucose 1-phosphate is converted to glucose 6-phosphate 

which is finally converted to sucrose. A glucose transporter referred to as 

GLT exports glucose (Weber et al., 2000; Andriotis et al., 2010).  

 

It was observed that starch accumulation and turnover also occurs in the 

embryo in cells undergoing cell division and differentiation. This indicates 

that starch is a temporary energy reserve in dividing cells or in the early 

differentiated cells, thus confirming the accumulation of starch in the 

embryo, endosperm and the testa (Andriotis et al., 2010).  

Ripening in fruits 

Fruits also contain a large amount of reserve starch and ripening is an 

essential developmental process in fruits where the starch is digested. 

Based on their ripening patterns, fruits are classified into two classes. 

Climacteric and non-climacteric fruits; the former are capable of ripening 

when detached from parent plants. The members of the latter group are 

not capable of ripening independent of their parents (Giovannoni, 2001; 

Prasanna et al., 2007). The process of ripening is characterised by some 

biochemical and physiological changes that affect the texture, taste and 

nutritional attributes of fruits. The cell walls contain complex 

polysaccharides such as pectin, cellulose, hemicelluloses and starch 

(Prabha and Bhagyalakshmi, 1998; Prinsi et al., 2011). These complex 
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compounds undergo series of enzymatic modifications to give the fruits 

the desired softness and sweetness. It is a highly complicated process 

that converts macromolecules into simpler ones. During ripening of fruits; 

there is an observed decrease in the amount of starch that is as a result 

of increased activity of hydrolases (Hill and Aprees, 1994; Prasanna et 

al., 2007).  

 

Crops such as banana and plantains in the unripe stage may consist of 

70% or more starch. As the crop ripens, the starch is gradually 

hydrolysed and converted to sugars. A fully ripened banana may contain 

2% or less starch while plantain may contain 10% starch (Junior et al., 

2006; Xu et al., 2007; Fioravante Bernardes Silva et al., 2008). 

Moreover, there is an accumulation of sugars predominantly sucrose 

which may reach 16% or more of the fresh weight of the crop. This 

biochemical process of complete conversion of starch to sugars is 

facilitated by different hydrolases (Zhang et al., 2005; Shiga et al., 2011). 

α-amylase hydrolyses starch to release shorter chain sugars and 

maltose while β-amylase releases maltose. Maltose may be converted to 

sucrose through the glucose 1-phosphate pathway. This is also 

supported further by the fact that only trace amounts of maltose are 

found in ripening fruit (Hill and Aprees, 1994; Prabha and 

Bhagyalakshmi, 1998; Fioravante Bernardes Silva et al., 2008). α-

amylase and β-amylase cannot act on the α-1,6 branching in 

amylopectin, hence α-glucosidase or glucoamylase may be required to 

cleave this bond. Thus, it has been postulated that more than one 

pathway may be involved in this conversion process (Sarikaya et al., 

2000; Prasanna et al., 2007; Derde et al., 2012). 

 

In conclusion, a better understanding of starch degradation in vivo will 

assist us in process design involving starch degradation. This is because 

the digestion of starch to fermentable sugar is a major step in the 

industrial conversion of starch to bioethanol. The full elucidation of the 

pathway will enhance the production and yield of sugar for bioethanol 
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production. In the following sections, the extracellular degradation of 

starch will be discussed. 

1.4.3 Microbial Starch Degradation 

Starch degradation in nature does not only occur in the organisms that 

synthesize and utilise starch as part of their normal energy physiology. 

Starch can also be used by pathogenic or saprophytic microorganisms 

that take advantage of this rich source of sugars. Because essentially 

this process takes place outside the cells that will acquire the released 

sugars, the mechanisms of starch catabolism show some fundamental 

differences compared to the previous examples given. First of all, 

hydrolysis of starch by micro-organisms is achieved without 

phosphorylation, and generally depends on the use of secreted 

extracellular enzymes. Saprophytic starch degradation can occur under a 

multitude of conditions, including low or high pH, and a vast range of 

temperatures.  

 

In bacteria and fungi, thermostable α-amylases have been found that 

hydrolyse starch at high temperatures. In particular α-amylases from the 

Bacillus species are thermo stable, a feature that has led to the use of 

these microbial enzymes in industrial processing of starch (Prakash and 

Jaiswal, 2010). The thermal stability has been selected due to the 

extreme environmental conditions faced by microbes such as high 

temperature in compost. Glucoamylases in microbes cleave the 1,4 

glycosidic bonds at the non-reducing end of starch to release glucose 

(Marin-Navarro and Polaina, 2011). From the biotechnological point of 

view, the heat stability is an attractive because the starch is liquefied at 

high temperatures and enzymes that can withstand these conditions are 

needed. 

 

Microbes have over time evolved enzymes that have the ability to 

hydrolyse raw crystalline starch (Saha and Zeikus, 1989; Gupta et al., 
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2003; Sivaramakrishnan et al., 2006). Microbial breakdown of starch is 

catalysed by secreted amylases that have starch binding domains 

(SBDs). The SBDs facilitate the interaction between starch and the 

amylases by disrupting the starch structure which exposes starch to the 

active site of the amylase (Warren, 1996; Rodriguez-Sanoja et al., 2005). 

This feature has yet to be explored industrially but could be of high 

economic importance in processes where heat-labile components such 

as vitamins and nutrients demand processing at lower temperatures. 

1.5 Industrial starch processing 

Industrial processing of substances is a highly complex activity that 

involves conversion of feedstock to specific high value products. Starch 

is a raw material for various important products in different industries 

such as food and beverage, but also the biofuel sector. The strategy in 

use currently to covert starch to sugars is a combination of acid and 

heat-induced hydrolysis, and immobilized enzyme columns. Alcohol is 

currently produced from corn and some cereals, both of which are 

carbohydrate crops that contain starch which is the raw material in 

saccharification (Chen and Zhang, 2012; Duvernay et al., 2013). Since 

these crops are also high quality food sources, there are justified public 

concerns about the viability of this approach because corn and other 

cereals exhibit a low harvest index and occupy significant land surface 

with limited bio-ethanol yield (Gressel, 2008).  

 

The starch transformation involves three basic steps, these include 

gelatinisation, liquefaction and saccharification (Satyanarayana et al., 

2004). The process is currently highly expensive and high technology-

based. It is also associated with the cost of downstream processing 

(Satyanarayana et al., 2004). 
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1.5.1 Gelatinisation and hydration of starch 

Unlike starch digestion in nature, industrial processes cannot be partial 

and time-consuming; they need to occur fast and with minimal losses. 

Starch in its crystalline form cannot be easily digested by enzymes 

because they cannot penetrate the densely packed granule, justifying the 

general approach from beer brewers to hydrate and gelatinise the starch 

at high temperatures (Schuster et al., 2000; Benmoussa et al., 2006). 

Gelatinisation is defined as the phase transition starch undergoes on 

heating in the presence of water at high temperature giving rise to a 

water-soluble highly viscous gel. It begins with the diffusion of water 

molecule into the granule, hydration of the starch leading to the swelling 

of the granule. The structural order of the molecule is lost by the heat 

induced uncoiling and dissociation of the crystalline helices (Haralampu, 

2000; Zhang et al., 2005).  

 

The kinetics of starch gelatinisation and its temperature-dependence 

depends strongly on the ratio of amylose to amylopectin. The 

temperature ranges from 60°C to 80°C depending on the botanical 

source and properties of the starch. Banana starch gelatinises between 

67 to 75°C however green (unripe) banana starch requires higher 

temperature of about 80°C to gelatinise (Zhang et al., 2005; Soares et 

al., 2011). It implies that the stage of ripening affects gelatinisation. This 

is because unripe banana has a higher concentration of starch some of 

which may be resistant or have low digestibility. Potato starches exhibit 

low gelatinisation temperature at 61°C while wheat and corn starches 

have temperatures of 73 and 77°C respectively as gelatinisation 

temperatures (Zhang et al., 2005; Carmona-Garcia et al., 2009). 

Therefore, an industrial saccharification process must include a robust 

gelatinisation step as pre-treatment to enable routine processing of 

starch from different feedstock. 
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1.5.2 Liquefaction 

Liquefaction of starch is defined as the breaking down of the molecule 

into shorter chain units such as dextrin (Buchholz and Seibel, 2008; 

Dziedzoave et al., 2010). The gel-like properties are lost as the viscosity 

decreases, hence the term liquefaction. This is industrially achieved by 

acid catalysed hydrolysis of starch at high temperature and pressure 

(Kim et al., 2008b). It can also be achieved by enzymatic liquefaction 

using heat-stable α-amylase. The enzyme attacks the intact starch 

polymer at internal position cleaving the α-1,4 bonds to yield short 

glycans that can be digested further by other enzymes (Beck and 

Ziegler, 1989; Irving et al., 1999). Either method leads to a strong 

decrease in the viscosity of the starch solution thereby accelerating 

subsequent enzymatic digestion. It also creates a larger number of 

exposed non-reducing ends of the starch molecule hence providing 

substrates for other enzymes which exhibit an exo-glycosidic hydrolysis 

activity (Abd-Aziz, 2002; Buchholz and Seibel, 2008).  

 

In the industrial starch conversion, gelatinisation and liquefaction are 

often combined; because high temperature is used for gelatinisation 

therefore liquefying enzymes are required that are stable under this 

condition thus the use of heat stable amylases has become the norm. 

Liquefaction of starch can also be achieved using acid hydrolysis; 

however the process is totally random therefore it is hard to control the 

pattern of products (Soni et al., 2003; Buchholz and Seibel, 2008). Also, 

both process-strategies depend on the concentration of starch, and 

results obtained with 10% starch solution cannot be extrapolated to a 

30% starch solution. Efficient gelatinisation and liquefaction requires a 

great deal of optimisation. 
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1.5.3 Saccharification 

Saccharification is defined as the breaking down of short sugars into 

fermentable sugars. In this case the term “fermentable” is defined for the 

ability of the yeast Saccharomyces cerevisiae to metabolise simple 

sugars, including glucose, maltose and maltotriose. For the food and 

drink industry, saccharification may also be defined as the process that 

leads specifically to glucose only (Carr et al., 1982; Satyanarayana et al., 

2004). The extent of starch saccharification is quantitatively determined 

by the dextrose equivalence (DE) values and is defined as the ratio 

between glucose that is released or recovered from starch hydrolysis 

and the theoretical amount of glucose present in the starch sample 

(Schuster et al., 2000). The DE value of 100 means complete 

saccharification to glucose. Lower DE values may still contain mostly 

fermentable sugars if maltose and maltotriose represent the majority in 

the hydrolysate. 

 

The efficiency of saccharification depends on a number of factors. These 

include the size and surface characteristics of starch and the molecular 

weight of the polymers. It has been postulated that starch with high 

amount of amylopectin is hydrolysed more easily by the amylases 

compared to amylose rich starch (Denyer et al., 2001; Soares et al., 

2011). In contrast glycogen which is the storage form of carbohydrate in 

animals does not require gelatinisation which may be due to the high 

branching of the molecule. 

 

Some α-amylases in addition to producing glucans can also hydrolyse 

starch to release mainly maltose which is also a fermentable sugar 

(Derde et al., 2012). However, β-amylase is the principal enzyme that 

releases maltose from non-reducing ends of starch (do Nascimento et 

al., 2006; Lin et al., 2008). Glucoamylase cleaves the α-1,4 and α-1,6 

glycosidic bond in starch or glucans generated by the α-amylase reaction 

to release glucose. This implied neither of the isolated enzymes can lead 
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to complete digestion of starch (Pazur and Ando, 1959; Tatsumi et al., 

2007), therefore, a combination of at least two of the enzymes, a 

liquefying and saccharifying enzyme, is required. Generally, starch is 

liquefied by α-amylase then followed by saccharification with 

glucoamylase. These strategies are used in the industry most especially 

for glucose production (Buchholz and Seibel, 2008). 

1.5.4 Retrogradation of starch 

Retrogradation is defined as the reversal of complex starch structures 

into native as well as non-native forms when subject to low temperature 

after gelatinisation. On heating starch in excess of water, the granules 

swell thereby rendering the amylose and amylopectin soluble. On cooling 

the solution, the amylose component forms a gel while aggregation of 

the amylopectin occurs forming a turbid solution of high viscosity. This 

phenomenon is referred to as retrogradation (Zhang et al., 2005; Alvani 

et al., 2011) and this property of starch has been used in wall-paper glue 

and other applications. 

 

The structural organisation of the starch molecule is disrupted on 

heating, though renaturation can occur on cooling (Chung et al., 2006; 

Sajilata et al., 2006). However, the amylose components of starch re-

associate by hydrogen bond to form double and often triple helical 

structures and these undergo transformations to form crystalline 

structures that are not native to starch (Wu and Sarko, 1978; Miles et al., 

1985; Haralampu, 2000). Moreover, much higher temperatures are 

required for subsequent gelatinisation of the retrograded starch 

compared to the initial gelatinisation. The high energy required for 

subsequent gelatinisation can be attributed to compactness of glucose 

units forming higher inter-molecular hydrogen forces (Jane and Robyt, 

1984; Haralampu, 2000) 
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The desirability of the above depends on the purpose of starch 

conversion; retrogradation is considered an attractive feature in 

thickening or when starch-based glues are employed. In the bakery for 

instance, stale bread is a form of retrograded starch (Karim et al., 2000). 

Nutritionally, a retrograded starch is often indigestible in the human diet 

because the α-amylases cannot hydrolyse the molecule; this can be 

exemplified with high starch food such as beans (Behall and Howe, 

1996). Industrially, retrogradation is used in the development of resistant 

starch. The concept is used in the production of cereal foods such as 

corn flakes (Yue and Waring, 1998). When considering retrograded 

starch, estimates of energy content on carbohydrate-rich foods can be 

exaggerated as they do not always take into account digestibility. 

 

Retrogradation is an undesirable feature when the starch is to be 

quantitatively digested to fermentable sugars as it will lead to reduced 

yields. For this reason industrial starch saccharification does not involve 

cooling the solution between the gelatinisation and liquefaction. The gel 

is kept between 65 to 90ºC at all times so that retrogradation does not 

occur (Betancur and Chel, 1997). The temperature of the starch solution 

is only lowered when the heat stable α-amylase or moderately heat 

stable fungal glucoamylase is to be added for the hydrolysis (Aggarwal et 

al., 2001).  

1.5.5 Raw starch digestion 

Raw starch digestibility is a topic that is generating interests recently 

which may be due to increase in the roles starch play in the industries 

(Robertson et al., 2006). The digestibility of raw starch is affected by 

many factors, such as amylose to amylopectin ratio, presence of minor 

components such as phosphate and lipids, source, granule size, 

crystallinity, strength of molecular interaction between starch 

components, and amylose chain length. For instance, raw and uncooked 

banana starch is mostly resistant to hydrolysis so that when eaten by 
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humans it is extruded and passed in the faeces (Zhang et al., 2005; 

Cummings and Stephen, 2007). 

 

Previous research has mainly focused on the identification of thermal 

stable α-amylases with little efforts on identifying amylase with raw 

starch digestion properties that can hydrolyse resistant starch 

(Muralikrishna and Nirmala, 2005). The process of hydrolysis starts with 

adsorption of the enzyme onto the starch granule; hence, it is necessary 

to make the starch susceptible to amylase activity (Sarikaya et al., 2000; 

Kim et al., 2008b). 

 

In the previous and current section, the complex process of starch 

synthesis and degradation in nature and in the industry has been 

explained. The processes involve a variety of enzyme catalysed 

reactions and therefore in the next section, these enzymes, their nature, 

and mode of actions will be discussed in more detail. Understanding the 

properties of these proteins will assist in the design of process 

technology for starch hydrolysis. 

1.6 Amylolytic Enzymes  

Hydrolases also referred to as amylases are enzymes used to digest 

starch. Most of the starch hydrolases used in hydrolysis are of microbial 

origin whilst the beer brewing industries still adhere to the traditional use 

of malted barley containing endogenous plant hydrolases (Nigam and 

Singh, 1995; Horvathova et al., 2000; Kirk et al., 2002). Phosphorolysis 

and hydrolysis are the two forms of reactions enzymes used in starch 

degradation (Asatsuma et al., 2005). However, the discussion here will 

focus on the hydrolytic pathway. The enzymes involved in starch 

hydrolysis are classified into four: endoamylases, exoamylases, 

debranching enzymes, and transferases (Henrissat, 1991; van der 

Maarel et al., 2002).  
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1.6.1 Classifications 

The amylases occupy a large share about one-third of the global enzyme 

market. This is associated with the various applications of the enzymes. 

The enzymes have found their usefulness due to the role they play in 

starch conversion. Amylases are widely used in food and beverage 

industries, breweries and the biofuel sector (Kirk et al., 2002). 

 

The hydrolases differ in their sequence of amino acids that make up the 

primary structure. This implies that the secondary and tertiary structures 

of the enzymes are also variable (Henrissat, 1991; Henrissat et al., 2001; 

Stam et al., 2006). Similarly, the mechanism with which the reactions are 

catalysed is also different (McCarter and Withers, 1994). The 

endoamylase such as α-amylase hydrolyse α-1,4 glycosidic bonds in 

internal positions of amylose and amylopectin structures. It is also 

referred to as liquefying enzymes, this is because it cannot cleave the α-

1,6 glycosidic bonds however, digests starch to liberate shorter glucans 

(Sarikaya et al., 2000; Derde et al., 2012).  

 

β-amylase and glucoamylase are referred to as exo-amylases; β-

amylase cleaves the α-1,4-glycosidic bonds at the external part of the 

starch molecule (Hehre et al., 1979; Lao et al., 1999). The glucoamylase 

is capable of hydrolysing both α-1,4- and α-1,6-glycosidic bonds from the 

external positions of the starch molecule (Kim and Robyt, 1999; Sauer et 

al., 2000). It is referred to as a saccharifying enzyme because it is able to 

hydrolyse the dextrins to simple sugars such as glucose. Debranching 

enzymes, ISA and pullulanase hydrolyse the α-1,6 glycosidic bonds 

while the transferase cuts an α-1,4 glycosidic bond (of a donor) and 

transfers part of the donor to an acceptor molecule (Hussain et al., 2003; 

Bierhals et al., 2004). 
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1.6.2 Mechanisms of action by Hydrolases 

The mechanisms of action of glycoside hydrolases have been studied 

due to their applications in starch hydrolysis (Hehre et al., 1979; 

McCarter and Withers, 1994). Besides elucidating their complex mode of 

action, research has also revealed information that is required for 

improvement of enzyme action (Reilly, 1999; Richardson et al., 2002; 

Lopez-Casado et al., 2008). In order for enzyme engineering to be 

successful, it is required that the amino acids that act at the active site of 

the protein are known. Also other residues that affect the structure and 

stability of the protein are also fully described (Richardson et al., 2002; 

Bessler et al., 2003; Cherry and Fidantsef, 2003; Johannes and Zhao, 

2006). This will enable manipulation of the enzymes to increase their 

activity and also confer on them additional desirable features (Eijsink et 

al., 2004; Eijsink et al., 2008; Kelly et al., 2009). 

 

Two modes of hydrolysis by the amylases can be distinguished; the first 

is retention of configuration this implies the α-configuration in starch is 

retained by the product of the enzyme action. In the second mechanism, 

the α-configuration of starch is inverted therefore the hydrolytic product 

has a β-configuration. In the retention mechanism, an amino acid serves 

as both a general acid and base while a second amino acid acts as a 

nucleophile and leaving group (McCarter and Withers, 1994). However, 

in enzymes with inversion mode of action, an amino acid serves as a 

general acid and another one acts as a base. Alpha amylase uses the 

retention mechanism while the inversion action is employed by the beta 

amylase (McCarter and Withers, 1994). In β-amylase from soybean 

Glu186 and Glu380 have been described as the general acid and base 

respectively (Kang et al., 2004). Because the hydrolases have significant 

industrial uses, understanding the mechanism of the enzyme action is 

important for the full exploration of these proteins and also to increase 

the efficiency of hydrolytic process. 
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1.6.3 Alpha-amylase 

Alpha-amylase (1,4-α-D-glucan-4-glucanohydrolase, EC 3.2.1.1) is a 

member of the glucosylhydrolase class-13 that are folded into three 

domains A, B and C (Kuriki and Imanaka, 1999; Kumari et al., 2010). 

The enzyme α-amylase is found in microbes (bacteria and fungi), plants 

and the archaea. Thus various groups have reported the purification and 

characterization of α-amylase from germinating seeds of plants such as 

soybean (Kumari et al., 2010); malted finger millet (Nirmala and 

Muralikrishna, 2003); banana (Junior et al., 2006); apple (Wegrzyn et al., 

2000; Stanley et al., 2002); Bacillus amyloquefaciens (Demirkan et al., 

2005).  

 

In plants, α-amylase may be produced and secreted by the aleurone 

cells (in rice) or scutellum (in maize and sorghum) or both into the starch 

endosperm (Ranki and Sopanen, 1984; Warner and Knutson, 1991; do 

Nascimento et al., 2006). Alpha amylase hydrolyses the internal α-1,4 

glycosidic bonds of complex carbohydrates (Figure 1.7) such as starch 

leading to the generation of soluble glucans that are subsequently 

hydrolysed by debranching enzymes and β-amylase (Smith et al., 2005; 

Yu et al., 2005; Kumari et al., 2010). The name alpha refers to the 

configuration at carbon one of the reducing unit of the oligosaccharides 

generated by the action of the amylase. The degradation of starch by α-

amylase has industrial uses in glucose syrups, bakery, brewing, 

pharmaceuticals, and detergents, treatment of sewage and livestock 

feeds (Chao and Serpe, 2010).  

 

Physico-chemical factors may affect the stability and activity of α-

amylases. Research has revealed that the α-amylases vary due to high 

and low pI form which are found on chromosomes 6 and 1 respectively 

(Mitsui and Itoh, 1997). Barley AMY1 and AMY2 are low and high pI of 

4.9 and 5.9 forms respectively. Hence the pH optima of the α-amylases 

range from 4.5-5.5 (Tibbot et al., 2002; Robert et al., 2003). Temperature 
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or thermal stability is an important property of proteins as it affects 

enzyme activities. The optimum temperature of these amylases ranges 

between 40-55°C however in nature seed germinate at much lower 

temperatures therefore thermal stability is not important (Prakash and 

Jaiswal, 2010). Temperatures above 60°C may lead to inactivation of 

these proteins however, the brewing variety of barley α-amylase has 

been selected by the brewers for heat stability and can withstand 

temperature of 65ºC which is not natural (Prakash and Jaiswal, 2010). 

The α-amylases in bacteria and plants require calcium for their stability, 

and activity (Tanaka and Hoshino, 2002, 2003). 

 

Post-translational modifications such as glycosylation which is the 

addition of glycans (sugars) affect protein activity, stability and functions. 

(de Barros et al., 2009; Motyan et al., 2011). O-glycosylation involves 

glycan addition at hydroxyl groups of serine and threonine residues. 

While N-glycosylation takes place on asparagine residues of the 

sequence Asn-X-Ser/Thr. The addition of the N-glycans to proteins 

occurs in the endoplasmic reticulum. This is found in a subset of the 

secreted proteins including α-amylases, and the biological role of the 

glycosylation is not always clear (Vitale and Denecke, 1999; Motyan et 

al., 2011). 

 

Several types of classification have been described for the plant α-

amylases in cereals that are based on the tissues they are found (Huang 

et al., 1992; Mitsui and Itoh, 1997). However, a broader classification for 

plant α-amylases based on their cellular localisation has grouped the 

enzymes into three distinct families (Janecek, 2002; Stanley et al., 2002). 

Family one α-amylase is those that contain a signal peptide that targets 

the proteins to endoplasmic reticulum. The second family is the cytosolic 

α-amylases that are not known to contain any targeting peptide 

(Janecek, 2002; Stanley et al., 2002; Stanley et al., 2005). Family three 

α-amylases are chloroplast proteins that have transit peptide; and in 

addition to the enzyme (amylase) domain they contain an unknown 
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domain. This group of proteins are twice the sizes of both families one 

and two α-amylases (Stanley et al., 2002; Stanley et al., 2005). 

 

 

Figure 1.7. Action of α- and β-amylases on starch; the Figure illustrates 
the action of the two amylases on starch. The first enzyme α-amylase 
cleaves on the α-1,4 glycosidic bonds in starch to generate soluble 
glucan. The α-configuration is retained by the product. The glucans are 
hydrolysed further by a second amylase. β-amylase hydrolyses the 
glucans to generate maltose with the β-configuration. 
 

The enzymes of the α-amylase family share some common features. 

These include their ability to cleave α-glycosidic bond, retaining of the α-

configuration of the products (see Figure 1.7). The members also have 

up to seven sequence conserved regions, and similar catalytic 
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machinery (Janecek, 2002). The α-amylases possess the TIM barrel fold 

within the catalytic domain. Three amino acids are conserved in α-

amylases; Asp206, Glu230 and Asp287. These two aspartate residues 

and one glutamate are located at the catalytic centre. An aspartate 

residue is located close to the end of the β-4 strand. The glutamic acid is 

situated near the end of strand β-5 while the second aspartic acid is 

close to the end of the β-7 strand (Horvathova et al., 2000; Stanley et al., 

2005). In terms of the roles of the amino acid triads in chemical catalysis; 

the first aspartate is a nucleophile. The glutamate serves as a proton 

donor while the aspartate at strand β-7 stabilises the transition 

(Svensson, 1994; Horvathova et al., 2000).  

 

High activity of α-amylase has been reported during seed germination. 

This indicates its role in starch mobilization in germinating seeds where 

starch reserves are used for energy (Irving et al., 1999; Zeeman et al., 

2010). The synthesized α-amylase in the aleurone and scutellum is 

secreted into the endosperm to degrade starch. Thus, α-amylase plays a 

principal role in starch hydrolysis in the endosperm during germination 

(James et al., 2009; Kumari et al., 2010). Although α-amylase plays an 

important role in storage starch hydrolysis in the endosperm, it may not 

be involved in transitory starch hydrolysis in the chloroplasts of leaves. 

An Arabidopsis mutant (designated as sex4 mutant) with low α-amylase 

activity showed normal trend of starch metabolism compared to the wild 

type. It is also evident that mutation in AMY3 that is present in the 

chloroplast does not change the rate of starch hydrolysis in leaves (Yu et 

al., 2005; Zeeman et al., 2007b; Zeeman et al., 2007a). Thus alpha-

amylase may be less significant in transitory starch breakdown. 

 

In summary, α-amylase has been described as the only enzyme capable 

of hydrolysing crystalline starch granule (Beck and Ziegler, 1989). 

Evidence for this was established in a research on starch degradation in 

squash (Irving et al., 1999). In addition to the type of α-amylases 

discussed above, maltogenic α-amylases also exist, for instance 
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Lactobacillus plantarium α-amylase. This group of enzyme hydrolyse 

starch to produce short chain oligosaccharides such as maltose, 

maltotriose, maltoheptaose among others. The maltose is further 

hydrolysed to glucose and lactate (Giraud and Cuny, 1997). Therefore, 

the significant role played by the α-amylase in starch hydrolysis is an 

enzyme with endo-glycosidic activities. 

1.6.4 Beta-amylase 

Beta-amylase (α-1,4-glucan maltohydrolase, EC 3.2.1.2), a member of 

class 14 of glycosylhydrolase catalyses the hydrolysis of α-1,4 glycosidic 

bonds from the non-reducing ends of starch to release maltose (see 

Figure 1.7). It generates products that have β-configuration at the carbon 

one, thus the name of the amylase (Taylor and Robbins, 1993; Lin et al., 

2008). Unlike α-amylase, beta amylase does not act on intact starch but 

it acts on the oligosaccharide chains that are released due to the action 

of endo-amylase. Hence, this amylase does not associate directly with 

starch granules. Instead it acts on glucans such as maltosaccharides 

which are its preferred substrate (Hehre et al., 1979; MacGregor et al., 

1999; Hara et al., 2009). β-amylase hydrolyses maltoligosaccharide to β-

maltose and glucose (Figure 1.7). Thus it is a major enzyme in the 

industrial production of maltose from starch (Shiraishi et al., 1987; Lu 

and Sharkey, 2006). 

 

β-amylase has been characterised from microbes and higher plants. 

Unripe fruits such as banana, plantain, mango and apple contain large 

amount of starch that is converted to soluble sugars during ripening. This 

conversion is catalysed by several enzymes (Wang et al., 1995; Lao et 

al., 1999; do Nascimento et al., 2006). Since β-amylase cannot act on 

intact starch, α-amylase first hydrolyses the starch to soluble glucans. β-

amylase then acts on the released glucans from the non-reducing end to 

liberate maltose. High activity of β-amylase and significant amount of 
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maltose has been reported from ripening fruits (Shiraishi et al., 1987; do 

Nascimento et al., 2006). 

 

Although β-amylase cannot effectively digest starch without the previous 

action of α-amylase to create high numbers of non-reducing ends, 

research has repeatedly implicated β-amylase to be one of the key 

enzymes of starch hydrolysis. Maltose is a major product of starch 

hydrolysis during the night. Its presence is an implication that starch 

degradation occurs through hydrolytic pathway rather than 

phosphorolysis (Scheidig et al., 2002; Asatsuma et al., 2005). Unlike the 

α-amylases, members of the β-amylase family have two glutamic acid 

residues at its catalytic (active) centre. The β-amylase has a structure 

similar but with a difference to the TIM-barrel found in α-amylase which 

may be due to the two glutamate residues at its active site (Hehre et al., 

1979; Kang et al., 2004). The structural difference implies that 

mechanism of catalysis employed by the β-amylase is different from that 

of the α-amylase. 

 

The physico-chemical characteristics of β-amylases affect their chemical 

reactivity. The isoelectric point of these proteins is 5.1 with an optimum 

pH of 5.5. Similarly, the members of β-amylases exhibit different thermal 

stabilities (Eglinton et al., 1998; Daba et al., 2012). Most of the enzymes 

are not stable and inactive at temperature above 60ºC however some 

microbial β-amylases are stable at temperature of 80ºC.  An example of 

this is a thermostable β-amylase from Clostridium thermosulphurogenes 

(Shen et al., 1988). 

1.6.5 Glucoamylase 

The hydrolytic degradation of starch cannot be completed by attacking α-

1,4 glycosidic bonds only. Cleavage of the α-1,6 branch points is 

facilitated by glucoamylase (1,4-α-D-glucan-4-glucanohydrolase, EC 

3.2.1.3), a member of family 15 of glycosylhydrolase that is also involve 
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in the hydrolysis of starch. This enzyme is often referred to as 

amyloglucosidase (Shenoy et al., 1985; Coutinho and Reilly, 1997). It 

cleaves both the α-1,4 and α-1,6 glycosidic bonds (see Figure 1.8) from 

the non-reducing end of starch to release maltose and glucose of the β-

configuration. Due to this property, glucoamylase is required for the 

complete hydrolysis of starch to glucose. It is an important industrial 

enzyme in the production of glucose syrup from starch and alcohol 

production (Saha and Zeikus, 1989). 

 

 

Figure 1.8. Action of glucoamylase on starch, it shows the effect of 
glucoamylase on starch. The enzyme is a major and important enzyme 
in starch processing, and it hydrolyses both the α-1,4 and α-1,6 
glycosidic bonds of starch to generate maltose and glucose. 
 

In the literature, two different glucoamylases have been described. 

Glucoamylase is a multi-domain protein with an active domain connected 

by a linker region to a starch binding domain. Of the two enzymes, 

glucoamylase I has a domain for reversible binding to starch that is 

separate from its active site. It is also larger in size than the 

glucoamylase II (Kim and Robyt, 1999; Kim et al., 2008a). The domain is 

referred to as a starch binding domain present in glycoside hydrolases. 
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As the name suggest, it is a region that establishes good binding 

between the enzyme and its substrate, starch. The interaction that is 

facilitated by the domain aids in adsorption of the glucoamylase by 

starch (Reilly, 1999; Hostinova et al., 2003). 

 

Some conserved amino acids are found in glucoamylases, two glutamate 

residues at the catalytic centre. The presence of these amino acids is 

highly significant in the terms of the reactivity of the enzymes (Marin-

Navarro and Polaina, 2011). The glucoamylases catalyse the hydrolysis 

of starch by an inverting mechanism. In the reaction, a proton is 

transferred from an acid catalyst to glycosidic oxygen. Nucleophylic 

attack of the water molecule occurs by a base catalyst. Glu179 serves as 

the general acid while Glu400 is the base. Glucoamylase can hydrolyse 

polysaccharides such as starch and oligosaccharides (malto-

oligosaccharides) (Saha and Zeikus, 1989; Sauer et al., 2000; Sevcik et 

al., 2006). However, polysaccharides are the preferred substrate of this 

enzyme as their hydrolysis proceeds faster. In addition to these 

substrates, glucoamylase has the ability to hydrolyse raw starch by 

adsorption onto the crystalline granules (Coutinho and Reilly, 1997; Kim 

and Robyt, 1999). 

 

The molecular weight of glucoamylase ranges between 48 to 112 kDa 

however some glucoamylases may have much higher mass. Post 

translational modification is a process that is significant in adding specific 

chemical or structural features to proteins (Saha and Zeikus, 1989; 

Marín-Navarro and Polaina, 2010). Glucoamylases are often 

glycosylated; both O and N glycosylation occur in this class of proteins, 

this means that they are secreted proteins. The enzyme glucoamylase is 

a glycoprotein composed of twenty sugars such as glucose, mannose, 

galactose and glucosamines. The sugars are linked to serine or 

threonine residues in the polypeptide, and the significance of the sugar 

moieties is to stabilise the enzymes. The glucoamylase are mostly from 
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fungi and are usually not heat-stable (Saha and Zeikus, 1989; Sauer et 

al., 2000). 

1.6.6 Microbial and Fungal enzymes 

A vast majority of industrial enzymes have been discovered from 

prokaryotes such as bacteria and eukaryotes such as fungi therefore the 

popularity of protein production from microbes is very high. Microbes are 

cosmopolitan and occupy a large variety of ecological niches including 

extreme temperatures consequently; they produce a vast variety of 

enzymes which enable them to survive in various environments. They 

can grow on a wide range of substrates that include carbohydrates such 

as starch, cellulose and sugars; proteins and lipids (Warren, 1996).  

 

Among the enzymes that have been produced using microbial and fungal 

systems are heat-stable lipases and proteases use in washing powder, 

amylases such as α-amylase and glucoamylase (Shenoy et al., 1985; 

Saha and Zeikus, 1989; Sivaramakrishnan et al., 2006; Erjavec et al., 

2012). Examples include heat stable α-amylase from B. subtilis 

(Kuranova et al., 1966), and B. amyloquefaciens (Demirkan et al., 2005)  

and glucoamylase from Aspergillus niger (Shenoy et al., 1985; Marín-

Navarro and Polaina, 2010) and Aspergillus oryzae (Hata et al., 1991). In 

the starch processing industries such as bakeries, breweries, diary and 

the beverage industries the hydrolases from bacteria and fungi are 

widely used (Shahani et al., 1976; Sharma and Satyanarayana, 2013). 

The microbial enzymes have gained popularity and are successful due to 

their desirable features such as heat and acid stability (Sharma and 

Satyanarayana, 2013). 

 

In addition to the microbes being sources of valuable enzymes, they also 

serve as factories for the production of proteins. They possess systems 

which allow simple manipulations, thus they are widely accepted and 

used for protein production in small scale. Recombinant proteins can be 



Chapter 1: Introduction 

54 

 

produced and harvested with relative ease from organism such as E. coli 

(Anne et al., 2012; Martinez et al., 2012). This has enabled its routine 

use in the laboratory for protein production. Despite the successes of the 

microbial system, there are still challenges.  

 

The main problem of using the microbial system to produce proteins is 

the yield which may be sufficient for food and beverage industries. For 

the biofuels production to be meaningful on a global scale much larger 

quantities of enzymes are required which surpass the limit of contained 

fermentors (Rengby et al., 2004; Schumann and Ferreira, 2004; Rabhi-

Essafi et al., 2007). The microorganisms lack the machinery for 

solubilisation of the recombinant proteins therefore the recombinant 

proteins often accumulate in inclusion bodies and are non-functional 

(Sorensen and Mortensen, 2005b). The bacteria also lack the machinery 

required for post-translational modifications of eukaryotic proteins such 

as folding, glycosylation (Kusnadi et al., 1997; Rabhi-Essafi et al., 2007). 

For these reasons, more efficient systems are required that provide the 

additional benefit of correct folding, and quality control of products as 

well as the necessary production scale. 

1.6.6 The potential of Carbohydrate binding modules 

Starch hydrolysis in nature does not only occur under extreme conditions 

such as high temperature in hot compost heaps. Microorganisms also 

degrade starch in the soil at low to very low temperatures, therefore the 

microbes have to devise means of dealing with crystalline starch. A 

characteristic feature of some members of glycoside hydrolases is the 

presence of carbohydrate binding module (CBM). It was originally found 

in enzymes involved in cellulose conversion. Thus, the domains were 

referred to as cellulose binding domains (Machovic and Janecek, 2006b, 

a; Shoseyov et al., 2006). Later, research has shown that enzymes 

involved in carbohydrate digestion all possess this domain. The proteins 

may be involved in hydrolysis or other reactions. Carbohydrate binding 
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modules have been classified into several groups. There are over 60 

families of the CBM, with families 20, 21, 25, 26, 34, 41, 45, 48, 53 and 

58 being SBDs. The domain may be found in alpha-, beta- or gluco-

amylases, referred to as starch binding module (SBM or SBD) 

(Rodriguez-Sanoja et al., 2005; Shoseyov et al., 2006; Janecek et al., 

2011). It is also present in glucan water dikinase, and 

glucosyltransferase. Some α-, β-, and gluco-amylases belong to family 

20 of the CBM. α-amylase and glucan water dikinase also belong to 

CBM family 45 (Mikkelsen et al., 2005; Christiansen et al., 2009b; 

Christiansen et al., 2009a; Glaring et al., 2011) . 

