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Abstract

The dynamics of semi-flexible fibres in shear flow and the éftédlexibility on the
swimming speed of helical flagella are investigated. Higheasratio particles such as
carbon and glass fibres are often added as fillers to procps$gders. Although these
materials have high rigidity, the large aspect ratio makedibres liable to bending during
flow. Other high aspect ratio fibres that behave as semi-fefibres include carbon
nano-tubes, paper fibres and semi-flexible polymers sucheamuscle protein f-actin.
Most theoretical studies assume that fibres are either oig@bmpletely flexible, but in

this thesis fibres with a finite bending modulus are consdiere

A semi-flexible fibre is modelled as a chain of shorter rodkdohtogether. A bending
torque is included at the joints between the rods to accaurrthe rigidity. In shear flow
the simulation reproduces the C and S turns observed in iexpets on semi-flexible
fibres. The results for finite aspect ratio fibres predict geanto the period of rotation
and drift between Jeffery orbits. The direction of drift toflexible fibre depends on both

the intial orientation and the fibre’s flexiblity.

We also present a linear analysis of how small distortioresstraight semi-flexible fibre
grow when the flow places the fibre under compression. Thesgtseare in agreement
with our full simulations and the growth rates of the distws to a straight fibre allow us

to predict the most unstable mode at a particular flow rate.

To allow for intrinsically bent or helical equilibrium shap a second simulation method
is developed that includes a twisting torque at the jointsvben the rods as well as a
bending torque. Using this simulation we measure the pearfiodtation and orbit drift of
permanently deformed fibres in shear flow and show that duetagymmetry of a helix,
shear induced rotation results in translation and orbit fini both rigid and semi-flexible

fibres.

Bacteria such a¥ibrio alginolyticusand Escherichia coliswim by rotating one or more



helical flagella. Vibrio alginolyticushas only one flagella and changes direction by
altering its sense of rotation. Experimental observatioh¥ibrio alginolyticushave
found that backwards swimming i§% faster than forwards swimming speed however,
previous numerical simulation results have shown onl{cadifference for flagella of the
same dimensions. We use our simulation to consider how figx#ifects the swimming
speed of helical flagella and show that for a constant angelacity, difference between
forwards and backwards swimming speed ranges betive@8?% depending on the exact
stiffness chosen. We explain the differences in swimmiregedp of semi-flexible fibres
by investigating the shape changes which occur and congp#iiem to the results for

swimming speeds of rigid flagella of varying dimensions.
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Chapter 1

Introduction

1.1 Fibres

This thesis is concerned with the motion of semi-flexibled#m viscous fluids. We
define a fibre as a slender object of circular cross-sectidh ailength that is large
compared to its diameter. The ratio of length to diameteraited aspect ratio and is

denoted by, = Qib (wherel is the length and is the radius).

We regard a fibre as semi-flexible if it has a bending stiffrnidsd is comparible in

magnitude to the hydrodynamic torques being applied to te.fi A fibre may be

Figure 1.1: F-actin viewed on a Discover AFM microscopetRetaken from reference
[41].
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regarded as rigid if its bending stiffness is sufficientlgththat it does not change shape,
while a fibre is flexible if the bending stiffness is negligildo that there is effectively no
resistance to bending. The bending stiffness of an homayesiére is dependent upon
its Young’s modulus and its size and shape. The exact forrheobending stiffness for

an elastic fibre of circular cross section is derived in sac1i.3.1.

The motion and deformation of semi-flexible fibres in viscdlogvs is important both
in industry and in nature. Understanding the translaticarad rotational motion of
fibres helps to explain the orientation of fibres in suspersand the formation of fibre
aggregates. Both are very important to the paper industitysgsaffect the sheet strength
and optical properties of paper. Fibres are also used iforeed composite materials.
By including glass or carbon fibres in a thermosetting polythe strength and heat
conduction of the polymer is improved. The shear flow applethe polymer during
molding cause the fibres to align in the same direction priodua product with an
anisotropic structure. Although fibres such as glass angoocaare commonly thought
of as being rigid their large aspect ratio reduces theircéffe bending stiffness allowing
them to be classed as semi-flexible. Other examples of filged un industry include

polystyrene, polyethylene fibres and carbon nanotubes.

In biology protein filaments, such as F-actin (see figurethdf)make up the cytoskeleton,
can be modelled as semi-flexible fibres. Determining how dittmend and twist allows
the mechanical properties of the cell to be established mdrn allows the modelling
of tissues and organs. Other biological structures such.dsADcan also be modelled
as fibres, as can cilia and flagella. Cilia and flagella areeptmns from a cell. They
are actively motile and convert energy in the form of the fagénosine triphosphate
(A.T.P.) into mechanical work. They are designed either tov@the cell itself or to move
substances over or around the cell. The primary purposdiairtimammalian cells is to

move fluid, mucous, or cells over their surface.

Bacteria are propelled by the rotation of one or more heliegiella. The flagella are
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stiff and are driven at their base by a rotary motor [25]. Dii@n change is achieved by
either changing the rotation direction (to swim backwagagsis the case of the bacterium
Vibrio alginolyticus or in the case of some bacteria with more than one flagehegtion
change is achieved by one or more of the flagella ceasing &berar changing their
sense of rotation. The mechanical principles behind flagaibpulsion are beginning to
be used in biomedical applications. Synthetic propulsi@timanisms are being used to

direct artificial viruses through cells and nanodevicesugh the bloodstream [25].

As well as flexibility another important property of a fibratis intrinsic shape or ground
state. Whereas the flagella of bacteria have an intrinsicdledhape [9], the cilia or
flagella of spermatazoa are intrinsically straight [25, 9lhey are driven by internal
motors and undulate to provide forward thrust [6]. Instignshape is also important
for industrial fibres. Most theoretical work on industridbres assumes that they are
intrinscially straight, however, this is rarely the casenmactice. Small changes in the
intrinsic shape of a fibre, particularly from being perfgdtraight, can have significant

effects on the fibre’s dynamics.

1.2 Fluid Flow

1.2.1 Stokes Flow

An incompressible viscous fluid can be described by a veld@td, u, which satisfies

the Navier-Stokes equations

D
pfltl = —Vp+ uViu, (1.2.1)

together with the condition of incompressibility

V.u=0, (1.2.2)
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wherep is the fluid densityp is the pressure and is the dynamic viscosity.%‘;tl is the

material derivative given by

For steady flow around a particle of lengthwith velocity U we can introduce the

following non-dimensional variables

V* =1V,

" u

u = —

U)

L
p _MUp’

and

t"=t—

Dropping the stars, the non-dimensional form of equatidr®.{) and (1.2.2) become

Du
Re— = - VQ )
Dr Vp+ V-u
and
V.u=0,
where
UL
Re = p—,
7

is the Reynolds number, which measures the relative matgstof the inertial and
viscous forces. The Reynolds number will be small if the fiigicdufficiently viscous,
the particle is small and the velocity is slow (or a suitaldenbination of the three). In
the limit of vanishing Reynolds number, the Navier-Stokasagions reduce to the Stokes

equations
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uViu—Vp=0

V.-u=0.

The viscosity and density of water are of ordér? Pa s and10? kgm~? respectively so

that a particle of length00m moving atl00ums ! has a Reynolds number b 2.

The Navier-Stokes equations also assume that the fluid maéne&ed as a continuum,

however, non-continuum Brownian forces become import@antéry small particles.

The Brownian diffusivity of a particle is given by the StokEmstein relation

wheref is the Boltzman constarif; is the absolute temperature ahid the hydrodynamic

resistivity of the particle which is proportional id.

The dimensionless measure of the importance of Brownidngiloh is the Peclet number

Ul Ule
Pe=5=77

ProvidedPe >> 1 we may neglect the effects of Brownian motion.

For a100um particle moving atl00pums ! in water, Pe ~ 10° , while alum particle
moving atlyms~! has a Peclet number éfe ~ 1. Thus there is a range of particle sizes
from approximatelyl 0.zm to 100m in water for which the Reynolds number is small but
the Peclet number is large. Furthermore since Reynolds auddzreases with increasing
viscosity and the Peclet number increases with increasswpsity this range of particle

sizes is wider for more viscous fluids.

The dimensions of typical biological and artificial flagedibow low Reynolds number,

high Peclet number approximations to be used. Using theesaduggested by Takano
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and Goto [35, 12] for the bacteriuvibrio alginolyticusof flagella length7.3xm and
swimming speed36ums™!, gives a Reynolds number of orddi—* and Peclet number
of order10?. As the flagella diameter is only02um [35, 12] the aspect ratio &5 and

hence the flagella may be classed as a high aspect ratio fibre.

1.2.2 Free Space Green’s Function for Stokes Flow

Since the Stokes equations are linear there exists a Gréamion representation

corresponding to the solution of the singularly forced ®&quations
pV*u — Vp = —gé(x), (1.2.3)
V.-u=0,
wherex = x — x’ andgd(x) is a point force of strengtl atx’. The solution satisfying

the boundary conditionu| — 0 as|x — x'| — oo is given by

1
w = —Gyg
87 393

whereG is the free space Green'’s function given by

Gij(}_c) = ; +

The solution to any linear boundary value problem for thé&k&aequation may be written
in the form of boundary integrals of velocityand surface force densifyover the surface

bounding the fluid volume [28] such that

87T/L/fz Gij(x,x")dS(x )+8%/Sui(X)Tijk(x,X')nk(x)dS(x),
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whereT};; is given by
T = 6T 0%
It can be shown that for the flow produced by the translatiahratation of a rigid body

the second integral can be eliminated so that

S (x)Gij(x,x")dS (x
) = g [ G (xS ) 1.2

whereSp is the surface of the body [28].

1.2.3 Linear Flow

In many applications the typical size of the suspendedgeyti will be small compared
to the lengthscale of the external fldw,;. In these situations, the external flow may be

expanded in a Taylor Series about the particle centias

Wi
)

uOC(X):UU+K-XC+K-(X—XC)+O(L )

whereU, = u*(0), K is the velocity gradienf;; = ’9;71‘0_0, ¥ = /Ki;K;; andx is a

general point in the fluid.

The velocity gradient tensd may be expressed as the sum of its symmetric and anti-
symmetric parts, namely the rate of strain tenBoand the vorticity tensof2 where

By = 3(K;; + Kj;) andQy; = 3(K;; — Kj;). We can therefore write the flow as

12
)

UOO(X):U0+K'XC—|—Q'(X—XC)+E'(X—XC)+O(L t

or
gL
Lext

1
UOO(X):U0+K-XC+§QJOCX(X—XC)-i-E'(X—XC)-i-O(
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y Gradient

x Flow
’V

z Vorticity

Figure 1.2: 3-Dimensional diagram of shear flow.

wherew™ = V x u® is the vorticity of the fluid. The vorticity vectap is related to
the vorticity tensoK? by %w;” = €;1$2;,. The first two terms in the expression for fluid
velocity represent a translational flow, the third term ational flow and the fourth a

strain field.

The most common linear flow is simple shear flow and is the onsha# consider most
often in this thesis. The fluid velocity is given y° = (%y,0,0) so that ther axis is
along the flow direction, theg axis is along the gradient direction and theaxis is along

the vorticity direction as shown in figure 1.2.

The velocity gradient tensor is given by
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Compressional quadrant

Extensional quadrant

A Y

A 4

<

—
—

«—

v

Shear Flow / Deformation Field\ Rotation Field

Extensional quadrant

Compressional quadrant

Figure 1.3: Diagram showing shear flow in the- y plane. The flow can be decomposed
into a deformation and rotation fields. The plane can be divicito compressional and
extensional quadrants determined by the deformation field.
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so that the strain-rate or deformation field tensor is given b

o
N2+
o

=
I
N2+
o
o

the vorticity tensor by

o
N2+
o

o)
I
|
N2
o
o

0 00

which is related to the vorticity vectas™ = (0,0, —7), by Q;; = Se;jxwi°.

The symmetric strain rate tensor represents an extendlomabr deformation field and

the anti-symmetric vorticity tensor, a rotational field &aswn in figure 1.3.

1.2.4 Grand Resistance Tensor

In Stokes flow the velocity and angular velocity of any rigaticle in a linear flow are
linearly related to the force and torque applied to the plrtiThis linear relationship can
be summarised by a set of resistivity tensors that make ugrdred resistance tensor for

that particle. Consider a particle performing rigid bodytioo described by

W =U+w X (x—x.), (1.2.5)
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whereU is the velocity of the particle centre andis the angular velocity of the patrticle,

in a linear flow field given by
u°°:U0+K-XC+%w°°><(x—xc)—l—E-(x—Xc). (1.2.6)
The hydrodynamic forc& on the particle is given by

F :/de,
S

wheref is the surface force density and the tordugiven by

T:/S(xx f)ds.

The contribution of the particle to the stress in the suspeans given by the stresslé&t
[2] given by
S = 1/(xf+ fx)dS.
2 /s

The hydrodynamic force, torque and stress on the partielgiaen in terms of the grand

resistance matrix and, fluid and rod velocity by

F A B G Uy-U+K-x,
T = B C H %w"o—w
S G HM E

The elementA andC are 2nd rank, symmetric tensors relating force to trarmsiadind
torque to rotation respectively8 andB relate torque to translation and force to rotation
respectively. It can be shown thBtis the transpose dB i.e. B;; = B;; [20]. G andH

are 3rd rank tensors relating force to strain and torqueréanstespectively, whil€s and
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‘() J

Aspect Ratio=

Figure 1.4: Sketch of a cylindrical fibre of aspect ratjo= ﬁ

H relate stress to translation and stress to rotation raspgct Again it can be shown
thatG andH are related t&G andH by Gyj, = G;; andH;j, = Hy; [20]. The fourth

rank tensoM relates stress to strain and satisfiég,, = My;;;.

We can calculate the elements in the Grand Resistance rf@taxarge aspect ratio fibre

by using slender-body theory.

1.2.5 Slender-body Theory

Slender-body theory is an asymptotic technique that candesl tio obtain analytic
approximations to the solutions for Stokes flow around aiglarsuch as a slender rod

for which the length is large compared to its thickness.

Slender-body theory was originally developed by Burgefsifo modelled the fibre as
a line of point forces (called Stokeslets) on the particls.akater Tillett [39], made use
of matched asymptotic expansion to give an improved re$his was developed further
by Batchelor [1] who considered particles of non-circularss section and Cox [8] who
considered non-straight particles of circular cross eadti a general ambient field. The

basic method for a straight particle of circular cross secis described here.

We consider a straight cylindrical particle of lendtand radius where the aspect ratio

a, = ﬁ The velocity fieldu surrounding this particle must satisfy Stokes’ equations
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uViu — Vp =0,
V.-u=0,
together with the boundary conditions

o0

u — u® as |x| — oo,

and

u=1u" on S,
wheres is the surface of the fibre.

In slender-body theory the solution is found by matching mmer solution for radial
distances much less than the fibre length to an outer solutire at radial distances
much greater than the fibre radius, with the inner solutidisfyang the no-slip boundary

condition on the particle surface and the outer solutioisfsaig the condition at infinity.
Inner Solution

For the cylindrical fibre of lengthand radius$ we define Cartesian co-ordinates centred
on the particle centre with 3-axis along the fibre axis so thatsurfaceS is given by

x?+ ) =0 for —L <zy < L.

To simplify the calculation we can subtract the external floxreplacingu with

u* = u — u™ so that the boundary conditions ah are
u* — 0 as |x| - oc

and

uw=U"=u"—u™ on S.

For the inner solution we define inner variables in cylindrigolar co-ordinateép, 6, 2)
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by scalingz; andz, with the radiusg) andz; with respect to the fibre half length Ienggh
so that

x1 = bpcosb,
To = bpsinf,

[

T3 = —Z.
2

Substituting into the Stokes equations we have at leadidgrana, '

M@Q *_@p = O:

Vou' = 0, (1.2.7)

whereV and V2 are respectively the two-dimensional del and Laplace ¢peran the

(p, 0) plane together with the leading order boundary condition

u" =U"(z) on p=1,

where
1
U*(2) =U - U+ l((w — §w°°) x (0,0,2)) —IE- (0,0, 2),
so that
u, = Ujcosf+U;sinb,
uy = Ujcost — U;sin, onp=1.

* *
u, = U;
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Solving Stokes equations (1.2.7) subject to the new boymmtarditions gives

1 1
u, = A(— —1+2logp)cosd+Ujcost+ B(— — 1+ 2logp)sin6 + U; sin 0,
p p
1 1
upg = A(— —1-2logp)sinf — Usinf + B(—— + 1 + 2logp) cos @ + Uy cos 0,
p p

u, = Clogp+Uj. (1.2.8)

Taking the outer limit of the inner solution we obtain

u, — (2Alogp+ Uy)cosf + (2Blogp + Uy ) sin 6,
uy — —(2Alogp+ Uy)sinf + (2Blogp + Us;) cos b,

u; — Clogp+ U;, (1.2.9)

asp — oo.
Outer Solution

Since|u*| — 0 as|x| — oc the flow outside the fibre can be written using the boundary
integral formulation given in equation (1.2.4). At leadingder in ai in the outer
approximation we can replace the surface integral by a lmegral along the axis of

the cylinder so that

(- ) () — )
” 1 / 6z]fy(x3)dx/+ 1 / (z: — i) 1;(75) (=, mj)dxg, (2.2.10)

1287T,u tx = x| 57T 8np x —x'|3

L
2

where|x — x'| = \/(z3 — 24)? + r2 andr? = 2% + z2.

To find the limiting behaviour as — 0 we write the first integral in the form

! 1 b filah) = filas) g

I = da’y + ’
1 = fi(xs) IR/ Fo PR Rt I IR/ Fop TR R
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where all variables are scaled with respect to the half lenfthe fibreé. In this limit as

r — 0 the second integral only contributesitpand is written in the form

I, = fa(a) /1 (25 — 24)?

) U (mg — ab)?(fs(2h) — fa(xs))
dzs dx
1 (V (w5 — ab)? +r2)3 +/1

(/ (23 — 24)? +1r2)3 5

The first integrals in/; and I, are singular att; = z% asr — 0 however, the second
integrals are non-singular, providgdz;) is a continuously differentiable function and

f'(z3) is bounded since we can expafit:;) in a Taylor expansion about, such that

F(a) = Flah) + (a5 — ay) f'(ah) + ...

This means that the second integraldirand I, provide onlyO(1) contribution to the
solution. Therefore the expressions for bétfand 7, are dominated by the first integrals
asr — 0[22].

The first integral in/; is given by

1 2
I = 2f;(log(=) + log2 + log V1 — 22) = 2f; log; +0(1))

r
asr — 0. The first integral in/; is given by

1 2
I, = 2f3(log(=) + log2 +log V1 — 22 — 1) + O(a, ?) = 2f310g; +O(1)

r
asr — 0. Therefore from equation (1.2.10) we can write the inneitliofi the outer

solution as

uf = o Tog 2 (files) + s o))

asr — 0.
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To compare with the inner solution we change to the inneiirsgalo that = a, 'p and

we write in polar co-ordinates so that is given by

1 2
uh = —logﬂ(ﬁ cos B + fosinf)
Amp P

1

2a, )
up — logi(fgcosﬁ—flsmﬁ)
p

AT
1 2a,
I G i (1.2.11)
2mp p
asp — 0.
Matching

We can now obtain the values of the unknown constants by nmateimilar terms in the

inner and outer solutions. Matching thg(p) cos 6 term inu? gives

1
24 =——
4ﬂﬂfh

matching thecos # term gives
. 1
Ul = mfl IOg 2@,«.

Matching thelog(p) sin § term inu} gives

1
2B = ———
4Wuj%

matching thein f term gives

.1
U2 = mfg IOg 2@,«.
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Finally matching théog(p) term inu} gives

1
C=——
27T/Lf3,

and matching thé& (1) term gives

1
U = — f3log2a,.
3 27r,uf3 0g 2a

Substituting in the value d* we can then write the force density along a slender body

as
2

f= 92T — pp) - (0" — u™
lOgQ(Ir( pp) (u u )7

wherep is a unit vector indicating the orientation of the fibre.

1.2.6 Grand Resistance Matrix for a Slender Body

We can now use this result to find leading order contributimnghe grand resistance
matrix for a fibre of aspect ratia, > 1 by substitutingu” = U+wx(x — x.) and

u® =U,+ K- -x,+ %w"o x (x —x.) +E- (x —x.), giving a force distribution

2T 1

f (QI—pp)'(U0+K-XC—U+(§LUOO—W)X(X—Xc)+E-(X—Xc)).

- log 2a,

The total forceF acting on a fibre of lengthis given by

1
2 27 pl
F= [ fds= 2T — pp) - K-x, — U).
/_ ds og 2ar( pp) - (Up + x. — U)

L
2

Thus the leading order approximation to the sub-madii the grand resistance matrix
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is given by
21l
= Jog 2a, (200~ Pibi) = &/(205 = pipy).
where
27 pl
§r =
log 2a,

is the resistance co-efficient for force. It should be noled tesistance to perpendicular
motion is twice that of motion tangential to the fibre axis eThatricesB;; andG,;, are
both zero as the symmetry of the particle means there is npliogubetween rotation,

strain-rate and force.

The total torquéT acting on the fibre is given by

The sub-matrixC;; is therefore given by

7ul?

ij = o= (0ij — pipyj) = &(0ij — PiD;),

J 310g2ar( J pp]) ft( J pp])
and sub matrixi,;; by

~ mul3
ijk = mﬁwpmk = &QUPZPIC,
where
B 7ul3
&= 3 log 2a,

is the resistance co-efficient for torque. As expected mdiyj is zero.

The total stressled exerted by the fibre on the flow is given by



Chapter 1. Introduction 20

1
1 [2 3 1 1
s=3 | ((x =)+ = x0) ds = T (™ =) xp (™ —w) xpp)
+Ll3( E-p+E — b -E )
6 log 2a, |y |y Pp—Pp PPD).

Matrix H;;; is therefore given by

7ul?
H;j, = m(mﬁjkmz + €mpipj) = & (D€ + €irpip;)
and matriXMijkl by
M—”“l3(6+5+5+5 2 )
ijkl — 1210g QQT Di0jiPk PjoiPk PiOjkPi P;oikpi PiP;iPrPi

&s
= 5(pz‘6jlpk + p;dupk + pidjkpr + Pi0ikpr — 2pip;Drp1)

where

wul?
gs_ s

= — 1.2.12
6 log2a, ( )

is the resistance co-efficient for stress. Mat#ix;, is zero as expected.

1.2.7 Stress Contribution of a Rigid Fibre

Here we consider the stress contribution of a rigid fibre eestilow. For a rigid fibre of
lengthl and velocityU+w x (x — x.) in a linear flow described by

u* =U,+K- -x.+ %w"o x (x — x.) + E - (x — x.) the stress contribution is given by

1
Sij = Hijk(iwgc — wk) + Mijr B (1.2.13)
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whereH andM are entries in the grand resistance matrix for a slender baldylated in
subsection 1.2.6. Substituting in these values and theontatew xp = K-p—p-K-pp

[20] for a rigid, torque free fibre we obtain the stress cduttion

S=&p-E-ppp

where & is the resistance co-efficient for stress given in equatichl2. Non-

dimensionalising with respect to the resistance co-effiggeand shear raté we get

S=p-E:ppp. (1.2.14)

Let us now consider the fibre rotating in the the- y plane in a shear flow such that the

non-dimensional strain rate tensor is given by

020
E=|100
0 0 0
and the orientation vector is given by
cos
pP=| sinf

wheref is the angle with the axis.

Substituting these into equation (1.2.14) gives a sheasstrontribution of

1
Ozy = cos’fsin’h = 1 sin? 26,
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Figure 1.5: Stress vs#6 for a rigid fibre rotating in the: — y plane.
a first normal stress difference of
Ny = 04y — 0yy = cos” Osinf) — sin”  cos ) = Zs1n49
and a second normal stress difference of
Ny =0y —0,, = sin® 6 cos 6.
Figure 1.5 shows,,, N; and N, against-6 for half an orbit.

The shear stress is zero when the fibre is aligned with eitteer or they axis as the
compressional and extensional forces are negligible aetbaentations for a high aspect
ratio fibre. Maximum shear stress occurs at an angteef—Z2 or § = —3 with thex
axis when the fibre is under maximum compressive or exteakiorce respectively. First

normal stress difference is zero when the fibre is alignet witther ther or y axis, or
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when the the fibre is at an angle-ef; or —37“ with thex axis. The latter cases occur as the
compressive and extensive forces cancel each otherNgubtas maximums &t = —3{

andf = —* and minimums af = —Z andf = —~.

Integratingo.,,, N1 and N, over a complete orbit gives a contribution fto the shear

stress and zero contributions to the first and second noineakdifference.

1.3 Elasticity Theory

1.3.1 Bending Stiffness

The results in section 1.2.3 are valid for a rigid particleawdver, long slender particles
are prone to bending due to hydrodynamic forces. To quathtédydegree of bending we
must first derive the stiffness of a fibre in terms of its matleproperties. To define
the bending stiffness we consider an intrinsically straiijtore made of an isotropic,
homogenous material, bent into a circular arc as shown indigué. In any section
of this arc the material on the inside of the arc will compretde the material on the

outside of the arc will be stretched.

We consider a thin strip of the arc at a distapdeom the centre line. Provided the angle
of bending is small, the strain in that sectié¥k, is equal to%, whereR is the radius of

curvature.

In a linear elastic material the extensional stres$s related to the extensional strailbyy
o = Ee whereFE is the Young’'s modulus. Therefore the extensional streBsgaon a

section of arc is given by
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Figure 1.6: Fibre bentinto circular arc with radius of cutra R. The section of the fibre
highlighted is at a distancg from the centre line and has extensidr.. Picture taken
from Howard [18].
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Integrating over the surface area of the cross section waarotite total torque acting on

the fibre
v
T = dA = | F=—
/ 7Y / R
so that
EI
T =_"_ 1.3.15
- (1.3.15)

wherel = [ y?dA is the second moment of inertia of the cross section. Thiatmuis
known as the beam equation and the constant of proportigréli is known as flexural

or bending rigidity.

For a fibre of circular cross-sectioffi,y?dA = 3 [ r*dA, wherer is distance in a radial

direction, so thaf = ™ for a fibre of radius.

Although the beam equation was derived for a circular arait be generalised to any
deformation by replacing the arc radius by the radius of aume so that; = g—fj where
0 is the tangent angle measured in an anti-clockwise dinedtimm thex axis and the
tangent of the fibre. Non-dimensionalising arc length webpect to the length of the

fibrel, so thats = s*[ gives

EI db df
T = _— — k(B)
[ ds* ds*

wherek®) = £l is the bending stiffness.

