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Abstract
The dynamics of semi-flexible fibres in shear flow and the effect of flexibility on the

swimming speed of helical flagella are investigated. High aspect ratio particles such as

carbon and glass fibres are often added as fillers to processedpolymers. Although these

materials have high rigidity, the large aspect ratio makes the fibres liable to bending during

flow. Other high aspect ratio fibres that behave as semi-flexible fibres include carbon

nano-tubes, paper fibres and semi-flexible polymers such as the muscle protein f-actin.

Most theoretical studies assume that fibres are either rigidor completely flexible, but in

this thesis fibres with a finite bending modulus are considered.

A semi-flexible fibre is modelled as a chain of shorter rods linked together. A bending

torque is included at the joints between the rods to account for the rigidity. In shear flow

the simulation reproduces the C and S turns observed in experiments on semi-flexible

fibres. The results for finite aspect ratio fibres predict changes to the period of rotation

and drift between Jeffery orbits. The direction of drift fora flexible fibre depends on both

the intial orientation and the fibre’s flexiblity.

We also present a linear analysis of how small distortions toa straight semi-flexible fibre

grow when the flow places the fibre under compression. These results are in agreement

with our full simulations and the growth rates of the distortions to a straight fibre allow us

to predict the most unstable mode at a particular flow rate.

To allow for intrinsically bent or helical equilibrium shapes a second simulation method

is developed that includes a twisting torque at the joints between the rods as well as a

bending torque. Using this simulation we measure the periodof rotation and orbit drift of

permanently deformed fibres in shear flow and show that due to the asymmetry of a helix,

shear induced rotation results in translation and orbit drift for both rigid and semi-flexible

fibres.

Bacteria such asVibrio alginolyticusandEscherichia coliswim by rotating one or more
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helical flagella. Vibrio alginolyticus has only one flagella and changes direction by

altering its sense of rotation. Experimental observationsof Vibrio alginolyticushave

found that backwards swimming is50% faster than forwards swimming speed however,

previous numerical simulation results have shown only a4% difference for flagella of the

same dimensions. We use our simulation to consider how flexiblity affects the swimming

speed of helical flagella and show that for a constant angularvelocity, difference between

forwards and backwards swimming speed ranges between0�23% depending on the exact

stiffness chosen. We explain the differences in swimming speeds of semi-flexible fibres

by investigating the shape changes which occur and comparing them to the results for

swimming speeds of rigid flagella of varying dimensions.
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Chapter 1

Introduction

1.1 Fibres

This thesis is concerned with the motion of semi-flexible fibres in viscous fluids. We

define a fibre as a slender object of circular cross-section with a length that is large

compared to its diameter. The ratio of length to diameter is called aspect ratio and is

denoted byar = l2b (wherel is the length andb is the radius).

We regard a fibre as semi-flexible if it has a bending stiffnessthat is comparible in

magnitude to the hydrodynamic torques being applied to the fibre. A fibre may be

                                 

Figure 1.1: F-actin viewed on a Discover AFM microscope. Picture taken from reference
[41].
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regarded as rigid if its bending stiffness is sufficiently high that it does not change shape,

while a fibre is flexible if the bending stiffness is negligible so that there is effectively no

resistance to bending. The bending stiffness of an homogeneous fibre is dependent upon

its Young’s modulus and its size and shape. The exact form of the bending stiffness for

an elastic fibre of circular cross section is derived in section 1.3.1.

The motion and deformation of semi-flexible fibres in viscousflows is important both

in industry and in nature. Understanding the translationaland rotational motion of

fibres helps to explain the orientation of fibres in suspensions and the formation of fibre

aggregates. Both are very important to the paper industry asthey affect the sheet strength

and optical properties of paper. Fibres are also used in reinforced composite materials.

By including glass or carbon fibres in a thermosetting polymer the strength and heat

conduction of the polymer is improved. The shear flow appliedto the polymer during

molding cause the fibres to align in the same direction producing a product with an

anisotropic structure. Although fibres such as glass and carbon are commonly thought

of as being rigid their large aspect ratio reduces their effective bending stiffness allowing

them to be classed as semi-flexible. Other examples of fibres used in industry include

polystyrene, polyethylene fibres and carbon nanotubes.

In biology protein filaments, such as F-actin (see figure 1.1)that make up the cytoskeleton,

can be modelled as semi-flexible fibres. Determining how fibres bend and twist allows

the mechanical properties of the cell to be established and in turn allows the modelling

of tissues and organs. Other biological structures such as D.N.A can also be modelled

as fibres, as can cilia and flagella. Cilia and flagella are projections from a cell. They

are actively motile and convert energy in the form of the fueladenosine triphosphate

(A.T.P.) into mechanical work. They are designed either to move the cell itself or to move

substances over or around the cell. The primary purpose of cilia in mammalian cells is to

move fluid, mucous, or cells over their surface.

Bacteria are propelled by the rotation of one or more helicalflagella. The flagella are
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stiff and are driven at their base by a rotary motor [25]. Direction change is achieved by

either changing the rotation direction (to swim backwards)as is the case of the bacterium

Vibrio alginolyticus, or in the case of some bacteria with more than one flagella, direction

change is achieved by one or more of the flagella ceasing to rotate or changing their

sense of rotation. The mechanical principles behind flagella propulsion are beginning to

be used in biomedical applications. Synthetic propulsion mechanisms are being used to

direct artificial viruses through cells and nanodevices through the bloodstream [25].

As well as flexibility another important property of a fibre isits intrinsic shape or ground

state. Whereas the flagella of bacteria have an intrinsic helical shape [9], the cilia or

flagella of spermatazoa are intrinsically straight [25, 9].They are driven by internal

motors and undulate to provide forward thrust [6]. Instrinsic shape is also important

for industrial fibres. Most theoretical work on industrial fibres assumes that they are

intrinscially straight, however, this is rarely the case inpractice. Small changes in the

intrinsic shape of a fibre, particularly from being perfectly straight, can have significant

effects on the fibre’s dynamics.

1.2 Fluid Flow

1.2.1 Stokes Flow

An incompressible viscous fluid can be described by a velocity field, u, which satisfies

the Navier-Stokes equations �DuDt = �rp+ �r2u; (1.2.1)

together with the condition of incompressibilityr � u = 0; (1.2.2)
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where� is the fluid density,p is the pressure and� is the dynamic viscosity.DuDt is the

material derivative given by DuDt = �u�t + u � ru:
For steady flow around a particle of lengthl with velocity U we can introduce the

following non-dimensional variablesr� = lr;u� = uU ;p� = l�U p;
and t� = tUl :
Dropping the stars, the non-dimensional form of equations (1.2.1) and (1.2.2) becomeReDuDt = �rp +r2u;
and r � u = 0;
where Re = �UL� ;
is the Reynolds number, which measures the relative magnitudes of the inertial and

viscous forces. The Reynolds number will be small if the fluidis sufficiently viscous,

the particle is small and the velocity is slow (or a suitable combination of the three). In

the limit of vanishing Reynolds number, the Navier-Stokes equations reduce to the Stokes

equations
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The viscosity and density of water are of order10�3 Pa s and103 kgm�3 respectively so

that a particle of length100�m moving at100�ms�1 has a Reynolds number of10�2.
The Navier-Stokes equations also assume that the fluid may betreated as a continuum,

however, non-continuum Brownian forces become important for very small particles.

The Brownian diffusivity of a particle is given by the Stokes-Einstein relationD = kT� ;
wherek is the Boltzman constant,T is the absolute temperature and� is the hydrodynamic

resistivity of the particle which is proportional to�l.
The dimensionless measure of the importance of Brownian diffusion is the Peclet numberPe = UlD = Ul�kT :
ProvidedPe >> 1 we may neglect the effects of Brownian motion.

For a100�m particle moving at100�ms�1 in water,Pe � 106 , while a1�m particle

moving at1�ms�1 has a Peclet number ofPe � 1. Thus there is a range of particle sizes

from approximately10�m to100�m in water for which the Reynolds number is small but

the Peclet number is large. Furthermore since Reynolds number decreases with increasing

viscosity and the Peclet number increases with increasing viscosity this range of particle

sizes is wider for more viscous fluids.

The dimensions of typical biological and artificial flagellaallow low Reynolds number,

high Peclet number approximations to be used. Using the values suggested by Takano
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and Goto [35, 12] for the bacteriumVibrio alginolyticusof flagella length7:3�m and

swimming speed136�ms�1, gives a Reynolds number of order10�4 and Peclet number

of order103. As the flagella diameter is only0:02�m [35, 12] the aspect ratio is365 and

hence the flagella may be classed as a high aspect ratio fibre.

1.2.2 Free Space Green’s Function for Stokes Flow

Since the Stokes equations are linear there exists a Green’sfunction representation

corresponding to the solution of the singularly forced Stokes equations�r2u�rp = �gÆ(�x); (1.2.3)r � u = 0;
where�x = x � x0 andgÆ(�x) is a point force of strengthg atx0. The solution satisfying

the boundary conditionjuj ! 0 asjx� x0j ! 1 is given byui = 18��Gijgj;
whereG is the free space Green’s function given byGij(�x) = Æijj�xj + �xi�xjj�xj3 :
The solution to any linear boundary value problem for the Stokes equation may be written

in the form of boundary integrals of velocityu and surface force densityf over the surface

bounding the fluid volume [28] such thatuj(x0) = 18�� ZS fi(x)Gij(x;x0)dS(x) + 18� ZS ui(x)Tijk(x;x0)nk(x)dS(x);
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whereTijk is given by Tijk = �6 �xi�xj�xkj�xj5 :
It can be shown that for the flow produced by the translation and rotation of a rigid body

the second integral can be eliminated so thatuj(x0) = 18�� ZSB fi(x)Gij(x;x0)dS(x); (1.2.4)

whereSB is the surface of the body [28].

1.2.3 Linear Flow

In many applications the typical size of the suspended particle, l, will be small compared

to the lengthscale of the external flowLext. In these situations, the external flow may be

expanded in a Taylor Series about the particle centrex
 asu1(x) = U0 +K � x
 +K � (x� x
) +O( _
l2Lext )
whereU0 = u1(0), K is the velocity gradientKij = �u1i�xj , _
 = pKijKij andx is a

general point in the fluid.

The velocity gradient tensorK may be expressed as the sum of its symmetric and anti-

symmetric parts, namely the rate of strain tensorE and the vorticity tensor
 whereEij = 12(Kij +Kji) and
ij = 12(Kij �Kji). We can therefore write the flow asu1(x) = U0 +K � x
 +
 � (x� x
) +E � (x� x
) +O( _
l2Lext )
or u1(x) = U0 +K � x
 + 12!1 � (x� x
) +E � (x� x
) +O( _
l2Lext )
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Figure 1.2: 3-Dimensional diagram of shear flow.

where!1 = r � u1 is the vorticity of the fluid. The vorticity vector!1 is related to

the vorticity tensor
 by 12!1i = �ijk
jk. The first two terms in the expression for fluid

velocity represent a translational flow, the third term a rotational flow and the fourth a

strain field.

The most common linear flow is simple shear flow and is the one weshall consider most

often in this thesis. The fluid velocity is given byu1 = ( _
y; 0; 0) so that thex axis is

along the flow direction, they axis is along the gradient direction and thez axis is along

the vorticity direction as shown in figure 1.2.

The velocity gradient tensor is given by

K = 0BBBBBBBBB�
0 _
 00 0 00 0 0

1CCCCCCCCCA ;



Chapter 1. Introduction 9

 

Rotation Field 

x 

y 

x 

y 

= 

Shear Flow Deformation Field 

Compressional quadrant Extensional quadrant 

+ 
x 

y 

Compressional quadrant Extensional quadrant 

Figure 1.3: Diagram showing shear flow in thex� y plane. The flow can be decomposed
into a deformation and rotation fields. The plane can be divided into compressional and
extensional quadrants determined by the deformation field.
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so that the strain-rate or deformation field tensor is given by

E = 0BBBBBBBBB�
0 _
2 0_
2 0 00 0 0

1CCCCCCCCCA ;
the vorticity tensor by


 = 0BBBBBBBBB�
0 _
2 0� _
2 0 00 0 0

1CCCCCCCCCA
which is related to the vorticity vector!1 = (0; 0;� _
), by
ij = 12�ijk!1k .

The symmetric strain rate tensor represents an extensionalflow or deformation field and

the anti-symmetric vorticity tensor, a rotational field as shown in figure 1.3.

1.2.4 Grand Resistance Tensor

In Stokes flow the velocity and angular velocity of any rigid particle in a linear flow are

linearly related to the force and torque applied to the particle. This linear relationship can

be summarised by a set of resistivity tensors that make up thegrand resistance tensor for

that particle. Consider a particle performing rigid body motion described byur = U + ! � (x� x
); (1.2.5)
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whereU is the velocity of the particle centre and! is the angular velocity of the particle,

in a linear flow field given byu1 = U0 +K � x
 + 12!1 � (x� x
) +E � (x� x
): (1.2.6)

The hydrodynamic forceF on the particle is given byF = ZS fdS;
wheref is the surface force density and the torqueT given byT = ZS(x� f)dS:
The contribution of the particle to the stress in the suspension is given by the stressletS
[2] given by S = 12 ZS(xf + fx)dS:
The hydrodynamic force, torque and stress on the particle are given in terms of the grand

resistance matrix and, fluid and rod velocity by0BBBBBBBBB�
FTS
1CCCCCCCCCA = 0BBBBBBBBB�

A ~B ~GB C ~HG H M
1CCCCCCCCCA
0BBBBBBBBB�
U0 �U+K � x
12!1 � !E

1CCCCCCCCCA :
The elementsA andC are 2nd rank, symmetric tensors relating force to translation and

torque to rotation respectively.B and ~B relate torque to translation and force to rotation

respectively. It can be shown thatB is the transpose of~B i.e. Bij = ~Bji [20]. ~G and ~H
are 3rd rank tensors relating force to strain and torque to strain respectively, whileG and
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���� �	6 -� lb
Aspect Ratio= l2b

Figure 1.4: Sketch of a cylindrical fibre of aspect ratioar = l2b .H relate stress to translation and stress to rotation respectively. Again it can be shown

thatG andH are related to~G and ~H by Gijk = ~Gkij andHijk = ~Hkij [20]. The fourth

rank tensorM relates stress to strain and satisfiesMijkl = Mklij.
We can calculate the elements in the Grand Resistance matrixfor a large aspect ratio fibre

by using slender-body theory.

1.2.5 Slender-body Theory

Slender-body theory is an asymptotic technique that can be used to obtain analytic

approximations to the solutions for Stokes flow around a particle such as a slender rod

for which the length is large compared to its thickness.

Slender-body theory was originally developed by Burgers [5], who modelled the fibre as

a line of point forces (called Stokeslets) on the particle axis. Later Tillett [39], made use

of matched asymptotic expansion to give an improved result.This was developed further

by Batchelor [1] who considered particles of non-circular cross section and Cox [8] who

considered non-straight particles of circular cross section in a general ambient field. The

basic method for a straight particle of circular cross section is described here.

We consider a straight cylindrical particle of lengthl and radiusb where the aspect ratioar = l2b . The velocity fieldu surrounding this particle must satisfy Stokes’ equations
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together with the boundary conditionsu! u1 as jxj ! 1;
and u = ur on S;
whereS is the surface of the fibre.

In slender-body theory the solution is found by matching an inner solution for radial

distances much less than the fibre length to an outer solutionvalue at radial distances

much greater than the fibre radius, with the inner solution satisfying the no-slip boundary

condition on the particle surface and the outer solution satisfying the condition at infinity.

Inner Solution

For the cylindrical fibre of lengthl and radiusb we define Cartesian co-ordinates centred

on the particle centre with 3-axis along the fibre axis so thatthe surfaceS is given byx21 + x22 = b2 for � l2 � x3 � l2 .

To simplify the calculation we can subtract the external flowby replacingu withu� = u� u1 so that the boundary conditions onu� areu� ! 0 as jxj ! 1
and u� = U� = ur � u1 on S:
For the inner solution we define inner variables in cylindrical polar co-ordinates(�; �; z)
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by scalingx1 andx2 with the radiusb andx3 with respect to the fibre half length lengthl2
so that x1 = b� 
os �;x2 = b� sin �;x3 = l2z:
Substituting into the Stokes equations we have at leading order ina�1r� ~r2u� � ~rp = 0;~r � u� = 0; (1.2.7)

where ~r and ~r2 are respectively the two-dimensional del and Laplace operators in the(�; �) plane together with the leading order boundary conditionu� = U�(z) on � = 1;
where U�(z) = U�U0 + l((! � 12!1)� (0; 0; z))� lE � (0; 0; z);
so that u�� = U�1 
os � + U�2 sin �;u�� = U�2 
os � � U�1 sin �;u�z = U�3

9>>>=>>>; on � = 1:
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Solving Stokes equations (1.2.7) subject to the new boundary conditions givesu�� = A( 1�2 � 1 + 2 log �) 
os � + U�1 
os � +B( 1�2 � 1 + 2 log �) sin � + U�2 sin �;u�� = A( 1�2 � 1� 2 log �) sin � � U�1 sin � +B(� 1�2 + 1 + 2 log �) 
os � + U�2 
os �;u�z = C log � + U�3 : (1.2.8)

Taking the outer limit of the inner solution we obtain

u�� ! (2A log �+ U�1 ) 
os � + (2B log �+ U�2 ) sin �;u�� ! �(2A log � + U�1 ) sin � + (2B log � + U�2 ) 
os �;u�z ! C log � + U�3 ; (1.2.9)

as�!1.

Outer Solution

Sinceju�j ! 0 asjxj ! 1 the flow outside the fibre can be written using the boundary

integral formulation given in equation (1.2.4). At leadingorder in 1ar , in the outer

approximation we can replace the surface integral by a line integral along the axis of

the cylinder so thatu�i = 18�� Z l2� l2 Æijfj(x03)jx� x0j dx03 + 18�� Z l2� l2 (xi � x0i)fj(x03)(xj � x0j)jx� x0j3 dx03; (1.2.10)

wherejx� x0j =p(x3 � x03)2 + r2 andr2 = x21 + x22.
To find the limiting behaviour asr ! 0 we write the first integral in the formI1 = fi(x3) Z 1�1 1p(x3 � x03)2 + r2dx03 + Z 1�1 fi(x03)� fi(x3)p(x3 � x03)2 + r2dx03;
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where all variables are scaled with respect to the half length of the fibre l2 . In this limit asr! 0 the second integral only contributes tou�3 and is written in the form

I2 = f3(x3) Z 1�1 (x3 � x03)2(p(x3 � x03)2 + r2)3dx03 + Z 1�1 (x3 � x03)2(f3(x03)� f3(x3))(p(x3 � x03)2 + r2)3 dx03:
The first integrals inI1 andI2 are singular atx3 = x03 asr ! 0 however, the second

integrals are non-singular, providedf(x3) is a continuously differentiable function andf 0(x3) is bounded since we can expandf(x3) in a Taylor expansion aboutx03, such thatf(x3) = f(x03) + (x3 � x03)f 0(x03) + :::
This means that the second integrals inI1 andI2 provide onlyO(1) contribution to the

solution. Therefore the expressions for bothI1 andI2 are dominated by the first integrals

asr! 0 [22].

The first integral inI1 is given byI1 = 2fi(log(1r ) + log 2 + logp1� z2) = 2fi log 2r +O(1))
asr! 0. The first integral inI2 is given byI2 = 2f3(log(1r ) + log 2 + logp1� z2 � 1) +O(a�2r ) = 2f3 log 2r +O(1)
asr ! 0. Therefore from equation (1.2.10) we can write the inner limit of the outer

solution as u�i ! 14�� log 2r (fi(x3) + Æi3f3(x3))
asr! 0.
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To compare with the inner solution we change to the inner scaling so thatr = a�1r � and

we write in polar co-ordinates so thatu� is given by

u�� ! 14�� log 2ar� (f1 
os � + f2 sin �)u�� ! 14�� log 2ar� (f2 
os � � f1 sin �)u�z ! 12�� log 2ar� f3 (1.2.11)

as�! 0.

Matching

We can now obtain the values of the unknown constants by matching similar terms in the

inner and outer solutions. Matching thelog(�) 
os � term inu�� gives2A = � 14��f1;
matching the
os � term gives U�1 = 14��f1 log 2ar:
Matching thelog(�) sin � term inu�� gives2B = � 14��f2;
matching thesin � term gives U�2 = 14��f2 log 2ar:
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Finally matching thelog(�) term inu�z givesC = � 12��f3;
and matching theO(1) term givesU�3 = 12��f3 log 2ar:
Substituting in the value ofU� we can then write the force density along a slender body

as f = 2��log 2ar (2I� pp) � (ur � u1);
wherep is a unit vector indicating the orientation of the fibre.

1.2.6 Grand Resistance Matrix for a Slender Body

We can now use this result to find leading order contributionsto the grand resistance

matrix for a fibre of aspect ratioar � 1 by substitutingur = U+!�(x � x
) andu1 = U0 +K � x
 + 12!1 � (x� x
) +E � (x� x
), giving a force distribution

f = 2��log 2ar (2I� pp) � (U0 +K � x
 �U+ (12!1 � !)� (x� x
) +E � (x� x
)):
The total forceF acting on a fibre of lengthl is given byF = Z l2� l2 fds = 2��llog 2ar (2I� pp) � (U0 +K � x
 �U):
Thus the leading order approximation to the sub-matrixA in the grand resistance matrix
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is given by Aij = 2��llog 2ar (2Æij � pipj) = �f(2Æij � pipj);
where �f = 2��llog 2ar
is the resistance co-efficient for force. It should be noted that resistance to perpendicular

motion is twice that of motion tangential to the fibre axis. The matrices ~Bij and ~Gijk are

both zero as the symmetry of the particle means there is no coupling between rotation,

strain-rate and force.

The total torqueT acting on the fibre is given by

T = Z l2� l2 (x� x
)� fds = ��l33 log 2ar (I� pp) � (12!1 � !) + ��l33 log 2arp�E � p:
The sub-matrixCij is therefore given byCij = ��l33 log 2ar (Æij � pipj) = �t(Æij � pipj);
and sub matrix~Hijk by ~Hijk = ��l33 log 2ar �iljplpk = �t�iljplpk;
where �t = ��l33 log 2ar
is the resistance co-efficient for torque. As expected matrix Bij is zero.

The total stressletS exerted by the fibre on the flow is given by
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S = 12 Z l2� l2 ((x� x
)f + f(x� x
)) ds = ��l36 log 2ar (p(12!1�!)�p+(12!1�!)�pp)+ ��l36 log 2ar (pE � p +E � pp� p �E � ppp):
Matrix Hijk is therefore given byHijk = ��l36 log 2ar (pi�jklpl + �iklplpj) = �s(pi�jklpl + �iklplpj)
and matrixMijkl byMijkl = ��l312 log 2ar (piÆjlpk + pjÆilpk + piÆjkpl + pjÆikpl � 2pipjpkpl)= �s2 (piÆjlpk + pjÆilpk + piÆjkpl + pjÆikpl � 2pipjpkpl)
where �s = ��l36 log 2ar (1.2.12)

is the resistance co-efficient for stress. MatrixGijk is zero as expected.

1.2.7 Stress Contribution of a Rigid Fibre

Here we consider the stress contribution of a rigid fibre in shear flow. For a rigid fibre of

lengthl and velocityU+!�(x� x
) in a linear flow described byu1 = U0 +K � x
 + 12!1 � (x� x
) +E � (x� x
) the stress contribution is given bySij = Hijk(12!1k � !k) +MijklEkl (1.2.13)
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whereH andM are entries in the grand resistance matrix for a slender bodycalculated in

subsection 1.2.6. Substituting in these values and the rotation rate!�p = K�p�p�K�pp
[20] for a rigid, torque free fibre we obtain the stress contributionS = �sp �E � ppp
where �s is the resistance co-efficient for stress given in equation 1.2.12. Non-

dimensionalising with respect to the resistance co-efficient �s and shear rate_
 we getS = p �E � ppp: (1.2.14)

Let us now consider the fibre rotating in the thex� y plane in a shear flow such that the

non-dimensional strain rate tensor is given byE = 0BBB� 0 12 012 0 00 0 0 1CCCA
and the orientation vector is given byp = 0BBB� 
os �sin �0 1CCCA
where� is the angle with thex axis.

Substituting these into equation (1.2.14) gives a shear stress contribution of�xy = 
os2 � sin2 � = 14 sin2 2�;
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Figure 1.5: Stress vs�� for a rigid fibre rotating in thex� y plane.

a first normal stress difference ofN1 = �xx � �yy = 
os3 � sin � � sin3 � 
os � = 14 sin 4�
and a second normal stress difference ofN2 = �yy � �zz = sin3 � 
os �:
Figure 1.5 shows�xy, N1 andN2 against�� for half an orbit.

The shear stress is zero when the fibre is aligned with either the x or they axis as the

compressional and extensional forces are negligible at these orientations for a high aspect

ratio fibre. Maximum shear stress occurs at an angle of� = ��4 or � = �3�4 with thex
axis when the fibre is under maximum compressive or extensional force respectively. First

normal stress difference is zero when the fibre is aligned with either thex or y axis, or
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when the the fibre is at an angle of��4 or�3�4 with thex axis. The latter cases occur as the

compressive and extensive forces cancel each other out.N1 has maximums at� = �3�8
and� = �7�8 and minimums at� = ��8 and� = �5�8 .

Integrating�xy, N1 andN2 over a complete orbit gives a contribution of�4 to the shear

stress and zero contributions to the first and second normal stress difference.

1.3 Elasticity Theory

1.3.1 Bending Stiffness

The results in section 1.2.3 are valid for a rigid particle. However, long slender particles

are prone to bending due to hydrodynamic forces. To quantifythe degree of bending we

must first derive the stiffness of a fibre in terms of its material properties. To define

the bending stiffness we consider an intrinsically straight fibre made of an isotropic,

homogenous material, bent into a circular arc as shown in figure 1.6. In any section

of this arc the material on the inside of the arc will compresswhile the material on the

outside of the arc will be stretched.

We consider a thin strip of the arc at a distancey from the centre line. Provided the angle

of bending is small, the strain in that section,�LL , is equal toyR , whereR is the radius of

curvature.

In a linear elastic material the extensional stress� is related to the extensional strain� by� = E� whereE is the Young’s modulus. Therefore the extensional stress acting on a

section of arc is given by �(y) = E yR:
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Figure 1.6: Fibre bent into circular arc with radius of curvatureR. The section of the fibre
highlighted is at a distancey from the centre line and has extension�L. Picture taken
from Howard [18].
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Integrating over the surface area of the cross section we obtain the total torque acting on

the fibre T = Z �ydA = Z Ey2RdA
so that T = EIR (1.3.15)

whereI = R y2dA is the second moment of inertia of the cross section. This equation is

known as the beam equation and the constant of proportionality, EI, is known as flexural

or bending rigidity.