 

A CBM is a chain of amino acids found in enzymes of carbohydrate 

digestion. The number of amino acids ranges from 30 to 200 forming a 

single, double or triple domain. Starch binding domain may be situated at 

the amino or carboxyl terminus of the protein (Shoseyov et al., 2006; 

Chou et al., 2010). It is separate from the active site of the enzyme 

indicating that it may support or confer an additional function on the 

enzyme (Feller et al., 2011; Glaring et al., 2011). 

 

The significance of CBM or SBDs in hydrolases has been a subject of 

research. It is evident that they perform functions different from that of 

the other domains that are found in the protein. They do not have 

enzymatic roles but aid in binding of the enzyme to its substrate, which is 

carbohydrate or starch (Juge et al., 2006; Glaring et al., 2011). 

Therefore, the CBM enable efficient binding between protein and starch 

thus facilitating an effective catalysis and subsequent conversion of the 

substrate to product. It may possess a disruptive function when the 

domain enzyme binds to its substrate, and may also mediate the 

adsorption of enzymes to their substrate. This was shown in an 

experiment where the fusion of glucoamylase to SBD was revealed to 

lead to an increase in enzyme activity and more efficient saccharification 

(Juge et al., 2006; Nielsen et al., 2009). 
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In conclusion, the CBM containing hydrolases may have great potential 

in the beverage and drink industry (Janecek et al., 2011). These include 

processes such as the clearance of juice at low temperatures to make 

crystal clear apple juice without affecting the stability of vitamins. 

1.7 Plant Biotechnology 

Classical breeding has been the way of improving crops both in terms of 

agronomic traits, such as growth rate, growth period, pest resistance, 

abiotic stress tolerance, development and overall productivity. Breeding 

has remained a strategic practice over decades where characteristics 

were modified or new ones often introduced (Taylor et al., 2008). 

However with the advancement in DNA technology, it is possible to 

transfer a specific foreign gene into a host cell, based on a defined 

hypothesis. Gene transfer methods such as Agrobacterium mediated 

transformation, electroporation of protoplasts, use of viral vectors and 

particle bombardment are now used routinely. The technology allows 

modification or even introduction of specific traits that would be hard to 

obtain by accident (Caplan et al., 1983). For instance the improvement of 

nutritional quality of food such as the development of golden rice is one 

typical example. This involved the introduction of two genes from 

Narcissus pseudonarcissus; phytoene synthase (psy) and lycopene β-

cyclase (β-lcy) into rice, to facilitate biosynthesis of β-carotene, a 

provitamin A, in the rice seeds which normally do not produce 

meaningful quantities of this metabolite (Potrykus, 2001; Beyer et al., 

2002). However, whilst the introduction of specific genes is easy, and 

can be exploited to produce vitamins or high value proteins in plants, it is 

much harder to modify stress resistance, plant-pathogen interactions and 

overall plant development and growth. Most of the success stories are 

therefore derived from strategies that involved the production of a single 

gene product, or perhaps two at most. 
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Another viable approach offered by biotechnology is protein evolution, a 

wide area of research where lots of enzymes of industrial, medicinal, 

agricultural importance are modified (Kusnadi et al., 1997; Rupp, 2013). 

Using these systems, properties such as thermal stability, pH optimum, 

reaction and produce specificities of enzymes are modified (Bornscheuer 

and Pohl, 2001; Cherry and Fidantsef, 2003; Khersonsky et al., 2006; 

Kiss et al., 2009). Specifically, α-amylase has been engineered for better 

enzyme performance and specificities (Richardson et al., 2002; Bessler 

et al., 2003; Kelly et al., 2009).  

 

One of the key advantages of field-grown crops over contained 

fermentation tanks is the low impact of advanced technology and the 

high yields. It is the latter that could be explored to generate cheaper 

sources of hydrolases to render biofuel production economically viable. 

1.7.1. Recombinant proteins in plants 

Plant genetic engineering provided a new frontier in the area of protein 

production. Using the knowledge of biotechnology, proteins are being 

produced in plants, these include several antibodies against human 

diseases (Ma et al., 1998; Rigano et al., 2009a), and the viability of the 

system for vaccine is now being explored (Marusic et al., 2009; Rigano 

et al., 2009a; Gartland et al., 2013). 

 

Different plants species have been considered for protein production; 

nowadays, it is possible to produce almost all types of proteins in plants. 

For instance, tobacco is one of the most widely used crops for 

recombinant protein production. This is due to its robust expression 

system; yield and gene transfer technique is fully established. Tissue 

culture is easy and plant regeneration is robust (Kapila et al., 1997; Ma 

et al., 2003; Vitale and Pedrazzini, 2005). 
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Enzymes have not only being discovered from or produced in microbes 

and fungi but also from higher eukaryotes such as plants (Kandra, 2003). 

Over a long time, proteins of industrial importance have been produced 

from plants. In addition to this, plants can also serve as a factory to 

produce proteins. This is in addition to the large amounts of enzymes 

that have been discovered and purified from plants (Vitale and 

Pedrazzini, 2005; Lynd et al., 2008). For instance, the barley malt has for 

a long time served as a source of amylases that is being used in brewing 

(Muralikrishna and Nirmala, 2005). Some other proteins have been 

heterologously expressed and produced in large quantities in crops. 

Production of proteins in transgenic plants allows significant yield of the 

recombinant products (Ma et al., 1998; Ma et al., 2003). This is because 

the efficiency of transcription and translation machinery can be 

increased. For instance, inclusion of an intron increases transcription in 

cereals. Also, depending on the type of expression required; regulated or 

constitutive promoters may be used (Caplan et al., 1983; Taylor et al., 

2008). 

Expression systems 

Heterologous expression of proteins can be achieved in transient to test 

functionality of constructs. In this system protoplasts are being used to 

express different constructs, DNA transfer technique such as 

electroporation is used to introduce the DNA into the cells. The cells are 

incubated for a short time between 12 to 24 hours (Hadlington and 

Denecke, 1994). Then expression of the desired protein is determined 

using enzymatic assays. This system has lots of advantages that include 

reproducibility, safety, generate similar and comparable information as 

transgenic (Hadlington and Denecke, 1994). Another form of transient 

expression system that may offer higher yield of protein product is the 

infiltration of leaves epidermal cells. This has the advantage of longer 

expression period of between 48 to 72 hours (Caplan et al., 1983; Kapila 

et al., 1997). If the construct of interest is processed or transported, it 

may be more representative of the transgenic plants. The most important 
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asset of transient expression is that it is fast and can save time prior to 

the commitment to generate stable transgenics (Hadlington and 

Denecke, 1994). 

Plant hosts for recombinant protein production 

The selection of plants for expressing proteins particularly those used in 

biofuel production is not straightforward because a crop that can give an 

optimum amount of the desired protein is required (McLaren, 2005; 

Taylor et al., 2008). Secondly, or even more important is the amenability 

of the crop plant to transformation. For instance crops such as maize, 

corn, wheat, barley, tobacco and potato are considered easily 

transformable. In the context of biofuel, potato is highly desirable due to 

its high starch content. Therefore, selecting the appropriate plants is key 

to the success of protein engineering (Barrell et al., 2013). The next 

issue of high significance relating to the expressed protein is 

determination of the actual activity of the recombinant enzyme. This is 

because the measurement is not often performed with the actual 

substrate of the enzyme (Taylor et al., 2008). 

1.7.2 What is the appropriate compartment for the production 

of recombinant proteins?  

A major consideration in the production of recombinant proteins in plants 

is the cell organelle to target and store the proteins. These include the 

vacuole, apoplast, plastid (chloroplasts), mitochondria and the ER which 

together with Golgi, TGN make up the plant secretory pathway. Proteins 

are directed to the sub-cellular organelles using some specific targeting 

signals such as transit peptide for chloroplast (Marusic et al., 2009). 

Secretion of soluble proteins occurs by default thus does not require any 

signals (Denecke et al., 1990). This implies that recombinant proteins 

such as hydrolases and antibodies produced in transgenic plants can be 

secreted from the cells into the apoplast (Denecke et al., 1990; Vitale 

and Pedrazzini, 2005). However vacuolar sorting of proteins is signal 
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mediated by receptors (De Marcos Lousa et al., 2012). The ER retention 

of proteins is mediated by signals such as the HDEL (Munro and 

Pelham, 1987; Denecke et al., 1992).  

  

The vacuole occupies the larger part of the cell but is less explored due 

to its lytic properties. The chloroplast has several advantages that 

include uniform expression rates, lack of gene silencing, post-

translational modifications, such as oligomerization and disulphide bond 

formation, and effective protein accumulation due to high copy number 

and increased stability (Rigano et al., 2009b). However, the plastid 

targeting offer only options in terms of the post translational modification 

when compared to the ER due to its low hydrolytic ability and plasticity 

(Ma et al., 2003; Vitale and Pedrazzini, 2005; Rigano et al., 2009a). In 

order to target proteins to the secretory pathway, signal peptide is 

included at the N-terminus of the protein. The secretory pathway has 

been suggested to offer a better environment for protein production (Ma 

et al., 2003). An overview of the secretory pathway will be discussed in 

the next section. 

1.7.3 The plant secretory pathway 

In the eukaryotic cells, the endomembrane system of the secretory 

pathway is highly significant for the transport of molecules such as 

proteins, polysaccharides and lipids. The transport of proteins has been 

described to occur in a vectorial fashion beginning at the ER, followed by 

the Golgi apparatus and final cellular destinations such as the lysosomes 

(Palade, 1975).  

 

Two transport routes can be distinguished; biosynthetic or anterograde 

and endocytic or retrograde pathways. The former is used to describe 

the route from the endoplasmic reticulum to the plasma membrane or the 

vacuole which are regarded as the later part of the secretory pathway. 

The latter deals with recycling or movement of molecules from the 
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plasma membrane to the organelles of the secretory pathway (Vitale and 

Denecke, 1999). This constant recycling of proteins and receptors from 

the PM back to internal organelle balances the anterograde pathway. 

The intermediate organelles include the Golgi apparatus, trans-golgi 

network (TGN), the pre-vacuolar compartments (PVC) or endosomes 

and the late pre-vacuolar compartment (LPVC) mediate trafficking steps 

between the ER, the vacuoles and the plasma membrane (Foresti and 

Denecke, 2008; Foresti et al., 2010; De Marcos Lousa et al., 2012). Most 

of the transport between the different organelles of the secretory 

pathway occur via protein coated membranes vesicles (Hadlington and 

Denecke, 2000; Bonifacino and Glick, 2004). 

Entry into the Secretory pathway 

The synthesis of nuclear proteins can either occur in the cytosol and 

catalysed by the free ribosome. Alternatively it may be catalysed by 

membrane-bound ribosomes on the rough ER (Blobel and Dobberstein, 

1975b, a). This is a major route through which proteins enter the 

secretory pathway where newly synthesised proteins are translocated 

across the ER membrane (Dobberstein and Blobel, 1977). Soluble 

proteins containing a signal peptide (SP) at the N-terminus follow this 

route. In the cytosol, the SP is recognised by the signal recognition 

particle (SRP) (Dobberstein and Blobel, 1977; Walter and Blobel, 1981a, 

b; Walter et al., 1981). The binding of SRP to the protein triggers 

conformational changes that stops or slow down translation (Walter and 

Blobel, 1981a). A complex is formed; mRNA-ribosome-nascent chain-

SRP and is directed to the SRP receptor (SR) on the membrane. As a 

result the SRP is released followed by the resumption of protein 

synthesis. Translocation of the nascent chain across an aqueous 

channel in pore complex of the ER membrane occurs (Kalies et al., 

1994).  

 

The fate of the protein after translocation depends on its structural 

composition. A protein that possesses a transmembrane domain in its 
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coding region act as a ‘stop transfer’ and is integrated into the ER 

membrane by lateral diffusion out of the core complex (Walter and 

Blobel, 1981a). However, integration into the membrane may also occur 

via a post-translational mechanism. It may be through an SRP 

dependent or independent manner. This pathway is used by short 

secreted proteins or tail-anchored proteins that are synthesised in the 

cytosol before being targeted to the ER. In addition to protein synthesis, 

the ER is responsible for folding, and assembly of newly synthesised 

proteins. It is also the site of post translational modification of proteins 

such as glycosylation (Vitale and Denecke, 1999), controls calcium 

levels in the cell and is responsible for the biosynthesis of phospholipids 

(Hanton et al., 2006). 

The ER-Golgi interface 

After successful translocation and chaperone-assisted protein folding; 

proteins can be exported from the endoplasmic reticulum to the Golgi 

apparatus. These two organelles can be regarded as the early secretory 

pathway; trafficking between these organelles occurs bi-directionally, 

from the ER to the Golgi or the biosynthetic route, and also recycling 

from the Golgi back to the ER, the retrograde route. The significance of 

this is to create a balance between the two organelles, whilst maintaining 

a sustainable flow of newly synthesized proteins to reach distal locations 

of the secretory pathway (Sparkes et al., 2009). The movement has been 

described to begin at the ER proceeds via the Golgi apparatus to either 

lysosomes or the plasma membrane (Palade, 1975). 

 

Various routes have been reported to mediate the transport to 

lysosomes; they include coated vesicles (clathrin coated vesicles, CCV), 

mannose-6-phosphate (M6P) receptors in mammals (Pearse, 1975; 

Kaplan et al., 1977; Pearse and Bretscher, 1981), and vacuolar sorting 

receptors (VSRs) in plants (De Marcos Lousa et al., 2012). Some other 

models propose that movement of proteins to PM do not require some 

specific signals (Stevens et al., 1986; Munro and Pelham, 1987; Valls et 
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al., 1987; Wieland et al., 1987). However, it was later revealed that 

soluble protein secretion in plants occurs via the default pathway 

(Denecke et al., 1990). In contrast, sorting signals may be required for 

membrane proteins to exit the ER (Hanton et al., 2006). 

Protein retention in the ER 

The concept of retention was described as a result of work on three 

soluble reticuloplasmins that were discovered to contain the same 

tetrapeptide (KDEL) sequence at the C-terminus (Haas and Wabl, 1983; 

Munro and Pelham, 1986; Sorger and Pelham, 1987). Subsequently, it 

was discovered via deletion and transplantation studies that this motif is 

responsible for retention of proteins in the ER (Munro and Pelham, 

1987). Related sequences, such as HDEL (yeast), RDEL and KEEL 

were discovered and also considered to be retention motifs (Denecke et 

al., 1992). 

 

Although the term retention and retention signals is used frequently, it 

does not describe the exact manner in which ER-resident proteins 

accumulate in the ER. ER resident proteins such as the chaperone BiP 

must freely diffuse in the lumen in order to interact with intermediates of 

protein folding. Exactly this behaviour was established experimentally in 

Xenopus oocytes, which revealed that the presence of the tetrapeptide 

KDEL did not affect the rate of diffusion of BiP in the ER lumen (Ceriotti 

and Colman, 1988). First evidence for a dynamic recycling mechanism 

originated from experiments with the lysosomal protein cathepsin D 

(Pelham, 1988). When the sequence KDEL was fused to the C-terminus 

of cathepsin D, the hybrid protein accumulated in the ER, but continued 

to receive glycan modifications typical of the Golgi stack (Waheed et al., 

1981; Pohlmann et al., 1982; Kornfeld and Kornfeld, 1985; Vonfigura and 

Hasilik, 1986). It was therefore suggested that a receptor binds to the 

KDEL-sequence in the Golgi and mediates retrieval back to the ER 

(Pelham, 1988). 
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Identification of receptors that interact with the retention signals 

Receptors that recognise the tetrapeptide, KDEL and related signals 

were originally identified using a genetic screen in yeast. HDEL and 

KDEL functionalities were initially tested using a chicken lysozyme and 

yeast invertase as cargo molecules respectively, by fusing the 

tetrapeptides to the C-terminus of the cargo. It was revealed that the 

retention motifs cannot be interchanged for their respective binding 

machinery. Because of the homology between the KDEL and HDEL it 

was then suggested that S. cerevesiae may possess an identical ER 

retention system with a similar receptor molecule that offers different 

ligand binding specificity (Lewis et al., 1990).  

 

In order to test the hypothesis, secretion / retention experiments were 

performed using the yeast invertase. Chimeric genes were put under the 

transcriptional control of strong or weak promoters, the strong promoter 

led to the secretion of the invertase-HDEL fusion suggesting that the 

saturation of the system in yeast (Pelham et al., 1988). The assay used 

in the research was not based on quantitative measurement of enzyme 

activity in the medium and cells of the culture. Most of the enzymes were 

in the space between the cell membrane and cell wall therefore secretion 

assays were performed on washed cells extracted with or without 

detergents referred to as extracellular and intracellular activity 

respectively. The invertase that remains in the culture medium was 

ignored (Pelham et al., 1988).  

 

Stable integration and low expression of the recombinant invertase 

fusions in yeast genome within a SUC2 deletion mutant lacking 

endogenous invertase led to a pronounced phenotype. (Emr et al., 

1983). However significant enzyme amount were contained in the 

periplasm of the unmodified invertase and KDEL-tagged invertase that 

allowed growth on sucrose. In contrast, the enzyme tagged with HDEL 

was retained in the ER making growth on sucrose almost impossible. 
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This was landmark to the identification of the ER Retention Defective 

(ERD) mutants based on selection on sucrose containing medium. The 

ERD retention induces the leakage of HDEL tagged invertase to the 

periplasm thus hydrolysing sucrose to fructose and glucose which is 

transported into the cells to be used as a carbon source (Pelham et al., 

1988). ERD1 and 2 were identified using complementation analysis on 

yeast mutant screen and were tested by immunoblotting of BiP secreted 

from a colony onto the nitrocellulose filter that was used to test the 

secretion of ER residents (Hardwick et al., 1990; Semenza et al., 1990). 

HDEL independent retention system 

In addition to the HDEL-dependent retention system described above, 

other retention mechanisms have been described. Many ER residents 

have acidic C-termini, calreticulin is a typical example. A 53-55 kDa 

protein is analogous to muscle calsequesterin which is a major calcium 

storage protein present in the ER (Denecke et al., 1995). It was 

previously shown that the formation of calcium chelate by the 

reticuloplasmins play a major role in protein retention in the ER (Booth 

and Koch, 1989). However, the ER accumulation of proteins may be a 

combination of retention and retrieval (Pimpl and Denecke, 2000). 

The role of the secretory pathway in recombinant protein production 

A protein should be targeted to an environment that ensures maximum 

yield, and accumulation. This may also particularly affect folding, 

assembly and other post-translational modifications of proteins. The 

secretory pathway has been shown to be more suitable environment for 

efficient production of immunoglobulins than the cytosol (Zimmermann et 

al., 1998; Schillberg et al., 1999). This is evident by the fact that high 

accumulations of antibodies were reported in the secretory pathway 

compared to the cytosol. The above behaviour may also apply to other 

proteins besides antibodies however, this depends on the specific 

properties of the protein (De Jaeger et al., 1999; Schouten et al., 2002). 

Proper targeting of a protein has a significant effect on its biological 
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function and activity. It has been shown to lead to increased protein 

accumulation and stability. 

 

The advantage of the endoplasmic reticulum is due to its oxidizing 

properties, abundance of molecular chaperones and little number of 

proteases. The above features are suggested to aid protein folding and 

assembly. The specific interaction of antibodies targeted to the secretory 

pathway with molecular chaperone (BIP) has also been reported (Nuttall 

et al., 2002; Ma et al., 2003). Glycosylation which is required for the 

function of some proteins only takes place in the endomembrane system 

(Ma et al., 2003). 

 

Recombinant protein expression has being shown to improve if the 

product is retained in the ER using the signal H/KDEL tetrapeptide. A two 

to ten-fold accumulation in comparison to the non-tagged protein has 

been reported (Conrad and Fiedler, 1998; Schillberg et al., 2002). 

Another advantage of this system is that the retained protein may contain 

high-mannose this is because they are not modified in the Golgi 

apparatus. Taken together the secretory pathway and in particular the 

endoplasmic reticulum could be considered as storage compartments for 

recombinant hydrolases and other valuable industrial enzymes. 
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1.8 Unpublished data in the host laboratory in support of 

the work 

As part of a long term project on new bio-fuel production strategies, the 

host-laboratory has experimented with transgenic potatoes to harness 

the enormous productivity of this crop per surface of land and cultivation 

time (see section 1.2.4). The strategy involved the cost-effective 

production of recombinant α-amylase in potato tubers to satisfy the 

demand for the required quantities of recombinant enzymes to facilitate 

large scale starch conversion to fermentable sugar in meaningful 

quantities on a global scale. It was discovered that segregation of 

recombinant hydrolases from the starch in amyloplasts was efficient 

enough to prevent self-digestion during growth. This is because the 

protein is separated from the starch by three membranes; two 

membranes of the amyloplast and one of the secretory pathway. 

  

To take these findings forward, the team established a saccharification 

procedure that includes a combination of mild acid hydrolysis and 

enzymatic hydrolysis, improving the overall yield of the process and 

reducing processing costs. It was discovered that HCl was found to be a 

good mineral acid for the hydrolysis in contrast to sulphuric acid which 

was shown to decompose the sugars under similar conditions. The 

strategy allowed the use of diluted HCl in a pre-treatment that mediates 

sufficient starch gelatinisation and liquefaction to enable subsequent 

enzymatic hydrolysis at lower temperature. Under these conditions, 

transgenic potato tubers producing recombinant barley α-amylase 

produced yields that permitted detection of an additional protein band in 

Coomassie stained gels. Moreover, the amount of α-amylase stored in 

the transgenic tubers was capable of treating 100-fold higher levels of 

starch than what was contained in the tuber itself, when used in the 

combined protocol. In conclusion, the strategy reduced the cost for 

recombinant enzymes, guaranteed sufficient yield to treat economically 
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meaningful quantities of potato starch, and paved the way for a 

production strategy that yields multiple products from a single feedstock. 

Transgenic potatoes could thus be used to produce recombinant 

enzymes for industrial purposes, starch for bio-ethanol production, 

soluble proteins to generate yeast growth nutrients, cell wall pulp for 

paper production and yeast extract for retail.  

 

Due to the success of the strategy, and the continuous resistance of the 

public to accept the growth of transgenic crops in fields, the team 

explored strategies to increase productivity, so that the transgenic plants 

yield sufficient added value to self-fund the additional cost required for 

growth in containment. In addition to the hydrolases the tubers may also 

serve as a platform for production of higher value proteins, such as 

antibodies, vaccines and serum proteins. In this manner, the bio-ethanol 

may merely become a side fraction of the overall process, yet becoming 

a more economically viable approach that may be successful without 

subsidies. The apoplast and endoplasmic reticulum were found to be the 

most successful storage compartments for barley α-amylase, in contrast 

to tuber vacuoles which were found to be just as lytic as vacuoles in 

vegetative tissues such as roots, stems and leaves (J. An and J. 

Denecke, unpublished). In addition, barley α-amylase was produced to 

100-fold higher levels compared to heat stable Bacillus 

amyloliquefaciens α-amylase. This implies that the apoplast and ER can 

be exploited for the production of recombinant proteins, but it depends 

strongly on the properties of the individual proteins to be expressed.  

 

Interestingly, a comparison of secreted α-amylase with ER-retained α-

amylase-HDEL revealed that the ER lumen is probably more suitable for 

protein storage compared to the apoplast, but that HDEL-overdose can 

lead to developmental defects. The ER retention system was found to be 

saturated upon producing large amount of amylase-HDEL (Phillipson et 

al., 2001) thereby leading to auxin-deficient phenotypes (J.An and J. 

Denecke, unpublished) that may be due to excessive secretion of the 
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auxin-binding protein, a KDEL protein that is thought to inhibit 

endocytosis from the plasma membrane when it leaks out to the apoplast 

(Robert et al., 2010). As a result, the distribution of recombinant protein 

levels in the population of transgenic plants was clearly shifted towards 

higher α-amylase-HDEL levels, but appeared to be truncated at the high 

production end, suggesting that the majority of overproducers did not 

regenerate. To overcome this problem, the team finally attempted to use 

the acidic C-terminus of calreticulin, a protein suggested to contain 

HDEL-independent ER retention signals (Pagny et al., 2000), perhaps 

due to the calcium chelating ability of an acidic stretch of 40 amino acids 

near the C-terminus. In addition the presence of peptides that increase 

the distance between the consensus glycosylation site and the stop 

codon has also being suggested to increase the efficiency of 

glycosylation (Nilsson and von Heijne, 2000) therefore amy-cal may have 

been glycosylated. Interestingly, recombinant protein activity yields were 

much lower than those obtained for α-amylase or α-amylase-HDEL in 

transgenic crops, which was in contrast to observations in electroporated 

protoplasts were activities of α-amylase or α-amylase-HDEL were more 

comparable to those of the calreticulin fusions, regardless of the 

presence of the HDEL retention signal.  
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1.9 Working hypothesis and aims of the project 

The current work was mainly concerned with the continuation of the on-

going bio-fuel project, specifically focussing on the limiting factors that 

affect the entire process. The project can be subdivided into different 

work packages, each based on specific working hypotheses. 

 

Exploring factors that affect glycosylation: It was hypothesised that the 

low activity of amy-cal fusions in transgenic plants (section 1.7) may 

have been due to glycosylation of a consensus site near the C-terminus 

of the barley α-amylase that was used as model protein in these studies. 

However, further research was required to test this hypothesis, because 

earlier research showed that in electroporated protoplasts, barley α-

amylase is not glycosylated (Leborgne-Castel et al., 1999). The aim of 

the initial aspect of the project was to test whether the amylase-fused to 

HDEL or calreticulin can indeed be glycosylated and if C-terminal 

extensions influence the degree of glycosylation (Nilsson and von Heijne, 

2000). This required detection by antibodies in order to test the 

molecular weight on denaturing gels. Therefore an antibody against the 

barley α-amylase was generated, and different fusion proteins were 

modified to eliminate the consensus site for N-linked glycosylation. 

These tools were used in plant expression systems to score potential 

glycosylation and its effect on the specific enzyme activity. 

 

Affinity purification of recombinant α-amylase: A cascade refinery 

process was designed based on the initial success of recombinant barley 

α-amylase production in potatoes; it implies that the potatoes will be 

used as a model to produce a range of high value proteins. These 

proteins will be purified and different side fractions from the potatoes will 

be used as feedstock for other purposes. However, one of the problems 

of producing soluble recombinant proteins is purifying the protein of 

interest from a mixture of proteins. Therefore the barley α-amylase was 

tagged with a histidine octapeptide that enables the purification of the 
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amylase using a nickel column; if this works as a proof-of-concept this 

technology can be used to purify other high value proteins (Marusic et 

al., 2007), but also permits purification of a second high value protein 

from the flow through, for instance a recombinant antibody using a 

protein A affinity column. 

 

Optimising combined acid and enzymatic starch hydrolysis: Even though 

the preliminary results on the combination of mild acid pre-treatments 

and subsequent enzyme hydrolysis were promising (J. An, J. Denecke, 

unpublished), further optimisation was necessary. In this work package, 

different acid hydrolysis regimes were compared, as well as a 

combination of liquefying and saccharifying enzymes. This is to establish 

an efficient protocol that ensures maximum yield of fermentable sugars 

with minimum loss to non-fermentable degradation products. 

 

α-amylases with raw starch digesting properties: Previous research on 

the liquefying enzyme α-amylases has been mainly targeted towards 

heat stable fungal and bacterial enzymes; however plant enzymes have 

been much less explored. In view of the fact that some plant α-amylases 

may have attractive features such as raw starch digestion ability 

therefore cloning a plant amylase was attempted from ripening plantains, 

which contain a large quantity of resistant starch, yet undergo a very fast 

ripening process leading to effective conversion of starch to soluble 

sugar molecules.  
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Chapter 2 

2 Engineering of amylases 

2.1 Introduction 

Starch is a molecule that is made of glucose linked by α-1,4, and α-1,6-

glycosidic bonds. As explained in the introduction to this thesis, starch 

serves as food and feedstock for various high value products including 

bioethanol (Kossmann and Lloyd, 2000; Copeland et al., 2009). 

Therefore, the process of starch conversion to fermentable sugars is of 

interest in order to optimise biofuel yield and to minimise production cost. 

The conversion of starch involves three processes; gelatinisation, 

liquefaction and saccharification (Betancur and Chel, 1997; Copeland et 

al., 2009). Gelatinisation is performed using high temperature in the 

presence of water, while liquefaction and saccharification can be 

performed by the use of mineral acids or enzymes (Betancur and Chel, 

1997; Soni et al., 2003; Satyanarayana et al., 2004).  

 

Acid hydrolysis is non-discriminating; it acts on both α-1,4, and α-1,6 

bonds of starch but leads to the formation of salts after neutralisation. It 

can also cause chemical decomposition of sugars, thus reducing the 

overall yield (Betancur and Chel, 1997; Kossmann and Lloyd, 2000; Soni 

et al., 2003; Satyanarayana et al., 2004; Copeland et al., 2009). In the 

enzymatic starch conversion, gelatinisation is combined with liquefaction 

therefore heat stable enzymes are required to deal with high 

gelatinisation temperature. In contrast to the acid hydrolysis, no salts are 

formed during enzymatic hydrolysis and decomposition of sugars is less 

likely (Betancur and Chel, 1997; Buchholz and Seibel, 2008).  

 

The gelatinised starch solution is liquefied and rendered amenable to 

further hydrolysis by the use of liquefying enzyme, α-amylase (Beck and 
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Ziegler, 1989; Buchholz and Seibel, 2008). This hydrolase has the ability 

to cleave the α-1,4 glycosidic bonds of starch in internal position. This 

ability of the enzyme increases the number of non-reducing ends and 

releases dextrins that are substrates for β-amylase and glucoamylase to 

release fermentable maltose and glucose respectively. The liquefying 

action of α-amylase reduces viscosity and prevents retrogradation of the 

starch (see section 1.4.4) (Schuster et al., 2000; Abd-Aziz, 2002). 

However, non-fermentable products which are sugars longer than 

maltotriose and branched sugars that cannot be converted to alcohol are 

also released (Pazur and Ando, 1959). Further optimisation is thus 

needed to improve overall efficiency of bioethanol production from 

starch. 

 

Previous work in the host laboratory established a starch conversion 

process that involves the combination of mild acid hydrolysis and 

enzymatic hydrolysis (see section 1.7). The starch is initially pre-treated 

with dilute HCl at a temperature of 126ºC. The solution is neutralised and 

cooled to lower temperature for the enzyme action and then treated with 

α-amylase. The preliminary results indicate that the HCl pre-treatment is 

sufficient to mediate starch gelatinisation and liquefaction to enable 

subsequent enzymatic hydrolysis at lower temperature thus, reducing the 

amount of enzyme required (J. An and J. Denecke, unpublished). 

Therefore, improving the overall yield of the process and reducing 

processing costs lies within reach. However, in order to produce 

bioethanol at industrial scale, large quantities of enzymes are required at 

low expense to make the overall process cost effective but this cannot be 

provided by the microbial sources due to scale and high cost of the 

enzymes. Therefore, a cheaper source of enzyme is required (Eijsink et 

al., 2008). 

 

Plant can serve as a factory for in-expensive and large scale production 

of recombinant proteins (Ma et al., 2003; Rigano et al., 2009a), thus 

production of α-amylase required for bioethanol production was 
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considered in transgenic plants (Vitale and Pedrazzini, 2005; Lynd et al., 

2008). The barley α-amylase is a secreted protein with signal peptide for 

translocation across the ER membrane. In the cytosol, the SP of this 

soluble protein is recognised by signal recognition particle (SRP) and is 

cleaved by the signal peptide peptidase (SPP) (Walter and Blobel, 

1981a; Lyko et al., 1995; Weihofen et al., 2002). Previous work in the 

host laboratory has used the α-amylase to study protein properties such 

as activity, secretion / retention by fusing the amylase to the ER retention 

signal HDEL (see section 1.7), and its related sequences (Phillipson et 

al., 2001). This has been experimentally achieved using transient 

expression in electroporated protoplasts as well as infiltration of leaves. 

Through this system, the secretion of the barley α-amylase was tested; 

retention of the amylase-HDEL has also been established (Crofts et al., 

1999).  

 

Preliminary work in the host laboratory attempted the use of potatoes as 

a model to produce recombinant barley α-amylase (see section 1.7, J. 

An and J. Denecke, unpublished). The recombinant barley α-amylase 

activity produced was more than 100-fold higher compared to heat stable 

Bacillus amyloliquefeciens α-amylase. It was also revealed that amylase 

extract from a single transgenic potato producing recombinant barley α-

amylase can digest starch contained in hundred wild type potatoes (J. An 

and J. Denecke, unpublished). Based on the properties of the secreted 

α-amylase with ER-retained α-amylase-HDEL, the ER lumen was 

suggested to be more suitable for protein storage compared to the 

apoplast, however high HDEL levels can lead to developmental defects. 

The ER retention system was found to be saturated upon producing 

large amount of HDEL proteins (Crofts et al., 1999). As a result amylase-

fused to the acidic C-terminus of calreticulin was then tested in 

transgenic plants. Preliminary results showed that recombinant protein 

activity yields were much lower than those obtained for α-amylase or α-

amylase-HDEL, which may be due to protein glycosylation (J. An and J. 

Denecke, unpublished). However, in electroporated protoplasts 
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comparable activities of α-amylase or α-amylase-HDEL or those of the 

calreticulin fusions, regardless of the presence of the HDEL retention 

signals were obtained. Further, research was required to study these 

differences and to test if glycosylation of α-amylase could be induced by 

generating fusion proteins and if this depends on the expression system. 

These questions were addressed in this chapter together with a 

comparison of a variety of ER retention signals and an affinity tag for 

routine purification of the recombinant α-amylase.  
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2.2 Results 

Generation of antibody against the barley α-amylase 

In order to determine the molecular weight and the pattern of 

glycosylation of barley α-amylases expressed in plant cells, an antibody 

against the barley amylase was required that does not cross-react with 

endogenous potato or tobacco α-amylases. The process of the antibody 

generation was not standard due to some un-expected challenges 

therefore; the individual steps in the generation of the antibody will be 

presented and discussed. 

Establishing an expression protocol for amylase fused to GST 

In order to purify the barley α-amylase from the mixture of cell proteins 

using affinity purification, the protein was fused to the 26kDa glutathione 

S-transferase (GST) (Stofkohahn et al., 1992; Liu et al., 2006; Abhary et 

al., 2011). This would enable the purification of the recombinant protein 

using a GST column. A T7, inducible promoter was used to avoid the 

problem of protein toxicity on the E. coli cells whilst establishing clones 

and large scale cultures (Grunberg-Manago, 1999; Lopez et al., 1999). A 

pilot experiment involved a comparison of two different E. coli strains 

(Trabbic-Carlson et al., 2004); BL21 Star™(DE3)pLysS One shot and 

BL21-Gold™(DE3)pLysS are the two strains chosen (Carr et al., 1991; 

Miroux and Walker, 1996; Feng et al., 2002); because they enable high 

expression of  recombinant proteins from pUC plasmids with very high 

transformation efficiency and significant protein yield (Kido et al., 1996; 

Lopez et al., 1999). The strains also limit background expression of un-

induced cells to very low level (Grunberg-Manago, 1999; Lopez et al., 

1999). They also reduce protein degradation due to the inactivation of 

expression of genes that increase the degradation rate (Rabhi-Essafi et 

al., 2007; Borja et al., 2012; Waegeman et al., 2013). 

 

After gene induction, cell extracts and all pellets were boiled in sample 

buffer and were subject to gel electrophoresis. Figure 2.1 shows the 
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pattern of recombinant proteins obtained with GST and α-amylase fused 

to GST. An additional protein of the expected molecular weight (70 kDa) 

was observed in the induced samples after 3 hours of induction or more. 

This band was absent in the GST control which showed a lower 

molecular weight GST band instead. It was also observed that longer 

induction time may be unnecessary because significant recombinant 

protein levels were obtained after only 3 hours. Comparable levels of 

expression were obtained for both star and gold strains of the E. coli 

cells. The results imply that any of the two may be used for further 

expression and subsequent purification. 

 

 

Figure 2.1. Expression of the barley alpha amylase in E. coli, M is the 
marker, * and G denotes the BL21 Star™ and Gold™ (DE3)pLysS E. coli 
strains, respectively. While – and + represents GST only and GST-fused 
amylase respectively. 0, 3, 4 and 5H represents hours after induction. 
The cycled region shows the expressed amylase of the expected 
molecular weight of 70 kDa. The GST only of 25 kDa is also visible. 