1.3.2 Twisting Stiffness

The material property that determines bending stiffneseoung’s modulus, however,

the property determining twisting stiffness is shear madulhe shear modulus is related
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Figure 1.7: A section of cylinder of radial widthr and anglel¢ twisted through an angle
of 6.

to Young’s modulus via the Poisson ratio by

The Poisson ratio is the ratio of sideways contraction tgtlewise strain for a material

of length L and widthw is given by

ﬂ/g
w L

UV =

and is equal t(% for an incompressible material. Most materials have a Baisatio in

the range 0.2-0.5 [18].

We now consider a small section of a cylindrical fibre of léngand radius) that is
subject to a twist through an angleés shown in figure 1.7. The shear stress acting on

this section is given by the shear moduleinultiplied by the shear strai, so that
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o= Gr.
The shear strain is given by
_ 10
7T

wheref is the angle of twist.

The force acting on a section of the fibre is therefore given by
AF = Grl—erdrdqﬁ
and the torque acting about the fibre axis is given by

2
T = /Grl—erdrcw.

Integrating over the cross section of a fibre with radiwge obtain an expression for the

total torque acting on the fibre as

T:”_Hl@
2
or
2G 10
= 2610

l

Again we can write the twisting torque as

T=FkDg

wherek™ = 2¢1 s the twisting stiffness anélis the angle of twist.
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1.3.3 Scale Analysis

From section 1.3.1 the bending torque on a fibre of lenhggtgiven by

(B) db
ds*

T=F

where bending stiffness”) = £L. To assess the degree to which a fibre will bend due to

hydrodynamic torques we define a non-dimensional bendifigests with respect to the

shear ratéy and the rotational resistance co-efficient of the fiyjie 317;’;523&? as

1(B) EI 310g2arEI_ 3E [log?ar]

TRl Amadt T 64py |

The effective stiffness of a material is affected by its materoperties (ie. its Young’s
modulus), its shape, and the viscosity and shear rate otitheuding fluid. In particular
we note that sincé = %’4 the effective stiffness scales with the inverse 4th powehef
aspect ratio. We now consider the effective stiffness ofesamdustrial and biological
fibres from their Young’s modulus, length and radius, andash&te and viscosity of the

surrounding fluid.

In the experiments of Trevelyan and Mason [40], rigid glalsseB are observed in high
viscosity corn syrup. The fibres have aspect ratia®ef 120, the shear rate of the fluid is
betweer.2 and1.4s~! and the viscosity of the corn syrupdsi2 Pa.s [11]. The Young's
modulus of glass i3 GPa [18]. These values give us a bending stiffness of between
3.08 and18784.43. As a rough guide we shall therefore classify rigid fibreshasé with

bending stiffness of order unity or higher.

In the experiments of Forgacs and Mason [10], dacron andhrilyees are used. The table
below (1.3.3), lists the data for some of the fibres used arethven the fibre behaved as
a rigid or semi-flexible fibre. The final column gives the nomensional bending and

twisting stiffness calculated using the definition giverthis section. As we can see, in
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Material | a, | % (kgm 's?) | E (GPa) Turn k*(B)

Rayon | 43 31.9 26.4 Rigid 22
100 24.9 Rigid 1.14
173 33.8 Rigid 0.104
241 31.1 Semi-flexible| 3.16 x 1072
357 30.8 Semi-flexible| 7.06 x 107%

Dacron | 102 54.1 7.26 Rigid 0.134
139 54.2 Rigid 4.11 x 10792
180 46.9 Rigid 1.77 x 1072
228 54.4 Semi-flexible| 6.16 x 1073
310 45.5 Semi-flexible| 2.31 x 107%
414 44.0 Semi-flexible| 7.68 x 107%
228 4.47 Rigid 7.49 x 1072
310 5.43 Rigid 1.89 x 1072
414 5.43 Semi-flexible| 6.23 x 1073

Table 1.1: Table showing the values of aspect ratioviscosity and shear rate product
1y, Young’s modulusE and bending stiffness;(?), for the rigid and semi-flexible fibres
used in the experiments of Forgacs and Mason [10]. The filzed were 3.bm diameter
Rayon fibres and 7;8n diameter Dacron fibres.

general fibres that behave as semi-flexible fibres have bgstfmess values of the order
of 102 to 1074,

Carbon nanotubes have a very high Young’s modulu®)of GPa [18], however, a single
walled carbon nanotube has a typical diameter.df 1.4nm and can be up tdmm in
length. Under the conditions used in the experiments of&w@nd Mason [10]

(1 = 9.12Pa.s and¥ = 5.55~!) carbon nanotubes would have a bending stiffness as low
as7.9x 1076 which is far more flexible than the fibres listed above. A carbanotube of
1um in length has a bending stiffness of ordér? which is in the range of semi-flexible

fibres.

Actin filaments have a Young’s modulus 8 GPa, a diameter of approximateym
and lengths of up to several tens of microns [18]. Thus adire$i in water, which has a

viscosity 0f0.001 Pa.s [20], at shear rates as low a$1 —0.1s~! have a bending stiffness
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in the 10~3 to 10~* range of the semi-flexible fibres in the experiments of Fasgaw

Mason [10]. Shorter filaments would be semi-flexible at hrggteear rates.

For all of the industrial fibres listed above the Reynolds hamis of order1i0-2 or
smaller and the Peclet number is of ordéf or greater therefore easily satisfying the
low Reynolds number, high Peclet number criteria discusssdction 1.2.1. For actin in
an aqueous suspension at a shear ratedafs—! the Reynolds number is of ordéo=°
and the Peclet number is of orddl” and therefore also satisfies our criteria. At higher
shear rates the Peclet and Reynolds number would increatieeliReynolds number still

remains very small for all reasonable shear-rates.

The twisting torque on a fibre of lengths given by
T — (T

where twisting stiffness”) = 2¢L. To assess the degree to which a fibre will twist due to
the hydrodynamic torque we define a non-dimensional twgssiiffness with respect to
the shear raté and the resistance co-efficient of the fluid for axial rotatwd a cylinder

&, = 4mpb®l as

) — — —
YE,  29mpl?b?  32u%

2G1 GI G [1]

a2
aT‘

The scaling analysis shows that for a high aspect ratio $lexible fibre with (%) of
order unity%*™) will be large so that twisting will be negligible. It might mssumed
therefore that twist can be ignored in modelling such fibrétowever, bending and
twisting are coupled through a process called writhe, beediuis possible to produce

an effective net twist by a series of bends alone.
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Bending Twisting

Figure 1.8: Illustration of bending (left) and twistingdht). Picture taken from [26].

1.3.4 Bending, Twisting and Writhe

In order to define bending and twisting for a general fibre gumétion let us consider a
point at a distance along a fibre. We denote the tangent vector at this poipi(asand

a vector normal to the fibre ags). We define bending as rotation of the tangent vector
p and twisting as rotation of a normal vectgrabout the tangent vectgr as shown in

figure 1.8 (left) and figure 1.8 (right) respectively.

To illustrate writhe, consider the slender fibre shown inriéglL9 taken from Maggs [24].
The fibre is bent through an angle §fin 3 places and the normal vectqris parallel
transported at each bend so that there is no twist at eadh jde fibre is bent such that
there is no net change in the direction of the tangent ve@twéen the two ends of the
fibre. The normal vector has, however, rotatedibgbout the tangent vector despite the
fibre being bent but not twisted. This fibre has a non-zerchenthich is by convention

measured in units dfr. In this case the fibre has writhe ﬁ).f

The rotation about the tangent vector can be explained ifomsider the tangent vector
p to exist on a unit sphere as shown in figure 1.10. The normabvgcalways remains

tangential to the sphere.

The tangent vectop,; shown in figure 1.9 lies along the line joining the centre & th
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_V

Figure 1.9: Diagram of a fibre bent in three places, each byngteaf 7, so that there

is no net change in the tangent vector between the two endsedilre. The normal
vector is parallel transported at each bend so that ther@ mentwist at each joint. There
is however a net change @f in the normal vector between the two ends of the fibre.
Diagram taken from Maggs [24].

sphere and the point; shown in figure 1.10, similarly vectoys,,..,p, in figure 1.9 lie
along the lines joining the centre of the sphere and the ppjnt p, respectively in figure
1.10. The arcsy, 3, v in figure 1.10 represent the bends, v in figure 1.9 and the

vectorsqy, .., q4 in figure 1.10 represent the corresponding normal vectdiigume 1.9.

The vectorq is parallel transported in a loop on the sphere from posifipthrough
positions 2 and 3 to position 4. The rotationegpébout the tangent vecterin figure 1.9

is a manifestation of the curvature of the sphere on whities.

The total rotation of a fibre about its axis is given by the sdithe rotation due to twisting

and the rotation due to writhe. This is known as White’s Tkeo{24].
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Unit éprfere

Figure 1.10: lllustration of writhe by showing the tangeettor on a unit sphere. The
tangent vectors corresponding to figure 1.9 join the certtbesphere to pointg; to
p4, the arcs correspond to the bends in the fibre and the vagtdosq, show the normal

vectors.
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1.4 Fibre Dynamics

We shall divide the dynamics of fibres into three categorestjon of rigid fibres, motion

of semi-flexible and flexible fibres, and active propulsiofilofes.

1.4.1 Rigid Fibres

The motion of prolate spheroids in shear flow of a viscous fluas$ first considered
theoretically in 1922 by Jeffery [19]. He showed that suchtipi@s rotate in closed
periodic orbits, which are now known as Jeffery orbits. Ldeetherton [4] showed
by way of the “mirror-symmetry time reversal theorem” thay axisymmetric body in
shear flow will rotate in a closed periodic orbit providedtttie aspect ratio in Jeffery’s
equations is replaced by an equivalent aspect rafidoased on the whole body shape.
Trevelyan and Mason [40] performed experiments on cyloadfibres in shear flow and
found good agreement with the orbits predicted by Jeffergméifective aspect ratio,
was calculated using orbit period. Effective aspect ratizvas found to be significantly
less that the actual aspect ratio in agreement with the eétieal analysis by Burgers [5]
which showed that the disturbance caused by a cylinder @casatioa, was equal to an

ellipsoid of aspect rati0.74a,.

The orientation of a fibre can be described by two andlélse angle with the axis and
¢ the angle between theaxis and ther — y projection as shown in figure 1.11. In these

co-ordinates, Jeffery orbits are described by

tan § = Ca, , (1.4.16)
Va2 cos? ¢ + sin’ ¢
t
tan ¢ = a, tan(27rf), (1.4.17)

wherea, is the aspect ratio [20]. The constafitis called the orbit constant and is
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z — vorticity direction
A

y — gradient direction

>
x — flow direction

Figure 1.11: Fibre orientation described in spherical potaordinates. Angld is the
angle between with the vorticity axis and angle¢ is the angle between the — y
projection of the fibre and the gradient directign
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z - Vorticity Direction
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Figure 1.12: Plots of Jeffery orbits for a fibre with orbit stents ofC' = 0.05,C' = 0.2,
C=05C=1.0andC = .

determined by the initial orientation of the fibre,

1
C = tan 90 \/COS2 ¢0 + - sin2 QS(). (1418)
a

T

A fibre placed in the: — y plane will have an infinite orbit constant and will rotateedyl
in thex — y plane. High aspect ratio fibres with large orbit constantsaie close to the
x — y plane and flip quickly in the: — y plane in a time of orde&b— but spend a time of
order%ar passing through the — z plane. A fibre placed along theaxis will have an
orbit constant of zero and will spin about the z axis. Fibréswmall orbit constants so

that they are close to theaxis appear to wobble about the axis.
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Figure 1.13: The fibre on the right has a smaller aspect ratictlaerefore experiences a
greater velocity difference across the end of the fibre.

The orbit period, T for any orbit consta@tis the same and is equal to

2 1
T = %(ar +—) (1.4.19)

where+ is the shear rate. Thus for large aspect ratios the periotboptional to the

aspect ratio [20].

The shorter period of small aspect ratio fibres is due to tigetarelocity difference across
the ends of the fibre as it passes throughithe plane. This creates a larger couple acting
on the fibre and hence leads to faster rotation (figure 1.13arge aspect ratio particle

spends almost all of its time in the— z plane.
Period of rotation

For a single fibre of finite aspect ratio, the rotation of thedfiis described by [20]

2
a/_
5=Q p+ E-p-p-E-
p p a,+1( P—P PP)

wherep is the tangent vector and dots denote derivatives with ctgpeime.
Written in component form this is

. 2 .
Y a. — 1 Y 22
oby + ] (§py — YDaDy),

pm:
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. 2 .
- ’y ar ,-)/ : 2
Py = _§px + 2zt 1 (5]790 - fypxpy)a (1.4.20)

r

For a fibre rotating in the — y plane close to the flow direction so that ~ O(i) we

may rescale equation (1.4.20) such that

py = €

and

p%:\/l—p;:\/I—GPy2

wheree = al andP, ~ O(1). Ase << 1 we can use the following approximation foy

]‘2 2

Equation (1.4.20) now becomes

aQ

LA 1 —1 1
P, = % <_(1 — 56213;) + a; - 1(1 — 562}{5)(1 — 262P;)> :

r

: gl €'P, 2 4
GPy:aQqu 5 (3—2a7) — 1]+ O(e).

Solving the differential equation we get

2,
py =€P, = — - 3tan 711 Yt + C
a,; — 5 r
Applying the initial conditionP, (0) = 0 we get
1 al =3
eP, = — - tan oS 04 (1.4.21)
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Using equation (1.4.21) we find that the time takenifpto become large compareddo
is
m(a? +1)

2%/@3—%

and that for large:, the time taken fop, to get out of theO(i) range is approximately
t ~ “2—7” As there are four such regions in one complete orbit thee spent within

O(i) of thex — z plane ist ~ 2”7“ From equation (1.4.19) we can see that this accounts

t =

for nearly all of the total orbit time.

1.4.2 Flexible and Semi-flexible Fibres

The motion of semi-flexible fibres in shear flow was studiedhe experiments of
Forgacs, Mason and co-workers [10, 11] using dacron, rayawhrgylon fibres in a
Couette apparatus. They observed that semi-flexible filefsm in shear flow and as a

consequence do not follow Jeffery’s predictions for orbitterns and periods of rotation.
They found that the observed fibres deformations could bedefivinto 3 categories

i) ‘Springy turns’ as shown in figure 1.14. These were obs#fwe stiff fibres where the

shear-rate only just exceeds the critical condition forddeg to occur, given by

E(log2a, — 1.75)
2a}

("Y,U)crit =

i) ‘Snake Turns’, or what we shall call ‘C turns’, as shownfigure 1.15. These were

observed for more flexible fibres.

iii) ‘S-turns’ as shown in figure 1.16. These were only obserin flexible, symmetrical

particles that were “entirely free of any permanent defdroms”.

It is important to note that most of the fibres in their studyeweot intrinsically straight.
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A fibre rotating in ther — y plane will bend whilst it is in the compressional quadrart an
straighten in the extensional quadrant (see figure 1.3). fibhe experiences maximum

compressive forces at an angle-et5° with the z axis.

All fibres exceeding the critical condition for bending weteserved to exhibit orbit drift
either towards the — y plane or towards the z axis. Fibres that performed snaks iern

the more flexible fibres, showed an increased tendancy tidolards ther — y plane.

Figure 1.14: Fibre performing a Springy Turn in the- y plane.

.. < <~

Figure 1.15: Fibre performing a Snake Turn in the y plane.

S R

Figure 1.16: Fibre performing an S Turn in the- y plane.
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Flexible Fibre Simulations

Klingenberg and collaborators have developed a number @éreint numerical
simulations of semi-flexible fibres. In these models the §lase modelled as; chains
of prolate spheriods connected by ball and socket jointk thitee rotational degrees of
freedom [31]; rigid spheres connected by hinges [34] and rigds connected by hinges
[33]. All three models incorportated bending and twistitiffreess so that the flexibility

of the fibre could be altered.

Simulations using spheres [34] and spheroids [31] both skothat type of shape
deformation was determined by flexibility. Stiffer fibresrfmemed springy turns or C
turns and more flexible fibres performed S turns. Simulatisisg chains of rigid rods
[33] showed that only S turns were obtained by intrinsicathaight fibres with flexibility

only effecting the sharpness of the turn. Only fibres withnpement deformations

produced C turns.

Skjetne, Ross and Klingenberg [34, 31] concluded that the determining factor in drift
direction was the initial orbit constant. Fibres startingse to thez axis, so that initial
orbit constant is small, drift towards a zero orbit constahtle fibres starting closer to

thex — y plane, so that the orbit constant is large, drift towardsinite orbit constant.

The other two determining factors for drift direction arexitelity and aspect ratio [34].
High flexibility and small aspect ratio both allow greatenteg. This allows fibres with
smaller initial orbit constants to drift towards the- 3 plane rather than the vorticity axis.
These three parameters (flexibility, aspect ratio andainatibit constant) also affect drift
rate [34].

A fibre that does not bend will not drift, hence it follows treaflexible fibre will drift
faster the more flexible it is. Similarly, the smaller the esjratio, the more a fibre will
deform and the faster it will drift. Fibres drifting towarttse x — y plane drift faster than

those moving towards the vorticity axis. This is due to thgéa compressional forces
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experienced close to the— y plane.

Whereas the orbit period of rigid rods is independent oftatnstant the same is not true
of flexible fibres. In studying the dimensionless orbit pdrd flexible fibres Skjetne [34]
concluded that fibres at large have periods that are shorter than that of rigid rods of the
same aspect ratio and decrease with decreasing stiffnasse&s fibres at small have

periods that are longer than rigid rods and increase withe@sing stiffness.

Linear Stability Analysis of Flexible Fibres

Hinch [17] examines the shape distortions of an inexteadittead with zero bending
stiffness. The thread is assumed to be very thin so that beljeading order terms from
slender body theory are retained. This means the threadautilcross the: — z plane
but will become aligned with the-axis. A finite aspect ratio thread would eventually
cross due to a small couple from the velocity difference sstbe fibre width. Evolution
equations for the change in shape of a thread are derivedhandihearised for small
perturbations from a straight thread. The linear equatamessolved by the method of
normal modes. The first distortion mode is symmetric aboaitcéntre ( a C mode) and
the second is the antisymmetric S mode. Hinch notes thatdgkected couples exerted

on the thread by the shear flow might be expected to producenodes.

For fibres in shear flow the distortions decay algebraicallfime for an infinite aspect
ratio fibre and decay completely by the time the fibre reaches txis. He concludes
that the changes in shape of a flexible fibre do not enable adsigéct ratio fibre to cross

thex axis.

Becker and Shelley [3] carried out a similar perturbatioalgsis to that of Hinch but
include the finite bending stiffness, for fibres in a compigasd flow. They found that

theC' mode was the first to become unstable with increasing fletyibil
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1.4.3 Active Propulsion of Fibres

Two of the main biological examples of active propulsion lyrds are the rotation of
helical flagella in prokaryotic cells and the beating motafrelastic rods in eukaryotic
organisms [25, 9]. In this thesis, we consider the first cagkiavestigate the effect of

flexibility upon the speed of propulsion.

Research into the swimming motion of flagella-propelled rovarganisms includes
observations and physical models of bacteria, and analystudies and numerical

simulations collectively known as flagella hydrodynamics.
Observations and Physical Models

Organisms that swim by the rotational or wave motion of flegedinge from mono-
flagellate bacteria such a8brio alginolyticusto petriciously flagellated bacteria such
as S.melilotiwhich has between 4 and 6 flagella. Forward swimming motiooftesn
achieved through the rotation of helical flagella. In bdatemich possess more than one

flagella, the flagella form a bundle and rotate together [32].

There are several mechanisms by which organisms can chaingetiah. The
photosynthetic bacteriuRR.sphaeroidespossess a single flagella which rotates only in
a clockwise direction. Directional change occurs by theitog and restarting of this
motion. Enterobacteria, such Bscherichia coliandSalmonellachange direction when
one or more of their flagella switches from counterclockwselockwise rotation, this

induces a helical transition from left-handed to right-tieth and causes the cell to tumble.

S.meliloti possess several flagella that rotate in a bundle. By vanfiegspeeds of
individual flagella the bacterium changes direction as alted the speed differential.
R.lupini also possess several flagella which rotate together in alduntumbles or
directional changes are induced by one or more flagella sipdown or stopping. This
causes the bundle to fall apart. The bundle reforms as tlaeyrepeed increases once

again. The size of directional change is dependant on thebaurnd length of the
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filaments. The more flagella per cell the smaller the direetiehange as the effect of a
single filament stopping becomes less significant. Cellk loihg filaments also exhibit

small directional changes as bundles of long filaments takgdr to seperate [32].
Flagella Hydrodynamics

Early flagella models include those of Taylor [37, 38], Harlc§1l4] and Gray and
Hancock [13]. The latter developed the Resistive Force mheachnique that has been
used in much of the subsequent research. The work of Gray andddk considered only

sinusoidal waves.

Resistive Force Theory uses the fact that propulsive commqtsrof force acting normally
to the surface of the body can overcome the drag forces aetinggntially along the body
provided the orientation of the surface of the body to the axitranslation of the whole
cell is such that the normal force has a forward propulsivemanent. By balancing the
total propulsive thrust by the drag on the cell body, the swing speed of the organsim

can be calculated.

Chwang and Wu [7] applied resistive force theory to helical/es. To consider helical
waves both linear and angular motion must be taken into adcouror a creature
composed of a spherical head and a helical tail, lying altvegxtaxis each section of
the tail rotates about the x-axis with angular velocityvith respect to the cell body, in

a counter-clockwise direction and moves parallel to theis-eith speed’,. While the
motion of the tail generates a forward propulsive thrusglsb generates a torqué,
causing the entire creature to rotate clockwise about tagix-with angular velocity,

2. This means the flagellum has an ‘apparent’ angular velositii respect to the
surrounding fluidw,,, = w—2, as defined by Chwang and Wu [7], resulting in a reduced

propulsive force.

In the model considered by Chwang and Wu [7] the tail doesatate as a whole relative

to the head, only the ‘waveform’ progresses with angulancig} w relative to the head.
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The alternative, is the model used by Goto, Inaoka and TakhRjpin which a rigid

helical flagellum is driven by a rotary motor at its junctiortiwthe cell body.

Propulsive velocity is small if the head is small as the heawti large enough to resist the
whole body rotation induced by the viscous torque creatdtiéynotion of the flagellum.
Hencell is large and therefore,,, is small. Forward propulsion is also limited if the head
is too large as the tail cannot generate enough forwardtttowsercome the drag on the
head. There is therefore an optimum head to tail ratio whHesdnead is large enough to
resist rotation and hence reduReand increase,,, but is not too large that the tail can

still propel it forwards.

Chwang and Wu [7] considered the presence of a cell body kilihdt consider the

interaction between the cell body and the flagellum. Higddsj fleveloped an improved
approximation by introducing higher order corrections kender-body theory due to
long range hydrodynamic interactions which not only take iaccount the interaction
between the cell body and the flagellum but also interactimt&een different sections
of flagellum. He represented the flagellum as a distributf@takeslets and dipoles along
its centre line and the cell body (a sphere) by two sets otdangies. The firstis an image
system which cancels the velocity on the sphere which wascedi by singularities along
the flagellum and the second comprises Stokeslets, dipntesadlets which match the

velocity on the sphere due to translation and rotation.

Higdon [16] found that for flagella of constant length and pitch angle = tan~' ¢,
whereaq is the helix radius andlis the pitch parameter such thatb is the pitch, as shown
in figure 1.17, an increase in the number of tunp®f the helix resulted in an increase
in swimming speed up to a maximum at an optimum number of tdetsrmined by the
ratio of the flagella lengtl2 L to the cell body radius. Further increasesninresulted

in a decrease in swimming speed. For fixednd pitch angle increasing the number of
turns reduces the helix radius resulting in a smaller toagiang on the cell body. The

reduction in(2 gives a largew,,, and hence a larger propulsive thrust. However for large
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2nbn

2nb

Figure 1.17: Diagram of a helix showing the radiwitch 27b and axial lengtl27bn,
wheren, is the number of turns.

n, this is off-set by the reduction in propulsive thrust due tdezrease in pitch. This
reduces the propulsive thrust of the flagellum by reducirgrttio of pitch to flagella

diameter (slenderness ratio [16]).

For a flagellum of constant length and number of turns, Higidomd that an increase
in pitch angle resulted in an increase in swimming speed up @aximum at a pitch
angle of63.4°. This is because the closer a section of flagellum is to beenggndicular
to the direction of motion the larger the thrust it provid€ar pitch angles greater than
63.4 there are no changes in swimming speed except for the cassnadilicell body in
which the swimming speed decreases. The decrease is due &ffagts; the reduction
in pitch reduces the slenderness ratio and hence reducesigion, and the increase in
helix radius increases the torque on the cell body and hexthecesy,,,. The flagellum
with the smaller cell body attached has a greater reduatieswimming speed as the cell

body is unable to resist the torque imposed upon it.

Goto, Inaoka and Takano [12] confirmed Higdon’s findings gsive same slender-body
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method, although Gotet al. obtained a maximum swimming speed at a pitch angle of
44° due to the different non-dimensionalisation of swimmingegb used. Phan-Thien
[27] also produced similar results using a boundary-elémesthod, the advantages of
which are that any geometry of cell body and flagella may bd,uséough results were

only presented for a spherical cell body.
Flexible Flagella

Takano and Goto [35], used a numerical algorithm for the iaftrod model to examine
the motion of the semi-flexible flagellum of Vibrio alginolgtis and establish whether
the difference between forward and backward swimming spekserved by Magariyama
[23] was due to deformation of the flagellum. The model useeligrsoidal cell body and
flagellum whose radius increased exponentially as distainoethe cell body increased,

until reaching a constant radius for the remainder of itgilen

They found that during forward swimming (generated by aneotkwise rotation of the
flagellum) the radius of the helix became smaller and the raurobturns increased. The
forward swimming speed of the flexible flagellum was slowe34(Lms~') compared
to the speed of the rigid flagellum. In backwards swimminghégated by clockwise
rotation) the radius of the helix became slightly larger #reinumber of turns decreased.
The backwards swimming speed was found to be faster (&89~') than that of the
rigid flagellum, however the differences were not as largihadgactor of 1.5 observed by

Magariyama [23].

Takanoet al. [36] found that for forwards swimming of Vibrio alginolytis the axial
length and pitch angle remained constant but the numbemio$ increased. The radius
and pitch of the helix both showed a small decrease. For bacsvswimming they
found that axial length and pitch angle remained constanhimnber of turns decreased

and radius and pitch increased.

In summary forwards swimming caused the helical flagellumital-up and swim slower,
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backwards swimming caused the helix to wind-off and swintefas

1.5 Outline of Thesis

This thesis considers three main areas

e The motion of instrinsically straight fibres in shear flow amdat determines the

occurrence of C and S turns.
e The motion of intrinsically bent and helical fibres in sheandl

e The effect of flexibility on the swimming speed of helical fdig.

