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Microstereolithography is a microfabrication technique based on the light induced cross-

linking of a prepolymer according to a computer based design. The technology emerged in 

the 1980’s as a rapid prototyping technique for the fabrication of small parts and devices. The 

technique has evolved into an important research tool with a diverse range of applications 

ranging from photonics to tissue engineering. 

Two distinctly different branches of microstereolithography exist, differentiated by the 

fundamental mechanics involved. The first branch, based on the initiation of curing by the 

interaction of one photon of light with an initiator is a surface based technique. The 

photosensitised prepolymer or ‘resin’ is illuminated typically with ultraviolet light in order to 

cure the material within the first hundred micrometers of the surface and structures are 

constructed in a layer-by-layer fashion. The second, more recently developed ‘branch’ of 

microstereolithography was developed in the last decade of the twentieth century (although 

the underlying principles were predicted as early as the 1930’s). Multiphoton polymerization 

is a technique similar to multiphoton microscopy, in which two or more photons interact with 

the photoinitiator within the lifetime of a virtual intermediate state, initiating curing. Due to 

the low probability of this occurrence curing is only initiated in areas of very high photon 

density, achieved by focusing a laser beam through a high numerical aperture objective into 

the resin. Photocuring then occurs in the central area of the focal point, within the volume of 

the resin. 

The aim of this thesis was to investigate the applications of this technology (both one and two 

photon) in tissue engineering, for the fabrication of bespoke tissue scaffolds and other 

implantable devices. Photocurable oligomers based on bioresorbable materials already in 

clinical use were also explored and their suitability for tissue engineering applications 

investigated, with a focus on structuring and biocompatibility. 
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Adapted from the book chapter ‘Two Photon Polymerisation for Tissue Engineering Scaffold 

Fabrication’ by Andrew A. Gill and Frederik Claeyssens. 

Abstract 

The production of bespoke 3D microstructures from biocompatible and bioresorbable 

materials via free-form fabrication opens up a wide range of possibilities for the creation of 

structurally optimised and chemically functionalized tissue scaffolds, as well as other 

implantable medical devices such as microneedle arrays and patient specific prostheses. In 

this literature review the production of user-defined tissue engineering scaffolds and other 

implantable devices via microstereolithography is highlighted. This technique utilises photo-

polymerization processes (both 1- and 2-photon) to produce (sub)micrometer feature size 3D 

objects. Both the main fabrication processes used and relevant applications studied by 

researchers in this emerging field are discussed. Common fabrication systems will be 

examined as well as the expanding range of materials that may be used. The design of 

efficient photoinitiators facilitating the use of relatively inexpensive microlaser systems will 

be highlighted as well as future perspectives for the technology. 

1. Introduction  

1.1 Microstereolithography  

Microstereolithography refers to a class of rapid prototyping technologies first explored in the 

1980’s (Narayan et al. 2010). The technique relies on the photo-crosslinking of a curable 

prepolymer or resin according to a predetermined design to create a solid polymerized object. 

Typically either a pattern of light is formed by a static or dynamic masking technique and 

projected into a thin layer of photosensitised prepolymer (Ha, Choi, and Lee 2008) 

(projection microstereolithography) or a focused laser beam is scanned over the 

photosensitised polymer according to a computer design, writing out the desired image 

Chapter One: Applications of 

Microstereolithography in Tissue 

Engineering 
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(scanning microstereolithography) (Gandhi and Deshmukh 2010). When the process is 

finished the remaining uncured prepolymer is washed out using a solvent (developer) leaving 

the resulting structure intact. To create three dimensional objects consecutive layers of 

prepolymer are added and cured, before the uncured prepolymer or resin is washed out to 

give a multi-layered structure.  

1.2 Microstereolithography in Comparison with Other Techniques 

The use of microstereolithography for the fabrication of tissue scaffolds and other medical 

devices has evolved into a significant research area since its conception as a rapid prototyping 

technology in the 1980’s. One of the main advantages of microstereolithography, as in other 

direct write techniques for scaffold fabrication is the ability to create scaffolds with a specific 

pore geometry and distribution simply by creating a 3D model in CAD-CAM software. Pre-

existing technologies for the creation of bulk porous structures such as particulate leaching, 

gas foaming, freeze drying and phase separation are all capable of creating bulk structures 

with a high degree of porosity, but give little control over pore distribution, interconnectivity 

and pore geometry as well as the effect these features have on the bulk scaffold mechanical 

properties (Coutu, Yousefi, and Galipeau 2009).   

Layer-by-layer solid free-form fabrication (SFF) techniques such as laser sintering, 3D 

printing or bioplotting using nozzle ejection systems provide a method of creating structures 

with designer features (Hollister 2005). The mechanical performance of scaffolds produced 

using SFF techniques is far superior to bulk processed ones. The maximum compressive 

modulus of scaffolds made by traditional processing techniques such as porogen leaching is 

around 0.4 MPa (Ma and Choi 2001), as porosity is inversely related to mechanical strength. 