Recombinant protein solubilisation 

Extraction using different buffers 

To be able to purify the protein from numerous cell proteins using the 

GST-tag as affinity bait on GST columns, induced cell pellets were 
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extracted to obtain soluble proteins. The cells were pelleted and re-

suspended in buffers of different compositions followed by cell disruption 

using sonication. Equal quantities of supernatant (s) and cell pellets (p) 

were boiled in sample buffer and loaded on a gel. Figure 2.2 shows that 

the protein of interest (70 kDa) was only detectable in the insoluble 

fraction (p), but could not be observed in the soluble portion (s). This 

indicates that soluble GST fused amylase was not solubilised under 

these extraction conditions. 

 

Figure 2.2. Extraction of recombinant protein, S and P are supernatant 
and pellet, respectively. * and G represents the BL21 Star™ and Gold™ 
(DE3)pLysS E. coli strains, respectively. PBS = Phosphate buffered 
saline (NaCl, Na2HPO4.2H2O, KH2PO4, pH 7.4), ECB1 = E. coli buffer 
1(50mM Tris pH 8.8, 2mM EDTA pH 8.00), 2) Buffer 2 (50mM Tris pH 
8.8, 2mM EDTA pH 8.00, 150mM NaCl), were used to extract the 
recombinant proteins. 
 

In order to extract soluble proteins, the experiment was repeated using 

the same expression and induction protocols. However, to enhance 

protein solubility, two different growth temperatures of 28 and 37ºC were 

used this is because it has been suggested that expression at lower 

temperatures increases solubilisation efficiency. To test if the protein can 

be solubilised by buffers of different strengths, phosphate buffered saline 

(PBS), phaseolin buffers and bug buster (Merck®) were used. The PBS 

is judged to be mild compared to phaseolin buffer because it contains 

little amount of salt and phosphates. The phaseolin buffer has higher 

extraction abilities compared to PBS buffer due to the higher amounts of 
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salt and is detergent-rich. It is composed of tris, salt, EDTA, a detergent 

triton and a denaturant β-mercaptoethanol that cleaves disulphide bonds 

in proteins, and the buffer has been shown to solubilise GST-fusion 

proteins (Frangioni and Neel, 1993; Tao et al., 2010). Bug buster 

(Merck®), a buffer that has been described to be efficient in releasing 

soluble proteins. In addition to detergents and denaturants, it also 

contains nucleases that degrade DNA and RNA. Higher sonication 

amplitude of 50% was used to disrupt the cells, cell extracts and pellets 

were boiled in sample buffer and subject to gel electrophoresis. Figure 

1.3 shows that the desired GST-fusion protein was still partitioned to the 

insoluble fraction with very little or even no soluble fusion protein 

extracted.  

 

Figure 2.3. Extraction of recombinant protein 2, S and P are supernatant 
and pellet, respectively. The expression was performed using the BL21 
Gold™ (DE3)pLysS E. coli strain at 28 and 37ºC respectively. The 
proteins were extracted in bug buster and phaseolin buffers. 
 

Comparable amount of protein was detected with both the bug buster 

and phaseolin (see Figure 2.3). This suggested that the difference in 

detergents did not influence the extraction of soluble protein. Similarly, 

comparing the two different growth conditions of 28 and 37ºC revealed 

that comparable recombinant protein levels were achieved at both 

temperatures (Figure 2.3). But solubilisation of the protein was not 

affected by the growth of the bacteria at the different temperature 
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condition. Therefore, to yet extract the soluble protein a further 

modification to the expression condition was decided. 

Changing the expression condition 

Having failed to extract the soluble protein using two different 

temperatures of 28ºC and 37ºC, and buffers of different strengths; a 

different approach was required. In order to solubilise the protein, the 

expression was performed at lower temperatures of 10, and 16ºC this is 

because protein aggregation has been suggested to reduce at low 

temperatures. This is because lower temperature usually means lower 

expression levels. Also, different media LB and TB were used for the 

growth of the bacteria, and low concentration of the inducer IPTG of 1 

mM was used. After induction, centrifugation, sonication; the supernatant 

and the pellet were loaded on a SDS-PAGE gel. Figure 1.4 shows the 

recombinant proteins obtained using the different media and growth 

conditions. But the lower temperatures did not offer enrichment to the 

amount of protein compared to what was obtained at higher 

temperatures. However, comparable amount of protein was obtained 

with expression at 10 and 16ºC (Figure 2.4, panel A), this is also the 

case with the two media used however soluble GST-fused amylase 

could not be obtained. 

Auto-induction 

In order to increase the solubility of the recombinant protein, an auto-

induction experiment was performed in addition to the different 

conditions used. This is because auto-induction has been suggested to 

promote yield and solubility of recombinant protein (Grabski et al., 2005). 

After induction, the supernatant and pellet were boiled in sample buffer 

and subject to gel electrophoresis. Figure 2.4 panel A shows the protein 

pattern observed with the auto-inductions with insignificant amount of 

soluble proteins obtained (Figure 2.4, panel A). This implied that the 

auto-induction condition was not able to render majority of the protein 
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soluble. To increase the amount of soluble compared to insoluble 

proteins, the protocol should be improved. 

 

 

Figure 2.4. Expression using different media and temperature. Panel A 
shows expression using LB and TB media at different temperature. S 
and P are supernatant and pellet, respectively. AI represents the auto-
induction protocol. The expression was performed using the BL21 
Gold™(DE3)pLysS E. coli strain. The proteins were extracted in 
phaseolin buffer. Panel B shows the repeat of auto-induction experiment. 
 

In order to increase the protein solubility by enriching the amount of the 

product, the auto-induction experiment was repeated in larger volume of 

cultures to increase the yield. Figure 2.4 (panel B) shows the soluble and 

insoluble fractions that were obtained after extraction and cell lysis 

however the solubility could still not be enhanced.  

 

From the results presented above, it can be concluded that the 

recombinant product could not be solubilised using a variety of different 

approaches attempted, including different growth conditions and buffer 

types. Hence, it was decided to use the insoluble property of the fusion 

protein by eliminating soluble proteins in the S-fraction and by identifying 

a way of purifying the protein of interest from the insoluble portion. 
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Purifying the barley amylase 

In order to purify the desired recombinant protein from the insoluble 

fraction, it was decided to separate the GST-fusion on a denaturing 

protein gel. It was first necessary to quantify the amount of recombinant 

protein. After induction and growth, the cultures were spun, the 

supernatant recovered and pellet was re-suspended in phaseolin, and 

mixed with sample buffer mix and boiled at 100ºC and were subject to 

gel electrophoresis. Figure 2.5 shows the recombinant protein against 

BSA standard and the protein was estimated as 4µg/µl. 

 

 

Figure 2.5. Quantification of recombinant protein, S is the supernatant. 
The protein was quantified against Bovine serum albumin (BSA).  The 
amount of BSA in microgram is 0.5, 1, 2, and 5; while the amount of the 
amylase is in micro-litres of 1, 2, and 4 of the amylase. It was deduced 
that 1µl = 4 µg. 

Preparative gel 

In order to purify the insoluble recombinant proteins from gel, 250 µg of 

proteins which is the amount needed of the antigen for individual 

injection for the immunisation procedure was prepared. A 10% 

preparative SDS-PAGE gel was made and the proteins were loaded and 

ran slowly. The gel was stained with coomasie brilliant blue for one hour 

and de-stained overnight; Figure 2.6 shows a preparative gel indicating 

the separation of the proteins. The band of interest was thinly cut out 

with razor blade and transferred into a microfuge tube and weighed. This 

procedure was repeated eight times because four injections are required 
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for two rabbits each. The purified protein was sent to Eurogentec for the 

antibody generation programme. 

 

 

Figure 2.6. Preparative gel showing the expressed GST-fused barley 
amylase loaded on a 10% preparative gel. Good separations of the 
different E. coli proteins and the 70 kDa desired protein of interest were 
obtained. 

Characterisation of the antibodies 

Antisera against the barley α-amylase were received from the company; 

include the pre-immune, small and large bleeds. In order to characterise 

the antibodies generated, the first step was to compare the barley α-

amylase GST fusion with GST alone as control. The two construct were 

expressed in E. coli, and the samples were used to probe the different 

antisera. Figure 2.7 shows the western blot of the different antisera from 

two different rabbits. The antibody from rabbit 1 shown in Figure 2.7 

panel A was able to specifically detect the recombinant barley α-amylase 

but does not cross-react with E. coli proteins or GST. Therefore, the 

antibody exhibits good specificity to the barley α-amylase. The detection 

ability of the antibody is acceptable particularly for the second (large) 

bleed. On the other hand, the pre-immune bleed did not detect anything 

as expected and was also free from background affinities. However, the 

antisera from the second rabbit as shown in Figure 2.7 panel B were 

deemed inferior because background affinities to E. coli proteins were 

detected even in the pre-immune serum, and specific interaction with the 

recombinant GST-fusion was unconvincing. This implies that the quality 

of the antisera from the second rabbit was very poor.  
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Figure 2.7. Characterisation of the anti-amylase, three antisera; pre-
immune, small and large bleeds from two different rabbits were obtained. 
Panel A and B shows antisera from rabbit 1 and 2 respectively. – is the 
GST alone as control. + is the barley α-amylase GST fusion. Three 
dilutions of the recombinants proteins used are; 10, 100, and 1000 folds 
 

According to the result in Figure 2.7 (panel A), affinity to E. coli proteins 

was not observed however, a different specificity may be exhibited with 

plant proteins. This is because plant proteins may exhibit different 

properties therefore it was necessary to determine the antibody 

specificity using plant extracts. Previous work in the host laboratory has 

generated transgenic potatoes over-expressing the barley α-amylase (J. 

An, unpublished). Therefore, I decided to work with potato tuber extracts 

from the wild type and barley α-amylase overproducers as reagents. The 

small, large and final bleeds were diluted a thousand and five thousand 

folds. Figure 1.8 shows a western blot of the barley amylase detected 

using the antibody. The three antisera were able to recognise or detect 

the antigen which is amylase protein. No barley α-amylase was detected 



Chapter 2 

85 

 

in the wild type potato that does not contain the recombinant α-amylase 

(Figure 2.8). Also, there is a decrease in the signal detected as the 

amylase concentration decreases. Stronger detection efficiency was 

observed with the large bleed compared with the small bleeds. However, 

no significant increase in detection was obtained with the final bleed of 

the antibody. On the other hand, background signals were observed in 

all cases which may likely be from plant proteins. The affinities to the 

background proteins increase from small bleed to being highest in the 

final bleed of the antibody. Similarly, dilution of the antisera reduces the 

background as shown in the Figure; the more diluted the antisera the 

lower the background and vice versa. As a result, it was decided that 

routine uses of the antibody will explore diluted antisera. 

 

 

Figure 2.8. Characterisation of the anti-amylase 2, bleeds from the rabbit 
1 (A) above were used for the second characterisation. The antisera are 
small, large and final bleeds. 1: wild type potato, 2, 3, and 4 are extracts 
of transgenic potatoes producing α-amylase and are undiluted, 3 and 10 
fold diluted respectively. Two dilutions of the antisera were used; 1/1000 
and 1/5000 respectively. 

Effect of amino acid substitution on amylase properties 

Having produced and characterised the barley α-amylase antibody, as 

was discussed in the aims section the next step was to investigate the 

effects of glycosylation on α-amylase. In the next section, results on the 

transient expression of the standard barley α-amylase and its different 

derivatives will be discussed. 
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The unpublished work in the host laboratory has suggested that the low 

activity obtained with the recombinant α-amylase fused to calreticulin 

may have been the effect of protein glycosylation. In order to test this 

hypothesis, a glycan mutant of the α-amylase was generated by site-

directed mutagenesis. This involved a point mutation on the barley α-

amylase where a single amino acid substitution that is asparagine 

residue was mutated to serine (N372-S372). Plasmids encoding either 

wild type α-amylase or the glycan mutant were then expressed 

transiently in the protoplast. The activities of the proteins produced 24 

hours after electroporation were then measured in both the culture 

medium and the cell. Figure 2.9 shows the amylase activity in the 

medium, cells, and total activity; and secretion index which is a ratio of 

medium to cell activities. Although lower amylase activities were 

obtained with the extract of wild type enzyme compared to the mutant, 

comparable secretion indices were observed with the two constructs. 

Variability often exists due to differences in the plasmid DNA preparation, 

therefore it could not be concluded that increased protein synthesis was 

causally related to the point-mutation of the glycosylation site. 

 

 

Figure 2.9. Comparison of amylase and its delta glycan mutant, the 
properties of the two proteins are shown. The delta-glycan form has a 
point mutation where an amino acid asparagine is replaced by serine 
(N372-S-372). It shows the amylase activities in the medium, cells, and 
total. Comparable secretion index was obtained with the two amylases. 
Error bars indicate standard deviation. 



Chapter 2 

87 

 

Expression of barley amylase & its mutant fused to GUS In planta 

To facilitate a fair comparison between the wild type α-amylase and its 

glycan mutant in a quantitative manner, a cytosolic β-glucoronidase 

(GUS) expression construct was used as internal standard on the same 

plasmid to normalise transfection efficiency. The two constructs encoding 

either wild type α-amylase and / or its delta glycan derivative were 

therefore sub-cloned into a novel GUS reference plasmid (TR2-GUS-

3’OCS-polylinker-3’NOS) developed by the host laboratory (D. Gershlick 

and J. Denecke, unpublished). The two recombinants were tested in 

planta by transient expression in the protoplasts. GUS activity was used 

to normalise the transfection efficiency of the two constructs. In practice, 

equivalent GUS activity was used to establish if there is any effect on the 

amylase activity and secretion. A comparable amylase to GUS ratio was 

obtained between the amylase and its delta glycan as shown in Figure 

2.10, panel A. 

  

 

Figure 2.10. The secretion of GUS normalised amylases. Panel A shows 
the amylase to gus ratio of the α-amylase and its delta glycan mutant, 
comparable amylase to gus ratio was obtained. Panel B shows the 
secretion index of the two amylases indicating a comparable secretion of 
the two proteins. Error bars indicate standard deviation. 
 

The secretion index (Figure 2.10, panel B) was comparable in both 

cases as seen before (Fig. 2.9). This means that the single amino acid 

substitution had no effect on the general properties of the barley α-
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amylase. And since it was shown before that transient expression of wild 

type α-amylase was not accompanied with glycosylation, the point 

mutation is likely to be silent in this construct (Leborgne-Castel et al., 

1999). But this does not rule out effects on glycosylation in other α-

amylase fusion proteins (see below). 

Effect of histidine tagging on amylase activity 

Purification of the amylase from cells may not be practical due to 

difficulty in obtaining the pure protein as was discussed in section 1.8. In 

order to purify the α-amylase in a cascade refinery process leading to 

multiple products, an affinity purification protocol is the preferred option. 

Hence eight histidine residues were engineered before the stop codon 

using polymerase chain reaction. Binding of the engineered α-amylase 

via the histidine to a nickel column may lead to effective purification 

without loss of enzyme activity (Marusic et al., 2007). Moreover, 

presence of peptides that increase the distance between the consensus 

glycosylation site and the stop codon has being suggested to increase 

the efficiency of glycosylation (Nilsson and von Heijne, 2000). A delta 

glycan derivative of the histidine-tagged α-amylase was therefore 

generated to test this hypothesis. The two constructs were then sub-

cloned into the β-glucoronidase (GUS) reference plasmid for 

comparative purposes.  

 

In order to determine the functionality of the constructs and also the 

effect of the tagging on the α-amylase properties, the histidine-tagged α-

amylase and its delta glycan derivative alongside positive controls were 

tested by transient expression in tobacco protoplasts. As shown in Figure 

2.11 significantly lower amylase to gus ratios were obtained with the 

histidine-tagged amylases compared to the standard barley α-amylase 

regardless of the presence of a functional consensus site for N-linked 

glycosylation. This means that the addition of the eight histidine residues 

had a negative effect on the production of the α-amylase, either in terms 

of biosynthesis or specific activity. 
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Figure 2.11. The effect of tagging on protein activity, the amylase to gus 
ratio of amylase, amylase delta glycan, amylase-his an amylase delta 
glycan his are shown. Comparable amylase to gus ratio was obtained 
with amylase and its delta glycan mutant however lower but significant 
ratio were obtained with the his-tagged amylase. Error bars indicate 
standard deviation. 
 

The amylase secretion was also determined for the constructs and the 

result is shown in Figure 2.12. Even though lower amylase to gus ratio 

was obtained with the his-tagged amylase compared to the standard α-

amylase (Fig 2.11), yet very high secretion index was observed with the 

amylase-His compared to the amylase control (Figure 2.12). This was 

not caused by higher levels in the medium but rather due to the very low 

intracellular amylase activity measured for the histidine tagged protein, 

leading to the very high secretion index (Fig 2.12).  
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Figure 2.12. The effect of histidine tagging on amylase secretion. The 
secretion index of amylase, amylase delta glycan, amylase-his and 
amylase delta glycan his are shown. Approximately more than eight-fold 
factor in secretion index was obtained between the histidine tagged and 
non-tagged amylases. Error bars indicate standard deviation. 
 

The positively charged histidine residues may bind to negatively charged 

compounds such as the phospholipids in the cell membrane, thus 

affecting the protein activity or possibly extractability. Since the histidine 

tagged α-amylase may remain bound to the cell membrane; therefore 

strong detergents may be required to the amylase from such bonds. In 

order to test this hypothesis, a 0.1 or 1% triton was used to extract the 

protein. Amylase activity that is comparable to what was initially 

measured was detected. This may imply that detergents do not 

compromise amylase activity. However, it did not explain the high 

secretion index. 

Properties of amylase fused to the ER retention signal HDEL  

The fact that some signal sequences such as HDEL affect protein 

(amylase) secretion has been established. However, it was unclear why 

the presence of a retention signal should cause specific shifts in the 

population of expression patterns in transgenic plants. In order to test if 

HDEL-mediated saturation of the retention machinery can cause 

inhibition of recombinant protein expression, further experiments were 

needed to allow better quantification. Two different forms of short α-
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amylase fusions carrying retention signals were tested; one form is 

amylase fused to the tetrapeptide, histidine, aspartate, glutamate and 

leucine (HDEL) described earlier (Phillipson et al., 2001). The second 

form was amylase fused to octapeptide, EDDDHDEL which has 

glutamate and three aspartate residues in addition to the HDEL 

described earlier (kindly provided by S. Hanton). The aim of this fusion 

was to better mimic the biological context of the HDEL peptide by 

copying the acidic C-terminus of an ER chaperone BiP. 

 

To test if the presence of glycan affects the properties of the HDEL and 

EDDDHDEL fusion proteins, the glycan mutants of the two amylases 

were generated by point-mutation (N372-S372) at the N-linked 

glycosylation site. The wild type amylases and mutants were then sub-

cloned into the GUS reference plasmid vector to permit accurate control 

of transfection efficiency. In order to determine the effect of the different 

retention signals, the new recombinant plasmids alongside positive 

control, the barley α-amylase were then tested in transient expression in 

protoplasts. The total amylase to gus ratio was determined, and is shown 

in Figure 2.13. The data obtained indicate a significant reduction in the 

yield of α-amylase fusion carrying a retention signal. The result may 

imply that the retention signal affects either the synthesis rate or the 

activity of the α-amylase. This effect was not shown before but correlates 

well with the observed changes in expression population in the 

transgenic plants, indicating a loss of over-producers from the population 

(J. An and J. Denecke, unpublished).  
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Figure 2.13. The amylase to gus ratio of shorter fusions. Different 
amylase fusions; amylase-HDEL, amylase-EDDDHDEL and their delta 
glycan derivatives were compared for protein activity. Comparable 
amylase to gus ratio was obtained with all the construct. Slightly lower 
activities were obtained with amylase-HDEL and the EDDDHDEL. Error 
bars indicate standard deviation. 
 

In order to determine the retention efficiency of the different α-amylases, 

the secretion index of the amylases was determined. As shown in Figure 

2.14, panel A amylase-HDEL and the EDDDHDEL derivative exhibit a 

strongly reduced secretion index compared to the standard secreted 

barley α-amylase. The secretion index of the amylase fusions are not 

background but they are measurable values as shown in Figure 2.14, 

panel B. It is also observed that the slightly longer fusion shows a further 

reduction in secretion compared to the tetrapeptide fusion alone, but this 

is a marginal difference. This may indicate that the EDDDHDEL peptide 

displays the HDEL signal better in its natural context. 
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Figure 2.14. The secretion of short amylase fusions. Panel A shows 
secretion index of amylase and its fusions. Panel B shows secretion 
index of amy-HDEL compared to the amylase-EDDDHDEL fusion. High 
but comparable secretion index was obtained with amylase and its delta 
glycan. Very low secretions were obtained with the fusion constructs 
compared to the control. Error bars indicate standard deviation. 

Testing the glycosylation of amylase fusions in leaf cells after 

Agrobacterium infiltration 

Results so far indicate that HDEL tagging as well as histidine tagging 

reduced α-amylase expression relative to the internal marker GUS 

present on the same plasmid. To test if this effect may be due to 

glycosylation, samples were tested by western blotting. However since 

low amount of recombinant proteins is produced in protoplast 

transfection, the recombinant α-amylase fusions were below the 

detection limit of the western blot procedure. 

 

To increase recombinant protein levels in plants, naked DNA transfer in 

protoplast was replaced by Agrobacterium-mediated gene transfer in 

infiltrated leaf sections, as the method results in transformation of the 

majority of cells in an infiltrated region. For this purpose, the new 

recombinant expression constructs yielding amydg, amyHis, amyHisDg, 

amyHDEL Dg, amyEDDDHDEL and amyEDDDHDELDg were subcloned 

in plant expression vectors and transformed in Agrobacterium. Amy and 

amyHDEL were already available (Phillipson et al., 2001). 
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Tobacco plants were infiltrated with the amylase constructs and 

incubated for 72 hours. The total amylase activity was determined in all 

leaf extracts and found to be much higher compared to the protoplast 

expression experiment as shown in Table 2.1. 

Table 2.1 Comparison of amylase activity 
Constructs Protoplast Infiltration 

Amy 25.87 16933 

Amydg 24.67      9833 

AmyHis  3.93      1660 

AmydgHis  3.47 6367 

AmyHDEL 16.35 9207 

AmydgHDEL 23.00  16327 

AmyEDDDHDEL  7.90  12967 

AmydgEDDDHEL  7.35 9753 

 

In order to compare the different recombinant proteins directly, equal 

amylase activities from the infiltrated samples were loaded on a 

denaturing protein gel for western blot analysis. Figure 2.15 shows the 

different α-amylases detected using the anti-barley amylase antiserum. 

Interestingly, the presence of a glycan was only noticeable by the double 

band detected with the α-amylase fused to eight histidines (Fig 2.15, 

lane 4). The upper band was absent in the His-tagged fusion carrying the 

point-mutation in the N-glycosylation consensus site (Fig. 2.15, lane 5). 

The barley α-amylase and other short fusions such as amylase fused to 

HDEL and EDDDHDEL did not show evidence for glycosylation. It is 

possible that eight histidine at the C-terminus cause sufficient delay in 

protein synthesis to give the glycosylation machinery the opportunity to 

act on the nascent chain (Nilsson and von Heijne, 2000). But it is not the 

length per-se but rather the nature of the amino acid that causes the 

delay.  
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Figure 2.15. Effect of short fusions amylase glycosylation. The western 
blot shows properties of amylase and its short fusions. – is the negative 
control, are amylase and its delta glycan; Amylase-His and its delta 
glycan, and amylase-HDEL and its delta glycan, and amylase-
EDDDHDEL and its delta glycan form. The arrows represent the different 
protein bands, the upper band (1) indicate the glycosylated high 
mannose protein while the lower band (2) is non-glycosylated protein 
with lower molecular weight. 

Glycosylation of his-tagged amylase and amylase HDEL in stable 

transformation 

Although α-amylase and short amylase fusions such as amylase HDEL 

are not glycosylated in protoplasts or infiltrated leaf epidermis cells, it 

cannot be ruled out that glycosylation may yet take place in transgenic 

plants. In order to test the glycosylation of amyHDEL and the effect on 

protein activities, the construct alongside a positive control amy-his 

which is glycosylated in transient expression (Fig. 2.15) were used to 

generate stable transgenic plants via leaf disc method (Deroles and 

Gardner, 1988; vanderGraaff and Hooykaas, 1996). After, successful 

regeneration of plants, leaves from the transgenics was used to extract 

proteins. Amylase activity was determined and significant activities were 

obtained. Equal enzymatic activities were loaded on the gel, Figure 2.16 

shows a western blot of amy-his and amyHDEL with their respective 

delta glycan derivatives. It was evident from the Figure that the amylase 

tagged with histidine (lane 2) and amylase fused to HDEL (lane 4) were 

glycosylated in the transgenic plants. This means that the glycosylation 

machinery is affected by the expression condition because as shown in 

Figure 2.15, amy-HDEL was not glycosylated in a transient leaf 
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infiltration assay. Both lanes 2 and 4 showed double bands, the upper of 

which represents the glycosylated band as it is absent on lanes 3 and 5 

displaying the glycan mutants. The glycosylation of the amylase-his was 

more pronounced in the transgenic than in transient this is evident by the 

increase in the intensity of the higher molecular weight high mannose 

protein band compared to the non-glycan band when compared to the 

pattern shown in Figure 2.15. Since significant enzyme activity was 

obtained with the plants compared to the delta glycan form this may 

imply that the glycosylation did not affect the stability and functionality of 

the protein. 

 

Figure 2.16. Stably expressed amylases; the western blot shows the 
properties of short amylase fusions. The samples tested are mock 
(negative control), amylase-his and its delta glycan; and amylase-HDEL 
and its delta glycan. The arrows represent the different protein bands, 
the upper band indicate the glycosylated high mannose protein while the 
lower band is non-glycosylated protein with lower molecular weight. 

The effect of calreticulin fusion on α-amylase properties 

Having established the effect of short peptide fusions on amylase 

properties that includes activity and secretion, it was necessary to 

determine the effect of larger protein fusions that were earlier shown to 

cause more dramatic reduction in α-amylase yield in transgenic plants (J. 

An and J. Denecke, unpublished). Therefore, the two fusions of α-

amylase with the acidic C-terminus calreticulin (Fig. 2.17, panel B) with 

and without HDEL were chosen and their glycan mutants were 

generated by replacing asparagine with serine at the consensus N-

glycosylation site (N372-S372) for comparison. The constructs were then 

sub-cloned in the GUS reference plasmid for quantification. The 

constructs alongside controls which are α-amylase and amylase-HDEL 
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were tested in electroporated tobacco protoplasts. The GUS activity was 

measured and normalised to establish the yield of the various fusions 

relative to the internal standard. Figure 2.17(A) shows the amylase to 

gus ratio of the different constructs. Significantly lower amylase to gus 

ratios were obtained with the calreticulin fusion constructs compared to 

the α-amylase and amylase-HDEL. Interestingly, the calreticulin fusion 

lacking the HDEL signal did not show increased amy / Gus ratios but 

continued to yield lower levels compared to α-amylase alone. This 

suggests that for these longer fusions, the peptide itself rather than the 

HDEL sequence was responsible for the reduction in amylase activity. 

 

 

Figure 2.17. The protein properties of the amylase-calreticulin.. Panel A 
shows the amylase to gus ratio of standard amylase, amylase-HDEL, 
amylase-calreticulin, with and without HDEL, and their delta glycan 
derivatives. Comparable amylase to gus ratio was obtained with the 
constructs. The panel B shows the calreticulin protein sequence. Error 
bars indicate standard deviation. 
 

In order to determine the effect of the calreticulin fusions on α-amylase 

retention, the secretion index was determined. Figure 2.18 shows the 

secretion indices of the calreticulin fusions compared to the amylase and 

amylase-HDEL. Generally, lower secretion index is exhibited by the 

HDEL compared to the secreted amylase (Fig. 2.18). However, the 
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secretion index of the amylase-calreticulin with HDEL was much lower 

than that of the amylase and amylase-HDEL (Figure 2.18), and even 

lower than EDDDHDEL (see Fig 2.14). On the other hand, the amylase 

fused to calreticulin without the HDEL signal showed comparable but 

higher secretion index than the amy-HDEL (Figure 2.18), but more than 

three-fold lower than the secreted α-amylase. This is interesting and may 

explain the peculiar role of the acidic calreticulin C-terminus in ER 

retention. The result may explain the fact that calreticulin exhibits a 

HDEL independent retention property as was suggested earlier (Pagny 

et al., 2000).  These observations are independent of the presence of an 

N-linked glycan consensus site (Figure 2.18). However, the glycosylation 

status of the calreticulin fusion will have to be tested directly. 

 

 

Figure 2.18. The retention of amylase fused to calreticulin, the secretion 
index of amylase, amylase-HDEL and amylase-calreticulin, with and 
without HDEL, and their delta glycan derivatives are shown. Significantly 
lower secretion index were obtained with the different fusions compared 
to the standard secreted amylase. Error bars indicate standard 
deviations. 
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Effect of calreticulin fusion on amylase glycosylation 

Previous work in the host laboratory has shown that recombinant protein 

activity yields of α-amylase calreticulin fusions were much lower than 

those obtained for α-amylase or α-amylase-HDEL in transgenic crops, 

which was in contrast to observations in electroporated protoplasts 

where activities of α-amylase or α-amylase-HDEL were more 

comparable to those of the calreticulin fusions (Figure 2.17). Therefore, it 

was necessary to test the glycosylation status of the calreticulin fusions. 

In order to investigate the influence of the two larger protein fusions on 

α-amylase glycosylation, electroporated samples were tested by western 

blotting. However since low amount of proteins is produced in protoplast 

transfection, the recombinant α-amylase fusions were below the 

detection limit of the western blot procedure. 

 

To increase recombinant protein levels in plants, naked DNA transfer in 

protoplast was replaced by Agrobacterium-mediated gene transfer in 

infiltrated leaf section, as the method results in transformation of the 

majority of cells in an infiltrated region. The constructs were sub-cloned 

into Agrobacterium vector for leaf-infiltration experiments. Amylase 

activities were measured; Table 2.2 is a comparison of the total activities 

in electroporated cells and infiltrated leaves, although this is random but 

explains the difference in the recovered amylase activities from the two 

expressions. 

Table 2.2 Comparison of amylase activities 
Constructs Protoplast Infiltration 

Amy 25.87 16933 

Amydg 24.67   9833 

AmyCalHDEL   9.35    5800 

AmydgCalHDEL   8.95    7107 

AmyCal∆HDEL 23.27 10893 

AmydgCal∆HDEL 13.57    5893 

 

After measurement of amylase activities, equal activities of extracts from 

infiltrated samples were loaded on a denaturing protein gel for western 

blot analysis. Figure 2.19 is a western blot that shows the characteristic 
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pattern revealed by the different amylases. As shown in Figure 2.19, the 

presence of a glycan is clearly noticeable by the higher molecular weight 

band detected with the amylases fused to calreticulin with or without 

HDEL (Fig. 2.19; lanes 3 and 5) compared to the glycan mutant 

indicating that they are glycosylated. The upper band was absent in the 

calreticulin fusions with the point mutations in the N-glycosylation site 

(lane 4 and 6). However, the amylase fused to calreticulin lacking the 

HDEL signal (lane 4) showed the presence of four bands (1, 2, 3 and 4) 

compared to the amylase-calreticulin with HDEL (lane 6) which showed 

only the two higher bands. The bands marked 1 in lane 4 represents the 

glycan because it is absent in the glycan mutant (lane 5), while the band 

number 2 represents the non-glycan band because it is present in both 

the glycan and its mutant, the two upper bands (1 and 2) correspond to 

the pattern showed by the calreticulin-HDEL construct. The two lower 

bands marked number 3 and 4 are absent in the HDEL derivative of the 

calreticulin fusion thus are likely to be degradation products caused by 

escape of the protein from ER-Golgi since the construct lacks the ER 

retention signal HDEL. The HDEL derivative exhibits a higher mannose 

protein band (1) and a non-glycan band (2) which are bigger than the 

non-HDEL calreticulin due to the presence of additional four amino acids. 

The HDEL stops degradation in a post-ER compartment which makes 

the bands 3 and 4 of the lane 4 to disappear. 
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Figure 2.19. The glycosylation pattern of amylase fused to calreticulin. – 
is the negative control, the proteins tested include; amylase, amylase 
calreticulin-delta HDEL, and amylase calreticulin-HDEL and their glycan 
mutants respectively. The arrows indicate the different protein bands; the 
first and third arrows show the glycosylated high-mannose protein while 
the second and fourth arrows show the non-glycosylated protein. On the 
calreticulin HDEL derivative, the arrows 1* and 2* represent glycan and 
non-glycan bands since arrow no. 2 is present in the delta glycan 
derivative. 
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2.3 Discussion 

Antibody generation 

A major challenge facing recombinant protein production is optimum 

yield of the proteins (Sorensen and Mortensen, 2005a). The main 

variable is the nature of the recombinant protein itself. Expression of the 

recombinant proteins in E. coli may also be connected with the codon 

usage or the growth condition as well as the specific nature of the fusion 

to add as affinity tag (Trabbic-Carlson et al., 2004). Results presented 

here suggest that production of the GST-fused amylase in E. coli led to 

well defined high expression levels (Stofkohahn et al., 1992; Liu et al., 

2006; Abhary et al., 2011). As shown in Figures 2.1 to 2.5, the yields of 

the recombinant α-amylase-GST fusion were high and not limiting 

factors. Although, tagging of proteins to GST has been suggested to 

decrease the formation of inclusion bodies (Kusnadi et al., 1997; Rabhi-

Essafi et al., 2007; Deceglie et al., 2012), this form of tagging did not 

seem to enhance the protein solubility in E. coli in the case of α-amylase 

GST fusion. The results agree with previous report on purification of GST 

fusion microtubule associated protein (MAP 2)  (Stofkohahn et al., 1992).  

 

Reducing expression levels by lowering the concentration of the inducer 

IPTG to 1 mM (Deceglie et al., 2012) failed to improve solubilisation. 

Other conditions such as temperature of 10, 16, 28 and 37°C were 

explored for growth to yield lower expression levels but this also failed to 

yield soluble GST fusion. Lowering temperatures between 15 to 28ºC 

have been reported to improve protein solubility; this is because usually 

overexpression causes aggregation. However, at temperatures below 

10ºC the growth of the bacteria may be hampered (Song et al., 2012). 

None of these attempts provided evidence for the presence of small 

quantities of soluble GST-amylase fusions that could be purified by 

affinity. 
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To yet enable the solubilisation of the amylases, different buffers were 

used. Detergents concentrations were varied from low to high to improve 

the extraction abilities of the buffers. Protein solubilisation was not 

achieved using phosphate-buffered saline. This is in agreement with 

what was reported previously on purification of a 180 kDa GST-fused 

RNA polymerase (Deceglie et al., 2012), although each protein has its 

peculiar properties. The more drastic extraction procedure using 

lysozyme treatment prior to extraction with the detergent-rich phaseolin 

buffer was also unsuccessful. The protein fusion remained firmly 

associated with the insoluble pellet (Figure 2.3). 

 

All the different conditions attempted to solubilise the amylase GST 

failed; therefore the insolubility was used as a purification method 

instead. Using harsh extraction conditions, large amounts of 

contaminating proteins were removed as they were solubilised and 

retaining the insoluble fraction consequently led to a strong enrichment. 

The final step involved purifying the protein on SDS PAGE (Laemmli, 

1970; Wilm et al., 1996), this gave very sharp well defined band of the 

insoluble GST-fusion protein which could be cut directly from the gel 

after coomasie staining. However, limitation of this strategy is risk of 

having multiple proteins of the same size although it was decided to 

accept this risk. The then obtained antigen yielded acceptable antiserum 

when tested in control plants and transgenic plants (Fig. 2.8). Therefore, 

the antibody can be used as a tool in blotting to recognise barley α-

amylase and different amylase fusion proteins. 

Epitope tagging of α-amylase changes the protein properties 

The barley α-amylase is a naturally secreted protein which accumulates 

in the apoplast (Phillipson et al., 2001). However in order to purify the 

protein using affinity columns, it was tagged with eight histidine residues 

(Marusic et al., 2007). Lower protein activities were observed for the 

histidine tagged protein compared to the standard amylase (Figure 2.11). 

The fusion of the amylase to the histidine octapeptide may have also 
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affected the protein targeting (see Figure 2.12). The amylase tagged with 

histidine compared to the standard amylase and other short fusions such 

as EDDDHDEL exhibited lower activities in electroporated protoplasts as 

well as in infiltrated cells (see Table 2.1). The decrease in activity or 

protein yield may be attributed to be the effects of the eight positively 

charged histidine residues. 

The secretion index of the amylase tagged with the histidine octapeptide 

was observed to be about 8-fold higher compared to the standard barley 

α-amylase (Figure 2.12). The behaviour of the histidine tagged α-

amylase may indicate that there is possibility of faster secretion of the 

fusion protein which may be driven by the presence of the eight 

histidines. A second explanation for high secretion may be due to poor 

extraction of the protein from the cell as a result of histidine-binding to 

the phospholipids of the ER membrane, thus yielding lower cellular levels 

after extraction. Further research is required to understand the difference 

in secretion caused by the histidine octapeptide. 