We develop two different simulation models for flexible firdn both simulations the
fibre is modelled as a chain of rigid rods, rather than chainspberes or spheroids
linked together by ball and socket joints (the Kirkwood mio@d]), as has been used
in the research of Skjetne, Ross and Klingenberg [34, 31]e figid rod model has
the advantage of allowing fibres of larger aspect ratios tetbdied. Skjetne, Ross and
Klingenberg studied fibres with aspect ratios in the ranggbab 100, which required up
to 20 spheres or spheroids to be linked together. In our sitioul we study fibres with
aspect ratios of up to 1000 whilst only requiring 10 to 20 rtalde linked together.
To obtain such large aspect ratios using the sphere or spheradel would greatly
increase the computation time due to the large stiffnessgsaould be required at each
joint. In chapter two we describe the first of our simulatioodels, which is appropriate
for intrinsically straight fibres. The simulation result®rm this model together with
perturbation analysis for the onset of bending are destribechapter three. In this
chapter we explain the occurence of C and S turns observeskefoi-flexible fibres in
shear flow and also establish a determining parameter fodef@mation and rotation

rate of an intrinsically straight fibre. For non-intrindigastraight fibres we require a
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second model that takes account of both bending and twisthvigndescribed in chapter
four. In chapter five we present the results from this modelfifres with permanent
shape deformations in shear flow. In chapter 6 we use this nmdescuss the effects of
flexibility on swimming of a helical flagella. Finally we givaur conclusions in chapter

7.
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Chapter 2

Fibre Model for an Intrinsically

Straight Fibre.

In this chapter we describe our model for an intrinsicalhgigtht fibre. As we remarked
in chapter 1 the dimensionless twisting stiffnés$) of a high aspect ratio fibre is
much larger than the bending stiffneB¥”), so that any twist in the fibre will relax
instantaneously. Furthermore, for an intrinsically gfaifibre the bending energy is
proportional to(g—{j)2 so that we need only calculate the tangential vegtioalong the
fibre.

We will first describe the model and simulation method for @iimite aspect ratio fibre,
and then describe the modification to the rotation equatioactount for finite aspect

ratio.

2.1 Infinite Aspect Ratio Model

We model a fibre of lengtBL and radiug such thatl. >> 5. This assumption together

with those of low Reynolds number and low Peclet number aailddtin section 1.2.3
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'p,

Figure 2.1: Fibre model consisting of a chain of rigid rodsgul together by constraint
forcesF,,. The bending stiffness at the joints is proportional to thglad,, between the
joints. The orientation vectqs, and position vectoxk,, of rodn is also illustrated.

allows us to use the slender body approximations for Stoksg dlescribed in section
1.2.5. The fibre is modelled as a chain of N rigid rods of Ier?gﬂsee figure 2.1. In this
figure the rods are numbered from left to right, and the jaanésnumbered from 1 to N-1,
again from left to right. Connectivity is maintained via straint forces',, acting at the
joints. The constraint forces act such that there is no nmeefat the joints and therefore
no net force on the fibre. Resistance to bending is imposedroyés at the joints that
are proportional to the angtg between the rods. As the fibre is intrinsically straight then

the equilibrium values of,, are given byy:? = 7 for all values ofn.

Each rod is specified by the positiap of its centre and orientation vectpy,, as shown
in figure 2.1. The position of a point on the rod at a distanfrem its centre is given by
x!(s) = x, + sp, and the velocity of that point on the rod is giventy = x,, + sp,

which can be written in the forfV+w x (x — x.) by takingU = %,, and

WX (X — X.) =w, X SP;, = SPn-

As detailed in section 1.2.3 we shall consider only lineawfl@f the form
u*® =Ug+K-x.+ %w‘x’ X (x —x.) + E- (x — x.). Therefore by taking. = x,, and

(x — x.) = sp, we getu™ = U + K - x,, + 3w™ x sp, + E - sp, for the fluid flow on
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the surface of the rod.

Using the values of the tensofs(p,,), C(p,) andH(p,,) of the grand resistance matrix

calculated in secton 1.2.6 we can write the force and torglenloce on each rod as

An) (Up + K- x, — %) = ~F¢ (2.1.1)
and
O(pr) - (3™ — w,) + H(p,) - B = (T + 1Y) (2.1.2)

where the only forces acting on each rod are the constraice$®’ given by

F/=F,—F,

n

and the total torque acting on each rod is comprised of thgues arising from the

constraint forced¢;

L
sz - an X (I - pnpn) . (Fn + anl)

and the torques arising from the resistance to bendifi)g We assume that bending

resistance is given by linear elasticity so that bendingueris given by

Pn-1 X Pn
|pn—1 X pn‘

Pn X Pn+1

T = —kf, ————""
|pn X pn+1|

n

+ k6,4

where the anglé, between rods andn + 1 is given by

|anpn+1‘

andk is the bending stiffness at the joints and is giverkby ZIX whereF is the Young's

modulus and is the second moment of inertia of the cross section. Theibgrstiffness
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of the whole fibre is given by(?) = % which can be written in terms of the joint stiffness
by k®) = L.
Rearranging equation 2.1.1 and substituting in the valdeA,pand F{, we obtain an

equation for the translational velocity of the centre oftesm
. I
x,=Uyg+ K- x, + §ff "I+ pupn) - (F, —F, 1) (2.1.3)

where¢; is the resistance coefficient for force as derived in sedtiarb.

To obtain an equation for the rotation rate of each poew,, x p,, we take the cross

product of equation 2.1.2 and substitute in the values,pndH,, to give

1 o .
gt((I_p"pn)(iw Xpn_wnxpn)"‘anE'pnXpn:_(Tn—f—TZ) X Pn

where¢, is the resistance co-efficient for torque as derived in sai2.6.

Using%wOO x pn =2-p,, Where is the vorticity given in section 1.2.9,, - p, = 0 and

the identityp x A x p = (I — pp) - A we get

&((T—pupn) - K- pp — Pu) = —(T;, + T}) X P (2.1.4)

so that the difference between the rotation rate of the ratla rotation rate of a free
rod in a linear flow is proportional to the cross product oftibrgjue acting on the rod and

p.. Rearranging 2.1.4 and substituting in the value¥paandT® gives

) L

— Pn X Pn+1 -1 eq Pn-1 X Pn
e (9, — gy P Pl ek (g,, — oo ) Rt X P
t ( n n ) ‘pn « pn+1‘ n t ( n—1 n 1) |pn71 < pn| n
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To solve equations 2.1.3 and 2.1.6 we need to calculate tinstraint forces. We do this

by enforcing the connectivity constraint

Xp+1 — Xp = Prni1 + Pn). (2.1.6)

L

¢
We non-dimensionalise equations (2.1.3), (2.15) and @R dxpressing time in units of
471, such that* = 4t andK* = %K x in units of L, x* = 1x and force in units of
2Ly, F* = ﬁg;lF giving a non-dimensional stiffness bf = %g;lk so that our new

equations are

%, =K -x, + (I+pupn) (F, —F, 1), (2.1.7)
pn = K- Pn —Pn: K- PnPn + ?)N(I - pnpn) ' (Fn + Fn—l) (218)
X Pn+1 e Pn-1 X Pn
(0, — o) Dn Pt k(0 — 0% ) Pt P
( )‘pn X pn+1‘ ( ! 1) ‘pnfl X pn‘
1
Xn+1 — Xp = N(pn—i—l + pn)a (219)

where the's have been dropped for convenience. Non-dimensional hgrsdiffness is
310g QaTEI

given by=—£=2-== (as derived in section 1.3.1), whene the fibre length given byy= 2L
and hence the rod length is given by % We can therefore write the non-dimensional
bending stiffness of the whole fibre in terms of the non-disienal joint stiffness as

kB = Lk

Differentiating equation (2.1.9) and substituting in efip@s (2.1.7) and (2.18) yields a

tridiagonal system of equations
o1 -Fon +8, Fota, -F, =T, (2.1.10)

where

a, = 2(1 - 2pnpn)a
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B, =241 — Pr11Pnt1 — PuPn),

1 1
Fn = K- (Xn—l—l - Xn) - _(I - pn—i—lpn—l—l) ‘K- Pnt+1 — N(I - pnpn) ‘K- Pn

N
k Prn X Pn+1 k Prn—1 X Pn
+2 (9, — gea)Bn X Posi — — (O — 01 ) x py(2.1.11)
N(n )|pn><pn+1| ! N(n ' 1)|pn—1><p"| !
k Prn+1 X Pn+2 k Pn X Pnt1
(6, — 6 —_— = X Ppr1 — =0, -0 ) ———— X p,
N( +1 n—i—l) |pn+1 X pn+2| +1 N( n >|pn X pn+1| +1

Solving this system of equations using LU decompositiorhvigrward and backward
substitution yields the values of the constraint for€gs[29]. The motion of the fibre

can then be obtained by integrating equations 2.1.7 anél @sing 4th order Runge Kutta
[29].

2.2 Modification for Finite Aspect Ratio

To model a semi-flexible fibre with finite aspect ratig, it is necessary to replace the

termK - p, — p» - K - p,p» In equation (2.1.9), which describes the rotation rate of a

torque free slender body, with

241

Qe

2
r

Qb

which describes the rotation rate of a torque free prolatespd of aspect ratia, as
derived in reference [20]. In our simulation we use= +-a, Where+a, is the aspect

ratio of the individual rods.
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2.3 Stress Contribution of a Semi-Flexible Fibre

In subsection 1.2.7 we considered the stress contribufiamigid fibre in shear flow. We
now obtain the stress contribution for a semi-flexible fibvenposed ofV rigid rods of

Iength%. The force density along each rod is given by

N
fn = 65—[/(21 - pnpn> ’ (u:z - u;c) (2313)

The fluid velocity at a point along the rod is given bu®® = K - x(s) = K - (x,, + sp,)
wherex,, is the position vector of the centre of radandp,, is the orientation vector of
rodn. The velocity of each rod is given hy, = x,, + sp,, wherex,, andp,, are given by
the equations

%= K x4 567 (T paba) - (Fy — Fi) (2.3.14)

and

&'L

I (I—pupn) - (Fr+F, 1) +&'T x p, (2.3.15)

pn =K:p,—pn K- p,pn+
respectively (see section 2.1). H&¢ is the bending torque given by

Pn Xpn+1 e Pn-1 Xpn
T) = —k(f, — 0°0) =" 4 (g, — %0 )L
" ( ! n)‘pn X pn—l—l‘ ( ot 1)‘pn—l X pn‘

Substituting the fluid and rod velocity into equation 2.3gh\&s,

&N N
fo = 5% PoPn Kopo = o (Fo = Fi 2.3.16
or PrPn Kb = o 1) (2.3.16)
3N? N,
DY (I=papn) - (Fn +Fno1) + an X Pn

for the force density along the boundary of ned
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The stresslet [2] for each rod is then calculated using

L
|k
S, = 3 /N (x5, + $pn)f + £,(Xn + sPn)ds. (2.3.17)

Substituting equation 2.3.17 into equation 2.3.17 gives

1
Sn - 65(pn K- pn)pnpn - 5 (Xn(Fn - anl) + (Fn - anl)Xn>

L
_ﬁ (pn(I - pnpn) : (Fn + Fn—l) + (I - pnpn) * (Fn + Fn—l)pn)

1
—5 (PuTy, X Po + Ty X Pupy) (2.3.18)

The stress along the whole fibre is given®y 27]:7:1 S,.

Using the non-dimensionalisatiéh = -35¢;'S , x* = ¥, F* = %glF and
k* = %gt‘lk where the resistance co-efficients are calculated usingoithéength2Z,
we obtain the following non-dimensionalised form of theesttensor for a semi-flexible

fibre,

N
. 1
S = ¥ > (pn K pu)pups — 3N (x,(Fy = F, 1) + (B — Fy1)x,)
n=1

—3N (pn(I - pnpn) : (Fn + Fn—l) + (I - pnpn) : (Fn + Fn—l)pn)

— (PnT% X P+ TY X PuPn) - (2.3.19)
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2.4 Numerical Simulation - Accuracy Checks

2.4.1 Time Step

Our numerical method is essentially a forward time, centspace scheme for solving a

diffusion equation and so a stability criterion of

would be expected [29], whereis the time-step and s is the space discretisation. Given

our space step ids = 1 we can simplify this to

1
kh < 5. (2.4.20)

By calculating the orbit period of fibres with rod numbersot= 10, 12, 15,and20 and
rod stiffnesses of = 10, 50, 100 and500 at various time-steps and determining at which
time-step the simulation becomes unstable in each caseniieo@quation (2.4.20) is a

suitable stability criterion for this simulation method.

Time steps which are too large lead to the system becomintahiesvery quickly,
however, once a time-step satisfies the criterion then duntbductions in size result in
only minor improvements in accuracy. In our simulation weehasedr = 0.01 for rod

stiffnesses of; < 50 andh = 0.001 for 50 < £ < 500.
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2.4.2 Individual Rod Stiffness

In section 2.1 we find that the whole fibre stiffness as derimexdibsection 1.3.1 is linked

to the stiffness of each individual rod in the fibre model by
k= N*kP) (2.4.21)

wherek is the individual rod stiffness. By measuring the orbit pdrfor a fibre of aspect
ratioa, = 200 and whole fibre stiffnesk(®) = 5 x 10~* for various values of rod number
N we tested the accuracy of this relationship. The individodlstiffness was calculated
using equation (2.4.21) and the rod aspect ratio was givefs bit was found that there
was a 0.5% increase in the orbit period of the fibres when teumnber was increased

from 10 to 20 rods.

The values ofV that can be used are limited as values betogive highly inaccurate
results as there are too few locations in which bending caorcend hence the model is
unrealistic. High values a¥, in this case values abogé, result in the aspect ratio of the

individual rods being too small and hence no longer satigfyine slender body criteria.

2.4.3 Replication of Rigid Fibre Results

We check that the simulation reproduces known results fid fibres. Simulations were
run for rigid fibres in shear flou = (4y, 0, 0) non-dimensionalised with respect4o
Fibres were composed of 10 rods, each of aspect ratio 10asthnfibre had aspect ratio
100. Bending stiffness was set so that the fibre had oveifiletst(”) = 0.1 and the
change in end to end length of the fibre wag x 10~°%. The orbit period was measured
for a variety of initial orbit constants, C, and was found &ibdependant of C. For large
aspect ratios, we can define the effective aspect ratio freperiod of oscillation by

— T

ar.;,; = - This gives an effective aspect ratio of 100.46 comparetigattual aspect



Chapter 2. Fibre Model for an Intrinsically Straight Fibre. 61

1-005 T T T T T

1.004 - 1

1.003 1

1.002 i

(28

1.001 i

0.999 1

O. 998 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Qr

Figure 2.2: Ratio of effective to actual aspect ratio as &tion of aspect ratio.

ratio of 100. Figure 2.2 shows the ratio of effective to ataspect ratio against aspect
ratio. All fibres had a stiffness df®) = 0.1 and further increases in stiffness resulted
in no change in orbit period. The trend of decreasing ratith wicreasing aspect ratio
is consistent with the simulation results obtained by SigeRoss and Klingenberg [34]
and the experimental results obtained by Trevelyan and Mp&Y. However, the actual
values ofa’;% are higher than those obtained by Skje#teal. [34] due to the differing
fibre geometries and treatment of hydrodynamic interastidior very high aspect ratios

the ratio tends to one as the shape of the fibre is no longeifisagtt.

Plots of Jeffery orbits for varying initial orbit constarasd aspect ratio plotted along side
Jeffery orbits for an ellipsoid with aspect ratio equal te fibre’s effective aspect ratio

show good agreement (figure 2.3). Simulations were run fercbhsecutive periods and
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Jeffery Orbits
C=0.05 +
z C=0.2 x
C=05 «x

Figure 2.3: Jeffery orbits of fibre compared to predictededgforbits for an ellipsoid of
equivalent aspect ratio. Orbits are shown for orbit cortstahC' = 0.05,C' = 0.2 and
C =0.5.

no orbit drift was observed.
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Chapter 3

Results for Instrinsically Straight Fibres

In chapter 2 we described the numerical simulation methouhfonsically straight fibres.
Experimental observations of Forgacs and Mason [10] repattdacron and elastomer
fibres perform C turns except in the case of perfectly stidigres which perform S turns.
Simulation results of Ross and Klingenberg [31] and SkjeRuess and Klingenberg [34]
find that the shape the fibre forms whilst rotating is depenhdgnn the fibre stiffness.
In his stability analysis Becker also concluded that st was the determining factor
and that mode 1 (the C mode) was the most unstable in compnes$iow. For smaller
stiffnesses mode 2 (the S mode) became the most unstaleyédiby mode 3 and then
mode 4 at even smaller stiffnesses. The mode number des¢hberumber of turning

points in the fibre shape so that mode 4 has 4 turning pointsance is an odd mode.

In this chapter we begin by investigating the types of turedgymed by instrinsically
straight fibres in ther — y plane (section 3.1.1). We also consider how fibre stiffness
and aspect ratio effects bending energy (section 3.1.2)odmnit period (section 3.1.3).
To explain our findings we consider the fibre dynamics in the tegions of the orbit in
which bending can occur, the compressional quadrant and-theplane. For bending in
the compressional quadrant we perform a linear stabiligfyesis (section 3.2.1) similar

to that of Becker [3] and for bending in the- = plane we use a torque balance argument
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to determine the shape of the fibre at this point in the orbitt{en 3.2.3).

In section 3.4 we go on to consider a fibre with an initial otaion out of ther — y plane
and explain why, unlike rigid fibres which rotate in closedfeky orbits, semi-flexible
fibres exhibit orbit drift. We also consider the effect of &lstiffness and aspect ratio on

the rate and direction of drift.

3.1 Semi-Flexible Fibres in the Flow-Gradient Plane

We shall first consider fibres that rotate in the flow-gradignt y) plane. Fibres start
with initial alignment along the:-axis. We shall consider the shape of the fibres during

rotation and the period of rotation.

3.1.1 Fibre Shape

A perfectly straight fibre aligned along theaxis will rotate and deform into an S-like
shape providing it is sufficiently flexible. This is in agreemh with the experimental
results of Forgacs and Mason [11] and the simulation of Sdh8witzer and Klingenberg
[33] which observed that perfectly straight fibres perfodngeturns. Figure 3.1 shows a
fibre of aspect ratia,, = 100 performing an S turn with time given in strain units,
At. A very flexible, high aspect ratio fibre will perform a modeutrt (perturbation has
two maxima and two minima) when rotating as shown in figure :Zibre of aspect
ratio 1000 will perform a mode 4 turn if the stiffness is less tha¥) = 0.0013, for
stiffness greater than this it will remain straight whiletating. A fibre of aspect ratio
400 will perform an S turn fork(® > 0.0013 and a mode 4 turn fok®) < 0.0013. We
may therefore expect fibres with smaller stiffnesses togeredigher mode turns such as

mode 6 and mode 8 turns although we have not observed these smaulation results.
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Figure 3.1: Fibre of aspect ratia, = 200 and non-dimensional bending stiffness (as
derived in section 1.3.3)(%) = 6.25 x 10~* performing an S turn in the x-y plane.

We will however investigate the presence of higher order @sad the linear stability

analysis described in section 3.2.1.

A fibre that is not sufficiently flexible to perform an S turn dagot perform a C turn
but remains straight while rotating. Whether or not a fibré bend is dependent both
upon the fibre stiffnesg;(”) and the aspect ratig.. We shall investigate this dependence

further in subsection 3.1.2.

To obtain a C turn (see figure 3.3) the fibre must either bensittally bent (as we shall
demonstrate in chapter 5) or have an initial deformationithaot antisymmetric. In the
latter case only the initial rotation will be a C turn. As thier&é realigns with the-axis it

will straighten completely and therefore all subsequetations will beS turns. The size

of the initial deformation must be at least of the order offthee diameter.

As we discuss further in subsection 3.2.3 the initial buaklof a perfectly straight fibre
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Figure 3.2: A fibre of aspect ratio. = 1000 and stiffnesg:(®) = 3.125 x 10~* rotating
inthex — y plane. The fibre shows a mode 4 shape in the compressionatad

of finite aspect ratio aligned along the x-axis is anti-syrtrineand therefore produces
an S turn no matter what the flexibility of the fibre. To obtairCaturn requires a
perturbation that breaks this anti-symmetry. This sugostt the propensity for C turns
in the experiments of Forgacs and Mason [11] was due to thelfatmost of the fibres

used were not intrinsically straight.

3.1.2 Fibre Flexibility

To determine the bending stiffness required for the fibreddomger bend we plot the
bending energy per half orbit against stiffness for fibreditierent aspect ratios (figure
3.4). We define the bending energy per half orbit by

N—-1

1 [z )
jo 5/0 S (0 — 0oy, (3.1.1)

n=1
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Figure 3.3: Fibre of stiffnesk(”) = 7.5 x 10~> and aspect ratia, = 300 performing a
C turn in the x-y plane.

whereT' is the orbit periodd,, is the angle at the joint an — 1 is the number of joints.
For low stiffnesses where there is considerable bendinggicdmpressional quadrant the
bending energy is independent of aspect ratio and is priopaitto k(BV%. For larger
stiffnesses aspect ratio becomes important. This can bberseee clearly on the log-
log plot of energy against stiffness shown in figure 3.5. Atiiness of approximately
0.0008 the gradient changes and there is a sharp decrease in besrténgy marking
the boundary between a low stiffness regime in which themmisignificant aspect ratio
dependence and a high stiffness regifhé) > 0.005) in which bending energy can be
multiplied by aspect ratio cubed to give a universal plotuffeg3.6). In this high stiffness
regimeEa? is proportional tat(B) . The reasons for this change in regime from low to

high stiffness will be discussed later in section 3.3.
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Figure 3.4: Bending energy per half orbit plotted againsefigtiffness:(”) for fibres of
aspect ratia;, = 100 to a, = 2000. The vertical dotted lines show fibre stiffnesses of
E(B) = 0.001 andk®) = 0.005.
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Figure 3.5: Log-log plot of bending energy per half orbit iaga stiffness for fibres of
aspect ratia, = 100 to a, = 2000.

3.1.3 Period of Rotation

As discussed in the introduction decreasing the aspecotahthe fibre causes it to rotate
faster, as the larger cross-section gives a greater weldifference across the ends of
the fibre, producing a larger couple to rotate the fibre. Bagdiue to flexibility leads to

faster rotation as the bend in the fibre decreases its eféegtipect ratio, as illustrated in

figure 3.8.

In figure 3.9 we show the orbit period as a function of aspea far fibres of various
stiffnesses. Figure 3.10 shows the orbit period as a fumdtdibre stiffness for fibres of

various aspect ratios. The period of rotation of a high as@io rigid fibre is given by

p
T=""4, (3.1.2)
Y
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Figure 3.6: Log-log plot of bending energy per half orbit tplied by «} against stiffness
for fibres of aspect ratia, = 100 to a, = 2000.
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Figure 3.7: The fibre on the right has a smaller aspect ratictlagrefore experiences a
greater velocity difference across the ends of the fibre.
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Figure 3.8: A bent fibre has a smaller effective aspect ratebtherefore rotates faster.

so the gradient in figure 3.9 for a rigid fibre3§. For semi-flexible fibres the period of
rotation decreases with increasing flexiblity and only @ases linearly with aspect ratio

at high aspect ratios.

One method for interpreting figure 3.9 is to define an effectigpect ratio based on the
period of rotation. For the limit when bending is small we espthis effective aspect

ratio to have the form

2L
e A+ ()

(3.1.3)

whered is the diameter of the fibre antf (2=, k(#)) is the effective increase in diameter

due to bending wher¢ is a function of both stiffness and aspect ratio defined by

f:?—l

whereT' is the orbit period and, is the orbit period of a rigid fibre. Our scaling analysis
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Figure 3.9: Period of rotation vs aspect ratjofor fibres of stiffnesses®) = 3.125 x
1075 t0 kP = 1.5 x 1073,

in chapter one shows that the bending torque on the fibre optional to the change in
the angle of bené?, where the constant of proportionalityii€®). This would suggest that

f should be a function of(®) alone, however, if this were the case the period of rotation
of a semi-flexible fibre would be linear in aspect ratio buthwat gradient that depends
upon flexibility. Instead we find that gradient increaseswaispect ratio approachirﬁg

in the limita, — oco. Consequently’ — 0 asa, — oo.

In figure 3.11 we plot the functiofi(22, k(®)) against:(?)a, for fibres of different aspect
ratios. The collapse of the plots shows that at leading ofdes function of £(P)q,.
This means that for intrinscially straight fibres in sheawflbhe dimensionless measure
of the effect of bending stiffness on the periodki$)a, and notk(®). Recalling that
k(P) is inversely proportional to fourth power of aspect rativs imeans that the effective
stiffness of intrinsically straight fibres in shear flow aadty scales with the inverse cube

of aspect ratio.
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Figure 3.10: Period of rotation vs whole fibre stiffnés$) for fibres of aspect ratios
a, = 100 to a,, = 500.
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Figure 3.11: Plot off (k?), a,) againstk?)a, for aspect ratios of 100 to 1000.
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Figure 3.12: Log plot off (k'?), a,)) against:(")a, for aspect ratios of 100 to 1000.

Figure 3.12 is a log plot of figure 3.11 and shows that for largkies ofk(Pa,, f

is approximately proportional tcz(;ﬁ. In order to examine the departure from this
behaviour in figure 3.13 we pldt®a, f (2, k®)) against:®)a,. From this we can see
that for smalleit(”)q, there are higher order contributions,(itt”)a,)~", which are also
dependent oi(?)q, and also that for large values Bf*) a, the plots do not superimpose,
suggesting there are higher order contributions depermtgdit®) only. This is confirmed

by figure 3.14 which shows®q, f(2:, k(®)) against stiffness only, and confirms that
after a stiffness of approximately007 the plots superimpose, and show a higher order

contribution dependent d?) only.
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Figure 3.13: Plot ok(®)a, f (k'P), a,) against:?)a, for aspect ratios of 100 to 1000.
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Figure 3.14: Plot ok®)a, f (k'P), a,) againstk(?) for aspect ratios of 100 to 1000.
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3.2 Onset of Bending

In order to explain the above results and to gain a greateerstahding of the factors
governing the dynamics of a semi-flexible fibre in the floweljeat plane we consider
the two most important regions of the orbit. Firstly when filge is under maximum
compressive force, i.e. when the fibre is at an angle4f° with the z-axis and secondly

when the fibre is within ordezlj7 of the flow-vorticity plane.

In both regions the effect of bending on the fibre is importéamthe first region the fibre
compressive forces are large leading to a significant amofubénding. In the second
region the compressive forces are smaller, by a factq}: phowever, the time spent in

the region is larger by a factor of.