For a fibre of circular cross-section,
R y2dA = 12 R r2dA, wherer is distance in a radial

direction, so thatI = �b44 for a fibre of radiusb.
Although the beam equation was derived for a circular arc it can be generalised to any

deformation by replacing the arc radius by the radius of curvature so that1R = d�ds where� is the tangent angle measured in an anti-clockwise direction from thex axis and the

tangent of the fibre. Non-dimensionalising arc length with respect to the length of the

fibre l, so thats = s�l gives T = EIl d�ds� = k(B) d�ds�
wherek(B) = EIl is the bending stiffness.

1.3.2 Twisting Stiffness

The material property that determines bending stiffness isthe Young’s modulus, however,

the property determining twisting stiffness is shear modulus. The shear modulus is related
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Figure 1.7: A section of cylinder of radial widthdr and angled� twisted through an angle
of �.
to Young’s modulus via the Poisson ratio byG = E2(1 + �) :
The Poisson ratio is the ratio of sideways contraction to lengthwise strain for a material

of lengthL and widthw is given by � = �ww =�LL
and is equal to12 for an incompressible material. Most materials have a Poisson ratio in

the range 0.2-0.5 [18].

We now consider a small section of a cylindrical fibre of length l and radiusb that is

subject to a twist through an angle of� as shown in figure 1.7. The shear stress acting on

this section is given by the shear modulusG multiplied by the shear strain
, so that
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:
The shear strain
 is given by 
 = r�l
where� is the angle of twist.

The force acting on a section of the fibre is therefore given by�F = Gr�l rdrd�
and the torque acting about the fibre axis is given byT = Z Gr2�l rdrd�:
Integrating over the cross section of a fibre with radiusb we obtain an expression for the

total torque acting on the fibre as T = �b42 G�l
or T = 2GI�l :
Again we can write the twisting torque as

T = k(T )�
wherek(T ) = 2GIl is the twisting stiffness and� is the angle of twist.
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1.3.3 Scale Analysis

From section 1.3.1 the bending torque on a fibre of lengthl is given byT = k(B) d�ds�
where bending stiffnessk(B) = EIl . To assess the degree to which a fibre will bend due to

hydrodynamic torques we define a non-dimensional bending stiffness with respect to the

shear rate_
 and the rotational resistance co-efficient of the fluid�t = ��l33 log 2ar ask�(B) = EI_
l�t = 3 log 2ar_
��l4 EI = 3E64� _
 � log 2ara4r � :
The effective stiffness of a material is affected by its material properties (ie. its Young’s

modulus), its shape, and the viscosity and shear rate of the surrounding fluid. In particular

we note that sinceI = �b44 the effective stiffness scales with the inverse 4th power ofthe

aspect ratio. We now consider the effective stiffness of some industrial and biological

fibres from their Young’s modulus, length and radius, and shear rate and viscosity of the

surrounding fluid.

In the experiments of Trevelyan and Mason [40], rigid glass fibres are observed in high

viscosity corn syrup. The fibres have aspect ratios of20�120, the shear rate of the fluid is

between0:2 and1:4s�1 and the viscosity of the corn syrup is9:12 Pa.s [11]. The Young’s

modulus of glass is73 GPa [18]. These values give us a bending stiffness of between3:08 and18784:43. As a rough guide we shall therefore classify rigid fibres as those with

bending stiffness of order unity or higher.

In the experiments of Forgacs and Mason [10], dacron and rayon fibres are used. The table

below (1.3.3), lists the data for some of the fibres used and whether the fibre behaved as

a rigid or semi-flexible fibre. The final column gives the non-dimensional bending and

twisting stiffness calculated using the definition given inthis section. As we can see, in



Chapter 1. Introduction 29

Material ar � _
 (kgm�1s�2) E (GPa) Turn k�(B)
Rayon 43 31:9 26:4 Rigid 22100 24:9 Rigid 1:14173 33:8 Rigid 0:104241 31:1 Semi-flexible 3:16� 10�02357 30:8 Semi-flexible 7:06� 10�03
Dacron 102 54:1 7:26 Rigid 0:134139 54:2 Rigid 4:11� 10�02180 46:9 Rigid 1:77� 10�02228 54:4 Semi-flexible 6:16� 10�03310 45:5 Semi-flexible 2:31� 10�03414 44:0 Semi-flexible 7:68� 10�04228 4:47 Rigid 7:49� 10�02310 5:43 Rigid 1:89� 10�02414 5:43 Semi-flexible 6:23� 10�03

Table 1.1: Table showing the values of aspect ratioar, viscosity and shear rate product� _
, Young’s modulus,E and bending stiffness,k�(B), for the rigid and semi-flexible fibres
used in the experiments of Forgacs and Mason [10]. The fibres used were 3.5�m diameter
Rayon fibres and 7.8�m diameter Dacron fibres.

general fibres that behave as semi-flexible fibres have bending stiffness values of the order

of 10�3 to 10�4.
Carbon nanotubes have a very high Young’s modulus of1000 GPa [18], however, a single

walled carbon nanotube has a typical diameter of1:2� 1:4nm and can be up to2mm in

length. Under the conditions used in the experiments of Forgacs and Mason [10]

(� = 9:12Pa:s and _
 = 5:5s�1) carbon nanotubes would have a bending stiffness as low

as7:9�10�16 which is far more flexible than the fibres listed above. A carbon nanotube of1�m in length has a bending stiffness of order10�3 which is in the range of semi-flexible

fibres.

Actin filaments have a Young’s modulus of2:3 GPa, a diameter of approximately6nm
and lengths of up to several tens of microns [18]. Thus actin fibres in water, which has a

viscosity of0:001Pa:s [20], at shear rates as low as0:01�0:1s�1 have a bending stiffness
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in the 10�3 to 10�4 range of the semi-flexible fibres in the experiments of Forgacs and

Mason [10]. Shorter filaments would be semi-flexible at higher shear rates.

For all of the industrial fibres listed above the Reynolds number is of order10�2 or

smaller and the Peclet number is of order109 or greater therefore easily satisfying the

low Reynolds number, high Peclet number criteria discussedin section 1.2.1. For actin in

an aqueous suspension at a shear rate of0:01s�1 the Reynolds number is of order10�6
and the Peclet number is of order107 and therefore also satisfies our criteria. At higher

shear rates the Peclet and Reynolds number would increase but the Reynolds number still

remains very small for all reasonable shear-rates.

The twisting torque on a fibre of lengthl is given byT (T ) = k(T )�
where twisting stiffnessk(T ) = 2GIl . To assess the degree to which a fibre will twist due to

the hydrodynamic torque we define a non-dimensional twisting stiffness with respect to

the shear rate_
 and the resistance co-efficient of the fluid for axial rotation of a cylinder�a = 4��b2l as

k�(T ) = 2GI_
l�a = GI2 _
��l2b2 = G32� _
 � 1a2r � :
The scaling analysis shows that for a high aspect ratio semi-flexible fibre withk�(B) of

order unityk�(T ) will be large so that twisting will be negligible. It might beassumed

therefore that twist can be ignored in modelling such fibres.However, bending and

twisting are coupled through a process called writhe, because it is possible to produce

an effective net twist by a series of bends alone.



Chapter 1. Introduction 31

Twisting Bending 

s=0 

s=l s=l 

s=0 

p(s) q(s) 

Figure 1.8: Illustration of bending (left) and twisting (right). Picture taken from [26].

1.3.4 Bending, Twisting and Writhe

In order to define bending and twisting for a general fibre configuration let us consider a

point at a distances along a fibre. We denote the tangent vector at this point asp(s) and

a vector normal to the fibre asq(s). We define bending as rotation of the tangent vectorp and twisting as rotation of a normal vectorq about the tangent vectorp as shown in

figure 1.8 (left) and figure 1.8 (right) respectively.

To illustrate writhe, consider the slender fibre shown in figure 1.9 taken from Maggs [24].

The fibre is bent through an angle of�2 in 3 places and the normal vectorq is parallel

transported at each bend so that there is no twist at each joint. The fibre is bent such that

there is no net change in the direction of the tangent vector between the two ends of the

fibre. The normal vector has, however, rotated by�2 about the tangent vector despite the

fibre being bent but not twisted. This fibre has a non-zero writhe which is by convention

measured in units of2�. In this case the fibre has writhe of14 .

The rotation about the tangent vector can be explained if we consider the tangent vectorp to exist on a unit sphere as shown in figure 1.10. The normal vector q always remains

tangential to the sphere.

The tangent vectorp1 shown in figure 1.9 lies along the line joining the centre of the
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Figure 1.9: Diagram of a fibre bent in three places, each by an angle of �2 , so that there
is no net change in the tangent vector between the two ends of the fibre. The normal
vector is parallel transported at each bend so that there is no net twist at each joint. There
is however a net change of�2 in the normal vector between the two ends of the fibre.
Diagram taken from Maggs [24].

sphere and the pointp1 shown in figure 1.10, similarly vectorsp2,..,p4 in figure 1.9 lie

along the lines joining the centre of the sphere and the pointsp2,..,p4 respectively in figure

1.10. The arcs�, �, 
 in figure 1.10 represent the bends�, �, 
 in figure 1.9 and the

vectorsq1, ..,q4 in figure 1.10 represent the corresponding normal vectors infigure 1.9.

The vectorq is parallel transported in a loop on the sphere from position1, through

positions 2 and 3 to position 4. The rotation ofq about the tangent vectorp in figure 1.9

is a manifestation of the curvature of the sphere on whichp lies.

The total rotation of a fibre about its axis is given by the sum of the rotation due to twisting

and the rotation due to writhe. This is known as White’s Theorem [24].
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Figure 1.10: Illustration of writhe by showing the tangent vector on a unit sphere. The
tangent vectors corresponding to figure 1.9 join the centre of the sphere to pointsp1 top4, the arcs correspond to the bends in the fibre and the vectorsq1 to q4 show the normal
vectors.
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1.4 Fibre Dynamics

We shall divide the dynamics of fibres into three categories,motion of rigid fibres, motion

of semi-flexible and flexible fibres, and active propulsion offibres.

1.4.1 Rigid Fibres

The motion of prolate spheroids in shear flow of a viscous fluidwas first considered

theoretically in 1922 by Jeffery [19]. He showed that such particles rotate in closed

periodic orbits, which are now known as Jeffery orbits. Later Bretherton [4] showed

by way of the “mirror-symmetry time reversal theorem” that any axisymmetric body in

shear flow will rotate in a closed periodic orbit provided that the aspect ratio in Jeffery’s

equations is replaced by an equivalent aspect ratioare based on the whole body shape.

Trevelyan and Mason [40] performed experiments on cylindrical fibres in shear flow and

found good agreement with the orbits predicted by Jeffery when effective aspect ratioare
was calculated using orbit period. Effective aspect ratioarewas found to be significantly

less that the actual aspect ratio in agreement with the theoretical analysis by Burgers [5]

which showed that the disturbance caused by a cylinder of aspect ratioar was equal to an

ellipsoid of aspect ratio0:74ar.
The orientation of a fibre can be described by two angles,� the angle with thez axis and� the angle between they-axis and thex� y projection as shown in figure 1.11. In these

co-ordinates, Jeffery orbits are described bytan � = Carpa2r 
os2 �+ sin2 �; (1.4.16)tan� = ar tan(2� tT ); (1.4.17)

wherear is the aspect ratio [20]. The constantC is called the orbit constant and is
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Figure 1.11: Fibre orientation described in spherical polar co-ordinates. Angle� is the
angle between with the vorticity axisz and angle� is the angle between thex � y
projection of the fibre and the gradient directiony.
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Figure 1.12: Plots of Jeffery orbits for a fibre with orbit constants ofC = 0:05,C = 0:2,C = 0:5, C = 1:0 andC =1.

determined by the initial orientation of the fibre,C = tan �0s
os2 �0 + 1a2r sin2 �0: (1.4.18)

A fibre placed in thex� y plane will have an infinite orbit constant and will rotate solely

in thex � y plane. High aspect ratio fibres with large orbit constants remain close to thex � y plane and flip quickly in thex � y plane in a time of order1_
 but spend a time of

order 1_
ar passing through thex � z plane. A fibre placed along thez axis will have an

orbit constant of zero and will spin about the z axis. Fibres with small orbit constants so

that they are close to thez axis appear to wobble about the axis.
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---- -----6 xy
Figure 1.13: The fibre on the right has a smaller aspect ratio and therefore experiences a
greater velocity difference across the end of the fibre.

The orbit period, T for any orbit constantC is the same and is equal toT = 2�_
 (ar + 1ar ) (1.4.19)

where _
 is the shear rate. Thus for large aspect ratios the period is proportional to the

aspect ratio [20].

The shorter period of small aspect ratio fibres is due to the larger velocity difference across

the ends of the fibre as it passes through thex�z plane. This creates a larger couple acting

on the fibre and hence leads to faster rotation (figure 1.13). Alarge aspect ratio particle

spends almost all of its time in thex� z plane.

Period of rotation

For a single fibre of finite aspect ratio, the rotation of the fibre is described by [20]_p = 
 � p+ a2r � 1a2r + 1(E � p� p �E � pp)
wherep is the tangent vector and dots denote derivatives with respect to time.

Written in component form this is_px = _
2py + a2r � 1a2r + 1( _
2py � _
p2xpy);
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2px + a2r � 1a2r + 1( _
2px � _
pxp2y); (1.4.20)

For a fibre rotating in thex � y plane close to the flow direction so thatpy � O( 1ar ) we

may rescale equation (1.4.20) such thatpy = �Py
and px =q1� p2y =q1� �P 2y
where� = 1ar andPy � O(1). As � << 1 we can use the following approximation forpxpx = 1� 12�2P 2y :
Equation (1.4.20) now becomes� _Py = _
2 ��(1� 12�2P 2y ) + a2r � 1a2r + 1(1� 12�2P 2y )(1� 2�2P 2y )� ;� _Py = _
a2r + 1 ��2P 2y2 (3� 2a2r)� 1�+O(�4):
Solving the differential equation we getpy = �Py = � 1qa2r � 32 tan0�qa2r � 32a2r + 1 _
t+ C1A:
Applying the initial conditionPy(0) = 0 we get�Py = � 1qa2r � 32 tan0�qa2r � 32a2r + 1 _
t1A: (1.4.21)
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Using equation (1.4.21) we find that the time taken forpy to become large compared to�
is t = �(a2r + 1)2 _
qa2r � 32
and that for largear the time taken forpy to get out of theO( 1ar ) range is approximatelyt � ar�2 _
 . As there are four such regions in one complete orbit then time spent withinO( 1ar ) of thex�z plane ist � 2�ar_
 . From equation (1.4.19) we can see that this accounts

for nearly all of the total orbit time.

1.4.2 Flexible and Semi-flexible Fibres

The motion of semi-flexible fibres in shear flow was studied in the experiments of

Forgacs, Mason and co-workers [10, 11] using dacron, rayon and nylon fibres in a

Couette apparatus. They observed that semi-flexible fibres deform in shear flow and as a

consequence do not follow Jeffery’s predictions for orbit patterns and periods of rotation.

They found that the observed fibres deformations could be divided into 3 categories

i) ‘Springy turns’ as shown in figure 1.14. These were observed for stiff fibres where the

shear-rate only just exceeds the critical condition for bending to occur, given by( _
�)
rit = E(log 2ar � 1:75)2a4r :
ii) ‘Snake Turns’, or what we shall call ‘C turns’, as shown infigure 1.15. These were

observed for more flexible fibres.

iii) ‘S-turns’ as shown in figure 1.16. These were only observed in flexible, symmetrical

particles that were “entirely free of any permanent deformations”.

It is important to note that most of the fibres in their study were not intrinsically straight.
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A fibre rotating in thex� y plane will bend whilst it is in the compressional quadrant and

straighten in the extensional quadrant (see figure 1.3). Thefibre experiences maximum

compressive forces at an angle of�45Æ with thex axis.

All fibres exceeding the critical condition for bending wereobserved to exhibit orbit drift

either towards thex� y plane or towards the z axis. Fibres that performed snake turns i.e

the more flexible fibres, showed an increased tendancy to drift towards thex� y plane.

Figure 1.14: Fibre performing a Springy Turn in thex� y plane.

Figure 1.15: Fibre performing a Snake Turn in thex� y plane.

Figure 1.16: Fibre performing an S Turn in thex� y plane.
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Flexible Fibre Simulations

Klingenberg and collaborators have developed a number of different numerical

simulations of semi-flexible fibres. In these models the fibres are modelled as; chains

of prolate spheriods connected by ball and socket joints with three rotational degrees of

freedom [31]; rigid spheres connected by hinges [34] and rigid rods connected by hinges

[33]. All three models incorportated bending and twisting stiffness so that the flexibility

of the fibre could be altered.

Simulations using spheres [34] and spheroids [31] both showed that type of shape

deformation was determined by flexibility. Stiffer fibres performed springy turns or C

turns and more flexible fibres performed S turns. Simulationsusing chains of rigid rods

[33] showed that only S turns were obtained by intrinsicallystraight fibres with flexibility

only effecting the sharpness of the turn. Only fibres with permanent deformations

produced C turns.

Skjetne, Ross and Klingenberg [34, 31] concluded that the main determining factor in drift

direction was the initial orbit constant. Fibres starting close to thez axis, so that initial

orbit constant is small, drift towards a zero orbit constantwhile fibres starting closer to

thex� y plane, so that the orbit constant is large, drift towards an infinite orbit constant.

The other two determining factors for drift direction are flexibility and aspect ratio [34].

High flexibility and small aspect ratio both allow greater bending. This allows fibres with

smaller initial orbit constants to drift towards thex�y plane rather than the vorticity axis.

These three parameters (flexibility, aspect ratio and initial orbit constant) also affect drift

rate [34].

A fibre that does not bend will not drift, hence it follows thata flexible fibre will drift

faster the more flexible it is. Similarly, the smaller the aspect ratio, the more a fibre will

deform and the faster it will drift. Fibres drifting towardsthex� y plane drift faster than

those moving towards the vorticity axis. This is due to the larger compressional forces
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experienced close to thex� y plane.

Whereas the orbit period of rigid rods is independent of orbit constant the same is not true

of flexible fibres. In studying the dimensionless orbit period of flexible fibres Skjetne [34]

concluded that fibres at largeC have periods that are shorter than that of rigid rods of the

same aspect ratio and decrease with decreasing stiffness, whereas fibres at smallC have

periods that are longer than rigid rods and increase with decreasing stiffness.

Linear Stability Analysis of Flexible Fibres

Hinch [17] examines the shape distortions of an inextensible thread with zero bending

stiffness. The thread is assumed to be very thin so that only the leading order terms from

slender body theory are retained. This means the thread willnot cross thex � z plane

but will become aligned with thex-axis. A finite aspect ratio thread would eventually

cross due to a small couple from the velocity difference across the fibre width. Evolution

equations for the change in shape of a thread are derived and then linearised for small

perturbations from a straight thread. The linear equationsare solved by the method of

normal modes. The first distortion mode is symmetric about the centre ( a C mode) and

the second is the antisymmetric S mode. Hinch notes that the neglected couples exerted

on the thread by the shear flow might be expected to produce oddmodes.

For fibres in shear flow the distortions decay algebraically in time for an infinite aspect

ratio fibre and decay completely by the time the fibre reaches thex axis. He concludes

that the changes in shape of a flexible fibre do not enable a highaspect ratio fibre to cross

thex axis.

Becker and Shelley [3] carried out a similar perturbation analysis to that of Hinch but

include the finite bending stiffness, for fibres in a compressional flow. They found that

theC mode was the first to become unstable with increasing flexibility.
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1.4.3 Active Propulsion of Fibres

Two of the main biological examples of active propulsion by fibres are the rotation of

helical flagella in prokaryotic cells and the beating motionof elastic rods in eukaryotic

organisms [25, 9]. In this thesis, we consider the first case and investigate the effect of

flexibility upon the speed of propulsion.

Research into the swimming motion of flagella-propelled micro-organisms includes

observations and physical models of bacteria, and analytical studies and numerical

simulations collectively known as flagella hydrodynamics.

Observations and Physical Models

Organisms that swim by the rotational or wave motion of flagella range from mono-

flagellate bacteria such asVibrio alginolyticusto petriciously flagellated bacteria such

as S.melilotiwhich has between 4 and 6 flagella. Forward swimming motion isoften

achieved through the rotation of helical flagella. In bacteria which possess more than one

flagella, the flagella form a bundle and rotate together [32].

There are several mechanisms by which organisms can change direction. The

photosynthetic bacteriumR.sphaeroides, possess a single flagella which rotates only in

a clockwise direction. Directional change occurs by the stopping and restarting of this

motion. Enterobacteria, such asEscherichia coliandSalmonella, change direction when

one or more of their flagella switches from counterclockwiseto clockwise rotation, this

induces a helical transition from left-handed to right-handed and causes the cell to tumble.

S.meliloti possess several flagella that rotate in a bundle. By varying the speeds of

individual flagella the bacterium changes direction as a result of the speed differential.

R.lupini also possess several flagella which rotate together in a bundle. Tumbles or

directional changes are induced by one or more flagella slowing down or stopping. This

causes the bundle to fall apart. The bundle reforms as the rotary speed increases once

again. The size of directional change is dependant on the number and length of the
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filaments. The more flagella per cell the smaller the directional change as the effect of a

single filament stopping becomes less significant. Cells with long filaments also exhibit

small directional changes as bundles of long filaments take longer to seperate [32].

Flagella Hydrodynamics

Early flagella models include those of Taylor [37, 38], Hancock [14] and Gray and

Hancock [13]. The latter developed the Resistive Force Theory technique that has been

used in much of the subsequent research. The work of Gray and Hancock considered only

sinusoidal waves.

Resistive Force Theory uses the fact that propulsive components of force acting normally

to the surface of the body can overcome the drag forces actingtangentially along the body

provided the orientation of the surface of the body to the axis of translation of the whole

cell is such that the normal force has a forward propulsive component. By balancing the

total propulsive thrust by the drag on the cell body, the swimming speed of the organsim

can be calculated.

Chwang and Wu [7] applied resistive force theory to helical waves. To consider helical

waves both linear and angular motion must be taken into account. For a creature

composed of a spherical head and a helical tail, lying along the x-axis each section of

the tail rotates about the x-axis with angular velocity! with respect to the cell body, in

a counter-clockwise direction and moves parallel to the x-axis with speedUo. While the

motion of the tail generates a forward propulsive thrust, italso generates a torque,T ,

causing the entire creature to rotate clockwise about the x-axis with angular velocity,
. This means the flagellum has an ‘apparent’ angular velocitywith respect to the

surrounding fluid,!app = !�
, as defined by Chwang and Wu [7], resulting in a reduced

propulsive force.

In the model considered by Chwang and Wu [7] the tail does not rotate as a whole relative

to the head, only the ‘waveform’ progresses with angular velocity ! relative to the head.
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The alternative, is the model used by Goto, Inaoka and Takano[12] in which a rigid

helical flagellum is driven by a rotary motor at its junction with the cell body.

Propulsive velocity is small if the head is small as the head is not large enough to resist the

whole body rotation induced by the viscous torque created bythe motion of the flagellum.

Hence
 is large and therefore!app is small. Forward propulsion is also limited if the head

is too large as the tail cannot generate enough forward thrust to overcome the drag on the

head. There is therefore an optimum head to tail ratio where the head is large enough to

resist rotation and hence reduce
 and increase!app but is not too large that the tail can

still propel it forwards.

Chwang and Wu [7] considered the presence of a cell body but did not consider the

interaction between the cell body and the flagellum. Higdon [15] developed an improved

approximation by introducing higher order corrections to slender-body theory due to

long range hydrodynamic interactions which not only take into account the interaction

between the cell body and the flagellum but also interactionsbetween different sections

of flagellum. He represented the flagellum as a distribution of Stokeslets and dipoles along

its centre line and the cell body (a sphere) by two sets of singularities. The first is an image

system which cancels the velocity on the sphere which was induced by singularities along

the flagellum and the second comprises Stokeslets, dipoles and rotlets which match the

velocity on the sphere due to translation and rotation.

Higdon [16] found that for flagella of constant length2L and pitch angle� = tan�1 ab ,
wherea is the helix radius andb is the pitch parameter such that2�b is the pitch, as shown

in figure 1.17, an increase in the number of turnsnt of the helix resulted in an increase

in swimming speed up to a maximum at an optimum number of turnsdetermined by the

ratio of the flagella length2L to the cell body radius. Further increases innt resulted

in a decrease in swimming speed. For fixedL and pitch angle increasing the number of

turns reduces the helix radius resulting in a smaller torqueacting on the cell body. The

reduction in
 gives a larger!app and hence a larger propulsive thrust. However for large
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2� bnt 

a 
2� b 

Figure 1.17: Diagram of a helix showing the radiusa, pitch 2�b and axial length2�bnt
wherent is the number of turns.nt this is off-set by the reduction in propulsive thrust due to adecrease in pitch. This

reduces the propulsive thrust of the flagellum by reducing the ratio of pitch to flagella

diameter (slenderness ratio [16]).

For a flagellum of constant length and number of turns, Higdonfound that an increase

in pitch angle resulted in an increase in swimming speed up toa maximum at a pitch

angle of63:4Æ. This is because the closer a section of flagellum is to being perpendicular

to the direction of motion the larger the thrust it provides.For pitch angles greater than63:4 there are no changes in swimming speed except for the case of asmall cell body in

which the swimming speed decreases. The decrease is due to two effects; the reduction

in pitch reduces the slenderness ratio and hence reduces propulsion, and the increase in

helix radius increases the torque on the cell body and hence reduces!app. The flagellum

with the smaller cell body attached has a greater reduction in swimming speed as the cell

body is unable to resist the torque imposed upon it.

Goto, Inaoka and Takano [12] confirmed Higdon’s findings using the same slender-body
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method, although Gotoet al. obtained a maximum swimming speed at a pitch angle of44Æ due to the different non-dimensionalisation of swimming speed used. Phan-Thien

[27] also produced similar results using a boundary-element method, the advantages of

which are that any geometry of cell body and flagella may be used, although results were

only presented for a spherical cell body.

Flexible Flagella

Takano and Goto [35], used a numerical algorithm for the Kirchoff rod model to examine

the motion of the semi-flexible flagellum of Vibrio alginolyticus and establish whether

the difference between forward and backward swimming speeds observed by Magariyama

[23] was due to deformation of the flagellum. The model used anellipsoidal cell body and

flagellum whose radius increased exponentially as distancefrom the cell body increased,

until reaching a constant radius for the remainder of its length.

They found that during forward swimming (generated by an anti-clockwise rotation of the

flagellum) the radius of the helix became smaller and the number of turns increased. The

forward swimming speed of the flexible flagellum was slower (134 �ms�1) compared

to the speed of the rigid flagellum. In backwards swimming (generated by clockwise

rotation) the radius of the helix became slightly larger andthe number of turns decreased.