 

The glycosylation status of the amylase with and without the histidines 

revealed that α-amylase fused to histidine was glycosylated in transiently 

expressing leaf epidermis cells, while the un-tagged barley α-amylase 

was not (Figure 2.15). The glycosylation status was also revealed in 

stable transgenic plants (Figure 2.16). However the signal of the high 

molecular weight mannose band was found to be stronger in stable 

transgenic plants (Fig. 2.16) compared to the intensity in transiently 

expressed sample (Fig. 2.15). The glycosylation may be due to the fact 

that the histidine tagging slows down the translation rate prolonging the 

time that the nascent polypeptide remains associated with the 

translocation pore. This may also explain the overall yield loss. Histidine 

is a rare amino acid and the tRNA for its translation may not be 

abundant, if this hypothesis is correct it would slow down the translation 

as well as the co-translational translocation (Kane, 1995). The 

glycosylation of the amy-his may also be due to the long stretch of amino 
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acids that can delay the processing thereby enabling the glycosylation 

machinery to take effect (Kusnadi et al., 1997). 

Evidence of HDEL-independent ER retention 

The tetrapeptide HDEL has been described to lead to protein retention in 

plant cells (Denecke et al., 1992) thereby hampering the secretion of 

proteins, an observation that was originally shown by Munro and 

colleagues for KDEL in mammals (Munro and Pelham, 1987). The ability 

of HDEL to lead to retention of proteins in the ER was confirmed in this 

work (Figure 2.14), but interestingly a fusion of α-amylase to 

EDDDHDEL which is four amino acids longer than the HDEL was 

observed to be more efficiently retained (Figure 2.14, panel B). The 

higher retention of the EDDDHDEL derivative compared to the HDEL 

may be due to a better exposure of the HDEL retention signal. 

 

Besides retention of proteins in the ER mediated by the signal HDEL, 

other form of retention may exist that are mediated by different 

mechanisms. Calreticulin is a protein that is retained in the ER and is 

characterised by a long acidic C-terminus (Fig. 2.17, panel B) preceding 

the HDEL sequence (Crofts et al., 1999). An amylase-HDEL calreticulin 

fusion containing 34 amino acids of the acidic C-terminus exhibited much 

higher retention (Fig. 2.18) than the HDEL and EDDDHDEL derivatives 

(Fig. 2.14). This may also be attributed to better exposure of the HDEL 

retention signal. However, the equivalent calreticulin fusion lacking the 

HDEL sequence also exhibited a significant cell retention compared to 

secreted α-amylase (Figure 2.18). The result implies that the calreticulin 

possess a HDEL-independent retention property. The ability of the 

calreticulin fusions to be retained independent of HDEL may be due to 

the calcium chelating ability of an acidic stretch of 40 amino acids near 

the C-terminus (Nilsson and von Heijne, 2000; Pagny et al., 2000). 

However, the presence of the HDEL was certainly significant as 

observed by the lack of proteolytic processing caused by the tetra-

peptide (Fig. 2.19). The calreticulin fusions lacking the HDEL signal 
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exhibited protein degradation (Fig. 2.19 lanes 4 and 5) while the HDEL 

equivalent (Fig. 2.19, lanes 6 and 7) did not, thus signifying the strong 

role of the HDEL signal. This means that although HDEL-independent 

ER retention may assist in the process, the HDEL signal still plays a 

major role in calreticulin targeting confirming (Crofts et al., 1999) and 

refuting (Pagny et al., 2000) which stated that HDEL plays a minor role. 

Glycosylation status does not affect protein properties 

From the results obtained, it was observed that the substitution of 

asparagine at the consensus N-glycosylation site to serine (Gavel and 

von Heijne, 1990) did not alter overall α-amylase properties (see Figures 

2.10, 2.11, and 2.12). This may not be surprising because a closely 

related α-amylase (NCBI accession no. CAX51373) from barley has N-S 

substitution (Radchuk et al., 2009). This implies that the substitution of 

asparagine with serine had no detectable effect on α-amylase activity 

and secretion. However, the effect on glycosylation was clearly 

demonstrated by comparing His tagged α-amylase with and without the 

mutation (Figures 2.15, and 2.16). 

 

The α-amylase fused to the EDDDHDEL octapeptide as well as the 

HDEL derivative were not glycosylated in transient expressing leaf 

epidermal cells (Figure 2.15). Since the EDDDHDEL derivative has the 

same number of eight additional amino acids as the amylase histidine 

octapeptide fusion; glycosylation of the latter (Figure 2.15) must be 

specifically due to the properties of the histidine octapeptide. One 

possibility is a limitation of tRNAs for histidine which may slow down 

translation and translocation.  

 

In contrast to untagged α-amylase, amy-HDEL and amy-EDDDHDEL 

fusions, the α-amylase fused to the acidic C-terminus of calreticulin was 

revealed to be glycosylated in infiltrated cells (Figure 2.19). Notably the 

size of the additional polypeptide at the amylase C-terminus is 

significantly larger. The glycosylation status was independent of the 
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presence of HDEL. The presence of peptides that increase the distance 

between the consensus glycosylation site and the stop codon has being 

suggested to increase the efficiency of glycosylation (Gavel and von 

Heijne, 1990; Nilsson and von Heijne, 2000). If this is the case, the long 

stretch of amino acids at the C-terminus of the protein may be 

responsible for the glycosylation. 

The effect of expression system on protein properties 

Transfection in the electroporated protoplasts involves naked DNA 

transfer into cells; there can be high level of expression due to the high 

number of plasmid copies which affects the yield and properties of the 

recombinant protein (Hadlington and Denecke, 1994). In infiltration of 

leaf cells which is Agrobacterium mediated, several copies of the genes 

are transferred which may also lead to high level of expression in the 

cells, however; some of the genes may be subsequently silenced at later 

stages (Caplan et al., 1983; Kapila et al., 1997). The consequent effect 

of the above is that it reduces the expression levels compared to the 

electroporated protoplasts (Bottanelli et al., 2012).  

 

In this study, low quantity of proteins was obtained with the 

electroporated protoplasts that were below the detection limit of α-

amylase antibody. In contrast, the yield of protein (α-amylase) activity 

was clearly demonstrated to be much higher using infiltration in leaf 

epidermal cells compared to electroporated protoplasts (see Tables 2.1 

and 2.2). The observation was noticeable in all the amylase constructs 

tested, including the standard barley α-amylase, short fusions such as 

amyHis, amyHDEL and EDDDHDEL derivatives (Table 2.1) as well as 

the calreticulin fusions (Table 2.2). It is likely that the main reason for this 

discrepancy is the low percentage of transfected cells in protoplasts 

compared to that of infiltrated leaves. Therefore, individual cells in the 

leaves may have lower expression compared to the high expression in 

electroporated protoplasts but the number of transformed cells is so 
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much higher that the overall yield surpasses that of an electroporated 

protoplast suspension.  

 

The expression system does not only affect the protein yield but also its 

properties such as glycosylation (see Figures 2.15 and 2.16). Whilst 

amylase-HDEL was not glycosylated in infiltrated leaves (Fig 2.15), the 

fusion protein was observed to be glycosylated in stable transgenics 

(Fig. 2.16). It is possible that stable regeneration removes a great deal of 

overexpressing lines as they may either be silenced or toxic so that they 

do not form normal plants (Kusnadi et al., 1997). In a transgenic plant 

100% of the cells are transgenic, but the expression in each individual 

cell may be low enough to permit N-linked glycosylation. 
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Chapter 3 

3 Starch saccharification 

3.1 Introduction 

Starch is one of the most abundant polysaccharides on earth, a glucose 

polymer containing only two types of covalent bonds to link the sugar 

monomers. It is the primary storage of photosynthetic free energy in all 

plants (Buleon et al., 1998; Stitt et al., 2010). Starch is also an attractive 

feedstock for bioethanol production because it is water insoluble and can 

be sedimented at low cost. It is a high energy molecule compared to 

simple sugar dissolved in water, the latter cannot be concentrated further 

without evaporating water (Denyer et al., 2001; Halford et al., 2011). 

Starch is easy to mobilise because it contains only α-1,4 and α-1,6 

glycosidic bonds (Gerard et al., 2001; Buchholz and Seibel, 2008; 

Copeland et al., 2009). Industrial starch processing for biofuel production 

involves three basic steps; gelatinisation, liquefaction and 

saccharification (Duvernay et al., 2013).  

 

Starch gelatinisation which is a process of hydrating the molecule in 

water is performed at high temperature depending on the starch 

properties. The aim of this is to disrupt the semi-crystalline starch 

structure, therefore making the glycosidic bonds accessible and 

susceptible to enzymatic action (Schuster et al., 2000; Duvernay et al., 

2013). The liquefaction is the process of converting the gel to liquid and 

that involves reducing the viscosity of the starch molecule by producing 

shorter glucan chain that can be digested further. This is either achieved 

in the presence of inorganic acids or by treatment with α-amylase which 

has an endo-glycosidic hydrolase activity (Aggarwal et al., 2001; Chen 

and Zhang, 2012). Gelatinisation and liquefaction are often performed 

together in the industry at temperatures of 65ºC and above using 
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thermostable enzymes. Either in combination with acid hydrolysis or not, 

and often using immobilised enzyme columns to boost thermo-tolerance 

and long-term stability of the enzyme (Betancur and Chel, 1997; Zhang 

et al., 2005; Buchholz and Seibel, 2008). 

 

Research in the host laboratory has revealed that starch pre-treatment 

with acids at high temperature is a simple but effective strategy to 

increase the rate of starch hydrolysis both concerning α-1,4 and α-1,4  

glycosidic bonds (Betancur and Chel, 1997; Kim et al., 2008b). The 

physico-chemical conditions chosen for starch hydrolysis affect protein 

stability and function therefore the optimum pH and temperature for 

enzyme action are used (Buchholz and Seibel, 2008). The solution is 

then cooled because addition of enzyme to the hot solution directly may 

result in the destruction of the protein. Since the solution is cooled to a 

low temperature for enzyme action retrogradation of the starch takes 

place leading to the formation of double and triple helices of amylose 

(Haralampu, 2000; Sajilata et al., 2006; Alvani et al., 2011). These 

helices cannot be found in nature and are highly resistant to heat-

induced gelatinisation and enzymatic hydrolysis (Wu and Sarko, 1978; 

Miles et al., 1985). The solution is also neutralised by the addition of 

alkali setting the pH to neutral condition (Chen and Zhang, 2012). This is 

then subject to the action of the liquefying enzyme which act on the 

starch to generate linear and branched oligosaccharides (Carr et al., 

1982; Beck and Ziegler, 1989). The subsequent saccharification takes 

place when the products obtained after liquefaction are subject to the 

action of the saccharifying enzyme, glucoamylase which cleaves both α-

1,4 and α-1,6 glycosidic bond. The enzyme digests the glucans or 

dextrin from their non-reducing ends to release simple fermentable 

sugars such as maltose and glucose (Pazur and Ando, 1959; Carr et al., 

1982).  

 

Besides starch conversion using the enzymatic liquefaction and 

saccharification, the process is often performed exclusively based on 
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acid hydrolysis. The starch is treated at high temperatures above 100ºC 

with mineral acids (Betancur and Chel, 1997). The advantage of acid is 

that it replaces two enzymes which has both α-1,4 and α-1,6 activity 

however; the acid catalysed hydrolysis is a totally random process that 

cannot be controlled. It also leads to generation of waste in the form of 

salts that are difficult to dispose (Soni et al., 2003; Duvernay et al., 

2013).  

 

High amounts of inorganic acids may lead to the destruction of the starch 

building blocks themselves; this may affect the integrity and quality of the 

products. The use of acid also generates hydroxyl-methylfurfurals that 

have been implicated to inhibit growth of yeast and also reduce 

fermentation efficiency (Tasic et al., 2009; Duvernay et al., 2013). In 

contrast, enzymatic hydrolysis of starch has lots of advantages. These 

include better and purer yields, more stable products. It also ensures a 

greater control and specificity of the reaction. In addition to the above 

advantages, the use of enzyme is simpler and more environmentally 

friendly way of sugar generation. Obtaining cheap enzymes is a key-aim 

to render the overall alcohol production process from starch 

economically viable and more sustainable (Satyanarayana et al., 2004; 

Buchholz and Seibel, 2008). However, when high starch concentrations 

above 10% are treated viscosity of the gelatinised starch is very high 

without liquefaction. 

 

As was explained in the aims section of this thesis, initial work in the host 

laboratory has found that hydrolysis of concentrated starch suspension 

(30% weight / volume) can be performed by combination of high 

temperature using autoclaving with acid hydrolysis. This leads to 

gelatinisation and partial liquefaction, allowing the process to be 

completed by enzymes (Betancur and Chel, 1997). The strategy lowers 

the amount of enzyme needed in the overall process. Sulphuric acid was 

discovered to lead to the decomposition of starch molecule, however 
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hydrochloric acid was found to be efficient in starch hydrolysis at very 

low concentrations (J. An and J. Denecke, unpublished). 

 

Here, it is shown that after two standard autoclave steps using low HCl 

levels, the degree of retrogradation is very low and glucoamylase 

saccharified a 30% starch solution to a DE value of 60%, hence 

complete conversion of starch to glucose was not obtained. A 

combination of the liquefying and saccharifying enzymes did not yield 

more glucose compared to the glucoamylase alone. A parallel approach 

that uses a combination of high temperature with acid was attempted, 

five repetitive autoclaving were used, a higher yield of glucose as evident 

from the DE value was obtained. The amount of the fermentable sugars 

was found to increase after each autoclave step. The pattern of sugars 

obtained on the hydrolysis was analysed using chromatography, glucose 

showed the highest peak. In addition two other fermentable sugars; 

maltose and maltotriose were released however non-fermentable 

saccharides were also observed. It can be concluded that though an 

incomplete starch conversion to glucose was realised, a 90% conversion 

may be obtained by using the standard autoclaving in combination with 

acid hydrolysis. Moreover, and the remaining 10% of the starch can be 

digested further with enzymes.    
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3.2 Results 

Glucose standards 

The dextrose equivalence (DE) value measures the amount of glucose 

produce from a given amount of starch therefore; it is used in assessing 

the quality of starch saccharification. There is no consensus reference 

for determining the DE value, researchers use different references 

(Schuster et al., 2000). In this project, it was assumed that 1g of starch 

liberates 1 g of glucose on saccharification. To determine the amount of 

glucose released on hydrolysis of starch a reference standard was 

required.  This was to be used for quantification of glucose amounts in 

unknown samples. In order to have standards of known concentrations, 

glucose solutions of 0.1 – 10 mg/ml were prepared. The standard 

glucose oxidase-peroxidase method of estimating glucose amounts was 

used which is based on the oxidation of glucose in the presence of 

oxygen to gluconic acid and hydrogen peroxide. The peroxide in the 

presence 4-aminopyrine and phenol produces a quinoneimine which is 

indicated by the pink colour that is measured colorimetrically as 

absorbance. The optical densities were used to generate a standard 

curve. Figure 3.1 showed a glucose standard curve, the slope of the 

curve was used to derive a formula for estimating the amount of glucose 

in test samples based on the absorbance recorded. The curve in Figure 

3.1 shows a progressive increase in the optical densities (absorbance) of 

the glucose standards. It revealed a nearly linear relationship between 

the absorbance and glucose concentrations for the range of 

concentration tested, suggesting that the reagents were not limiting 

under these conditions. 
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Figure 3.1. Glucose standard curve, the absorbance (optical density, 
OD) of glucose solutions was plotted against the mg/ml glucose used. 
The slope was used to derive a formula which gives the relationship 
between the optical density and concentration. 

Glucoamylase catalysed hydrolysis of starch  

Glucoamylase preparation 

Aspergillus niger glucoamylase was obtained from Sigma, but the 

enzyme is mixed with glucose as a stabiliser. In order to use the enzyme 

for analytical saccharification, a purification step was required to remove 

the glucose therefore; gel filtration was chosen as a method of choice. 

Several fractions were collected and the glucose concentrations of the 

fractions were determined, the glucoamylase activities were also 

assayed. Figure 3.2 shows two curves of the glucose and glucoamylase 

concentrations of the gel filtrates however tailing was observed which 

may be as result of the sample addition. Fractions which contain no 

glucose but have significant enzyme concentrations (Fig 3.2, rectangle 

region) were considered to be suitable for analytical enzymatic digestion 

of hydrolysed starch. 
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Figure 3.2. Properties of the glucoamylase gel filtrate. On the primary 
axis is the amyloglucosidase activity (ΔOD/min/ul) while on the 
secondary axis is the glucose concentrations (mg/l).  The Figure also 
illustrates the peak of the enzyme and glucose concentrations; four 
fractions exhibit significant enzyme activity with very little glucose 
contamination. The rectangle represents the region containing gel-
filtrated glucoamylase fractions that were pooled and use for 
saccharification. 

Saccharification 

In order to attempt analytical saccharification a 30% starch solution was 

prepared; this is a more realistic concentration for industrial production of 

sugars than using a 1 or 0.1% starch as is typical for laboratory 

simulation (Pazur and Ando, 1959). Hydrochloric acid was added to a 

final concentration of 10mM, and an acid pre-treatment was carried out 

to enhance starch liquefaction and digestion. In order to mimic the 

industrial starch hydrolysis, the solution was autoclaved at 126ºC for 20 

minutes to liquefy the starch however; the solution became turbid after 

cooling to 55ºC. The turbidity may indicate retrogradation of starch. As 

explained in the introduction, this aggregation decreases the efficiency of 

enzyme treatment (Wu and Sarko, 1978; Miles et al., 1985) therefore a 

second autoclave cycle was considered to enable full liquefaction. At the 

end of the cycles, the liquefied solution became significantly less turbid 

after cooling to 55ºC. Next an equal concentration of 10mM sodium 

hydroxide was added to neutralise the acid. This is a pre-requisite prior 
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to enzyme treatment otherwise the structure of the enzyme protein can 

be disrupted by the acidic condition. If this happens, the enzyme may 

become non-functional and hence cannot catalyse the reaction.  

 

The glucoamylase was added rapidly after autoclaving and neutralisation 

and incubated for a total of 8 hours with samples taken at different time 

intervals. Figure 3.3 shows the DE values of the saccharified solution at 

different time points. A progressive increase in the DE value was 

observed therefore increase in the amount of the glucose liberated as a 

function of time. The DE values obtained were below 70% this implies 

incomplete saccharification which may be due to some invisible 

retrogradation of starch that makes it impossible for the enzyme to 

penetrate the molecules. In order to obtain a higher degree of 

saccharification, improvements to the protocol became necessary; 

therefore one of the options considered was the use of a liquefying 

enzyme α-amylase after acid hydrolysis.  

 

 

Figure 3.3. Dextrose equivalent of Glucoamylase treatment, the 
hydrolysed starch solution was initially treated with 10mM HCl. The 
starch was digested for a total of 8 hours. The DE value indicates the 
degree to which the starch is converted to glucose. It shows a 
progressive increase in the dextrose equivalent values. 

Starch hydrolysis using glucoamylase and α-amylases from 

Aspergillus oryzae 

A combination of two enzymes, α- and gluco-amylases was used to 

hydrolyse the starch and minimise retrogradation using the liquefying 
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ability of the α-amylase. A commercially available α-amylase from 

Aspergillus oryzae was obtained. A 30% starch solution was prepared 

and hydrochloric acid and the pre-treatment was identical to the previous 

experiment. The solution was cooled to 55°C which is an optimum 

temperature for the enzymes and neutralised, turbidity was not observed. 

The amyloglucosidase and α-amylase were added, and incubated at 

55°C for 8 hours. The amount of glucose liberated by the combined 

action of the two enzymes was determined using a standard assay and 

sugar concentration was quantified using the glucose standard curve 

described above. Figure 3.4 shows the dextrose equivalence values of 

the different time points. 

 

 

Figure 3.4. Dextrose equivalence of combined treatment with 
amyloglucosidase and α-amylase from Aspergillus oryzae. The acid 
hydrolysed starch solution was subject to the action of amyloglucosidase 
and α-amylase for a total of 8 hours. The DE values obtained showed a 
progressive increase in the amount of glucose released. 
 

It was observed as shown in the Figure 3.4 that on addition of 

amyloglucosidase and α-amylase, glucose was released at a 

comparable rate as in the presence of glucoamylase alone (Figure 3.3). 

This implies that liquefying enzymes were not needed. It is possible that 

glucoamylase cannot cleave short fermentable sugars such as maltose 

and maltotriose which are not detected by the glucose assay. 
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Starch hydrolysis using glucoamylase and α-amylases from 

Bacillus amyliloquefeciens 

In the previous section the combination of glucoamylase with α-amylase 

from A. oryzae did not yield a complete saccharification to glucose. Here 

different amylase which is a heat stable α-amylase from B. 

amyliloquefeciens will be used. The concentration of the starch solution 

and pre-treatments were as described in the previous section. The 

amyloglucosidase and α-amylase were added and incubated at 55°C 

because the glucoamylase cannot withstand high temperatures. Figure 

3.5 shows the dextrose equivalence at the different time points. 

 

 

Figure 3.5. Dextrose equivalent of combined treatment with 
amyloglucosidase and α-amylase from B. amyliloquefeciens. The 
hydrolysed starch solution was digested using amyloglucosidase and α-
amylase respectively for a total of 8 hours. A progressive increase in the 
amount of glucose released was obtained. 
 

The amount of glucose obtained was found to progressively increase 

with time (Figure 3.5), and comparable to the DE profiles shown in 

Figures 3.3 and 3.4. This implies a more efficient process is required to 

achieve a complete or near complete starch conversion to glucose. 

 

Figure 3.6 is a combination of the dextrose equivalence of the three 

treatments that is saccharification using glucoamylase alone and 

combinations of two α-amylases from A. oryzae and B. 
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amyliloquefeciens. From 15 minutes to 2 hours of starch digestion, a 

difference was observed with the three treatments (Figure 3.6), however, 

no significance difference was obtained afterwards. The common pattern 

between the different treatments was that they are all far from 100%. 

 

 

Figure 3.6. Dextrose equivalent of the combined treatment with 
amyloglucosidase and α-amylases from A. oryzae and B. 
amyliloquefeciens. The dextrose equivalents of the three different 
treatments were compared indicating the amount of glucose liberated at 
the end of each treatment for 8 hours. Comparable amount of glucose 
was obtained in all the cases with no significant difference. 
 

In conclusion, within the remit of this research complete hydrolysis of 

30% could not be achieved using the pre-treatment and saccharifying 

enzyme. Similar results were obtained using pre-treatment and a 

combination of saccharifying and liquefying enzyme. As was discussed 

in the previous section, the reason for the inability of the enzymes to 

catalyse complete or near complete conversion of starch to sugars may 

be due to retrogradation. In the next section a different form of treatment 

using high temperatures with acid to liquefy and digest starch will be 

reported. 
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Effect of temperature and acid on starch hydrolysis 

A pre-treatment at 126°C in the presence of hydrochloric acid to a final 

concentration of 10mM is well below the concentration that is often used 

in the industry but was considered for sustainability and environmental 

concerns. The fact that a double cycle of autoclaving resulted in much 

lower formation of turbidity suggested that prolonging in the time of acid 

hydrolysis may be a simple and cheap strategy. To test how much can 

be accomplished by acid hydrolysis only, five cycles of autoclaving at 

126°C was used to monitor progressive saccharification of the starch. 

Samples were taken after each cycle and the glucose concentration was 

quantified and used to determine the dextrose equivalence (DE). Figure 

3.7 shows a chart of the DE values obtained at end of each cycle of the 

five repetitive autoclaving. As shown in the Fig. 3.7, little amount of 

glucose was produced at the end of the cycle this implies that the second 

cycle was necessary. The rapid increase in the DE value means that 

acid hydrolysis is not linear over time but follows a complex kinetic curve. 

Moreover, with each progressive cycle, much more glucose was 

released than in the first autoclaving reaction. As shown in Figure 3.7, at 

the end of the repetitive autoclaving, a DE value of 70% was obtained 

which signifies that 30% of the starch was not digested to glucose. The 

DE value was significant but the saccharification was still incomplete 

after the five cycle of acid hydrolysis with 10mM HCl at 126ºC. 
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Figure 3.7. Dextrose equivalents of the hydrolytic products, 30% starch 
solution was hydrolysed using high temperature and mild acid treatment. 
1st, 2nd, 3rd, 4th and 5th represent autoclave cycle that was used to mimic 
the high temperature liquefaction of starch. A significant increase in the 
DE value was obtained after the 5th cycle compared to the 1st cycle 
indicating an increase in the amount of glucose obtained. 

HPAE-PAD to reveal the sugars 

The DE value can only report on the glucose obtained on hydrolysis of 

starch, in order to determine other sugars that are released from the 

digestion of the 30% starch at each cycle of the five repetitive 

autoclaving, column chromatography was considered as a method of 

choice. The samples were then subject to high-performance anion-

exchange chromatography with pulsed amperometric detection (HPAE-

PAD) to reveal the saccharides. Figure 3.8 shows chromatogram peaks 

indicating the different sugars and other larger chain sugars obtained on 

hydrolysis. As shown in Figure 3.8 (panel A) at the end of the first 

autoclave cycle, glucose, maltose, maltotriose, maltotetraose, 

maltopentose, maltohexose, maltoheptaose, and other longer sugars 

were released. Based on the pattern revealed by the peaks (Fig. 3.8, 

panel A), the amount of glucose released was higher than the other 

sugars. The system set-up uses a pre-column that filters and excludes 

longer chains therefore feed only the population of smaller chains on the 

real column. Moreover, among the sugars obtained in Figure 3.8, only 

three glucose, maltose and maltotriose are fermentable while the rest are 
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non-fermentable that cannot be readily converted to simpler sugars and 

subsequently ethanol. 

 

The chromatograms indicated that the amount of glucose increase 

slightly after the second cycle (Fig 3.7, panel B) compared to the first 

cycle (3.7, panel A) this trend was also observed for the two sugars 

maltose and maltotriose. This may imply that some of these sugars are 

gradually being converted to smaller sugars.  After the third cycle, the 

glucose, maltose and maltotriose peaks tripled (Figure 3.8, panel C) 

compared to the first and second cycles (Fig 3.8, panels A and B). In 

contrast, a slight increase in the longer chain sugars was shown. This 

means that the starch hydrolysis is progressing similarly some of the 

non-fermentable sugars are being converted to shorter saccharides. 
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Figure 3.8. Glucose chromatogram showing the different sugars obtained 
on hydrolysis of a 30% starch solution. Panels A, B, C, D and E show the 
sugar profile of the products of the 1st, 2nd, 3rd, 4th and 5th hydrolytic 
cycles respectively. The first, 2nd, and 3rd peaks represents glucose, 
maltose, and maltotriose, while each peak show an increase in the chain 
length of the sugars with the 5th peak being maltopentose. Also the first 
three peaks are those of the fermentable sugars while the others are the 
saccharides that cannot be readily converted to ethanol.  
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In comparison to the third cycle, the fourth showed a further increase in 

the amount of glucose that was realised (Fig. 3.8, panel D), while the 

other sugars maltose and maltotriose do not increase at the same ratio. 

At this stage the amount of the molecules of higher than three sugars 

lengths does not increase. The sum of all the signals for the fermentable 

sugars increases in the last cycle of hydrolysis as shown in Figure 3.8, 

panel E. The three fermentable sugars, glucose, maltose and maltotriose 

increase with more than eight-fold compared to the initial peak (Fig. 3.8, 

panel A). This means that the repetitive hydrolysis was efficient in the 

conversion of starch to simple sugars. The results obtained with the 

chromatogram (Fig. 3.8) are in agreement with the DE values shown in 

Figure 3.7. It also shows that the DE value underestimates the 

percentage starch conversion to fermentable sugars as the glucose 

assay does not report on maltose and maltotriose. In conclusion, 

prolonging the time of acid hydrolysis is a simple and cost effective pre-

treatment that strongly diminishes the need for expensive recombinant 

hydrolases. 

  



Chapter 3 

126 

 

3.3 Discussion 

Glucose concentration and optical density reveal a linear 

relationship 

Starch is a complex macromolecule that is made up of sugars, 

specifically glucose monomers and on digestion glucose is released or 

liberated as one of the products. Therefore, saccharification is a process 

of industrial and commercial importance for the production of glucose 

(Nigam and Singh, 1995; Buchholz and Seibel, 2008). In order to be able 

to quantify the amount of glucose released on starch saccharification, a 

relationship between the optical density (absorbance) and glucose 

concentration was derived using the standard curve (Fig. 3.1). The 

relationship between the absorbance and concentration was found to be 

linear. This implied that as sugar concentration increases, absorbance 

increases and vice versa and the standard curve can be used for 

quantification of unknown samples within the range of glucose 

concentration used to generate the graph.  

Glucoamylase does not saccharify starch completely to glucose 

Glucoamylase or amyloglucosidase is an enzyme that is used in 

industrial glucose production. It is an exo-amylase that acts on the non-

reducing ends of starch polymer to release glucose (Pazur and Ando, 

1959) (Figure. 3.3) but in order to function efficiently crystalline starch 

must be gelatinised using high temperature and liquefied using mild 

acidic conditions (Schuster et al., 2000). The uptake of water helps in 

breaking the bonds holding the molecules together (Schuster et al., 

2000). Hence gelatinisation of starch provides the condition needed for a 

key step in enzymatic saccharification which is the adsorption of enzyme 

onto the granule (Aggarwal et al., 2001; Kim et al., 2008b). Acid 

hydrolysis reduces the viscosity and increases the number of non-

reducing ends that are substrates for the glucoamylase (Betancur and 

Chel, 1997). Treatments of starch using amyloglucosidase yielded less 

than 70% glucose after 8 hours (Figure 3.3) of hydrolysis compared to 
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the total amount of starch however the reaction reaches peak after 4-5 

hours and no further increase is expected. Though, the results are 

encouraging but higher saccharification efficiency was expected. Lower 

saccharification efficiency of about 13% starch conversion after 2.5 hours 

of glucoamylase treatment has been previously reported (Chen and 

Zhang, 2012). Retrogradation reduces the efficiency of saccharification 

because the starch forms double and triple helices that make the 

polymer inaccessible for enzyme action (Miles et al., 1985; Wu et al., 

2006). The substrate specificity of the glucoamylase also affects the yield 

of glucose because short oligomers may be formed in the process of 

liquefaction that cannot be recognised by the enzyme (Shenoy et al., 

1985). 

 

In order to obtain a complete conversion of starch to glucose, the use of 

α-amylase in combination with glucoamylase was attempted. Alpha 

amylase catalyse the digestion of starch to dextrin (liquefaction) (Irving et 

al., 1999) while the glucoamylase mediates conversion of dextrin to 

glucose (Pazur and Ando, 1959; Schuster et al., 2000). The use of an 

endo-glucosidase was meant to test if retrogradation of long 

oligosaccharides was the limiting factor (Haralampu, 2000). The 

combination of amyloglucosidase with an α-amylase from A. oryzae 

yielded glucose levels (Figure 3.4) that were comparable to that obtained 

with glucoamylase alone (Fig. 3.3). The result is surprising, it was 

expected that the combination should increase the efficiency of 

hydrolysis. This implied that long-chain amylose retrogradation is 

probably not the cause for partial conversion to glucose.  

 

The experiment was repeated with α-amylase from B. amyloliquefeciens, 

the obtained amount of glucose was lower than 70% (Fig. 3.5) and 

comparable to that of hydrolysis of starch with amyloglucosidase alone 

(Fig. 3.3), and a combination of glucoamylase with α-amylase from A. 

oryzae (Fig. 3.4). Therefore, the use of a different α-amylase did not 

improve the process. In summary, as was shown in Figure 3.6 the use of 
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glucoamylase or a combination of glucoamylase and α-amylase yielded 

comparable amount of glucose of 60%. It is possible that fermentable 

maltose and maltotriose are poor substrates for glucoamylase. 

Acid catalysed hydrolysis of starch yielded higher amount of 

glucose compared to the enzyme catalysed reactions 

To test if acid hydrolysis can be used alone to obtain good yields of 

fermentable sugars, five consecutive autoclaving steps were performed 

to measure progress of glucose release. The strategy used for the 

hydrolysis of starch was effective due to a progressive increase in the 

DE values which represents the amount of glucose release after each 

cycle. Comparing the first autoclave cycle to the last, the DE value 

showed five-fold increase. Therefore, the approach was able to liberate 

simple sugars that may be converted further to ethanol. Moreover, the 

dextrose equivalence was more than 70% yet this does not signify a 

complete or near complete saccharification. The obvious challenge in the 

hydrolytic process is obtaining an optimum yield of the desired product. 

In order to obtain a complete conversion of starch to glucose, higher 

concentration of acid is required. In a project where 1M and 2M HCl at 

98ºC were used to digest a lower percentage of starch for 8 hours; 80 

and 94% dextrose recovery respectively was obtained (Tasic et al., 

2009).  

 

The chromatogram further revealed the type of sugars released and that 

the glucose release was not linear. After the initial saccharification, 

glucose, maltose and maltotriose which are fermentable sugars were 

recovered. In addition non-fermentable carbohydrates which are sugars 

of longer chain length were also obtained. With each further digestion 

cycle, an increase in the amount of the three fermentable sugars was 

observed. After the last cycle of hydrolysis, a more than eight fold 

increase in the amount of glucose compared to the first was obtained as 

revealed by the chromatogram. It is encouraging that at this stage, the 

amount of the non-fermentable sugar was very low compared to the 
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fermentable oligo-saccharides. Some other products that are too big to 

pass through the column might have bound to the pre-column. 

 

In conclusion, the DE value underestimates the true conversion of starch 

to fermentable sugars as it does not report on the recovery of maltose 

and maltotriose. In addition, prolonged acid hydrolysis is likely to be a 

very cost-effective, yet efficient approach for starch saccharification. 

Remaining non-fermentable sugars are so low in abundance and 

polymer size that the risk for retrogradation is low. Furthermore, those 

non-fermentable sugars may be converted to fermentable sugars during 

the long fermentation process, if a transgenic yeast with the appropriate 

amylolytic enzyme is utilised. In nature, some plants express amylases 

that act at low temperatures to digest starch, these forms of enzymes 

can be explored so that starch saccharification can be performed at 

relatively low temperatures and with more efficiency. 
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Chapter 4 

4 Scouting for new starch hydrolase with unique 

properties 

4.1 Introduction 

Starch is physiologically an attractive store of energy due to its compact 

nature and osmotically neutral properties. Besides oils and sugars; 

starch has thus been envisaged as a feedstock for bioethanol production 

though this has been underexplored with the exception of corn which is 

an energy inefficient crop (Slattery et al., 2000; Gray et al., 2006; Balat 

and Balat, 2009; Mussatto et al., 2010). However, many crop plants 

produce much larger quantities of starch per surface area and time have 

yet to be considered. Structurally, it is a macromolecule that consists of 

two glucose polymers which have different degree of branching, amylose 

and amylopectin (Buleon et al., 1998; Kossmann and Lloyd, 2000; 

Denyer et al., 2001; Keeling and Myers, 2010; Santelia et al., 2011).  

 

Moreover, starch can also be classified into transitory starch, the type 

synthesized by higher plants in leaves during the day and degraded at 

night; and the so-called storage starch which represents reserves that 

are stored in seeds and tubers or other vegetative tissues (fruits and 

stems). Starch is found in almost all classes of crops. Tubers such as 

potato, cassava and yam have particularly high levels; cereals such as 

rice, maize, wheat, and fruits such as banana, plantain, apple, and pear 

also contain significant levels of this polymer (Nigam and Singh, 1995; 

Junior et al., 2006; Smith, 2008; Zeeman et al., 2010).  

 

The hydrolysis of starch takes place in chloroplasts or amyloplasts and 

multiple enzymes are involved in this process (Lao et al., 1999; Tetlow et 

al., 2004; Smith et al., 2005; Zeeman et al., 2007a; Fettke et al., 2009; 



Chapter 4 

131 

 

Andriotis et al., 2010). These can be classified into hydrolases; 

endoamylases, exoamylases, debranching enzymes, and transferases. 

The endoamylase α-amylase hydrolyses α-1,4 glycosidic bonds in 

internal positions of amylose and amylopectin structures leading to the 

generation of smaller water soluble glucans (Smith et al., 2005; Yu et al., 

2005; Kumari et al., 2010). Exoamylases such as β- and gluco-amylases 

cleave both α-1,4 and α-1,6 glycosidic bonds at the external part of 

starch molecule. Debranching enzymes, example isoamylase and 

pullulanase hydrolyse the α-1,6 glycosidic bonds while the transferase 

cut α-1,4 glycosidic bond of a donor and transfer part it to an acceptor 

molecule (van der Maarel et al., 2002). Of all these enzymes, α-amylase 

is considered as a key enzyme for industrial starch hydrolysis due to its 

endo-amylase activity (Beck and Ziegler, 1989; Asatsuma et al., 2005). 

 

Alpha amylase (1,4-α-D-glucan-4-glucanohydrolase, EC 3.2.1.1) is a 

member of the glucosylhydrolase class-13 (Kuriki and Imanaka, 1999; 

Kumari et al., 2010). The protein is folded into three domains A, B and C. 