The mechanical modulus of hard tissue (for example bone) is between 10-1500 MPa (Goulet 

et al. 1994; Hollister 2005) and clearly these scaffolds do not possess sufficient strength to 

match these properties. Fused deposition modelling of polycaprolactone (PCL) was used to 

produce scaffolds with a high porosity (48-77%) with compressive moduli ranging from 4-77 

MPa and yield strength from 2.58 to 3.32 MPa (Hutmacher et al. 2001).  

Computational models can be used to determine the optimum scaffold macro to nanostructure 

with respect to nutrient and metabolite diffusion, cell distribution and attachment and also 

scaffold mechanical strength (Chua et al. 2003a, 2003b). The benefit of a computer designed 

scaffold architecture that facilitates diffusion within a highly connected network of pores was 
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demonstrated by Melchels et al. (Melchels, Barradas, et al. 2010), who showed that cells 

within a microstereolithography produced scaffold were evenly distributed throughout the 

structure whereas cells in a scaffold produced by salt leaching with comparable overall 

porosity were limited to the very surface of the structure. 

 

Figure 1: Scaffolds prepared by microstereolithography (left) with uniform architecture 

allow even nutrient and cell distribution throughout the scaffold, whereas scaffolds prepared 

by foaming or porogen leaching (right) have limited cell and nutrient distribution and uneven 

mechanical properties. 

Another possibility with microstereolithography is the fabrication of patient specific scaffolds 

and other medical devices. In one example a scaled down model of a human kidney was 

produced using deconstructed medical CT data as a proof of concept (Choi, Wicker, Lee, et 

al. 2009). The fabrication of scaffolds with custom architecture allows the balancing of mass 

transport and mechanical support within the structure which allows an even distribution of 

cells to be achieved (Hollister 2005). Rapid prototyping can be viewed as an economic 

method of producing scaffolds with high reproducibility in terms of microstructure and 

mechanical properties (Hutmacher, Sittinger, and Risbud 2004). 

1.3 Features of Microstereolithography  

Two photon polymerization trades fabrication speed for resolution. Whereas typical one 

photon scanning systems can have a write speed of up to 500 mm s
-1

, 2PP is approximately a 

thousand-fold slower at around 1mm s
-1

 (Stampfl et al. 2008).  The benefit of this trade-off  is 
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that resolutions of 200-300 nm can be achieved routinely (Serbin et al. 2003) and resolutions 

as low as 100 nm have been achieved, for example by using quenchers to prevent 

polymerization from spreading beyond the focal point (Takada, Sun, and Kawata 2005).   

Due to its precise nature, the technique is ideally suited to the fabrication of small scale 

prototypes and high resolution microdevices with niche applications. Additionally, the true 

three-dimensional writing ability of 2PP makes it ideal for creating seamless microdevices 

with complex internal parts, such as microactuation valves (Schizas et al. 2010) and 

microphotonics (Ostendorf and Chichkov 2006).   

As the field of scaffold fabrication by 2PP grows, the capabilities of the technique are 

increasing, due to advances in photoinitiators and lasers (Wang et al. 2002), computer model 

optimisation (Park et al. 2005), parallel processing (Kato et al. 2005), optics and instrument 

design (Hsieh et al. 2010) and materials development (Melchels, Feijen, and Grijpma 2009). 

The field is now nearing a point where it can grow from a small scale prototyping technique 

limited to a narrow range of materials to a state of the art technology which can be exploited 

for the fabrication of scaffolds with unparalleled resolution fabricated from a diverse range of 

polymers (Gill and Claeyssens 2011), functionalized biological materials (Ovsianikov, 

Deiwick, et al. 2011) and hydrogels (Jhaveri et al. 2009). 

Two photon polymerization presents a method for the production of patient specific devices 

with accurate resolution, and is ideal in situations where cells require contact guidance or a 

precise local environment in order to promote functional recovery. One example of this is in 

nerve entubulation devices or nerve guidance conduits (NGC’s), where microstructure has 

been demonstrated to enhance functional recovery of transected nerves (Bunge 1994). 

Microstereolithography and 2PP may be used to optimise and produce nerve guidance 

conduits with performance superior to simple tubular devices (Melissinaki et al. 2011). 