The backwards swimming speed was found to be faster (139�ms�1) than that of the

rigid flagellum, however the differences were not as large asthe factor of 1.5 observed by

Magariyama [23].

Takanoet al. [36] found that for forwards swimming of Vibrio alginolyticus the axial

length and pitch angle remained constant but the number of turns increased. The radius

and pitch of the helix both showed a small decrease. For backwards swimming they

found that axial length and pitch angle remained constant but number of turns decreased

and radius and pitch increased.

In summary forwards swimming caused the helical flagellum towind-up and swim slower,
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backwards swimming caused the helix to wind-off and swim faster.

1.5 Outline of Thesis

This thesis considers three main areas� The motion of instrinsically straight fibres in shear flow andwhat determines the

occurrence of C and S turns.� The motion of intrinsically bent and helical fibres in shear flow.� The effect of flexibility on the swimming speed of helical flagella.

We develop two different simulation models for flexible fibres. In both simulations the

fibre is modelled as a chain of rigid rods, rather than chains of spheres or spheroids

linked together by ball and socket joints (the Kirkwood model [21]), as has been used

in the research of Skjetne, Ross and Klingenberg [34, 31]. The rigid rod model has

the advantage of allowing fibres of larger aspect ratios to bestudied. Skjetne, Ross and

Klingenberg studied fibres with aspect ratios in the range of25 to 100, which required up

to 20 spheres or spheroids to be linked together. In our simulation we study fibres with

aspect ratios of up to 1000 whilst only requiring 10 to 20 rodsto be linked together.

To obtain such large aspect ratios using the sphere or spheroid model would greatly

increase the computation time due to the large stiffnesses that would be required at each

joint. In chapter two we describe the first of our simulation models, which is appropriate

for intrinsically straight fibres. The simulation results from this model together with

perturbation analysis for the onset of bending are described in chapter three. In this

chapter we explain the occurence of C and S turns observed forsemi-flexible fibres in

shear flow and also establish a determining parameter for thedeformation and rotation

rate of an intrinsically straight fibre. For non-intrinsically straight fibres we require a
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second model that takes account of both bending and twist, which is described in chapter

four. In chapter five we present the results from this model for fibres with permanent

shape deformations in shear flow. In chapter 6 we use this model to discuss the effects of

flexibility on swimming of a helical flagella. Finally we giveour conclusions in chapter

7.
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Chapter 2

Fibre Model for an Intrinsically

Straight Fibre.

In this chapter we describe our model for an intrinsically straight fibre. As we remarked

in chapter 1 the dimensionless twisting stiffnessk(T ) of a high aspect ratio fibre is

much larger than the bending stiffnessk(B), so that any twist in the fibre will relax

instantaneously. Furthermore, for an intrinsically straight fibre the bending energy is

proportional to(�p�s )2 so that we need only calculate the tangential vector,p along the

fibre.

We will first describe the model and simulation method for an infinite aspect ratio fibre,

and then describe the modification to the rotation equation to account for finite aspect

ratio.

2.1 Infinite Aspect Ratio Model

We model a fibre of length2L and radiusb such thatL >> b. This assumption together

with those of low Reynolds number and low Peclet number as detailed in section 1.2.3
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Figure 2.1: Fibre model consisting of a chain of rigid rods joined together by constraint
forcesFn. The bending stiffness at the joints is proportional to the angle�n between the
joints. The orientation vectorpn and position vectorxn of rodn is also illustrated.

allows us to use the slender body approximations for Stokes flow described in section

1.2.5. The fibre is modelled as a chain of N rigid rods of length2LN , see figure 2.1. In this

figure the rods are numbered from left to right, and the jointsare numbered from 1 to N-1,

again from left to right. Connectivity is maintained via constraint forcesFn acting at the

joints. The constraint forces act such that there is no net force at the joints and therefore

no net force on the fibre. Resistance to bending is imposed by torques at the joints that

are proportional to the angle�n between the rods. As the fibre is intrinsically straight then

the equilibrium values of�n are given by�eqn = � for all values ofn.

Each rod is specified by the positionxn of its centre and orientation vectorpn, as shown

in figure 2.1. The position of a point on the rod at a distances from its centre is given byxrn(s) = xn + spn and the velocity of that point on the rod is given byurn = _xn + s _pn
which can be written in the formU+!�(x� x
) by takingU = _xn and!�(x� x
) =!n � spn = s _pn.

As detailed in section 1.2.3 we shall consider only linear flows of the formu1 = U0 +K � x
 + 12!1 � (x� x
) +E � (x� x
). Therefore by takingx
 = xn and(x� x
) = spn we getu1 = U0 +K � xn + 12!1 � spn +E � spn for the fluid flow on
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the surface of the rod.

Using the values of the tensorsA(pn), C(pn) and ~H(pn) of the grand resistance matrix

calculated in secton 1.2.6 we can write the force and torque balance on each rod asA(pn) � (U0 +K � xn � _xn) = �F
n (2.1.1)

and C(pn) � (12!1 � !n) + ~H(pn) �E = �(T
n +Tbn): (2.1.2)

where the only forces acting on each rod are the constraint forcesF
n given byF
n = Fn � Fn�1
and the total torque acting on each rod is comprised of the torques arising from the

constraint forcesT
n; T
n = LN pn � (I� pnpn) � (Fn + Fn�1)
and the torques arising from the resistance to bendingTbn. We assume that bending

resistance is given by linear elasticity so that bending torque is given byTbn = �k�n pn � pn+1jpn � pn+1j + k�n�1 pn�1 � pnjpn�1 � pnj
where the angle�n between rodsn andn+ 1 is given by
os �n = �pn � pn+1jpnjjpn+1j
andk is the bending stiffness at the joints and is given byk = EIN2L whereE is the Young’s

modulus andI is the second moment of inertia of the cross section. The bending stiffness
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of the whole fibre is given byk(B) = EI2L which can be written in terms of the joint stiffness

by k(B) = 1N k.

Rearranging equation 2.1.1 and substituting in the values of An andF
n we obtain an

equation for the translational velocity of the centre of each rod_xn = U0 +K � xn + 12��1f (I+ pnpn) � (Fn � Fn�1) (2.1.3)

where�f is the resistance coefficient for force as derived in section1.2.6.

To obtain an equation for the rotation rate of each rod_p =!n � pn we take the cross

product of equation 2.1.2 and substitute in the values ofCn and ~Hn to give

�t((I� pnpn) � (12!1 � pn � !n � pn) + pn � E � pn � pn = �(T
n +Tbn)� pn
where�t is the resistance co-efficient for torque as derived in section 1.2.6.

Using 12!1�pn =
�pn, where
 is the vorticity given in section 1.2.3,pn � _pn = 0 and

the identityp�A� p = (I� pp) �A we get�t((I� pnpn) �K � pn � _pn) = �(T
n +Tbn)� pn (2.1.4)

so that the difference between the rotation rate of the rod and the rotation rate of a free

rod in a linear flow is proportional to the cross product of thetorque acting on the rod andpn. Rearranging 2.1.4 and substituting in the values ofT
n andTbn gives

_pn = (I� pnpn) �K � pn + ��1t LN (I� pnpn) � (Fn + Fn�1) (2.1.5)���1t k(�n � �eqn ) pn � pn+1jpn � pn+1j � pn + ��1t k(�n�1 � �eqn�1) pn�1 � pnjpn�1 � pnj � pn:
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To solve equations 2.1.3 and 2.1.6 we need to calculate the constraint forces. We do this

by enforcing the connectivity constraintxn+1 � xn = LN (pn+1 + pn): (2.1.6)

We non-dimensionalise equations (2.1.3), (2.15) and (2.1.6) expressing time in units of_
�1, such thatt� = _
t andK� = 1_
K, x in units ofL, x� = 1Lx and force in units of2L _
�f , F� = 12L _
 ��1f F giving a non-dimensional stiffness ofk� = 1_
 ��1t k so that our new

equations are _xn = K � xn + (I+ pnpn) � (Fn � Fn�1); (2.1.7)_pn = K � pn � pn �K � pnpn + 3N(I� pnpn) � (Fn + Fn�1) (2.1.8)�k(�n � �eqn ) pn � pn+1jpn � pn+1j � pn + k(�n�1 � �eqn�1) pn�1 � pnjpn�1 � pnj � pn;xn+1 � xn = 1N (pn+1 + pn); (2.1.9)

where the�s have been dropped for convenience. Non-dimensional bending stiffness is

given by3 log 2arEI_
��l4 (as derived in section 1.3.1), wherel is the fibre length given byl = 2L
and hence the rod length is given byl = 2LN . We can therefore write the non-dimensional

bending stiffness of the whole fibre in terms of the non-dimensional joint stiffness ask(B) = 1N4k.

Differentiating equation (2.1.9) and substituting in equations (2.1.7) and (2.18) yields a

tridiagonal system of equations�n+1 � Fn+1 + �n � Fn +�n � Fn�1 = �n; (2.1.10)

where �n = 2(I� 2pnpn);



Chapter 2. Fibre Model for an Intrinsically Straight Fibre. 56�n = 2(4I� pn+1pn+1 � pnpn);�n = K � (xn+1 � xn)� 1N (I� pn+1pn+1) �K � pn+1 � 1N (I� pnpn) �K � pn+ kN (�n � �eqn ) pn � pn+1jpn � pn+1j � pn � kN (�n�1 � �eqn�1) pn�1 � pnjpn�1 � pnj � pn(2.1.11)+ kN (�n+1 � �eqn+1) pn+1 � pn+2jpn+1 � pn+2j � pn+1 � kN (�n � �eqn ) pn � pn+1jpn � pn+1j � pn+1
Solving this system of equations using LU decomposition with forward and backward

substitution yields the values of the constraint forcesFn [29]. The motion of the fibre

can then be obtained by integrating equations 2.1.7 and 2.1.9 using 4th order Runge Kutta

[29].

2.2 Modification for Finite Aspect Ratio

To model a semi-flexible fibre with finite aspect ratio,ar, it is necessary to replace the

termK � pn � pn �K � pnpn in equation (2.1.9), which describes the rotation rate of a

torque free slender body, with
 � pn + ~a2r � 1~a2r + 1(E � pn � pn �E � pnpn) (2.2.12)

which describes the rotation rate of a torque free prolate spheroid of aspect ratio~ar as

derived in reference [20]. In our simulation we use~ar = 1N ar where 1N ar is the aspect

ratio of the individual rods.
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2.3 Stress Contribution of a Semi-Flexible Fibre

In subsection 1.2.7 we considered the stress contribution of a rigid fibre in shear flow. We

now obtain the stress contribution for a semi-flexible fibre composed ofN rigid rods of

length 2LN . The force density along each rod is given byfn = �fN2L (2I� pnpn) � (urn � u1n ): (2.3.13)

The fluid velocity at a points along the rod is given byu1n = K � x(s) = K � (xn + spn)
wherexn is the position vector of the centre of rodn andpn is the orientation vector of

rodn. The velocity of each rod is given byurn = _xn + s _pn where _xn and _pn are given by

the equations _xn = K � xn + 12��1f (I+ pnpn) � (Fn � Fn�1) (2.3.14)

and_pn = K �pn�pn �K �pnpn + ��1t LN (I� pnpn) � (Fn +Fn�1) + ��1t Tbn�pn (2.3.15)

respectively (see section 2.1). HereTbn is the bending torque given byTbn = �k(�n � �eqn ) pn � pn+1jpn � pn+1j + k(�n�1 � �eqn�1) pn�1 � pnjpn�1 � pnj :
Substituting the fluid and rod velocity into equation 2.3.13gives,fn = s�fN2L pnpn �K � pn � N2L(Fn � Fn�1) (2.3.16)�s3N22L2 �(I� pnpn) � (Fn + Fn�1) + NLTbn � pn�
for the force density along the boundary of rodn.
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The stresslet [2] for each rod is then calculated usingSn = 12 Z LN� LN (xn + spn)fn + fn(xn + spn)ds: (2.3.17)

Substituting equation 2.3.17 into equation 2.3.17 givesSn = �s(pn �K � pn)pnpn � 12 (xn(Fn � Fn�1) + (Fn � Fn�1)xn)� L2N (pn(I� pnpn) � (Fn + Fn�1) + (I� pnpn) � (Fn + Fn�1)pn)�12 �pnTbn � pn +Tbn � pnpn� : (2.3.18)

The stress along the whole fibre is given byS =PNn=1 Sn.

Using the non-dimensionalisationS� = 1_
N3 ��1s S , x� = xL , F� = N2L _
 ��1f F andk� = 1_
 ��1t k where the resistance co-efficients are calculated using therod length 2LN ,

we obtain the following non-dimensionalised form of the stress tensor for a semi-flexible

fibre,

S� = 1N3 NXn=1(pn �K � pn)pnpn � 3N2 (xn(Fn � Fn�1) + (Fn � Fn�1)xn)�3N (pn(I� pnpn) � (Fn + Fn�1) + (I� pnpn) � (Fn + Fn�1)pn)� �pnTbn � pn +Tbn � pnpn� : (2.3.19)
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2.4 Numerical Simulation - Accuracy Checks

2.4.1 Time Step

Our numerical method is essentially a forward time, centered space scheme for solving a

diffusion equation and so a stability criterion ofkh(�s)2 < 12
would be expected [29], whereh is the time-step and�s is the space discretisation. Given

our space step is�s = 1 we can simplify this tokh < 12 : (2.4.20)

By calculating the orbit period of fibres with rod numbers ofN = 10; 12; 15;and20 and

rod stiffnesses ofk = 10; 50; 100 and500 at various time-steps and determining at which

time-step the simulation becomes unstable in each case we confirm equation (2.4.20) is a

suitable stability criterion for this simulation method.

Time steps which are too large lead to the system becoming unstable very quickly,

however, once a time-step satisfies the criterion then further reductions in size result in

only minor improvements in accuracy. In our simulation we have usedh = 0:01 for rod

stiffnesses ofk � 50 andh = 0:001 for 50 � k � 500.
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2.4.2 Individual Rod Stiffness

In section 2.1 we find that the whole fibre stiffness as derivedin subsection 1.3.1 is linked

to the stiffness of each individual rod in the fibre model byk = N4k(B) (2.4.21)

wherek is the individual rod stiffness. By measuring the orbit period for a fibre of aspect

ratioar = 200 and whole fibre stiffnessk(B) = 5�10�4 for various values of rod numberN we tested the accuracy of this relationship. The individualrod stiffness was calculated

using equation (2.4.21) and the rod aspect ratio was given byarN . It was found that there

was a 0.5% increase in the orbit period of the fibres when the rod number was increased

from 10 to 20 rods.

The values ofN that can be used are limited as values below6 give highly inaccurate

results as there are too few locations in which bending can occur and hence the model is

unrealistic. High values ofN , in this case values above20, result in the aspect ratio of the

individual rods being too small and hence no longer satisfying the slender body criteria.

2.4.3 Replication of Rigid Fibre Results

We check that the simulation reproduces known results for rigid fibres. Simulations were

run for rigid fibres in shear flow,u = ( _
y; 0; 0) non-dimensionalised with respect to_
.

Fibres were composed of 10 rods, each of aspect ratio 10, so that the fibre had aspect ratio

100. Bending stiffness was set so that the fibre had overall stiffnessk(B) = 0:1 and the

change in end to end length of the fibre was< 1�10�9%. The orbit period was measured

for a variety of initial orbit constants, C, and was found to be independant of C. For large

aspect ratios, we can define the effective aspect ratio from the period of oscillation byareff = _
T2� . This gives an effective aspect ratio of 100.46 compared to the actual aspect
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Figure 2.2: Ratio of effective to actual aspect ratio as a function of aspect ratio.

ratio of 100. Figure 2.2 shows the ratio of effective to actual aspect ratio against aspect

ratio. All fibres had a stiffness ofk(B) = 0:1 and further increases in stiffness resulted

in no change in orbit period. The trend of decreasing ratio with increasing aspect ratio

is consistent with the simulation results obtained by Skjetne, Ross and Klingenberg [34]

and the experimental results obtained by Trevelyan and Mason [40]. However, the actual

values of
areffar are higher than those obtained by Skjetneet. al. [34] due to the differing

fibre geometries and treatment of hydrodynamic interactions. For very high aspect ratios

the ratio tends to one as the shape of the fibre is no longer significant.

Plots of Jeffery orbits for varying initial orbit constantsand aspect ratio plotted along side

Jeffery orbits for an ellipsoid with aspect ratio equal to the fibre’s effective aspect ratio

show good agreement (figure 2.3). Simulations were run for 10+ consecutive periods and
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Figure 2.3: Jeffery orbits of fibre compared to predicted Jeffery orbits for an ellipsoid of
equivalent aspect ratio. Orbits are shown for orbit constants ofC = 0:05,C = 0:2 andC = 0:5.

no orbit drift was observed.
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Chapter 3

Results for Instrinsically Straight Fibres

In chapter 2 we described the numerical simulation method for intrinsically straight fibres.

Experimental observations of Forgacs and Mason [10] reportthat dacron and elastomer

fibres perform C turns except in the case of perfectly straight fibres which perform S turns.

Simulation results of Ross and Klingenberg [31] and Skjetne, Ross and Klingenberg [34]

find that the shape the fibre forms whilst rotating is dependent upon the fibre stiffness.

In his stability analysis Becker also concluded that stiffness was the determining factor

and that mode 1 (the C mode) was the most unstable in compressional flow. For smaller

stiffnesses mode 2 (the S mode) became the most unstable, followed by mode 3 and then

mode 4 at even smaller stiffnesses. The mode number describes the number of turning

points in the fibre shape so that mode 4 has 4 turning points andhence is an odd mode.

In this chapter we begin by investigating the types of turns performed by instrinsically

straight fibres in thex � y plane (section 3.1.1). We also consider how fibre stiffness

and aspect ratio effects bending energy (section 3.1.2) andorbit period (section 3.1.3).

To explain our findings we consider the fibre dynamics in the two regions of the orbit in

which bending can occur, the compressional quadrant and thex�z plane. For bending in

the compressional quadrant we perform a linear stability analysis (section 3.2.1) similar

to that of Becker [3] and for bending in thex� z plane we use a torque balance argument



Chapter 3. Results for Instrinsically Straight Fibres 64

to determine the shape of the fibre at this point in the orbit (section 3.2.3).

In section 3.4 we go on to consider a fibre with an initial orientation out of thex�y plane

and explain why, unlike rigid fibres which rotate in closed Jeffery orbits, semi-flexible

fibres exhibit orbit drift. We also consider the effect of fibre stiffness and aspect ratio on

the rate and direction of drift.

3.1 Semi-Flexible Fibres in the Flow-Gradient Plane

We shall first consider fibres that rotate in the flow-gradient(x � y) plane. Fibres start

with initial alignment along thex-axis. We shall consider the shape of the fibres during

rotation and the period of rotation.

3.1.1 Fibre Shape

A perfectly straight fibre aligned along thex-axis will rotate and deform into an S-like

shape providing it is sufficiently flexible. This is in agreement with the experimental

results of Forgacs and Mason [11] and the simulation of Schmid, Switzer and Klingenberg

[33] which observed that perfectly straight fibres performed S turns. Figure 3.1 shows a

fibre of aspect ratioar = 100 performing an S turn with timet given in strain units,_
t. A very flexible, high aspect ratio fibre will perform a mode 4 turn (perturbation has

two maxima and two minima) when rotating as shown in figure 3.2. A fibre of aspect

ratio 1000 will perform a mode 4 turn if the stiffness is less thank(B) = 0:0013, for

stiffness greater than this it will remain straight whilst rotating. A fibre of aspect ratio400 will perform an S turn fork(B) > 0:0013 and a mode 4 turn fork(B) < 0:0013. We

may therefore expect fibres with smaller stiffnesses to produce higher mode turns such as

mode 6 and mode 8 turns although we have not observed these in our simulation results.



Chapter 3. Results for Instrinsically Straight Fibres 65

-1

-0.5

 0

 0.5

 1

-0.2  0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

G
ra

di
en

t d
ire

ct
io

n 
- 

y

Flow direction - x

t=0
304
305
306
307
308
309
310

Figure 3.1: Fibre of aspect ratio,ar = 200 and non-dimensional bending stiffness (as
derived in section 1.3.3)k(B) = 6:25� 10�4 performing an S turn in the x-y plane.

We will however investigate the presence of higher order modes in the linear stability

analysis described in section 3.2.1.

A fibre that is not sufficiently flexible to perform an S turn does not perform a C turn

but remains straight while rotating. Whether or not a fibre will bend is dependent both

upon the fibre stiffness,k(B) and the aspect ratioar. We shall investigate this dependence

further in subsection 3.1.2.

To obtain a C turn (see figure 3.3) the fibre must either be intrinsically bent (as we shall

demonstrate in chapter 5) or have an initial deformation that is not antisymmetric. In the

latter case only the initial rotation will be a C turn. As the fibre realigns with thex-axis it

will straighten completely and therefore all subsequent rotations will beS turns. The size

of the initial deformation must be at least of the order of thefibre diameter.

As we discuss further in subsection 3.2.3 the initial buckling of a perfectly straight fibre
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Figure 3.2: A fibre of aspect ratioar = 1000 and stiffnessk(B) = 3:125� 10�4 rotating
in thex� y plane. The fibre shows a mode 4 shape in the compressional quadrant.

of finite aspect ratio aligned along the x-axis is anti-symmetric and therefore produces

an S turn no matter what the flexibility of the fibre. To obtain aC turn requires a

perturbation that breaks this anti-symmetry. This suggests that the propensity for C turns

in the experiments of Forgacs and Mason [11] was due to the fact that most of the fibres

used were not intrinsically straight.

3.1.2 Fibre Flexibility

To determine the bending stiffness required for the fibre to no longer bend we plot the

bending energy per half orbit against stiffness for fibres ofdifferent aspect ratios (figure

3.4). We define the bending energy per half orbit byE = 12 Z T20 N�1Xn=1(�n � �eq)2dt; (3.1.1)
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Figure 3.3: Fibre of stiffnessk(B) = 7:5 � 10�5 and aspect ratioar = 300 performing a
C turn in the x-y plane.

whereT is the orbit period,�n is the angle at the joint andN � 1 is the number of joints.

For low stiffnesses where there is considerable bending in the compressional quadrant the

bending energy is independent of aspect ratio and is proportional to k(B)� 12 . For larger

stiffnesses aspect ratio becomes important. This can be seen more clearly on the log-

log plot of energy against stiffness shown in figure 3.5. At a stiffness of approximately0:0008 the gradient changes and there is a sharp decrease in bendingenergy marking

the boundary between a low stiffness regime in which there isno significant aspect ratio

dependence and a high stiffness regime(k(B) � 0:005) in which bending energy can be

multiplied by aspect ratio cubed to give a universal plot (figure 3.6). In this high stiffness

regimeEa3r is proportional tok(B)�2 . The reasons for this change in regime from low to

high stiffness will be discussed later in section 3.3.
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Figure 3.4: Bending energy per half orbit plotted against fibre stiffnessk(B) for fibres of
aspect ratioar = 100 to ar = 2000. The vertical dotted lines show fibre stiffnesses ofk(B) = 0:001 andk(B) = 0:005.



Chapter 3. Results for Instrinsically Straight Fibres 69

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e-06  1e-05  0.0001  0.001  0.01  0.1  1

B
en

di
ng

 E
ne

rg
y

Aspect ratio=100
150
200
250
300
350
400
500

1000
2000

k(B)
Figure 3.5: Log-log plot of bending energy per half orbit against stiffness for fibres of
aspect ratioar = 100 to ar = 2000.

3.1.3 Period of Rotation

As discussed in the introduction decreasing the aspect ratio of the fibre causes it to rotate

faster, as the larger cross-section gives a greater velocity difference across the ends of

the fibre, producing a larger couple to rotate the fibre. Bending due to flexibility leads to

faster rotation as the bend in the fibre decreases its effective aspect ratio, as illustrated in

figure 3.8.

In figure 3.9 we show the orbit period as a function of aspect ratio for fibres of various

stiffnesses. Figure 3.10 shows the orbit period as a function of fibre stiffness for fibres of

various aspect ratios. The period of rotation of a high aspect ratio rigid fibre is given byT = 2�_
 ar (3.1.2)
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---- ----
Figure 3.7: The fibre on the right has a smaller aspect ratio and therefore experiences a
greater velocity difference across the ends of the fibre.
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Figure 3.8: A bent fibre has a smaller effective aspect ratio and therefore rotates faster.

so the gradient in figure 3.9 for a rigid fibre is2�_
 . For semi-flexible fibres the period of

rotation decreases with increasing flexiblity and only increases linearly with aspect ratio

at high aspect ratios.

One method for interpreting figure 3.9 is to define an effective aspect ratio based on the

period of rotation. For the limit when bending is small we expect this effective aspect

ratio to have the form areff = 2Ld(1 + f(2Ld ; k(B))) ; (3.1.3)

whered is the diameter of the fibre anddf(2Ld ; k(B)) is the effective increase in diameter

due to bending wheref is a function of both stiffness and aspect ratio defined byf = TrT � 1
whereT is the orbit period andTr is the orbit period of a rigid fibre. Our scaling analysis
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Figure 3.9: Period of rotation vs aspect ratioar for fibres of stiffnessesk(B) = 3:125 �10�5 to k(B) = 1:5� 10�3.
in chapter one shows that the bending torque on the fibre is proportional to the change in

the angle of bendd�ds , where the constant of proportionality isk(B). This would suggest thatf should be a function ofk(B) alone, however, if this were the case the period of rotation

of a semi-flexible fibre would be linear in aspect ratio but with a gradient that depends

upon flexibility. Instead we find that gradient increases with aspect ratio approaching2�_

in the limit ar !1. Consequentlyf ! 0 asar !1.

In figure 3.11 we plot the functionf(2Ld ; k(B)) againstk(B)ar for fibres of different aspect

ratios. The collapse of the plots shows that at leading orderf is function of k(B)ar.
This means that for intrinscially straight fibres in shear flow the dimensionless measure

of the effect of bending stiffness on the period isk(B)ar and notk(B). Recalling thatk(B) is inversely proportional to fourth power of aspect ratio, this means that the effective

stiffness of intrinsically straight fibres in shear flow actually scales with the inverse cube

of aspect ratio.
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Figure 3.12: Log plot off(k(B); ar) againstk(B)ar for aspect ratios of 100 to 1000.

Figure 3.12 is a log plot of figure 3.11 and shows that for largevalues ofk(B)ar, f
is approximately proportional to 1k(B)ar . In order to examine the departure from this

behaviour in figure 3.13 we plotk(B)arf(2Ld ; k(B)) againstk(B)ar. From this we can see

that for smallerk(B)ar there are higher order contributions, in(k(B)ar)�1, which are also

dependent onk(B)ar and also that for large values ofk(B)ar the plots do not superimpose,

suggesting there are higher order contributions dependentonk(B) only. This is confirmed

by figure 3.14 which showsk(B)arf(2Ld ; k(B)) against stiffness only, and confirms that

after a stiffness of approximately0:007 the plots superimpose, and show a higher order

contribution dependent onk(B) only.
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3.2 Onset of Bending

In order to explain the above results and to gain a greater understanding of the factors

governing the dynamics of a semi-flexible fibre in the flow-gradient plane we consider

the two most important regions of the orbit. Firstly when thefibre is under maximum

compressive force, i.e. when the fibre is at an angle of�45Æ with thex-axis and secondly

when the fibre is within order1ar of the flow-vorticity plane.