The enzyme is found in humans, animals, microbes, plants and the 

archaea (Tibbot et al., 2002; Robert et al., 2003). In plants such as 

barley, α-amylase may be produced and secreted by the aleurone cells 

or scutellum or both of seeds (Ranki and Sopanen, 1984; do Nascimento 

et al., 2006; Jeon et al., 2010). The synthesized protein is secreted into 

the endosperm of seeds.  High activity of α-amylase has been reported 

during seed germination, indicating its role in starch mobilization in 

germinating seeds where starch reserves are used for energy (Kumari et 

al., 2010; Zeeman et al., 2010). 

 

Alpha amylase is a multi-gene family of proteins; earlier classification 

was based on cereal α-amylases (Mitsui and Itoh, 1997; Janecek, 2002). 

However, a broader classification of plant α-amylases grouped the genes 

into three families. Family one α-amylase is found in cereals and seeds 

of dicot plants. They are secreted proteins with a signal peptide for entry 

into the endoplasmic reticulum. This family of enzyme has also been 
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described to be involved in the degradation of extracellular starch and 

can be found in microbes. The presence of this type of protein in seeds 

of higher plants may be due to the need of the enzyme to translocate 

across membranes to the specialised starch tissues such as the 

endosperm in cereals (Stanley et al., 2002; Stanley et al., 2005). The 

second family of alpha amylase consists of proteins that localise to the 

cytoplasm due to the absence of any characterised targeting peptide. It 

is found in leaves of monocots and dicot plants as well as gymnosperms. 

This group of enzymes degrade cytosolic α-glucan or heteroglycan 

(Stanley et al., 2002; Stanley et al., 2005). Family three α-amylases have 

a chloroplast transit peptide with a large N-terminal domain in addition to 

the α-amylase domain (Stanley et al., 2002; Stanley et al., 2005). 

 

The semi-crystalline nature of starch necessitates that enzymes of starch 

degradation have some features for effective and strong binding to the 

starch molecule. This can be a specific substrate binding site in the 

catalytic domain of the enzyme or a carbohydrate binding module (CBM) 

or starch binding domain (SBD) (Rodriguez-Sanoja et al., 2005; 

Machovic and Janecek, 2006b; Chou et al., 2010). The CBMs are 

structural motifs that facilitate effective binding of the enzyme with the 

substrate (starch) leading to hydrolysis (Machovic and Janecek, 2006a; 

Glaring et al., 2011; Janecek et al., 2011). However, in the industry 

starch is gelatinised at high temperature such as 70ºC, thus previous 

research efforts were mostly focused on identifying heat stable alpha 

amylase (Azad et al., 2009; Prakash and Jaiswal, 2010).  

 

Other properties such as raw starch digesting abilities and specificity for 

low molecular weight oligosaccharides have not been explored 

extensively (Iefuji et al., 1996; Ueda et al., 2008). Microbes are able to 

breakdown starch at low temperatures indicating the presence of 

enzymes that digest crystalline starch (Nigam and Singh, 1995; Gupta et 

al., 2003). Similarly, ripening fruits are able to hydrolyse starch to soluble 

sugars at ambient temperatures; hence hydrolases may be expressed 
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that utilise crystalline starch as their substrate (Prasanna et al., 2007; 

Prinsi et al., 2011; Shiga et al., 2011). Thus, such plants may be 

considered as good models for the discovery of α-amylase with unique 

properties that may assist in low temperature starch degradation in 

industrial bioethanol production. 

 

Plantain is a climacteric fruit that consists of high amount of crystalline 

and resistant starch when unripe. However, ripening take place in eight 

stages during which the starch is progressively converted into soluble 

sugars (Zhang et al., 2005; Prasanna et al., 2007; Soares et al., 2011) . 

This conversion is thought to be mediated by different hydrolases. One 

of these enzymes is α-amylase which has an endo-glycosidic activity to 

attach an intact starch granule (Hill and Aprees, 1994; Prabha and 

Bhagyalakshmi, 1998; Prakash and Jaiswal, 2010). Here it is shown that 

ripening plantain express a family three type of α-amylase. The protein 

consists of two distinct domains; an N-terminal domain of 

uncharacterised function and a C-terminal catalytic (α-amylase) domain.  
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4.2 Results 

Extraction of plantain alpha amylase 

In order to identify novel α-amylases from plantains, ripening plantain 

extracts were tested for endo-amylase activity using blocked para-

nitrophenyl maltoheptaoside, a substrate that mimics starch. In the 

presence of excess glucoamylase paranitrophyl is released after 

cleavage by α-amylase.  

 

It was first necessary to establish a protein extraction protocol for water 

soluble proteins and test if enzyme activity can be measured so that 

subsequent fractions from chromatography runs can be tested for the 

presence of the desired hydrolase activity. This yielded significant alpha-

amylase activity obtained from plantain extracts, permitting further 

purification techniques to be developed. It was observed that the α-

amylase activity in plantains was highly dependent on the stage of 

ripening. Plantain ripening is a long process from a green plantain to an 

almost liquid fruit. Generally, higher activities and protein concentration 

were observed at later stages of ripening. However, analysis of ripe 

plantains still revealed enormous variation in enzyme activity that could 

not be correlated to a specific property. Therefore, a biochemical search 

for protein was hampered by the uncertainty of the yield in the starting 

material. Figure 4.1 shows the variability in α-amylase activity of different 

plantains. In addition, different extraction buffers were tested to compare 

the recovery of α-amylase activity from ripening plantains. The extract 

obtained using the standard low-pH alpha-amylase extraction buffer 

showed a greater enzyme activity compared to the pH neutral Hepes 

buffer (data not shown). 
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Figure 4.1. Plantains α-amylase activity profile. Soluble proteins were 
extracted from different ripened commercially available plantains that 
were fully ripened. Error bars indicate repetitions of the assays for 
individual plantains. 
  

Ammonium sulphate fractionation of alpha amylases leads to 

strong enrichment of the desired activity 

To enrich the extract for α-amylase and to separate proteins from soluble 

cell wall polysaccharides, proteins were subject to ammonium sulphate 

fractionation. The tests revealed that maximum α-amylase activity was 

recovered when precipitation was carried out at 30% ammonium 

sulphate on ice (Figure 4.2, panel A). Further increase in ammonium 

sulphate did not increase the recovered activity. This is encouraging as it 

could be used as a first step in protein purification prior to ion-exchange 

chromatography. Since most proteins precipitate at higher ammonium 

sulphate concentration, a 30% precipitate leads to a strong enrichment of 

the desired protein in a single step, and at the same time the volume is 

strongly reduced. 
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Figure 4.2. Enzyme activity and precipitation, the pattern of enzyme 
activity on fractionation of amylase at different percentages of 
ammonium sulphate are shown. Panel A shows the α-amylase activity 
obtained on fractionation of plantain α-amylase while panel B shows the 
behaviour of barley α-amylase on precipitation. Error bars indicate 
standard deviations. 
 

In order to compare ammonium sulphate precipitation pattern of plantain 

α-amylase and barley α-amylase, ammonium sulphate fractionation was 

performed with a potato extract from transgenic potato tubers expressing 

1000-fold higher recombinant barley α-amylase. Figure 4.2 (panel B) 

shows repetitions of the test revealed that maximum α-amylase activity 

was recovered at 43% ammonium sulphate fractionation on ice. Increase 

in ammonium sulphate concentration above 43% did not lead to increase 
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in the recovered enzyme activity. Therefore, a significant difference was 

observed in the physicochemical properties of the two enzymes, which 

are unlikely due to minor sequence differences in the catalytic domain of 

the enzyme.  

Dialysis of the fractionated fractions 

Having established that the activity in plantain extracts could be 

recovered after 30% ammonium sulphate precipitation, remaining salt in 

the pellet was removed by subsequent dialysis of the re-suspended 

protein pellet. This way protein stability and subsequent separation by 

ion-exchange chromatography could be improved. Therefore, the 

ammonium sulphate fraction was subject to dialysis against distilled 

water overnight. Alpha amylase activity and protein concentration were 

measured in the starting material, the re-suspended precipitate before 

and after dialysis. Good recovery and enrichment of enzyme activity after 

dialysis was observed, which is highly encouraging. Table 4.1 shows that 

the procedure yielded an approximately 20-fold enrichment of the 

enzyme relative to the total proteins. On the other hand, there was a 

significant loss of protein during dialysis, which could be due to the 

overall low protein concentration of the plantain extracts, as ripening 

plantains mostly contain polysaccharides. This could lead to non-specific 

loss of proteins binding to the dialysis membrane. 

Table 4.1 Enrichment of amylase activity (ΔOD/µl/min) 

 Blank Starting Precipitate Dialysed 

OD 0.111 0.412 1.6665 1.241 

Delta OD  0.301 1.5555 1.13 

α-Amylase activity  0.250833 1.29625 0.941667 

Protein concentration  0.131519 0.064612 0.025547 

Specific activity  1.907204 20.0622 36.86042 
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Purification of α-amylase by ion-exchange chromatography 

The next step was to test binding to an ion exchange column. First 

experiments revealed that at neutral pH, the measured α-amylase 

activity remained bound to Q-sepharose, suggesting that the enzyme is 

negatively charged under these conditions. Subsequent elution with a 

salt gradient revealed conflicting results. In one experiment, a defined α-

amylase activity peak was eluted whilst in subsequent repetitions the 

protein bound to the column but failed to elute. At low pH (5.5), the α-

amylase failed to bind to either Q-sepharose or S-sepharose, suggesting 

that it was not charged. Several attempts were made to purify the 

enzyme using the ion-exchange chromatography but did not yield the 

desired result. 

 

In order to test the binding of plantain alpha amylase to Q-sepharose; a 

sepharose binding assay was used where plantain extract with good α-

amylase activity was mixed with the sepharose slurry and spun for few 

hours. It was centrifuged and α-amylase activity of the supernatant was 

measured. As shown in Table 4.2, significant enzyme activity was 

recovered in the supernatant. This indicates that plantain α-amylase 

does not bind un-specifically to sepharose and thus earlier observed loss 

of activity on the column may be due to low protein concentration and 

unspecific protein binding. Higher protein concentrations should be used 

to overcome this problem, but this was not possible due to large 

quantities of glutinous pectins. 

Table 4.2 Sepharose binding experiment (ΔOD/µl/min) 

 Blank Supernatant 

OD 0.099 0.375 

Delta OD  0.276 

α-Amylase 
activity  0.23 

Protein 
concentration  0.014599 

Specific activity  15.75443 
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Cloning strategy of plantain cDNA coding for amylases 

Sequence conservation and design of degenerate primers 

Due to difficulties in purifying the α-amylase from plantains, a different 

approach was envisaged based on sequence homology between α-

amylases in the plant kingdom. Gene sequences of α-amylases from 

plantains have not been described in the literature but the high degree of 

sequence conservation between α-amylases from different plant species 

provided a cloning strategy based on degenerate primers. Cloning of 

plantain c-DNA encoding α-amylases was therefore attempted, although 

this technique does not guarantee enzymatic activity. Figure 4.3 shows 

an alignment of secreted α-amylases from seven plant species, 

displaying various regions of high sequence homology suitable for the 

design of degenerate primers.  
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Figure 4.3. Sequence conservation of plant α-amylases. Panel A shows 
the alignment of amino acid sequences of α-amylases from seven plant 
species. Abbreviations, Hv= Hordeum vulgare, Vm= Vigna mungo, Ms= 
Musa specie, Gm= Glycine max, In= Ipomea nil, Pv= Phaseolis vulgaris, 
Sb= Sorghum bicolour. The alignment shows no conservation in the 
signal peptide, but some areas with good sequence conservation were 
observed. The boxes indicate the region used in the design of 
degenerate primer and arrows indicate the orientation. Panel B shows 
the sequence of the two oligonucleotide primers, AmyS1 is the sense 
and amyAS1 is the antisense that were used for PCR amplification of the 
plantain cDNA. 

Optimisation of mRNA extraction from starch tissues 

In order to amplify cDNA with degenerate primers (Figure 4.3 and 4.4), 

high quality mRNA preparations are needed for efficient cDNA synthesis 

and subsequent PCR reactions with high number of cycles typical for 

degenerate primers. The first attempts using the standard protocols 

yielded low amounts of RNA of poor quality (Table 4.3), which may be 

attributed to the high amount of polysaccharides and polyphenols in the 

plantain fruit. Polysaccharide, polyphenols, and protein contamination 

affects the amount and quality of RNA, which can be deduced from 

A260/A230 ratios for polysaccharides and A260/A280 ratios for proteins. For 

this reason, alternative protocols were tested (see Table 4.3) in order to 

reduce contamination by polysaccharides, polyphenols and proteins. The 

method of Asif et al. (2000) resulted in the best yield and quality RNA 

from the plantains. Concentrations up to 2.76 µg/µl (Table 4.3) were 

suitable for subsequent cDNA synthesis reactions. 
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Table 4.3 Properties of RNA extracts 

Methods 

Absorbance 

260/230 

Absorbance 

260/280 

Concentration 

(ng/µl) 

Birnbom, 1988 0.280 1.34 109.8 

Suzuki et al., 2004 0.890 1.39 303.7 

Suzuki et al., 2004 0.923 1.41 217.0 

Asif et al., 2000 1.613 2.16 365.0 

Asif et al., 2000 2.000 2.02 2760.0 

Cloning with degenerate primers reveals a novel α-amylase 

sequence not reported before 

To identify α-amylases from plantains, complementary DNA was 

synthesised with reverse transcriptase from 5.5 µg of high quality 

plantain RNA using oligo (dT)18 as primer. Dilutions of the synthesized 

cDNA were amplified using a pair of degenerate primers amyS1 and AS1 

(Figure 4.3B) designed based on conserved domain homology between 

alpha amylases from different plants species (Figure 4.3). Forty five 

cycles of amplifications were used to ensure efficient amplification. A 

PCR amplification product of approximately 900 base pairs (Figure 4.4B) 

was obtained consistent with the known distance of the two conserved 

regions in other α-amylases (Figure 4.3). The result was encouraging 

and could indicate that ripening plantains contain mRNA that encodes 

alpha amylase, a hypothesis that could be tested by sequencing the 

PCR product. 

 

In order to sequence the amplified product, the PCR product was first gel 

purified (Figure 4.4C), eluted in TE, tested on gel again (Figure 4.4D) 

and sequenced with the two degenerate primers from both ends (Figure 

4.4A). Good quality sequences were obtained with the sense primer (N-

terminus) and antisense primer (C-terminus). The sequences obtained 

were informative to predict possible open reading frames. The 
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sequences from the two termini did not overlap because the reactions 

were short. This could be due to the use of degenerate primers as 

sequencing primers using standard commercial routine as well as 

insufficient template after gel-purification.  

 

 

Figure 4.4. PCR amplification of plantain cDNA. Panel A shows 
degenerate primers designed using the conserved domain between α-
amylases (Supplemental Figure 1) represented using IUPAC codes; 
AmyS1 is the sense primer and AmyAS1 is the antisense primer. Panel 
B shows the PCR amplified product using AmyS1 and AmyAS1 and 
different dilutions of template, arrow shows the expected product. Panel 
C is preparative gel showing the amplified product and panel D shows 
the gel purified DNA eluted in TE suitable for sequencing. 
 

To determine the missing sequences, specific primers (PlanS1 and 

PlanAS1) were designed based on the sequences obtained with 

degenerate primers. The gel purified product (Figure 4.4D) was 

sequenced again and the sequences were identified with good overlap. 

The resulting nucleotide sequence contig is shown in Figure 4.5. The 

sequences were used to predict the open reading frame and the 

deduced amino acid sequence was determined using the Bio-edit 

programme. 
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Figure 4.5. Nucleic acid sequence of the initial product. The sequence 
obtained from the amplified PCR product (Figure 4D) is shown. The 
sequence was from reactions using both degenerate and sense primers. 
Both the N-terminal and C-terminal sequence overlapped with no 
missing sequence in between. 

Identification of Chloroplast α-amylase from plantains 

In order to establish the type of protein encoded by the PCR 

amplification product, the open reading frames were subject to a BLAST 

search at NCBI. The amplified sequence showed the highest homology 

with α-amylase from Ricinus communis (Figure 4.6, panel A). Similar 

high homologies were observed for α-amylase of Vitis vinifera, Malus 

domestica and Arabidopsis thaliana. Interestingly, the gene sequences 

with the highest homology to the amplified sequence do not encode 

secreted α-amylases but instead encode a new type of ill-defined type 3 

chloroplast α-amylase. These proteins are much larger than the type of 

α-amylase shown in Figure 4.3 and contain a large domain in between 

the chloroplast transit peptide and the α-amylase homology domain 

(Figure 4.6, panel B). In contrast, only low sequence homologies to 

secreted Hvamy2 and Atamy1; and cytosolic Atamy2 and Mdamy8 

(Figures 4.6, panels A and B) were observed. In conclusion, the obtained 

PCR product (Figure 4.4) of the amplified cDNA is closer related to the 

type 3 α-amylases than any other including the barley clone used in the 

host laboratory. 
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Figure 4.6. Comparison of putative plantain α-amylase with known α-
amylases. Panel A shows the clustalw alignment of amino acid sequence 
of partial plantain amylase clone with α-amylases from the three families 
(1, 2 and 3). Family 1: Hvamy2 (H. vulgare) and Atamy1 (Arabidopsis); 
family 2: Atamy2 and Mdamy8 (apple); and family 3: RcamyUD (R. 
communis), VvamyUD (V. vinifera), Atamy3 and Mdamy10. Panel B 
shows a pictorial representation of amylases from the three domains, 
TP=transit peptide, SP=signal peptide, the dotted lines represents the 
region of homology of the amylases which is also the region of the 
amplified sequence. 

Rapid amplification of cDNA ends (3'RACE) 

In order to obtain the C-terminal end of the plantain α-amylase clone, a 

rapid amplification of the cDNA end (3’RACE) was performed. A specific 

forward primer (Plans1) and a 3'RACE (reverse) primer (Figure 3.7A) 

were used to amplify the total plantain cDNA. A PCR amplified product of 

the expected size (approximately 1500bp) was obtained (4.7B), gel 

purified and tested on a gel (C). In order to establish further the validity of 

the gel purified product, a semi nested PCR amplification was performed 

using PlanS1 as forward and an internal reverse primers, PlanAS4 

(Figure 4.7C) on the dilution series of the product shown in panel C. 

Products of the expected sizes (> 700bp) were obtained with the dilution 

series of the template (D). This again establishes validity of the initial 

RACE product. The 3'RACE product (panel B and C) was sequenced 

with specific sense primers, PlanS1, PlanS2, PlanS4 and PlanEND. 

Good sequences were obtained that read beyond the stop codon and 

confirmed that a clone corresponding to an α-amylase was obtained. 
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Figure 4.7. The products of 3’ amplification of rapid cDNA ends, the 
amplified products of C-terminal end of the plantain α-amylase are 
shown. Panel A shows the primers used for PCR. Panel B shows the 
amplified product of PlanS1 and a 3’RACE primer, 1, 2 3 and 4 are all 
replica of the cDNA amplified product. The pooled and gel purified 
product is shown in panel C. Panel D illustrates  the product of nested 
PCR amplified of dilution of purified product shown in panel B. UD 
represents undiluted, 10-1, 10-2 and 10-3 represent the other dilution 
series. 

The unknown domain in family 3 amylase is conserved 

In order to obtain experimental evidence showing that the amplified 

plantain sequence encodes a type 3 α-amylase, it was necessary to 

identify conserved region in the N-terminal unknown domain of this class 

for the design of degenerate primers which will be used for PCR 

amplification. Protein sequences corresponding to the 500 amino acids 

from six different type 3 α-amylases were aligned using clustalW2 at EBI.  

 

Figure 4.8 reveals the degree of conservation in the N-terminal unknown 

domain of family 3 proteins. The domain starts after the transit peptide 

and ends with a linker region (GTGSG). The linker connects the 

unknown domain to the rest part of the protein which is the amylase 

domain. As illustrated in Figure 4.8 significant conservation between the 

different proteins in the additional domain was observed. However there 

are some regions in the domain that are not conserved across the group. 

This is not uncommon as it is often the case in large family of proteins. 
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Consequently, several degenerate primers were designed using areas 

with high sequence conservation (Figure 4.8). 

 

 

 
Figure 4.8. Conservation of the unknown domain in family three α-
amylases, an alignment of the some of the family three α-amylases is 
shown. Plans3, 6, 7 and 8 are annotated degenerate primers that were 
used for amplification of the plantain cDNA to obtain the large or used as 
sequencing primers. Areas in grey indicate amino acids that are 
conserved in the family three proteins. 
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Evidence that ripening plantains express a type 3 α-amylase 

In order to maximise the chance for success, the most N-terminal 

degenerate primer, PlanS6 (Fig 4.9, panel A) was used in conjunction 

with a specific antisense primer, PlanAS4 designed from the amplified 

sequence (Figures 4.5). This would allow further verification by nested 

PCR using more distal degenerate primers (PlanS3, S7, and S8, Fig. 

4.8) or more proximal antisense primers. If the hypothesis is correct, it 

should be possible to amplify a fragment coding for a partial unknown 

domain fused to an amylase catalytic domain with an overall size 

predicted from the available sequence homology. A PCR amplified 

product of 1.9 kilo base pairs was obtained as shown in Figure 4.9 panel 

B, a size expected for a type 3 amylase with the chosen primer pair. 

 

    

Figure 4.9. PCR amplified product of PlanS6 and AS4 showing the PCR 
amplified products using specific primers. Panel A shows the sequence 
of primers that were used for PCR. Panel B shows cDNA series 
amplified using PlanS6 and AS4. Panel C shows products of Semi-
Nested PCR dilution of the cDNA amplified (4B) using PlanS6 and AS5. 
 

To validate this, a semi nested PCR was necessary; the products from 

the PlanS6 and AS4 reaction (Fig. 4.9B) were diluted and amplified using 

PlanS6 as sense primer and a more internal antisense primer AS5. PCR 

amplified products of the expected size (1.8 Kb) were obtained (Figure 
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4.9, panel C). The products were gel purified and tested on a gel. A 

nested PCR was again performed on the purified product (data not 

shown) using the primer pair PlanS3 (Fig. 4.8) and PlanAS5. The gel 

purified product was then sequenced using the primer pair, PlanS6 and 

AS5. Sequences with good reads were obtained, however a small region 

between the unknown domain and amylase domain was missing.  

 

In order to identify the missing sequence, two specific primers PlanUDS 

and Upas1 were designed and used to amplify the unsequenced central 

region of the new clone. Figure 4.10 shows a PCR amplification of the 

small missing part, which was gel purified and sequenced. The obtained 

sequences had 100% homology with the overlapping region from the first 

PCR product (Figures 4.4 and 4.5) and encoded an α-amylase catalytic 

domain in frame with an N-terminal open reading frame that was clearly 

related to the unknown domain of type 3 amylases. Therefore, the partial 

unknown domain clone together with the full amylase domain was 

cloned. 

 

 

Figure 4.10. PCR amplified product of PlanUDS and Upas1. Panel A 
shows a cDNA series amplified using PlanS6 and AS4. Panel B shows 
the gel purified product obtained from panel A. 

Assembly of the plantain amylase sequence 

To assemble and annotate the α-amylase sequence, the nucleotide 

sequence obtained from various PCR and sequencing reactions shown 

in Figures 4.4/5; 4.7; 4.9 and 4.10 were assembled together. Good 

overlaps were obtained between the different sequence contigs that 

A B 
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were assembled. The nucleotide sequence of the partial plantain clone is 

shown in Figure 4.11A. The sequence excludes part of the protein that is 

yet to be cloned but extends at the C-terminus up to the stop codon. 

Similarly the amino acid sequence of the putative plantain α-amylase is 

shown in Figure 4.11B. This sequence shows the full amylase domain at 

the C-terminus but it does not include the missing region in the unknown 

domain and transit peptide (see Fig. 4.6). 
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Figure 4.11. Full sequence of the plantain α-amylase.  Panel A shows 
the nucleotide sequence up to the stop codon. Panel B shows the 
deduced amino acid from the longest open reading frame translated from 
the nucleic acid sequence in panel A. The amino acids in red (GTGSG) 
indicate the linker between the unknown and amylase (catalytic) domains 
of the protein. The underlined region indicate the catalytic domain 

Phylogenetic relationship between plant α-amylases 

To fully verify the type of α-amylase cloned from the plantains (Figure 

4.11), α-amylase sequence from the three different families were 

retrieved from the database. The amino acid sequence of the partial 

plantain clone was aligned with α-amylases from families one, two and 

three respectively. The result of the alignment is illustrated in Figure 4.12 

below. The plantain α-amylase again showed closer homologies to α-

amylases from V. vinifera and R. communis which belong to the family 

three α-amylase. In contrast lower sequence homologies were shown by 

the plantain α-amylase to α-amylases from families two and three 

respectively (Figure 4.12). This is in agreement with the result of the 

earlier comparison (Figure 4.6) done with the short putative amylase. 

This strongly suggests that the cloned α-amylase from plantain is of the 

family three type. In addition, some information on the missing part of the 

sequence was obtained. The alignment indicated that the missing 

sequence at the N-terminus of the plantain amylase is approximately 150 

amino acids in length (Figure 4.12). Thus, a rapid amplification at the 5’ 

(or N) terminal end has to be performed to identify the missing part. 
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In order to further establish and confirm the relationship between the 

partial plantain α-amylase clone identified (Figure 4.12) and α-amylases 

from different plant species; rather than the complete plantain sequence, 

the sequences of the amylase domain alone and that of α-amylases from 

the three different families were aligned together using the clustalW2. 

The alignment was used to generate a phylogenetic tree using the 

MEGA5 programme. Figure 4.13 shows a dendogram describing the 

three families of α-amylase found in plants. The secreted alpha amylase 

from barley and other plant species contains a signal peptide for the 

translocation to endoplasmic reticulum and the α-amylase domain 

(Figures 4.6 (B) and 4.13). The cytosolic proteins (family two) have no 

targeting peptide. The third family is the chloroplast non-secreted α-

amylase that contains an unusual domain in between the transit peptide 

and the α-amylase domain (Figures, 4.6(B) and 4.13). The phylogenetic 

analysis also revealed that the plantain α-amylase is of the chloroplast 

type which is in agreement with the results of alignments shown in 

Figures 4.6, and 4.12. 
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Figure 4.12. An alignment of the partial (full length) plantain clone and α-
amylases from the three families. Protein sequences were obtained 
using publicly available data (http://www.ncbi.nlm.nih.gov/), aligned using 
the BLOSUM62 algorithm with the ClustalW alignment tool 
(http://www.ebi.ac.uk/Tools/msa/clustalw2/). Family I is represented by 
Hvamy2, family II represented by Atamy2 and family three represented 
by VvamyUD, RcamyUD, and Atamy3. 

Plantainamy - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
VvamyUD M S T V C I E P L F Q R C R R E N P - - R F R L K S L A T K P S S L N - - - - Y S P K P L R - N G G S F C N F K S - - - - L H G V R P L G A
Rcamy M S T L T V E P L L R F S G R E K S - - L P I G S R K I L K P S S L N - - - - F S K K L L L S N G S S F C N F K R S P P L S H T V R - - A S
Atamy3 M S T V P I E S L L H H S H L R D N S K I Y R G T R S F F I P C S L N L P S H F T S N K L L H S I R T S V G A S S K H R R S V A I R - - - A
Hvamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Atamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Plantainamy - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
VvamyUD A S I D T A L F E T - - - T D V F F K E T F I L K R T E V V E G K I S I R L D - P G K N G E N W Q L T V G C N I P G S W V L H W G V S Y I D
Rcamy S T T D T A L I E T F K S A D V L F K E T F S L S R T E T I E G K I F V R L D K E E K D Q Q R W Q L S V G C S L P G K W I L H W G V S Y V G
Atamy3 S S S D T A V V E T A Q S D D V I F K E N F P V Q R I E K A Q G K I Y V R L K Q V K E K - - N W E L S V G S S I P G K W I L H W G V S Y V G
Hvamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Atamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Plantainamy - - - - - - - - - - - - - - - - - - - - - - - - - - - - P L K R L S S Q S E R Q A L H E L Q I E F D S N T P I A A I H F V L K E E E T G AW
VvamyUD D V G S E W D Q P P L E M R P P G S V A I K D Y A I E T P L K K L S S A S E R D T L H E V T I D F S P N S E I A A I R F V L K D E D Y G AW
Rcamy D V G S E W D Q P P K N M R P R G S I S I K D Y A I E T P L E K S - - - S E A D M F Y E V K I D L D P N S S I A A I N F V L K D E E T G AW
Atamy3 D T G S E W D Q P P E D M R P P G S I A I K D Y A I E T P L K K L - - - S E G D S F F E V A I N L N L E S S V A A L N F V L K D E E T G AW
Hvamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Atamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Plantainamy F Q H K G R D F R I S F T D Y - F E V A N S V A G N Q G L S I W P G G F D Q I S S L L L K A E E S T S K K E D P D D E D G N V V K Q N R C I
VvamyUD Y Q H R G R D F E V L L M D Y L C E G T N T V G A K E G F G I W P G P L G Q L S N M L L K A E G S H P K G Q D S S S V S G D L - - - - - - I
Rcamy Y Q H K G R D F K V P L V D Y L L E G G N V V G A K R G F S I W P G S L - - L S N M L L K T E T L P S K D E D N N S E T K D V K Q D S G Q L
Atamy3 Y Q H K G R D F K V P L V D D V P D N G N L I G A K K G F - - - - G A I G Q L S N I P L K Q D E S S A E V K K K S K S S S D S T K E R K G L
Hvamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Atamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Plantainamy A P I Y K E F P I L K E E F V P N H M T V S V R S S D K T D K N I V Q F D T D L P G D V V I H W G V C K D D G R K W V I P S T P H P P A T K
VvamyUD T G F Y E E H S I V K E V P V D N S V N V S V K K C P E T A R N L L Y L E T D L I G D V V V H W G V C R D D S K T W E I P A A P H P P E T K
Rcamy K G F Y E E Q P I T K Q V T I Q N S A T V S V T K C P K T A K Y L L Y L E T D L P G E V V L H W G V C R D D A K N W E I P S S P H P P E T T
Atamy3 Q E F Y E E M P I S K R V A D D N S V S V T A R K C S E T S K N I V S I E T D L P G D V T V H W G V C K N G S K K W E I P S E P Y P E D T S
Hvamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Atamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Plantainamy I F R H K A L Q T L L Q P K P D G L G S W G L F L V D Q G T S G V V F V L K L N E Y T W L N N N G T D F F I P I G S V S S T T A E I G S D D
VvamyUD L F K K K A L R T L L Q S K E D G H G S W G L F T L D E E L E G F L F V L K L N E N T W L R C M G N D F Y I P L L G S S S L P A Q S R Q G -
Rcamy V F K N K A L Q T M L Q P N D G G N G C S G L F S L D E E F A G F L F V L K L N E G T W L K C K G N D F Y V P L S T S S S L P T Q P G Q G -
Atamy3 L F K N K A L R T R L Q R K D D G N G S F G L F S L D G N L E G - - - - - - - - - - - - - - - - G E D F Y V P F L T S S S S L V G T E A T -
Hvamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Atamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Plantainamy I V H E Q Q A G T E I H D V R N S L S P N N S Y P L Q N K S L E A S D P - - Q N I N S L P M K P Q G P E E L I E A V A Y T D E I I K E I R H
VvamyUD - - - - - - - - - - - - - - - - - - - - - - - - - - Q S E GW G K S E R V V S V P T E I S G K T A G E N E I V S D A A Y T D G I I N D I R N
Rcamy - - - - - - - - - - - - - - - - - - - - - - - - - - Q S E G V L A S - - - - - - - - - - - G K D A E G N E E V S R T A Y T D E I I D E I R N
Atamy3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - E A A Q L S - - - - - - - - - - - K H T P K T D K E V S A S G F T D E I I T E I R N
Hvamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M A N K H L S L S L F L
Atamy2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - M G Y Y N N V F D E C N -

Plantainamy L V T D I S S E K G K R A K S K E A Q E N I L Q E I E K L A A E A Y S I F R I S I P G F V E L A S D T E L - - L K P A V K L S S G T G S G Y
VvamyUD L V S D I S S E K R Q K T K T K Q A Q E S I L Q E I E K L A A E A Y S I F R S S I P T F S E D A V L E T - - - L K P P E K L T S G T G S G F
Rcamy L V N G I S S E K V R Q T K T K E A Q E S I L Q E I E K L A A E A Y S I F R S S I P T F T E E S V L E S E V E K A P P A K I C S G T G T G H
Atamy3 L A I D I H S H K N Q K T N V K E V Q E N I L Q E I E K L A A E A Y S I F R S T T P T F S E E S I L A E A E - - K P D I K I S S G T G S G F
Hvamy2 V L L G L S A S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - L A S G
Atamy2 - - - - - - - - - - - - - - - - - D Q T D I G R V I R - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D G R

Plantainamy E I L C Q G F N W E S H K S G R - W Y S E L S D K A K E L S S L G F T V I W L P P P T E S V S P E G Y M P K D L Y N L N - S R Y G S L E E L
VvamyUD E I L C Q G F N W E S N K S G R - W Y M E L S K K V A E L S S L G F T V V W L P P P T A S V S P E G Y M P T D L Y N L N - S R Y G S S D E L
Rcamy E I L L Q G F N W E S N K S G R - W H M E L K E K A A E I S S L G F T V I W L P P P T E S V S P E G Y M P K D L Y N L N - S R Y G S I D E L
Atamy3 E I L C Q G F N W E S H K S G R - W Y L E L Q E K A D E L A S L G F T V L W L P P P T E S V S P E G Y M P K D L Y N L N - S R Y G T I D E L
Hvamy2 Q V L F Q G F N W E S W K H N G GW Y N F L M G K V D D I A A A G I T H V W L P P A S Q S V A E Q G Y M P G R L Y D L D A S K Y G N K A Q L
Atamy2 E V I L Q A Y N W E S H K Y D - - WW R N L D G K V P D I A K S G F T S AW L P P P S Q S L A P E G Y L P Q D L Y S L N - S A Y G S E H L L

Plantainamy K D L V N S F H E V G I K V L G D A V L N H R C A H Y Q N K N G I W N V F G G R - - - - - L N W D D R A I V A D D P - H F Q G R G N K S S G
VvamyUD K V L V K S F H E V G V K V L G D V V L N H R C A Q Y Q N Q N G I W N I F G G R - - - - - L N W D D R A I V A D D P - H F Q G R G N K S S G
Rcamy K D L V K S L H R V G L K V L G D A V L N H R C A H F Q N Q N G V W N I F G G R - - - - - L N W D D R A I V A D D P - H F Q G R G S K S S G
Atamy3 K D T V R K F H K V G I K V L G D A V L N H R C A H F K N Q N G V W N L F G G R - - - - - L N W D D R A V V A D D P - H F Q G R G N K S S G
Hvamy2 K S L I G A L H G K G V K A I A D I V I N H R T A E H K D G R G I Y C I F E G G T P D A R L D W G P H M I C R D D R P Y A D G T G N P D T G
Atamy2 K S L L R K M K Q Y K V R A M A D I V I N H R V G T T R G H G G M Y N R Y D G I S - - - - L P W D E H A V T S C T - - - - G G L G N R S T G

Plantainamy D N F H A A P N I D H S Q D F V R R D L K E W L C W L R K E V G Y D GW R L D F V R G F W G G Y V K D Y M E A T E P Y F A V G E Y W D S L S
VvamyUD D N F H A A P N I D H S Q D F V R E D I K E W L C W L R K E I G Y D GW R L D F V R G F W G G Y V K D Y M D A S E P Y F A V G E Y W D S L S
Rcamy D N F H A A P N I D H S Q D F V R Q D L K E W L C W L R D E I G Y N GW R L D F V R G F W G G Y V K D Y M E A T E P Y F A V G E Y W D S L S
Atamy3 D N F H A A P N I D H S Q D F V R K D I K E W L C W M M E E V G Y D GW R L D F V R G F W G G Y V K D Y M D A S K P Y F A V G E Y W D S L S
Hvamy2 A D F G A A P D I D H L N L R V Q K E L V E W L N W L K A D I G F D GW R F D F A K G Y S A D V A K I Y I D R S E P S F A V A E I W T S L A
Atamy2 D N F N G V P N V D H T Q H F V R K D I I GW L R W L R N T V G F Q D F R F D F A R G Y S A N Y V K E Y I G A A K P L F S V G E C W D S C N

Plantainamy Y T - Y G D M D H N Q D A H R Q R I V D W I N A T N - - G T A G A F D V T T K G I L H S A L E K C E Y W R L S D Q N G K P P G V V GWW A S
VvamyUD Y T - Y G E M D H N Q D A H R Q R I I D W I N A T N - - G A A G A F D V T T K G I L H S A L G R C E Y W R L S D Q K R K P P G V V GWW P S
Rcamy Y T - Y G E M D H N Q D A H R Q R I I D W I N A T N - - G T A G A F D V T T K G I L H S A L D R C E Y W R L S D Q K G K P P G V V GWW P S
Atamy3 Y T - Y G E M D Y N Q D A H R Q R I V D W I N A T S - - G A T G A F D V T T K G I L H T A L Q K C E Y W R L S D P K G K P P G V V GWW P S
Hvamy2 Y G G D G K P N L N Q D Q H R Q E L V N W V D K V G G K G P A T T F D F T T K G I L N V A V E G - E L W R L R G T D G K A P G M I GWW P A
Atamy2 Y N - G H G L D Y N Q D S H R Q R I I S W I D A T G - - Q I S A A F D F T T K G I L Q E A V K G - Q Y W R L C D A Q G K P P G V M GWW P S

Plantainamy R A V T F I E N H D T G S T Q G H W R F P S G K E M Q G Y A Y I L T H P G T P A V F Y D H I F - - - S H Y Q Q E I S R L I S V R N E N K I H
VvamyUD R A V T F I E N H D T G S T Q G H W R F P G G K E M Q G Y A Y I L T H P G T P A V F F D H L F - - - S H Y R S E I A S L I S L R N R N E I H
Rcamy R A V T F I E N H D T G S T Q G H W R F P N G K E M Q G Y A Y I L T H P G T P T V F Y D H I F - - - S H Y R S E I A S L I S L R K R N E I H
Atamy3 R A V T F I E N H D T G S T Q G H W R F P E G K E M Q G Y A Y I L T H P G T P A V F F D H I F - - - S D Y H P E I A A L L S L R N R Q K L H
Hvamy2 K A V T F V D N H D T G S T Q H MW P F P S D R V M Q G Y A Y I L T H P G T P C I F Y D H F F D - - W G L K E E I D R L V S V R T R H G I H
Atamy2 R A V T F L D N H D T G S T Q A H W P F P S H H V M E G Y A Y I L T H P G I P C V F Y D H F Y D W G S S I H D Q I V K L I D I R R R Q D I H

Plantainamy C R S T V K I V K A E R D V Y A A E I D G K L A V K I G P G H Y E P P D G P T K W V V A A E G R D Y K V W E T S
VvamyUD C R S T I Q I T M A E R D V Y A A I I D E K V A M K I G P G Y Y E P P K G Q Q R W T L A L E G K D Y K I W E T S
Rcamy C R S S V K I T K A E R D V Y A A I I E E K V A M K I G P G H Y E P P S G K N - W S M A I E G K D Y K V W E A S
Atamy3 C R S E V N I D K S E R D V Y A A I I D D K V A M K I G P G H Y E P P N G S K N W S V A V E G R D Y K V W E T S
Hvamy2 N E S K L Q I I E A D A D L Y L A E I D G K V I V K L G P R Y D V G N L I P G G F K V A A H G N D Y A V W E K I
Atamy2 S R S T V R V L K A E S N L Y A A I V G E K I C M K L G D G S W C P S - - G R D W T L A T S G H R Y A V W H K -

http://www.ebi.ac.uk/Tools/msa/clustalw2/
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Figure 4.13. Phylogenetic tree of plant alpha amylases illustrating an 
evolutionary relationship between plant α-amylases using only the 
catalytic domain for comparison. Protein sequences were obtained using 
publicly available data (http://www.ncbi.nlm.nih.gov/), aligned using the 
BLOSUM62 algorithm with the ClustalW alignment tool 
(http://www.ebi.ac.uk/Tools/msa/clustalw2/). The aligned sequences 
were assembled into a phylogenetic tree using the boot-strapped 
neighbor-joining algorithm (Saitou and Nei, 1987) and the Jones, Taylor, 
and Thornton amino acid substitution model (Jones et al., 1992) in 
MEGA 5.05 with 1000 trials (http://www.megasoftware.net/) (Tamura et 
al., 2011). Bootstrap values are indicated as percentages of the 1000 
trials at their respective node. Abbreviatios: Hv (H. vulgare), In (I. nil), Pv 
(P. vulgaris), Gm (G. max), Vm (V. mungoculata), Sb (S. bicolor), Md (M. 
domestica), Ma (M. acuminata), Me (M. esculanta), At (A. thaliana), Vv 

http://www.ebi.ac.uk/Tools/msa/clustalw2/
http://www.megasoftware.net/
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(V. vinifera), St (S. tuberasum), Ot (O. taurii), Ac (A. chinensis), Rc and 
(R. communis). 1, 2 and 3 represent the three α-amylase families. SP 
represents signal peptide, TP represents transit peptide. All the three 
families share an amylase domain but differ in their N-terminus. PlanS6 
and PlanA5 are degenerate and specific primes respectively used to 
clone the partial plantain clone with the unknown and catalytic domains. 
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4.3 Discussion 

Biochemical strategy 

Variance in α-amylase expression 

Significant α-amylase activity was measured in different plantains, with 

higher activities measured from fully ripened plantains. High activity of α-

amylase which is one of the principal enzymes in starch degradation has 

been reported in ripening fruits (Junior et al., 2006; Prasanna et al., 

2007; Fioravante et al., 2008; Gonicalves Peroni et al., 2008; Prinsi et 

al., 2011). Higher α-amylase activity in plantains at later stages of 

ripening may suggest the role of the enzyme in starch hydrolysis during 

ripening (Shiga et al., 2011; Soares et al., 2011). Hence, ripening 

plantains may be good source of α-amylase. However, there was a 

strong variation in the specific activity from plantain to plantain. This 

means that routine purification is not trivial and always requires pilot tests 

to choose the best plantains. This may also have repercussions 

regarding the molecular approach because variation in mRNA 

populations could be equally high. Future work will have to address this 

variability for both approaches. 