We examine the influence of bending in the compressive quadrathe fibre dynamics
by performing a perturbation analysis similar to that of étif17], who considered a fibre
of zero bending stiffness; and Becker and Shelley [3] whoiporated a finite bending
stiffness. We develop equations for the evolution of thengea of shape of a fibre in a
compressional flow and then linearise the equations forlgmeaiurbations to a straight
fibre. The linear equations are then solved numerically dube presence of the fourth
order bending term. We then consider the stability of thetsmhs for various values of

the non-dimensional bending parameter.

To examine the influence of bending in the flow vorticity plame calculate the bending

torque distribution along a fibre aligned with the flow axis.

3.2.1 Linear Stability Analysis

Governing equations

We first derive the evolution equations for the changes ipsloda fibre. We consider an

intrinsically straight fibre of lengtB L described by orientation vectpi s, ¢) and position
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Figure 3.15: Diagram of a fibre showing the arc lengtind the position and orientation
vectorsx(s, t) andp(s, t).

vectorx(s, t), as shown in figure 3.15, whesés arc length andtime. The fibre is centred

ats = 0. Here we shall consider only infinite aspect ratio fibres.

The inextensibility constraint on the fibre is given by

p-p=1 (3.2.4)
which therefore implies

p-p=0 (3.2.5)
and

pp' =0 (3.2.6)

wherep = 2 andp’ = 2.

For a fibre with velocityx(s) at a positions along the fibre in a linear flow given by
U*> = K - x, the viscous force density acting on the fibre, as derivedlissction 1.2.5,

is given by
2m

(21— pp)(K - x — ).

v

- log 2a,

For an semi-flexible fibre the viscous forcgs are balanced by the tension in the fibre
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and the fibre stiffness such thaf, = f;, wheref; is given by,

83
fr = 5-(p) - Ela—sp (3.2.7)

where ET is the flexural rigidity. The tension is the net force transea over a cross-
section of the fibre. It preserves the arc length of the fibréhst it may satisfy the

inextensibility constraint 3.2.4.

Equating the two forces and non-dimensionalising time wepect to the inverse shear

rate%, length with respect té. and tension with respect l?égg—f , We get

. 1 0 83
X—K-x—§(1+pp)<a (Tp) — 3k 8S3>

3E1log 2ay

wherek(B) = Torie TS

is the non-dimensional bending stiffness derived in sactid.3.

Differentiating this with respect to s, gives

1 *r Op Ordp 8 50'p
5 K- I greb _°
b-K-p=of +pp)<a t o a5 as T3 8s4>

+—( — + =D I

1, Op 8p)87' op 83
9s ~0sP\asP " Tos 3 633’

and using constraint equations (3.2.4) and (3.2.6) the mailution equation for the fibre

becomes
s " 1 " 3 1! 4 (B) i NN !
p—K-p+Tp+§Tp +§Tp—§k (p™ + (p(p-p")"). (3.2.8)
Herep® is %’.

To obtain an equation for the tension we substitute equéBi@8) into the inextensibility
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constraint equation (3.2.5). This yields a second ordé&sdifhtial equation for the tension

1 8 4 1
7_// + 5(p/)QT = _p- E. p + gk(B>(pw-p + 5p/‘p///) (329)

with boundary conditions = 0 ats = +L.
Small perturbations to a straight fibre

We shall now consider small perturbations to a straight sioieh that

p(s,t) = po(t) + epi(s, 1) (3.2.10)

wheree << 1, po(t) is the orientation of the straight fibre apd(s, t) are the first order

distortions to the fibre, such that

Po-p1 =0

and

P.P = Po-Po+ €P1.p1 = 1 + O(€°).

An illustration of vectorg, andp; are shown in figure 3.15.

We assume that the variation in the tension along the lerfgtiedibre is small and hence
write the tension as

T(s,t) = 10(t) + emy (s, ).

Substituting this into equation (3.2.9) yields

"

8 4
7= =py-E-po — 2epo - B p1 + o ki’ py

to ordere.

Solving the second order differential equation for tensioth the boundary conditions



Chapter 3. Results for Instrinsically Straight Fibres 80

ont andp’ = 0 ats = +L gives

1 l—l-s
T:pO-E-p0§(1—S —26p0 </ / P1 — / / p1> —|—6 k pl’_po‘

(3.2.11)

Substituting the tension equation (3.2.11) and shape equgt.2.10) into the evolution
equation (3.2.8) and then subtracting the rotation of treegitt thread
po = K - po — popo.E - pg, We get an equation for the evolution of the distortipns

. 1 3 4
P =K-pi+po-E-po <—P1 + 1(1 —s%)p| — §5P/1> —2popo - E - p1 — gk(B)P

(3.2.12)

The change imp; in time in equation (3.2.12) arise both from the changes apstand
from the rotation ofp; with pg. To remove the rotations we introduce the orthonormal
triad pg, qo andr in the frame of the unperturbed fibre. The rotation of vecigrandr,

result only from the rotation g, so that

o = —PO(QU-f)o) = po(Qo K- po),

g = —Po(ro-f)o) = Po(l‘o K- Po)-

Let the distortions from the straight fibpg be written as
pi(s,t) = qo(t)q(s,t) + ro(t)r(s,t). Substituting this into equation (3.2.12) and taking

the dot product witly, andr, gives equations foj andr respectively.

4

. 1 3
¢=(q-K-qo)g+(qo K- ro)r+po-E-pyg (—q + (1= s*)q" — §sq’> — §k<B>

(3.2.13)
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1 3 4 4
r=(ro-K-qo)g+ (ro-K-ro)r+po-E- po (—r + Z(l — )" — 537“’) — gk(mr“’

(3.2.14)

For a bending stiffness of zero the second order differeetation can be solved
analytically as described by Hinch [17]. Whek€®) is non-zero, an analytic solution

does not exist and so a shooting technique has been employed.
Shooting Technique

Let us consider a fibre located in the— y plane so that = 0 andr, - K- ry = 0. We

therefore havey, - K - qo = —po - E - po for a symmetric flow and so equation (3.2.13)
becomes

. 1 2\ I 3 ! 4 (B) v

¢=po-E-po —2q+1(1—s)q — 554 _§k qv. (3.2.15)

Provided thap, - E - po remains approximately constant we seek a solution of tha for

q = Q(s)e”". Substituting this into equation (3.2.15) gives

1 2 " 3 l 4 v
—20Q + Z(l — Q" — §SQ> -5Q" (3.2.16)

o _PO'E'po
k(B)Q_ k(B) (

Before attempting to solve the full equation we shall firstgider the simplest case of a

fibre in quiescent fluid wherg, - E - py = 0. Equation (3.2.16) then reduces to

Q" —k'Q=0 (3.2.17)

wherek! = — 2% This equation has even solutions of the form

Q(s) = A(cos ks + acosh ks)
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and odd solutions of the form

Q(s) = B(sinks + fsinh ks).

Imposing the boundary conditions = ¢” = 0 and henc&)’ = Q" = 0 ats = +1 we

can deduce that the even modes will occur at valuéssafch that
tan k = tanh k&
and the odd modes will occur at valueska$uch that

tan k = — tanh k.

Substituting our value of: into the corresponding solutions and using the boundary
conditions once again we can then obtain the valuesaf/ for each mode. Figure 3.16
shows the plots of(s) for the first 6 modes. It should be noted that an even solufams
Q(s) give odd shape solutions and vice-versa as shown in figure Blade 1 is the even

C shape and mode 2 the odd S shape. As expect%ﬂ%#{i = 0 all values of 7 are

negative and hence all modes decay.

To solve equation (3.2.16) whe%c% +£ (0 we employ a shooting technique. Putting
Qo=0Q,0Q =@, Q= Q"andQ; = Q", equation (3.2.15) can be written as four first

order differential equations.

)

Q= —5257 (0Qo — Po - E - po (—2Q0 + 1(1 — s1)Q2 — 25Q1))
Q5 = Qs
Q) = Q-
Qy = @

(3.2.18)
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Figure 3.16: Plots of Q(s) for modes 1 to 6 with= B = i%
Figure 3.17: Plots of the shape distortiops with ¢ = 10~ and4 = B = ——

corresponding to mode 1, C-mode and mode 2, S-mode.
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It follows from the boundary conditiop’ = 0 ats = +1 that@Q; = 0 ats = +1. The
other boundary conditiong” = 0 and hence), = 0 ats = +1 follow from the net
force and net torque on the fibre being zero. The growth rgtgsare the eigenvalues
corresponding to eigenfunctiordg, (s). To find the eigenvalues and eigenfunctions we

exploit the linearity and symmetry of the solutions.

Suppose we have a solution 1@, (s) where

Q;(s) = (Qo(s), @1(s), Qa(s), Qs(s))

of the form

Q,(s) = D(Q"(5) + AQ"(s))

where

Q" = (Q5, QY. Q3. Q3)
Qb = (an ({7 Qg7 Qg) :

To satisfy the boundary conditions we cho@tandQ’ to be

Q" = (1,0,0,0),
Q" =(0,0,0,1)

ats = —1.

For an even solution we require in addition that= ;3 = 0 ats = 0 so that

Q1(0) +AQ1(0) = 0,
Q5(0) +AQ3(0) = 0.

(3.2.19)



Chapter 3. Results for Instrinsically Straight Fibres 85

To satisfy both conditions simultaneously requires thewheinant of the matrix
Qf @

Qf Qj
to be zero, which provides our condition;g; .

Similarly an odd solution requireg3, = (); = 0 ons = 0 so that

Q4(0) +AQ4(0) = o, (3.2.20)
Q4(0) + AQ4(0) = 0.

Again to satisfy both conditions simultaneously requiresdeterminant of the matrix
Q5 Qg

Q5 Q5
to be zero.

We obtain the values @® andQ® ats = 0 by integrating equation (3.2.18) from= —1
to s = 0 using fourth order Runge Kutta and starting with the propgaséial values of
each solution at = —1. We obtain the correct value of;; by using either bisection
or Newton Raphson to find a zero determinant. Once the valyg:pfs found we can
obtain\ using equations (3.2.19) or (3.2.20).

Starting from the analytic solutions f(ﬂ% = 0 we can find the solutions %

by decreasing"f}C'(ET')pO in small increments and using the previous answeﬁgif as our
initial estimate. At certain values d&-%E2 two different branches of real eigenvalues
coalesce, and are replaced by a complex eigenvalue pairseTlere found using a

Newton Raphson scheme.
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3.2.2 Stability Analysis Results

The values of the growth ratg%; obtained for different values of%E2 are shown

in figure 3.18. For positive values #-%E2 all modes are stable. At small, negative
values of% the most unstable mode is mode 1, tieshaped mode. This mode
goes unstable at a dimensionless flow strength 0f.77. Mode 2, theS shaped mode
goes unstable at2-5Pe value of—64.5 however at this flow strength tf@ mode is still

the most unstable mode. Ti¥emode does not become the most unstable mode until a

flow strength of approximately-146.67. We found no unstable real modes in the region

—378.67 < RUERO < —429.33, however, we did find odd and even complex modes in

this region, the even mode being the most unstable.

These results are in good agreement with those of Becker halle$ [3]. The non-
dimensional parameters used in the two studies differ byctofeof 12 in the flow
strengths. Multiplying our results for the values at whibk @' and theS mode become
the most unstable bi2 gives flow strengths of153.24 and—1760 respectively. These
compare favourably with the approximate flow strengths ©$3.2 and—1880 found by
Becker [3] who uses pseudospectral collocation to find thetranstable modes. Our
results benefit from showing the growth rates of more thartesmost unstable mode at

each flow strength.

Figures 3.19 to 3.22 show the shapes of the modes at theqmssitiarked on figure 3.18.
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Figure 3.18: Plot of growth rate ) vs flow strength {%) from linear stability
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Figure 3.19: From left to right - plots of mode shapes for ppmarked 1, 2 and 3a in
figure 3.18
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Figure 3.20: From left to right - plots of mode shapes for pomarked 4a, 3b and 3c in
figure 3.18
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Figure 3.21: From left to right - plots of mode shapes for ppmarked 4b, 4c and 5 in
figure 3.18
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Figure 3.22: Plot of mode shape for point marked 6 in figur&3.1
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Simulation Results for Compressional Flow

In shear flow the rotation of the fibre changes the valysak-p,. To compare the results
of the linear stability analysis with our simulations we swler a fibre aligned along the
x axis in the compressional flow, = (— Ez, Ey, 0) as shown in figure 3.23. We consider

only small order distortions allowing us to make the appmadionp, - E - po ~ — F.

Let us first consider mode 1, the C-shaped modek—Fgft< 12.77 it is stable and should
therefore decay. At2.77 < % < 209.33 it is unstable and should therefore grow.
Although mode 1 is unstable, mode 2 is the most unstable nmoteirange

146.67 < % < 209.33. For209.33 < % < 346.67 mode 2 is still the most unstable
mode however, complex mode 3 has replaced mode 1. We choosgianorientation
such thatp, = (1,0, 0) and perturbation such that= 10~% and A = —%. Plots of the
fibre at flow strengths off; = 0, &7 = 53.33 and f; = 240 are shown in figures
3.24, 3.25 and 3.26 respectively. Figures 3.24 and 3.25rooiifiat the mode 1 shape
perturbation does decay as expecteg%t: 0 and grow as expected g(% = 53.33. At
% = 240 the mode grows initially but is superceded by the complexardNote that
although the odd mode 2 is the most unstable it is completpuapled from the even

modes and so does not appear.

Let us now consider mode 2, the S-shaped mon%K 64.5 mode 2 should decay and
for 64.5 < % > 378.4 mode 2 should grow. Far6.67 < f; < 346.67 it is the most
unstable mode. We choose a fibre with an initial orientatimhghatp, = (1,0, 0) and

perturbation such that= 10~* andB = —LQ. Figures 3.27, 3.28 and 3.29 show plots

S

of the fibre at flow strengths of3;; = 53.33, -f; = 133.33 and5; = 400 respectively.

At F = 53.33 the S mode decays as expected, again the mode 1 does not gpitede
being unstable at this flow strength because it has the dgmsnmetry. AtF = 133.33
mode 2 grows as expected. f@) = 400 mode 2 grows and is eventually superceded by

complex mode 4.

We look at some higher modes to confirm our findings. We consdiébre with an
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v

Figure 3.23: Diagram showing the compressional flow (—Ex, Ey, 0).
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Figure 3.24: Fibre with small initial mode 1 perturbatioraifilow of strength,f—B) = 0.
The perturbation decays.
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Figure 3.25: Fibre with small initial mode 1 perturbationarflow of strength,f—B) =
53.33. The perturbation grows.
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Figure 3.26: Fibre with small initial mode 1 perturbatioraiflow of strength,f—B) = 240.
The perturbation grows but is eventually superceded by n3odse can be seen by the
curling upwards of the fibre ends at time= 100.
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Figure 3.27: Fibre with small initial mode 2 perturbationarflow of strength,f—B) =
53.33. The perturbation decays.
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Figure 3.28: Fibre with small initial mode 2 perturbationarflow of strength,f—B) =
133.33. The perturbation grows.
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Figure 3.29: Fibre with small initial mode 2 perturbatioraiflow of strengthlf—B) = 400.
The perturbation grows and is eventually superceded by mode

initial orientationp, = (1,0,0) and perturbation such that= 10~* andA = % At
% = 133.33, mode 3 is not unstable at this flow strength and so does natigpaever,
mode 1 is unstable and does grow (figure 3.30).]3%; = 200 (figure 3.31 and 3.32)
mode 3 does grow, however, mode 1 is still more unstable atfflihv strength and so
mode 3 is superceded by mode 1.3@% = 400 (figure 3.33) mode 3 is the most unstable

mode and hence grows.

A fibre with an initial mode 4 deformation (with= 10~* andB = %) at & = 200
decays completely (figure 3.34). Ak = 373.33 (figure 3.35 and 3.36) mode 4 grows

and is then superceded by the more unstable mode 2.

The results of the linear stability analysis suggest thae&lof low flexibility are more
likely to perform C turns and fibres of high flexibility are nedikely to perform S turns,
however, this is not what we observe in our simulation sugggghat bending in the

compressional quadrant is not what determines whether en®twan S turn is seen.



Chapter 3. Results for Instrinsically Straight Fibres 95

6e-05

4e-05

2e-05

-2-05 | -

-4e-05 .

-6e-05 ' I I I L

Figure 3.30: Fibre with small initial mode 3 perturbationarflow of strength,f—B) =
133.33. Mode 1 grows.
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Figure 3.31: Fibre with small initial mode 3 perturbatioraifiow of strength,f—B) = 200.
The perturbation grows.
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Figure 3.32: Continuation of figure 3.31. The perturbatias bontinued to grow and is
now being replaced by mode 1.
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Figure 3.33: Fibre with small initial mode 3 perturbatioraiflow of strength,f—B) = 400.
The perturbation grows.
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Figure 3.34: Fibre with small initial mode 4 perturbatioraifiow of strength,f—B) = 200.
The perturbation decays.

0.0001
8e-05 | 20

6e-05

4e-05

2e-05

0 L
-2e-05
-4e-05

6e05 | ¢

-8e-05 : : : :
-0.5 0 05 1 15 2

Figure 3.35: Fibre with small initial mode 4 perturbationarflow of strength,f—B) =
373.33. The perturbation grows.



Chapter 3. Results for Instrinsically Straight Fibres 98

0.0005

=0 ——
0.0004 | /10 1
/20

0.0003 | /30
0.0002 |

0.0001 |

-0.0001
-0.0002
-0.0003

-0.0004 -

-0.0005

Figure 3.36: Continuation of figure 3.35. The perturbationtues to grow and then
change to mode 2.

3.2.3 Bending in the flow-vorticity plane.

We now look at bending of a fibre near the flow vorticity planes oted by Hinch [17]

an infinite aspect ratio fibre will straighten completely teagproaches the flow-vorticity
plane. To establish the shape formed by a finite aspect rétie &s it bends due to
the velocity difference across the fibre ends we calculaediue distribution along a

straight fibre that is required to keep it straight.

We consider a fibre composed f rigid rods. We calculate the torque distribution by
comparing the rotation rate of a rod in a straight compositesfivith the rotation rate
of a freely rotating rod of the same aspect ratio. The diffeesin the rotation rates is

proportional to the total torque acting on that rod so that

[T}, + (B, — By1)] x p =& (0~ /) (3.2.21)

where T¢, are the constraint torques on redarising due to the forces maintaining
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Figure 3.37: Rotation of free rods and composite fibre.

connectivity of the fibre andB,, — B,,_;) is the sum of the bending torques (shown in
figure 3.37).¢; is resistance co-efficient for torque for a rod of length % as derived

in section 1.2.6. Herg is the rotation rate of the whole fibre apd is the rotation rate
of a freely rotating rod. Both can be calculated from equafh2.12) in Chapter 2. For

p = (1,0, 0) these are given by

Py = —% (3.2.22)
and
. N2
pl=— a] (3.2.23)

where? is the shear rate, is the aspect ratio of the whole fibre afydis the aspect ratio

of an individual rod. The: andz components of rotation rate are both zero.

To calculate the torques on radwe first calculate the constraint forc§ = F,, — F,,

(shown in figure 3.37). The velocity of the centre of each modhe connected fibre is
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given by

where s is the distance from the centre of the fibre to the centre ofrrod~or rods

numbered from left to right is given by

. (2n—-1L _ (2n— N —1)L

N N

regardless of whether the number of rods is even or odd. Tiheentre velocities:,,,

can be calculated in terms of the constraint forces fromgogué2.1.3) so that

. L.,
Tn, = §§f I(Fny - Fn71y>

where¢; is the resistance co-efficient for force for a rod of lengta % Equating the

two forms ofi7} gives the following expression for the constraint forcesauhn

F, —Fy 1, = —C(2n— N —1)

where( = 2§§LL The no net force condition,
N
(> (2k-N-1)=0,
k=1

means that this system &f equations inV — 1 unknowns can be solved to give

Fr=— Xn:(% — N —1)=n((N - n). (3.2.24)
k=1

The constraint torque on each rod is giveny = (F,, + F._1,)%. Substituting
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equation (3.2.24) we get

75 =3x2(n—1)(N—n)+N—-1) (3.2.25)

z

wherey = %( = Lo

ay

Substituting equations (3.2.25), (3.2.22) and (3.2.2®) @guation (3.2.21) we obtain

B,. — B, 1. = x(6n* — 6(N + 1)n + (N + 1)(N +2)).

The no net torque condition,

N
XY (60 —6(N + 1)n+ (N +1)(N +2)) =0,
k=1
again means that this system/fequations inV — 1 unknowns can be solved, giving a

bending torque of

B, =x g (6n® —6(N + 1)n + (N + 1)(N +2)) = nx(N — n)(N — 2n). (3.2.26)

As the bending torquB,,. acts at the joint between rodsand rodn+1 then the equivalent
value ofs at this point would be = %n — L, rearranging we obtain an expressioniior

in terms ofs

(s+ L)N
2L

Substituting this into equation (3.2.26) we obtain the cardus limit of equation (3.2.26)

2m jiy 2 _ 2
B,(s) = —————5(L" — 5°).
(s) 3a? log QQTS( s")
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The beam equation was derived in subsection (1.3.1) andes @y

do(s) 1
ds _EBz(S)

wheref(s) is the angle between theaxis and the tangent at a pointlong the fibre.

Substituting in our expression f@t, (s) we get

df(s) 1 2mpuy 2 .2
=—B,=————"—"—=5(L"—5).
ds ET 310g2arEIa$S( =)

Non-dimensionalisings with respect toL. we can write this in terms of the non-

dimensional bending stiffness derived in section 1.3.3,

o 1

i _8k(3)a28(1 — 5%). (3.2.27)
For small angley =~ j—g and hencefl—(: ~ fng Substituting into equation (3.2.27),

integrating twice and imposing the conditigr= 0 ats = +1 we get

Hence the perturbation is an even mode and producé&sstiape as shown in figure 3.38.
Note that the magnitude of the projection into thdirection is of orderm, whereas
the actual width of the fibre i = 2. Hence the the functiof(k(*), a,) described in

section 3.1.3, in whickif ("), a,.) describes the effective aspect ratio, is proportional to

k(B)aT -
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Figure 3.38: The projection into the y direction of a bentdibr the flow vorticity plane
against arc length.

3.3 Discussion

In section 3.1 we found that the fibre always performs evenemnoins and the
dimensionless measure of the effect of bending on the pefiomtation was:?) a, rather
thank(®). This would appear to be at odds with the results of the stalaihalysis for a
fibre under compression which show that C-mode is the firsetmime unstable and that
the effects of bending should depend only updf. However, fibres in shear flow rotate
through the compressional quadrant in a time of o%deConsequentIy disturbances do
not have time to grow during this section of the orbit wherestanmodes are unstable,
before they decay again in the extensional quadrant. Thadinding when the fibres
are near the flow-vorticity plane that is most significant. tte previous section we
showed that this gives rise to an S mode. Furthermore therdefmn produces an
additional effective cross-section proportionalﬂ@lm suggesting thaf in subsection
3.1.3 is inversely proportional tg(BlTw, which is consistant with the simulation results.

Fibres of very high aspect ratio eg, = 1000 will only perform mode 4 turns. This is
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because fok(P)a, to be low enough for the fibre to bend in the- = plane the stiffness

must be very low, making mode 4 the most unstable mode.

In section 3.1.2 we encountered two regimes for bendingggnarow stiffness regime in

which E is proportional to—; and a high stiffness regime in whid? is proportional
}(B)2
to ——. In the low stiffness regime, most bending occurs in the a@sgional quadrant,

k(B2

away from ther — z plane and hence aspect ratio is relatively unimportant.siiffeess
values at which the transistion between the two regimesredsubetween 0.0008 and
0.005. Referring back to our stability analysis,modes are stable for flow strengths,

ngro , less thar64.5, this corresponds to stiffnesses greater than775 for a fibre under

maximum compression at an angle-ef5°. A fibre of stiffness).005 will be unstable to

S mode growth within the range 20° to —69.92°, a section of the orbit where the fibre
rotates quickly and hence ttlt¥emode does not have time to grow. Thus fibres of stiffness
greater thar0.005 remain effectively straight during their rotation. The Mhigtiffness
regime therefore describes stiffnesses that are suffigiemge that only bending in the

x — z region of the orbit is important as distortions decay in tbmpressional quadrant.

It is for this reason that at high stiffnesses bending ene@lso dependent on aspect

ratio.

From equation (3.2.27) the bending of the fibre when it isreddjin the flow direction is
given by

do 1
ds — 8k(B)g2

This gives a bending energy of

1 ! 2 2\2 1

For largekP)q, the period of the orbit will be approximately that of a rigitré of the
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same aspect ratio. Hence the energy over half an atbis, proportional to—%— and

k(B)Qaﬁ

hence we obtain our result from section 3.1.2 thaf o k(%)™

3.4 Fibre Orbits

The previous section considered the special case of fibtesawiinitial orientation in the
flow-gradient plane. In this section we consider generaiainorientations and examine

the effect of flexiblity on Jeffery orbits.

3.4.1 Orbit Drift

Unlike rigid fibres, semi-flexible fibres do not rotate in @ddorbits but drift across orbits.
Fibres drift either toward€’ = 0 so that they spin about the vorticity axis©r= oo so
that they rotate in the — y plane. Figure 3.39 shows the trajectory of the right-hardl en

of the fibre when drifting towards the vorticity axis (lefthé towards ther — y plane
(right).

The direction of drift depends upon the initial orbit comdtaf the fibre, the fibre stiffness
and the fibre’s aspect ratio. For a given stiffness and aspéotthere exists a critical
orbit constant”* such that forC' > C* fibres drift towardsC' = oo and fibres with
C < C* drift towardsC' = 0. The value ofC* is a function of the stiffness and aspect
ratio of the fibre. Figures 3.40(a) and (b) show h@Wvaries with increasing stiffness
and increasing aspect ratio respectively. For a fixed filiffasss the value of * is found

to be proportional to the inverse aspect ratio squared dfithe. However, as there is a
factor of aspect ratio between the orbit constant and théeeaialignment in ther — =
plane, the critical angle corresponding®6 is inversely proportional to aspect ratio. For
a fibre of fixed aspect ratio the value@f and hence the critical angle in the- = plane

is proportional to the inverse stiffness of the fibre. As thpext ratio is constant then the
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Figure 3.39: Trajectory of right-hand end of fibre driftirgards the vorticity axis}, =
0.006, k() = 2 x 10*(top). The trajectory of right-hand end of fibre drifting tawds the
flow plane,Cy = 0.01, k(%) = 3 x 10~ (bottom).
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critical angle of the fibre is also inversely proportionaktdfness. Again this shows that

the dimensionless parameter controlling orbit drifti&a,..

