Harris, Samantha Mary (2007) Dynamics of semiflexible fibres in viscous flow. PhD thesis, University of Leeds.

Text
SamFinalThesis.pdf Download (3838Kb) 
Abstract
The dynamics of semiflexible fibres in shear flow and the effect of flexibility on the swimming speed of helical flagella are investigated. High aspect ratio particles such as carbon and glass fibres are often added as fillers to processed polymers. Although these materials have high rigidity, the large aspect ratiomakes the fibres liable to bending during flow. Other high aspect ratio fibres that behave as semiflexible fibres include carbon nanotubes, paper fibres and semiflexible polymers such as the muscle protein factin. Most theoretical studies assume that fibres are either rigid or completely flexible, but in this thesis fibres with a finite bending modulus are considered. A semiflexible fibre is modelled as a chain of shorter rods linked together. A bending torque is included at the joints between the rods to account for the rigidity. In shear flow the simulation reproduces the C and S turns observed in experiments on semiflexible fibres. The results for finite aspect ratio fibres predict changes to the period of rotation and drift between Jeffery orbits. The direction of drift for a flexible fibre depends on both the intial orientation and the fibre’s flexiblity. We also present a linear analysis of how small distortions to a straight semiflexible fibre grow when the flow places the fibre under compression. These results are in agreement with our full simulations and the growth rates of the distortions to a straight fibre allow us to predict the most unstable mode at a particular flow rate. To allow for intrinsically bent or helical equilibrium shapes a second simulation method is developed that includes a twisting torque at the joints between the rods as well as a bending torque. Using this simulation we measure the period of rotation and orbit drift of permanently deformed fibres in shear flow and show that due to the asymmetry of a helix, shear induced rotation results in translation and orbit drift for both rigid and semiflexible fibres. Bacteria such as Vibrio alginolyticus and Escherichia coli swim by rotating one or more helical flagella. Vibrio alginolyticus has only one flagella and changes direction by altering its sense of rotation. Experimental observations of Vibrio alginolyticus have found that backwards swimming is 50% faster than forwards swimming speed however, previous numerical simulation results have shown only a 4% difference for flagella of the same dimensions. We use our simulation to consider how flexiblity affects the swimming speed of helical flagella and show that for a constant angular velocity, difference between forwards and backwards swimming speed ranges between 023%depending on the exact stiffness chosen. We explain the differences in swimming speeds of semiflexible fibres by investigating the shape changes which occur and comparing them to the results for swimming speeds of rigid flagella of varying dimensions.
Item Type:  Thesis (PhD) 

Additional Information:  Thesis supplied as PDF by the Department of Applied Mathematics, University of Leeds. 
Academic Units:  The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) > School of Mathematics (Leeds) > Applied Mathematics (Leeds) 
Identification Number/EthosID:  uk.bl.ethos.486330 
Depositing User:  Repository Administrator 
Date Deposited:  21 Apr 2009 17:29 
Last Modified:  06 Mar 2014 16:54 
URI:  http://etheses.whiterose.ac.uk/id/eprint/53 