White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Applications of Microstereolithography in Tissue Engineering

Gill, Andrew (2012) Applications of Microstereolithography in Tissue Engineering. PhD thesis, University of Sheffield.

[img]
Preview
Text
Andrew_Gill_Thesis_Final_Submission.pdf
Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (5Mb)

Abstract

Microstereolithography is a microfabrication technique based on the light induced crosslinking of a prepolymer according to a computer based design. The technology emerged in the 1980’s as a rapid prototyping technique for the fabrication of small parts and devices. The technique has evolved into an important research tool with a diverse range of applications ranging from photonics to tissue engineering. Two distinctly different branches of microstereolithography exist, differentiated by the fundamental mechanics involved. The first branch, based on the initiation of curing by the interaction of one photon of light with an initiator is a surface based technique. The photosensitised prepolymer or ‘resin’ is illuminated typically with ultraviolet light in order to cure the material within the first hundred micrometers of the surface and structures are constructed in a layer-by-layer fashion. The second, more recently developed ‘branch’ of microstereolithography was developed in the last decade of the twentieth century (although the underlying principles were predicted as early as the 1930’s). Multiphoton polymerization is a technique similar to multiphoton microscopy, in which two or more photons interact with the photoinitiator within the lifetime of a virtual intermediate state, initiating curing. Due to the low probability of this occurrence curing is only initiated in areas of very high photon density, achieved by focusing a laser beam through a high numerical aperture objective into the resin. Photocuring then occurs in the central area of the focal point, within the volume of the resin. The aim of this thesis was to investigate the applications of this technology (both one and two photon) in tissue engineering, for the fabrication of bespoke tissue scaffolds and other implantable devices. Photocurable oligomers based on bioresorbable materials already in clinical use were also explored and their suitability for tissue engineering applications investigated, with a focus on structuring and biocompatibility.

Item Type: Thesis (PhD)
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Materials Science and Engineering (Sheffield)
Identification Number/EthosID: uk.bl.ethos.572360
Depositing User: Mr Andrew Gill
Date Deposited: 03 May 2013 13:29
Last Modified: 27 Apr 2016 14:12
URI: http://etheses.whiterose.ac.uk/id/eprint/3711

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)