1.4 Materials for Microstereolithography 

Early research into the use of 2PP in areas such as photonics (Ostendorf and Chichkov 2006) 

required materials that gave good structuring results without placing too many requirements 

on the specific chemical nature of the resulting structure beyond physical robustness. Well 

characterised photoresist materials used in conventional lithographic techniques, such as 

Ormocer (organically modified ceramic polymer) and SU8, fulfilled these demands and have 

been used in a wide range of applications. The demonstrated biocompatibility (Doraiswamy 
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et al. 2005) of Ormocer saw it used in a range of medical studies as discussed in following 

sections. Additionally, these materials exhibit low shrinkage (Winfield and O'Brien 2011), a 

problem often encountered with small molecule resins (Farsari et al. 2006) which can reduce 

final structure quality. The drawback with these materials for the creation of tissue scaffolds 

is that they are not bioresorbable (biodegradable) and once implanted into the body will 

remain there permanently or until removed, requiring follow up surgery.   

Bioresorbable photocurable polymers based on well characterised polymeric biomaterials 

such as polylactic acid (PLA), polycaprolactone (PCL), polyglycolic acid (PGA), 

trimethylene carbonate (TMC) amongst others have been developed (Kwon and Matsuda 

2005; Mizutani and Matsuda 2002a, 2002b; Matsuda, Kwon, and Kidoaki 2004; Bat et al. 

2011; Melchels, Barradas, et al. 2010; Melchels, Feijen, and Grijpma 2009; Melchels et al. 

2011; Pego et al. 2003; Seck et al. 2010; Claeyssens et al. 2009). The common feature of 

these polymers is the inclusion of hydrolysable ester bonds between monomers which allow 

them to degrade following implantation. Typically a low molecular weight oligomer is 

prepared from a multi-armed initiator which serves as the core for ring opening 

polymerization with the selected monomer using stannous octoate catalyst (Gill and 

Claeyssens 2011). Photo-crosslinkable end groups such as methacrylates or coumarins are 

then added to make the oligomers photocurable. Microwave assisted synthesis has recently 

been employed in the preparation of polyethylene glycol based resorbable hydrogels 

incorporating polylactic acid segments and methacrylate end groups, presenting a rapid and 

easily accessible method of preparing photocurable materials with a diverse range of 

monomers (Seck et al. 2010). Structuring of photocurable gelatin was also recently reported 

using methacrylate functionalization (Ovsianikov, Deiwick, et al. 2011). 

Another important class of materials commonly used for tissue engineering purposes are 

hydrogels (Lee and Mooney 2001; Mahoney et al. 2005). These soft polymers are attractive 

scaffold materials due to their biocompatibility and tuneable cell adhesiveness as well as high 

moisture content (Halstenberg et al. 2002; Luo and Shoichet 2004). Photocurable hydrogel 

materials such as polyethylene glycol diacrylate (PEGDA) are amenable to direct structuring 

in aqueous media (Jhaveri et al. 2009) or photo-crosslinking via one photon curing to create a 

cross-linked network followed by three-dimensional patterning of photolabile chemical cues 

which influence the behaviour of cells contained within the gel (Luo and Shoichet 2004).   
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A range of techniques have been investigated for patterning of hydrogels, such as one photon 

lithography (Yu and Ober 2003), microfluidic patterning (Tan and Desai 2003) and 3D-

printing (Mironov et al. 2003) amongst other additive layer technologies (Mironov et al. 

2008). These layer-by-layer processing techniques give the desired control over features of 

individual layers, however in the vertical or ‘z’ plane the coherence between individual layers 

is poor (Luo and Shoichet 2004). In this respect, there is an apparent advantage of ‘in-

volume’ two photon direct write over these competing technologies. 

Hydrogels allow the encapsulation of live cells into scaffolds. For example in the study by 

Lee et al. (Lee, Moon, and West 2008) a photocurable and degradable acrylate-PEG-

(peptide-PEG)n-acrylate hydrogel was prepared and used to encapsulate human dermal 

fibroblasts, by cross-linking via one photon curing. The encapsulated cells were then soaked 

with a solution containing acrylate conjugated PEG-RGDSK (Arg-Gly-Asp-Ser-Lys, a cell 

adhesive ligand), and two photon laser scanning technique was used to selectively conjugate 

the cell adhesive ligand throughout the matrix according to a pre-determined design. This 

technique was demonstrated to guide cell migration throughout the hydrogel. Similar 

techniques have been applied in order to pattern growth factors and other proteins within 

hydrogel constructs (Schneider et al. 2001; Melchels, Bertoldi, et al. 2010) and influence 

stem cell differentiation.  

1.5 Two Photon Polymerization 

Microstereolithography systems based on one photon processes rely on the linear absorption 

of light by a photoinitiator within the volume of the prepolymer, as described by the Beer-

Lambert law. Drawbacks with these systems include overpenetration of light within the 

photosensitive resin leading to overcuring of layers, light scattering within the resin reducing 

resolution and the accumulation of partially cured oligomers within the internal features of 

the fabricated structures (Choi, Wicker, Lee, et al. 2009). Furthermore, the need to fabricate 

structures in a layer-by-layer process can lead to ‘stepping effects’ resulting in small ridges 

on the external features of the structure. Oxygen quenching of radicals on the surface can 

further complicate the curing process, requiring materials to be purged with nitrogen or argon 

prior to curing and nitrogen blanketing during the cure step.   