3.4.2 Drift Rate

The rate of drift across orbits is affected by aspect ratitiness and orbit constant. For
fibres of differing aspect ratios (figure 3.41) and stiffress@igure 3.42) we have plotted
the angle\,, between the fibre and theaxis as the fibre passes through the 2 plane
vs the number of orbits. The figures on the top are for the chdafotowards the flow-
gradient plane and the figures on the bottom are for drift td&éhe vorticity axis. In all
cases drift towards the flow-gradient plane is faster th#&htdwards the vorticity axis.
In figures 3.43 and 3.44 the number of orbit periods has bealedavith aspect ratio
and stiffness respectively for drift towards the flow plakée see that drift rate per orbit
towards the flow-gradient plane is approximately inverg®lyportional to aspect ratio
and inversely proportional to stiffness. However, thetdate towards the vorticity axis is
both slower and more sensitive to aspect ratio and stiffnEss scaling for drift towards

the vorticity axis is betweep ;> and. 5 for stiffness and;; and; for aspect ratio.

3.4.3 Drift Mechanism

This scaling behaviour suggests that it is again bendingenflow-vorticity plane that
is the dominant mechanism for drift. To confirm this we cossid fibre of initial orbit
constantC' = 0.2 and stiffness:(?) = 2 x 10~ drifting towards ther — y plane. Figure
3.45 shows the trajectory of the right-hand end of the fibrei@sed in ther — y plane.
The dotted lines show the Jeffery orbits. The fibre orbitdal the Jeffery orbit during
the flipping section of the orbit, drifting away only slight{towardsC' = oc) from the
Jeffery orbit in the compressive quadrant but then driftdagk again in the extensional

guadrant. Significant drifting occurs only when the fibre as§ing through the — =
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Figure 3.45: Comparison of the trajectory drawn out by the efnthe fibre and Jeffery
orbits as viewed in the — y plane.

plane (the end regions in figure 3.45). This is confirmed inrég8146 which shows an
enlarged view of the end section of figure 3.45, the fibre arloves from one Jeffery

orbit to the next each time the fibre crosses the flow vortigigne.

To confirm that the main drift occurs as the fibre crosses:the: plane we have plotted
the drift in orbit constant with time (figure 3.47). Each gagpresents the completion
of one quarter turn. The small peaks in the graph represerdrift away from and back
towards the Jeffery orbit when the fibre is in the compresaiv extensional quadrants
respectively. Any drift toward§’ = oo that occurs in this region is cancelled out by
drift back towardsC' = 0. The linear increases in the graph occur when the fibre is
within O(i) of thex — 2 plane. This accounts for the main increase in orbit constant
general using orbit constants to describe flexible fibresdblpmatic due to the changing
geometry of the fibre, however their use here provides a géitkra of the changing path

of the fibre and is not intended to provide quantative infdrama
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Figure 3.48 shows the drift in orbit constant for fibres withadl initial orbit constant
drifting towards the flow plane (left) and towards the vatyi@xis (right). A fibre rotating
close to the vorticity axis is always in the regi@r(i) from thex — 2 plane and so the
drift is more evenly distributed throughout the entire arlis the fibre bends the drift is
towards the flow plane and as the fibre straightens the dtdtvards the vorticity axis. A
fibre with an overall drift towards the flow plane drifts fuethin the bending phase than
it does in the straightening phase and vice-versa. Thislsarba seen in figure 3.49 and
figure 3.50 where the trajectories of the end of the fibre ig@iitand compared to a series

of Jeffery orbits.

3.4.4 Discussion

The drift in orbit constant for semi-flexible fibres is a cogsence of both flexiblity and
finite aspect ratio. As with rotation rate, we find that the dwant cause of orbit drift is
bending when the fibre is close to the flow vorticity plane. Noly do fibres spend all
but a fraction% of their time in this orientation, but the angle betweenelgfiorbits is
small so that a small change in angle causes a large chandgtinanstant. The drift due
to bending in the compressional quadrant is relatively barad is reversed as the fibre

straightens.

For a flexible fibre the hydrodynamic forces on a fibre aligmethex — 2 plane due to

its finite aspect ratio have two effects. First they causeaadtegion of the fibre, as in the
case of arigid fibre and second they cause the fibre to bendcésseequence of bending
the hydrodynamic force distribution will be altered cagsanchange in the rotation angle
compared to a straight rigid fibre. This will produce a chaimgarbit constant as the fibre
passes through the — z plane. The more flexible a fibre is the greater the change in

rotation angle and hence the more rapid the drift in orbitstamnt.
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Figure 3.48: Orbit constant vs time for fibre of small initabit constant drifting towards
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Figure 3.49: Trajectory of the end of a fibre with initial drbonstant’;, = 0.02 and
stiffnessk(?) = 2 x 10~ *drifting towards the flow plane.
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stiffnessk(?) = 2 x 10~* drifting towards the vorticity axis.
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3.5 Stress

In section 3.4 we showed that semi-flexible fibres drift eittesvards ther — y plane
whereC' = oo or towards the vorticity axis wher@ = 0. Fibres orientated parallel to the
vorticity axis make a negligible contribution to the stresswve shall consider only fibres

inthex — y plane.

For a high aspect ratio rigid fibre, the leading order nonetigional fibre stress (or

stresslet) is given by

S=p-E-ppp.

Hence for a fibre in the — y plane with orientation

cos
P= sin#
0
wheref is the angle with the axis, the shear stress is given by
04y = cos” 0sin® § = ; sin® 26, the first normal stress difference by
Ny = 04y — 0yy = cos®fsinf — sin® fcos§ = ;sin46 and the second normal stress

difference byN; = 0,y — 0., = sin® 0 cos 6.

The leading order contribution to the shear stress is zemnvthe fibre is aligned with

either thex or y axis as the force from the flow is zero. The shear stress rsaghe
maximum at angles of = —7 andf = —37“ with the z axis as this is where the fibre is
under maximum compression and extension respectivelgt Rarmal stress difference
is zero when the fibre is aligned with either theor y axis, or when the the fibre is at
an angle of-Z or —2F with the z axis. The latter cases occur as the compressive and

extensive forces cancel each other oi. has maxima af = —%” andf = —%T and
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Figure 3.51: Stress contribution for a rigid fibre of aspatior1 00.

minima atf = —% andf = —% where a compromise between flow strength and fibre
position is reached. The minima and maxima-&t and—%T correspond respectively to
minima and maxima iw,, and the others to minima and maximaady), (which in this

case is equal to the second normal stress difference).

Integratingo,,,, N; and N, with respect t@ over a complete orbit gives a contribution of

ito the shear stress and zero contributions to the first amahdewrmal stress difference.

3.5.1 Comparison of Rigid and Semi-Flexible Fibres

Figure 3.51 shows the shear stresg, the first normal stress differencé = o,, — o,

and the second normal stress differenée= o,, — o, for a stiff finite aspect ratio fibre
of k&®) = 0.05 anda, = 100 rotating for half an orbit in the x-y plane. The fibre passes
through they axis at a time ofi57. Figure 3.52 shows a close up of the middle section
of figure 3.51. Comparing this to figure 1.5 in Chapter 1 we athat the simulation

reproduces the expected results for a rigid fibre.
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Figure 3.52: Close up of figure 3.51 in the time intervat 145 to 170 when the fibre
rotates through the compressional and extensional quiadran

Figure 3.53 shows the shear stress for semi flexible fibrdsstiffnesses in the range of
0.001 to 0.005. The fibre of stiffnes$.005 behaves as a stiff fibre. The fibre of stiffness
0.0025 shows a reduced first maximum at a timefet 155.5. This is because the fibre
bends slightly and so does not fully resist the compressionees of the flow. This can
be seen in figure 3.54. The second maximurh=at157 is not reduced as the fibre fully
straightens before reachifig= —?jf and so is able to fully resist extension. The minimum
value that occurs when the fibre is aligned with gleis at a time of ~ 156.2 is positive

rather than zero as the bend in the fibre produces a smalluggocce.

For the more flexible fibre of stiffneds0015 the values of both maxima are reduced
compared to a rigid fibre as the fibre remains bent throughgeidangle of its rotation.
The first maximum occurs before the fibre reaclies —7, at a pointt ~ 153. At

t ~ 154 there is a point of inflection which corresponds to the fibeeheng its maximum

y projection, as shown in figure 3.55. The minimum, which osa@it ~ 155, is negative.
We can see from figure 3.55 that,tat 155, the fibre is in the extensional quadrant. As

the elastic forces also act to straighten the fibre, the flbstraightening faster than the
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Figure 3.53: Shear stress for semi-flexible fibres of as@ict 100.
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Figure 3.54: Plot showing the fibre shape at various pointisgome 3.53 for the fibre of
stiffnessk(?) = 0.0025 anda, = 100.
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Figure 3.55: Plot showing the fibre shape at various pointisgome 3.53 for the fibre of
stiffnessk(®) = 0.0015.
surrounding flow and consequently the force distributiomithe opposite direction to

that on a stiff fibre, producing a negative stress component.

For a very flexible fibreX®) = 0.001) the first maxima occurs at~ 150 which is again
before the end-to-end vector reaches an angle’pf For the fibre of stiffnes8.0015 a
point of inflection occured at the point where th@rojection reached a maximum. For
the fibre of stiffnes$.001 this inflection point now becomes a minimum~ 151). The
minimum att &~ 153 occurs when the fibre is in the extensional quadrant and agaurs

as the elastic forces of the fibre allow it to straighen fagten the surrounding flow.

Figure 3.57 shows the first normal stress difference given,by- o, for fibres of aspect
ratio 100 andk(®) = 0.001, 0.0015, 0.0025 and a stiff fibre oft(”) = 0.005. Figures
3.58 and 3.59 show seperate plotsdgy ando,, respectively. In the case of a fibre in the
x — y plane,o,, is equal to the second normal stress difference. For all §bffmesses
in the range discussed above the maximajpn (second maxima in first normal stress
difference) is not reduced as in each case the fibre is stra@fbre reaching ~ —~.

8
This can be seen in figures 3.56, 3.55 and 3.54 at timésw0t55, t ~ 157 andt ~ 158
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Figure 3.56: Plot showing the fibre shape at various pointisgome 3.53 for the fibre of
stiffnessk(®) = 0.001.

respectively.

The minima ino,, (first minima in first normal stress difference) are only reell for
stiffnesses oft(®) = 0.001 andk®) = 0.0015. This is because a fibre of stiffness
k(P) = 0.0025 is stiff enough to fully resist the small compressive fortest occur at

0 ~ —%. This can be seen in figure 3.54 at a timeld# which shows that the fibre of
stiffness0.0025 is completely straight at this point and in figures 3.56 arb &t times
of 149 and 152 respectively which show that the more flexible fibres arehslygbent at
this point.

Unlike the maxima irv,,, the maxima iro,,, (second minima in the first normal stress
difference) are reduced for flexible fibres a® at —%” the fibre is still bent (see figures
3.56, 3.55 and 3.54 at times 054, 155.5 and156.5 respectively) and so is not able to

fully resist extension.

The minima ino, (first maxima in first normal stress difference) are reduced greater
proportion than the minima ia,,. This is because the bend in the fibre is greater in the

second half of the compressional quadrant than it is in tke fir
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Figure 3.57: First normal stress difference for semi-flexflibres of aspect ratie, = 100

andk(®) = 0.001, 0.0015, 0.0025, 0.005.
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Figure 3.59:0,, (second normal stress difference) for semi-flexible fibfesspect ratio
a, = 100 andk® = 0.001, 0.0015, 0.0025, 0.005.

Figures 3.60, 3.61 and 3.62 show the integrals of shearsstiiest and second normal
stress differences integrated over half an orbit agairistess for fibres of different aspect
ratios. For a rigid fibre the integral of shear stress witlpees to time over half an orbit
is 5 in the limit of infinite aspect ratio. The integrals of firstcheecond normal stress
difference are zero. In figure 3.60 the shear stress ingeesie stiffness until a stiffness
is reached at which the fibre is able to resist the compregsices of the flow. The
stiffness required for this to happen is dependent uporcasat#o. The smaller the aspect
ratio, the stiffer the fibre must be before maximum sheassti®reached. The plot shows
an aspect ratio dependence that is weaker &, the important parameter with regard
to orbit period. This is because orbit period is largely deiaed by bending in the — =
region where aspect ratio is important, whereas shearssgesfluenced by bending in
the compressional quadrant which only depends weakly oecasgtio. In this region the
growth rates are independent of aspect ratio, howevernthal iamplitude derives from
bending when the fibre is aligned in the flow direction. Dinglithe integral of shear

stress over half an orbit b%i to obtain an average shear stress shows that this quantity
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Figure 3.60: Integral of shear stress over half an orbittptbagainst stiffness for fibres
of aspect ratios 100-500.

decreases with increasing aspect ratio. This is becauseasigect ratio fibres spend a
greater proportion of their orbit aligned with the flow ditien where the shear stress is

Zero.

In figure 3.61 we see that the integral of the first normal stierence decreases for
increasing stiffness, approaching zero in the limit of inérstiffness. The rate at which
first normal stress difference decreases with stiffnesep&ddent upon aspect ratio. The
larger the aspect ratio the more rapidly the first normakstdifference integral decreases
with stiffness. For fibres that bend the first normal stre§smdince is positive rather than
zero, as it is for a rigid fibre, as the magnitude of the minireardase more than the
magnitude of the maxima. In particular the magnitude of theoad maximum never

reduces however, the magnitude of the first minima gets smaith increasing flexibility.

The integral of the second normal stress difference (figué2)3is negative for very
flexible fibres. As stiffness increases the integral becarses atk(?) ~ 0.00125 (for an
aspect ratio of00) and then increases to a maximunk&t ~ 0.002. The integral tends

to zero in the limit of infinite stiffness. A rigid fibre has agaive second normal stress
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Figure 3.61: Integral of first normal stress difference avaif an orbit plotted against
stiffness for fibres of aspect ratios 100-500.

difference in the compressional quadrant and a positiversboormal stress difference
in the extensional quadrant. The integral of second nortness difference is positive
for moderate stiffnesses (eg'® = 0.0015 andk® = 0.0025) as the reduction in the
second normal stress difference maximum is smaller tharethgction in the minimum.
For very flexible fibres (egk(®) = 0.001) the integral is negative as the fibre spends a
greater proportion of its orbit with a negative second ndistrass difference. The second
normal stress difference of a fibre of stiffnés801 and aspect ratio00 changes sign at

t ~ 153 when the fibre is well into the extensional quadrant (as casdea in figure
3.56), whereas the sign change for a fibre of stiffrie8815 occurs at ~ 155, when the
end-to-end vector is closer to theaxis (figure 3.55) and hence at an earlier point in the

orbit.
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Figure 3.62: Integral of second normal stress differenas balf an orbit plotted against
stiffness for fibres of aspect ratios 100-500.

3.6 Conclusion

The motivation for this chapter was to determine whethelgkaxible fibres in shear flow
performed” turns as predicted by the simulation results of Ross, Klibhgeg and Skjetne
[31, 34], the linear stability analysis of Becker and Shellg] and the experimental
observations of Forgacs and Mason [10] or if they perfafrturns, as reported in the
simulation results of Schmid, Switzer and Klingenberg [88f as found in our initial

simulation results.

Our own linear stability analysis agreed with that of Beckeid found that thé' mode is
the most unstable in compressional flow. However, by calitigdhe torque distribution
along the fibre when it is aligned in the flow direction, we fduhat bending in this
region seeds af turn with a bend amplitude of ord% in magnitude. Hence it is
odd modes that grow in the compressional quadrant even thewgn modes are more

unstable.

Calculations of bending energy for fibres of different aspextios and stiffnesses
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highlighted two different regimes; a low stiffness regimeahich there was significant
bending in the compressional quadrant, where aspect satimimportant, and a high
stiffness regime in which perturbations decay in the cosgomal quadrant but bending
still takes place in the regioft from thex — z plane. In this high stiffness regime the
energy over one orbit period;, is proportional tom, aresult that can also be derived

from the bending torque distribution along a fibre when aigjwith the flow direction.

As the fibre spends a fractioﬁ% of its orbit in the regionﬁ from thez — z plane
then it is bending in this region that is important in deterimg orbit period. Bending of
semi-flexible fibres gives a smaller effective aspect ratwbl@ence faster rotation through
the flow-vorticity plane. The function% — 1 which gives a measure of the effect of
flexibility on the orbit period, in relation to that of an egalent rigid fibre, is found to be
proportional to;.-. Hence the effective width of the fibe# is proportional tok(Bl—mg,

in agreement with our torque distribution calculations.

Bending in ther — 2 region is also important in determining orbit drift as it isrh that

the Jeffery orbits are closest together and the fibre spdredsbst time. Fibres with
initial orientations close to the flow-gradient plane dtiftvards the flow-gradient plane
and hence the orbit constant increases, whereas fibresnitith orientations close to the

vorticity axis drift towards the vorticity axis and hencetbrbit constant decreases.

Stress has a weaker aspect ratio dependence than orbit padrbit drift, as the leading

order contribution to the stress is zero in the flow-voryigptane where aspect ratio is
important. Both shear stress, and first and second nornesisstiifferences are reduced
by flexibility as the fibre is unable to resist the compressive extensional forces of the

flow.

To discover whyC' turns and notS turns were observed in the experimental results of
Forgacs and Mason [10], we shall present, in Chapter 4, afroatiibn to the simulation
method which allows us to consider the rotation of intrinflicbent and twisted fibres in

shear flow.
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Chapter 4

Model for an Intrinsically Bent and

Twisted Fibre

In the previous simulation, described in chapter 2, we mededn instrinsically straight
semi-flexible fibre as a chain of rigid rods. The straight eoium shape was obtained
by setting a single bending angle (oj at each joint. For a high-aspect-ratio particle
the resistance co-efficient for rotation about the fibrels & sufficiently small that we
may neglect the twisting of the rod as any twist relaxes onrg fast timescale. For an
intrinsically straight rod the bending energy is only degemt on the angle of bend, so

that we only need to consider the angle between tangentrgeaftsuccessive rods.

To model an instrinscially bent and twisted fibre this modelat sufficient. Rather than
setting only one equilibrium angle it is necessary to setghor a unique equilibrium
position to be specified. To model fibres that are bent out@ptane, for example into a
helix, itis not only necessary to set more than one equiliarangle, itis also necessary to
consider the dynamics of twisting and writhing. The twisinfr the fluid relaxes quickly
as the rotational friction about the fibre axis is small, hesvethe initial out of plane bend
means we must consider the writhe of the fibre. Writhe meaatstiinough bending of

the fibre, the fibre will gain an overall twist which can thelaxeout, on a fast time scale,
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Figure 4.1: lllustration of a bent fibre in the flow-gradiedame in shear flow with
amplitudeR, and end to end lengtR,.

by untwisting directly about the fibre axis.

4.1 Equilibrium Shapes

There are infinitely many possible fibre equilibrium shapgrs, we shall consider just

two:
Circular arcs

The first are fibres formed into a circular arc as shown in figute The amplitude of the
bend is denoted bj¢, and the end to end length & as shown in the diagram. We shall

also define an end to end vecRy. For these fibres the shape is confined to a plane.
Helical Fibres

To consider the effects of out of plane bend we shall considbscretised version of the
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Figure 4.2: Left- and right-handed helices

continuous helix

x(s) = (bs,asin (s),acos (s)) (4.1.1)

wheres runs fromo0 to 27n;. The helix is described by 3 parameters:the number of
turns of the helixg the radius of the helix angirb the pitch of the helixi(e. the length
of one complete turn measured along the helix axis). The kdelscribed above is a left-
handed helix. To form a right-handed helix it is necessamegate either the, y or z

component. lllustrations of left- and right-handed hedieee shown in figure 4.2.
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Figure 4.3: Local orthonormal frames of rodsndn + 1.

4.2 Fibre Configuration

We again model the fibre as a chain/éfrigid rods of lengthl = % The position vector

of each rod is given by,, and the orientation vector which lies along the axis of each r
by p,. In order to completely describe the configuration of theefiibis also necessary
to specify orthogonal vectokg, andr, so that each rod has a local orthonormal frame

{Pn,qn,r,}. We can describe the position of rad+ 1 relative to rodn by

Prn+1 Pn
Qn—i—l = R(Q?’ Qg: Qg) dn

Tyl r,

whereR is a rotation matrix given by the product of rotations abbwt three co-ordinate

axesR = R,R R, where

R,(2) =1 0 cosQf —sinQy |,

0 sinQf  cos(ly
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cosQ) 0 sin )}

—sinQ) 0 cos (2}

cos 2 —sinQf 0

R, (Q) =] sinQ? cosQ? 0

QF, QF and(2; are the angles of rotation abatyt, q,, andp,, respectively. Hencel; is
the twist about the fibre axis, as shown in figure 4.4 @adnd(), are the bend angles

about axes perpendicular to the fibre.
Equilibrium Configurations

By specifying non-zero equilibrium angles fér, or 2, and zero for the other two
values we obtain an equilibrium state that is bent in thegldaBy specifying non-zero
equilibrium values for two or more of the three angles we iwb&n equilibrium state
which is bent out of the plane. For the circular arc we defipe= 2sin™' (<L), whereR

is the radius of curvature and is the number of rods used in the simulation. This means

that the ratio ofR; to R, is given by

as shown in figure 4.5.

The discretised helix is formed by dividing a continuousXh@s described by equation

4.1.1) into N segments with a straight rod lying along the chord of eacimseqg (as
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Figure 4.4: lllustration of fibre twist. The orthonormalrne of rodn + 1 is rotated by
Q2% aboutp,, from the frame of roch.
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Figure 4.5: Diagram showing a fibre composed of 6 rods bentantircular arc with

radius of curvaturd? = — L.

in =L
sin —

shown in figure 4.2). The bend andgk’ is given by

ay/(a2(cos A + 1) + 262)(1 — cos A)

tan Q{7 = — 4.2.2
ansi (a%cos A + b?) ( )
and the twist angl€;? by
2bsin Ava? + b2
tan Q7 — s AV + (4.2.3)

(@®(cos A + 1) + 2b% cos A)

~ 2asin% _ 27ng
wherea = X andA = =

Equations (4.2.2) and (4.2.3) are derived by by calculatiregorthonormal frames of
neighbouring rods and then calculating the rotation matrigrms of the helix parameters
a andb. This is then compared to the rotation max2}?, 0, Q5%). A full derivation is

given in appendix A.

In our simulation we keep the arc length of the helix conséant vary the radius, pitch
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2nbn

Figure 4.6: A continuous helix of radiusand pitchb discretised inV sections.
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and number of turns. Non-dimensionalised with respect ¢ohihlf lengthL, the fibre
has a non-dimensional length fvith rods of lengthl = 2. The values of: andb are

therefore constrained by

a

A A
— o — — 2 qin2 2 A2
[ = 2) x( 2)| \/4a sin” < + b2A

2
N x(
where|x(5) — x(—%)| is the length of the chord along which the rod lies, as shown in

figure 4.7. Rearranging we obtain the valué af terms of the radius such that the arc

length of the helix is constant.

4 a? ., A

Principal axes and moments of inertia

In chapter 5 we consider semi-flexible helices and in ordeddbne axes within a
deformed helix we will used the principal axes of the momehninertia tensor. The

moment of inertia tensor is defined as

L, = /(%‘ - Xi)(z; — Xj)ds
whereX is the centre of mass. The principal axes define a set of peiqéar axes with

the body, while the ratios of the eigenvalues provide a nreasithe aspect ratio.

For the continuous helix given in equation (4.1.1) we find

2p?nin®  —2abnym 0
I=Va+02 —2abnym a’nym 0

0 0 a“nym
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Figure 4.7: The orthonormal frames and position vectorfiad neighbouring rods in a
discretised helix.
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The principal moments of inertia are given by the eigenvahfeéhe inertia tensor,

1 1
Ao = Va2 +b? <§a2nt7r + ngn?ﬂ3 + n%\/(?)cﬂ — 2n?m2h?)? + (12ab)2> :
A3 = a’nymva? + b2.

The principal axes are given by the corresponding eigeav&ct

—2abn;m
Eip = 1.2 172,33 | mw 2 2.272)2 2’1’0’
sa?mym — sb?ndmd + ME,/(3a® — 2nF72b%)? + (12ab)

E; = (0,0,1).

For a continous helix the path length of the hélixn;v/a? + b> must be equal to the

non-dimensional fibre lengthand so

1
— =Va? + b2

T

Using this we can obtain the helix parameter@ndb in terms of the principle moments

of inertia and the number of turns of the helix such that

a=vX

and

\/g(A1 o — Ay)

ngm

b=
For any configuration of a discretised fibre we can calculbee grincipal axes and
moments of inertia from the position and orientation vestfrthe individual rods.

The centre of mass of a fibre composed\dtods is given by, = % 25:1 x, Where

x,, IS the position vector for the centre of rad The inertia tensor for the whole fibre is
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given by

N
i-3f,
n=1

where the contributiof, from each rod is given by

The length of each rod is given By= % and the position of any point along the rod is

given byx(s) = x,, + sp,. The inertia tensor is therefore given by

L
- ~
I, = / (! + spl — xf)(m? + spf — xj)ds

L
N
%
- / (e — 1) (& — %) + sl (e — %) + P (o] — 22)] + Pplplds

2L n C n C 2L3 n,n
= W(Iz - Iz)(% - Ij) + —3N3pipj'

As 1 is symmetric the eigenvalues and eigenvectors can be agcuhumerically using a

series of Jacobi transformations [29].

4.3 Numerical Simulation

As in the previous simulation we have a set20f coupled equations fok, andp,,

describing the evolution of the position and shape of thefibtime. These are given by

A(P") - (%n — K.x,) = F" (4.3.5)
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and

C(p") - (Pn — K.pn) = T" X py, (4.3.6)

where A(p,) = ljg;i (21 — p,p,) is the component of the grand resistance matrix

relating force to translation as derived in subsectior6la®dC(p,,) = 317;{;523&? (I—pnpn)

is the component of the grand resistance matrix relatinguto rotationF” andT” are

the forces and torques acting on each individual rod.

Equations forx, and p, are coupled through the non-dimensionalised connectivity

constraint

) ) 1. .
Xpt1 — Xp = N(pnﬂ + pn) (437)

as derived in chapter 2.

In addition we need a third set of equations to describe threaeach rod about its axis.

We shall define a twist anglg, for each rod given by

¢1=0

G = b1 + Q57" for n=2,.., N.

Thusé, gives the relative angular velocity of rad compared ta: — 1 and is given by

£un =T" Dy (4.3.8)

where¢, = 4rub?®l is the hydrodynamic resistance to spin atfd: p,, is the component

of torque acting along the fibre axis.