In both regions the effect of bending on the fibre is important. In the first region the fibre

compressive forces are large leading to a significant amountof bending. In the second

region the compressive forces are smaller, by a factor of1ar , however, the time spent in

the region is larger by a factor ofar.
We examine the influence of bending in the compressive quadrant on the fibre dynamics

by performing a perturbation analysis similar to that of Hinch [17], who considered a fibre

of zero bending stiffness; and Becker and Shelley [3] who incorporated a finite bending

stiffness. We develop equations for the evolution of the changes of shape of a fibre in a

compressional flow and then linearise the equations for small perturbations to a straight

fibre. The linear equations are then solved numerically due to the presence of the fourth

order bending term. We then consider the stability of the solutions for various values of

the non-dimensional bending parameter.

To examine the influence of bending in the flow vorticity planewe calculate the bending

torque distribution along a fibre aligned with the flow axis.

3.2.1 Linear Stability Analysis

Governing equations

We first derive the evolution equations for the changes in shape of a fibre. We consider an

intrinsically straight fibre of length2L described by orientation vectorp(s; t) and position
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Figure 3.15: Diagram of a fibre showing the arc lengths and the position and orientation
vectorsx(s; t) andp(s; t).
vectorx(s; t), as shown in figure 3.15, wheres is arc length andt time. The fibre is centred

at s = 0. Here we shall consider only infinite aspect ratio fibres.

The inextensibility constraint on the fibre is given byp � p = 1: (3.2.4)

which therefore implies _p � p = 0 (3.2.5)

and p:p0 = 0 (3.2.6)

where _p = �p�t andp0 = �p�s .

For a fibre with velocity_x(s) at a positions along the fibre in a linear flow given byU1 = K � x, the viscous force density acting on the fibre, as derived in subsection 1.2.5,

is given by fv = 2��log 2ar (2I� pp)(K � x� _x):
For an semi-flexible fibre the viscous forcesfv, are balanced by the tension in the fibre
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and the fibre stiffness such that�fv = ff , whereff is given by,ff = ��s(�p)� EI �3p�s3 (3.2.7)

whereEI is the flexural rigidity. The tension is the net force transmitted over a cross-

section of the fibre. It preserves the arc length of the fibre sothat it may satisfy the

inextensibility constraint 3.2.4.

Equating the two forces and non-dimensionalising time withrespect to the inverse shear

rate 1_
 , length with respect toL and tension with respect to2�� _
L2log 2ar , we get_x�K � x = 12(I+ pp)� ��s(�p)� 83k(B) �3p�s3 �
wherek(B) = 3EI log 2ar16��L4 _
 is the non-dimensional bending stiffness derived in section 1.3.3.

Differentiating this with respect to s, gives_p�K � p = 12(I+ pp)��2��s2 + �2p�s2 + ���s �p�s � 83k(B) �4p�s4 �+12(p�p�s + �p�s p)����sp+ � �p�s � 83k(B) �3p�s3 � ;
and using constraint equations (3.2.4) and (3.2.6) the mainevolution equation for the fibre

becomes_p = K � p + � 00p + 12�p00 + 32� 0p0 � 43k(B) �piv + (p(p:p000))0� : (3.2.8)

Herepiv is �4p�s4 .

To obtain an equation for the tension we substitute equation(3.2.8) into the inextensibility
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constraint equation (3.2.5). This yields a second order differential equation for the tension� 00 + 12(p0)2� = �p �E � p+ 83k(B)(piv:p + 12p0:p000) (3.2.9)

with boundary conditions� = 0 at s = �L.

Small perturbations to a straight fibre

We shall now consider small perturbations to a straight fibresuch thatp(s; t) = p0(t) + �p1(s; t) (3.2.10)

where� << 1, p0(t) is the orientation of the straight fibre andp1(s; t) are the first order

distortions to the fibre, such that p0:p1 = 0
and p:p = p0:p0 + �2p1:p1 = 1 +O(�2):
An illustration of vectorsp0 andp1 are shown in figure 3.15.

We assume that the variation in the tension along the length of the fibre is small and hence

write the tension� as �(s; t) = �0(t) + ��1(s; t):
Substituting this into equation (3.2.9) yields� 00 = �p0 �E � p0 � 2�p0 �E � p1 + �83k(B)piv1 :p0
to order�.
Solving the second order differential equation for tensionwith the boundary conditions
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on � andp0 = 0 at s = �L gives� = p0 �E � p012(1� s2)� 2�p0 �E ��Z s�1 Z s�1 p1 � 1 + s2L Z 1�1 Z 1�1 p1�+ �83k(B)p001:p0:
(3.2.11)

Substituting the tension equation (3.2.11) and shape equation (3.2.10) into the evolution

equation (3.2.8) and then subtracting the rotation of the straight thread_p0 = K � p0 � p0p0:E � p0, we get an equation for the evolution of the distortionsp1,
_p1 = K � p1 + p0 �E � p0��p1 + 14(1� s2)p001 � 32sp01�� 2p0p0 �E � p1 � 43k(B)piv:

(3.2.12)

The change inp1 in time in equation (3.2.12) arise both from the changes in shape and

from the rotation ofp1 with p0. To remove the rotations we introduce the orthonormal

triadp0;q0 andr0 in the frame of the unperturbed fibre. The rotation of vectorsq0 andr0
result only from the rotation ofp0 so that_q0 = �p0(q0: _p0) = p0(q0 �K � p0);_r0 = �p0(r0: _p0) = p0(r0 �K � p0):
Let the distortions from the straight fibrep1 be written asp1(s; t) = q0(t)q(s; t) + r0(t)r(s; t). Substituting this into equation (3.2.12) and taking

the dot product withq0 andr0 gives equations for_q and _r respectively.

_q = (q0 �K � q0)q + (q0 �K � r0)r+ p0 �E �p0 ��q + 14(1� s2)q00 � 32sq0�� 43k(B)qiv
(3.2.13)



Chapter 3. Results for Instrinsically Straight Fibres 81_r = (r0 �K � q0)q + (r0 �K � r0)r + p0 �E � p0 ��r + 14(1� s2)r00 � 32sr0�� 43k(B)riv
(3.2.14)

For a bending stiffness of zero the second order differential equation can be solved

analytically as described by Hinch [17]. Wherek(B) is non-zero, an analytic solution

does not exist and so a shooting technique has been employed.

Shooting Technique

Let us consider a fibre located in thex � y plane so thatr = 0 andr0 �K � r0 = 0. We

therefore haveq0 �K � q0 = �p0 � E � p0 for a symmetric flow and so equation (3.2.13)

becomes _q = p0 �E � p0��2q + 14(1� s2)q00 � 32sq0�� 43k(B)qiv: (3.2.15)

Provided thatp0 � E � p0 remains approximately constant we seek a solution of the formq = Q(s)e�t. Substituting this into equation (3.2.15) gives�k(B)Q = p0 �E � p0k(B) ��2Q+ 14(1� s2)Q00 � 32sQ0�� 43Qiv: (3.2.16)

Before attempting to solve the full equation we shall first consider the simplest case of a

fibre in quiescent fluid wherep0 �E � p0 = 0. Equation (3.2.16) then reduces toQiv � k4Q = 0 (3.2.17)

wherek4 = � 3�4k(B) . This equation has even solutions of the formQ(s) = A(
os ks+ � 
osh ks)
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and odd solutions of the formQ(s) = B(sin ks+ � sinh ks):
Imposing the boundary conditionsq0 = q00 = 0 and henceQ0 = Q00 = 0 at s = �1 we

can deduce that the even modes will occur at values ofk such thattan k = tanh k
and the odd modes will occur at values ofk such thattan k = � tanh k:
Substituting our value ofk into the corresponding solutions and using the boundary

conditions once again we can then obtain the values of� or � for each mode. Figure 3.16

shows the plots ofq(s) for the first 6 modes. It should be noted that an even solutionsforQ(s) give odd shape solutions and vice-versa as shown in figure 3.17. Mode 1 is the even

C shape and mode 2 the odd S shape. As expected at
p0:E:p0k(B) = 0 all values of �k(B) are

negative and hence all modes decay.

To solve equation (3.2.16) when
p0:E:p0k(B) 6= 0 we employ a shooting technique. PuttingQ0 = Q, Q1 = Q0, Q2 = Q00 andQ3 = Q000, equation (3.2.15) can be written as four first

order differential equations.

Q03 = � 34k(B) ��Q0 � p0 �E � p0 ��2Q0 + 14(1� s2)Q2 � 32sQ1��Q02 = Q3Q01 = Q2Q00 = Q1
9>>>>>>=>>>>>>; (3.2.18)
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Figure 3.16: Plots of Q(s) for modes 1 to 6 withA = B = � 1p2
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It follows from the boundary conditionp0 = 0 at s = �1 thatQ1 = 0 at s = �1. The

other boundary conditions,p00 = 0 and henceQ2 = 0 at s = �1 follow from the net

force and net torque on the fibre being zero. The growth rates�k(B) are the eigenvalues

corresponding to eigenfunctionsQs(s). To find the eigenvalues and eigenfunctions we

exploit the linearity and symmetry of the solutions.

Suppose we have a solution forQs(s) whereQs(s) = (Q0(s); Q1(s); Q2(s); Q3(s))
of the form Qs(s) = D(Qa(s) + �Qb(s))
where Qa = (Qa0; Qa1; Qa2; Qa3) ;Qb = �Qb0; Qb1; Qb2; Qb3� :
To satisfy the boundary conditions we chooseQa andQb to be

Qa = (1; 0; 0; 0) ;Qb = (0; 0; 0; 1)
at s = �1.

For an even solution we require in addition thatQ1 = Q3 = 0 ats = 0 so thatQa1(0) + �Qb1(0) = 0;Qa3(0) + �Qb3(0) = 0: (3.2.19)
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To satisfy both conditions simultaneously requires the determinant of the matrix0BBB� Qa1 Qb1Qa3 Qb3
1CCCA

to be zero, which provides our condition at�k(B) .
Similarly an odd solution requiresQ0 = Q2 = 0 ons = 0 so thatQa0(0) + �Qb0(0) = 0;Qa2(0) + �Qb2(0) = 0: (3.2.20)

Again to satisfy both conditions simultaneously requires the determinant of the matrix0BBB� Qa0 Qb0Qa2 Qb2
1CCCA

to be zero.

We obtain the values ofQa andQb ats = 0 by integrating equation (3.2.18) froms = �1
to s = 0 using fourth order Runge Kutta and starting with the proposed initial values of

each solution ats = �1. We obtain the correct value of�k(B) by using either bisection

or Newton Raphson to find a zero determinant. Once the value of�k(B) is found we can

obtain� using equations (3.2.19) or (3.2.20).

Starting from the analytic solutions forp0�E�p0k(B) = 0 we can find the solutions of�k(B)
by decreasingp0�E�p0k(B) in small increments and using the previous answer of�k(B) as our

initial estimate. At certain values ofp0�E�p0k(B) two different branches of real eigenvalues

coalesce, and are replaced by a complex eigenvalue pair. These were found using a

Newton Raphson scheme.
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3.2.2 Stability Analysis Results

The values of the growth rate�k(B) obtained for different values ofp0�E�p0k(B) are shown

in figure 3.18. For positive values ofp0�E�p0k(B) all modes are stable. At small, negative

values ofp0�E�p0k(B) the most unstable mode is mode 1, theC shaped mode. This mode

goes unstable at a dimensionless flow strength of�12:77. Mode 2, theS shaped mode

goes unstable at ap0�E�p0k(B) value of�64:5 however at this flow strength theC mode is still

the most unstable mode. TheS mode does not become the most unstable mode until a

flow strength of approximately�146:67. We found no unstable real modes in the region�378:67 < p0�E�p0k(B) < �429:33, however, we did find odd and even complex modes in

this region, the even mode being the most unstable.

These results are in good agreement with those of Becker and Shelley [3]. The non-

dimensional parameters used in the two studies differ by a factor of 12 in the flow

strengths. Multiplying our results for the values at which theC and theS mode become

the most unstable by12 gives flow strengths of�153:24 and�1760 respectively. These

compare favourably with the approximate flow strengths of�153:2 and�1880 found by

Becker [3] who uses pseudospectral collocation to find the most unstable modes. Our

results benefit from showing the growth rates of more than just the most unstable mode at

each flow strength.

Figures 3.19 to 3.22 show the shapes of the modes at the positions marked on figure 3.18.
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figure 3.18
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figure 3.18
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Simulation Results for Compressional Flow

In shear flow the rotation of the fibre changes the value ofp0�E�p0. To compare the results

of the linear stability analysis with our simulations we consider a fibre aligned along thex axis in the compressional flow,u = (�Ex;Ey; 0) as shown in figure 3.23. We consider

only small order distortions allowing us to make the approximationp0 �E � p0 � �E.

Let us first consider mode 1, the C-shaped mode. AtEk(B) < 12:77 it is stable and should

therefore decay. At12:77 < Ek(B) < 209:33 it is unstable and should therefore grow.

Although mode 1 is unstable, mode 2 is the most unstable mode in the range146:67 < Ek(B) < 209:33. For 209:33 < Ek(B) < 346:67 mode 2 is still the most unstable

mode however, complex mode 3 has replaced mode 1. We choose aninitial orientation

such thatp0 = (1; 0; 0) and perturbation such that� = 10�4 andA = � 1p2 . Plots of the

fibre at flow strengths ofEk(B) = 0, Ek(B) = 53:33 and Ek(B) = 240 are shown in figures

3.24, 3.25 and 3.26 respectively. Figures 3.24 and 3.25 confirm that the mode 1 shape

perturbation does decay as expected atEk(B) = 0 and grow as expected atEk(B) = 53:33. AtEk(B) = 240 the mode grows initially but is superceded by the complex mode 3. Note that

although the odd mode 2 is the most unstable it is completely decoupled from the even

modes and so does not appear.

Let us now consider mode 2, the S-shaped mode. AtEk(B) < 64:5mode 2 should decay and

for 64:5 < Ek(B) > 378:4 mode 2 should grow. For146:67 < Ek(B) < 346:67 it is the most

unstable mode. We choose a fibre with an initial orientation such thatp0 = (1; 0; 0) and

perturbation such that� = 10�4 andB = � 1p2 . Figures 3.27, 3.28 and 3.29 show plots

of the fibre at flow strengths ofEk(B) = 53:33, Ek(B) = 133:33 and Ek(B) = 400 respectively.

At E = 53:33 the S mode decays as expected, again the mode 1 does not grow despite

being unstable at this flow strength because it has the opposite symmetry. AtE = 133:33
mode 2 grows as expected. AtEk(B) = 400 mode 2 grows and is eventually superceded by

complex mode 4.

We look at some higher modes to confirm our findings. We consider a fibre with an
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Figure 3.23: Diagram showing the compressional flowu = (�Ex;Ey; 0).
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Figure 3.24: Fibre with small initial mode 1 perturbation ina flow of strength Ek(B) = 0.
The perturbation decays.
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Figure 3.25: Fibre with small initial mode 1 perturbation ina flow of strength Ek(B) =53:33. The perturbation grows.
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Figure 3.26: Fibre with small initial mode 1 perturbation ina flow of strength Ek(B) = 240.
The perturbation grows but is eventually superceded by mode3 as can be seen by the
curling upwards of the fibre ends at timet = 100.
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Figure 3.27: Fibre with small initial mode 2 perturbation ina flow of strength Ek(B) =53:33. The perturbation decays.
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Figure 3.28: Fibre with small initial mode 2 perturbation ina flow of strength Ek(B) =133:33. The perturbation grows.
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Figure 3.29: Fibre with small initial mode 2 perturbation ina flow of strength Ek(B) = 400.
The perturbation grows and is eventually superceded by mode4.

initial orientationp0 = (1; 0; 0) and perturbation such that� = 10�4 andA = 1p2 . AtEk(B) = 133:33, mode 3 is not unstable at this flow strength and so does not grow however,

mode 1 is unstable and does grow (figure 3.30). AtEk(B) = 200 (figure 3.31 and 3.32)

mode 3 does grow, however, mode 1 is still more unstable at this flow strength and so

mode 3 is superceded by mode 1. AtEk(B) = 400 (figure 3.33) mode 3 is the most unstable

mode and hence grows.

A fibre with an initial mode 4 deformation (with� = 10�4 andB = 1p2 ) at Ek(B) = 200
decays completely (figure 3.34). AtEk(B) = 373:33 (figure 3.35 and 3.36) mode 4 grows

and is then superceded by the more unstable mode 2.

The results of the linear stability analysis suggest that fibres of low flexibility are more

likely to perform C turns and fibres of high flexibility are more likely to perform S turns,

however, this is not what we observe in our simulation suggesting that bending in the

compressional quadrant is not what determines whether a C turn or an S turn is seen.
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Figure 3.30: Fibre with small initial mode 3 perturbation ina flow of strength Ek(B) =133:33. Mode 1 grows.
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Figure 3.31: Fibre with small initial mode 3 perturbation ina flow of strength Ek(B) = 200.
The perturbation grows.
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Figure 3.32: Continuation of figure 3.31. The perturbation has continued to grow and is
now being replaced by mode 1.
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Figure 3.33: Fibre with small initial mode 3 perturbation ina flow of strength Ek(B) = 400.
The perturbation grows.
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Figure 3.34: Fibre with small initial mode 4 perturbation ina flow of strength Ek(B) = 200.
The perturbation decays.
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Figure 3.35: Fibre with small initial mode 4 perturbation ina flow of strength Ek(B) =373:33. The perturbation grows.
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Figure 3.36: Continuation of figure 3.35. The perturbation continues to grow and then
change to mode 2.

3.2.3 Bending in the flow-vorticity plane.

We now look at bending of a fibre near the flow vorticity plane. As noted by Hinch [17]

an infinite aspect ratio fibre will straighten completely as it approaches the flow-vorticity

plane. To establish the shape formed by a finite aspect ratio fibre as it bends due to

the velocity difference across the fibre ends we calculate the torque distribution along a

straight fibre that is required to keep it straight.

We consider a fibre composed ofN rigid rods. We calculate the torque distribution by

comparing the rotation rate of a rod in a straight composite fibre with the rotation rate

of a freely rotating rod of the same aspect ratio. The difference in the rotation rates is

proportional to the total torque acting on that rod so that[T
n + (Bn �Bn�1)℄� p = ��t ( _p� _pf ) (3.2.21)

whereT
n are the constraint torques on rodn arising due to the forces maintaining



Chapter 3. Results for Instrinsically Straight Fibres 99

HHHHH HHHHH HHHHH HHHHH HHHHH HHHHH HHHHH- - - - - - -Hj````̀ ````̀ ````̀ ````̀ ````̀ ````̀ ````̀�� �� �� ��� � � ��6 ?	`````̀zjB1 �B1 BN�1�BN�1Fn�1�Fn�1 Fn�Fn
p

p
_p

_psx
 NN � 1
Figure 3.37: Rotation of free rods and composite fibre.

connectivity of the fibre and(Bn � Bn�1) is the sum of the bending torques (shown in

figure 3.37).��t is resistance co-efficient for torque for a rod of lengthl = 2LN , as derived

in section 1.2.6. Here_p is the rotation rate of the whole fibre and_pf is the rotation rate

of a freely rotating rod. Both can be calculated from equation (2.2.12) in Chapter 2. Forp = (1; 0; 0) these are given by _py = � _
a2r (3.2.22)

and _pfy = �N2 _
a2r : (3.2.23)

where _
 is the shear rate,ar is the aspect ratio of the whole fibre andarN is the aspect ratio

of an individual rod. Thex andz components of rotation rate are both zero.

To calculate the torques on rodn we first calculate the constraint forcesF
n = Fn�Fn�1
(shown in figure 3.37). The velocity of the centre of each rod in the connected fibre is
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given by _xny = s(n) _py = �s(n) _
a2r
wheres is the distance from the centre of the fibre to the centre of rodn. For rods

numbered from left to rights is given bys = (2n� 1)LN � L = (2n�N � 1)LN
regardless of whether the number of rods is even or odd. The rod centre velocities_xny
can be calculated in terms of the constraint forces from equation (2.1.3) so that

_xny = 12���1f (Fny � Fn�1y)
where��f is the resistance co-efficient for force for a rod of lengthl = 2LN . Equating the

two forms of _xny gives the following expression for the constraint forces onrodn
Fny � Fn�1y = ��(2n�N � 1)

where� = 2��f _
La2rN . The no net force condition,�� NXk=1(2k �N � 1) = 0;
means that this system ofN equations inN � 1 unknowns can be solved to giveF ny = �� nXk=1(2k �N � 1) = n�(N � n): (3.2.24)

The constraint torque on each rod is given byT 
nz = (Fny + Fn�1y) LN . Substituting
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equation (3.2.24) we getT 
nz = 3�(2(n� 1)(N � n) +N � 1) (3.2.25)

where� = L3N � = _
��ta2r .

Substituting equations (3.2.25), (3.2.22) and (3.2.23) into equation (3.2.21) we obtainBnz �Bn�1z = �(6n2 � 6(N + 1)n+ (N + 1)(N + 2)):
The no net torque condition,� NXk=1(6n2 � 6(N + 1)n+ (N + 1)(N + 2)) = 0;
again means that this system ofN equations inN � 1 unknowns can be solved, giving a

bending torque of

Bnz = � nXk=1(6n2 � 6(N + 1)n + (N + 1)(N + 2)) = n�(N � n)(N � 2n): (3.2.26)

As the bending torqueBnz acts at the joint between rodsn and rodn+1 then the equivalent

value ofs at this point would bes = 2LN n� L, rearranging we obtain an expression forn
in terms ofs n = (s+ L)N2L :
Substituting this into equation (3.2.26) we obtain the continuous limit of equation (3.2.26)Bz(s) = � 2�� _
3a2r log 2ar s(L2 � s2):
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The beam equation was derived in subsection (1.3.1) and is given byd�(s)ds = 1EIBz(s)
where�(s) is the angle between thex axis and the tangent at a points along the fibre.

Substituting in our expression forBz(s) we getd�(s)ds = 1EIBz = � 2�� _
3 log 2arEIa2r s(L2 � s2):
Non-dimensionalisings with respect toL we can write this in terms of the non-

dimensional bending stiffness derived in section 1.3.3,d�ds = � 18k(B)a2r s(1� s2): (3.2.27)

For small angles� � dyds and henced�ds � d2yds2 . Substituting into equation (3.2.27),

integrating twice and imposing the conditiony = 0 at s = �1 we get

y = 132k(B)a2r s(23s2 � s45 � 715):
Hence the perturbation is an even mode and produces anS shape as shown in figure 3.38.

Note that the magnitude of the projection into they direction is of order 1k(B)a2r , whereas

the actual width of the fibre isd = 2ar . Hence the the functionf(k(B); ar) described in

section 3.1.3, in whichdf(k(B); ar) describes the effective aspect ratio, is proportional to1k(B)ar .
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Figure 3.38: The projection into the y direction of a bent fibre in the flow vorticity plane
against arc lengths.
3.3 Discussion

In section 3.1 we found that the fibre always performs even mode turns and the

dimensionless measure of the effect of bending on the periodof rotation wask(B)ar rather

thank(B). This would appear to be at odds with the results of the stability analysis for a

fibre under compression which show that C-mode is the first to become unstable and that

the effects of bending should depend only uponk(B). However, fibres in shear flow rotate

through the compressional quadrant in a time of order1_
 . Consequently disturbances do

not have time to grow during this section of the orbit where these modes are unstable,

before they decay again in the extensional quadrant. Thus itis bending when the fibres

are near the flow-vorticity plane that is most significant. Inthe previous section we

showed that this gives rise to an S mode. Furthermore the deformation produces an

additional effective cross-section proportional todk(B)ar suggesting thatf in subsection

3.1.3 is inversely proportional to 1k(B)ar , which is consistant with the simulation results.

Fibres of very high aspect ratio eg.ar = 1000 will only perform mode 4 turns. This is
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because fork(B)ar to be low enough for the fibre to bend in thex � z plane the stiffness

must be very low, making mode 4 the most unstable mode.

In section 3.1.2 we encountered two regimes for bending energy; a low stiffness regime in

whichE is proportional to 1k(B) 12 ; and a high stiffness regime in whichEa3r is proportional

to 1k(B)2 . In the low stiffness regime, most bending occurs in the compressional quadrant,

away from thex� z plane and hence aspect ratio is relatively unimportant. Thestiffness

values at which the transistion between the two regimes occurs is between 0.0008 and

0.005. Referring back to our stability analysis,S modes are stable for flow strengths,p0�E�p0k(B) , less than64:5, this corresponds to stiffnesses greater than0:00775 for a fibre under

maximum compression at an angle of�45Æ. A fibre of stiffness0:005 will be unstable toS mode growth within the range�20Æ to�69:92Æ, a section of the orbit where the fibre

rotates quickly and hence theS mode does not have time to grow. Thus fibres of stiffness

greater than0:005 remain effectively straight during their rotation. The high stiffness

regime therefore describes stiffnesses that are sufficiently large that only bending in thex� z region of the orbit is important as distortions decay in the compressional quadrant.

It is for this reason that at high stiffnesses bending energyis also dependent on aspect

ratio.

From equation (3.2.27) the bending of the fibre when it is aligned in the flow direction is

given by d�ds = � 18k(B)a2r s(1� s2):
This gives a bending energy of132k(B)2a4r Z 1�1 s2(1� s2)2ds = 1210k(B)2a4r :
For largek(B)ar the period of the orbit will be approximately that of a rigid fibre of the
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same aspect ratio. Hence the energy over half an orbit,E is proportional to ark(B)2a4r and

hence we obtain our result from section 3.1.2 thatEa3r / k(B)�2 .
3.4 Fibre Orbits

The previous section considered the special case of fibres with an initial orientation in the

flow-gradient plane. In this section we consider general initial orientations and examine

the effect of flexiblity on Jeffery orbits.

3.4.1 Orbit Drift

Unlike rigid fibres, semi-flexible fibres do not rotate in closed orbits but drift across orbits.

Fibres drift either towardsC = 0 so that they spin about the vorticity axis orC = 1 so

that they rotate in thex� y plane. Figure 3.39 shows the trajectory of the right-hand end

of the fibre when drifting towards the vorticity axis (left) and towards thex � y plane

(right).