To overcome these drawbacks careful calibration of the cure depth, exposure time and light 

intensity is required. Light absorbing dyes have been used to successfully improve resolution 
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by reducing penetration and scattering (Choi, Wicker, Cho, et al. 2009), however when 

preparing implantable devices for regenerative medicine the effects of these additives on the 

biocompatibility of the fabricated structures requires further investigation. Cure times are also 

increased due to the absorption of light by the dye, which reduces the curing rate. Purging 

individual layers between exposures with an inert liquid such as perfluorohexane has also 

been shown to improve feature resolution by washing away partially cured oligomers (Han et 

al. 2008), improving internal feature definition but further complicating the fabrication 

process.  

 

Figure 2: Image illustrates a structure consisting of two layers (1 and 2) cured consecutively 

to create overhanging features. Structure on right displays overcuring of layer 2 (indicated 

by arrows) leading to loss of spaces between layers. For an example see Choi et al. (Choi, 

Wicker, Cho, et al. 2009).  

First applied to lithography in 1992 by Wu et al. (Wu et al. 1992) with the aim of improving 

the resolution of UV lithography for microelectronics applications, non-linear optical 

processes have been utilised to overcome the problems of typical one photon lithography 

methods. These multiphoton processes were first predicted by Maria Göppert-Mayer 

(Göppert-Mayer 1931) in 1931 and demonstrated by Kaiser and Garrett in 1961 (Kaiser and 

Garrett 1961). 

Similar to multiphoton microscopy, two photon polymerization (2PP) relies on the non-linear 

absorption of two photons of light simultaneously by a photoinitiator to initiate curing 

processes. Due to the short lifetimes of the intermediate states involved (around 10
-15

s for 

true three dimensional two photon polymerization (Lee et al. 2006)) initiation only occurs at 

very high photon density, as predicted by the theory in 1931.  



18 

 

Polymerization is usually achieved by focusing femtosecond pulsed radiation from a 

Titanium: sapphire laser through a high numerical aperture lens, with initiation occurring at 

the focal point of the objective (see figure 3). Since polymerization is only initiated at the 

focal point of the objective, by scanning the focal point within the volume of a photosensitive 

resin, three dimensional structures can be written out according to a computer model in a 

CAD-CAM fashion (Serbin and Chichkov 2003; Stute et al. 2004).  

 

Figure 3: In one photon polymerization light is absorbed and initiates curing in a linear 

fashion with curing limited to the first few hundred micrometres of resin below the surface 

(left). In two photon polymerization curing occurs only at the focal point of the beam where 

photon density is high enough to initiate two photon processes (right). 

 

The majority of materials used for 2PP are the same as those used in UV photolithography, 

due to their commercial availability. Organically modified ceramic resists (ORMOCERS) for 

example give excellent structuring results in both UV curing and 2PP (Lee et al. 2006). 

Initially explored for more typical microfabrication applications such as photonics and micro-

optics (Ha, Choi, and Lee 2008; Gandhi and Deshmukh 2010; Choi, Wicker, Cho, et al. 

2009), research using these materials has attracted the attention of tissue engineers. The high 

resolution of 2PP allows the creation of designer tissue scaffolds with defined pore size 

(Claeyssens et al. 2009), microneedles with reduced penetration cross section (Doraiswamy 
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et al. 2006), microvalves with defined internal structure (Schizas et al. 2010) and a wide 

range of other potential applications.  

The choice of photoinitiators has also until recently relied on commercially available 

initiators typically used for one photon processes such as Michler’s ketone (4,4’-bis(N,N-

dimethylamino)benzophenone). Efforts are now under way to create more suitable 

photoinitiators with an improved two photon absorption cross-section (Lemercier et al. 2006). 

Although the majority of published work relies on femtosecond pulsed Ti: sapphire lasers 

emitting at around 800 nm, comparable results have also been achieved with less powerful 

laser systems. Q-switched Nd
3+

:YAG microlasers emitting at 1064nm and 532nm with peak 

powers between 0.1 and 1kW, sub-nano/ picosecond pulse durations and  repetition rates on 

the kHz scale have also been shown to be capable of initiating 2PP (Wang et al. 2002).  

The efficiency with which 2PP can be initiated is determined not only by the two photon 

absorption cross section of the photoinitiator (a measure of the ability of the initiator to 

absorb two photons simultaneously) but also the ability of the initiator to generate radicals in 

the excited state. A good initiator will require a low power to efficiently generate 

polymerization. Additionally the energy gap between the initiation threshold and the power 

threshold at which material damage occurs should be as high as possible for reproducible 

structuring. The design of efficient photoinitiators is highlighted later in this chapter. 