For rods of high aspect ratid, >> b the resistance to axial spif) is negligible in

. . . 3 .
comparison to the resistance to rotatign= 31’;52& about axes perpendicular tg,
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so that the rods will rapidly rotate to a configuration for ahni

Eabp = T Pp ~ 0. (4.3.9)

As the timescale for relaxation of spin is fast in comparisothe slow rotation timescale

equation (4.3.9) may be decoupled from the solution of eqnai(4.3.5) and (4.3.6).

4.4 Balance of Forces and Torques

We now consider the forces and torques acting on each ingi/irdd. The forces acting
on each rod arise entirely from the connectivity constraintl have been derived in

chapter 2. They are given by

F!=-(F,—F,_1)
where the same non-dimensionalisation has been used asigisleapter 2.

The torques acting on each rod arise from both the connctignstraint and from the
elastic torques resulting from the bending and twistinfiress at the joints. The torque

on each rod as a result of the connectivity constraint wasetbim chapter 2 and is given

by

)
T? = §pn X (l - pnpn) ' (Fn + Fn—l)-

Again this has been non-dimensionalised as described pteh2.

In order to ensure that there is no net torque on the fibre tltpiés at each joint are

calculated with respect to intermediate axes betweenn@igln + 1 (figure 4.8)
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* Pn + Pn+1
" Pat Pant]
q;kl — an + dn+1 ’
|qn + qn+1|
pt o= oIl uLLE
Tp + Tny
The elastic torques on each rod are then given by
o= KR - O+ KR - O,
T3 o= kPO - e, + R - gy, (4.4.10)
Tho= K@ - QP+ AT - 5Py

where the angleQ” are formed from the transformations with

respect to axgesy;,, r;.

There will ben — 1 sets of intermediate axes corresponding torthe1 joints.

Q" is given by
=+

WhereQ?+ fori = 3,..1 are the angles of rotation frofip’, g, r’ } t0 {Py+1, Anr1, o1 }

and—Q7 fori = 3,.., 1 are the angles of rotation frofp} ., q},r’} to {p,, q,, r,} such

that

Pn+1 | &

a | =R a |,

nt1 r,

(4.4.11)
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On

qn+1 r

Figure 4.8: Torques?, 7} andr? at the junction between rodsandn + 1 defined with
respect to the mean of the local frames of radsdn + 1.
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and
P P,
@ | =R | q (4.4.12)
r, r

whereR* = R(Q?", 027, Q") andR™ = R(—Q}, —Q5 ™, —Q27).

The angles may be calculated from the local frames as follows

Q’f+ = —tan™' (7(1:% . pn+1> ;
pn : pn—i—l

Qg+ =sin™'(r} - Pnt1),

*
O = _tan ! (In et
’ ry - Fnp

n

and

Q" = —tan! <—7qu : pn>
' D, Do/’

The torgues acting on each rod are then resolved into thase qeerpendicular to the
rod,

(I - pnpn) "
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and parallel to the rod,

Pn-T
wherer” =77+75+71%.

The termT"” in equation (4.3.6) is composed from the constraint torqagsther with

elastic torques perpendicularjq, and is given by

T"' =T+ (I - p.ps) - T"

Substituting the expressions for force and torque into gops(4.3.5), (4.3.6) and (4.3.9)
together with equation (4.3.7) make up the full system ofatigns. Written in full, non-

dimensionalised form they are

x, = K.x, + (I+ pupn).(Fr — Fyq), (4.4.13)

pn = Kpn_anpnpn+3N(I_pnpn)(Fn"i_anl)_'_(I_pnpn)(7-711"’_7-721"’_7-?) X Pn;

(4.4.14)
pn. (T + 715 +75) =0, (4.4.15)

) ) 1 . .
Xp+1 — Xp = N(pnﬂ + pn) (4416)

Figure 4.9 gives a flow diagram for the simulation algorithio. start with we choose
values of(2;, 2, and(2;. We then generate an initial configuration of rods by usirgg th

rotation matrixR to calculate the local orthonormal frames. The orthonoifmaahes can
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then be used to calculate the symmetric equilibrium andainialuesQ;?, Q3?, Q3 and

Q7% Q31, Q3? respectively.

At each timestep we first solve equation (4.4.15), using atirdirhensional Newton
Raphson scheme[29], to find the change)iand therefore the change {&y. We then
update the values @f,, andr,, accordingly. We then solve equations (4.4.13) and (4.4.14)
by using the constraint equation (4.4.16) to set up a sysfeénd@agonal equations that
can be solved to give the constraint forces, as describeldapter 2. We then integrate
equations (4.4.13) and (4.4.14), using a 4th order Rungtalsgheme [29], to give new

values ofx,, andp,,. The axesy,, andr,, are then parallel transported using

an(t +h) = —(an(t) - Pu(t + h))Pu(t) + dn(t)

and

ro(t+h) = —(ru(t) - pu(t+ h))pn(t) + r,(1).

The resulting vectors are not perfectly orthogonal and éehe Gram-Schmidt process
is used at the end of each time step to re-orthogonalize itterge The values d®,, 2,

Q4 are then updated before proceeding to the next time-step.

4.5 Rigid Helix Simulation

In order to validate our code in the limit of high stiffnesgidn provide a comparison for
our flexible helix simulations, we developed a separate mizadesimulation for a rigid
helix. The motion of a rigid particle in a linear flow can be folfrom its grand resistance

matrix (see section 1.2.6).

The grand resistance matrix relates the hydrodynamic foocgue and stress exerted by

the fluid on the particle to the fluid and particle velocities
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Figure 4.9: Flow diagram for the simulation algorithm.
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u® =Up+K x.+ tw®x(x—x.) + E- (x — x,) andu” = U+w x(x — x.) such that

F A B G Up+K-x.—U
T|=| B C H w® — w : (4.5.17)
S G HM E>

The tensor resistivitied, B, G, B, C, H, G, H andM are fixed with respect to the
axes fixed with the rigid body. Consequently to calculatenimtion with respect to fixed

axes it is necessary to either rotate the resistivity tentsotake account of the rotation of
the body. Alternatively, since the flow is at zero Reynoldmber, we can perform the

calculation with respect to the body axes by rotating therenel flow.

For a helix of radius: and pitchb we define body axefp, q, r} so that position vector

along the helix is given by

x'(s) = bsp + asin (s)q + acos (s)r. (4.5.18)

The axedp, q, r} are related tde;, e,, e; }, the standard basis iR?, by

q | =R| e (4.5.19)
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whereR is given by

cos 0 cos 0y — cos By sin 0, sin 6o

R = | sin# cosfs + cosf; sinfysinf; cos b cos s — sin by sin By sinf; — cos Oy sin O3

sin 0 sin 05 — cos By sin B cos B3 cos By sin B3 + sin 6 sin By cos 03 cos Oy cos O3
01, 6, andf; are the angles of rotation from the cartesian axes to thé éo@s abouts,
e, ande; respectively .

Using this transformation we can transform the velocitydggat

04 0
K=|00 0
000

for a shear flow intd p, q, r} co-ordinates usini’ = R(KRT).

In the following we shall use prime to denote quantities witkpect to{p, q,r} and

unprimed for those measured with respecfdo. e, e3} .

4.5.1 Numerical Simulation for a Rigid Helix

The initial orientation of the helix is choosen by selectwajues off;, #, andf; and
henceR (¢ = 0). The velocity,u’, and angular velocityy’, are then calculated at tinte

in body co-ordinates. The change to the local axes are giyaolwing

= W'(t) X p=w,q—wr
= W(t) xq=wr—wp

I = W(t) xr=uwp—wgq.
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To obtain the rotation matriR for the helix in Cartesian co-ordinates we calculate the

new values of);, 6, andf; using{p, q, r} such that

91 = — tan’l(i—?)
0y = sin~'(p3)
f; = —tan~'(2)

where—m < 0, <7, -5 <f < Jand—m < f; < 7.

The velocity of the helix with respect to Cartesian axes t&m e found from

u = R~'(¢)u’ and hence the position vector updated frgm= u.

4.5.2 Grand Resistance Matrix for a Helix

The contributions to the grand resistance matrix are calledlusing slender body theory.
Here we shall assume that both the radiuand pitch27b are large compared to the
thickness of the fibre so that hydrodynamic interactionsvbeen different parts of the
helix may be neglected. Note this is the same approximatiademn the flexible fibre

simulation.

The helix is given by

x = (bs,asin (s),acos (s))

where( < s < 2mn,; andn, is the number of turns of the helix. The path lengthof the
helix is

2L = 27rntv a’ + b2.
The unit tangent vector at a poinilong the helix is given by

x|
P= ds a2 + b2

(b,acos (s), —asin (s)).
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We consider a small sectiafy of a helix moving with velocitya” in a flow with velocity
u®. At leading order in slender body theory the resistance efflind to the motion of

this section of helix is given bfids where

£ 2T

— I-— . oo h.
log2a,( pp) - (u* —u")

Here we have assumed thaandb are of orderL.. We non-dimensionalise length with

respect tal and force density with repect jol.¥, so thata* = 7, b* = % andf* = ﬁ

The force, torque and stress acting on the entire helix aendyy

2mne
F :/ f(s)ds,
0

2mng
T:/ (x — x.) x fds,
0

1 2T
S = 5/ (x — x)f + f(x — x.)ds.
0

Wherex, is the centre of resistance of the helix, which must be deterdhas part of the

calculation.

To calculate the first column of the grand resistance matexwansider the translation of
a helix at a steady velocify in a stationary fluid such that” = U andu® = 0. This
gives us the following expressions for the force, torquestneks on the helix in terms of

the elements of the grand resistance matrix

Fi = —AUU]’,

T = /fikll’kfldé’ = —B;U; + €ipxe, F) = —(Bij + €irixe, Aiy)Uj,

1 1 1
Sz*y = 5 /xzfy + fixjds = —(Gi]’k + iﬂfciAjk + §Aik$0j)Uk-



Chapter 4. Model for an Intrinsically Bent and Twisted Fibre 153

Calculating the force for the cas&s = —e; for j = 1..3 gives the;" column of 4;;,
similarly calculatingT* gives thej™ column of(By; + €z, Aij). Calculatin +; for the
casesU = —e, for k = 1..3 gives thek™ components of G, + 5z, Aj, + Ay, ).

The resulting values for the tensodsandB + x, x A are given by

2,2
wE 0 o
A =27mn, 0 % 0 (4.5.20)
3a%+4b*
0 N N
a’b 0 0
— ab? % _bwng(3a®+4b%)
B+ x A =2mn, VaZ+b? 4v/a2+b? 2va2+b% ' (4.5.21)
0 brnt(3a’+4b2) __ 3a%
2va2+b? 4v/a?+b2

We omit the calculation o6 as this is not needed for our simulation.

The principle directions, given by the eigenvectors of imatk give the natural co-
ordinate system of the helix. As we can see mafkihas only diagonal elements so
that the principle directions are given by the standardé3aah axes. Translation along

either of these axes will produce a force along that axis.only

To find B andx,. we note thaBB is symmetric when calculated with respect to the centre

of resistance.

To calculate the centre of resistance we follow the dewvabf Kim and Karrila [20].

We letT(x.) be the torque calculated with respect to the centre of eesist for a helix
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undergoing translation arifl(0) be the torque calculated with respect to the origin.

T(x.) —T(0) = /S(x —X.) X (0-n)ds — /Sx X (o-n)ds  (4.5.22)
= /S—xC X (o -n)dS

= —x.xF
This can be written in term of the elements of the grand rastsg matrix as

B(C) == B(U) - eikl(xc)kAlj (4523)

ij ij

where the superscripts denote the centres used in the @iadeid.

The coupling tensor calculated with respect to the centreesistance is symmetric

therefore the antisymmetric part of equation (4.5.23)vegiby

BY - B = €irl(Xe) Ay — €jri(Xe )k Aui-

ij Ji
Mulitplying through bye,,;; gives

€mij [BS-)) — B](-?)] = €mij€ikl(Xe) kAl — €mij€in(Xe) kAl (4.5.24)
= (5jk6lm - jlékm)(xc)kAlj - (5km511 - 6lm5ik)(xc)k14li
= (Amj(xc)j — (X )mAjj) — ((Xe)mAii — Ami(Xc)i)

= 2[(A - (trA)I) - x.|m

As our matrixA has only diagonal elements the mat(ix — (trA)I) and its inverse
are easily calculated. Sinck is symmetric it can always be diagonalised by using its

principal directions as a basis. We therefore obtain tHeviahg expression for the centre
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of resistance of the helix,

0 0 0 0 0 0
L BY-BY  BO-BY 9By
‘ Ago + Az Ass + Ay A+ Ay

wheree; for ; = 1..3 are the cartesian axes adg are the diagonal elements and in this

case the principle values &.

Calculating the centre of rotation for the helix describeetsg

b’f(—nt

Xe = 0

2ab?
7Ta2+6b2

CalculatingB from equation (4.5.21) gives

a?b ab?(3a>+4b?) 0
Va2+b? (Ta2+6b2)V a2 +b>
20342 1 4p2 2
B =2mn ab?(3a”44b2) _a®b
! (7a2+6b2)va2+b2 4va%+b2 0
0 0 __ 3a%b

4vVa2+b2

To calculate the second column of entries in grand resistamatrix we consider the
rotation of a helix at an angular velocityin a stationary fluid such that" =w x (x—x,)

andu™ = 0. In this case expressions for force, torque and stress aea by

Fi = —Bijwj,

1; = —Cjjwy,
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Sij = —Hijpwy.

As B is given by the transpose & andH is not required in this simulation then we need
only calculateC, which is obtained by calculating the torque for the cases —e; for

j = 1..3 to give thej™ column of C. From this we obtailC as

202 7wn; (806°4+210a2b%+49a%4182a%b2)  abmng (356%a%424b* +14a?) 0
Va2 +b2(7a2+6b2)2 (7Ta2+6b2)y/a2+b2
C— abrng (356202 4+24b% 4 14a?) COx 0
- (7a246b2)y/a2+b2 6v/a2+b2(7a2+6b2)2
0 0 7rnt(*3b2a2+12a4+7r2n?(6a2b2+8b4))
6\/a2+b2
where

C* = mny(588a°+1743a5b? +1452a*b* +300a?b° +-7%n? (294a°6* +-896a* b* +888a2b5 +288b%)).

Finally to calculate the 3rd row of entries in the grand r@sise matrix we consider a
stationary helix in a rate of strain field such thét= 0 andu®™ = E - x. In this case the

expressions for force, torque and stress are given by

F; = _éijk ;1?,
Si = =M By
By calculating the force, torque and stress for the 9 c&ses= 1 and all other entries

zeroforj =1..3,k=1..3we obtainéijk, Flijk andM;;, respectively. Values ofs and

H are given in appendix BM is not needed for the simulation.

Using the grand resistance matrix we can now obtain exmnes$or the force and torque
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on a helix in terms of the velocity and angular velocity. Bytisg the force and torque
to zero and solving for the velocity and angular velocity vikain the values required in

our simulation.

4.5.3 Mobility Tensor and Axis of Rotation

The mobility tensor relates the velocity, angular veloehd stress of the particle to the

force, torque and strain on the particle such that

Uy+K - x.—U ab g F
w® —w =| b ¢ h T |. (4.5.25)
S g h m E~>

In chapter 6 in order to get a uniform swimming direction ihecessary to calculate the
axis about which a helix rotates. This can be achieved byltzalog the principle axes
of c. The matrixc can be obtained directly from the values of the grand rasistanatrix
[20] and is given by

c=(C-BA'BT) .

By calculating the eigenvectots, c; andcs of ¢ we obtain the axes of rotation of the

helix. The eigenvectors are given in local co-ordinates by

—2c19
—co2+c11— \/052 —2ca0c11 4¢3, +4cl,

C = 1 )

0
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—2c19
- - >
—ca2+ci1 +\/C§2*2022011+Cf1+4012

Co = 1 )

0

0
C3 = 0 3

1

wherec;; are the entries of given in appendix C.

Numerically we find that; lies close top, c, lies close tag andc; is equal tor.
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Chapter 5

Simulation Results for Intrinsically

Bent Fibres

In this chapter we study the motion of infinite aspect ratioebwith non-straight
equilibrium shapes using the numerical simulation descriim chapter 4. In particular
we shall compare the effect of the effective aspect ratiotduge intrinsic bend of the
fibre with the behaviour of intrinsically straight fibres affinite and finite aspect ratio

described in chapter 3.

We consider two types of intrinsic bend. The first sectionsleath fibres that are bent
into circular arcs so that the bend is confined to the planees&lrequilibrium shapes
are given byQ;? = Q37 = 0 with a non zero value fof2}? so that the fibres are bent
into a circular arc. The second section deals with fibres athntrinsic helical shape.
As discussed in chapter 4, the equilibrium shape for a helixiresQ2;* andQs’ to be

non-zero and calculated from the values of radius and pitch.
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Figure 5.1: lllustration of a bent fibre with end-to-end \egb, end-to-end lengtiR;,
normal vector in the plane of the fibegand amplitude?,. The bend angle i9;.

5.1 Fibre with in-plane bend

We begin by considering the rotation of a fibre whose intdissiape is a circular arc with
its end-to-end vectoR, aligned along the axis and its bend in the flow-gradient— y
plane. Recall that for a fibre whose intrinsic bend is confiteed plane we can define
local axes withp in the direction of the end-to-end vector agdthe normal direction
to p in the plane of the fibre. For fibres bent in circular arcs thgrele of bend can be
measured by the bend amplitugte as illustrated in figure 5.1. The fibre rotates forming
C turns as shown in figure 5.2 for a fibre with bend amplitutle= 2.5 x 10~2 and
bending anglé€2;, = 0.01. The fibre performg’ turns rather thai$' turns as it does not
have the symmetry of an instrinsically straight finite aspatio fibre. As the fibre has
no component in the — z plane it does not drift across Jeffery orbits nor spin abtsut i
major axis. Consequently the twisting stiffness has nacefipon the fibre dynamics for

a fibre in the flow gradient plane as the fibre is not subject yotarsting torques.

5.1.1 Orbit Period

We now consider the effect of bend amplituBg and bending stiffness”) upon the

orbit period of a fibre aligned along theaxis with bend in the flow gradient plane. As
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Figure 5.2: Intrinisically bent fibre performing a C turn ihesar flow (top). Fibre

continues to rotate performing another C turn after pasgingught the flow direction
(bottom). The stiffness of the fibre is?) = k7) = 2.5 x 10?3, the bend amplitude is
R, = 2.5 x 1072 and the bending angle §&, = 0.01.
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noted above the intrinsic bend allows a fibre of infinite aspatio to perform periodic
rotations because the bend always gives the fibre a finitegiron in the direction of the

velocity gradient.
Bend Amplitude and Effective Aspect Ratio

For an intrinsically bent fibre of large length to thickneasia the actual value of the
aspect ratio is relatively unimportant compared to theotiffe aspect ratio due to its
bend. To obtain a suitable measure of the effective aspeeiofea bent fibre we compare
the effective aspect ratio calculated from the orbit period

1y [T
ff T g 1672

Qr

(5.1.1)

for a very stiff fibre which does not change shape, with thiessjble measures of aspect
ratio, which we shall call maximum aspect ratio, averageeisgatio and the square root

of the eigenvalue ratio.

e Maximum aspect ratio is given by

Ry 2cot N

R, 4
whereR, and R, are illustrated in figure 5.1.

e Average aspect ratio for a fibre aligned along:tkexis with its bend in the direction

of they-axis the is given by

L B Ry)dy
" T Ry [ Ro(z)da

whereR,(y) is horizontal distance between two sections of the fibre atighty
from the end of the fibre an®, (z) is the amplitude of the bend at a poinfrom

the end of the fibre.
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e The square root of the eigenvalue ratio is given by

Al

areig - )\m

where)\,; is the largest principle moment of the moment of inertia te@sd)\,, is
the middle principle moment as defined in section 4.2. Thel giinciple moment

is zero for a circular arc.

Figure 5.3 shows each of these three measures plotted tigHietdive aspect ratio. All
three show a linear correlation with effective aspect rdtiowever, as the average aspect
ratio shows an almost 1:1 correspondence we shall choassadhour measure of aspect

ratio for the fibre.
Orbit period of a semi-flexible fibre

In the remainder of this section we shall consider semidflexibres. We expect the orbit
period to increase roughly in proportion to aspect rationsfigure 5.4 we show the orbit
period divided by aspect ratio plotted against averagecaspto for fibres of various

stiffnesses. For a very stiff fibre the relationship is lingat as it is for stiff finite aspect

ratio fibres. For more flexible fibres the orbits of small aspato fibres are longer than
those of a stiff fibre of the same intrinsic shape. For larggreat ratios the orbits are
shorter than those of stiff fibores. The point at which the ¢gjeaaccurs is dependent on

the fibre stiffness.

Flexibility causes the aspect ratio of the fibre to change tdune bending moments
exerted by the hydrodynamic forces from the external flow: dfointrinsically straight
fibre (chapter 3) flexibility can only lead to a reduction ifeetive aspect ratio and hence
a decrease in orbit period. However, the hydrodynamic ®ae an intrinsically bent
fibre aligned in the extensional quadrant of a shear flow ailise it to straighten, thereby

increasing the effective aspect ratio. Thus there is a ctitigpebetween the effect of this
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Figure 5.3: Ratio of principle moments of inertia, averagpeat ratio and maximum
aspect ratio plotted against effective aspect ratio foiffdisre of bending stiffnesg(?) =
0.05.
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Figure 5.4: Orbit period divided by average aspect rafie- vs average aspect ratio,,,,
for fibres of stiffness$.125 x 107° t0 0.05.

straightening and the bending that occurs in the compneskguadrant (and that due to

finite thickness in the flow gradient plane).

The degree to which a semi-flexible fibre changes aspectisaigproximately inversely
proportional to its stiffness. However, since a fibre canstodighten beyond being
perfectly aligned; the balance between the effects ofgdttaning and further bending
depends upon the bend amplitude (or aspect ratio). For smpéct ratio fibres with
kBa, < 0.085 the orbit period is longer than for a rigid fibre, because thereased
rotation speed caused by straightening is dominant. Howardibres above this critical
valuek(Pla, > 0.085 the orbit period is shorter than for a rigid fibre as the effeut
bending become dominant. Fbf?)a, > 0.189 the effects of bending and straightening
reduce and the orbit period tends towards that of a rigid fibréigure 5.5 we show that
by plotting the orbit period divided by aspect ratio agaiki$ta, we obtain an almost

universal curve for different fibre stiffnesses.
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Figure 5.5: Orbit period divided by average aspect rafib; vs the product of average
aspect ratio and stiffness,, _k?) for fibres of stiffness.125 x 107° t0 0.05.
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Variation from equilibrium shape

To demonstrate the differences for small and latg€a, figures 5.6 and 5.7 show the

measure of the deviation from the equilibrium, given by

N

> -9,

n=0

for fibres of average aspect ratip . = 30 with k% q,,. = 0.06 andkPa,, = 0.6

respectively. Positive values of this quantity correspah increase in the average bend
angle while negative values indicate that the fibre is betrejghtened. The horizontal
line at zero represents no divergence from equilibrium andses mark every quarter of

a semi-flexible fibre orbit.

As expected the fibre bends considerably as it passes thtbeglompressional quadrant
with the divergence from equilibrium increasing the mor«ibiee the fibre. In the
extensional quadrant the fibre straightens beyond itsieguin shape. The fibre with
kPa, = 0.06 is straighter than its equilbrium shape as it enters the cessjfonal
quadrant. The fibre with®)a,_ = 0.6 has returned back to its equilibrium shape by the

time it crosses the — z plane.
Time spent in the compressional and extensional quadrants

Figure 5.8 shows time spent in the compressional quadraattiame spent in the
extensional quadrant plotted against the fibre stiffnessitboes with an average aspect
ratio of a,,,, = 30. In general an increase in stiffness causes an increas@énsipent
in the compressional quadrant and a decrease in time spérg extensional quadrant.
This is because the fibre bends more than its equilibriumeshdgrreasing its effective
aspect ratio in the compressional quadrant and straighyend its equilibrium shape,
increasing its effective aspect ratio in the extensionadgant. However very flexible
fibres spend longer in the compressional quadrant thantlsligtiffer fibres. This is

because a very flexible fibre will be almost completely strteeged out when it passes
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Figure 5.7: Deviation from equilbrium shape for a fibrek6f)a,,,. = 0.6 rotating for
one orbitin ther — y. Crosses mark each quarter orbit.
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Figure 5.8: Time spent in the compressional quadrant anel $ipent in the extensional
quadrant plotted against fibre stiffnggs”)) for a fibre witha,,,. = 30.

through the flow direction and so will take longer to leave flusv-vorticity plane
at the beginning of the compressional quadrant. The minifflamtime spent in the
compressional quadrant occurs at approximat€ly = 0.0028 or k®a,, = 0.085, this
corresponds to the point at which the the orbit period chaifrgen being greater than that

of a rigid fibre to less than that of a rigid fibre.

A fibre of average aspect ratig,,, = 30 has a minimum orbit period at a stiffness of

approximatelyt(”) = 0.0063 and hencé(?)a, = 0.189. The sharp initial decrease in
time spend in the extensional quadrant corresponds witklhtamp initial decrease in orbit
period. As this decrease in time spent in the extensionalrqui starts to level off as
k() approache8.0063 the increase in time spent in the compressional quadranties

more significant and hence causes an overall increase inpenod.



Chapter 5. Simulation Results for Intrinsically Bent Fibre 171

5.2 Initial Orientation and Spin

In the previous section we considered the case of a fibre witilaliorientation such that
the end-to-end vectgs was aligned with the-axis and the normal vecteywas aligned
with the y-axis. Symmetry then ensures that the fibre continues toiremahe z — y
plane. However, this orientation is unstable. In this secive consider the case of a fibre
with initial orientation such that the normal vecigis initially in the y direction but the
end-to-end vectop is at an angle\,, to thez-axis in ther — z plane. For an intrinscially
straight fibre with initial orientation in the— z plane the fibre would experience orbit drift
(see section 3.4), in which the end-to-end vegt@mhanges its orbit. For an intrinsically
bent fibre we do not get a chance to observe orbit drift as tme &pins about its axis
and, within a few orbits op, ceases to rotate. We define spin as rotation of the normal
vectorq about an axis parallel to the end-to-end vegiorThe fibre ceases to rotate or
spin once the normal vectgrlies in thex — z plane as the fibre no longer has an effective
aspect ratio. While the fibre is still able to rotate it rotate thep — ¢ plane rather than
thex — y plane. Figure 5.9 shows the rotation and spin of a fibre witialiorientation
such that the normal vectgris in the y-direction and end-to-end vectois at an angle
Az = 0.0175 with the x axis. The top figure shows the- = view of the fibre in which
the spin of the fibre can clearly be seen and the bottom figuwesther — 2 view of the

fibre in which the changing plane of rotation of the fibre carséen.