The direction of drift depends upon the initial orbit constant of the fibre, the fibre stiffness

and the fibre’s aspect ratio. For a given stiffness and aspectratio there exists a critical

orbit constantC� such that forC > C� fibres drift towardsC = 1 and fibres withC < C� drift towardsC = 0. The value ofC� is a function of the stiffness and aspect

ratio of the fibre. Figures 3.40(a) and (b) show howC� varies with increasing stiffness

and increasing aspect ratio respectively. For a fixed fibre stiffness the value ofC� is found

to be proportional to the inverse aspect ratio squared of thefibre. However, as there is a

factor of aspect ratio between the orbit constant and the angle of alignment in thex � z
plane, the critical angle corresponding toC� is inversely proportional to aspect ratio. For

a fibre of fixed aspect ratio the value ofC� and hence the critical angle in thex� z plane

is proportional to the inverse stiffness of the fibre. As the aspect ratio is constant then the
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Figure 3.39: Trajectory of right-hand end of fibre drifting towards the vorticity axis,C0 =0:006, k(B) = 2�10�4(top). The trajectory of right-hand end of fibre drifting towards the
flow plane,C0 = 0:01, k(B) = 3� 10�3 (bottom).
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critical angle of the fibre is also inversely proportional tostiffness. Again this shows that

the dimensionless parameter controlling orbit drift isk(B)ar.
3.4.2 Drift Rate

The rate of drift across orbits is affected by aspect ratio, stiffness and orbit constant. For

fibres of differing aspect ratios (figure 3.41) and stiffnesses (figure 3.42) we have plotted

the angle�xz between the fibre and thez axis as the fibre passes through thex� z plane

vs the number of orbits. The figures on the top are for the case of drift towards the flow-

gradient plane and the figures on the bottom are for drift towards the vorticity axis. In all

cases drift towards the flow-gradient plane is faster than drift towards the vorticity axis.

In figures 3.43 and 3.44 the number of orbit periods has been scaled with aspect ratio

and stiffness respectively for drift towards the flow plane.We see that drift rate per orbit

towards the flow-gradient plane is approximately inverselyproportional to aspect ratio

and inversely proportional to stiffness. However, the drift rate towards the vorticity axis is

both slower and more sensitive to aspect ratio and stiffness. The scaling for drift towards

the vorticity axis is between 1k(B)2 and 1k(B)3 for stiffness and1a2r and 1a3r for aspect ratio.

3.4.3 Drift Mechanism

This scaling behaviour suggests that it is again bending in the flow-vorticity plane that

is the dominant mechanism for drift. To confirm this we consider a fibre of initial orbit

constantC = 0:2 and stiffnessk(B) = 2� 10�3 drifting towards thex� y plane. Figure

3.45 shows the trajectory of the right-hand end of the fibre asviewed in thex � y plane.

The dotted lines show the Jeffery orbits. The fibre orbit follows the Jeffery orbit during

the flipping section of the orbit, drifting away only slightly (towardsC = 1) from the

Jeffery orbit in the compressive quadrant but then driftingback again in the extensional

quadrant. Significant drifting occurs only when the fibre is passing through thex � z
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orbits as viewed in thex� y plane.

plane (the end regions in figure 3.45). This is confirmed in figure 3.46 which shows an

enlarged view of the end section of figure 3.45, the fibre orbitmoves from one Jeffery

orbit to the next each time the fibre crosses the flow vorticityplane.

To confirm that the main drift occurs as the fibre crosses thex� z plane we have plotted

the drift in orbit constant with time (figure 3.47). Each cross represents the completion

of one quarter turn. The small peaks in the graph represent the drift away from and back

towards the Jeffery orbit when the fibre is in the compressiveand extensional quadrants

respectively. Any drift towardsC = 1 that occurs in this region is cancelled out by

drift back towardsC = 0. The linear increases in the graph occur when the fibre is

within O( 1ar ) of thex� z plane. This accounts for the main increase in orbit constant. In

general using orbit constants to describe flexible fibres is problematic due to the changing

geometry of the fibre, however their use here provides a general idea of the changing path

of the fibre and is not intended to provide quantative information.
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Figure 3.48 shows the drift in orbit constant for fibres with small initial orbit constant

drifting towards the flow plane (left) and towards the vorticity axis (right). A fibre rotating

close to the vorticity axis is always in the regionO( 1ar ) from thex � z plane and so the

drift is more evenly distributed throughout the entire orbit. As the fibre bends the drift is

towards the flow plane and as the fibre straightens the drift istowards the vorticity axis. A

fibre with an overall drift towards the flow plane drifts further in the bending phase than

it does in the straightening phase and vice-versa. This can also be seen in figure 3.49 and

figure 3.50 where the trajectories of the end of the fibre is plotted and compared to a series

of Jeffery orbits.

3.4.4 Discussion

The drift in orbit constant for semi-flexible fibres is a consequence of both flexiblity and

finite aspect ratio. As with rotation rate, we find that the dominant cause of orbit drift is

bending when the fibre is close to the flow vorticity plane. Notonly do fibres spend all

but a fraction 1ar of their time in this orientation, but the angle between Jeffery orbits is

small so that a small change in angle causes a large change in orbit constant. The drift due

to bending in the compressional quadrant is relatively small and is reversed as the fibre

straightens.

For a flexible fibre the hydrodynamic forces on a fibre aligned in thex � z plane due to

its finite aspect ratio have two effects. First they cause therotation of the fibre, as in the

case of a rigid fibre and second they cause the fibre to bend. As aconsequence of bending

the hydrodynamic force distribution will be altered causing a change in the rotation angle

compared to a straight rigid fibre. This will produce a changein orbit constant as the fibre

passes through thex � z plane. The more flexible a fibre is the greater the change in

rotation angle and hence the more rapid the drift in orbit constant.
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3.5 Stress

In section 3.4 we showed that semi-flexible fibres drift either towards thex � y plane

whereC =1 or towards the vorticity axis whereC = 0. Fibres orientated parallel to the

vorticity axis make a negligible contribution to the stressso we shall consider only fibres

in thex� y plane.

For a high aspect ratio rigid fibre, the leading order non-dimensional fibre stress (or

stresslet) is given by S = p �E � ppp:
Hence for a fibre in thex� y plane with orientation

p = 0BBB� 
os �sin �0 1CCCA
where� is the angle with thex axis, the shear stress is given by�xy = 
os2 � sin2 � = 14 sin2 2�, the first normal stress difference byN1 = �xx � �yy = 
os3 � sin � � sin3 � 
os � = 14 sin 4� and the second normal stress

difference byN2 = �yy � �zz = sin3 � 
os �.
The leading order contribution to the shear stress is zero when the fibre is aligned with

either thex or y axis as the force from the flow is zero. The shear stress reaches a

maximum at angles of� = ��4 and� = �3�4 with thex axis as this is where the fibre is

under maximum compression and extension respectively. First normal stress difference

is zero when the fibre is aligned with either thex or y axis, or when the the fibre is at

an angle of��4 or �3�4 with thex axis. The latter cases occur as the compressive and

extensive forces cancel each other out.N1 has maxima at� = �3�8 and� = �7�8 and
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Figure 3.51: Stress contribution for a rigid fibre of aspect ratio100.

minima at� = ��8 and� = �5�8 where a compromise between flow strength and fibre

position is reached. The minima and maxima at��8 and�7�8 correspond respectively to

minima and maxima in�xx and the others to minima and maxima in�yy (which in this

case is equal to the second normal stress difference).

Integrating�xy, N1 andN2 with respect to� over a complete orbit gives a contribution of�4 to the shear stress and zero contributions to the first and second normal stress difference.

3.5.1 Comparison of Rigid and Semi-Flexible Fibres

Figure 3.51 shows the shear stress�xy, the first normal stress differenceN1 = �xx � �yy
and the second normal stress differenceN2 = �yy � �zz for a stiff finite aspect ratio fibre

of k(B) = 0:05 andar = 100 rotating for half an orbit in the x-y plane. The fibre passes

through they axis at a time of157. Figure 3.52 shows a close up of the middle section

of figure 3.51. Comparing this to figure 1.5 in Chapter 1 we can see that the simulation

reproduces the expected results for a rigid fibre.
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Figure 3.52: Close up of figure 3.51 in the time intervalt = 145 to 170 when the fibre
rotates through the compressional and extensional quadrants.

Figure 3.53 shows the shear stress for semi flexible fibres with stiffnesses in the range of0:001 to 0:005. The fibre of stiffness0:005 behaves as a stiff fibre. The fibre of stiffness0:0025 shows a reduced first maximum at a time oft � 155:5. This is because the fibre

bends slightly and so does not fully resist the compressional forces of the flow. This can

be seen in figure 3.54. The second maximum att � 157 is not reduced as the fibre fully

straightens before reaching� = �3�4 and so is able to fully resist extension. The minimum

value that occurs when the fibre is aligned with they axis at a time oft � 156:2 is positive

rather than zero as the bend in the fibre produces a small viscous force.

For the more flexible fibre of stiffness0:0015 the values of both maxima are reduced

compared to a rigid fibre as the fibre remains bent through a larger angle of its rotation.

The first maximum occurs before the fibre reaches� = ��4 , at a pointt � 153. Att � 154 there is a point of inflection which corresponds to the fibre reaching its maximumy projection, as shown in figure 3.55. The minimum, which occurs att � 155, is negative.

We can see from figure 3.55 that, att � 155, the fibre is in the extensional quadrant. As

the elastic forces also act to straighten the fibre, the fibre is straightening faster than the
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Figure 3.53: Shear stress for semi-flexible fibres of aspect ratio100.
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Figure 3.55: Plot showing the fibre shape at various points onfigure 3.53 for the fibre of
stiffnessk(B) = 0:0015.

surrounding flow and consequently the force distribution isin the opposite direction to

that on a stiff fibre, producing a negative stress component.

For a very flexible fibre (k(B) = 0:001) the first maxima occurs att � 150 which is again

before the end-to-end vector reaches an angle of��4 . For the fibre of stiffness0:0015 a

point of inflection occured at the point where they projection reached a maximum. For

the fibre of stiffness0:001 this inflection point now becomes a minimum (t � 151). The

minimum att � 153 occurs when the fibre is in the extensional quadrant and againoccurs

as the elastic forces of the fibre allow it to straighen fasterthan the surrounding flow.

Figure 3.57 shows the first normal stress difference given by�xx��yy for fibres of aspect

ratio 100 andk(B) = 0:001; 0:0015; 0:0025 and a stiff fibre ofk(B) = 0:005. Figures

3.58 and 3.59 show seperate plots for�xx and�yy respectively. In the case of a fibre in thex � y plane,�yy is equal to the second normal stress difference. For all fibrestiffnesses

in the range discussed above the maxima in�xx (second maxima in first normal stress

difference) is not reduced as in each case the fibre is straight before reaching� � �7�8 .

This can be seen in figures 3.56, 3.55 and 3.54 at times oft � 155, t � 157 andt � 158
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Figure 3.56: Plot showing the fibre shape at various points onfigure 3.53 for the fibre of
stiffnessk(B) = 0:001.

respectively.

The minima in�xx (first minima in first normal stress difference) are only reduced for

stiffnesses ofk(B) = 0:001 and k(B) = 0:0015. This is because a fibre of stiffnessk(B) = 0:0025 is stiff enough to fully resist the small compressive forcesthat occur at� � ��8 . This can be seen in figure 3.54 at a time of154 which shows that the fibre of

stiffness0:0025 is completely straight at this point and in figures 3.56 and 3.55 at times

of 149 and152 respectively which show that the more flexible fibres are slightly bent at

this point.

Unlike the maxima in�xx, the maxima in�yy (second minima in the first normal stress

difference) are reduced for flexible fibres as at� � �5�8 the fibre is still bent (see figures

3.56, 3.55 and 3.54 at times of154, 155:5 and156:5 respectively) and so is not able to

fully resist extension.

The minima in�yy (first maxima in first normal stress difference) are reduced by a greater

proportion than the minima in�xx. This is because the bend in the fibre is greater in the

second half of the compressional quadrant than it is in the first.
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Figure 3.57: First normal stress difference for semi-flexible fibres of aspect ratioar = 100
andk(B) = 0:001; 0:0015; 0:0025; 0:005.
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Figures 3.60, 3.61 and 3.62 show the integrals of shear stress, first and second normal

stress differences integrated over half an orbit against stiffness for fibres of different aspect

ratios. For a rigid fibre the integral of shear stress with respect to time over half an orbit

is �2 in the limit of infinite aspect ratio. The integrals of first and second normal stress

difference are zero. In figure 3.60 the shear stress increases with stiffness until a stiffness

is reached at which the fibre is able to resist the compressiveforces of the flow. The

stiffness required for this to happen is dependent upon aspect ratio. The smaller the aspect

ratio, the stiffer the fibre must be before maximum shear stress is reached. The plot shows

an aspect ratio dependence that is weaker thank(B)ar, the important parameter with regard

to orbit period. This is because orbit period is largely determined by bending in thex� z
region where aspect ratio is important, whereas shear stress is influenced by bending in

the compressional quadrant which only depends weakly on aspect ratio. In this region the

growth rates are independent of aspect ratio, however, the initial amplitude derives from

bending when the fibre is aligned in the flow direction. Dividing the integral of shear

stress over half an orbit byT2 to obtain an average shear stress shows that this quantity
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Figure 3.60: Integral of shear stress over half an orbit plotted against stiffness for fibres
of aspect ratios 100-500.

decreases with increasing aspect ratio. This is because high aspect ratio fibres spend a

greater proportion of their orbit aligned with the flow direction where the shear stress is

zero.

In figure 3.61 we see that the integral of the first normal stress difference decreases for

increasing stiffness, approaching zero in the limit of infinite stiffness. The rate at which

first normal stress difference decreases with stiffness is dependent upon aspect ratio. The

larger the aspect ratio the more rapidly the first normal stress difference integral decreases

with stiffness. For fibres that bend the first normal stress difference is positive rather than

zero, as it is for a rigid fibre, as the magnitude of the minima decrease more than the

magnitude of the maxima. In particular the magnitude of the second maximum never

reduces however, the magnitude of the first minima gets smaller with increasing flexibility.

The integral of the second normal stress difference (figure 3.62) is negative for very

flexible fibres. As stiffness increases the integral becomeszero atk(B) � 0:00125 (for an

aspect ratio of100) and then increases to a maximum atk(B) � 0:002. The integral tends

to zero in the limit of infinite stiffness. A rigid fibre has a negative second normal stress
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Figure 3.61: Integral of first normal stress difference overhalf an orbit plotted against
stiffness for fibres of aspect ratios 100-500.

difference in the compressional quadrant and a positive second normal stress difference

in the extensional quadrant. The integral of second normal stress difference is positive

for moderate stiffnesses (eg.k(B) = 0:0015 andk(B) = 0:0025) as the reduction in the

second normal stress difference maximum is smaller than thereduction in the minimum.

For very flexible fibres (eg.k(B) = 0:001) the integral is negative as the fibre spends a

greater proportion of its orbit with a negative second normal stress difference. The second

normal stress difference of a fibre of stiffness0:001 and aspect ratio100 changes sign att � 153 when the fibre is well into the extensional quadrant (as can beseen in figure

3.56), whereas the sign change for a fibre of stiffness0:0015 occurs att � 155, when the

end-to-end vector is closer to they axis (figure 3.55) and hence at an earlier point in the

orbit.
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Figure 3.62: Integral of second normal stress difference over half an orbit plotted against
stiffness for fibres of aspect ratios 100-500.

3.6 Conclusion

The motivation for this chapter was to determine whether semi-flexible fibres in shear flow

performedC turns as predicted by the simulation results of Ross, Klingenberg and Skjetne

[31, 34], the linear stability analysis of Becker and Shelley [3] and the experimental

observations of Forgacs and Mason [10] or if they performS turns, as reported in the

simulation results of Schmid, Switzer and Klingenberg [33]and as found in our initial

simulation results.

Our own linear stability analysis agreed with that of Becker, and found that theC mode is

the most unstable in compressional flow. However, by calculating the torque distribution

along the fibre when it is aligned in the flow direction, we found that bending in this

region seeds anS turn with a bend amplitude of order 1k(B)a2r in magnitude. Hence it is

odd modes that grow in the compressional quadrant even though even modes are more

unstable.

Calculations of bending energy for fibres of different aspect ratios and stiffnesses
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highlighted two different regimes; a low stiffness regime in which there was significant

bending in the compressional quadrant, where aspect ratio is unimportant, and a high

stiffness regime in which perturbations decay in the compressional quadrant but bending

still takes place in the region1ar from thex � z plane. In this high stiffness regime the

energy over one orbit period,E, is proportional to 1k(B)2a3r , a result that can also be derived

from the bending torque distribution along a fibre when aligned with the flow direction.

As the fibre spends a fractiona2ra2r+1 of its orbit in the region 1ar from thex � z plane

then it is bending in this region that is important in determining orbit period. Bending of

semi-flexible fibres gives a smaller effective aspect ratio and hence faster rotation through

the flow-vorticity plane. The functionTTr � 1 which gives a measure of the effect of

flexibility on the orbit period, in relation to that of an equivalent rigid fibre, is found to be

proportional to 1k(B)ar . Hence the effective width of the fibredf is proportional to 1k(B)a2r ,

in agreement with our torque distribution calculations.

Bending in thex � z region is also important in determining orbit drift as it is here that

the Jeffery orbits are closest together and the fibre spends the most time. Fibres with

initial orientations close to the flow-gradient plane drifttowards the flow-gradient plane

and hence the orbit constant increases, whereas fibres with initial orientations close to the

vorticity axis drift towards the vorticity axis and hence the orbit constant decreases.

Stress has a weaker aspect ratio dependence than orbit period and orbit drift, as the leading

order contribution to the stress is zero in the flow-vorticity plane where aspect ratio is

important. Both shear stress, and first and second normal stress differences are reduced

by flexibility as the fibre is unable to resist the compressiveand extensional forces of the

flow.

To discover whyC turns and notS turns were observed in the experimental results of

Forgacs and Mason [10], we shall present, in Chapter 4, a modification to the simulation

method which allows us to consider the rotation of intrinsically bent and twisted fibres in

shear flow.
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Chapter 4

Model for an Intrinsically Bent and

Twisted Fibre

In the previous simulation, described in chapter 2, we modelled an instrinsically straight

semi-flexible fibre as a chain of rigid rods. The straight equilibrium shape was obtained

by setting a single bending angle (of�) at each joint. For a high-aspect-ratio particle

the resistance co-efficient for rotation about the fibre’s axis is sufficiently small that we

may neglect the twisting of the rod as any twist relaxes on a very fast timescale. For an

intrinsically straight rod the bending energy is only dependent on the angle of bend, so

that we only need to consider the angle between tangent vectors of successive rods.

To model an instrinscially bent and twisted fibre this model is not sufficient. Rather than

setting only one equilibrium angle it is necessary to set three for a unique equilibrium

position to be specified. To model fibres that are bent out of the plane, for example into a

helix, it is not only necessary to set more than one equilibrium angle, it is also necessary to

consider the dynamics of twisting and writhing. The twist from the fluid relaxes quickly

as the rotational friction about the fibre axis is small, however, the initial out of plane bend

means we must consider the writhe of the fibre. Writhe means that through bending of

the fibre, the fibre will gain an overall twist which can then relax out, on a fast time scale,
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Figure 4.1: Illustration of a bent fibre in the flow-gradient plane in shear flow with
amplitudeRa and end to end lengthRl.
by untwisting directly about the fibre axis.

4.1 Equilibrium Shapes

There are infinitely many possible fibre equilibrium shapes,but we shall consider just

two:

Circular arcs

The first are fibres formed into a circular arc as shown in figure4.1. The amplitude of the

bend is denoted byRa and the end to end length byRl as shown in the diagram. We shall

also define an end to end vectorRl. For these fibres the shape is confined to a plane.

Helical Fibres

To consider the effects of out of plane bend we shall considera discretised version of the
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Left-handed helix Right-handed helix 

Figure 4.2: Left- and right-handed helices

continuous helix x(s) = (bs; a sin (s); a 
os (s)) (4.1.1)

wheres runs from0 to 2�nt. The helix is described by 3 parameters:nt the number of

turns of the helix,a the radius of the helix and2�b the pitch of the helix (i.e. the length

of one complete turn measured along the helix axis). The helix described above is a left-

handed helix. To form a right-handed helix it is necessary tonegate either thex, y or z
component. Illustrations of left- and right-handed helices are shown in figure 4.2.
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Figure 4.3: Local orthonormal frames of rodsn andn + 1.

4.2 Fibre Configuration

We again model the fibre as a chain ofN rigid rods of lengthl = 2LN . The position vector

of each rod is given byxn and the orientation vector which lies along the axis of each rod

by pn. In order to completely describe the configuration of the fibre it is also necessary

to specify orthogonal vectorsqn andrn so that each rod has a local orthonormal framefpn;qn; rng. We can describe the position of rodn + 1 relative to rodn by0BBB� pn+1qn+1rn+1 1CCCA = R(
n1 ;
n2 ;
n3 )0BBB� pnqnrn 1CCCA
whereR is a rotation matrix given by the product of rotations about the three co-ordinate

axes,R = RpRqRr where

Rp(
n3 ) = 0BBBBBBBBB�
1 0 00 
os 
n3 � sin
n30 sin
n3 
os 
n3

1CCCCCCCCCA ;
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Rq(
n2 ) = 0BBBBBBBBB�

os 
n2 0 sin
n20 1 0� sin
n2 0 
os 
n2

1CCCCCCCCCA ;
Rr(
n1 ) = 0BBBBBBBBB�


os 
n1 � sin
n1 0sin
n1 
os 
n1 00 0 1
1CCCCCCCCCA :


n1 , 
n2 and
n3 are the angles of rotation aboutrn, qn andpn respectively. Hence
3 is

the twist about the fibre axis, as shown in figure 4.4 and
1 and
2 are the bend angles

about axes perpendicular to the fibre.

Equilibrium Configurations

By specifying non-zero equilibrium angles for
1 or 
2 and zero for the other two

values we obtain an equilibrium state that is bent in the plane. By specifying non-zero

equilibrium values for two or more of the three angles we obtain an equilibrium state

which is bent out of the plane. For the circular arc we define
1 = 2 sin�1( LNR), whereR
is the radius of curvature andN is the number of rods used in the simulation. This means

that the ratio ofRl toRa is given byRlRa = 2 
ot 
1N4
as shown in figure 4.5.

The discretised helix is formed by dividing a continuous helix (as described by equation

4.1.1) intoN segments with a straight rod lying along the chord of each segment (as
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Figure 4.4: Illustration of fibre twist. The orthonormal frame of rodn + 1 is rotated by
n3 aboutpn from the frame of rodn.



Chapter 4. Model for an Intrinsically Bent and Twisted Fibre 135

 

R 

2
sin

2

1 1Ω= N
RRl  

2
cos 1ΩN

R  

)
2

cos1( 1Ω−= N
RRa  2

1Ω
 

2
sin 1Ω=

N

L
R  

2
1Ω

 

Figure 4.5: Diagram showing a fibre composed of 6 rods bent into a circular arc with
radius of curvatureR = LN sin 
12 .

shown in figure 4.2). The bend angle
eq1 is given bytan
eq1 = �~ap(~a2(
os� + 1) + 2b2)(1� 
os�)(~a2 
os� + b2) (4.2.2)

and the twist angle
eq3 bytan
eq3 = 2b sin�p~a2 + b2(~a2(
os� + 1) + 2b2 
os�) (4.2.3)

where~a = 2a sin �2� and� = 2�ntN .

Equations (4.2.2) and (4.2.3) are derived by by calculatingthe orthonormal frames of

neighbouring rods and then calculating the rotation matrixin terms of the helix parametersa andb. This is then compared to the rotation matrixR(
eq1 ; 0;
eq3 ). A full derivation is

given in appendix A.

In our simulation we keep the arc length of the helix constantand vary the radius, pitch
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Figure 4.6: A continuous helix of radiusa and pitchb discretised inN sections.
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and number of turns. Non-dimensionalised with respect to the half lengthL, the fibre

has a non-dimensional length of2 with rods of lengthl = 2N . The values ofa andb are

therefore constrained byl = 2N = jx(�2 )� x(��2 )j =r4a2 sin2 �2 + b2�2
wherejx(�2 ) � x(��2 )j is the length of the chord along which the rod lies, as shown in

figure 4.7. Rearranging we obtain the value ofb in terms of the radiusa such that the arc

length of the helix is constant.

b =r 4�2N2 � 4 a2�2 sin2 �2 (4.2.4)

Principal axes and moments of inertia

In chapter 5 we consider semi-flexible helices and in order todefine axes within a

deformed helix we will used the principal axes of the moment of inertia tensor. The

moment of inertia tensor is defined as~Iij = Z (xi �Xi)(xj �Xj)ds
whereX is the centre of mass. The principal axes define a set of perpendicular axes with

the body, while the ratios of the eigenvalues provide a measure of the aspect ratio.

For the continuous helix given in equation (4.1.1) we find~I = pa2 + b20BBB� 23b2n3t�3 �2abnt� 0�2abnt� a2nt� 00 0 a2nt� 1CCCA :
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The principal moments of inertia are given by the eigenvalues of the inertia tensor,�1;2 = pa2 + b2 �12a2nt� + 13b2n3t�3 � nt�6 q(3a2 � 2n2t�2b2)2 + (12ab)2� ;�3 = a2nt�pa2 + b2:
The principal axes are given by the corresponding eigenvectors,E1;2 =  �2abnt�12a2nt� � 13b2n3t�3 � nt�6 p(3a2 � 2n2t�2b2)2 + (12ab)2 ; 1; 0! ;E3 = (0; 0; 1):
For a continous helix the path length of the helix2�ntpa2 + b2 must be equal to the

non-dimensional fibre length2 and so1�nt = pa2 + b2:
Using this we can obtain the helix parametersa andb in terms of the principle moments

of inertia and the number of turns of the helix such thata =p�3
and b = q32(�1 + �2 � �3)nt� :
For any configuration of a discretised fibre we can calculate the principal axes and

moments of inertia from the position and orientation vectors of the individual rods.

The centre of mass of a fibre composed ofN rods is given byx
 = 1N PNn=1 xn wherexn is the position vector for the centre of rodn. The inertia tensor for the whole fibre is
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given by ~I = NXn=1~In
where the contribution~In from each rod is given by~In = Z l2� l2 (x(s)� x
)2ds:
The length of each rod is given byl = 2LN and the position of any point along the rod is

given byx(s) = xn + spn. The inertia tensor is therefore given by~In = Z LN� LN (xni + spni � x
i)(xnj + spnj � x
j)ds= Z LN� LN (xni � x
i)(xnj � x
j) + s[pni (xnj � x
j) + pnj (xni � x
i )℄ + s2pni pnj ds= 2LN (xni � x
i)(xnj � x
j) + 2L33N3 pni pnj :
As~I is symmetric the eigenvalues and eigenvectors can be calculated numerically using a

series of Jacobi transformations [29].