1.6 Two Photon Stereolithography 

Two photon polymerization can achieve higher resolution three dimensional structuring than 

any commercially competing technology (however experimental techniques such as two 

colour lithography can demonstrate better resolution (Scott et al. 2009)). According to Abbe’s 

diffraction limit, the resolution of a focussed laser is limited by the wavelength of light used 

and the numerical aperture (NA) of the focusing objective, preventing one photon based 

stereolithography techniques achieving a sub micrometer resolution (Fischer and Wegener 

2011). Other high resolution techniques such as e-beam lithography are limited to surface 

effects, unlike two photon polymerization which is an in-volume technique. (Farsari, 

Vamvakaki, and Chichkov 2010). Although there are exceptions such as carbon vapour 

deposition (van Dorp and Hagen 2008), these techniques are not well suited to scaffold 

fabrication due to limitations for example on the materials that can be used. Sub 100 nm three 

dimensional structuring with 2PP has been achieved (Haske et al. 2007).  
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1.6.1 Initiation of Polymerization Processes 

Two photon absorption occurs by two mechanisms, sequential and simultaneous absorption 

of two photons of light. In sequential absorption, one photon of light is absorbed by the 

excited species promoting the absorber to a real intermediate excited state. A second photon 

is then absorbed within the lifetime of this excited species (10
-4

 to 10
-9

 seconds) (Lee et al. 

2006). The presence of the real intermediate state would require the material to absorb at this 

wavelength and hence absorption would be governed by the Beer-Lambert law (Farsari, 

Vamvakaki, and Chichkov 2010). The process which drives 2PP involves the simultaneous 

absorption of two photons of light by the photoinitiator. As there is no real intermediate state 

the material is transparent to light of the wavelength of the exciting radiation and two photons 

must arrive within the lifetime of the virtual excited state (10
-15

s) to initiate polymerization. 

The short lifetime of the virtual state means that high intensities of light are required. This is 

typically achieved with a femtosecond pulsed Ti: sapphire laser. Ti: sapphire lasers are 

favoured because of their short pulse length which limits thermal damage or burning of the 

sample, and because these lasers typically emit light at around 800 nm, which is appropriate 

for the two photon excitation of a wide range of UV sensitive photoinitiators, as the energy 

gap corresponds to approximately twice the energy of a photon at this wavelength. Many UV 

initiators and curable materials are also transparent at this wavelength allowing light to be 

focussed within the volume of the material and interact only with the desired initiator via two 

photon mechanisms.  

The two photon absorption cross section (σTPA) of an initiator determines the suitability of an 

initiator for two photon polymerization, and describes the ability of the initiator to absorb two 

photons of light simultaneously. This is typically expressed in units of GM (Göppert-

Mayer’s, after Maria Göppert-Mayer, with 1 GM being equivalent to 1x10
-50

 cm
4
 s photon

-1 

(Wu, Serbin, and Gu 2006)).  Molecular engineering of photoinitiators seeks to maximise the 

two photon absorption cross section by conjugating electron donating (D) or electron 

accepting (A) groups to a π charge transfer system in a symmetric sequence (D-π-A-π-D) 

allowing stabilization of the intermediate state by charge delocalization. Unsymmetrical 

‘push-pull’ molecules, for example a D-π-A systems also enhance the two photon 

susceptibility of the molecule increasing the two photon absorption cross section (Baldeck, 

Stephan, and Andraud 2010; Gan et al. 2009). The development of better photoinitiators is an 

important step in making 2PP systems more available and reducing the dependence on 

expensive femtosecond-pulsed laser systems.  
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Another important factor for efficient photoinitiators is their ability to generate radicals in the 

excited state. Initiator-coinitiator systems which facilitate radical transfer from initiator to 

polymer have been explored (Belfield et al. 2000) as well as molecules which (a) have 

improved absorption cross sections and (b) contain amine groups which facilitate radical 

generation (Kuebler, S. M. et al. 2001). Two photon sensitive initiators for Ti: sapphire lasers 

emitting at around 800 nm have seen extensive optimisation (Lemercier et al. 2006). 

Additionally, initiators tuned to the operating wavelengths of Q-switched Nd:YAG 

microlasers (532 nm, 1064 nm) have been synthesised to facilitate efficient structuring with 

lasers of much lower specification and cost, and these lasers are expected to become a routine 

alternative to powerful femtosecond Ti: sapphire systems (Baldeck, Stephan, and Andraud 

2010).  