 

The biochemical strategy involves extraction of α-amylase from the 

ripening plantains followed by a variety of purification steps aimed at 

increasing the specific activity. Ammonium sulphate fractionation was 

identified as the first step, leading to a strong increase in the specific 

activity when combined with dialysis. The dialysed material was then 

subject to ion-exchange chromatography, but problems arose due to low 

protein levels and loss of enzyme activity in the eluate.  

Ammonium sulphate fractionation 

In contrast to plantain α-amylase that showed maximum recovery of 

activity at 30% (NH4)2SO4, barley α-amylase showed different 

precipitation pattern with saturation at 43% (NH4)2SO4 concentration. 
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The pattern showed by plantain α-amylase is in close agreement to the 

precipitation of α-amylase Eisenia foetida of 35% (NH4)2SO4 (Ueda et al., 

2008). Ammonium sulphate fractionations of α-amylases have been 

achieved at 35-65% concentration for α-amylase from cowpea, millet, 

soybean, safflower and azuki bean with a high recovery of enzyme 

activity has also been reported (Bastos et al., 1994; Mar et al., 2003; 

Kumari et al., 2010). These differences can be attributed to lots of 

factors, among which are the size of the proteins, stability at high salt 

concentration and pI (Ashraf et al., 2008; Azad et al., 2009; Lin et al., 

2009). Since most proteins need more than 30% ammonium sulphate to 

precipitate, fractionation of α-amylase at this concentration leads to 

higher specific activity thus enrichment of enzyme activity. 

 

Unfortunately, subsequent purifications of the dialysed extract by ion 

exchange chromatography were inconsistent and irreproducible. First 

experiments revealed that at neutral pH, the measured α-amylase 

activity remained bound to Q-sepharose, suggesting that the enzyme is 

negatively charged under these conditions. Subsequent elution with a 

salt gradient revealed conflicting results. In one experiment, a defined α-

amylase activity peak was eluted whilst in subsequent repetitions the 

protein bound to the column but failed to elute. At low pH (5.5), the α-

amylase failed to bind to either Q-sepharose or S-sepharose, suggesting 

that it was not charged. 

 

The main problem with the purification strategy may arise from the fact 

that plantain extracts exhibit extremely low protein concentrations, even 

when high tissue to buffer ratios was used. This may explain loss of 

material by unspecific binding to dialysis membranes and ion-exchange 

columns. Another factor is the high viscosity of the extract due to cell wall 

polymers that may interfere. These include high molecular weight 

polysaccharides that may bind to the column, and interfere with the 

binding of the protein. Most of these would be lost during the initial 

ammonium sulphate precipitation, but further steps may have to be taken 
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to lower the viscosity of the re-suspended pellet prior to ion exchange 

chromatography. 

Molecular strategy 

In parallel to the biochemical approach, a gene cloning strategy based 

on degenerate primers corresponding to conserved regions in plant α-

amylase catalytic region was attempted. The strategy was based on the 

assumption that conserved domains in known plant α-amylases are also 

present in plantain α-amylases. The approach has led to the discovery of 

a type 3 class of non-secreted α-amylases in plantains. However, the 

approach has also been faced by specific challenges that require further 

work. 

Optimisation of RNA extraction from ripening plantain 

In order to obtain good quality cDNA for PCR amplification, a RNA 

extraction protocol needed to be established for the plantain. 

Conventional RNA extraction strategies from tissues use several 

chemicals and steps to remove contaminating substances such as 

proteins, polysaccharides, lipids (Birnboim, 1988; Suzuki et al., 2004). 

However, extraction of RNA from plantains was not straightforward due 

to the high abundance of polyphenols and polysaccharides such as 

starch and pectin. The polysaccharides may possess similar 

physicochemical features to RNA; and they can also co-precipitate thus 

contaminating the RNA. Initial methods tested led to low yield and low 

quality RNA partly due to the reason mentioned earlier (Birnboim, 1988; 

Asif et al., 2000; Suzuki et al., 2004). Perhaps, a vigorous protocol that 

has many additional steps compared to earlier RNA extraction method 

was used. Example of such step is the use of 0.1 volume of ethanol and 

1/30 volumes of 3M Na acetate that kept RNA in solution and 

precipitates the polysaccharide. An addition of Na acetate to a final 

concentration of 0.3M and 3 volumes of ethanol precipitates the RNA. 

The use of 20mM EDTA and 2-mercaptoethanol removes the 

polyphenols (Asif et al., 2000). Consequently the A260/230 ratio measured 
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indicated that there was very low or no contamination by polysaccharides 

and polyphenols. In the same vein the 260/280 ratio also showed that there 

was no protein contamination in the RNA (Asif et al., 2000). This was 

further evident by the RNA yield which was exceptional. The method of 

Asif and colleagues used ensured minimum levels of contaminants that 

do not interfere with the integrity and quality of the RNA. The RNA was 

then used for the synthesis of complementary DNA. 

Plantains express a family three amylase 

The identification and cloning of complete α-amylases from plantains 

was based on sequence homology between the proteins in the database. 

Degenerate primers were designed based on conserved domain 

homology between the different secreted plant α-amylases. Interestingly, 

the amino acid sequences deduced from the longest open reading frame 

showed high similarity to non-secreted and chloroplastic α-amylases 

from plant species such as R. communis AMY10, M. domestica and 

AMY3 of A. thaliana. The homology to this class of enzyme was far 

greater than the similarity to secreted α-amylases from barley and other 

plant species. This suggests that mRNA levels of secreted amylases are 

either very low or absent in ripening plantain. This is interesting because 

the recently published genome sequence of the related plant banana 

revealed a secreted type of α-amylase but no plastid type amylase 

(D'Hont et al., 2012). 

 

To fully obtain the catalytic domain which is at the C-terminus of the 

protein, a 3’RACE was performed successfully. The sequences obtained 

from initial amplifications and that from RACE were all assembled. An 

alignment of the partial full length clone of plantain amylase was 

performed with α-amylases from the three families. The result indicated a 

closer homology to family three α-amylases than those from families one 

and two. From this, it is evident that the plantain clone identified is of 

family type 3 of α-amylases. The alignment also enables us to identify 

the missing part of the sequence. This was surprising because the 
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degenerate primers used for the amplification were designed based on 

conservation of the secreted α-amylases. 

Ripening plantains express a plastid type amylase 

In order to establish the presence of this unusual type of α-amylases in 

plantains, degenerate primers were designed in the unknown domain 

region and some specific primers in the catalytic region of the protein. 

PCR amplification of the plantain cDNA with these primers and 

sequencing confirmed that the identified cDNA encoded a plastid-type 3 

amylase. It may be possible that ripening plantains expresses the plastid 

amylase as the predominant starch hydrolase. 

 

Bioinformatics and phylogenetic studies categorised plant α-amylases 

into three families, secreted, cytosolic and a chloroplast types.  The 

longest open reading frame revealed that plantain α-amylase is of the 

family three type (Stanley et al., 2002; Junior et al., 2006). This amylase 

has been reported to catalyse hydrolysis of diurnal and storage starches 

in the plastid (Stanley et al., 2002). The three families have differences in 

their N-terminal domain however there is good structural similarity in their 

C-terminus (catalytic) domain. This homology may indicate that they 

share a common ancestral origin (Stanley et al., 2005). However, there 

are diverse opinions and arguments on conserved regions in plant α-

amylases (Janecek, 2002). 
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Chapter 5 

5 Functional analysis of the plantain amylase 

5.1 Introduction 

Alpha amylase is the most popular among the starch hydrolase because 

it has been described as the only enzyme capable of digesting intact 

starch molecule at endogenous glycosidic bonds (Irving et al., 1999), and 

it is found in different organisms. However, previous research efforts 

have been mainly focused on the identification and characterisation of 

heat stable microbial α-amylase with little done on plant amylases. Heat 

stable bacterial and fungal α-amylases are more popular in the industries 

due to the high temperatures that are used for starch gelatinisation 

(Gupta et al., 2003; Demirkan et al., 2005). In contrast to the microbial 

amylases, plants α-amylases with raw starch digestion abilities have 

being poorly studied and explored (Janecek et al., 2011).  

 

Plants α-amylases are classified into three families. The α-amylases 

show very high homology in the catalytic domain of the protein that is 

composed of more than four hundred amino acids. However, there exist 

structural differences in the other regions of the proteins (Janecek, 

2002). The family one amylase which are secreted have signal peptides, 

family two are cytosolic protein and do not have any targeting peptide 

(Stanley et al., 2005). The α-amylases of family three have transit 

peptides for translocation to the chloroplast at the amino terminus. In 

addition, the chloroplast amylases also have additional domain in 

between the transit peptide and the amylase domain referred to as 

unknown domain because its actual function is yet to be fully established 

(Stanley et al., 2002; Yu et al., 2005). 
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In living plant tissues, starch degradation often takes place at low 

temperatures therefore; enzymes of starch degradation possess some 

additional features for effective and tight binding to the substrate 

molecule. This can be a specific substrate binding site in the catalytic 

domain of the enzyme or a carbohydrate binding module (CBM) or starch 

binding domain (SBD) (Machovic and Janecek, 2006b). Family three α-

amylases possess an unknown domain that has been recently described 

to be a carbohydrate binding module specifically referred to as starch 

binding domain (SBD) (Glaring et al., 2011). This domain has been 

suggested to assist in binding of the enzyme to the raw starch in plants. 

The class of α-amylase with starch binding domain may offer the 

opportunity of starch processing without prior gelatinisation. The SBD 

can also be used as an affinity tag or for targeting in planta in starch 

engineering (Janecek et al., 2011). 

 

The gene encoding a putative plantain protein identified in chapter four of 

this thesis is a member of the family three type of α-amylases (Stanley et 

al., 2005; Yu et al., 2005). This was based on the sequence homology 

shown between the plantain amylase and the family three proteins 

(Figures 3.6, 3.12 and 3.13). The general description and function of the 

plant amylases in the literature is based on the roles in α-amylases play 

in transitory starch degradation in leaves or germination in seeds of 

cereals (Zeeman et al., 2004; Delatte et al., 2006; Lu and Sharkey, 2006; 

Andriotis et al., 2010). Little is known about the plastid type of α-amylase 

family as regards their functions and the roles they perform in plants. 

Therefore, to understand the function of the family three amylases there 

is need to characterise the plantain amylase which is a member of the 

group. This will also provide knowledge on the peculiar properties of this 

group of proteins and their functions 

 

Here it is shown that the catalytic domain of the amylase does not exhibit 

protein activity if expressed as an independent domain without the SBD 

in the cytosol. To test if the SBD is needed for enzyme activity, the full 
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length Arabidopsis Amy3, a homologue of the plantain amylase was 

cloned and tested in electroporated protoplasts. The full length protein 

did not exhibit amylase activity, therefore; the results may suggest that 

the maltoheptaoside used in the assay system may not be a good 

substrate for the type three α-amylases. 
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5.2 Results 

Generation of antibody against the plantain α-amylase 

In order to confirm the presence of a type 3 α-amylases in plantain and 

determine its molecular weight, an antibody against the α-amylase was 

required. The process of the antibody generation was hampered by a 

number of un-expected challenges therefore; the individual steps in the 

generation of the antibody will be presented and discussed. However, 

similar challenges were encountered as those in the production of 

antibody against barley α-amylase described in the chapter 2 of results 

section of this thesis. Therefore, only some peculiar differences will be 

described. 

Establishing an expression protocol for amylase fused to GST 

The expression was performed as described before for the GST-fused 

barley α-amylase in result chapter 1. In order to purify the barley α-

amylase from the mixture of cell proteins using affinity purification, the 

protein was fused to the 26kDa glutathione S-transferase (GST) 

(Stofkohahn et al., 1992; Liu et al., 2006; Abhary et al., 2011). This would 

enable the purification of the recombinant protein using a GST column. 

After gene induction, cell extracts and all pellets were boiled in sample 

buffer and were subject to gel electrophoresis. Figure 5.1 shows the 

pattern of recombinant proteins obtained with GST and α-amylase fused 

to GST. An additional protein of the expected molecular weight (70 kDa) 

was observed in the induced samples after 3 hours of induction or more. 

This band was absent in the GST control which showed a lower 

molecular weight GST band instead. It was also observed that longer 

induction time may be unnecessary because significant recombinant 

protein levels were obtained after only 3 hours. Comparable levels of 

expression were obtained for both star and gold strains of the E. coli 

cells (Figure 5.1).  
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Figure 5.1. Expression of the plantain alpha amylase in E. coli. M is the 
marker, * and G denotes the BL21 Star™ and Gold™ (DE3)pLysS E. coli 
strains, respectively. While – and + represents GST only and GST-fused 
amylase respectively. 0, 3, 4 and 5H represents hours after induction. 
The cycled region shows the expressed amylase of the expected 
molecular weight of 70 kDa. The GST only of 26 kDa is also visible. 

Recombinant protein solubilisation 

Extraction using different buffers 

To be able to purify the protein from numerous cell proteins using the 

GST-tag as affinity bait on GST columns, induced cell pellets were 

extracted to obtain soluble proteins. The cells were pelleted but re-

suspended in buffers of different compositions followed by cell disruption 

using sonication. Equal quantities of supernatant (S) and cell pellets (P) 

were boiled in sample buffer and loaded on a gel. Figure 5.2 shows that 

the protein of interest (70 kDa) was only detectable in the insoluble 

fraction (P) but could not be observed in the soluble portion (S). This 

indicates that soluble GST fused amylase was solubilised under these 

extraction conditions. 
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Figure 5.2. Extraction of recombinant protein. S and P are supernatant 
and pellet, respectively.  * and G denotes the BL21 Star™ and Gold™ 
(DE3)pLysS E. coli strains, respectively. PBS (phosphate buffered 
saline), ECB1 and 2 (E. coli buffer 1 and 2) are the buffers used to 
extract the recombinant protein.  
 

In order to extract soluble proteins, the experiment was repeated using 

the same expression and induction protocols. However, to enhance 

protein solubility, two different growth temperatures of 28 and 37ºC were 

used this is because it has been suggested that expression at lower 

temperatures increase solubilisation efficiency. To test if the protein can 

be solubilised by buffers of different strengths, phosphate buffered saline 

(PBS), phaseolin buffers and bug buster (Merck®) were used (see 

section 2.2). Higher sonication amplitude of 50% was used to disrupt the 

cells, cell extracts and pellets were boiled in sample buffer and subject to 

gel electrophoresis. Figure 5.3 shows that the desired GST-fusion 

protein was still partitioned to the insoluble fraction with very little or even 

no soluble fusion protein extracted. Comparable amount of protein was 

detected with both the bug buster and phaseolin (Figure 5.3). This 

indicated that the strength of the buffers did not influence the extraction 

of soluble protein. Similarly, comparing the two different growth 

conditions of 28 and 37ºC revealed that higher recombinant protein 

levels were achieved at the lower temperature as shown in Figure 5.3 

(panel A and B).  
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Figure 5.3. Extraction of recombinant protein in high strength buffers. S 
and P are supernatant and pellet, respectively. The expression was 
performed using the BL21 Gold™ (DE3)pLysS E. coli strains at 28ºC and 
37ºC respectively. The proteins were extracted in PBS (phosphate 
buffered saline), bug buster and phaseolin buffers.  

Changing the expression condition 

Having failed to extract the soluble protein using two different 

temperatures of 28ºC and 37ºC, and buffers of different strengths; a 

different approach was required. In order to solubilise the protein, the 

expression was performed at lower temperatures of 10, and 16 ºC that 

this is because protein aggregation has been suggested to reduce at low 

temperatures. This is because lower temperature usually means lower 

expression levels. Also, different media LB and TB were used for the 

growth of the bacteria, and low concentration of the inducer IPTG of 1 

mM was used. After induction, centrifugation, sonication; the supernatant 

and the pellet were loaded on a SDS-PAGE gel. Figure 5.4 shows the 

recombinant proteins obtained using the different media and growth 

conditions. But the lower temperatures did not offer enrichment to the 

amount of protein compared to what was obtained at higher 

temperatures. However, comparable amount of protein was obtained 

with expression at 10 and 16ºC (Figure 5.4, panel A), this is also the 

case with the two media used however soluble GST-fused amylase 

could not be obtained.  
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Auto-induction 

In order to increase the solubility of the recombinant protein as was 

explained in section 2.2, an auto-induction experiment was performed in 

addition to the different conditions used. After induction, the supernatant 

and pellet were boiled in sample buffer and subject to gel 

electrophoresis. Figure 5.4 panel A the protein pattern observed with the 

auto-inductions with insignificant amount of soluble proteins obtained 

(Figure 5.4, panel A). This implied that the auto-induction condition was 

not able to render majority of the protein soluble. To increase the amount 

of soluble compared to insoluble proteins, the protocol should be 

improved. In order to increase the protein solubility by enriching the 

amount of the product, the auto-induction experiment was repeated in 

larger volume of cultures to increase the yield. Figure 5.4 (panel B) 

shows the soluble and insoluble fractions that were obtained after 

extraction and cell lysis however the solubility could still not be 

enhanced. 

 

 

Figure 5.4. Protein expression using different media and lower 
temperatures. Panel A shows the recombinant products obtained using 
LB and TB media as well as different temperatures for the growth of the 
culture. S and P are supernatant and pellet, respectively. AI represents 
the auto-induction protocol. The expression was made using the BL21 
Gold™ (DE3)pLysS E. coli strains. The proteins were extracted in 
phaseolin buffer. Panel B shows a repeat of auto-induction. 
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From the results presented above, it can be concluded that the 

recombinant product could not be solubilised using a variety of different 

approaches attempted, including different growth conditions and buffer 

types. Therefore, a way of purifying the protein of interest from the 

insoluble portion should be used. 

Purifying the insoluble protein 

In order to purify the desired recombinant protein from the insoluble 

fraction, the protein, it was decided to separate the GST-fusion on a 

denaturing protein gel. It was first necessary to quantify the amount of 

recombinant protein. After induction and growth, the cultures were spun, 

the supernatant recovered and pellet was re-suspended in phaseolin, 

and mixed with sample buffer mix and boiled at 100ºC and were subject 

to gel electrophoresis. Figure 5.5 shows the recombinant protein against 

BSA standard and the protein was estimated as 0.5 µg/µl. 

 

 

Figure 5.5. Quantification of recombinant protein, bovine serum albumin 
(BSA) was used as a reference standard to estimate the recombinant 
protein.  The amount of BSA in microgram of 0.5, 1, 2, and 5; while the 
Plamy is the plantain amylase fussed to GST. The amount is in micro-
litres of 1, 2, and 4. S indicates the supernatant.  

Final expression of the plantain amylase and purification 

In order to enrich the amount of the recombinant protein, the expression 

was repeated using a different condition. The pre-culture was incubated 

at 37ºC while the main culture was grown at 28ºC this is to have a better 
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expression. The induction protocol was as described above except that 

the culture was grown for four hours after induction. This is to increase 

the yield of the recombinant proteins since the expression at a lower 

temperature of 28ºC was initially observed to be better than that at 37ºC 

(see Figure 5.3). To effectively disrupt the cell five consecutive cycles of 

sonication at 40% amplitude were perfomed. The pellet was diluted by 

re-suspending it in sample buffer of different amount as shown in Figure 

5.6. The protein was quantified against BSA standard as shown in Figure 

5.6 and the protein was estimated to be 2 µg/µl. 

 

 

Figure 5.6. Quantification of recombinant protein 2, the expression of 
GST-fused amylase was repeated at 28ºC, S is the supernatant. The 
protein was again quantified against Bovine serum albumin (BSA).  The 
amount of BSA in microgram of 0.5, 1, 2, and 5; while the Plamy is the 
plantain amylase fussed to GST. The pellet was extracted using different 
dilutions of sample buffer.  

Preparative gel 

In order to purify the insoluble recombinant proteins from gel, 250 µg of 

proteins which is the amount needed of the antigen for individual 

injection for the immunisation procedure was prepared. A 10% 

preparative SDS-PAGE gel was made and the proteins were loaded and 

ran slowly. The gel was stained with coomasie brilliant blue for one hour 

and de-stained overnight. Figure 5.7 shows a preparative protein gel. 

The protein of interest can be detected as shown in the Figure 5.7. This 

band of interest of was thinly cut out with razor blade and transferred into 

a microfuge tube and weighed. This procedure was repeated eight times 
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because four injections are required for two rabbits each. The purified 

protein was sent to Eurogentec for the antibody generation programme. 

 

 

Figure 5.7. Preparative gel, the Figure shows the expressed GST-fused 
amylase loaded on 10% preparative gel. The proteins were resolved and 
separation that enabled the cutting of the protein of interest from gel with 
a razor blade was obtained.  

Characterisation of antibodies 

Antisera against the plantain α-amylase were received from the 

company. These include the pre-immune, small and large bleeds. In 

order to characterise the antibodies generated, determine their purity, 

titre and specificity, the GST fused α-amylases from plantains was 

expressed in E. coli, and the samples were used to probe the different 

antisera. Figure 5.8 shows the western blot of the different antisera from 

two different rabbits. The antibody from rabbit 1 shown in Figure 5.8 

panel A was able to specifically detect the recombinant α-amylase from 

plantain. But the detection ability was very low, and some background 

contaminants were also observed. This is the case for both the small and 

large bleeds, and it may imply that the quality of the antibody is very low. 

On the other hand, the pre-immune bleed did not detect anything as 

expected and free from background contamination. However, the 

antisera from the second rabbit as evident from Figure 5.8 panel B could 

weakly detect even the highest concentration of the protein. That means 

the quality of the antisera from the second rabbit was very low. All the 

three bleeds of the antisera did not give any background bands. 
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Figure 5.8. Characterisation of the anti-plantain amylase, the three 
bleeds; pre-immune, small and large bleeds were analysed for quality. 
Panel A shows antisera from rabbit one while panel B shows bleeds from 
a second rabbit. The proteins are the expressed GST-fused plantain 
amylase. Three dilutions of the recombinants proteins were used; 10, 
100, and 1000 folds. 
 

It was not possible to detect endogenous plantain α-amylase in plantain 

extracts with the highest activity as measured in Figure 4.1 (Chapter 4) 

of this thesis. Due to time constraints, a repeat of the antibody 

generation was not possible. 
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Expression of plantain amylase In planta 

In the absence of specific antibodies, the remainder of this work was 

devoted to characterising the biological role of type 3 α-amylase 

identified from plantains. In order to characterise the plantain α-amylase, 

it was initially necessary to determine the enzyme activity of the clone in 

the cytosol, therefore the catalytic domain of the protein (see Fig. 4.11, 

panel B) was cloned into a small pUC vector under the transcriptional 

control of the 35S promoter. It was then expressed transiently in the 

protoplast alongside a positive control which is a construct of the barley 

α-amylase. The activity of the protein in the protoplast was then 

measured in both the medium and cell. The total amylase activity was 

determined and is shown in Figure 5.9. Even though very weak or no α-

amylase activities were detected for the plantain amylase in comparison 

to the control (Figure 5.9); the protoplasts were competent for 

transfection as evident from the significant activity exhibited by the 

positive control.  

 

 

Figure 5.9. Activity of the plantain α-amylase in cells, the properties of 
the plantain α-amylase (plamy) and the barley α-amylase (amy) which is 
a positive control for the experiment are shown. Panel A shows the total 
amylase activity while panel B shows the secretion index which is the 
ratio of the medium to cell activity. 
 

Measurement of the activity in the culture medium permitted calculation 

of the secretion index (Fig. 5.9, panel B). As expected significant 
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secretion was obtained for the standard barley α-amylase whilst no 

activity in the medium was observed for the sample electroporated with 

the plasmid encoding the catalytic domain of the plantain protein in the 

cytosol. Based on the results obtained above (Figure 5.9), it was 

hypothesised that it is possible that the plantain amylase and the family 

three protein activity is dependent on the unknown domain or that the 

cytosol is an environment that does not support the amylase activity. 

However the full length plantain amylase is yet to be cloned, therefore, 

cloning of a homologue of the protein from Arabidopsis whose sequence 

is available in the database (Yu et al., 2005) was considered. 

Expression of plantain amylase, Atamy3 In planta 

In order to test the hypothesis on whether the unknown domain of α-

amylase of the family three has any role in the protein activity, specific 

primers were designed based on the gene sequences available on the 

public database (Yu et al., 2005). The Arabidopsis cDNA was PCR 

amplified using the primers and the amplicon was cloned into a pUC 

vector under the control of the 35S promoter. The cloned Atamy3, the 

plantain α-amylase alongside, the barley α-amylase as a positive control 

were then tested in plant expression vectors via transient expression in 

tobacco protoplasts. The activity of the protein in the protoplast was then 

measured in both the medium and cell, and the total activity was 

determined. As shown in Figure 5.10, amylase activity was not detected 

neither from the plantain amylase nor the Atamy3 but activity was 

detectable for the positive control. This is because negative absorbances 

should be interpreted as zero activity. 
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Figure 5.10. Activity of the plantain α-amylase and full length Atamy3. 
The total amylase activity of the plantain amylase (plamy), Arabidopsis 
amylase 3 (Atamy3) and the barley amylase (amy) are shown. However 
negative activities were obtained with the plantain amylase and Atamy3. 

Fluorescently tagged Atamy3 starch binding domain 

Enzyme activity was not obtained with the family three α-amylases either 

as a short protein with the amylase domain expressed in the cytosol or 

the full length protein. This seems to correspond to earlier claim 

regarding Atamy3 knockout plants which had no phenotype (Yu et al., 

2005). To study the behaviour of this group of proteins further, it was 

necessary to characterise the unknown domain. Therefore, primers were 

used to PCR amplify the complete SBD of Atamy3 and cloned under the 

transcriptional control of the 35S promoter with a fluorescent protein 

tagged at its C-terminus replacing the catalytic domain. Hence a fusion 

protein of the unknown domain and YFP was produced. It was tested by 

transfection in tobacco protoplast alongside a positive control which is 

Rab7, and was expressed for 24 hours. The cells were then visualised 

under the microscope for fluorescence. No proteins were seen to have 

labelled the chloroplast or the entire cells with the unknown domain 

fused to the YFP. In order to determine if the construct was functional, 

the cells were loaded on a gel and detected using anti-YFP antibody. 

Figure 5.11 shows an image of the western blot for the functionality of 

the YFP tagged unknown domain construct. The protein was detectable 

with the anti-YFP antibody which implies that the recombinant proteins 
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were produced as also evident by the positive control which is Rab7 

fused to YFP. It was not possible to test the subcellular localisation, nor 

to test if overexpressed SBDs without the catalytic domain had a 

dominant-negative effect on starch degradation. 

 

Figure 5.11. YFP fused unknown domain of Atamy3, the western blot 
shows the unknown domain of the Atamy3 fused to YFP. + is the 
unknown domain fused to YFP, RB7 is Rab7, - is the negative control 
and M is the marker lane. The arrow indicate band of the expected 
molecular weight of approximately 75 kDa. The figure shows that the 
experiment worked and that the proteins were expressed. 
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5.3 Discussion 

Antibody generation 

The production of antibody against the plantain α-amylase was similar to 

that of the barley amylase described in chapter 1 of the results section 

and the same protocols were explored. The discussion will not be 

repeated but some specific observations as relates the plantain GST-

fusion will be discussed. This because each protein has its peculiar 

characteristics and the main variable in expression is the nature of the 

recombinant protein itself. Expression of the recombinant proteins in E. 

coli may also be connected with the codon usage or the growth condition 

as well as the specific nature of the fusion to add as affinity tag (Trabbic-

Carlson et al., 2004). Results presented here suggest that production of 

the GST-fused amylase in E. coli led to well defined high expression 

levels (Stofkohahn et al., 1992; Liu et al., 2006; Abhary et al., 2011). As 

shown in Figures 4.1 to 4.5, the yields of the recombinant α-amylase-

GST fusion were high and not limiting factors. Although, tagging of 

proteins to GST has been suggested to decrease the formation of 

inclusion bodies (Kusnadi et al., 1997; Rabhi-Essafi et al., 2007; 

Deceglie et al., 2012). The tagging did not seem to enhance the protein 

solubility in E. coli in the case of the plantain α-amylase GST fusion 

similar to results obtained with the barley α-amylase GST fusion (see 

chapter 2.2, Figures. 2.1-2.5) 

 

Further, changing the expression conditions such as lower IPTG 

concentration, temperatures, buffers did not increase the protein 

solubility similar to results obtained with the barley protein (see section 

2.2). None of these attempts provided evidence for the presence of small 

quantities of soluble GST-amylase fusions that could be purified by 

affinity. To yet enable the solubilisation of the amylases, different buffers 

were used. Protein solubilisation was not achieved using phosphate-

buffered saline. The more drastic extraction procedure using lysozyme 

treatment prior to extraction with the detergent-rich phaseolin buffer was 
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also unsuccessful. The protein fusion remained firmly associated with the 

insoluble pellet (Figure 5.3). 

 

All the different conditions attempted to solubilise the amylase GST 

failed; therefore the insolubility was used as a purification method 

instead. Using harsh extraction conditions, large amounts of the 

contaminating proteins were removed as they were solubilised and 

retaining the insoluble fraction consequently led to a strong enrichment. 

The final step involved purifying the protein on SDS PAGE (Laemmli, 

1970; Wilm et al., 1996), this gave very sharp well defined band of the 

insoluble GST-fusion protein which could be cut directly from the gel 

after coomasie staining. However, limitation of this strategy is risk of 

having multiple proteins of the same size although it was decided to 

accept this risk. The obtained antigen did not yield acceptable antiserum 

when tested (Fig. 5.8). Therefore, the antibody cannot be used as a tool 

in blotting to recognise plantain α-amylase 

The cytosolic plantain α-amylase and full length Atamy3 do not 

exhibit enzyme activity using the standard amylase assay 

The catalytic domain of the plantain α-amylase was tested for expression 

and functionally in protoplasts. The undetectable activity of the catalytic 

domain of plantain α-amylase can be explained by the fact that the 

unknown domain may be a pre-requisite for the protein function. This 

may be possible if the domain is responsible to facilitate the effective 

binding of the enzyme with its substrate before catalysis can occur. 

Therefore, in order to test this hypothesis the full length protein from a 

Atamy3, a homologue of the plantain α-amylase was cloned and tested 

in electroporated protoplasts (see the following section). Perhaps, a 

reasonable inference may be drawn on the behaviour of this type of 

unusual chloroplast α-amylase (Yu et al., 2005). Similarly, the full length 

Atamy3 tested in electroporated cells did not yield enzyme activity.  
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The results revealed that the catalytic domains of family amylase as well 

as the full length protein do not exhibit enzymatic activity using the 

maltoheptaoside assay. This lack of enzyme activity by the plantain 

amylase and Atamy3 may imply that the unknown domain has no effect 

on the amylase activity. However, a significant enzyme activity was 

detected with the catalytic (C-terminal) domain as well as full length 

Atamy3 which is a homologue to the plantain amylase (Yu et al., 2005). It 

cannot be ruled out either that the amylase substrate in the kit may be an 

inappropriate substrate for the enzyme. If the amylase (family 3) is 

unable to recognise maltoheptaosides, the loss of activity could be 

explained. In the work carried out by Yu and colleagues, the amylase 

activity was detected based on the ability of Atamy3 to digest soluble 

starch as substrate. The soluble starch is structurally similar to the 

endogenous substrate of the enzyme in plant tissues (Yu et al., 2005); 

unlike the maltoheptaosides that was used for the assay and which is 

readily hydrolysed by the secreted barley enzyme. Therefore, this may 

also support the hypothesis that this type of amylase only act on starch 

and not shorter glucans such as the maltoheptaosides. 

 

Another hypothesis is that the cytosol may not be a convenient 

environment and does not support the amylase activity for the family 3 

proteins. This may be true because the proteins are localised to the 

chloroplasts and previous research has revealed that Atamy3 released 

both linear and branched malto-oligosaccharides from starch into the 

chloroplast (Yu et al., 2005; Streb et al., 2012). 

The SBD and localisation of family three α-amylases 

The N-terminal sequence of family three α-amylases contains a large 

starch binding domain (SBD) which is absent from the secreted α-

amylases from barley and other different plant species. There is no 

obvious information available on the possible biological function of this 

domain. Previous research work has described the functionality of the 

unknown domain of the family three amylases in terms of binding to 
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starch. Some plant hydrolases have been reported to contain domains or 

modules that bind carbohydrates such as cellulose or starch (Tibbot et 

al., 2002; Rodriguez-Sanoja et al., 2005). These domains have been 

proposed to complement the activity of α-amylases, possibly by helping 

to establish tighter interactions between the substrate and the enzyme. 