4.3 Numerical Simulation

As in the previous simulation we have a set of2N coupled equations for_xn and _pn
describing the evolution of the position and shape of the fibre in time. These are given byA(pn) � ( _xn �K:xn) = Fn
 (4.3.5)
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and C(pn) � ( _pn �K:pn) = Tn � pn; (4.3.6)

whereA(pn) = 2��llog 2ar (2I � pnpn) is the component of the grand resistance matrix

relating force to translation as derived in subsection 1.2.6 andC(pn) = ��l33 log 2ar (I�pnpn)
is the component of the grand resistance matrix relating torque to rotation.Fn
 andTn are

the forces and torques acting on each individual rod.

Equations for _xn and _pn are coupled through the non-dimensionalised connectivity

constraint _xn+1 � _xn = 1N ( _pn+1 + _pn) (4.3.7)

as derived in chapter 2.

In addition we need a third set of equations to describe the spin of each rod about its axis.

We shall define a twist angle�n for each rod given by�1 = 0�n = �n�1 + 
n�13 for n = 2; ::; N:
Thus _�n gives the relative angular velocity of rodn, compared ton� 1 and is given by�a _�n = � n � pn (4.3.8)

where�a = 4��b2l is the hydrodynamic resistance to spin and� n � pn is the component

of torque acting along the fibre axis.

For rods of high aspect ratio,l >> b the resistance to axial spin�a is negligible in

comparison to the resistance to rotation�t = ��l33 log 2ar about axes perpendicular topn
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so that the rods will rapidly rotate to a configuration for which�a _�n = � n � pn � 0: (4.3.9)

As the timescale for relaxation of spin is fast in comparisonto the slow rotation timescale

equation (4.3.9) may be decoupled from the solution of equations (4.3.5) and (4.3.6).

4.4 Balance of Forces and Torques

We now consider the forces and torques acting on each individual rod. The forces acting

on each rod arise entirely from the connectivity constraintand have been derived in

chapter 2. They are given by Fn
 = 1l (Fn � Fn�1)
where the same non-dimensionalisation has been used as given in chapter 2.

The torques acting on each rod arise from both the connectivity constraint and from the

elastic torques resulting from the bending and twisting stiffness at the joints. The torque

on each rod as a result of the connectivity constraint was derived in chapter 2 and is given

by Tn
 = l2pn � (I� pnpn) � (Fn + Fn�1):
Again this has been non-dimensionalised as described in chapter 2.

In order to ensure that there is no net torque on the fibre the torques at each joint are

calculated with respect to intermediate axes between rodsn andn+ 1 (figure 4.8)
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The elastic torques on each rod are then given by� n1 = �kB(�
n1 � �
eq1 )r�n + kB(�
n�11 � �
eq1 )r�n�1;� n2 = �kB(�
n2 � �
eq2 )q�n + kB(�
n�12 � �
eq2 )q�n�1; (4.4.10)� n3 = �kT (�
n3 � �
eq3 )p�n + kT (�
n�13 � �
eq3 )p�n�1:
where the angles�
ni are formed from the transformations with respect to axesp�n, q�n, r�n.

There will ben� 1 sets of intermediate axes corresponding to then� 1 joints.�
ni is given by �
ni = 
n�i + 
n+i
where
n+i for i = 3; ::1 are the angles of rotation fromfp�n;q�n; r�ng tofpn+1;qn+1; rn+1g
and�
n�i for i = 3; ::; 1 are the angles of rotation fromfp�n;q�n; r�ng to fpn;qn; rng such

that 0BBBBBBBBB�
pn+1qn+1rn+1

1CCCCCCCCCA = R+0BBBBBBBBB�
p�nq�nr�n
1CCCCCCCCCA ; (4.4.11)
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and 0BBBBBBBBB�
pnqnrn
1CCCCCCCCCA = R�0BBBBBBBBB�

p�nq�nr�n
1CCCCCCCCCA (4.4.12)

whereR+ = R(
n+1 ;
n+2 ;
n+3 ) andR� = R(�
n�1 ;�
n�2 ;�
n�3 ).
The angles may be calculated from the local frames as follows
n+1 = � tan�1�q�n � pn+1p�n � pn+1� ;
n+2 = sin�1(r�n � pn+1);
n+3 = � tan�1�r�n � qn+1r�n � rn+1�
and 
n�1 = � tan�1��q�n � pnp�n � pn� ;
n�2 = sin�1(�r�n � pn);
n�3 = � tan�1��r�n � qnr�n � rn� :
The torques acting on each rod are then resolved into those acting perpendicular to the

rod, (I� pnpn) � � n
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and parallel to the rod, pn � � n
where� n =� n1+� n2+� n3 .

The termTn in equation (4.3.6) is composed from the constraint torquestogether with

elastic torques perpendicular topn, and is given byTn = Tn
 + (I� pnpn) � � n:
Substituting the expressions for force and torque into equations (4.3.5), (4.3.6) and (4.3.9)

together with equation (4.3.7) make up the full system of equations. Written in full, non-

dimensionalised form they are_xn = K:xn + (I+ pnpn):(Fn � Fn�1); (4.4.13)

_pn = K:pn�pn:K:pnpn+3N(I�pnpn):(Fn+Fn�1)+(I�pnpn):(� n1+� n2+� n3 )�pn;
(4.4.14)pn:(� n1 + � n2 + � n3 ) = 0; (4.4.15)

_xn+1 � _xn = 1N ( _pn+1 + _pn): (4.4.16)

Figure 4.9 gives a flow diagram for the simulation algorithm.To start with we choose

values of
1, 
2 and
3. We then generate an initial configuration of rods by using the

rotation matrixR to calculate the local orthonormal frames. The orthonormalframes can
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then be used to calculate the symmetric equilibrium and initial values�
eq1 , �
eq2 , �
eq3 and
eq1 , 
eq2 , 
eq3 respectively.

At each timestep we first solve equation (4.4.15), using a multi-dimensional Newton

Raphson scheme[29], to find the change in� and therefore the change in
3. We then

update the values ofqn andrn accordingly. We then solve equations (4.4.13) and (4.4.14)

by using the constraint equation (4.4.16) to set up a system of tridiagonal equations that

can be solved to give the constraint forces, as described in chapter 2. We then integrate

equations (4.4.13) and (4.4.14), using a 4th order Runge Kutta scheme [29], to give new

values ofxn andpn. The axesqn andrn are then parallel transported usingqn(t + h) = �(qn(t) � pn(t+ h))pn(t) + qn(t)
and rn(t + h) = �(rn(t) � pn(t+ h))pn(t) + rn(t):
The resulting vectors are not perfectly orthogonal and hence the Gram-Schmidt process

is used at the end of each time step to re-orthogonalize the vectors. The values of�
1, �
2,�
3 are then updated before proceeding to the next time-step.

4.5 Rigid Helix Simulation

In order to validate our code in the limit of high stiffness and to provide a comparison for

our flexible helix simulations, we developed a separate numerical simulation for a rigid

helix. The motion of a rigid particle in a linear flow can be found from its grand resistance

matrix (see section 1.2.6).

The grand resistance matrix relates the hydrodynamic force, torque and stress exerted by

the fluid on the particle to the fluid and particle velocities
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Figure 4.9: Flow diagram for the simulation algorithm.
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+ 12!1�(x�x
)+E � (x�x
) anduh = U+! �(x�x
) such that0BBBBBBBBB�
FTS
1CCCCCCCCCA = 0BBBBBBBBB�

A ~B ~GB C ~HG H M
1CCCCCCCCCA
0BBBBBBBBB�
U0 +K � x
 �U!1 � !E1

1CCCCCCCCCA : (4.5.17)

The tensor resistivitiesA, ~B, ~G, B, C, ~H, G, H andM are fixed with respect to the

axes fixed with the rigid body. Consequently to calculate themotion with respect to fixed

axes it is necessary to either rotate the resistivity tensors to take account of the rotation of

the body. Alternatively, since the flow is at zero Reynolds number, we can perform the

calculation with respect to the body axes by rotating the external flow.

For a helix of radiusa and pitchb we define body axesfp; q; rg so that position vector

along the helix is given by

x0(s) = bsp + a sin (s)q+ a 
os (s)r: (4.5.18)

The axesfp;q; rg are related tofe1; e2; e3g, the standard basis inR3, by0BBB� pqr 1CCCA = R0BBB� e1e2e3 1CCCA (4.5.19)
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whereR is given by

R = 0BBBBBBBBB�

os �1 
os �2 � 
os �2 sin �1 sin �2sin �1 
os �3 + 
os �1 sin �2 sin �3 
os �1 
os �3 � sin �1 sin �2 sin �3 � 
os �2 sin �3sin �1 sin �3 � 
os �1 sin �2 
os �3 
os �1 sin �3 + sin �1 sin �2 
os �3 
os �2 
os �3

1CCCCCCCCCA :
�1, �2 and�3 are the angles of rotation from the cartesian axes to the local axes aboute3,e2 ande1 respectively .

Using this transformation we can transform the velocity gradient

K = 0BBB� 0 _
 00 0 00 0 0 1CCCA
for a shear flow intofp;q; rg co-ordinates usingK0 = R(KRT ).
In the following we shall use prime to denote quantities withrespect tofp;q; rg and

unprimed for those measured with respect tofe1; e2; e3g .

4.5.1 Numerical Simulation for a Rigid Helix

The initial orientation of the helix is choosen by selectingvalues of�1, �2 and�3 and

henceR(t = 0). The velocity,u0, and angular velocity,!0, are then calculated at timet,
in body co-ordinates. The change to the local axes are given by solving_p = !0(t)� p = !0rq� !0qr_q = !0(t)� q = !0pr� !0rp_r = !0(t)� r = !0qp� !0pq:
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To obtain the rotation matrixR for the helix in Cartesian co-ordinates we calculate the

new values of�1, �2 and�3 usingfp;q; rg such that�1 = � tan�1(p2p1 )�2 = sin�1(p3)�3 = � tan�1( q3r3 )
where�� � �1 � �,��2 � �2 � �2 and�� � �3 � �.

The velocity of the helix with respect to Cartesian axes can then be found fromu = R�1(t)u0 and hence the position vector updated fromdxdt = u.

4.5.2 Grand Resistance Matrix for a Helix

The contributions to the grand resistance matrix are calculated using slender body theory.

Here we shall assume that both the radiusa and pitch2�b are large compared to the

thickness of the fibre so that hydrodynamic interactions betweeen different parts of the

helix may be neglected. Note this is the same approximation made in the flexible fibre

simulation.

The helix is given by x = (bs; a sin (s); a 
os (s))
where0 � s � 2�nt andnt is the number of turns of the helix. The path length2L of the

helix is 2L = 2�ntpa2 + b2:
The unit tangent vector at a points along the helix is given byp = dxds = 1pa2 + b2 (b; a 
os (s);�a sin (s)):
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We consider a small sectionds of a helix moving with velocityuh in a flow with velocityu1. At leading order in slender body theory the resistance of the fluid to the motion of

this section of helix is given byfds wheref = 2��log 2ar (I� pp) � (u1 � uh):
Here we have assumed thata andb are of orderL. We non-dimensionalise length with

respect toL and force density with repect to�L _
, so thata� = aL , b� = bL andf� = f�L _
 .

The force, torque and stress acting on the entire helix are given byF = Z 2�nt0 f(s)ds;T = Z 2�nt0 (x� x
)� fds;S = 12 Z 2�nt0 (x� x
)f + f(x� x
)ds:
Wherex
 is the centre of resistance of the helix, which must be determined as part of the

calculation.

To calculate the first column of the grand resistance matrix we consider the translation of

a helix at a steady velocityU in a stationary fluid such thatuh = U andu1 = 0. This

gives us the following expressions for the force, torque andstress on the helix in terms of

the elements of the grand resistance matrixFi = �AijUj;T �i = Z �iklxkflds = �BijUj + �iklx
kFl = �(Bij + �iklx
kAlj)Uj;S�ij = 12 Z xifj + fixjds = �(Gijk + 12x
iAjk + 12Aikx
j )Uk:
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Calculating the force for the casesU = �ej for j = 1::3 gives thej th column ofAij,
similarly calculatingT� gives thej th column of(Bij+ �iklx
kAlj). CalculatingS�ij for the

casesU = �ek for k = 1::3 gives thekth components of(Gijk + 12x
iAjk + 12Aikx
j ).
The resulting values for the tensorsA andB+ x
 �A are given by

A = 2�nt0BBBBBBBBB�
2a2+b2pa2+b2 0 00 3a2+4b22pa2+b2 00 0 3a2+4b22pa2+b2

1CCCCCCCCCA (4.5.20)

B+ x
 �A = 2�nt0BBBBBBBBB�
a2bpa2+b2 0 0ab2pa2+b2 � a2b4pa2+b2 � b�nt(3a2+4b2)2pa2+b20 b�nt(3a2+4b2)2pa2+b2 � 3a2b4pa2+b2

1CCCCCCCCCA : (4.5.21)

We omit the calculation ofG as this is not needed for our simulation.

The principle directions, given by the eigenvectors of matrix A give the natural co-

ordinate system of the helix. As we can see matrixA has only diagonal elements so

that the principle directions are given by the standard Cartesian axes. Translation along

either of these axes will produce a force along that axis only.

To findB andx
 we note thatB is symmetric when calculated with respect to the centre

of resistance.

To calculate the centre of resistance we follow the derivation of Kim and Karrila [20].

We letT(x
) be the torque calculated with respect to the centre of resistance, for a helix
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undergoing translation andT(0) be the torque calculated with respect to the origin.T(x
)�T(0) = ZS(x� x
)� (� � n̂)ds� ZS x� (� � n̂)ds (4.5.22)= ZS �x
 � (� � n̂)dS= �x
 � F
This can be written in term of the elements of the grand resistance matrix asB(
)ij = B(0)ij � �ikl(x
)kAlj (4.5.23)

where the superscripts denote the centres used in the calculations.

The coupling tensor calculated with respect to the centre ofresistance is symmetric

therefore the antisymmetric part of equation (4.5.23) is given byB(0)ij � B(0)ji = �ikl(x
)kAlj � �jkl(x
)kAli:
Mulitplying through by�mij gives�mij [B(0)ij � B(0)ji ℄ = �mij�ikl(x
)kAlj � �mij�jkl(x
)kAli (4.5.24)= (ÆjkÆlm � ÆjlÆkm)(x
)kAlj � (ÆkmÆil � ÆlmÆik)(x
)kAli= (Amj(x
)j � (x
)mAjj)� ((x
)mAii � Ami(x
)i)= 2[(A� (trA)I) � x
℄m
As our matrixA has only diagonal elements the matrix(A � (trA)I) and its inverse

are easily calculated. SinceA is symmetric it can always be diagonalised by using its

principal directions as a basis. We therefore obtain the following expression for the centre
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of resistance of the helix,x
 = B(0)32 �B(0)23A22 + A33 e1 + B(0)13 � B(0)31A33 + A11 e2 + B(0)21 � B(0)12A11 + A22 e3;
whereei for i = 1::3 are the cartesian axes andAii are the diagonal elements and in this

case the principle values ofA.

Calculating the centre of rotation for the helix described gives

x
 = 0BBBBBBBBB�
b�nt02ab27a2+6b2

1CCCCCCCCCA :
CalculatingB from equation (4.5.21) gives

B = 2�nt0BBBBBBBBB�
a2bpa2+b2 ab2(3a2+4b2)(7a2+6b2)pa2+b2 0ab2(3a2+4b2)(7a2+6b2)pa2+b2 � a2b4pa2+b2 00 0 � 3a2b4pa2+b2

1CCCCCCCCCA :
To calculate the second column of entries in grand resistance matrix we consider the

rotation of a helix at an angular velocity! in a stationary fluid such thatuh =! �(x�x
)
andu1 = 0. In this case expressions for force, torque and stress are given byFi = � ~Bij!j;Ti = �Cij!j;
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As ~B is given by the transpose ofB andH is not required in this simulation then we need

only calculateC, which is obtained by calculating the torque for the cases!= �ej forj = 1::3 to give thej th column ofC. From this we obtainC as

C = 0BBBBBBBBBB� 2a2�nt(80b6+210a2b4+49a6+182a4b2)pa2+b2(7a2+6b2)2 ab�nt(35b2a2+24b4+14a4)(7a2+6b2)pa2+b2 0ab�nt(35b2a2+24b4+14a4)(7a2+6b2)pa2+b2 C�6pa2+b2(7a2+6b2)2 00 0 �nt(�3b2a2+12a4+�2n2t (6a2b2+8b4))6pa2+b2
1CCCCCCCCCCA

whereC� = �nt(588a8+1743a6b2+1452a4b4+300a2b6+�2n2t (294a6b2+896a4b4+888a2b6+288b8)):
Finally to calculate the 3rd row of entries in the grand resistance matrix we consider a

stationary helix in a rate of strain field such thatuh = 0 andu1 = E � x. In this case the

expressions for force, torque and stress are given byFi = � ~GijkE1jk ;Ti = � ~HijkE1jk ;Sil = �MiljkE1jk :
By calculating the force, torque and stress for the 9 casesE1ik = 1 and all other entries

zero forj = 1::3, k = 1::3 we obtain~Gijk, ~Hijk andMiljk respectively. Values of~G and~H are given in appendix B.M is not needed for the simulation.

Using the grand resistance matrix we can now obtain expressions for the force and torque
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on a helix in terms of the velocity and angular velocity. By setting the force and torque

to zero and solving for the velocity and angular velocity we obtain the values required in

our simulation.

4.5.3 Mobility Tensor and Axis of Rotation

The mobility tensor relates the velocity, angular velocityand stress of the particle to the

force, torque and strain on the particle such that0BBBBBBBBB�
U0 +K � x
 �U!1 � !S

1CCCCCCCCCA = 0BBBBBBBBB�
a ~b ~gb 
 ~hg h m

1CCCCCCCCCA
0BBBBBBBBB�

FTE1
1CCCCCCCCCA : (4.5.25)

In chapter 6 in order to get a uniform swimming direction it isnecessary to calculate the

axis about which a helix rotates. This can be achieved by calculating the principle axes

of 
. The matrix
 can be obtained directly from the values of the grand resistance matrix

[20] and is given by 
 = (C�BA�1BT )�1:
By calculating the eigenvectors
1, 
2 and
3 of 
 we obtain the axes of rotation of the

helix. The eigenvectors are given in local co-ordinates by


1 = 0BBB� �2
12�
22+
11�p
222�2
22
11+
211+4
21210 1CCCA ;
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2 = 0BBB� �2
12�
22+
11+p
222�2
22
11+
211+4
21210 1CCCA ;

3 = 0BBB� 001 1CCCA ;

where
ij are the entries of
 given in appendix C.

Numerically we find that
1 lies close top, 
2 lies close toq and
3 is equal tor.
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Chapter 5

Simulation Results for Intrinsically

Bent Fibres

In this chapter we study the motion of infinite aspect ratio fibres with non-straight

equilibrium shapes using the numerical simulation described in chapter 4. In particular

we shall compare the effect of the effective aspect ratio dueto the intrinsic bend of the

fibre with the behaviour of intrinsically straight fibres of infinite and finite aspect ratio

described in chapter 3.

We consider two types of intrinsic bend. The first section deals with fibres that are bent

into circular arcs so that the bend is confined to the plane. These equilibrium shapes

are given by
eq2 = 
eq3 = 0 with a non zero value for
eq1 so that the fibres are bent

into a circular arc. The second section deals with fibres withan intrinsic helical shape.

As discussed in chapter 4, the equilibrium shape for a helix requires
eq1 and
eq3 to be

non-zero and calculated from the values of radius and pitch.
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Figure 5.1: Illustration of a bent fibre with end-to-end vector p, end-to-end lengthRl,
normal vector in the plane of the fibreq and amplitudeRa. The bend angle is
1.
5.1 Fibre with in-plane bend

We begin by considering the rotation of a fibre whose intrinsic shape is a circular arc with

its end-to-end vector,R, aligned along thex axis and its bend in the flow-gradient,x� y
plane. Recall that for a fibre whose intrinsic bend is confinedto a plane we can define

local axes withp in the direction of the end-to-end vector andq, the normal direction

to p in the plane of the fibre. For fibres bent in circular arcs the degree of bend can be

measured by the bend amplitudeRa as illustrated in figure 5.1. The fibre rotates formingC turns as shown in figure 5.2 for a fibre with bend amplitudeRa = 2:5 � 10�2 and

bending angle
1 = 0:01. The fibre performsC turns rather thanS turns as it does not

have the symmetry of an instrinsically straight finite aspect ratio fibre. As the fibre has

no component in thex � z plane it does not drift across Jeffery orbits nor spin about its

major axis. Consequently the twisting stiffness has no effect upon the fibre dynamics for

a fibre in the flow gradient plane as the fibre is not subject to any twisting torques.

5.1.1 Orbit Period

We now consider the effect of bend amplitudeRa and bending stiffnessk(B) upon the

orbit period of a fibre aligned along thex axis with bend in the flow gradient plane. As
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Figure 5.2: Intrinisically bent fibre performing a C turn in shear flow (top). Fibre
continues to rotate performing another C turn after passingthrought the flow direction
(bottom). The stiffness of the fibre isk(B) = k(T ) = 2:5 � 10�3, the bend amplitude isRa = 2:5� 10�2 and the bending angle is
1 = 0:01.
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noted above the intrinsic bend allows a fibre of infinite aspect ratio to perform periodic

rotations because the bend always gives the fibre a finite projection in the direction of the

velocity gradient.

Bend Amplitude and Effective Aspect Ratio

For an intrinsically bent fibre of large length to thickness ratio the actual value of the

aspect ratio is relatively unimportant compared to the effective aspect ratio due to its

bend. To obtain a suitable measure of the effective aspect ratio of a bent fibre we compare

the effective aspect ratio calculated from the orbit periodareff = T _
4� +rT 2 _
216�2 � 1 (5.1.1)

for a very stiff fibre which does not change shape, with three possible measures of aspect

ratio, which we shall call maximum aspect ratio, average aspect ratio and the square root

of the eigenvalue ratio.� Maximum aspect ratio is given byRlRa = 2 
otN
14
whereRa andRl are illustrated in figure 5.1.� Average aspect ratio for a fibre aligned along thex-axis with its bend in the direction

of they-axis the is given by arave = Rl R Rl(y)dyRa R Ra(x)dx
whereRl(y) is horizontal distance between two sections of the fibre at a heighty
from the end of the fibre andRa(x) is the amplitude of the bend at a pointx from

the end of the fibre.
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where�l is the largest principle moment of the moment of inertia tensor and�m is

the middle principle moment as defined in section 4.2. The third principle moment

is zero for a circular arc.

Figure 5.3 shows each of these three measures plotted against effective aspect ratio. All

three show a linear correlation with effective aspect ratio. However, as the average aspect

ratio shows an almost 1:1 correspondence we shall choose this as our measure of aspect

ratio for the fibre.

Orbit period of a semi-flexible fibre

In the remainder of this section we shall consider semi-flexible fibres. We expect the orbit

period to increase roughly in proportion to aspect ratio so in figure 5.4 we show the orbit

period divided by aspect ratio plotted against average aspect ratio for fibres of various

stiffnesses. For a very stiff fibre the relationship is linear just as it is for stiff finite aspect

ratio fibres. For more flexible fibres the orbits of small aspect ratio fibres are longer than

those of a stiff fibre of the same intrinsic shape. For larger aspect ratios the orbits are

shorter than those of stiff fibres. The point at which the change occurs is dependent on

the fibre stiffness.

Flexibility causes the aspect ratio of the fibre to change dueto the bending moments

exerted by the hydrodynamic forces from the external flow. For an intrinsically straight

fibre (chapter 3) flexibility can only lead to a reduction in effective aspect ratio and hence

a decrease in orbit period. However, the hydrodynamic forces on an intrinsically bent

fibre aligned in the extensional quadrant of a shear flow will cause it to straighten, thereby

increasing the effective aspect ratio. Thus there is a competition between the effect of this
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straightening and the bending that occurs in the compressional quadrant (and that due to

finite thickness in the flow gradient plane).

The degree to which a semi-flexible fibre changes aspect ratiois approximately inversely

proportional to its stiffness. However, since a fibre cannotstraighten beyond being

perfectly aligned; the balance between the effects of straightening and further bending

depends upon the bend amplitude (or aspect ratio). For smallaspect ratio fibres withk(B)ar � 0:085 the orbit period is longer than for a rigid fibre, because the decreased

rotation speed caused by straightening is dominant. However, for fibres above this critical

valuek(B)ar � 0:085 the orbit period is shorter than for a rigid fibre as the effects of

bending become dominant. Fork(B)ar � 0:189 the effects of bending and straightening

reduce and the orbit period tends towards that of a rigid fibre. In figure 5.5 we show that

by plotting the orbit period divided by aspect ratio againstk(B)ar we obtain an almost

universal curve for different fibre stiffnesses.
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Variation from equilibrium shape

To demonstrate the differences for small and largek(B)ar figures 5.6 and 5.7 show the

measure of the deviation from the equilibrium, given byNXn=0(
n1 � 
eq1 );
for fibres of average aspect ratioarave = 30 with k(B)arave = 0:06 andk(B)arave = 0:6
respectively. Positive values of this quantity correspondto an increase in the average bend

angle while negative values indicate that the fibre is being straightened. The horizontal

line at zero represents no divergence from equilibrium and crosses mark every quarter of

a semi-flexible fibre orbit.

As expected the fibre bends considerably as it passes throughthe compressional quadrant

with the divergence from equilibrium increasing the more flexible the fibre. In the

extensional quadrant the fibre straightens beyond its equilibrium shape. The fibre withk(B)arave = 0:06 is straighter than its equilbrium shape as it enters the compressional

quadrant. The fibre withk(B)arave = 0:6 has returned back to its equilibrium shape by the

time it crosses thex� z plane.

Time spent in the compressional and extensional quadrants

Figure 5.8 shows time spent in the compressional quadrant and time spent in the

extensional quadrant plotted against the fibre stiffness for fibres with an average aspect

ratio of arave = 30. In general an increase in stiffness causes an increase in time spent

in the compressional quadrant and a decrease in time spent inthe extensional quadrant.

This is because the fibre bends more than its equilibrium shape, decreasing its effective

aspect ratio in the compressional quadrant and straightensbeyond its equilibrium shape,

increasing its effective aspect ratio in the extensional quadrant. However very flexible

fibres spend longer in the compressional quadrant than slightly stiffer fibres. This is

because a very flexible fibre will be almost completely straightened out when it passes



Chapter 5. Simulation Results for Intrinsically Bent Fibres 168

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  50  100  150  200

D
ev

ia
tio

n 
fr

om
 E

qu
ili

br
iu

m
 S

ha
pe

Time

Figure 5.6: Deviation from equilbrium shape for a fibre ofk(B)arave = 0:06 rotating for
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through the flow direction and so will take longer to leave theflow-vorticity plane

at the beginning of the compressional quadrant. The minimumfor time spent in the

compressional quadrant occurs at approximatelyk(B) = 0:0028 or k(B)arave = 0:085, this

corresponds to the point at which the the orbit period changes from being greater than that

of a rigid fibre to less than that of a rigid fibre.