1.6.2 Experimental set-ups for Two Photon Polymerization 

The CAD-CAM nature of two photon polymerization makes it an attractive technique for 

tissue scaffold fabrication, allowing a diverse range of scaffold architectures to be explored 

simply by changing the computer model. Typical setups combine a femtosecond pulsed Ti: 

sapphire laser emitting in the region of 800 nm with a Galvano-scanner controlled by CAD-

CAM software which moves the focus of the beam within the horizontal plane of a high NA 

objective. Vertical stepping is most commonly achieved using a piezo-electric stage. On-line 

monitoring may be achieved by focusing a CCD camera through the focusing system using a 

dichroic mirror to image the curing process within the volume of the resin. Since most 

materials undergo a change of refractive index upon curing, the polymerization process can 

be visualised by the appearance of the structure within the polymer.  

A three dimensional computer model of the desired structure is generated with modelling 

software. This model is then sliced into a series of horizontal slices which are written out in a 

layer-by-layer fashion by scanning the beam within the volume of the resin, with the height 

of the substrate being adjusted by a high precision piezo-electric stage. Either the entire 

volume of the structure is cured in the writing step (raster scanning) or only the outline is 

cured in the writing step (contour scanning) (Lee et al. 2006) and the inner volume of the 

structure cured in a post-processing step using one-photon curing (Sun and Kawata 2003). 
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1.6.3 Improving the Efficiency and Cost of 2PP 

Barriers to the more mainstream adoption of 2PP as a routine research technique include the 

costs involved, mainly resulting from the high power laser systems required and additionally 

the small scale of the structures that can be fabricated due to the limited write area or 

‘footprint’ of most systems currently in use. 

Many 2PP systems use oil immersion lenses due to their high numerical aperture and precise 

focusing. Moving from oil lenses to air lenses overcomes the height limitations imposed by 

the need to dip the lens within a small drop of oil, as demonstrated in the study by Hsieh et al. 

(Hsieh et al. 2010). Structures fabricated with oil lenses are limited to a height of about 1mm 

(the focal length of the objective, which cannot be lifted from the oil droplet) however using 

an air lens the authors claim a scan height of 30 mm. A scan speed of 30 mms
-1

 is also 

reported along with a resolution of around 100 nm. Finally the authors produced a cubic 

porous scaffold applied to hepatocyte culture with dimensions of 2.5 mm
3
 representing a step 

forwards from micrometer scale to millimetre scale scaffolds. 

A range of optical components and techniques have also been investigated for improving the 

processing time required for 2PP. Parallel processing using refractive and diffractive optics to 

split the beam into an array of smaller beams has been demonstrated (Kato et al. 2005; 

Winfield et al. 2007a) and up to 227 structures have been fabricated simultaneously in one 

fabrication cycle (Bhuian et al. 2007). Axicon lenses have also been explored as a way of 

generating three dimensional shapes in a single exposure (Winfield et al. 2007b; Bhuian et al. 

2007).  

A common method for creating structures from a 3D computer model via 2PP is the single 

dimensional scanning method (SSM) (Park et al. 2005). A 3D digital model of the object to 

be fabricated is converted to a polyhedral one and then sliced into a series of parallel layers 

along a plane defined by the user. These layers are then converted into a scanning path for the 

laser. The slowest fabrication method is to write out the entire volume of the structure using 

this map (raster scanning). A more efficient way is to only write out the solid outer shell or 

‘contours’ of the structure (contour scanning method, CSM), also known as vector scanning 

(Sun and Kawata 2003), solidifying the internal volume of the structure post-development by 

exposure for example to UV light. This method reduces the number of individual voxels 

(volume pixels) which make up the structure. As demonstrated by Sun and Kawata (Sun and 

Kawata 2003), a ‘microbull’ structure composed of 2x10
6
 voxels was fabricated by raster 
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scanning in a time of 3 h. The outer shell of the bull could be recreated accurately using only 

5% of these voxels, and using the contour scanning method the bull was recreated in only 13 

minutes. 

Contour scanning has been further improved to compensate for difficulties in creating near 

flat surfaces within polymerized objects. If an object created by contour scanning is not 

sealed sufficiently before development the outer shell can tear and release the inner uncured 

resin leading to collapse of the structure. As the fabricated surface approaches horizontal, 

careful stepping of the layers is required to create sufficient overlap, preventing breakage. 

This requires a large number of voxels and leads to very long fabrication times. A two 

dimensional slicing method (TSM) has been developed to simplify the scan paths of 

structures with near flat surfaces (Liao et al. 2007). In one example, a polyhedral model of a 

microdragon sliced by SSM consisting of 871414 polygons was reduced using TSM to 16620 

polygons. Using TSM the fabrication took nineteen minutes, it is estimated that using SSM it 

would have taken 12.66 h. The fabricated dragon is shown in figure 4. 