Changing the stiffness or the bend amplitude of the fibre basffiect on the spin rate of
the fibre. The only factor affecting the rate of spin is theiaiangle\,, of the fibre in
the flow-vorticity plane. Decreasing the angle so that thefdtarts closer to the vorticity
axis increases the rate of spin. This is shown in figure 5.liBlwghows the angle of spin
of the fibre plotted against time. The angle of spin is meakassthe angle between the
plane of the fibre’s bend and thyeaxis. All fibres start with their bend in thedirection

so this angle starts at zero. Spin rate is initially rapid ame&ar, dropping quickly as the
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Figure 5.10: Angle of spin measured in the— z plane for a fibre of average
aspect ratiol2.5 and stiffnessk(®) = k(™ = 0.005 starting at angles\,, =
0.0175, 0.035, 0.0524, 0.0698, 0.0873, 0.105 with the z-axis.

plane of bend approaches the flow-vorticity plane.

5.3 Helical Fibres

In this section we consider the dynamics of rigid and senxitfle helical fibres in shear
flow. First we consider rigid helices using the rigid helisnsilation derived in section 4.5.
We consider helical fibres of non-dimensional arc-ler@ythith radiusa, pitch 276 and

number of turngy; as shown in figure 5.3. We shall only consider helices with aleh

number of turns. The arc length of the helix expressed inderim andb, which must be
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equal to the the length of the fibre, is given by

2rmgvV a? + b? = 2.

From this we obtain the value éfthat must be used for chosen values @ndn;,

1

2,2
TNy

— a2,

b=

We shall define the aspect ratio of the helix as the axial ledgtided by its diameter,

given by

To assess the effects of flexibility on the dynamics of thaxhele use the semi-
flexible fibre simulation derived in chapter 4. Unlike theididpelix simulation, which
is for a continuous helix, the semi-flexible fibre simulat®@mulates a discretised helix
composed ofV straight rods. Using equation (4.2.4) given foin section 4.1 we can

express the aspect ratio of a discretised helix as

a, —\/——NQSIII —

whereA = QWNM In order to have a good approximation of the continuousxhels

necessary foft to be small. In this chapter we usé = 12 as we shall only consider

flexible helices with one turn.
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Figure 5.11: A continuous helix of radiusand pitchb discretised inV sections.
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5.3.1 Orbit Period

Rigid Helices

Figure 5.12 shows orbit period plotted against aspect fatidgid helices with different
numbers of turns. Helices with a high number of turns rotaséefr than those with fewer
turns. For smalh; we find that the relationship between aspect ratio and odsibg is
linear. For largen, this linear relationship holds only at large aspect ratias.n, > 2 an
approximately universal linear plot can be obtained bytpigtorbit period against aspect
ratio and scaling both quantites by, the number of turns. This is shown in figure 5.13.
A high turn helix of small aspect ratio will approach the shap a hollow cylinder, thus
we can compare the results for langewith the result obtained by Burgers that a cylinder
with aspect ratia, rotates like an ellipsoid with aspect ratid4a,. [5]. For helices with

a large number of turns there appears to be a transistiorebathaving the properties of
a cylinder when the aspect ratio (and pitch angle) is smallreaving the properties of an
open helix once the aspect ratio (and pitch angle) getsraigas is further supported
by figure 5.14 which shows orbit period versus number of tdons helix of constant
aspect ratio:” = 10. The horizontal line shows the orbit period of a cylinder spect
ratio 10. As number of turns increases and hence pitch angle ineaseorbit period
approaches that of a cylinder of the same aspect ratio. itldlo@ noted however that as
our model excludes hydrodynamic interactions it is onlyd/&dr 273” > 1, whered is the
fibre thickness anéj;—” is the slenderness ratio described by Higdon [16]. In figui®& 5
we plot the orbit period scaled with number of turns againtshpangle for helices with
different values of:;. The plot shows a universal curve confirming that it is pitolgle

that determines whether the fibre will rotate as a helix or @diader.

Figure 5.16 shows the orbit period plotted against numbetuois for a helix with
constant pitch angle. Unlike figure 5.14 where the orbitqgubdecreases with number

of turns due to the increases in pitch angle, figure 5.16 sleolireear increase in orbit
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Figure 5.12: Plot of orbit period], vs helix aspect ratiog” = %ﬁb for different values
Of Ng.

period. This is because an increase in number of turns saawdh increase in aspect ratio

and as expected, orbit period increases linearly with asp#o.
Semi-flexible helices

We now use the flexible fibre simulation to assess the effedferibility on the orbit
period of the helix. However, first we must verify that the ftd& helix simulation
reproduces the results for a rigid helix in the limit of larg€). Figure 5.17 shows
that the orbit period calculated for a 1 turn helix plottechgghe rigid helix simulation
is in excellent agreement with the flexible fibre simulationen the stiffness is set to

E(B) = 0.048 andk(®) = 0.096.

For semi-flexible helices with stiffnesses in the radgd x 10~ t0 9.65 x 10~2 we find
that an almost universal curve is obtained by plotting thit @eriod scaled with the orbit

period of a rigid helix againsij}k(B)%, as shown in figure 5.18. For
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Figure 5.14: Plot of orbit period]’, vs number of turnsy,, for a helix of aspect ratio
a = 10. Horizontal line shows the orbit period of a helix with thersaaspect ratio.

af}k(B)% < 0.2 the orbit period for a flexible helix is greater that that af #quivalent rigid
helix. As in the case of a curved fibre, flexibility causes tleéxhto increase in aspect
ratio in the extensional quadrant and so rotates more slihwbygh ther — 2 plane. For
af}k(B)% > 0.2 the orbit period of a flexible helix is shorter than that of guigalent rigid
helix as the increase in aspect ratio in the compressioradirgnt dominates over the
decrease in aspect ratio in the extensional quadrant. Hiepariod reaches a minimum
at approximatelyzf}k(m% = 0.4 and further increases 'tsz(’”% result in the orbit period

tending to that of a rigid helix as bending decreases.
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Figure 5.15: Plot of orbit period divided by number of tun;-};s,, against pitch angles,
for helices with different values of;.

5.3.2 Dirift of Centre of Mass in the Vorticity Direction

The rotation of a helix in the — y plane results in translation in the vorticity direction.
Figure 5.19 shows translation in thedirection plotted against time for rigid single turn
left and right-handed helices of aspect ratio 10. The cessek each quarter of the orbit
as determined by the central axis of the helix. In figure 5.2&tvshows the velocity in
thex direction for each helix, the changes in direction of tratiesh occur close to but not
exactly at the points where the central axis crosses thedy axes. Instead the change
in the direction of translation corresponds to the posgiaere a second axis, fixed in
the frame of the helix, crosses theandy axes, which we shall refer to as the translation

axis.

For a left-handed helix, translation is in the positivedirection as the helix rotates

through the compressional quadrant. As it enters the extemisquadrant the direction
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Figure 5.16: Plot of orbit period against number of turnsddnelix of constant pitch
angle o0f46.32.

of translation changes sign. It switches back to positivetgsasses through the
flow direction. For a right-handed helix the directions aegersed and translation is
predominantly in the negativedirection as shown in the lower plot in figure 5.19, which
is a mirror of the upper plot. The dotted lines in figure 5.18whhe translation for
the same helices after they have been rotated about theérmacaris by an angle of.
Maximum velocity occurs when the helix is under maximum cogspion or maximum
extension. Zero velocity occurs when the translation axigligned with ther or they

axis.

We can explain the direction of drift by considering the- y andz — z projections of a
left-handed helix aligned so that its central axis is iiigian the x direction, at key points
during the orbit. In section (a) of figure 5.21 the centrakaddi the helix is aligned with
the z-axis, the first half of the helix (solid line) is above thexis and the second half of

the helix (dashed line) is below theaxis. The block arrows indicate the flow directon
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Figure 5.17: Plot of orbit period against aspect ratio fotart helix. Plot shows the rigid
helix simulation, and the semi-flexible fibre simulation $tiffnesses ok(?) = 0.048 and
kB) = 0.096.
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and the line arrows the direction of translation. Tranelain this direction occurs due
to the 2:1 ratio of the resistance co-efficients for motiorppadicular and parallel to the
fibre. This is illustrated in figure 5.22 which shows the motaj the helix relative to the
fluid. Rather than moving in the direction, motion is at an angle closer to the tangent to

the helix and hence has a component indfugrection.

As the helix rotates through the compressional quadrantgita (b) figure 5.21) it
translates in the positivedirection. Once in the extensional quadrant ((c) figure Bti2d
helix translates in the negativedirection due to the two halves of the helix, as viewed
in thex — z plane, crossing over. As the helix approaches the flow dmec{d) figure
5.21), translation changes back to the positiekrection, this is due to the dashed half of
the helix moving above the-axis and the solid half of the helix moving below thexis.

This change means the flow acting on each section is now ingjpesite direction.

The rate of rotation of the helix is determined by the origotaof the central axis,
whereas the direction of drift is determined by the tramstabxis. As a consequence
when the central axis is aligned in the flow direction therraslation in the positive
direction. When the central axis is aligned witlaxis there is translation in the negative
z direction. The time taken for the central axis to cross the floection is significantly
longer than the time taken to cross thexis and hence translation in the positive
direction is greater (see figure 5.20). The smaller the abgleeen the translation axis
and the central axis the smaller the net displacement. Hiaeceet displacement tends

to zero in the limit of infinite helix aspect ratio or infiniteimber of turns.

We now consider the effect of aspect ratio, number of turrg stiffness on the net
displacement of the helix over one orbit. We begin by considethe effect of aspect
ratio and number of turns on a rigid helix. Figure 5.23 showes riet displacement in
the z direction per orbit against aspect ratio divided by numldegums for left-handed
helices withn;=1,..,10. Maximum translation occursf’ét = 7 regardless of number of

turns, however, for smatl; the size of the maximum is smaller. This is because for small
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Figure 5.23: Net displacement along theaxis per orbit plotted against aspect ratio
divided by number of turns for helices of 1 to 10 turns.

n, the aspect ratio is also smaller meaning the helix spendsaliesrfraction of its orbit
close to ther — z plane and a greater fraction in the extensional quadrantentrenslation
in the negative direction occurs. In figure 5.24 we plot the total distanesétled in the

2z direction over an orbit]’, given by

T
A= / . |dt
0

as opposed to the net displacement. Herés the velocity in the: direction. It can be

seen that maximum total distance travelled is independeéheacumber of turns.

Figure 5.25 shows maximum translation speed (which occimsnvthe helix is under
maximum compression or extension) against aspect ratibtranslation speed when the
central axis of the helix aligned in the— 2 plane against aspect ratio, for a 1 turn helix.

The aspect ratios for which these translation speeds aategtearel (5 = 46.3°) and3
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Figure 5.24: Total distance travelled along thaxis per orbit plotted against aspect ratio
divided by number of turns for helices of 1 to 10 turns.

(6 = 38.1°) respectively. Note that both values are smaller than thienopn aspect ratio

of ‘jl—}: = 7 at which a rotating helix will translate the greatest dise@per orbit. This is
because for aspect ratios in the ramge 77}: < 7 the decrease in translation speed is
more than offset by the increase in the orbit period and heotethe net displacement
and total distance increases. I‘—}lé:)rz 7 the reduction in speed outweighs the increase in

orbit period.
Semi-flexible fibres

To assess the effects of flexibility on the translation rdta @exible helix we use the
flexible fibre simulation. Again we first verify that the seftaxible fibre simulation
agrees at large stiffnesses. Figure 5.26 shows that thagavénranslation speed over one
orbit for the rigid helix simulation and for the flexible fibemulation with helices of

stiffnesse$.048 and0.096 are in good agreement.
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Figure 5.26: Comparison of rigid helix and flexible fibre siations for total distance
travelled along the: axis per orbit against helix aspect ratio. For the flexibleefib
simulation stiffnesses df®) = 0.048 andk(”®) = 0.096 were used.
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Figure 5.27 shows the net displacement per orbit for helrdsstiffnesses in the range
9.65 x 10-*109.65 x 102 plotted against aspect ratio. For very low aspect raticchsli
the net displacement of a very flexible helix is less than dfi#te equivalent rigid helix,
however, in figure 5.28 which plots total distance travebginst aspect ratio we see
that the total distance travelled is greater for more flexibélices. This is because
straightening of the helix in the extensional quadranteases the orbit period, and
hence increases the total distance travelled, howevenctheased time in the extensional
guadrant means that the helix spends a greater proportids time travelling in the
negativez direction. Figure 5.29 shows the velocity of the helix in thelirection
against time for one complete orbit. The velocity is zerd jusor to the central axis
being aligned with the flow direction and theaxis. Maximum translation occurs in
the compressional and extensional quadrants (for rigidégboth maxima are equal in
magnitude). Increasing flexibility reduces the size of theximma as the resistance of
the helix to the shear flow is reduced. The maximum in the cesgional quadrant is
reduced by a greater amount, despite the increase in gffexdpect ratio, as the helix is

better able to resist straightening than bending.

For moderate aspect ratios, both the net displacement &alddistance travelled for a
very flexible helix is less than that of a stiff helix as fleXityireduces both the translation
rate and the length of the orbit period. For high aspect sadimth the net displacement
and total distance travelled for a flexible helix are gre#tan that of a stiff helix despite
maximum translation rate being reduced (see figure 5.30%.i¥ lbecause the proportion
of time spent away from the — z plane, where translation rate is fastest, is greater
the more flexible the helix (see figure 5.30). There is less diffarence between net
displacement for helices of different stiffnesses thanotaltdistance travelled because
of the cancellation between positive and negative traieslat-or high aspect ratios the
effect of stiffness on orbit period is small as in all casé@%af} is large and hence orbit

period is close to that of a rigid helix.
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Figure 5.27: Net displacement along thexis per orbit plotted against aspect ratio for
semi-flexible helices.

For a one turn rigid helix the maximum translation occursraspect ratio o = 7,

as this aspect ratio is large enough to give a large orbibgdout not too large that
the translation rate is small. For helices with the samdnsis, the aspect ratio at
which maximum net displacement per orbit and maximum tasdhdce per orbit occurs,
increases with flexiblity. This is because the orbit peribflexible helices at moderate
aspect ratios (ie. aspect ratios closeifo= 7) are smaller than those of rigid helices.
However, the orbit periods of flexible, high aspect ratiadesd are very close to those of
rigid helices. For this reason, by plotting net displacenfiegure 5.31) and total distance
travelled (figure 5.32) againat‘k(m%, the same scaling that was used for plotting orbit
period, we see that maximum net displacement and totalndistaccur atzf}k(B)% ~ 1.5

for all stiffness.
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Figure 5.28: Total distance travelled along thaxis per orbit plotted against aspect ratio
for semi-flexible helices.
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Figure 5.29: Plot of translation velocity against time falibes of aspect ratia” = 3
and stiffnesses®) = 9.65 x 10~* andk®) = 9.65 x 10*,
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Figure 5.30: Plot of translation velocity against time fetibes of aspect ratio” = 100
and stiffnesses®) = 9.65 x 1073 andk(®) = 9.65 x 1074,

Stiffness = 9.65e-04 —+—

1.447€-03 -
1.929e-03 -
2.411e-03 o
4.823e-03 -~ =~
9.645e-03 --o--

0.7
E
5 06
@
& 05 ¢t
L
3
N 0.4 B
Q
=
= 03¢f
c
o
s 02rF
=
Q
g 01¢
Q
8
o 0r
2
©
% -0.1F}
P
-0.2
0.01

100

Figure 5.31: Net displacement along thaxis per orbit plotted againsfk(m% for semi-

flexible helices.
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Figure 5.32: Total distance travelled along thexis per orbit plotted againsf k(5= for
semi-flexible helices.

5.3.3 Deformation of semi-flexible helices

In chapter 3 we found that intrinsically straight fibres penfi S turns, whereas bent fibres
performC turns. In shear flow the spine of a semi-flexible helix can baradsimilar way

to a flexible fibre. Figure 5.34 shows a 2 turn semi-flexiblex@f aspect ratio 20 with its
central axis and mobility axis, aligned in the flow-gradient plane, rotating in shear flow.
The helix forms arf turn as it bends in the compressional quadrant. If we now thjsn
helix about its axis so that its mobility axés has a component in the vorticity direction
it forms aC' turn as seen in figure 5.35, as the fibre is now asymmetric im thg plane,

as shown in figure 5.33. As the helix spins about its aXisirns will be more common,

however,S turns will occassionally be seen.

For semi-flexible helices with stiffnessgs®) greater thard.0015, initially in the z — y

plane, the principal axis of the moment of inertia tensoatex in ther — y plane. As
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Figure 5.33:x — y view of a helix with its mobility axisc; in thez — y plane (left) and
x — y view of the same helix rotated through an angl€;about its central axis so that
its mobility axisc; has a component in the vorticity direction.

it rotates through the compressional quadrant the assdcggenvalue decreases as the
helix compresses slightly, like a spring. However, the @gpal axes of more flexible
helices such as that shown in figures 5.34 and 5.35 do noerdbat rock back and
forth, even though the ends of the fibre change side eventinalf These helices deform
sufficiently during their rotation that the principal axisvays remains close to the— =

plane.

5.3.4 Orbit Drift for Helical Fibres

As we have seen in previous chapters axisymmetric rigidgbastrotate in closed periodic
Jeffery orbits and orbit drift is only seen for semi-flexilileres. However, in a shear flow
even rigid helices do not rotate in closed orbits but exlobiit drift. For most initial
orientations direction of orbit drift is towards the- y plane however, some helices settle

in orbits close to the — y plane.

For example in figure 5.36 we consider 1 turn helices places @ngle of with thex
axis in thex — z plane so that they are close to but not in the y plane and orbit drift is
towards ther — y plane. The orbit drift of helices with aspect rafio, 40 and100 with
n; = 1 are illustrated in figure 5.36 by plotting the trajectory loé tcentral mobility axis
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Figure 5.34: A semi-flexible helix of aspect ratig, = 20, number of turnsp, = 2 and
stiffnessk(®) = k(T = 6.25 x 10~* performing asS turn in shear flow.
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Figure 5.35: The same semi-flexible helix as in figure 5.3dfppaing aC' turn.
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c;, as defined in section 4.5.3. The drift rate is faster the lemthle aspect ratio.

For helices with 2 or more turns the drift direction is vateggafter the first half orbit
drift may be towards the — y plane and then after the second half orbit, towards the
vorticity axis, and drift continues long after the 1-turriibes have settled in the — y
plane. Some helices found intermediate orbits as shownungfggs.37 and 5.38. We have
not been able to predict the direction of drift, how long itlwake for the helix to reach a
stable orbit and where that orbit will be, or if the helix welentually reach a stable orbit.
For a larger number of turns eg, > 20 there is no noticeable orbit drift and hence we
conclude that orbit drift is a property of helices with smalimbers of turns. For a helix
with a finite number of turns the rotation and spin of the hali& coupled in a non-trivial

manner and this could potentially give chaotic motion.

Helices placed at angles greater thano thex axis in thezx — z plane still drifted towards
thex — y plane. A one turn helix of aspect ratid placed at an angle dg with the z
axis took approximately 100 orbits to reach the y plane. Helices with more than one
turn did drift in the direction of the — y plane however, aftei0® orbits they had still not

reached a steady orbit.

Semi-flexible helices also drift towards the- y plane. Just as with rigid helices, 1 turn

helices drift faster than helices with a greater number ofdu

5.4 Conclusion

In this chapter we have considered instrinsically bent siluith in-plane bends) and
helical fibres (out-of-plane bends). Unlike the intrindligastraight fibres studied in
chapter 3 which perforny turns and only exhibit orbit drift when flexible, bent fibres
performC turns and a helical fibre can perform bathand S turns depending upon its

angle of spin. Bent fibres do not exhibit orbit drift as theadusipin of the fibres quickly
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Figure 5.36: From top to bottom plots of for helices of aspect ratios af), 40 and100

drifting towards ther — y plane.
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Figure 5.37: Helix with 2 turns and aspect ra2o drifting in random directions before
settling to orbit in a plane at and angle abeuwtith thex — y plane (top, view in the — =
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Figure 5.38: Helix with 2 turns and aspect ratio drifting very slowly from its initial
orbit (top), helix with 3 turns and aspect ratio settling into an intermediate orbit.
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rotates them into the — 2 plane where they are no longer able to rotate through the flow
plane. Rigid and semi-flexible helices exhibit a complexgyatof orbit drift due to the

coupling between spin and rotation.

For moderate stiffnesses the orbit period of semi-flexibletland helical fibres is reduced
due to the bending of the fibre causing a decrease in effeadpect ratio, just as it does for
intrinsically straight fibres, however, for very low stiffieses the orbit period is increased
as the fibre not only bends under compression but straightehe extensional quadrant
resulting in aincrease in effective aspect ratio just pgdhe fibre crossing the flow plane.
Just as with intrinsically straight fibres the parameteeeaining how much the orbit
period of a bent fibre differs from that of an equivalent rifilute is given bya, , k.

For helical fibres the parameterd‘sk(B)% suggesting that aspect ratio has a greater effect

on bending than it does with bent and straight fibres.

As well as exhibiting orbit drift, helical fibres also traag# along the: axis, as their
handedness provides a coupling between rotation aboutdheity axis due to the
shear flow and translation along that axis. This effect isig® at points of maximum
compression and extension and hence greater for helides flotv-gradient plane. Semi-
flexible helices translate more slowly as they are unableltp fesist the compressive and

extensional forces of the flow.
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Chapter 6

Swimming of Helical Fibres

In this chapter we use the flexible fibre simulation methoadieed in chapter 4 to study
the swimming motion of a semi-flexible helical fibre at zeroyRads number. In Stokes
flow inertial forces are negligible and fluid motion is lingadependent on the applied
forces. This makes any time reversal symmetric swimmingionatmpossible as any
motion induced on the forward stroke is reversed on themg86]. For micro-organisms,
with length scales of ordei0—*m swimming in water at speeds of ordgr ‘ms! the
Reynolds number is of orded 2, and hence they cannot swim using a reciprocal motion
and therefore must find an alternative method of propulstore solution is rotation of a
helical flagellum. A helical fibre subjected to a torque widinislate through the fluid due

to the handedness of the helix providing a coupling betwesgue and translation.

Let us recall the grand resistance matrix, derived in sectid. In a stationary flow the

strain-rate is zero and hence we need only consider thexioigppart of the matrix:

- . (6.0.1)
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Imposing a torque- on the helix with forceF = 0 produces a velocity given by
U=(B-CB'A)'r,

and angular velocity of
w=(C-—BA'B) 'r=cr

wherec is an entry in the grand mobility tensor (see section 4.5.3).

For an axisymmetric body the coupling ten&wvanishes at the centre of resistance and
hence imposing a torque on the object results in a rotatibn blowever, for a helix, the
tensor is non-zero and so imposing a torque produces bataoetand translation. The
tensor(B — CB'A) ! is dependent on the helix parameters, andn,, as defined in
section 4.1, and therefore each of these parameters afifecesvimming spee@U|. A
semi-flexible helix will deform as it rotates and the swimmspeed is affected by the

whole fibre stiffnes(?) .

Before considering the effects of flexiblity on swimming moot we first use the grand
resistance matrix to investigate the swimming motion ofjarhelix. In order to produce
steady swimming we impose a torque of unit magnitude in thection of the principle
axis, c;, of the mobility tensorc (derived in section 4.5.3). This produces uniform

swimming in the direction o€, at speed” = U - ¢; as shown in figure 6.5.

For fibres in shear flow we have non-dimensionalised time va#pect to the inverse
shear-rate of the quieil. In this chapter the shear rate is zero and so we must choose a
different timescale. As swimming occurs by imposing a terguwe may usq% as a
timescale wherég, is the rotational resistance coefficient for a fibre of lergjthderived

in section 1.2.6. This enables a direct comparison of thexsang efficiency for different

helices by comparing swimming speeds for fixed torque. The-dimensionalised
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swimming speed and stiffness are then given by

=
and

we _ BT

7 l|T|

respectively. However, this situation where an externajue is applied to an isolated
filament is rather different to models such as those of Takamtbothers [35, 36] where
the filament is attached to a head that receives a torque ioppesite direction so that
there is no net torque on the body as a whole. In these stutkeswimming speed is
calculated at a fixed angular velocity. Thus an alternatimescale is the inverse angular

velocity, ﬁ giving non-dimensional swimming speed and stiffness as

v
Ve —
Y Lw
and
ET
kB = .
. l‘w|§t

We first present our results for rigid helices in which we ¢desthe effect of number of

turns,n, and pitch angle = tan™! 7 on the swimming speed of the helix.

6.1 Swimming of Rigid Helices

Figure 6.1 shows the swimming speed at constant torgueplotted against the aspect
ratio per turn for helices of 1, 2, 3 and 4 turns. For sn%%l,l wherea! is the helix

aspect ratio as defined in section 5.3, increasing the asg@ztresults in an increase in
swimming speed. The increase in aspect ratio reduces thesnasulting in an increase

in the angular velocity which in turn gives a larger forwaedocity.
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Figure 6.1: Swimming spedd. plotted againsf% for rigid helices of 1, 2, 3 and 4 turns.

Figure 6.2 shows the swimming speed for constant angulacig| V,, plotted against
aspect ratio per turn for helices of 1, 2 3 and 4 turns. Plattesiway we observe that
maximum swimming speed occurs at a value‘jl—%f: 2.8. For small aspect ratios, an
increase in aspect ratio results in an increase in swimnpegd However, above an
aspect ratio o;f‘—f = 2.8, which corresponds to a pitch value @f= 48°, the swimming
speed decreases with further increases in aspect ratltg detrease in pitch angle results
in a decreased propulsive thrust. There are two limits atiwkthe swimming speed of
the helix tends to zero, the limit of a circular a ring £ 90°) and that of a straight rod
(6 = 0°). Both shapes are symmetrical and therefore do not prowideaid thrust. The
swimming speed therefore reaches a maximum at a pitch amafdatils between these

two limits.

Figures 6.3 and 6.4 show the swimming spe&dsandV,, respectively plotted against

number of turns for helices with a constant pitch anqﬁe Econstant). V. increases
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Figure 6.2: Swimming spedd, plotted agains% for rigid helices of 1, 2, 3 and 4 turns.

linearly with increasing number of turns. In order to mainta constant pitch angle and
length both the radius and the pitch parametérmust both decrease with increasing
number of turns. The decrease in radius results in an inen@aangular velocity and

hence an increase .. However, in figure 6.4 we find thaf, decreases with increasing
number of turns as the decrease in pitch means the helix agpes the geometry of a

hollow cylinder, therefore losing the asymmetry that akanto swim.