A fibre of average aspect ratioarave = 30 has a minimum orbit period at a stiffness of

approximatelyk(B) = 0:0063 and hencek(B)arave = 0:189. The sharp initial decrease in

time spend in the extensional quadrant corresponds with thesharp initial decrease in orbit

period. As this decrease in time spent in the extensional quadrant starts to level off ask(B) approaches0:0063 the increase in time spent in the compressional quadrant becomes

more significant and hence causes an overall increase in orbit period.
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5.2 Initial Orientation and Spin

In the previous section we considered the case of a fibre with initial orientation such that

the end-to-end vectorp was aligned with thex-axis and the normal vectorq was aligned

with they-axis. Symmetry then ensures that the fibre continues to remain in thex � y
plane. However, this orientation is unstable. In this section we consider the case of a fibre

with initial orientation such that the normal vectorq is initially in the y direction but the

end-to-end vectorp is at an angle�xz to thex-axis in thex� z plane. For an intrinscially

straight fibre with initial orientation in thex�z plane the fibre would experience orbit drift

(see section 3.4), in which the end-to-end vectorp changes its orbit. For an intrinsically

bent fibre we do not get a chance to observe orbit drift as the fibre spins about its axis

and, within a few orbits ofp, ceases to rotate. We define spin as rotation of the normal

vectorq about an axis parallel to the end-to-end vectorp. The fibre ceases to rotate or

spin once the normal vectorq lies in thex�z plane as the fibre no longer has an effective

aspect ratio. While the fibre is still able to rotate it rotates in thep � q plane rather than

thex � y plane. Figure 5.9 shows the rotation and spin of a fibre with intial orientation

such that the normal vectorq is in the y-direction and end-to-end vectorp is at an angle�xz = 0:0175 with the x axis. The top figure shows they � z view of the fibre in which

the spin of the fibre can clearly be seen and the bottom figure shows thex� z view of the

fibre in which the changing plane of rotation of the fibre can beseen.

Changing the stiffness or the bend amplitude of the fibre has no effect on the spin rate of

the fibre. The only factor affecting the rate of spin is the initial angle�xz of the fibre in

the flow-vorticity plane. Decreasing the angle so that the fibre starts closer to the vorticity

axis increases the rate of spin. This is shown in figure 5.10 which shows the angle of spin

of the fibre plotted against time. The angle of spin is measured as the angle between the

plane of the fibre’s bend and they axis. All fibres start with their bend in they direction

so this angle starts at zero. Spin rate is initially rapid andlinear, dropping quickly as the
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plane of bend approaches the flow-vorticity plane.

5.3 Helical Fibres

In this section we consider the dynamics of rigid and semi-flexible helical fibres in shear

flow. First we consider rigid helices using the rigid helix simulation derived in section 4.5.

We consider helical fibres of non-dimensional arc-length2 with radiusa, pitch 2�b and

number of turnsnt as shown in figure 5.3. We shall only consider helices with a whole

number of turns. The arc length of the helix expressed in terms ofa andb, which must be



Chapter 5. Simulation Results for Intrinsically Bent Fibres 174

equal to the the length of the fibre, is given by2�ntpa2 + b2 = 2:
From this we obtain the value ofb that must be used for chosen values ofa andnt,b =s 1�2n2t � a2:
We shall define the aspect ratio of the helix as the axial length divided by its diameter,

given by ahr = �ntba =r 1a2 � �2n2t :
To assess the effects of flexibility on the dynamics of the helix we use the semi-

flexible fibre simulation derived in chapter 4. Unlike the rigid helix simulation, which

is for a continuous helix, the semi-flexible fibre simulationsimulates a discretised helix

composed ofN straight rods. Using equation (4.2.4) given forb in section 4.1 we can

express the aspect ratio of a discretised helix asahr =r 1a2 �N2 sin2 �2 ;
where� = 2�bntN . In order to have a good approximation of the continuous helix it is

necessary forntN to be small. In this chapter we useN = 12 as we shall only consider

flexible helices with one turn.
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Figure 5.11: A continuous helix of radiusa and pitchb discretised inN sections.
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5.3.1 Orbit Period

Rigid Helices

Figure 5.12 shows orbit period plotted against aspect ratiofor rigid helices with different

numbers of turns. Helices with a high number of turns rotate faster than those with fewer

turns. For smallnt we find that the relationship between aspect ratio and orbit period is

linear. For largent this linear relationship holds only at large aspect ratios.Fornt � 2 an

approximately universal linear plot can be obtained by plotting orbit period against aspect

ratio and scaling both quantites bynt, the number of turns. This is shown in figure 5.13.

A high turn helix of small aspect ratio will approach the shape of a hollow cylinder, thus

we can compare the results for largent with the result obtained by Burgers that a cylinder

with aspect ratioar rotates like an ellipsoid with aspect ratio0:74ar [5]. For helices with

a large number of turns there appears to be a transistion between having the properties of

a cylinder when the aspect ratio (and pitch angle) is small and having the properties of an

open helix once the aspect ratio (and pitch angle) gets larger. This is further supported

by figure 5.14 which shows orbit period versus number of turnsfor a helix of constant

aspect ratioahr = 10. The horizontal line shows the orbit period of a cylinder of aspect

ratio 10. As number of turns increases and hence pitch angle increases the orbit period

approaches that of a cylinder of the same aspect ratio. It should be noted however that as

our model excludes hydrodynamic interactions it is only valid for 2�bd � 1, whered is the

fibre thickness and2�bd is the slenderness ratio described by Higdon [16]. In figure 5.15

we plot the orbit period scaled with number of turns against pitch angle for helices with

different values ofnt. The plot shows a universal curve confirming that it is pitch angle

that determines whether the fibre will rotate as a helix or as acylinder.

Figure 5.16 shows the orbit period plotted against number ofturns for a helix with

constant pitch angle. Unlike figure 5.14 where the orbit period decreases with number

of turns due to the increases in pitch angle, figure 5.16 showsa linear increase in orbit
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Figure 5.12: Plot of orbit period,T , vs helix aspect ratio ,ahr = �ntba , for different values
of nt.
period. This is because an increase in number of turns results in an increase in aspect ratio

and as expected, orbit period increases linearly with aspect ratio.

Semi-flexible helices

We now use the flexible fibre simulation to assess the effect offlexibility on the orbit

period of the helix. However, first we must verify that the flexible helix simulation

reproduces the results for a rigid helix in the limit of largek(B). Figure 5.17 shows

that the orbit period calculated for a 1 turn helix plotted using the rigid helix simulation

is in excellent agreement with the flexible fibre simulation when the stiffness is set tok(B) = 0:048 andk(B) = 0:096.

For semi-flexible helices with stiffnesses in the range2:41� 10�4 to 9:65� 10�3 we find

that an almost universal curve is obtained by plotting the orbit period scaled with the orbit

period of a rigid helix againstahrk(B) 12 , as shown in figure 5.18. For
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Figure 5.13: Plot of orbit period divided by number of turns,Tnt , against helix aspect ratio

divided by number of turns ,ahrnt = �ba , for different values ofnt.
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Figure 5.14: Plot of orbit period,T , vs number of turns,nt, for a helix of aspect ratioahr = 10. Horizontal line shows the orbit period of a helix with the same aspect ratio.ahrk(B) 12 < 0:2 the orbit period for a flexible helix is greater that that of the equivalent rigid

helix. As in the case of a curved fibre, flexibility causes the helix to increase in aspect

ratio in the extensional quadrant and so rotates more slowlythrough thex� z plane. Forahrk(B) 12 > 0:2 the orbit period of a flexible helix is shorter than that of an equivalent rigid

helix as the increase in aspect ratio in the compressional quadrant dominates over the

decrease in aspect ratio in the extensional quadrant. The orbit period reaches a minimum

at approximatelyahrk(B) 12 = 0:4 and further increases inahrk(B) 12 result in the orbit period

tending to that of a rigid helix as bending decreases.
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for helices with different values ofnt.
5.3.2 Drift of Centre of Mass in the Vorticity Direction

The rotation of a helix in thex � y plane results in translation in the vorticity direction.

Figure 5.19 shows translation in thez direction plotted against time for rigid single turn

left and right-handed helices of aspect ratio 10. The crosses mark each quarter of the orbit

as determined by the central axis of the helix. In figure 5.20 which shows the velocity in

thex direction for each helix, the changes in direction of translation occur close to but not

exactly at the points where the central axis crosses thex andy axes. Instead the change

in the direction of translation corresponds to the positions where a second axis, fixed in

the frame of the helix, crosses thex andy axes, which we shall refer to as the translation

axis.

For a left-handed helix, translation is in the positivez direction as the helix rotates

through the compressional quadrant. As it enters the extensional quadrant the direction
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Figure 5.16: Plot of orbit period against number of turns fora helix of constant pitch
angle of46:32.

of translation changes sign. It switches back to positive asit passes through the

flow direction. For a right-handed helix the directions are reversed and translation is

predominantly in the negativez direction as shown in the lower plot in figure 5.19, which

is a mirror of the upper plot. The dotted lines in figure 5.19 show the translation for

the same helices after they have been rotated about their central axis by an angle of�.

Maximum velocity occurs when the helix is under maximum compression or maximum

extension. Zero velocity occurs when the translation axis is aligned with thex or they
axis.

We can explain the direction of drift by considering thex� y andx � z projections of a

left-handed helix aligned so that its central axis is initially in thex direction, at key points

during the orbit. In section (a) of figure 5.21 the central axis of the helix is aligned with

thex-axis, the first half of the helix (solid line) is above thex-axis and the second half of

the helix (dashed line) is below thex-axis. The block arrows indicate the flow directon
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and the line arrows the direction of translation. Translation in this direction occurs due

to the 2:1 ratio of the resistance co-efficients for motion perpendicular and parallel to the

fibre. This is illustrated in figure 5.22 which shows the motion of the helix relative to the

fluid. Rather than moving in thex direction, motion is at an angle closer to the tangent to

the helix and hence has a component in thez direction.

As the helix rotates through the compressional quadrant ((a) and (b) figure 5.21) it

translates in the positivez direction. Once in the extensional quadrant ((c) figure 5.21) the

helix translates in the negativez direction due to the two halves of the helix, as viewed

in thex � z plane, crossing over. As the helix approaches the flow direction ((d) figure

5.21), translation changes back to the positivez direction, this is due to the dashed half of

the helix moving above thex-axis and the solid half of the helix moving below thex-axis.

This change means the flow acting on each section is now in the opposite direction.

The rate of rotation of the helix is determined by the orientation of the central axis,

whereas the direction of drift is determined by the translation axis. As a consequence

when the central axis is aligned in the flow direction there istranlation in the positivez
direction. When the central axis is aligned withy axis there is translation in the negativez direction. The time taken for the central axis to cross the flow direction is significantly

longer than the time taken to cross they-axis and hence translation in the positivez
direction is greater (see figure 5.20). The smaller the anglebetween the translation axis

and the central axis the smaller the net displacement. Hencethe net displacement tends

to zero in the limit of infinite helix aspect ratio or infinite number of turns.

We now consider the effect of aspect ratio, number of turns and stiffness on the net

displacement of the helix over one orbit. We begin by considering the effect of aspect

ratio and number of turns on a rigid helix. Figure 5.23 shows the net displacement in

the z direction per orbit against aspect ratio divided by number of turns for left-handed

helices withnt=1,..,10. Maximum translation occurs atahrnt = 7 regardless of number of

turns, however, for smallnt the size of the maximum is smaller. This is because for small
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Figure 5.21: Diagram showing the direction of translation for a rigid handed helix at a
sequence of positions during a half rotation.
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Figure 5.22: Diagram showing the motion of the helix relative to the fluid.
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Figure 5.23: Net displacement along thez axis per orbit plotted against aspect ratio
divided by number of turns for helices of 1 to 10 turns.nt the aspect ratio is also smaller meaning the helix spends a smaller fraction of its orbit

close to thex�z plane and a greater fraction in the extensional quadrant where translation

in the negativez direction occurs. In figure 5.24 we plot the total distance travelled in thez direction over an orbit,T , given by� = Z T0 juzjdt
as opposed to the net displacement. Hereuz is the velocity in thez direction. It can be

seen that maximum total distance travelled is independent of the number of turns.

Figure 5.25 shows maximum translation speed (which occurs when the helix is under

maximum compression or extension) against aspect ratio, and translation speed when the

central axis of the helix aligned in thex� z plane against aspect ratio, for a 1 turn helix.

The aspect ratios for which these translation speeds are greatest are4 (� = 46:3Æ) and3
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Figure 5.24: Total distance travelled along thez axis per orbit plotted against aspect ratio
divided by number of turns for helices of 1 to 10 turns.

(� = 38:1Æ) respectively. Note that both values are smaller than the optimum aspect ratio

of ahrnt = 7 at which a rotating helix will translate the greatest distance per orbit. This is

because for aspect ratios in the range3 � ahrnt � 7 the decrease in translation speed is

more than offset by the increase in the orbit period and henceboth the net displacement

and total distance increases. Forahrnt � 7 the reduction in speed outweighs the increase in

orbit period.

Semi-flexible fibres

To assess the effects of flexibility on the translation rate of a flexible helix we use the

flexible fibre simulation. Again we first verify that the semi-flexible fibre simulation

agrees at large stiffnesses. Figure 5.26 shows that the average translation speed over one

orbit for the rigid helix simulation and for the flexible fibresimulation with helices of

stiffnesses0:048 and0:096 are in good agreement.
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Figure 5.25: Translation rate of a 1 turn helix aligned alongthe x-axis plotted against
aspect ratio. Plot is calculated from the grand resistance matrix for a rigid helix of arc-
length 2.
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Figure 5.26: Comparison of rigid helix and flexible fibre simulations for total distance
travelled along thez axis per orbit against helix aspect ratio. For the flexible fibre
simulation stiffnesses ofk(B) = 0:048 andk(B) = 0:096 were used.
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Figure 5.27 shows the net displacement per orbit for heliceswith stiffnesses in the range9:65� 10�4 to 9:65� 10�3 plotted against aspect ratio. For very low aspect ratio helices

the net displacement of a very flexible helix is less than thatof the equivalent rigid helix,

however, in figure 5.28 which plots total distance travelledagainst aspect ratio we see

that the total distance travelled is greater for more flexible helices. This is because

straightening of the helix in the extensional quadrant increases the orbit period, and

hence increases the total distance travelled, however, theincreased time in the extensional

quadrant means that the helix spends a greater proportion ofits time travelling in the

negativez direction. Figure 5.29 shows the velocity of the helix in thez direction

against time for one complete orbit. The velocity is zero just prior to the central axis

being aligned with the flow direction and they axis. Maximum translation occurs in

the compressional and extensional quadrants (for rigid helices both maxima are equal in

magnitude). Increasing flexibility reduces the size of the maxima as the resistance of

the helix to the shear flow is reduced. The maximum in the compressional quadrant is

reduced by a greater amount, despite the increase in effective aspect ratio, as the helix is

better able to resist straightening than bending.

For moderate aspect ratios, both the net displacement and total distance travelled for a

very flexible helix is less than that of a stiff helix as flexibility reduces both the translation

rate and the length of the orbit period. For high aspect ratios both the net displacement

and total distance travelled for a flexible helix are greaterthan that of a stiff helix despite

maximum translation rate being reduced (see figure 5.30). This is because the proportion

of time spent away from thex � z plane, where translation rate is fastest, is greater

the more flexible the helix (see figure 5.30). There is less of adifference between net

displacement for helices of different stiffnesses than in total distance travelled because

of the cancellation between positive and negative translation. For high aspect ratios the

effect of stiffness on orbit period is small as in all casesk(B) 12 ahr is large and hence orbit

period is close to that of a rigid helix.
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Figure 5.27: Net displacement along thez axis per orbit plotted against aspect ratio for
semi-flexible helices.

For a one turn rigid helix the maximum translation occurs at an aspect ratio ofahr = 7,

as this aspect ratio is large enough to give a large orbit period but not too large that

the translation rate is small. For helices with the same stiffness, the aspect ratio at

which maximum net displacement per orbit and maximum total distance per orbit occurs,

increases with flexiblity. This is because the orbit period of flexible helices at moderate

aspect ratios (ie. aspect ratios close toahr = 7) are smaller than those of rigid helices.

However, the orbit periods of flexible, high aspect ratio helices are very close to those of

rigid helices. For this reason, by plotting net displacement (figure 5.31) and total distance

travelled (figure 5.32) againstahrk(B) 12 , the same scaling that was used for plotting orbit

period, we see that maximum net displacement and total distance occur atahrk(B) 12 � 1:5
for all stiffness.
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Figure 5.28: Total distance travelled along thez axis per orbit plotted against aspect ratio
for semi-flexible helices.
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Figure 5.32: Total distance travelled along thez axis per orbit plotted againstahrk(B) 12 for
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5.3.3 Deformation of semi-flexible helices

In chapter 3 we found that intrinsically straight fibres performS turns, whereas bent fibres

performC turns. In shear flow the spine of a semi-flexible helix can bendin a similar way

to a flexible fibre. Figure 5.34 shows a 2 turn semi-flexible helix of aspect ratio 20 with its

central axis and mobility axis
1 aligned in the flow-gradient plane, rotating in shear flow.

The helix forms anS turn as it bends in the compressional quadrant. If we now spinthis

helix about its axis so that its mobility axis
1 has a component in the vorticity direction

it forms aC turn as seen in figure 5.35, as the fibre is now asymmetric in thex� y plane,

as shown in figure 5.33. As the helix spins about its axis,C turns will be more common,

however,S turns will occassionally be seen.

For semi-flexible helices with stiffnessesk(B) greater than0:0015, initially in the x � y
plane, the principal axis of the moment of inertia tensor rotates in thex � y plane. As
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Figure 5.33:x � y view of a helix with its mobility axis
1 in thex � y plane (left) andx � y view of the same helix rotated through an angle of�4 about its central axis so that
its mobility axis
1 has a component in the vorticity direction.

it rotates through the compressional quadrant the associated eigenvalue decreases as the

helix compresses slightly, like a spring. However, the principal axes of more flexible

helices such as that shown in figures 5.34 and 5.35 do not rotate, but rock back and

forth, even though the ends of the fibre change side every half-turn. These helices deform

sufficiently during their rotation that the principal axis always remains close to thex � z
plane.

5.3.4 Orbit Drift for Helical Fibres

As we have seen in previous chapters axisymmetric rigid particles rotate in closed periodic

Jeffery orbits and orbit drift is only seen for semi-flexiblefibres. However, in a shear flow

even rigid helices do not rotate in closed orbits but exhibitorbit drift. For most initial

orientations direction of orbit drift is towards thex�y plane however, some helices settle

in orbits close to thex� y plane.

For example in figure 5.36 we consider 1 turn helices placed atan angle of�32 with thex
axis in thex� z plane so that they are close to but not in thex� y plane and orbit drift is

towards thex � y plane. The orbit drift of helices with aspect ratio20, 40 and100 withnt = 1 are illustrated in figure 5.36 by plotting the trajectory of the central mobility axis
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Figure 5.34: A semi-flexible helix of aspect ratio,ahr = 20, number of turns,nt = 2 and
stiffnessk(B) = k(T ) = 6:25� 10�4 performing aS turn in shear flow.
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Figure 5.35: The same semi-flexible helix as in figure 5.34, performing aC turn.
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1, as defined in section 4.5.3. The drift rate is faster the smaller the aspect ratio.

For helices with 2 or more turns the drift direction is variable, after the first half orbit

drift may be towards thex � y plane and then after the second half orbit, towards the

vorticity axis, and drift continues long after the 1-turn helices have settled in thex � y
plane. Some helices found intermediate orbits as shown in figures 5.37 and 5.38. We have

not been able to predict the direction of drift, how long it will take for the helix to reach a

stable orbit and where that orbit will be, or if the helix willeventually reach a stable orbit.

For a larger number of turns eg.nt � 20 there is no noticeable orbit drift and hence we

conclude that orbit drift is a property of helices with smallnumbers of turns. For a helix

with a finite number of turns the rotation and spin of the helixare coupled in a non-trivial

manner and this could potentially give chaotic motion.

Helices placed at angles greater than�32 to thex axis in thex�z plane still drifted towards

thex � y plane. A one turn helix of aspect ratio10 placed at an angle of15�32 with thex
axis took approximately 100 orbits to reach thex � y plane. Helices with more than one

turn did drift in the direction of thex� y plane however, after109 orbits they had still not

reached a steady orbit.

Semi-flexible helices also drift towards thex � y plane. Just as with rigid helices, 1 turn

helices drift faster than helices with a greater number of turns.

5.4 Conclusion

In this chapter we have considered instrinsically bent fibres (with in-plane bends) and

helical fibres (out-of-plane bends). Unlike the intrinsically straight fibres studied in

chapter 3 which performS turns and only exhibit orbit drift when flexible, bent fibres

performC turns and a helical fibre can perform bothC andS turns depending upon its

angle of spin. Bent fibres do not exhibit orbit drift as the axial spin of the fibres quickly
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Figure 5.36: From top to bottom plots of
1 for helices of aspect ratios of20, 40 and100
drifting towards thex� y plane.
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Figure 5.38: Helix with 2 turns and aspect ratio40 drifting very slowly from its initial
orbit (top), helix with 3 turns and aspect ratio30 settling into an intermediate orbit.
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rotates them into thex� z plane where they are no longer able to rotate through the flow

plane. Rigid and semi-flexible helices exhibit a complex pattern of orbit drift due to the

coupling between spin and rotation.

For moderate stiffnesses the orbit period of semi-flexible bent and helical fibres is reduced

due to the bending of the fibre causing a decrease in effectiveaspect ratio, just as it does for

intrinsically straight fibres, however, for very low stiffnesses the orbit period is increased

as the fibre not only bends under compression but straightensin the extensional quadrant

resulting in a increase in effective aspect ratio just priorto the fibre crossing the flow plane.

Just as with intrinsically straight fibres the parameter determining how much the orbit

period of a bent fibre differs from that of an equivalent rigidfibre is given byareffk(B).
For helical fibres the parameter isahrk(B) 12 suggesting that aspect ratio has a greater effect

on bending than it does with bent and straight fibres.

As well as exhibiting orbit drift, helical fibres also translate along thez axis, as their

handedness provides a coupling between rotation about the vorticity axis due to the

shear flow and translation along that axis. This effect is greatest at points of maximum

compression and extension and hence greater for helices in the flow-gradient plane. Semi-

flexible helices translate more slowly as they are unable to fully resist the compressive and

extensional forces of the flow.
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Chapter 6

Swimming of Helical Fibres

In this chapter we use the flexible fibre simulation method described in chapter 4 to study

the swimming motion of a semi-flexible helical fibre at zero Reynolds number. In Stokes

flow inertial forces are negligible and fluid motion is linearly dependent on the applied

forces. This makes any time reversal symmetric swimming motion impossible as any

motion induced on the forward stroke is reversed on the return [30]. For micro-organisms,

with length scales of order10�4m swimming in water at speeds of order10�4ms�1 the

Reynolds number is of order10�2, and hence they cannot swim using a reciprocal motion

and therefore must find an alternative method of propulsion.One solution is rotation of a

helical flagellum. A helical fibre subjected to a torque will translate through the fluid due

to the handedness of the helix providing a coupling between torque and translation.

Let us recall the grand resistance matrix, derived in section 4.5. In a stationary flow the

strain-rate is zero and hence we need only consider the following part of the matrix:0BBB� FT 1CCCA = 0BBB� A ~BB C 1CCCA0BBB� U! 1CCCA : (6.0.1)
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Imposing a torque� on the helix with forceF = 0 produces a velocity given byU = (B�C~B�1A)�1� ;
and angular velocity of ! = (C�BA�1~B)�1� = 
�
where
 is an entry in the grand mobility tensor (see section 4.5.3).

For an axisymmetric body the coupling tensorB vanishes at the centre of resistance and

hence imposing a torque on the object results in a rotation only. However, for a helix, the

tensor is non-zero and so imposing a torque produces both rotation and translation. The

tensor(B � C~B�1A)�1 is dependent on the helix parametersa, b, andnt, as defined in

section 4.1, and therefore each of these parameters affectsthe swimming speedjUj. A

semi-flexible helix will deform as it rotates and the swimming speed is affected by the

whole fibre stiffnessk(B).
Before considering the effects of flexiblity on swimming motion we first use the grand

resistance matrix to investigate the swimming motion of a rigid helix. In order to produce

steady swimming we impose a torque of unit magnitude in the direction of the principle

axis, 
1, of the mobility tensor
 (derived in section 4.5.3). This produces uniform

swimming in the direction of
1 at speedV = U � 
1 as shown in figure 6.5.

For fibres in shear flow we have non-dimensionalised time withrespect to the inverse

shear-rate of the fluid1_
 . In this chapter the shear rate is zero and so we must choose a

different timescale. As swimming occurs by imposing a torque � we may use�tj� j as a

timescale where�t is the rotational resistance coefficient for a fibre of length2L derived

in section 1.2.6. This enables a direct comparison of the swimming efficiency for different

helices by comparing swimming speeds for fixed torque. The non-dimensionalised
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swimming speed and stiffness are then given byV �� = �tVLj� j
and k(B)� = EIlj� j
respectively. However, this situation where an external torque is applied to an isolated

filament is rather different to models such as those of Takanoand others [35, 36] where

the filament is attached to a head that receives a torque in theopposite direction so that

there is no net torque on the body as a whole. In these studies the swimming speed is

calculated at a fixed angular velocity. Thus an alternative timescale is the inverse angular

velocity, 1j!j , giving non-dimensional swimming speed and stiffness asV �! = VLj!j
and k(B)! = EIlj!j�t :
We first present our results for rigid helices in which we consider the effect of number of

turns,nt and pitch angle,� = tan�1 ab on the swimming speed of the helix.

6.1 Swimming of Rigid Helices

Figure 6.1 shows the swimming speed at constant torque,V� , plotted against the aspect

ratio per turn for helices of 1, 2, 3 and 4 turns. For smallahrnt , whereahr is the helix

aspect ratio as defined in section 5.3, increasing the aspectratio results in an increase in

swimming speed. The increase in aspect ratio reduces the radius resulting in an increase

in the angular velocity which in turn gives a larger forward velocity.
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Figure 6.1: Swimming speedV� plotted againstahrnt for rigid helices of 1, 2, 3 and 4 turns.

Figure 6.2 shows the swimming speed for constant angular velocity, V! plotted against

aspect ratio per turn for helices of 1, 2 3 and 4 turns. Plottedthis way we observe that

maximum swimming speed occurs at a value ofahrnt = 2:8. For small aspect ratios, an

increase in aspect ratio results in an increase in swimming speed. However, above an

aspect ratio ofahrnt = 2:8, which corresponds to a pitch value of� = 48Æ, the swimming

speed decreases with further increases in aspect ratio, as the decrease in pitch angle results

in a decreased propulsive thrust. There are two limits at which the swimming speed of

the helix tends to zero, the limit of a circular a ring (� = 90Æ) and that of a straight rod

(� = 0Æ). Both shapes are symmetrical and therefore do not provide forward thrust. The

swimming speed therefore reaches a maximum at a pitch angle that falls between these

two limits.