1.7 Tissue Scaffolds and the Extracellular Matrix 

A particular challenge that two photon polymerization is suited to address is that of tissue 

scaffold fabrication (Hsieh et al. 2010). Tissue scaffolds generally provide an artificial 

extracellular matrix (ECM) in which cells can proliferate and grow, forming an engineered 

tissue (Langer and Vacanti 1993). Additionally these scaffolds may be made from a 

biodegradable material which breaks down as the cells form their own extracellular matrix, 

eventually disappearing completely (Atala et al. 2006). The purpose of the scaffold is to 

provide mechanical protection for the growing tissue, as well as providing a general structure 

for cell attachment (Bellucci et al. 2011). The three-dimensional micro environment of the 

tissue scaffold has also been demonstrated to affect the behaviour and proliferation of the 

cells within, with cells cultured in a 2D monolayer fashion not behaving as closely to those in 

normal living tissue compared to their 3D scaffold cultured counterparts (Abbott 2003).  
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Figure 4:  Microdragon fabricated using two dimensional slicing method (TSM) technique, 

showing 3d model. Reprinted with permission from (Liao et al. 2007). Copyright 2007, 

American Institute of Physics.  

It has been demonstrated that different cell types perform better in different internal pore 

geometries, and so in creating custom scaffolds the pore shape may be tailored to the desired 

tissue type. Furthermore, different cell types have different optimum pore sizes, for example 

bone cells (osteoblasts) function optimally in scaffolds with a pore size of around 350 µm, 

liver cells (hepatocytes) prefer smaller pores of around 20 µm and fibroblasts 5-15 µm 

(Whang et al. 1999). 

Typical bulk scaffold fabrication methods consist of techniques such as particulate leaching 

or gas blowing to create porous foams. Scaffolds fabricated in this way tend to perform 
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poorly, with cell ingrowth being confined to the first 200 µm of the scaffold below the 

surface (Awwad et al. 1986; Colton 1995). Additionally, these scaffolds typically do not give 

sufficient mechanical strength for load bearing applications such as bone scaffolds, or even 

soft tissues (Hollister 2005). Mass transport is also poor due to low pore interconnectivity 

(Melchels, Barradas, et al. 2010).   

Stereolithography (including two photon polymerization) is an ideal technique for addressing 

these issues. Pore geometry and the overall scaffold porosity can be changed simply by 

changing the computer model, and furthermore medical imaging data such as computerized 

tomography (CT) and magnetic resonance imaging (MRI) may be converted directly to CAD 

models in order to produce patient and injury specific scaffolds (Schlosshauer et al. 2006).  

1.8 Biomedical Applications of Microstereolithography 

As discussed in earlier sections, microstereolithography is well suited to the production of 

tissue scaffolds with optimum pore geometry with respect to nutrient and metabolite 

diffusion. User defined scaffold structuring via 2PP allows the investigation and production 

of scaffolds which can be tailored to the ideal pore size and geometry of a given tissue simply 

by adjusting the 3D model in a CAD-CAM software suite. It has been demonstrated that 

microscale features can have a profound effect on cell behaviour (Chen et al. 1997; Dike et 

al. 1999), as well as cell migration and scaffold mechanical properties. Additionally features 

such as vasculature for nutrient/ metabolite transport and features that can give mechanical 

strength to the structure can be written directly into the scaffold. 

Beyond the development of tissue scaffolds, the technique is finding applications in patient 

specific prostheses and geometrically optimised implantable devices such as microneedles 

and cell delivery vehicles, which will be discussed below. 

1.8.1 Implantable Medical Devices Created by 2PP  

Initial work into the fabrication of permanent scaffolds from off the shelf materials such as 

Ormocers and SU8 assessed the biocompatibility of these materials (Schlie et al. 2007; 

Ovsianikov, Schlie, et al. 2007) and demonstrated cell growth on small scale scaffold like 

structures. The suitability of these and similar materials for two photon based 

microstructuring and their demonstrated biocompatibility and cell adhesiveness led to a 

number of publications regarding their use in small scale medical devices (Schizas et al. 
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2010)
 
(Doraiswamy et al. 2006; Ovsianikov, Ostendorf, and Chichkov 2007; Ovsianikov, 

Chichkov, Mente, et al. 2007). 

1.8.2 Prostheses 

Ovsianikov et al. (Ovsianikov, Chichkov, Adunka, et al. 2007) used two photon 

polymerization of Ormocer for the fabrication of ossicular replacement prostheses, 

implantable devices which are intended to improve hearing by reconstructing ossicles, 

structures located within the inner ear which may be damaged by disease (Albu, Babighian, 

and Trabalzini 1998). This application requires structures which exhibit good stability and 

mechanical properties, retaining their structure throughout the lifetime of the implant. The 

material must be non-toxic, cell adhesive and the device must have good acoustic 

transmission. Pre-existing surgical options include reshaping of autologous inner ear bone 

tissue (Colletti and Fiorino 1999), which is not always available due to the extent of the 

damage, or cadaveric donor tissue, now disfavoured due to the risk of infection (Glasscock, 

Jackson, and Knox 1988) or degradation of stiffness. Mass produced artificial implants do not 

take into account the variability of individual patient anatomy. The authors demonstrated that 

2PP may be used to generate easily implanted devices which can easily be tailored to the 

needs of a particular patient.  