Comparing our results to those of Goto, Inaoka and Takanp yif2o used the method
described by Higdon [16] to produce results for a rigid hali@il and a spherical cell
body, we obtain a similar optimum pitch angle48f compared to thé4° obtain by Goto
et. al, despite the absence of a cell head in our simulations. @btal. obtain an
optimal number of turns of; = 1.5. The increase for smatl, was due to the reduced
torque and hence reduced counter rotation of the cell heaidaFgern,, the swimming

speed decreased due to the increase in sIenderneséj%thhered is the fibre diameter.
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Figure 6.3: Swimming speel. plotted against number of turng for rigid helices of
constant pitch.

The slenderness ratio is important as it is the 2:1 ratiorajeatial to normal motion of a
slender fibre that allows the helix to swim (described inis@cb.3.2). In our results we
see neither of these effects as our simulation does notdad.cell head and we include
only the first order terms in slender body theory, hence ngpéur fibre of infinite aspect
ratio. Despite this we obtain an optimum pitch angle vengelt that of Gotet. al. as

the optimum value must occur between the limits of a ring asttaaght rod.

6.2 Swimming of Semi-Flexible Helices

We now use our flexible fibre simulation to calculate the swingrspeeds of semi-
flexible helices. In order to obtain a uniform swimming difen parallel to the x-axis
we align the mobility axi; (derived in subsection 4.5.3) with the x-axis and then apply

a torque of magnitude 1 and directien to the first rod. Forwards swimming is in the
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Figure 6.4: Swimming speeld, plotted against number of turns for rigid helices of
constant pitch.

direction of the first rod and backwards swimming is in thesdiion of the last rod as
shown in figure 6.5. For a left-handed helix forward swimmieguires a negative torque
and the rotation is anti-clockwise. Backwards swimmingursgs a positive torque and
the rotation is clockwise. To verify the results of our nuroarsimulation we compare the
swimming speeds of rigid helices obtained from the grandt@sce matrix with those of
our flexible fibre simulation for a fibre composedddfrods with a whole fibre stiffness of
k(B) = 9.65. This is sufficiently large that the forwards and backwandrsning speeds

of the helix are the same. Figure 6.6 shows the results adatdor the swimming speed,
Vs against% for both the simulation and the grand resistance matrix. Saulation is

in good agreement with the results of the grand resistan¢exynalthough the accuracy
decreases with increasing number of turns, as the numbedsfper turn is reduced. To
compare forwards and backwards swimming speeds of seni#ééefibres we use a 2

turn helix in order to reduce discretisation errors.
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Figure 6.5: Illustration of a 24 rod helix with forwards swimng in the direction of the
first rod and backwards swimming in the direction of the last.
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Figure 6.6: Plot of non-dimensional swimming spdédagainst%, showing results
from the grand resistance matrix for a rigid helix and theiliexfibre simulation set
at a stiffness of:(?) = 9.65.
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We shall now consider the effect of flexibility on the forwarahd backwards swimming
speeds of semi-flexible fibres. To do this we measure the swimspeed and angular
velocity of the helix once the angular velocities for the sdoecome equal and the
swimming speed has reached equilibrium. We also considestthpe changes that occur
with forwards and backwards swimming. In order to measuapsltthanges we require

a measure of radius and pitch that can be used for distorteg e

For a regular continuous helix we can obtain the radius atuh mf the helix from the
principle moments of the moment of inertia tensor as derninesgction 4.2. The radius is
given by

0=y (6.2.2)

and the pitch parametérwhere2xb is the pitch of the helix) by

b= \/G(Al =X (6.2.3)

Ty

We verified these formulae by calculating the principle motador a discretised helix
and comparing the actual valuesaodndb to those calculated using equations (6.2.2) and
(6.2.3).

In figures 6.7 and 6.8 we consider 2 turn helices with aspemisraf 2, 3, 4 and 6,
which correspond to pitch angles ©2.3°, 64.5°, 57.5° and46.3° respectively. Figure
6.7 shows the swimming speed for a constant torqueagainst the stiffness measure
®) while figure 6.8 shows the swimming speed for constant @mgallocityl,, against
stiffnessk”). The solid lines show forwards swimming speeds and the diakhes
the backwards swimming speed. In the case of constant tdoyueards swimming
speed is faster than backwards swimming speed for a sentHéefiore, however, in
the case of constant angular velocity, backwards swimnsnigster. The backwards

swimming speed increases as the stiffness decreases, érpwewards swimming speed
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Figure 6.7: Swimming speéed. plotted against stiffnesd” for semi-flexible helices of
aspect ratios 2, 3, 4 and 6.

decreases as stiffness decreases. For very small stégéiss backwards swimming
speed drops significantly, eventually becoming lower thaforwards swimming speed.
The difference between forwards and backwards swimmingdsgieerefore varies greatly
depending upon the exact stiffness of the fibre. To asseggdisens for the changes in
swimming speeds as the fibre becomes more flexible we considethe shape of the

fibre changes.

Figure 6.9 shows that for forwards swimming, the averageusadf semi-flexible fibres
decreases, while for backwards swimming the radius ineseaBigure 6.10 shows that
for forwards swimming the pitch parametetiecreases while for backwards swimming it
increases. Figure 6.11 shows that forwards swimming carsggrease in the number of
turns while backwards swimming results in a decrease in murabturns. In summary,
the effect of flexibility, means that for forwards swimmingethelix winds up and for

backwards swimming the helix unwinds.
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Figure 6.8: Swimming speéd, plotted against stiffnesis.”) for semi-flexible helices of
aspect ratios 2, 3, 4 and 6.
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Figure 6.10: Pitch parameter, b, plotted against stiffrid&s (top) and pitch plotted
against stiffness.”) (bottom) for semi-flexible helices of aspect ratios 2, 3, d @n



Chapter 6. Swimming of Helical Fibres 218

2.8 .
2.7
2.6
2.5
2.4
2.3
2.2
2.1

Forwards

Backwards -

ny
T T T T T T
1

1.9
1.8

T
0N
1

1.7 ' '
0.1 1 10 100

2.6 . .

For'wards
Backwards -

24 r

ng
N
T

18

"
"
I
i
1 6 - i" .
. i"
i
i
i

14 : : :
0.001 0.01 0.1 1 10

Figure 6.11: Number of turns plotted against stiffne&¥ (top) and number of turns

plotted against stiffness”) (bottom) for semi-flexible helices of aspect ratios 2, 3,d an
6.



Chapter 6. Swimming of Helical Fibres 219

For forwards swimming, both radius,and pitch,b decrease such that the pitch angle
B = tan"' ¢ remains relatively constant. The increase.iwith the decrease ihmeans
that the axial length also remains relatively constant. e\@v, in swimming backwards
there is a slightincrease in pitch angle and a slight deeneesxial length for very flexible

fibres.

These shape changes are the cause of the apparently cotainadesults for swimming
speeds/, andV, in figures 6.7 and 6.8. For small stiffnesses the swimmingdger
constant torqué’, increases for forwards swimming as the stiffness decredhise$o the
decrease in radius and hence the increase in angular yelétiwever, the swimming
speed at constant angular velocify decreases for forwards swimming with decreasing
stiffness due to the decrease in pitch and increase in nuofl@ms resulting in the helix
approaching the limit of a hollow cylinder. The backwardsreming speed increases
with decreasing stiffness as the decrease in the numberr tiocreases the asymmetry
of the helix. The reliability of the results for very low stiesses is compromised due
to the long time taken to reach equilibrium and the certaagyo whether equilibrium
has been reached. The sudden drop in swimming speed for bedkawimming at low
stiffnesses may occur due to the loss of a true helical shapea@nsequent increase in
motion perpendicular to the swimming direction (this matis still periodic and so does

not change the net swimming direction).

Takano and Goto [35] calculated the swimming speed at conatggular velocity),,,

for a flagella of stiffness”) ~ 0.0075, pitch angle48° and approximately 3 turns.
They obtained a backwards swimming speed that was apprtedyngs faster than the
forward swimming speed. In our results we obtain a backwawdmming speed that is
approximately23% faster than the forwards swimming speed for a flagella ofnetsfs
kP~ 0.0075, pitch angle4t6% and 2 turns. This is much closer to, though still smaller
than the50% difference observed on average by Magariyanaal. [23] in experiments

in which video recordings were taken of the bacteriviiorio alginolyticus using high-
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Figure 6.12: Axial length plotted against stiffnesd” (top) and axial length plotted
against stiffness.”) (bottom) for semi-flexible helices of aspect ratios 2, 3, d @n



Chapter 6. Swimming of Helical Fibres 221

80 T T
Forwards
Backwards -
75 + 7
e Aspect Ratio = 2
70 + b
65 | e Aspect Ratio =3 |
Nal
60 r T Aspect Ratio=4 _ |
55 7
50 |- 1
Aspect Ratio = 6
45 : !
0.1 1 10 100
kP
80 T T T
Forwards
Backwards -
75 + g
e Aspect Ratio = 2
70 | o .
65 |- '\ ,,,,, Aspect Ratio = 3 i
@
60 1 Aspect Ratio = 4 i
55 i
50 b
Aspect Ratio = 6
45 1 1 1
0.001 0.01 0.1 1 10
(B)
K
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stiffnessk?) (bottom) for semi-flexible helices of aspect ratios 2, 3, d @n
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intensity dark-field microscopy, and then analysed to olitae forwards and backwards
swimming speeds. In our simulations small differences irwéods and backwards
swimming, similar to those calculated by Takano and Gotg, [8& only seen for much
larger or much smaller stiffnesses than those used in thk @fcfakano and Goto. The
discrepancy between our work and that of Takano and Goto magxplained by the
differences in the models. In particular we do not includeslhleead in our simulations
but apply an external torque to the flagella. Also our simaratises a helix of uniform
radius with smaller number of turns whereas the flagellaenibrk of Takano and Goto
[35] has an exponentially increasing radius at the junchietween the flagella and the

cell head.

Takano and Goto [35] and Takamd. al. [36] both report the same shape changes that
we have found. Takano and Goto [35] report an increasedsadtid pitch and decreased
number of turns for backwards swimming and Takahaal. [36] report a constant length
and pitch angle. Takanet. al. found that the number of turns for a flagella of stiffness
kP = 0.016 and pitch anglet1° increases from 2.84 to 2.92 for forwards swimming
and decrease from 2.84 to 2.77 for backwards swimming. Inpesison our results for a
fiore of stiffnessk!”) = 0.016, and pitch angle6° show an increase from 2.1 to 2.2 for

forwards swimming and decrease from 2.1 to 2.0 for backwsndsiming.

In conclusion, our results support the findings of Takano@atb [35] and Takanet. al.
[36] that flexibility does result in a difference betweeniards and backwards swimming
speed. We find a much larger difference in speeds in thosalfbyrifakano and Goto
[35] however, this is still not as large as th@/ difference observed in the experiments
of Magariyama [23]. Takano and Goto provide results for agilagn whose dimensions
and stiffness are chosen to match those/ibfrio alginolyticus However, rather than
focussing on matching a particular biological organismhwite added complications of
the interaction between the head and flagellum, we haveestutie simpler problem

of the swimming dynamics of isolated helical flagella overaage of stiffnesses and
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pitch angles. Our results show that the exact stiffnessefldgellum is very important
in determining how much the forwards and backwards spedtf#s.dWe show results
ranging from a zero difference for rigid fibres to a maximum~of23% difference at
stiffnesses betweedr?) ~ 0.007 andk(®) ~ 0.0085. This demonstrates that the changes
in shape due to flagella flexibility can produce the significhfierences in forwards and
backwards swimming speeds observelfilorio alginolyticus However, our model is not
intended to be an accurate representation of the dynamitssafreature, and so cannot

provide a quantitative comparison.
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Chapter 7

Discussions and Conclusions

In this thesis we have presented a semi-flexible fiore modelhich chains of slender
rods are connected via constraint forces and bending arstirigyiis resisted by torques
at the joints. In chapter 2 we presented details of our modél samulation method
for intrinsically straight fibres. This considers only bergl In chapter 3 we used this
model to study semi-flexible fibres in shear flow and providesiilts for the orbit period,
orbit drift, bending dynamics and stress. To model nonigititaequilibrium shapes such
as circular arcs and helices we developed a second sinulatezlel that includes an
equilibrium twist angle in addition to the equilibrium beadgle at the joints. This model
together with a rigid helix simulation based on the grandstaace matrix are presented
in chapter 4. In chapter 5 we presented results for the odibgd, shape changes and
spin rate of intrinsically bent, semi-flexible fibres in shflaw plus details of the orbit
period, translation and orbit drift of rigid and semi-flebalnelices in shear flow. Finally
in chapter 6 we use our simulation to determine the effectexilfility on the forwards

and backwards swimming speeds of intrinsic helices in @ostaity flow.
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7.1 Intrinsically Straight Fibres

In chapter 3 we considered the question of whether semistlexibres in shear flow
performed C turns or S turns. Simulation results of Klingegh Ross and Skjetne [31,
34] and linear stability analysis results of Becker and [lggB] suggested that th& turn
was the most unstable mode and hence only very flexible fiboegdnperform S turns.
Our own linear stability analysis also confirmed that thenode was the most unstable.
However, in our simulation results we found that intrinflicatraight fibres almost always
perfomedsS turns except in a few cases in which very flexible fibres wodqgrm mode

4 turns. C' turns were only observed for fibres with initial shape defations. Schmid,
Switzer and Klingenberg, also used chains of rigid rods @ tsimulation and found that

instrinsically straight fibres performetiturns.

There are two regions of a fibre orbit in which bending is intaot; in the compressional
guadrant, close to an angle-eft5° with the flow direction, where compressive forces are
greatest and the largest degree of bending occurs; anm\@}iﬂmif thex — z plane where,
although the compressional forces are weaker by a fact%r,cthe fibre spends almost
its entire orbit. In the compressional quadrant our lingabitity results show that thé'
mode is the most unstable, however, simulation resultstensional flow show that &
mode can only grow if the initial perturbation is even. Whhae tnitial perturbation is

odd theS mode is seen for flow rates where it is unstable.

By calculating the bending torque distribution along a filigned in the flow direction

we showed that the torque distribution is anti-symmetrid bance the bending of the
fibre in thex — 2 plane seeds an initis§ shape (an odd mode) with bend amplitude
proportional tok(B—l)a%. This then means that only odd modes grow in the compredsiona

guadrant.

As high aspect ratio fibres spend a fracti(—lé% of their orbitwithini of thex —z plane it

is bending in this region which most affects orbit periodeThlative difference between
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the orbit period of the rigid fibr&, and the semi-flexible fibré' is given by the function
f= TT — 1 and measures the effect of flexiblity on orbit period comgdrethat of an
equivalent rigid fibre. In chapter 3 we found thjatvas proportional th(Bl—W. Thus the
effect of flexibility is to give the fibre an effective thickeg df, which is proportional to
m in agreement with the results of the bending torque analy&exible fibres rotate

faster than rigid fibres as the bend in the fibre decreasespearatio.

We also calculated how the integral of the bending endrgwver a period depends upon
the stiffness and aspect ratio of the particle. At high fidingesses we find thak' is
proportional tom. This scaling can be predicted using the bending torqueysisal
for a fibre close to t;u‘r — z plane as the orbits of high aspect ratio fibres are dominated
by time spent here. At lower stiffnesses a different regimiste in which the bending
energy over one orbit is dominated by bending in the compreakquadrant, which is
significantly greater than the bending that occurs imithez region. The stiffness values
marking the transistion between these 2 regimes corresjoaihe values obtained in the
linear stability analysis at which the S mode becomes utesthbnce at high stiffnesses
bending in the compressional quadrant is no longer impbassmall distortions created

in thex — z plane decay during rotation through the compressionalrrguiad

Graphs of shear stress and first and second normal stresedies show scalings similar
to those obtained for the low stiffness regime. This is beeastress is greatest in the
compressional and extensional quadrants and zero wherbtkadiin thexr — z plane.
At high stiffnesses where bending only occurs in the z plane and the bend decays in
the compressional quadrant, the stress of a semi-flexibie iBno different from that of

a completely rigid fibre.

Semi-flexible fibres with initial orientation that are nottime =z — y plane do not rotate
in closed Jeffery orbits but drift towards one of two attiagtorbits: rotation in the: —
y plane or alignment in the vorticity direction. Orbit driftcurs mainly in ther — =

region where orbit paths are closest together and henceaosiyall bend is required to
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significantly alter the path of the fibre. Although the fibreedalrift away from its initial

Jeffery orbit in the compressional quadrant it drifts bag#ia in the extensional quadrant.

7.2 Non-straight Equilibrium Shapes

In chapter 5 we considered fibres with non-straight equiliorshapes. We limited our
attention to fibres bent into circular arcs and fibres withimgically helical shapes. In
constrast to intrinsically straight semi-flexible fibre$yave orbit period always decreases
with increasing fibre flexibility, very flexible circular ashave longer orbit periods than
rigid fibres because the flexibility allows the fibre to sttd@n in the extensional quadrant,
hence increasing its effective aspect ratio so that it td&eger to pass through the
flow direction. For stiffer fibres we find the opposite behavjahe effect of bending

is dominant and orbit periods are shorter than those of figrés.

Straight flexible fibres drift across Jeffery orbits. Insically bent fibres have an
alternative mechanism for changing their orientation bysing about their end-to-end
axis. Fibres with in-plane bend projected out of they plane, spin about an axis parallel
to the end-to-end vectgr. Once the plane of bend reachesthez plane, the fibre ceases
to rotate or spin. Consequently only fibres with an out-@rgl bend rotate indefinitely.

We have therefore presented results for helical fibres iardfimw.

Results from our rigid helix simulation show that in additito rotation in the flow
gradient plane, rigid helices translate along the vostieikis and exhibit orbit drift.
Neither of these properties were present for intrinsicathaight fibres and both are a
direct result of the assymmetry of the fibre. These effectapbear in either the limit of
infinite effective aspect ratio (when the helix becomesgititd or the limit of an infinite
number of turns as all major axes of the helix become alignéd tive central axis. Just
as with circular arcs the orbit period of a flexible helix im¢er than an equivalent rigid

helix but at higher stiffnesses the flexible helix has a ghrqgrériod. Translation along the
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vorticity axis, which is at its greatest when under maximwmpression or extension is
reduced in semi-flexible fibres as the fibre is unable to rédsestorces of the flow. Orbit
driftis quicker for semi-flexible fibres but like rigid heés is chaotic due to the non-linear

relationship between the period of rotation and period of.sp

7.3 Swimming of Helical Fibres

Finally, in chapter 6 we considered the effect of flexibibty the forwards and backwards
swimming speeds of helical flagella. We find that backwardsnsming speed is faster
than forwards swimming speed in semi-flexible helices ofstamnt angular velocity as
forwards swimming causes the helix to wind up so that theaageeradius is reduced, the
pitch decreases and the number of turns increases. For hedkswimming the average
radius increases, the pitch increases and the number «f tdacreases. Experimental
observations by Magariyama [23] showed5@% difference between forwards and
backwards swimming speeds ¥ibrio alginolyticus Simulation results of Takano and
Goto [12] however, showed only &% difference for a flagella of similar stiffness and
dimensions. Our results, although not taken for the samemiions as Magariyama [23]
and Takano and Goto [12] show that over a range of stiffnebsesnge of differences
between forwards and backwards swimming speed rangefrazf% with the maximum
swimming speed occuring at” = 0.0075, the same stiffness used in both studies. Our
results show that swimming speeds are very sensitive foet$, and that predicting the
difference between forwards and backwards swimming spaedilirio alginolyticusis

reliant upon determining the exact stiffness of the flagella

Extensions to the work on swimming speed would be to includelabody and an
exponentially increasing flagella radius in the portiorselto the cell body. The cell body
could be included by using a higher order slender body agprsianilar to that of Higdon

[16]. This would also allow for the inclusion of long rangedmgdynamic interactions
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between different parts of the fibre. The effect of hydrodyitainteractions would be to
replace the tridiagonal matrix for the constraint forceshva full matrix, which would

increase the computational cost. Including long range dgyinamic interactions would
also allow interactions between several fibres to be coresigl@vhich is necessary for the

study of the swimming of organisms with multiple flagella.
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Appendix A

Equilibrium Configuration

To calculate the values 6f;? andQ:? in terms of the continuous helix parametersndb
we calculate the rotation matrix in termso&ndb and compare t®R.(Q27?, 0, Q5"). To do

this we need to calculate the orthonormal frames of neighbgQuodsn — 1, n andn + 1.

The position of any point on a helix is given by

for s running through an angle @frn;. When divided intaV segmentss runs through an
angle of A = 272 for each segment. If we let the centre of motle atx(0) as illustrated

in figure A.1 then the orientation vectors for rods- 1, n andn — 1 are given by

Pnt1 = — A : @ cos A ,
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Figure A.1: The orthonormal frames and position vectorfoée neighbouring rods in a
discretised helix.
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b
Cx(5)-x(=3) _ -1 .
Pn = A = Iip a
0
and
A 3A b
X(—%) —x(—2= 1
Pn-1 = Q)A ( Q)ZFGpQ acos A
asin A
~ 2a sin 2 ~9 2
wherea = —= andk, = a* + b”.
Vectorsr,, 1, r,, q, 1 andq, are given by
—a’sin A
1
rn_1 = —Pn1 APn = Kr ’ absin A ,
ab(l — cos A)
—a’sin A
1
r, = —pp A\ Pn+1 = Kr ’ absin A s
—ab(1 — cos A)

a’b(1 — cos A)
adsin? A + ab*(1 —cos A) |,
—(a® cos A + ab?) sin A

N

dn—-1 = Pn-1 ANrp_1 = (’{p/fr)_

a’b(1 — cos A)
—ab*(1 —cosA) |,
—(a® 4 ab*) sin A

[V

dn = Pn ATy = (/fp/fr)i

wherer, = 2a2b*(1 — cos A) + a*sin® A.
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Neighbouring orthonormal frames are related by

Pn 1 Ti2 T13 Pn—1
dn = To1r To2 T23 dn-1
r, r31 T32 T33 rp1

hence the components of the rotation matrix are given by

Fl1 = Pn_ 1 Pn = (% cos A + bQ)H;I,

P12 = Qnt - P = v/ k(1 — cos A)r !

Ti3 = Tp_1* Pn = 07

ol = Pn-1 - Gn = —G\/ k(1 — cos A)k, ' (@°(cos A + 1) + 2b° cos A) s, ',

Fao = Qp—1 - dy = (a°cos A + bg)mgl(&g(cosA +1) + 2b* cos A)k

-1

1
Tog =Tp 1-Qp = —2bsin Akpk, ",

1
P31 = Pn1-Tn = —ay/k (1 — cos A)k, ' 2bsin Arg k],

1
P39 = Qu_y * Tp = (@> cos A + 52)/{;1219 sin Ak k!,
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Fy3 =T, 1 T, = (@*(cos A + 1) 4 2b* cos A)k] !,

wherer, = a*(cos A + 1) + 2b%.
By comparison with the rotation matrix
cos Q7! — sin Q7" 0

eq eqy __ . .
R(21%,0,925") = | sinQ{%cos Q57 cos Q257 cos Q7 — sin Q57

sin Q77sin Q57 cos Q{%sin Q37 cos Q3!

as derived in section 4.2 with;? = 0, we can see that

sin Q7 = —a/k.(1 — cos A)ry !

cos Q57 = (a*cos A + b%)k !,
P
e 3 1
sin Q57 = 2bsin AkZ kK,

* )

and
cos Q57 = (a®(cos A + 1) + 2b* cos A)k, '

We therefore obtain the following expressions fjf ands’.

ay/(a2(cos A +1) +26%)(1 — cos A)

tan Q77 = —
At (@? cos A + b?)
eq 2bsin Ava? + b?
tan Q3" =

(@*(cos A + 1) + 2b% cos A)
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Appendix B

Grand Resistance Matrix

The non-zero entries @& andH are given by

dab*ny (26 + b*)Va? + b?

G = —
e Tat + 13b%a2 + 607
. a’bn,m - ~ 1~ . 1~
oy = —— LM Gy = oty = ~CGlogt = —Cigia = ~G
123 N 132 213 = 5Gam 312 = 5 G,
s A (2ab?mny
Gi31 = Gsi1 = N
« « 2(3a* + 4b?)ab*nymv/a? + b2
Gozz = G3gz = — 1 55 I ;
Ta* 4+ 13b%a® + 6b
and
o 6a3b3mn/a? + b2
1T 70t 1130202 + 66%
i a?mn;(49a°® + 88b° + 216a2b* + 182a1h?)v/a? + b2
123 = —

49a5 + 133a*h? + 120a2b* + 360° ’
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- (24b* + 41b%a® + 14a*)7niba

N T OC S W/ R

a® + 20*)mn,a?

P
132 — \/m I

= (196a° + 483a’b? + 372a%b" + 766°)a’mn,va? + b2
28 2(49a8 + 133a*b? + 120a2b* + 361°) ’

Ao 7a*brng(2a® + 3b%)Va? + b2
257 3(Tat 4+ 1302a? + 6b%)

mb?(21a* 4 6b%a? + 46b°nim%a? + 24b*?n? 4+ 21a*w?n?)Va® + b?
3(7a* + 13b%a® + 6b*) ’

H231 = -

2(28a* + 63b%a* + 36b*)abrn,va? + b?
3(7a* + 13b%a® + 6b*) ’

H232 -

mnga? (b + 4a?)

T == V@ e

mnb*(—3a? + 3a’m?ni + 4b*7?n?)

Hoar = War 1 ’

- 2abm(5a* + 6b?)
Hszyp = — ;
3va? + b?
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ba*mny(14a® + 3b*)Va? + b2
3(7a* + 13b%a® 4+ 6b*)

H333 - -

respectively.
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Appendix C

Mobility Matrix

The non-zero components of mattare given by

144a® + 726%a%72n? 4 438a°b2 + 351a%b? + 228b*w2n2a* + 224b%a%72n? + 244265 + 64b%12n?
= ; ,

4((a? +b2)2 (7245 + 36b272n?a? + 111a*b? + 96a2b*n2n? — 120a2b* — 1925 + 64b572n? )wnia?)

12(3a2 + 46%)(a® + b2)3b
mnia(72a® + 183a8b2 — 9atb? — 312a2b6 — 19208 + 4nw2n?(9b2ab + 33b%at + 406602 + 16b8))’

Cl12 = —

C21 = C12,

12v/a? + b2(3a? + 4b?)
(72a8 + 36b27m2n2at + 111a%b2 + 96a2b472n? — 120a2b? — 19266 + 64687207 )mny

C22 =

12v/a? + b2(3a? + 4b?)
mne(51atb? — 24a2b? + 96a2bim2n? + 64b572n? + 7208 + 36b272n?at)’

€33 =
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