Figures 6.3 and 6.4 show the swimming speedsV� andV! respectively plotted against

number of turns for helices with a constant pitch angle (ahrnt =constant). V� increases
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Figure 6.2: Swimming speedV! plotted againstahrnt for rigid helices of 1, 2, 3 and 4 turns.

linearly with increasing number of turns. In order to maintain a constant pitch angle and

length both the radiusa and the pitch parameterb must both decrease with increasing

number of turns. The decrease in radius results in an increase in angular velocity and

hence an increase inV� . However, in figure 6.4 we find thatV! decreases with increasing

number of turns as the decrease in pitch means the helix approaches the geometry of a

hollow cylinder, therefore losing the asymmetry that allows it to swim.

Comparing our results to those of Goto, Inaoka and Takano [12], who used the method

described by Higdon [16] to produce results for a rigid helical tail and a spherical cell

body, we obtain a similar optimum pitch angle of48Æ compared to the44Æ obtain by Goto

et. al., despite the absence of a cell head in our simulations. Gotoet. al. obtain an

optimal number of turns ofnt = 1:5. The increase for smallnt was due to the reduced

torque and hence reduced counter rotation of the cell head. For largernt, the swimming

speed decreased due to the increase in slenderness ratio,2�bd whered is the fibre diameter.
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Figure 6.3: Swimming speedV� plotted against number of turnsnt for rigid helices of
constant pitch.

The slenderness ratio is important as it is the 2:1 ratio of tangential to normal motion of a

slender fibre that allows the helix to swim (described in section 5.3.2). In our results we

see neither of these effects as our simulation does not include a cell head and we include

only the first order terms in slender body theory, hence making our fibre of infinite aspect

ratio. Despite this we obtain an optimum pitch angle very close to that of Gotoet. al. as

the optimum value must occur between the limits of a ring and astraight rod.

6.2 Swimming of Semi-Flexible Helices

We now use our flexible fibre simulation to calculate the swimming speeds of semi-

flexible helices. In order to obtain a uniform swimming direction parallel to the x-axis

we align the mobility axis
1 (derived in subsection 4.5.3) with the x-axis and then apply

a torque of magnitude 1 and direction
1 to the first rod. Forwards swimming is in the
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Figure 6.4: Swimming speedV! plotted against number of turnsnt for rigid helices of
constant pitch.

direction of the first rod and backwards swimming is in the direction of the last rod as

shown in figure 6.5. For a left-handed helix forward swimmingrequires a negative torque

and the rotation is anti-clockwise. Backwards swimming requires a positive torque and

the rotation is clockwise. To verify the results of our numerical simulation we compare the

swimming speeds of rigid helices obtained from the grand resistance matrix with those of

our flexible fibre simulation for a fibre composed of24 rods with a whole fibre stiffness ofk(B) = 9:65. This is sufficiently large that the forwards and backwards swimming speeds

of the helix are the same. Figure 6.6 shows the results obtained for the swimming speed,V!, againstahrnt for both the simulation and the grand resistance matrix. Oursimulation is

in good agreement with the results of the grand resistance matrix, although the accuracy

decreases with increasing number of turns, as the number of rods per turn is reduced. To

compare forwards and backwards swimming speeds of semi-flexible fibres we use a 2

turn helix in order to reduce discretisation errors.
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Figure 6.5: Illustration of a 24 rod helix with forwards swimming in the direction of the
first rod and backwards swimming in the direction of the last.
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We shall now consider the effect of flexibility on the forwards and backwards swimming

speeds of semi-flexible fibres. To do this we measure the swimming speed and angular

velocity of the helix once the angular velocities for the rods become equal and the

swimming speed has reached equilibrium. We also consider the shape changes that occur

with forwards and backwards swimming. In order to measure shape changes we require

a measure of radius and pitch that can be used for distorted helices.

For a regular continuous helix we can obtain the radius and pitch of the helix from the

principle moments of the moment of inertia tensor as derivedin section 4.2. The radius is

given by a =p�3 (6.2.2)

and the pitch parameterb (where2�b is the pitch of the helix) byb =s6(�1 + �2 � �3)nt : (6.2.3)

We verified these formulae by calculating the principle moments for a discretised helix

and comparing the actual values ofa andb to those calculated using equations (6.2.2) and

(6.2.3).

In figures 6.7 and 6.8 we consider 2 turn helices with aspect ratios of 2, 3, 4 and 6,

which correspond to pitch angles of72:3Æ, 64:5Æ, 57:5Æ and46:3Æ respectively. Figure

6.7 shows the swimming speed for a constant torque,V� , against the stiffness measurek(B)� , while figure 6.8 shows the swimming speed for constant angular velocityV! against

stiffnessk(B)! . The solid lines show forwards swimming speeds and the dashed lines

the backwards swimming speed. In the case of constant torqueforwards swimming

speed is faster than backwards swimming speed for a semi-flexible fibre, however, in

the case of constant angular velocity, backwards swimming is faster. The backwards

swimming speed increases as the stiffness decreases, however, forwards swimming speed



Chapter 6. Swimming of Helical Fibres 214

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.1  1  10  100

Aspect Ratio = 2

Aspect Ratio = 3

Aspect Ratio = 4

Aspect Ratio = 6

Forwards
Backwards

V �
k(B)�

Figure 6.7: Swimming speedV� plotted against stiffnessk(B)� for semi-flexible helices of
aspect ratios 2, 3, 4 and 6.

decreases as stiffness decreases. For very small stiffnesses the backwards swimming

speed drops significantly, eventually becoming lower than the forwards swimming speed.

The difference between forwards and backwards swimming speed therefore varies greatly

depending upon the exact stiffness of the fibre. To assess thereasons for the changes in

swimming speeds as the fibre becomes more flexible we considerhow the shape of the

fibre changes.

Figure 6.9 shows that for forwards swimming, the average radius of semi-flexible fibres

decreases, while for backwards swimming the radius increases. Figure 6.10 shows that

for forwards swimming the pitch parameterb decreases while for backwards swimming it

increases. Figure 6.11 shows that forwards swimming causesan increase in the number of

turns while backwards swimming results in a decrease in number of turns. In summary,

the effect of flexibility, means that for forwards swimming the helix winds up and for

backwards swimming the helix unwinds.
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For forwards swimming, both radius,a and pitch,b decrease such that the pitch angle� = tan�1 ab remains relatively constant. The increase innt with the decrease inb means

that the axial length also remains relatively constant. However, in swimming backwards

there is a slight increase in pitch angle and a slight decrease in axial length for very flexible

fibres.

These shape changes are the cause of the apparently contradictary results for swimming

speedsV� andV! in figures 6.7 and 6.8. For small stiffnesses the swimming speed for

constant torqueV� increases for forwards swimming as the stiffness decreasesdue to the

decrease in radius and hence the increase in angular velocity. However, the swimming

speed at constant angular velocityV! decreases for forwards swimming with decreasing

stiffness due to the decrease in pitch and increase in numberof turns resulting in the helix

approaching the limit of a hollow cylinder. The backwards swimming speed increases

with decreasing stiffness as the decrease in the number of turns increases the asymmetry

of the helix. The reliability of the results for very low stiffnesses is compromised due

to the long time taken to reach equilibrium and the certaintyas to whether equilibrium

has been reached. The sudden drop in swimming speed for backwards swimming at low

stiffnesses may occur due to the loss of a true helical shape and consequent increase in

motion perpendicular to the swimming direction (this motion is still periodic and so does

not change the net swimming direction).

Takano and Goto [35] calculated the swimming speed at constant angular velocity,V!,

for a flagella of stiffnessk(B)! � 0:0075, pitch angle48Æ and approximately 3 turns.

They obtained a backwards swimming speed that was approximately 4% faster than the

forward swimming speed. In our results we obtain a backwardsswimming speed that is

approximately23% faster than the forwards swimming speed for a flagella of stiffnessk(B)! � 0:0075, pitch angle46% and 2 turns. This is much closer to, though still smaller

than the50% difference observed on average by Magariyamaet. al. [23] in experiments

in which video recordings were taken of the bacteriumVibrio alginolyticus, using high-
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intensity dark-field microscopy, and then analysed to obtain the forwards and backwards

swimming speeds. In our simulations small differences in forwards and backwards

swimming, similar to those calculated by Takano and Goto [35], are only seen for much

larger or much smaller stiffnesses than those used in the work of Takano and Goto. The

discrepancy between our work and that of Takano and Goto may be explained by the

differences in the models. In particular we do not include a cell head in our simulations

but apply an external torque to the flagella. Also our simulation uses a helix of uniform

radius with smaller number of turns whereas the flagella in the work of Takano and Goto

[35] has an exponentially increasing radius at the junctionbetween the flagella and the

cell head.

Takano and Goto [35] and Takanoet. al. [36] both report the same shape changes that

we have found. Takano and Goto [35] report an increased radius and pitch and decreased

number of turns for backwards swimming and Takanoet. al. [36] report a constant length

and pitch angle. Takanoet. al. found that the number of turns for a flagella of stiffnessk(B)! = 0:016 and pitch angle41Æ increases from 2.84 to 2.92 for forwards swimming

and decrease from 2.84 to 2.77 for backwards swimming. In comparison our results for a

fibre of stiffnessk(B)! = 0:016, and pitch angle46Æ show an increase from 2.1 to 2.2 for

forwards swimming and decrease from 2.1 to 2.0 for backwardsswimming.

In conclusion, our results support the findings of Takano andGoto [35] and Takanoet. al.

[36] that flexibility does result in a difference between forwards and backwards swimming

speed. We find a much larger difference in speeds in those found by Takano and Goto

[35] however, this is still not as large as the50% difference observed in the experiments

of Magariyama [23]. Takano and Goto provide results for a flagellum whose dimensions

and stiffness are chosen to match those ofVibrio alginolyticus. However, rather than

focussing on matching a particular biological organism with the added complications of

the interaction between the head and flagellum, we have studied the simpler problem

of the swimming dynamics of isolated helical flagella over a range of stiffnesses and
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pitch angles. Our results show that the exact stiffness of the flagellum is very important

in determining how much the forwards and backwards speeds differ. We show results

ranging from a zero difference for rigid fibres to a maximum of� 23% difference at

stiffnesses betweenk(B) � 0:007 andk(B) � 0:0085. This demonstrates that the changes

in shape due to flagella flexibility can produce the significant differences in forwards and

backwards swimming speeds observed inVibrio alginolyticus. However, our model is not

intended to be an accurate representation of the dynamics ofthis creature, and so cannot

provide a quantitative comparison.
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Chapter 7

Discussions and Conclusions

In this thesis we have presented a semi-flexible fibre model inwhich chains of slender

rods are connected via constraint forces and bending and twisting is resisted by torques

at the joints. In chapter 2 we presented details of our model and simulation method

for intrinsically straight fibres. This considers only bending. In chapter 3 we used this

model to study semi-flexible fibres in shear flow and provided results for the orbit period,

orbit drift, bending dynamics and stress. To model non-straight equilibrium shapes such

as circular arcs and helices we developed a second simulation model that includes an

equilibrium twist angle in addition to the equilibrium bendangle at the joints. This model

together with a rigid helix simulation based on the grand resistance matrix are presented

in chapter 4. In chapter 5 we presented results for the orbit period, shape changes and

spin rate of intrinsically bent, semi-flexible fibres in shear flow plus details of the orbit

period, translation and orbit drift of rigid and semi-flexible helices in shear flow. Finally

in chapter 6 we use our simulation to determine the effect of flexibility on the forwards

and backwards swimming speeds of intrinsic helices in a stationary flow.
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7.1 Intrinsically Straight Fibres

In chapter 3 we considered the question of whether semi-flexible fibres in shear flow

performed C turns or S turns. Simulation results of Klingenburg, Ross and Skjetne [31,

34] and linear stability analysis results of Becker and Shelley [3] suggested that theC turn

was the most unstable mode and hence only very flexible fibres would perform S turns.

Our own linear stability analysis also confirmed that theC mode was the most unstable.

However, in our simulation results we found that intrinsically straight fibres almost always

perfomedS turns except in a few cases in which very flexible fibres would perform mode4 turns.C turns were only observed for fibres with initial shape deformations. Schmid,

Switzer and Klingenberg, also used chains of rigid rods in their simulation and found that

instrinsically straight fibres performedS turns.

There are two regions of a fibre orbit in which bending is important; in the compressional

quadrant, close to an angle of�45Æ with the flow direction, where compressive forces are

greatest and the largest degree of bending occurs; and within 1ar of thex� z plane where,

although the compressional forces are weaker by a factor of1ar , the fibre spends almost

its entire orbit. In the compressional quadrant our linear stability results show that theC
mode is the most unstable, however, simulation results in extensional flow show that aC
mode can only grow if the initial perturbation is even. When the initial perturbation is

odd theS mode is seen for flow rates where it is unstable.

By calculating the bending torque distribution along a fibrealigned in the flow direction

we showed that the torque distribution is anti-symmetric and hence the bending of the

fibre in thex � z plane seeds an initialS shape (an odd mode) with bend amplitude

proportional to 1k(B)a2r . This then means that only odd modes grow in the compressional

quadrant.

As high aspect ratio fibres spend a fractiona2ra2r+1 of their orbit within 1ar of thex�z plane it

is bending in this region which most affects orbit period. The relative difference between
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the orbit period of the rigid fibreTr and the semi-flexible fibreT is given by the functionf = TrT � 1 and measures the effect of flexiblity on orbit period compared to that of an

equivalent rigid fibre. In chapter 3 we found thatf was proportional to 1k(B)ar . Thus the

effect of flexibility is to give the fibre an effective thickness,df , which is proportional to1k(B)a2r in agreement with the results of the bending torque analysis. Flexible fibres rotate

faster than rigid fibres as the bend in the fibre decreases its aspect ratio.

We also calculated how the integral of the bending energy,E, over a period depends upon

the stiffness and aspect ratio of the particle. At high fibre stiffnesses we find thatE is

proportional to 1k(B)2a3r . This scaling can be predicted using the bending torque analysis

for a fibre close to thex � z plane as the orbits of high aspect ratio fibres are dominated

by time spent here. At lower stiffnesses a different regime exists in which the bending

energy over one orbit is dominated by bending in the compressional quadrant, which is

significantly greater than the bending that occurs in thex� z region. The stiffness values

marking the transistion between these 2 regimes correspondto the values obtained in the

linear stability analysis at which the S mode becomes unstable, hence at high stiffnesses

bending in the compressional quadrant is no longer important as small distortions created

in thex� z plane decay during rotation through the compressional quadrant.

Graphs of shear stress and first and second normal stress differences show scalings similar

to those obtained for the low stiffness regime. This is because stress is greatest in the

compressional and extensional quadrants and zero when the fibre is in thex � z plane.

At high stiffnesses where bending only occurs in thex � z plane and the bend decays in

the compressional quadrant, the stress of a semi-flexible fibre is no different from that of

a completely rigid fibre.

Semi-flexible fibres with initial orientation that are not inthex � y plane do not rotate

in closed Jeffery orbits but drift towards one of two attracting orbits: rotation in thex �y plane or alignment in the vorticity direction. Orbit drift occurs mainly in thex � z
region where orbit paths are closest together and hence onlya small bend is required to
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significantly alter the path of the fibre. Although the fibre does drift away from its initial

Jeffery orbit in the compressional quadrant it drifts back again in the extensional quadrant.

7.2 Non-straight Equilibrium Shapes

In chapter 5 we considered fibres with non-straight equilibrium shapes. We limited our

attention to fibres bent into circular arcs and fibres with intrinsically helical shapes. In

constrast to intrinsically straight semi-flexible fibres, where orbit period always decreases

with increasing fibre flexibility, very flexible circular arcs have longer orbit periods than

rigid fibres because the flexibility allows the fibre to straighten in the extensional quadrant,

hence increasing its effective aspect ratio so that it takeslonger to pass through the

flow direction. For stiffer fibres we find the opposite behaviour, the effect of bending

is dominant and orbit periods are shorter than those of rigidfibres.

Straight flexible fibres drift across Jeffery orbits. Intrinsically bent fibres have an

alternative mechanism for changing their orientation by spinning about their end-to-end

axis. Fibres with in-plane bend projected out of thex�y plane, spin about an axis parallel

to the end-to-end vectorp. Once the plane of bend reaches thex�z plane, the fibre ceases

to rotate or spin. Consequently only fibres with an out-of-plane bend rotate indefinitely.

We have therefore presented results for helical fibres in shear flow.

Results from our rigid helix simulation show that in addition to rotation in the flow

gradient plane, rigid helices translate along the vorticity axis and exhibit orbit drift.

Neither of these properties were present for intrinsicallystraight fibres and both are a

direct result of the assymmetry of the fibre. These effects disappear in either the limit of

infinite effective aspect ratio (when the helix becomes straight) or the limit of an infinite

number of turns as all major axes of the helix become aligned with the central axis. Just

as with circular arcs the orbit period of a flexible helix is longer than an equivalent rigid

helix but at higher stiffnesses the flexible helix has a shorter period. Translation along the
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vorticity axis, which is at its greatest when under maximum compression or extension is

reduced in semi-flexible fibres as the fibre is unable to resistthe forces of the flow. Orbit

drift is quicker for semi-flexible fibres but like rigid helices is chaotic due to the non-linear

relationship between the period of rotation and period of spin.

7.3 Swimming of Helical Fibres

Finally, in chapter 6 we considered the effect of flexibilityon the forwards and backwards

swimming speeds of helical flagella. We find that backwards swimming speed is faster

than forwards swimming speed in semi-flexible helices of constant angular velocity as

forwards swimming causes the helix to wind up so that the average radius is reduced, the

pitch decreases and the number of turns increases. For backwards swimming the average

radius increases, the pitch increases and the number of turns decreases. Experimental

observations by Magariyama [23] showed a50% difference between forwards and

backwards swimming speeds ofVibrio alginolyticus. Simulation results of Takano and

Goto [12] however, showed only a4% difference for a flagella of similar stiffness and

dimensions. Our results, although not taken for the same dimensions as Magariyama [23]

and Takano and Goto [12] show that over a range of stiffnessesthe range of differences

between forwards and backwards swimming speed range from0�23% with the maximum

swimming speed occuring atk(B)! = 0:0075, the same stiffness used in both studies. Our

results show that swimming speeds are very sensitive to stiffness, and that predicting the

difference between forwards and backwards swimming speed for Vibrio alginolyticusis

reliant upon determining the exact stiffness of the flagella.

Extensions to the work on swimming speed would be to include acell body and an

exponentially increasing flagella radius in the portion close to the cell body. The cell body

could be included by using a higher order slender body approach similar to that of Higdon

[16]. This would also allow for the inclusion of long range hydrodynamic interactions
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between different parts of the fibre. The effect of hydrodynamic interactions would be to

replace the tridiagonal matrix for the constraint forces with a full matrix, which would

increase the computational cost. Including long range hydrodynamic interactions would

also allow interactions between several fibres to be considered, which is necessary for the

study of the swimming of organisms with multiple flagella.
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Appendix A

Equilibrium Configuration

To calculate the values of
eq1 and
eq3 in terms of the continuous helix parametersa andb
we calculate the rotation matrix in terms ofa andb and compare toR(
eq1 ; 0;
eq3 ). To do

this we need to calculate the orthonormal frames of neighbouring rodsn�1, n andn+1.

The position of any point on a helix is given byx(s) = 0BBB� bsa sin(s)a 
os(s) 1CCCA
for s running through an angle of2�nt. When divided intoN segments,s runs through an

angle of� = 2�ntN for each segment. If we let the centre of rodn lie atx(0) as illustrated

in figure A.1 then the orientation vectors for rodsn+ 1, n andn� 1 are given by

pn+1 = x(3�2 )� x(�2 )� = �� 12p 0BBB� b~a 
os��~a sin� 1CCCA ;
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pn = x(�2 )� x(��2 )� = �� 12p 0BBB� b~a0 1CCCA
and pn�1 = x(��2 )� x(�3�2 )� = �� 12p 0BBB� b~a 
os�~a sin� 1CCCA
where~a = 2a sin �2� and�p = ~a2 + b2.
Vectorsrn�1, rn, qn�1 andqn are given by

rn�1 = �pn�1 ^ pn = �� 12r 0BBB� �~a2 sin�~ab sin�~ab(1� 
os�) 1CCCA ;
rn = �pn ^ pn+1 = �� 12r 0BBB� �~a2 sin�~ab sin��~ab(1� 
os�) 1CCCA ;

qn�1 = pn�1 ^ rn�1 = (�p�r)� 12 0BBB� ~a2b(1� 
os�)~a3 sin2 �+ ~ab2(1� 
os�)�(~a3 
os� + ~ab2) sin� 1CCCA ;
qn = pn ^ rn = (�p�r)� 12 0BBB� ~a2b(1� 
os�)�~ab2(1� 
os�)�(~a3 + ~ab2) sin� 1CCCA ;

where�r = 2~a2b2(1� 
os�) + ~a4 sin2 �.
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Neighbouring orthonormal frames are related by0BBB� pnqnrn 1CCCA = 0BBB� ~r11 ~r12 ~r13~r21 ~r22 ~r23~r31 ~r32 ~r33 1CCCA0BBB� pn�1qn�1rn�1 1CCCA ;
hence the components of the rotation matrix are given by~r11 = pn�1 � pn = (~a2 
os� + b2)��1p ;

~r12 = qn�1 � pn = ~ap��(1� 
os�)��1p~r13 = rn�1 � pn = 0;
~r21 = pn�1 � qn = �~ap��(1� 
os�)��1p (~a2(
os� + 1) + 2b2 
os�)��1� ;
~r22 = qn�1 � qn = (~a2 
os� + b2)��1p (~a2(
os� + 1) + 2b2 
os�)��1� ;

~r23 = rn�1 � qn = �2b sin�� 12p ��1� ;
~r31 = pn�1 � rn = �~ap��(1� 
os�)��1p 2b sin�� 12p ��1� ;
~r32 = qn�1 � rn = (~a2 
os� + b2)��1p 2b sin�� 12p ��1� ;
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os� + 1) + 2b2 
os�)��1� ;
where�� = ~a2(
os� + 1) + 2b2.
By comparison with the rotation matrixR(
eq1 ; 0;
eq3 ) = 0BBB� 
os 
eq1 � sin
eq1 0sin
eq1 
os 
eq3 
os 
eq1 
os 
eq3 � sin
eq3sin
eq1 sin
eq3 
os 
eq1 sin
eq3 
os 
eq3

1CCCA
as derived in section 4.2 with
eq2 = 0, we can see thatsin
eq1 = �~ap��(1� 
os�)��1p ;
os 
eq1 = (~a2 
os� + b2)��1p ;sin
eq3 = 2b sin�� 12p ��1� ;
and 
os 
eq3 = (~a2(
os� + 1) + 2b2 
os�)��1� :
We therefore obtain the following expressions for
eq1 and
eq3 .tan
eq1 = �~ap(~a2(
os� + 1) + 2b2)(1� 
os�)(~a2 
os� + b2)tan
eq3 = 2b sin�p~a2 + b2(~a2(
os� + 1) + 2b2 
os�)
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Appendix B

Grand Resistance Matrix

The non-zero entries of~G and ~H are given by~G113 = �4ab2�nt(2a2 + b2)pa2 + b27a4 + 13b2a2 + 6b4 ;~G123 = � a2bnt�pa2 + b2 = � ~G132 = ~G213 = 12 ~G231 = � ~G312 = 12 ~G321;~G131 = ~G311 = � (2ab2�ntpa2 + b2 ;~G223 = ~G333 = �2(3a2 + 4b2)ab2nt�pa2 + b27a4 + 13b2a2 + 6b4 ;
and ~H113 = � 6a3b3�ntpa2 + b27a4 + 13b2a2 + 6b4 ;~H123 = �a2�nt(49a6 + 88b6 + 216a2b4 + 182a4b2)pa2 + b249a6 + 133a4b2 + 120a2b4 + 36b6 ;



Chapter B. Grand Resistance Matrix 238~H131 = �(24b4 + 41b2a2 + 14a4)�ntba(7a2 + 6b2)pa2 + b2 ;~H132 = (a2 + 2b2)�nta2pa2 + b2 ;~H213 = (196a6 + 483a4b2 + 372a2b4 + 76b6)a2�ntpa2 + b22(49a6 + 133a4b2 + 120a2b4 + 36b6) ;~H223 = 7a3b�nt(2a2 + 3b2)pa2 + b23(7a4 + 13b2a2 + 6b4) ;
~H231 = ��ntb2(21a4 + 6b2a2 + 46b2n2t�2a2 + 24b4�2n2t + 21a4�2n2t )pa2 + b23(7a4 + 13b2a2 + 6b4) ;

~H232 = 2(28a4 + 63b2a2 + 36b4)ab�ntpa2 + b23(7a4 + 13b2a2 + 6b4) ;~H311 = 2ba�nt(2a2 � b2)pa2 + b2 ;~H312 = ��nta2(b2 + 4a2)2pa2 + b2 ;~H321 = �ntb2(�3a2 + 3a2�2n2t + 4b2�2n2t )3pa2 + b2 ;~H322 = �2ab�(5a2 + 6b2)3pa2 + b2 ;



Chapter B. Grand Resistance Matrix 239~H333 = �ba3�nt(14a2 + 3b2)pa2 + b23(7a4 + 13b2a2 + 6b4) ;
respectively.
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Appendix C

Mobility Matrix

The non-zero components of matrix
 are given by
11 = 144a8 + 72b2a6�2n2t + 438a6b2 + 351a4b4 + 228b4�2n2ta4 + 224b6a2�2n2t + 24a2b6 + 64b8�2n2t4((a2 + b2) 32 (72a6 + 36b2�2n2ta4 + 111a4b2 + 96a2b4�2n2t � 120a2b4 � 192b6 + 64b6�2n2t )�nta2) ;
12 = � 12(3a2 + 4b2)(a2 + b2) 32 b�nta(72a8 + 183a6b2 � 9a4b4 � 312a2b6 � 192b8 + 4�2n2t (9b2a6 + 33b4a4 + 40b6a2 + 16b8)) ;
21 = 
12;
22 = 12pa2 + b2(3a2 + 4b2)(72a6 + 36b2�2n2ta4 + 111a4b2 + 96a2b4�2n2t � 120a2b4 � 192b6 + 64b6�2n2t )�nt ;
33 = 12pa2 + b2(3a2 + 4b2)�nt(51a4b2 � 24a2b4 + 96a2b4�2n2t + 64b6�2n2t + 72a6 + 36b2�2n2ta4) :
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