In family three α-amylases, the unknown domain has been suggested to 

be a carbohydrate binding module (Glaring et al., 2011). It also has been 

suggested that the binding of the full length protein may involve the 

presence of secondary binding sites in the amylase domain (Glaring et 

al., 2011).  

 

In this thesis, the functionality of the SBD was analysed (Figure 4.11), it 

was shown that the N-terminal domain (48 kDa) of family three proteins 

fused to YFP revealed a protein of 75 kDa. This means that the fusion 

protein was expressed as predicted but it was not fluorescent. The 

reason for this behaviour is likely to be that the unknown region which is 

suggested to be the starch binding domain initially associates tightly with 

the starch molecule before the enzyme through the amylase domain can 

digest the starch. It was previously shown using a fluorescently tagged 

unknown domain of Atamy3 that the full length protein exhibits both in 

vitro and in vivo binding to starch (Glaring et al., 2011). It is possible that 

the fluorescence of the fusion protein was below the detection limit. 

Further work will reveal how chloroplast-targeting of SBD-YFP occurs, 

and if such a molecule can act as a dominant-negative mutant that 

affects transitory starch metabolism. 
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Chapter 6 

General Discussion 

My PhD work was mainly concerned with the continuation of the biofuel 

project, specifically focussing on the limiting factors that affect the entire 

process. This involves answering key questions that relates to the properties 

of the α-amylase and its key role in mediating starch liquefaction. A major 

line of research involved optimising the starch hydrolysis process to ensure 

maximum yield of the desired products. Amylases are required that can act 

on starch to produce mainly simple and fermentable sugars. These sugars 

include the single, double or triple chain glucose referred to as glucose, 

maltose and maltotriose. It is of no doubt, that availability of such proteins 

will increase the efficiency of industrial starch saccharification. This is 

because it will reduce industrial waste, loss and will add value to the 

products. In view of the above, the use of barley α-amylase was investigated 

within the combined acid hydrolysis and enzymatic processing of starch. In 

addition, a new α-amylase with different properties was identified and 

characterised from plantains. 

6.1 Epitope tagging as a means of affinity purification of 

proteins: effects of histidine octapeptide on protein 

property 

A cascade refinery process was designed based on the initial success of 

recombinant barley α-amylase production in potatoes; it implies that the 

potatoes will be used as a model to produce a range of high value proteins. 

The barley α-amylase was tagged with a histidine octapeptide that enables 

the purification of the amylase using a nickel column (Marusic et al., 2007), 

but also permits purification of a second high value protein from the flow 

through.  
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Lower amount of α-amylase was produced with the histidine octapeptide 

fusion compared to the untagged amylase in the protoplast. In contrast to 

the barley amylase, the histidine fusion exhibited faster secretion which may 

be due to the properties of histidine. However, a reasonable expression of 

the histidine fusion protein was obtained in leaves compared to other α-

amylase fusions. Though amylase tagged with eight histidines was 

glycosylated in transiently expressing leaf epidermal cells, the glycosylation 

was observed to be enhanced in stable transgenics which may be due to the 

transformation efficiency. 

 

In the work of Marusic and colleagues, a HIV Nef (negative regulatory factor) 

protein was tagged with hexapeptide histidine; using transient expression in 

electroporated protoplasts the protein was revealed to accumulate in the 

cytosol. The recombinant protein was then produced in transgenic plants; 

the Nef protein and its truncated mutants of 25 and 27 kDa tagged with six 

histidines were affinity purified from a transgenic plant in a one-step using a 

nickel column (Marusic et al., 2007). The Nef protein hexahistidine fusion 

was revealed to be unstable in the secretory pathway; however the instability 

could be because of the protein properties and not the six histidines.  

 

The result obtained in this thesis revealed the α-amylase octapeptide 

histidine fusion to be stable in both infiltrated leaf cells and the stable 

transgenic plants expressing the protein. This is because no degradation 

product was detected with the antibody against α-amylase (Figures 2.15 and 

2.16). Therefore, the result implies that the synthesis of the fusion protein, 

rather than the stability could explain the lower yield of amylase activity that 

was detected in electroporated protoplasts. 

6.2 Evidence that fusion tags affect protein properties and 

presence of HDEL-independent retention mechanisms 

In addition to the amylase fused to the octapeptide histidine, other α-

amylase fusions were tested. The fusion of HDEL was revealed to decrease 
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the yield of amylase, this is because amylase HDEL fusions were observed 

to exhibit lower yield of the protein using the amylase to GUS ratio compared 

to the secreted barley α-amylase (Fig 2.13). The decrease in the amylase 

activity was also exhibited by the amylase fused to the acidic C-terminus of 

calreticulin with or without the HDEL (Fig 2.17). The amyEDDDHDEL and 

amylaseHDEL fused to calreticulin exhibited lower amylase activity 

compared to HDEL. However the calreticulin lacking HDEL and amyHis also 

exhibited lower activity compared to the secreted protein. Therefore, the 

different fusions may slow down the rate of protein synthesis as a result of 

delay in translation and translocation or are toxic to the protein. The result 

confirms previous work that reported a low activity and lethal effect of HDEL 

and calreticulin fusion amylases on transgenic plants (J. An and J. Denecke, 

unpublished). 

 

In this thesis the effects of peptides tags on ER retention was clearly 

demonstrated. It was shown in addition to HDEL, the amylase fused to 

EDDDHDEL exhibited more efficient retention compared HDEL fusion alone 

(Fig. 1.14B). Therefore, the result confirms previous reports on HDEL 

mediated retention in plants (Denecke et al., 1992) or KDEL-mediated in 

mammals (Munro and Pelham, 1987). Moreover, the results strongly 

suggest that a better exposure of the HDEL signal may be responsible for 

the observed effect. Amylase calreticulin fusion with HDEL was retained 

more efficiently (Fig. 2.18) compared to the HDEL and EDDDHDEL fusions. 

The calreticulin is an ER retained protein with a long acidic C-terminus 

preceding the HDEL sequence (Crofts et al., 1999). The ability of the 

calreticulin to increase the efficiency of retention may also be due to a better 

exposure of the HDEL signal. However, the significant retention of 

calreticulin fusion lacking the HDEL signal (Fig. 2.18) strongly confirms the 

existence of HDEL-independent retention mechanisms. The calreticulin-

mediated retention may be related to the calcium chelating property of the 

acidic amino acids near the C-terminus of the peptide (Pagny et al., 2000; 

Nilsson and von Heijne, 2000). Although, the HDEL-independent retention 
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may be efficient it does not rule out the significant role played by HDEL 

signal in retention. 

6.3 Glycosylation of α-amylases is not only affected by 

length of the amino acids  

N-linked glycosylation is a type of modification that occurs in the lumen of 

the endoplasmic reticulum; it is mainly the addition of sugars to the amide 

group of some secreted proteins such as the barley α-amylase as they pass 

the secretory pathway. The glycosylation is suggested to increase stability 

and affects the overall properties of the protein. The initial aspect of the 

project tested whether the amylase-fused to HDEL or calreticulin can indeed 

be glycosylated and if C-terminal extensions influence the degree of 

glycosylation (Nilsson and von Heijne, 2000). In chapter 2.2 of this thesis, 

the effect of a single amino acid substitution at the consensus glycosylation 

site was described. It was revealed that the protein properties of the α-

amylase were not affected by the change of asparagine to serine (N372-

S372). The result was similar irrespective of small fusions such as 

AmyHDEL, EDDDHDEL and AmyHis or large fusions such as amylase fused 

to calreticulin with or without the HDEL compared to the standard barley α-

amylase. Although the glycosylation status could not be verified using 

electroporated protoplasts, however, the evidence from the delta glycan 

mutant indicates that lack of glycosylation had no detectable effect on 

protein yield, stability, secretion or retention.  

 

In this thesis, it was clearly shown that long C-terminal fusions promote 

glycosylation as was observed with the calreticulin fusions (Fig 2.19). The 

result is a confirmation of previous suggestion that glycosylation efficiency 

depends on the distance of the glycosylation site to the C-terminus of the 

protein (Nilsson and von Heijne, 2000). Moreover, the glycosylation does not 

only depend on the length of the fusion but also on the nature of the C-

terminal fusions. Both amyHis and amyEDDDHDEL have eight additional 

amino acids however, only the former exhibited glycosylation in leaves while 



Chapter 6: General discussion 

186 

 

the latter did not (Fig. 2.15). The glycosylation of the amy-his, amyHDEL and 

amycal with and without the HDEL signals indicates that the proteins were 

translocated into the ER lumen.  

 

The efficiency and pattern of protein glycosylation is of high interest 

particularly in the pharmaceutical industry. For the recombinant product to 

be accepted as per regulatory concerns it is required to be identical to the 

wild-type protein because the glycosylation pattern affects the function of the 

protein (Ma et al., 2003).  

6.4 Effect of expression systems on protein properties 

Evaluation of recombinant protein expression involves either transient 

transfection or stable transformation. Transient expression is a system of 

rapidly verifying the expression and functionality of constructs. Two forms of 

transient expression are routinely used; these include the electroporated 

protoplast system (Hadlington and Denecke, 1994) and Agrobacterium-

mediated infiltration of leaf epidermal cells (Kapila et al., 1997). The 

electroporated protoplasts offers the benefit of producing little amount of the 

recombinant protein for analysis prior to stable transformation for the 

production of transgenics. It also provides the opportunity to study protein 

localisation and compartments for the accumulation of recombinant proteins 

(Marusic et al., 2007). Though the electroporated protoplasts offer some 

amount of proteins for routine work, yet as was shown in this thesis the 

limitation is on the yield of adequate amount of proteins compared to 

Agrobacterium infiltration which offers a higher yield of amylase activity 

(Tables 2.1 and 2.2). Therefore, in a situation where a higher yield of 

recombinant proteins is required then electroporated protoplasts may not be 

the answer. In contrast to the transient expression strategy, stable 

transformation to produce transgenic plants expressing proteins is a more 

robust technique due to higher yield of recombinant products but it takes 

longer. 
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One drawback of the electroporated protoplasts system is that it may not 

guarantee the post-translational modifications due to overexpression or the 

short expression time for example amylase is not glycosylated in protoplast 

but it was revealed to be glycosylated in plants (Sutter et al., 2012). 

However, the Agrobacterium based infiltration offers the benefit of producing 

the desired modifications such as glycosylation. This thesis clearly 

demonstrated the glycosylation of amyHis and amycalreticulin fusions in 

infiltrated leaf epidermal cells. It was also revealed that stable transformation 

in transgenic plants promoted the efficiency of glycosylation compared to the 

transient expression using Agrobacterium-mediated infiltration of leaf 

epidermal cells. This is because the glycosylation of the amy tagged with 

histidine octapeptide was more pronounced in stable transgenics. Similarly, 

amylase-HDEL which was not glycosylated in infiltrated leaf cells (Fig. 2.15) 

exhibited glycosylation in transgenic plants (Fig. 2.16). The result confirms 

glycosylation of amyHDEL in BY2 suspension cells (Sutter et al., 2012)  

6.5 Optimisation of starch hydrolysis process 

Although the preliminary results on the combination of mild acid pre-

treatments and subsequent enzyme hydrolysis were promising (J. An, and J. 

Denecke, unpublished), further optimisation was necessary. In this work 

package, different acid hydrolysis regimes were compared, as well as a 

combination of liquefying and saccharifying enzymes. This was to establish 

an efficient protocol that ensures maximum yield of fermentable sugars with 

minimum loss to non-fermentable degradation products. 

 

In principle, starch can be hydrolysed to glucose, maltose, maltotriose, 

maltopentose, maltohexose and other longer glucan chains (Nigam and 

Singh, 1995). The sugars glucose, maltose, and maltotriose can be 

fermented to ethanol and distilled. In contrast, sugars with chain length 

higher than maltotriose cannot be easily converted to alcohol. For this 

reason, the non-fermentable oligosaccharides can be re-cycled further and 

subject to hydrolysis. During the process of starch conversion to alcohol, in 
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addition to ethanol some broths are recovered. In practice 70% of the starch 

is converted to glucose this means that the remaining 30% forms part of the 

broth. This implies that in order to gain more fermentable sugars from the 

starch, the broth can be recycled and passed through the liquefaction and 

saccharification process. This increases the amount of sugars that are 

recovered and subsequently converted to alcohol. Therefore, using this 

system it may be possible to achieve a close to 100% conversion and 

recovery from the hydrolysis process. 

 

In the acid hydrolysis of starch, the release of glucose was found not to be 

linear which may be due to a complex sequence of events that positively or 

negatively influence each other. For instance, the reaction gives rise to 

higher numbers of non-reducing ends that can be subject to further 

hydrolytic action of the acid in the process. It is also likely that some 

oligomers may be released that cannot be further digested by the acid or 

perhaps at a much slower rate than other oligomers. However, in enzyme 

catalysed liquefaction and saccharification, the α-1,4 endo-glycosidic action 

of the liquefying enzyme gives rise to dextrins.  

 

Furthermore, the dextrins are saccharified by the exo-amylase action of the 

glucoamylase which has the ability to cleave α-1,4 and α-1,6 glycosidic 

bonds from the non-reducing ends. Therefore, glucose as well as maltose 

and maltotriose are released, and because the initial gelatinisation and 

liquefaction also involved acid hydrolysis, it is likely that some oligomers may 

be liberated in the process that cannot be rapidly hydrolysed by the 

glucoamylase. Consequently, these oligosaccharides together with the 

longer chain sugars make up the non-fermentable fractions. Therefore, 

amylases with specificity for shorter chain sugars such as maltase (an α-

glucosidase) which has the glycosidic ability to digest maltose to glucose 

may be required and would be an excellent starting point for future research. 
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6.6 Exploring new enzymes for biotechnology 

In this thesis an α-amylase-like gene that encodes a chloroplast type protein 

was cloned from the plantains. The catalytic domain of the plantain α-

amylase and full length Atamy3 were cloned under the transcriptional control 

of the 35S promoter and transiently expressed in tobacco protoplasts, 

however, the two constructs did not yield amylase activity using the 

maltoheptaoside substrate. The maltoheptaoside may be too short for the 

family three amylases that may only exhibit specificity for longer chains such 

as starch, therefore the specificities of the enzyme may also be a limiting 

factor. Previous work of Atamy3 using soluble starch as substrate has 

reported enzyme activity (Yu et al., 2005). This is not surprising since the 

substrate used is similar to crystalline starch, the endogenous substrate of 

the enzyme. In-gel assay can be used to study the endoglycosidic activity of 

the family three proteins but this is beyond the scope of this thesis. Another 

assay system that can be used may be incubation of the enzyme with 

soluble starch and analysis of the products afterwards using 

chromatography. Therefore, it may be likely that the maltoheptaoside assay 

was not the appropriate method to assay the family three α-amylases even 

though it work well with the barley amylase used in the host laboratory. The 

localisation of the plantain amylase and Atamy3 could not be studied due to 

expression problems. 

 

Moreover, it is noteworthy that contrasting views have been suggested on 

the role of α-amylase in transitory starch degradation at night. Although α-

amylase plays an important role in storage starch hydrolysis in the 

endosperm, it may not be involved in transitory starch hydrolysis in the 

chloroplasts of leaves. In transgenic plants, the loss of plastid-resident Amy3 

does not seem to affect transitory starch degradation therefore may imply 

that it is not involved in the process (Yu et al., 2005; Zeeman et al., 2007b). 

However, interpreting such data has to be done with caution because the 

observation may be affected by the growth conditions. A second hypothesis 

may be that other enzymes of starch degradation compensates for the lack 
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of the α-amylase (Yu et al., 2005; Streb et al., 2012). It has also been 

suggested that family three amylases may be involved in the breakdown of 

plastid bound starch in storage tissues and leaves of plants (Stanley et al., 

2002; Stanley et al., 2005; Yu et al., 2005). Recently, this class of amylase 

has been suggested to contain a starch binding domain which belong to the 

family 45 of carbohydrate binding module (Glaring et al., 2011). The SBD 

has been proposed to complement the activity of α-amylases, possibly by 

helping to establish tighter interactions between the substrate and the 

enzyme (Glaring et al., 2011). 

Localisation of family three α-amylases to the chloroplast 

The starch binding domain of Atamy3 was fused to YFP, but the localisation 

could not be confirmed because the fluorescence of the fusion protein was 

below the detection limit. Fractionation of the chloroplast for the cell 

components may reveal the localisation of the SBD but this is beyond the 

scope of this thesis. However, previous work has shown the localisation of 

the Atamy3 to the chloroplast (Yu et al., 2005; Glaring et al., 2011). The 

localisation of α-amylase to the plastid of plantains may indicate that the 

enzyme and starch are synthesized in the same cells but at different times in 

contrast to barley and other cereal crops where the hydrolases are not only 

synthesised at a different time but produced by a separate tissue, the 

aleurone layer from which they are secreted and transported to the starchy 

endosperm (Ranki and Sopanen, 1984; Kitajima et al., 2009; Jeon et al., 

2010). This physical segregation may be difficult in large ripening fruits such 

as plantains, banana, pears, apple, where progressive conversion of starch 

to soluble sugars is required in the entire storage tissues.  

Comparison of Atamy3 like proteins to glucan, water dikinase (GWD) 

Starch degradation is a very important process in energy metabolism in 

higher plants. It is catalysed by a variety of enzymes; one of them is glucan 

water dikinase (GWD) (Smith et al., 2005; Zeeman et al., 2007b; Zeeman et 

al., 2007a). The protein is localised to the chloroplast and has been shown 

to catalyse starch phosphorylation. There is conservation in the unknown 
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domain found in GWD to that present in family three alpha amylases 

(Baunsgaard et al., 2005; Mikkelsen et al., 2005; Glaring et al., 2007). This 

may not be unconnected with the fact that the two different enzymes act on 

starch. Furthermore, the similar structural feature may explain the role of this 

additional domain.  

Amylases with unusual characteristics 

The discovery of new proteins with unusual feature is not uncommon; 

several amylases with composite proteins have been identified. Recently an 

α-amylase with no known homologue was cloned from drainage of an acid 

mine (Delavat et al., 2012). Some researchers reported isolation of α-

amylase genes from Lactobacillus plantarum A6 and L. amylovorus with 

unusual characteristics. L. plantarum gene encodes a protein of 913 amino 

acids with N-terminus that is homologous to α-amylase from B. subtilis while 

the C-terminus shows an unusual feature. The amylase gene from L. 

amylovorus encodes α-amylase that consists of 954 amino acids; the protein 

shared very close homology to the L. plantarum α-amylase. The C-terminal 

domain was suggested to be a carbohydrate binding domain (Giraud and 

Cuny, 1997). Similarly, an amylase of 2056 amino acids was cloned from L. 

plantarum L137; the N-terminus has the catalytic domain of both an α-

amylase and pullulanase. The protein showed α-amylase and pullulanase 

activities; it hydrolyses starch to maltotriose and maltotetraose (Kim et al., 

2008a). 
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6.7 General conclusion and outlook 

It is possible to tag proteins for affinity purification, though the codon 

hypothesis on the rare tRNA for histidine has to be tested. More than one 

protein should be produced and the cascade refinery process of producing 

multiple recombinant products in potatoes should be explored. In order to 

validate the effect of glycosylation on amylases, stable transgenic potatoes 

expressing the delta glycan mutants of the calreticulin fusions can be 

produced. Although acid hydrolysis has being successful, the presence of 

degradation products such as furfurals may be considered. Furthermore, the 

biological function of the plantain α-amylase should be explored this is 

because the sweet taste of ripened plantains indicate that maltose and 

maltotriose may be released. The search for alternative enzymes should 

consider amylases that can digest short glucan chains (ten glucose and 

below). In addition to plants, compost heaps should be considered for 

isolation of amylases and their action on starch can be compared using 

chromatography. This may enable the identification of enzymes that can 

produce higher amount of fermentable sugars compared to what is currently 

explored. 
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Chapter 7 

Methods 

7.1 Molecular biology 

All DNA manipulations were performed using the established standard 

protocols, all buffers, reagents and media used were prepared as described 

by (Sambrook et al., 1989). Chemicals and enzymes were either purchased 

from Sigma, NEB, Megazyme among others 

7.1.1 PCR 

Several PCR were carried out in the course of this work, and three DNA 

polymerases from different manufacturers were used. Pfu DNA polymerase 

(Promega)®, KOD Hot start DNA polymerase (Novagen)®, and the Q5 High 

fidelity DNA polymerase (NEB)® were used according to the manufacturer’s 

instructions. The PCR reactions were set up for a 50 μl volume of sense and 

antisense primers, polymerase, dNTPs, Mg, DNA template and water. 

Annealing and elongation times were calculated depending on the primers 

and the expected product size respectively. 

7.1.2 Restriction digests 

For preparative digests, 10-20 μg of plasmid DNA was added in Eppendorf 

tube, and then the respective compatible buffer for the enzymes was added. 

The restriction enzyme(s) was then added and the volume made up to 50μl 

with TE and the mix was incubated at 37°C. The progress of the digest was 

usually checked at 0 mins (before enzyme addition), 20 and 40 min after the 

enzyme was added. After, the full digestion of the plasmid, the subsequent 

procedures depended on the use of the DNA. For vector preparation, the 

DNA was subject to dephosphorylation, phenol-chloroform clean-up, DNA 
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precipitation and finally re-suspension while for fragments preparation, the 

next step was isolation on agarose gel.  

7.1.3 Dephosphorylation 

To prevent self-ligation of a vector cut with a restriction enzyme, the open 

ends are dephosphorylated with calf intestine alkaline phosphatase (CIP). 

To the DNA from the preparative digests, 40 μl of TE, 5 μl of 10X CIP buffer 

and 5 μl CIP were added and incubated at 37°C. 

7.1.4 Clean-up 

To remove the enzymes and buffers used in DNA manipulations, 50 μl of 

phenol was added to the 50 μl of the “dirty” DNA, mixed and centrifuged at 

room temperature. The aqueous phase was recovered and 100 μl 

chloroform was added, mixed and centrifuged again. The aqueous phase 

was again recovered and the DNA was precipitated with a 10% 5 M NaClO4 

and 110% isopropanol and centrifugation. The supernatant was discarded 

and the pellet was dried using vacuum pump. The pellet was re-suspended 

in 50 μl of TE and tested on a DNA gel. 

7.1.5 Isolation of fragments 

The digested plasmid DNA was loaded on a preparative agarose gel which 

depended on the size of the expected fragment. It was then ran slowly at 50 

V for 3 h or more to ensure good separation of the DNA. The gel was 

visualised using the trans illuminator and fragment of interest was then cut 

out with a razor blade and the DNA was purified using the Quigene® DNA 

extraction kit according to manufacturer’s instructions. 

7.1.6 Ligation 

Three eppendorf tubes were labelled 1, 2 and 3; equal amount of vector 

such as 1 µl was added to each of the three tubes. 1 or 2 µl of the fragment 

depending on the abundance and quality of the DNA was added to tube 
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number 3, 4 µl of 5X ligation buffer was added to each tube. 1µl of DNA 

ligase (Invitrogen)® according to manufacturer’s instruction was added to 

tubes labelled 2 and 3. Then finally the volume in each tube was made up to 

20 µl with TE, mixed and spun down. The tubes were either incubated at 

room temperature for 1-2 h or at 4°C overnight. 

7.1.7 Competent cells 

Solutions and their compositions 

1 litre of 2xYT medium: 16 g bacto tryptone, 10 g bacto yeast extract and 5 g 

NaCl. The solution was made up to 1 litre with water and the pH was 

adjusted to 7.0 using NaOH and autoclave. 

TFBI (200ml): 30 mM KC2H3O2   (0.589 g), 100 mM RbCl (2.418 g), 10mM 

CaCl2·2H2O (0.294g), 50 mM MnCl2·4H2O (1.979 g), 15% v/v glycerol (30 

ml), and was adjusted to pH 5.8 using 0.2 M CH3COOH, and filter sterilised. 

The solution was stored at +4°C. 

TFBII (200ml): 10 mM MOPS 0.419 g, 10 mM RbCl 0.242g,75 mM 

CaCl2·2H2O 2.205g, 15% v/v glycerol 30 ml and was adjusted to pH 6.6 

using 5 M KOH, and filter sterilise. The solution was stored at +4°C. 

 

The MC1061 E. coli cells were streaked on LB. A single colony was selected 

and used to inoculate 3 ml 2xYT in a new 50 ml Falcon tube and was 

incubated at 37°C with shaking. At O.D.550 = 0.300 (slightly turbid), the pre-

culture was poured into 200 ml of 2xYT that was pre-warmed to 37°C and 

was incubated at 37°C. At O.D.550 = 0.480 the culture was transferred into 

four 50ml sterile Falcon tubes and were placed on ice 5 min and all further 

manipulations were carried out on ice. The tubes were spun down at 3K in a 

swing-out rotor at 4°C for 20 min and then the supernatant was discarded. 

The cells were re-suspended in a total of 80ml of ice cold TFBI and placed 

on ice for 5 minutes. The tubes were spun as before and the cells were re-

suspended in 8 ml of TFBII and left on ice for 15 minutes. Using pre-chilled 

pipette tips in the cold room, 100 μl aliquot were added into pre-chilled 

Eppendorfs (sitting on ice), and were frozen in a dry ice and stored at -80°C. 
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LB medium contained 10 g/L bacto-tryptone, 5  g/L bacto-yeast extract, 

10g/L NaCl. 15 g/L agar was added for solid medium. The medium was 

sterilised by autoclaving. 

7.1.8 E. coli transformation 

5 μl of each ligation mixture was added to 100 μl of competent cells, mixed 

and incubated for 15 min on ice (minimum), this was followed by a heat 

shock at 37°C for 3 min during which the E. coli cells take up the re-ligated 

plasmid. 1 ml of LB medium then added and the cells were incubated for a 

further 15 minutes at 37°C. The LB medium with the transformed competent 

cells was then poured onto Ampicillin containing LB-agar plates, dried and 

was incubated overnight at 37°C. The colonies which appeared originated 

from single transformed cells, and were resistant to the antibiotics due to the 

presence of the plasmid.  

7.1.9 Agrobacterium transformation 

1µl of mini-prep was added to 10 0µl of thawed competent cells on ice, and 

the tube was frozen in snow of the fridge and then incubated at 37ºC for 4 

minutes. 1 ml of LB medium was then added to the cells. The suspensions 

were then transferred to 15 ml falcon tubes and incubated overnight at 28ºC 

with shaking. The medium and transformed cells were then poured onto a 

LB plate containing three antibiotics selection: streptomycin (300 µg/ml), 

streptomycin (100 µg/ml) and rifampicin (100 µg/ml), they were dried and 

incubated at 28ºC for two days. 

7.1.10 DNA preparations 

Small scale plasmid DNA preparation (dirty mini-prep) 

E. coli competent cells were transformed with the respective DNA as 

described above. Single colonies were selected and used to inoculate 3 ml 

cultures with LB medium containing 150 µg/ml ampicillin. The inocula were 

grown at 37ºC overnight with shaking. 1.5ml of the culture was then 
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transferred into a microfuge tube and spun at room temperature and 

maximum speed for 1 min. The supernatant was then discarded and the 

pellet was re-suspended in 150 µl of TES buffer (composed of 10 mM Tris-

HCl pH 8.0, 5 mM EDTA, 250 mM sucrose, and filter sterilised). 20 µl of 

lysozyme solution (10 mg/ml) was added to each tube; it was mixed by 

pipetting up and down thrice and incubated for 5 min  at room temperature. 

300 µl of distilled water was added quickly to the mix and incubated at 73ºC 

for 15 min. The tubes were then spun at maximum speed in a microfuge for 

15 min, the supernatant was transferred into a new tube. 10% 5 M NaClO4 

and 110% isopropanol were added to the solution to precipitate the DNA. 

The tubes were then spun at maximum speed and room temperature for 

15mins. The supernatant was discarded and the pellet was dried, the pellet 

was then re-suspended in 50 µl TE (10 mM Tris-HCl pH 8.0, 0.1 mM EDTA). 

A qualitative digests using restriction enzymes were used to check the 

constructs. The positive clones were streaked on an ampicillin plate and 

incubated overnight at 37ºC.  

Wizard prep 

A single colony from the streaked plate above was used to inoculate a 8-10 

ml LB culture and was incubated at 37ºC shaking overnight. The DNA from 

the bacterial culture was purified using Promega Wizard® SV kit according 

to the manufacturer’s instructions. 

Large scale plasmid DNA preparation (maxi-prep) 

3 ml pre-cultures of LB medium containing 150 µg/ml ampicillin were 

inoculated from fresh single colony and grown for 3 h. Slightly turbid pre-

cultures were then used to inoculate 500 ml LB medium cultures, and were 

then incubated at 37ºC shaking for 24 h. The cultures were transferred into 

500 ml bucket and spun down with a swing out rotor at 4ºC and 3699 rpm for 

1 h. The supernatant was discarded carefully and the pellets were re-

suspended in 8ml of ice-cold TE 50/1 by vortexing at intervals (50 mM Tris-

HCl pH 8.0, 1 mM EDTA pH 8.0). The suspension was then transferred into 

pre-chilled SS34 tubes. 2.5 ml of fresh made lysozyme (10 mg/ml) solution 
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was added to each tube, and the tubes were turned upside down to mix. The 

suspensions were then incubated on ice for 5 min, 2 ml of 0.5M EDTA pH 

8.0 was then added to each tube and was mixed as above. RNase solution 

(50 µl of ribonuclease A (20 mg/ml), 150 µl of 10% triton and 800 µl of TE 

50/1) was then added to the tubes, and then turned gently to mix and 

incubated for 30 min on ice.  The tubes were spun for 1hr using sorvall SS34 

rotor at 18000 rpm and 4ºC. The clear supernatant was the transferred to 

new 50 ml falcon tube, 20 ml of equilibrated phenol (pH 8.0, 8-

hydroxyquinoline) was then added to each tube and shaken vigorously for 1 

min. The tubes were then spun for 25 min at 3699 rpm. The aqueous phase 

was then gently transferred to a fresh falcon tube, 20 ml of chloroform was 

then added to each tube, and shaken vigorously followed by centrifugation at 

3699 rpm for 10 min. The aqueous phase was then transferred into 30 ml 

corex tube; volumes were adjusted with TE 50/1. 10% volume of the liquid 

(approx. 1 ml) of 5 M NaClO4 and 8ml of isopropanol were then added to 

each tube and mixed. The tubes were then spun using HB-6 rotor at 4ºC and 

10,000 rpm for 15 min. The supernatant was discarded and the pellet was 

dried using vacuum pump for 3 h. The pellet was finally re-suspended in 500 

µl of TE, and the solution was transferred a new microfuge tube. The 

plasmid DNA was tested on gel for DNA quality and RNAs contamination. 

7.1.11 Sequencing of constructs 

The DNA wizard prep was sent to Source Biosciences, Nottingham, UK for 

sequencing. 

7.1.12 Generation of recombinant plasmids 

Several plasmids were generated for this thesis using techniques such as 

PCR, quick change and sub-cloning of various fragments. Table 7.1 shows 

the list of oligonucleotide primers used for generating the different 

constructs. Table 7.2, shows a description of the various pUC plasmids and 

Table 7.3 shows the list of the plant vectors that were used in this thesis. 
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Table 7.1 The list of primers used to generate the different constructs 
Name Sequence 

BamAMY AGGCTCTGGATCCGAAATTCTGTGTCAAGGATTT 

AMYSal GATATGCCGTCGACTCATGATGTTTCCCACACTTT 

Nco1Amy AGGCTCTGCCATGGAAATTCTGTGTCAAGGATTT 

AmyBam GATATGCCGGATCCTCATGATGTTTCCCACACTTT 

AtCla1AMY GATCCTCTCTATCGATGTCCACTGTTCCCATTGAG 

AtAMYBam TGGGAACCGGATCCTTAAGATGTTTCCCACACCTT 

Nco1Amy3full CTCTCTCTCGCCATGGCCACTGTTCCCATTGAGTCTCTTCTCCACCA 

Atamy3Nhe GGCATAATATGCTAGCTCCCGAGCCGGTTCCTGAGG 

AtNco1Amy ACCGGCTCGGCCATGGAGATATTATGCCAAGGTTTCAAC 

Atamy3As CCAGCAGCTCCACTAGTTGC 

AtAMYBam AAGGTGTGGGAAACATCTTAAGGATCCGGTTCCCA 

AtAMYXba CTACAAGGTGTGGGAAACATCTTAATCTAGAGGTTCCCAAT 

HvCla1AMY AGCTTGGCATCGATGCAAGTCCTCTTTCAGGGCTTC 

HvAMYSal TCTGCTTCGGTCGACCTAGATCTTCTCCCATACGGC 

HvS GCTTGGCCGGATCCCAAGTCCTCTTTCAGGGCTTC 

Glycamy ACCCGGCACGGGATACACTCTGAGAGCAAGCTGCAAATC  

GlyamyAS GATTTGCAGCTTGCTCTCAGAGTGTATCCCGTGCCGGGT 

PUCOF CCACACAACATACGAGCCG 
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Table 7.2 Description of pUC plasmids 
Construct 

(pIKA) 

Description Mode of 

generation 

1 35S-Maxbamy(COOH-terminus)-3’NOS PCR 

2 GST-Maxbamy(COOH-terminus) PCR 

3 35-Atamy3(COOH-terminus)-3’NOS PCR 

4 GST-HvAmy PCR 

5 35-Atamy3(Nco1)-3NOS PCR 

6 35S-Maxbamy(UD)-YFP-3’NOS PCR 

7 35S-Atamy3-3’NOS PCR 

8 35S-Hvamy(ΔG)-3NOS PCR 

9 TR2-GUS-3OCS-35S-Amy-3NOS Sub-cloned 

10 TR2-GUS-3OCS-35S-Amy(ΔG)-3NOS Sub-cloned 

11 TR2-GUS-3OCS-35S-AmyHis-3NOS Sub-cloned 

12 TR2-GUS-3OCS-35S-Amy(ΔG)His-3NOS Sub-cloned 

13 TR2-GUS-3OCS-35S-AmyCal-3NOS Sub-cloned 

14 TR2-GUS-3OCS-35S-AmyCalHDEL-3NOS Sub-cloned 

15 TR2-GUS-3OCS-35S-Amy(ΔG)Cal-3NOS Sub-cloned 

16 TR2-GUS-3OCS-35S-Amy(ΔG)CalHDEL-3NOS Sub-cloned 

17 35S-Amy(ΔG)HDEL-3NOS PCR 

18 35S-Amy(ΔG)EDDDHDEL-3NOS PCR 

19 TR2-GUS-3OCS-35S-Amy(ΔG)HDEL-3NOS Sub-cloned 

20 TR2-GUS-3OCS-35S-Amy(ΔG)EDDDHDEL-3NOS Sub-cloned 

21 TR2-GUS-3OCS-35S-AmyHDEL-3NOS Sub-cloned 
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Table 7.3 List of plant vectors and descriptions 
Name Description  

pTAmy α-amylase  

pTIKA2 α-amylase ∆-glycan  

pTIKA3 α-amylase-His6  

pTIKA4 α-amylase ∆-glycan-His6  

pTAmyHDEL α-amylase-HDEL  

pTIKA5 α-amylase ∆-glycan HDEL  

pTKA8 α-amylase-EDDDHDEL  

pTIKA9 α-amylase ∆-glycan EDDDHDEL  

pTAmyCal∆HDEL α-amylase-calreticulin  

pTIKA6 α-amylase ∆-glycan calreticulin  

pTAmyCalHDEL α-amylase HDEL calreticulin  

pTIKA7 α-amylase ∆-glycan HDEL cal  

 

7.2 Tissue Culture 

7.2.1 Generation of plant material 

Nicotiana tabacum seeds were surfaced sterilised and grown on Murashige 

and Skoog medium (Murashige and Skoog, 1962) and 2% (w/v) sucrose at 

22ºC in a controlled room at 16-h day length and light irradiance of 200 

mE/m2/second. The plants were used to generate protoplasts for transient 

expression. 

Transient expression in protoplasts 

7.2.2 Preparation of protoplasts 

All solutions were sterilized by filtration through 0.2 µm filter with a syringe in 

a laminar flow bench. Leaves were cut gently on the lower surface every 1-2 

mm (without cutting through the whole surface). This was done by balancing 

the scalpel so that a fraction of its own weight exerts the pressure on the leaf 

surface. The mid nerve was removed and the two halves of the leaf were 
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transferred to a Petri dish containing 7 ml digestion mix 1X (TEX buffer (B5 

salts, 500 mg/l MES, 750 mg/l CaCl2 (2 H2O), 250 mg/l NH4NO3, 0.4 M 

sucrose (13.7%), pH 5.7 (with KOH) and enzyme mix (2 % Macerozyme 

R10; 4% Cellulase R10)., with the cut side facing downwards. The plates 

were incubated in the dark overnight, and 30 min before use, and gently 

shaken to release protoplasts from the cuticula. The digestion mix was 

filtered through a 100 µm nylon filter and the filter. The protoplasts were then 

centrifuged in Falcon tubes (50 ml) for 15 min at 100 g and room 

temperature in a swing-out rotor. A long Pasteur pipette connected to a 

peristaltic pump which can pump up to 1 litre per minute and the Pasteur 

pipette was inserted through the floating cell layer and was used to 

underlying medium were removed until the band of living protoplasts 

reaches the bottom. 25 ml of electroporation buffer (0.4 M Sucrose (13.7%), 

2.4 g/l HEPES, 6 g/l KCl, 600 mg/l CaCl2, pH 7.2 (with KOH)) was added 

and spun again at 80 g for 10 mins. The underlying solution was removed as 

described above and the procedure was repeated twice. At the end the 

protoplasts were resuspended in an appropriate volume in order to obtain 2-

5 x106 protoplasts/ml. This solution was used for the electroporation. 

7.2.3 Electroporation procedure 

500 µl of protoplasts was pipetted gently into a disposable 1ml plastic 

cuvette. Plasmid DNA was diluted in 100 µl of electroporation buffer and was 

mixed by gentle shaking. The cells were incubated for 5 minutes. The 

electroporation was performed with the following conditions: 910 µF, 130 V. 

The electrodes were rinsed in distilled sterilized water to remove cell debris 

and DNA,  and dipped in 99 % ethanol, then  briefly flamed and was cooled 

down in electroporation buffer. The electroporated cells were incubated 

(without shaking) for 15-30 min to allow the cells to recover. The cuvette was 

then rinsed twice with 1 ml of TEX buffer and the obtained cell suspension is 

incubated in small Petri dishes in the dark during an appropriate time period 

(24 h). 
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7.2.4 Harvesting of the cells and culture medium 

After incubation, the cell suspension was recovered in a small Falcon tube 

(15 ml). For the intracellular proteins: 1ml of the cell suspension was diluted 

10 fold with 250 mM NaCl and was centrifuged for 3 minutes at 200g. 

Refined pasteur pipette was used to remove the suspension, a further 5 

minutes centrifugation was performed, the remaining supernatant was 

completely removed with a peristaltic pump. The cell pellet was immediately 

placed on ice and was then extracted with the appropriate buffer.  

To recover secreted proteins such as -amylase; 500 µl of the cell 

suspension was place on ice in an Eppendorf tube. The suspension was 

then sonicated later and centrifuged to obtain the total sample. The was 

recovered resuspended and pellet resuspended in amylase buffer. 

7.2.5 Tobacco leaf infiltration 

Solutions and compositions 

MGL medium: yeast extract (2.5 g/L), tryptone (5 g/L), NaCl (5 g/L), mannitol 

(5g/L), monosodium glutamate (1.16 g/L), KH2PO4 (0.25 g/L), MgSO4
.7H2O 

(0.1 g/L), biotion (1 g/L ) and pH 7.0 

Infiltration buffer: 50 mM MES (pH 5.6), 2 mM Na3PO4, 0.5% glucose, 100 

µM Acetosyringone. 

 

The constructs of interests were cloned into the plant vector, and was used 

to inoculate a culture using MGL medium and was grown at 28ºC overnight 

with shaking. 1 ml of the cells suspension was centrifuged at 5000 rpm 

(2200 g) for 5 min in a microcentrifuge at room temperature. The pellet was 

re-suspended in 1 ml of the infiltration buffer and centrifuge again. This 

procedure was repeated twice to remove the remaining MGL. The cell was 

re-suspended in 1 ml of infiltration buffer and diluted five fold, the OD600 was 

measured. The cell suspension was diluted to OD600 of 0.1 which is the OD 

required for the injection. Using a yellow tip, small hole was created in the 

leaves and the Agrobacterium suspension was injected into the leaf by press 

the nozzle of a 1 ml syringe (no needle) against the lower (abaxial) 
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epidermis of tobacco leaf, the small hole was covered with the nozzle and 

held using a gloved finger to the other side of the leaf and injected slowly. 

The infiltrated area turns dark and is marked with black pen. The plants were 

incubated under normal growing conditions for 2-3 days. The infiltrated area 

was excised and proteins were extracted and analysed as appropriate.   

7.2.5 Generation of Transgenic plants 

In a laminar flow hood, tobacco leaves were cut into 0.5 – 1 cm2 squares 

void, the mid-rib and the primary nerves were avoided without damaging the 

surface of the squares. The leaf squares were put 10-20 to float upside up 

on 10 ml of A10 in a Petri dish. The 10ml was infected with 100 l of 

Agrobacteria overnight culture (in MGL medium) and was grown at 28C and 

2-3 days in the dark. The leaves were transferred to a fresh dish with 10 ml 

of A10 and were incubated for 15 minutes, and swirled gently thrice to allow 

bacteria to come off the plant cells. The liquid was sucked away with 

disposable sterile plastic pipette and replaced by 10ml of A10. The plates 

were incubated for ten minutes and swirled gently as before. The third wash 

was repeated A10 supplemented with 500 g/ml cefotaxime (a 

bacteriostaticum). The leaves were transferred to solid A11 medium and 

were pressed very gently to the surface to allow good contact. Incubated for 

7 days, the leaves were then transferred to fresh A10 plants. After a week, 

the leaves were transferred to fresh plates and incubated for a week; the 

leaves were again transferred to fresh plates. The calli appeared, and were 

transferred to A12 medium; and placed so that good contact with the 

medium were established to ensure proper selection as well as nutrition. 

This incubation was for two weeks, the calli were transferred to fresh plates 

for another two weeks. The calli (5 mm) were placed in small jars containing 

A13 (A12 but no NAA) and incubate for a further 2 weeks, this was repeated 

twice or thrice. The shoots were cut with a sharp scalpel and place on MS2 

medium without pushing the stem too deep in the agar. At this point, leaves 

of the respective shoots were cut and proteins were extracted and used for 

analysis.  
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   A10  A11  A12  A13       

800ml 

 

B5     +    +    +  +       2.56 

g 

NH4NO3(250 mg/l)   +    +    +  +       200 

mg 

MES (500 mg/l)   +    +    +  +       400 

mg 

Glucose (2%)   +     +    +  +       16 g 

Agar (0.75%)    -    +    +  +        6 g 

Adenine (40 mg/l)   -      +    +  +      32mg 

pH 5.7 (KOH) 

 

Added prior to use of medium:- 

   A10  A11  A12  A13        

Stock Conc 

   

BAP   1 g/ml 1 g/ml 1 g/ml 1g/ml        

(1mg/ml) 

NAA   0.1 g/ml 0.1 g/ml 0.1 g/ml       -        

(1mg/ml) 

Cefotaxime    -            500 g/ml 200 g/ml 200g/ml   

(200mg/ml) 

 

Selective pressure 

Kanamycin     -            100 g/ml 100 g/ml 100g/ml   

(100mg/ml) 

or 

Phosphinothricine   -  5 g/ml 5 g/ml 2 g/ml        

BAP = 6-benzylamino purine 

NAA = -naphthalene acetic acid 
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7.3 Enzyme assays 

7.3.1 α-amylase assays 

The medium and cell fractions from the harvested transiently expressed 

protoplasts were analysed for amylase activity using the procedure 

described on the Megazyme kit. To measure the total amylase activity, 500 

µl  of the protoplasts was transferred into 500 µl  of amylase extraction buffer 

(50 mM malic acid, 50 mM NaCl, 2 µM CaCl2, 0.02% sodium azide and 

0.02% BSA) and sonicated for 5 sec at 50 or 60% amplitude and was 

followed by centrifugation at 4ºC and 14,000 g for 15 min. The medium 

samples were 2-fold diluted with amylase extraction buffer. The cells were 

resuspended by adding 950 µl amylase buffer, sonicated for 5 sec at 50 or 

60% amplitude and was followed by centrifugation at 4ºC and 14,000 g for 

15 min. The supernatant was transferred into fresh microfuge tube and used 

for the assay. The α-amylase substrate contained blocked P-nitrophenyl 

maltoheptaosides (54.5 mg), glucoamylase (100 U, pH 5.2), α-glucosidase 

(100U, pH 5.2) and dissolved in 10 ml of distilled water according to 

manufacturer’s instructions. 

 

The assay was performed as followed: 30 µl of the substrate was added to 

30 µl of sample, and the mix was incubated at 45ºC; the reaction was 

stopped by adding 150 µl of 1% (w/v) Tris pH 11. 200 µl of the solution was 

then added into the well of microtitre plate and the optical density was read 

at 405 nm. OD values of the mock electroporations (negative controls) were 

used to correct the absorbances. Values greater than O.D of 1 were 

considered out of scale; and the respective samples were diluted. The 

amylase activity was calculated as the change in optical density divided by 

the volume of extract used (µl) and incubation times and multiplied by 1000 

to convert to ml. The assays were repeated either twice or thrice and the 

average was computed. The secretion index (S.I) was calculated as the 

extracellular divided by intracellular amylase activity.  
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7.3.2 Gus assays 

500 µl of the protoplast was transferred into a microfuge containing 500 µl of 

GUS extraction buffer (50 mM (P) Sodium buffer pH7.0, 10 mM Na2EDTA, 

0.1% sodium lauryl sarcosine, 0.1% Triton X-100 and 10 mM β-mercapto-

ethanol). The solution was the sonicated for 5 sec at 60% amplitude, vortex 

for 5 sec and was followed by centrifugation at 4ºC and 14,000 g for 15 min. 

The clear supernatant was transferred into fresh microfuge tube and used 

for the assay. The assay was set as followed; 80 µl of stop buffer (2.5 M 2-

amino-2methyl 1,3-propanediol) was added to the zero stop tube, 100 µl of 

reaction buffer (50 mM (P) Sodium buffer pH 7.0, 0.1% Triton, 2 mM PNPG, 

10 mM β-mercapto-ethanol (added prior to use)) was added to both the zero 

stop and the test tubes. 100 µl of each sample was then added to respective 

tube, and incubated at 37ºC for 2h. The reaction was stopped by adding 80 

µl of the stop solution to the test sample. 250 µl of the solution was then 

added to each well of microtitre plate and the optical density was read at 405 

nm. The OD values of the zero stops were used to correct the absorbance 

for each sample. OD above 2.0 was considered out of scale, assays were 

initially repeated for shorter time or samples were diluted. Later, an equation 

was used to normalise the values. 

7.4 Protein Gels and immunoblots 

Solutions 

Sample buffer: 0.1% bromophenol blue, 5 mM EDTA, 200 mM Tris pH 8.8, 

and 1 M sucrose 

Sample buffer mix: 900 µl sample buffer, 300 µl 10% SDS, 18 µl 1 M DTT 

Stacking gel: 5% protogel (30% acrylamide, 0.8% bisacrylamide), 15% 

sucrose, 66 mM Tris-HCl (pH 6.8), 0.1% SDS, 0.2% v/v N,N,N’,N’-

tetramethylethylenediamine, 0.033% w/v ammonium sulphate. 

Separating gel: 12% protogel (30% acrylamide, 0.8% bisacrylamide), 420 

mM Tris-HCl (pH 8.8), 0.1% SDS, 0.055% v/v N,N,N’,N’-

tetramethylethylenediamine, 0.033% w/v ammonium sulphate. 
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5X running buffer: 30 g/l Tris-HCl, 144 g/l glycine, 5 g/l SDS 

7.4.1 SDS-PAGE: the gel assembly 

The gel cassette was assembled, the separating gel was prepared and 

poured, 1ml of separation mix was then added and the gel was allowed to 

set for 1-1.5h. The separation mix was discarded and the gel was washed 

with water and dried. The stacking gel was prepared as described above 

and the mix was poured into the cassette, the comb was inserted. The gel 

was then allowed tom set for 1.5-2 h, the gel was mounted onto the 

electrophoretic platform. 1X running buffer was added and the comb was 

removed, the wells were washed, all bubbles were removed. The protein 

samples boiled in sample buffer mix at 95ºC and marker were then loaded. 

The gel was run initially at low current which was subsequently increased 

until all the proteins were separated. 

7.4.2 Ponceau staining 

The membrane was at times stained in ponceau solution which contained 

0.1% Ponceau S, and 5% acetic acid,  

7.4.3 Western blotting 

The proteins were initially separated on SDS-page and then transferred onto 

nitrocellulose membrane using a home-made device.  Electroblotting was 

perfomerd for 2 h at a current 500 mA in buffer (3 g/l Tris-HCl, 14.4 g/l 

glycine and 10% methanol. 

 

The membrane was then washed several times with 1X PBS and 0.5% 

tween 20 (10X PBS: 87 g/l NaCl, 22.5 g/l, Na2PO4-2H2O, 2 g/l KH2PO4, pH 

7.4). The membrane was then transferred into blocking solution (5% 

skimmed milk in PBS-T) for 1h with shaking. The membrane was then 

washed several times with PBS-T and then PBS. The primary antibody was 

diluted 1:5000 in PBS, 0.02% sodium azide and BSA. The membrane was 

then incubated in the primary antibody at 4ºC overnight. The antibody was 
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removed and membrane was washed several times with PBS-T. The 

secondary antibody (anti-rabbit IgG) was diluted in blocking solution 

1:15,000. It was then added to the membrane and incubated for 1 hour 

shaking. The antibody was discarded and the membrane was washed 

several times with PBS. Immuno-detection were usually performed with the 

enhanced chemo-luminescence (ECL) system. ECL solutions 1 (1 ml Tris-

HCl pH 8.5, 100 µl 250 mM luminol, 44 µl p-coumaric acid and 8.85 ml 

dH2O) and 2 (6 µl 30% H2O2, 1ml IM Tris-HCl pH 8.5, 9 ml dH2O) were 

prepared. The membrane was then incubated in the two solutions for few 

minutes, and the films were exposed for 1min or more (when the signal was 

weak) and the film was then developed. 

7.5 Recombinant protein expression and purification 

7.5.1 Expression 

The barley and plantain amylase were each PCR amplified and cloned into a 

GST plasmid (pGEX-4T-1); and two recombinant plasmids pIKA2 and pIKA4 

respectively were made. E. coli competent cells (star and gold strains) were 

transformed with the two constructs and GST only and grown overnight at 

37ºC. Single colonies were used to inoculate LB medium liquid cultures and 

incubated at 37ºC overnight. The O.D of the overnight cultures were 

measured, a pre-culture using LB medium was inoculated at OD of 0.1 and 

was grown 37ºC till OD of 0.6. When the OD was 0.6, an aliquot of the 

culture was taken before induction. 1 M IPTG was added to a final 

concentration of 1mM or lower to induce the gene, the culture was grown for 

five hours; 600µl aliquot was transferred into a microfuge tube at 3, 4 and 5 

hours respectively. The sample was spun at maximum, and the pellet was 

frozen at -80ºC. Sample buffer mix was made, and the pellets were 

resuspended throughly in 200 µl of the buffer and boiled at 95ºC for 5 min. A 

10% SDS-PAGE was made and the samples were loaded and ran at low 

voltage. The gel was stained in coomasie blue for 1 hour and de-stained 

overnight in a solution of 10% acetic acid and 25% methanol and 35% water. 

The gel image was taken. 
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7.5.2 Solubilisation 

The expressions were performed as described above. The pellets were 

resuspended in three buffers; 1) Buffer 1 (50 mM Tris pH 8.8, 2 mM EDTA 

pH 8.00), 2) Buffer 2 (50 mM Tris pH 8.8, 2 mM EDTA pH 8.00, 150 mM 

NaCl), and 3). Phosphate buffered saline, PBS (NaCl, Na2HPO4.2H2O, 

KH2PO4, pH 7.4). The samples were then sonicated for two cycles of 30 

seconds and 40% amplitude each, followed by centrifugation at maximum 

speed and +4ºC for 15mins. The supernatants were transferred to a new 

microfuge tube, and the pellets were resuspended in 500µl of respective 

buffer. Equal volume of the samples were mixed with sample buffer mix and 

loaded on a 10% SDS-PAGE gel. The gel was stained and de-stained as 

described above. 

 

The solubilisation experiment was repeated as described above, cultures 

were incubated at 28ºC and induced for 3hrs. The pellets were re-

suspended in Bug buster and phaseolin buffer (Tris pH 8.0, NaCl, EDTA, 

10% triton and β-mercapto-ethanol). The samples resuspended in phaseolin 

buffer were sonicated for three cycles at 50% amplitude for 15 secs. The 

bug buster resuspeded samples were incubated at room temperature for 30 

mins. The samples were spun at maximum for 10mins. The supernatant 

recovered into a new tube and pellet re-suspended in 250 µl of the 

respective buffer. 42 µl of 6X sample buffer mix added to each sample and 

10µl of each was loaded on a 10% gel and ran at 10 mA, and 20 mA later. 

The gel was stained and de-stained as described above. 

 

Solubilisation experiment repeated again, cultures were incubated at 28ºC 

and induced for 3 hrs. The pellets were resuspended in PBS and phaseolin 

buffers. Three cycles of sonication at 40% amplitude and 30 secs were 

performed. All other treatments were as above. 

 

The solubilisation experiments was again set, cultures were grown using two 

different media, LB and TB. The cultures were incubated at different 

temperatures; 0, 10, 16, and 37ºC (for auto-induction). For temperatures of 
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10 and 16 ºC, the procedure was as described above. The auto-induction 

was performed as followed; a single colony was inoculated in 2 ml of LB-1D 

and was grown all day at 37ºC. 5 µl of the pre-culture was inoculated in 10ml 

LB-5052 was grown overnight and whole day (22 hrs). The cultures were 

pellets and the pellets were resuspended in PBS (+lysozyme) and phaseolin 

buffer. This was followed by sonication as described above. The samples 

were loaded on a 10% protein gel and treated as described above. 

The auto-induction experiment was repeated and the samples were re-

suspended in phaseolin buffer. 

7.5.3 Protein quantification 

The cultures (pre- and induced cultures) were grown at 37ºC, the expression 

was induced with 1 mM IPTG and cultures were incubated for three hours 

after induction. The pellets were resuspended in PBS (+lysozyme) and 2X 

phaseolin buffer and sonicated for 1min at 40% amplitude (3-4 cycles); 

followed by centrifugation at maximum. Supernatants were transferred into 

fresh tubes; pellets were resuspended in 1X phaseolin buffer. The samples 

were then mixed with 6X sample buffer. The expressed pIKA2 and pIKA4 of 

1,2, and 4 µl were loaded against BSA standard (0.5, 1, 2, and 5 µg) on a 

10% gel and the protein amount were quantified. 1 µl of the expressed 

pIKA4 was equal to 4 µg of BSA. 

 

The expression of pIKA2 was repeated at 28ºC and induced for 5 h. Due to 

the pattern of the protein obtained, the expression was repeated using the 

same condition of expression and the culture was induced for 5hrs. The 

pellets were sonicated five times at 40% amplitude for 1min; the proteins 

were loaded on gel and quantified again BSA standard. 

7.5.4 Purification 

The proteins were not solubilised, so could only be purified from SDS-PAGE. 

A preparative 10% gel with large well was made; 200-250 µg of proteins was 

loaded on each gel. The gel was ran at low voltage and was stained with 
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coomasie blue for 1 h and de-stained overnight. A microfuge tube was 

weighed and recorded as a reference tube, another tube was weighed and 

the protein band was cut using a sterile blade. The cut gel slice was 

transferred into the tube and weighed again. This was repeated eight times 

for each recombinant protein. The purified protein bands were sent to 

Eurogentec for antibody production. 

7.5.5 Antibody production: immunisation schedule 

Two rabbits were used for each antigens; pIKA2 (plantain amylase), and 

pIKA4 (barley amylase). The amount of protein injected is 200 µg of protein 

per rabbit per injection. Four injections are performed for each antigen in two 

hosts. Four bleeds are obtained: pre-immune bleed (before immunisation), 

then first immunisation. The first boost was performed and small bleed was 

taken, then second boost is made, large bleeding was performed. The third 

(last) boost was performed and final bleed was made. 

7.5.6 Characterisation of Antisera 

The antisera were diluted 5000 fold (1 in 5000) and the diluents were used 

for immunodetection. Samples from GST fused proteins expressed in E. coli 

were loaded at different dilutions on protein gels. The gels were stained with 

ponceau, washed and the different antisera were used to detect the 

respective amylases. 

 

Further characterisation of small, large and final bleeds of antisera against 

the barley amylase was performed with the extract from the transgenic 

potatoes. Three dilutions of the antisera were used: 1:1000, 1:3000 and 

1:5000. 
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7.6 Analytical Techniques 

7.6.1 Glucose assay 

The 48 ml GOPOD reagent buffer, pH 7.4 containing 0.22 M of p-

hydroxybenzoic acid, and 0.4% w/v sodium azide was diluted to 1L with 

distilled water according to manufacturer’s instructions. The GOPOD reagent 

enzymes (Glucose oxidase plus peroxidase and 4-aminoantipyrine) was 

dissolved in 20 ml of water and transferred to the diluted buffer solution 

according to the manufacturer’s instructions. 

 

Glucose stock of 10 mg/ml was prepared and dilutions to concentrations of 

0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.4, 1.6, 1.8, 2.0 

mg/ml were made.  

 

The glucose assays was performed as followed; 10µl of test sample or blank 

(water) was added to 300 µl of the GOPOD reagent mix, the solution was 

mixed and incubated at 45°C for 20 min. The absorbance was read at 510 

nm against the reagent blank. The absorbances were used to construct a 

glucose standard curve in Microsoft excel. 

7.6.2 Gel filtration  

A column packed with Sephadex G-25 was prepared in water and about 

25ml was poured into a column; 200 mM sodium acetate (pH 4.5) was used 

to wash the column several times. 2.5 ml of glucoamylase was added onto 

the column in a step wise manner and the protein was eluted with 200mM 

sodium acetate. Fractions of 500 µl were collected and analysed for 

glucoamylase activity and glucose concentration. 

7.6.3 Glucoamylase assay 

The glucoamylase substrate contained blocked P-nitrophenyl-β-maltoside 

(4mM), plus thermostable β-glucosidase (5 U/ml) was dissolved in 10 ml of 
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distilled water according to manufacturer’s instructions. The assay was 

carried out using the procedure described on the Megazyme kit. To measure 

the total glucoamylase activity: 30 µl of the substrate was added to 30 µl of 

sample, and the mix was incubated at 45 ºC; the reaction was stopped by 

adding 150 µl of 2% (w/v) Tris pH 8.5. 200 µl of the solution was then added 

into the well of microtitre plate and the optical density was read at 405nm. 

OD values of the mock (negative controls) were used to correct the 

absorbances. Values greater than O.D of 1 were considered out of scale; 

and the respective samples were diluted. The glucoamylase activity was 

calculated as the change in optical density divided by the volume of extract 

used (µl) and incubation times and multiplied by 1000 to convert to ml. The 

assays were repeated either twice or thrice and the average was computed.  

7.6.4 Starch saccharification 

A 30% starch solution was prepared as described above, the solution was 

autoclaved twice. The solution was neutralised by adding 4 M NaOH to a 

final concentration of 10 mM. The hydrolysed solution solution was cooled to 

temperature of 55ºC and 500 µl of the gel filtrated glucoamylase was added 

and mixed. The slurry was incubated in the water bath at  55C, samples 

were taken after 15 min, 30 min, 1, 2, 4, 6 and 8 h. Each time the sample is 

diluted 300 fold and the glucose amount was determined using the glucose 

oxidase-peroxidase method as described above. The glucose concentration 

was deduced using the glucose standard curve. 

7.6.5 Combined Saccharification and liquefaction 

The starch was gelatinised as described above, glucoamylase was then 

added to the hydrolysed solution as was described above, 2.5 and 5ml of α-

amylase was then added to the solution and incubated at 55ºC. All other 

treatments were as described above. 
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7.6.6 Acid hydrolysis of starch 

A 30% starch solution was made; 30 g of starch dissolved in 70 g (ml) of 

distilled water, concentrated HCl was added to a final concentration of 

10mM. The solution was autoclaved in 5 cycles, at the end of each cycle an 

aliquot of the liquefied solution was taken, diluted and glucose was 

measured as absorbance. The glucose concentration was deduced using 

the standard curve. 

7.6.7 HPAE-PAD Chromatography 

200 mM sodium hydroxide and sodium acetate were prepared and filtered 

using the vacuum pump to remove all insoluble particles. The hydrolysate 

samples from the five repetitive autoclaving were diluted to a concentration 

of 0.1 mM each. The solutions above were used as effluents in the 

chromatography according to manufacturer’s instructions (Dionex)®. 

7.7 Soluble protein extraction from plantains 

7.7.1 Protein Extraction 

Plantains were obtained from Leeds City Market and were kept at room 

temperature until extraction. Water soluble proteins were extracted from the 

plantain as followed; the plantain was peeled, the pulp was cut and 

measured. Alpha amylase extraction buffer in the ratio of 1:2 was added to 

the pulp and ground using a domestic blender. The homogenate was spun 

at maximum using the refrigerated centrifuge, the supernatant was 

recovered and pellet discarded. Alpha amylase activity was measured. 

Plantains were obtained from Leeds City Market and were kept at room 

temperature until extraction. Water soluble proteins were extracted from the 

plantain.  
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7.7.2 Ammonium sulphate precipitation and dialysis 

The protein was precipitated by fractionated ammonium sulphate 

((NH4)2SO4) precipitation at 30%. Ammonium sulphate fractionations were 

performed repeatedly for plantain and barley extracts. Dialysis membrane 

CelluSep® was used according to the manufacturer’s instruction. The 

ammonium sulphate fractions were dialysed against distilled water overnight 

at 4ºC. The alpha amylase activity was measured using the Ceralpha 

Method from Megazyme according to manufacturer’s instructions (McCleary 

and Sheehan, 1987; Sheehan and McCleary, 1988). Total protein 

concentrations were measured using the Bio-rad reagent (Bradford, 1976).  

7.7.3 Column purification 

Alpha-amylase purification was attempted using the GE Healthcare HiTrap 

column for anion exchange chromatography (Q-IEX) and cation exchange 

chromatography (SP-IEX) with Hepes buffer at pH 7.5 and elution by 

application of a salt gradient (0-1 M). A further purification of alpha-amylase 

using Q-HiTrap column was performed with alpha amylase buffer at pH 5.5 

instead. The binding of alpha amylase to sepharose was tested in sepharose 

binding assay; 200 µl of sepharose slurry (initially washed with HEPES 

buffer) was added to 600 µl of HEPES buffer and 200µl of dialysed amylase 

extract were mixed and used. 

7.8 Protocols used to identify the plantain α-amylase 

7.8.1 RNA extraction 

RNA extraction was attempted using modified methods (Birnboim, 1988; 

Suzuki et al., 2004); in brief 1 gram of plantains was ground in liquid 

nitrogen. 9 mls of NTES solution (1% SDS, 0.1 M NaCl, 0.01 M Tris-HCl and 

1 mM EDTA in DEPC-water) was added to 6 ml of 50/50 phenol chloroform 

and mixed. The plantain powder was added to the mix and centrifuged in 

Sorvall HB6 at 8000rpm. The supernatant was collected and transferred into 
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a new corex tube, 800 µl of 2 M sodium acetate, and 15 ml of ice cold 

ethanol were added and centrifuged. The pellet was re-suspended in DEPC-

water. 500µl of 4M lithium chloride was added and the solution was aliquot, 

vortex and incubated on ice for 3 hours. The solution was centrifuge at 

maximum speed and the pellet was dissolved in 400 µl of DEPC-water, 40 µl 

of 2 M sodium acetate and 800 µl of ethanol were then added to the pellet; 

the RNA was stored at -80°C till further analysis. The solution was 

centrifuged at maximum speed, the supernatant was removed, and the pellet 

was drained and re-suspended in 50 µl of water. The absorbance (A260/A230 

and A260/A280) and RNA concentration were measured using the Nanodrop 

spectrophotometer. Lots of modifications to the method above to optimise 

the amount and quality of RNA obtained were carried out repeatedly; these 

include changing the ratio of NTES solution to phenol-chloroform, the 

changing of ratio of phenol to chloroform (from 1:1 to 1:2).  

 

RNA was then extracted from approximately 1 g of plantain as described 

(Asif et al., 2000). Plantain was sliced and deep frozen in liquid nitrogen; 10 

mL of preheated (65°C) extraction buffer (100 mM Tris-Cl pH 8.2, 1.4 M 

NaCl, 20 mM EDTA (pH 8), 2% CTAB; 10 µl of 2-mercaptoethanol) was 

added to the tissue and homogenized. The homogenate was transferred to a 

clean 30 ml centrifuge tube and incubated at 65°C for 1 h, with gentle 

vortexing every 15 min. The tube was cooled to room temperature and 10 ml 

of chloroform (CHCl3: isoamylalcohol, 24:1) was added. The tube was 

shaken vigorously until the two phases formed an emulsion. The tube was 

centrifuged at 12000 g for 15 min at room temperature.  The aqueous phase 

was collected and re-extracted with an equal volume of chloroform. The tube 

was centrifuged again. The aqueous phase was collected and 10 M LiCl was 

added to a final concentration of 3 M, the RNA was allowed to precipitate at 

4°C overnight. RNA was recovered by centrifugation at 17000 g at 4°C for 

20 minutes. The pellet was dissolved in DEPC treated water and extracted 

sequentially once with phenol, phenol: chloroform (1:1), and chloroform. The 

aqueous phase was collected and 1/30 volume of 3 M Na acetate pH 5.2 

and 0.1 volume of 100% ethanol were added to it, mixed well and kept on 
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ice for 30 minutes. The tube was centrifuged in a microfuge at 4°C for 25 

min. A white jelly-like pellet consisting mostly of polysaccharides was 

obtained and discarded. To the clear supernatant 3 M Na-acetate pH 5.2 to 

a final concentration of 0.3 M and 3 volumes of 100% ethanol were added. 

The RNA was precipitated at -80°C overnight. RNA was recovered by 

centrifugation in a microfuge at 4°C for 20 min. The pellet was washed with 

equal volume of 70% EtOH. It was vacuum dried and re-suspended in 50 µl 

of DEPC treated water. The absorbence (A260/A230 and A260/A280) and RNA 

concentration were measured using the Nanodrop spectrophotometer. 

7.8.2 Design of degenerate primers 

Apha-amylase sequences of different plants were retrieved from the NCBI 

website, the sequences were aligned using the ClustalW2 multiple alignment 

programme using the following alpha amylase sequences from; Hordeum 

vulgare (AAA98790.1), Sorghum bicolour (XP_002460332.1), Musa 

acuminata (AAN01149.1), Vigna mungo (CAA51734.1), Phaseolis bulgaris 

(BAA33879.1), Glycine max (ACU18643.1), Ipomoea nil (BAC02435.1). 

Primers were designed based on areas of homology that showed 

conservation between the sequences. A pair of degenerate primers was 

designed; amyS1 and amyAS1 for forward and reverse primers respectively.  

7.8.3 PCR amplification of cDNA 

The cDNA was synthesized from 5 µg RNA with oligo (dT)18 primer using the 

Fermentas first strand cDNA synthesis kit according to manufacturer’s 

instruction. To terminate the reaction the reaction mix was boiled for 3 min. 

The cDNA was diluted into 10, 100, and 1000-fold. PCR amplifications were 

carried out using the degenerate primers amyS1 and amyAS1 with the 

cDNA as the template using both the concentrated stocks and the diluents. 

The PCR conditions were as followed; a total of 45 cycles, hot started for 5 

minutes paused at 3min and 5µl of PFU DNA polymerase (Strategene) 

added, denatured at 94°C for 15s , annealed at 50°C and extended at 72°C. 

1% gel was run to visualise the PCR amplified product, a preparative gel 

http://www.ncbi.nlm.nih.gov/protein/166995
http://www.ncbi.nlm.nih.gov/protein/242044922
http://www.ncbi.nlm.nih.gov/protein/22536012
http://www.ncbi.nlm.nih.gov/protein/437945
http://www.ncbi.nlm.nih.gov/protein/3769330
http://www.ncbi.nlm.nih.gov/protein/255636611
http://www.ncbi.nlm.nih.gov/protein/21670851
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was used to extract the DNA. The PCR products of the desired sizes were 

gel purified using the protocol as instructed by the Qiagen kit manufacturer. 

The gel purified PCR amplified product was sequenced with the two primers, 

AmyS1 and AmyAS1. Bioinformatics tools that include Bioedit, BLAST 

(NCBI), ClustalW (EBI) were used to analyse the obtained sequences. 

7.8.4 Rapid amplification of cDNA ends 

Two specific primers were designed for RACE from the sequence obtained 

from the PCR amplified product using AmyS1 and AS1. The cDNA was then 

amplified using PlanS1 and PlanAS1, PCR conditions (for RACE) used were 

as followed; 40 cycles of annealing with a 5 min initial denaturation at 94ºC 

(hot start for 3 min). Annealed at 60ºC for 1 minute, extended at 72ºC for 2 

min, and denatured at 94ºC for 20s. PCR products were resolved on 0.6% 

gel. A PCR product of 720bp was obtained and extracted from the gel using 

the Qiagen kit according to the manufacturer’s instructions. DNA was finally 

eluted in TE buffer; the eluted DNA was run on 1% gel to check the 

efficiency of purification. The gel purified PCR amplified product was 

sequenced with the primers, PlanS1 and PlanAS1. 

7.8.5 3’RACE 

In order to obtain the sequence of the 3’end of the gene, the plantain cDNA 

was PCR amplified using a specific sense primer PlanS1 and a 3’ RACE 

primer as the antisense primer. The conditions used are 40 cycles of 95ºC 

for 2 min (initial denaturation), 95ºC for 25s, 45ºC for 15s and 70ºC for 20s. 

PCR product was resolved and gel purified on a 1% gel.  

 

Nested -3’RACE 

The gel purified product was diluted 10, 100 and 1000 fold, the diluents were 

PCR amplified using a more internal sense primer, PlanS4 

(5’CCACCACCCACTGAGTCTGT 3’) and 3’RACE primer in the antisense 

direction. The conditions used are 25 cycles of 95ºC for 2 min (initial 

denaturation), 95ºC for 25s, 45ºC for 15s and 70ºC for 20s. PCR product 
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was resolved and gel purified on a 1% gel. The product was sequenced with 

PlanS4 and a more internal specific primer (sense), PlanS2. 

7.8.6 PCR amplifiaction of big plantain clone 

In order to clone the big amylase clone from plantain, the cDNA was PCR 

amplified using a degenerate sense primer PlanS6 (and a specific antisense 

primer, AS4. The conditions used are 45 cycles of 95ºC for 2 minutes (initial 

denaturation), 95ºC for 25 seconds, 50ºC for 15 seconds and 70ºC for 40 

seconds. PCR products were resolved on a 0.8% gel.  

 

Semi nested-PCR; the PCR amplified product was diluted 100, 1000 and the 

diluents were PCR amplified using PlanS6 and a more internal antisense 

primer, AS5. The conditions used are 40 cycles of 95ºC for 2 minutes (initial 

denaturation), 95ºC for 25 seconds, 60ºC for 15 seconds and 70ºC for 40 

seconds. PCR products were resolved on a 1.2% gel. The above was 

repeated for 30 cycles, and was gel purified on a 0.8% gel. The 1.9kb gel 

purified product was sequenced with the two primers PlanS6 and AS5. 
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Table 7.4 List of primers used for cloning the plantain α-amylase 
S/

N 

Name Sequence Direction 

1 AmyS1 5' TTY CAR GGN TTY AAY TGG GA 3' Sense 

2 AmyAS1 5' ATR TAN GCR TAN CCY TGC AT 3' Antisense 

3 AmyS2 5' GAY TGG GGN CCN CAY ATG AT 3' Sense 

4 AmyAS2 5' GGC CAC CAG CCC ATC AT 3' Antisense 

5 PlanS1 5’ GGTTTTACAGTCATCTGGCT 3’ Sense 

6 PlanAS 5’ AACGGCACGAGATGCCCACCA 3’ Antisense 

7 PlanS2 GCTACAAATGGAACTGCAGG Sense 

8 PlanS3 5 'AAR GAY TAY GCN ATH GAR AC 3' Antisense 

9 PlanS4 5’ CCACCACCCACTGAGTCTGT 3’ Sense 

10 PlanAS4 5’CAGCCTACTACTCCAGGAGG3’ Antisense 

11 PlanAS5 TGTGAGTATTGGCGATTGTCTGATCAAAATGGG Antisense 

12 PlanS6 5’ GAR TGG GAY CAR CCN CCN 3’ Sense 

16 PlanS9 ATTGTTGCTGATGATCCTCA Sense 

17 PlanS10 TATGATGGATGGAGATTAGA Sense 

18 PlanS11 AGTATTGGGACTCATTAAGT Sense 

19 PlanUDs TATCTAGCCTGCTGCTGAAAGC Sense 

20 Upas1 ATTGTATAAATCCTTTGGCAT Antisense 

22 PlanEnd ACAAGATTCACTGCAGGAGC Sense 

23 3’RACE TTTTTTTTTTTTTTTTTTTTTTTTT(GAC)(GATC) Antisense 

24 Planrace1 TTGTGCTGAAACCATGCTCC Antisense 

25 Planrace2 CAGTTCGTGAAGTGCCTGCC Antisense 

26 Atgprimer NNN-ATG-N Sense 

26 Planrace3 ATTGCAGCAATTCATTTTGT Sense 

27 Planrace5 ACAAAATGAATTGCTGCAAT Antisense 
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