1.8.3 Microneedles 

ORMOCER® Microneedle arrays fabricated by 2PP have been explored for applications 

such as transdermal drug delivery (Ovsianikov, Chichkov, Mente, et al. 2007). The CAD-

CAM nature of 2PP processing allows for total control over features such as surface area, 

penetration cross section, mechanical strength and diffusion within the needles simply by 

changing the computer model (Doraiswamy et al. 2006; Ovsianikov, Ostendorf, and 

Chichkov 2007; Ovsianikov, Chichkov, Mente, et al. 2007). Comparable micro-cone arrays 

fabricated using one photon based layer-by-layer microstereolithography fabricated by Kwon 

and Matsuda (Kwon and Matsuda 2005) show visible ridges due to the curing of individual 

layers consecutively, an effect that the high resolution of two photon direct write eliminates.   

Microneedle arrays fabricated by 2PP have also been used for the delivery of fluorescent 

quantum dots to porcine skin facilitating imaging by multiphoton microscopy (Gittard et al. 

2011). Material biocompatibility was assessed by the proliferation of neonatal human 
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epidermal keratinocytes and human dermal fibroblasts. The authors indicate that 2PP 

microneedle fabrication allows the delivery of theranostic agents (agents which can indicate 

the correct therapeutic process for individual patients) to epidermal, dermal or subdermal 

tissues depending on the computer design in a patient specific manner. 

One concern with implantable microneedle arrays is the risk of infection. Microneedle arrays 

prepared by 2PP and replicated by PDMS stamping were prepared from a mixture of 

polyethylene glycol diacrylate and 2mg/mL of the antimicrobial agent gentamicin sulphate. 

The efficacy of this agent in inhibiting the growth of the pathogen Staphylococcus aureus on 

the resulting structures was demonstrated by agar plating assay (Gittard et al. 2010).  

1.8.4 Valves 

Prototype valves optimised for the flow conditions encountered in small human veins were 

fabricated by Schizas et al. (Schizas et al. 2010) from a zirconium sol-gel based material. 

Consecutive layers were cured by 2PP to create a 360 µm long by 120 µm wide microvalve. 

The stair step effect created by layer-by-layer fabrication was eliminated by a combination of 

feature design to include mainly vertical features and also the optimisation of laser fluence to 

give the best possible material resolution. This study demonstrates how an optimised 

computer designed model can be converted directly into a prototype by two photon 

polymerization. 

1.8.5 Bioresorbable Tissue Scaffolds 

Despite the success of ormocers and similar materials for the fabrication of devices such as 

microneedle arrays and valves these materials are limited to the production of permanent 

devices as they are not bioresorbable. Claeyssens et al.(Claeyssens et al. 2009) reported the 

successful fabrication of scaffold like structures from a bioresorbable polymer based on 

poly(ε-caprolactone-co-trimethylenecarbonate)-b-poly(ethylene glycol)-b-poly(ε-

caprolactone-co-trimethylenecarbonate). This polymer was reported to degrade at a rate close 

to that of tissue formation (Mizutani and Matsuda 2002a, 2002b) and was demonstrated to 

have no negative effect on cell viability.  
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1.8.6 Cell Delivery Vehicles 

The injection of stem cells into damaged brain tissue has been suggested as a method for 

treating brain injury, for example following a stroke. The use of degradable microparticles 

which can be injected with the cells and provide a support structure has been demonstrated 

has been shown to facilitate tissue regrowth (Bible et al. 2009a). Two photon polymerization 

of photocurable polylactic acid (PLA) has been used to create degradable cell delivery 

vehicles, which can be loaded with cells prior to injection with the possibility of  optimising 

the shape and size of the cell delivery vehicles to give maximum protection to the cells during 

injection, and giving maximum cell loading of the microparticles (Melissinaki et al. 2011).  

1.8.7 Experimental Tissue Scaffolds 

As well as implantable devices, the resolution and reproducibility of 2PP scaffold fabrication 

allows the production of experimental tissue scaffolds which may be used to investigate the 

effect of factors such as three-dimensional culture, pore size and geometry on the behaviour 

of cells within. 

In work by Tayalia et al. (Tayalia et al. 2008) 2PP fabricated constructs were used to study 

the effect of scaffold architecture on cell adhesion and migration. Woodpile based structures 

with different pore sizes were seeded with cells and the movement of the cells within was 

monitored over time to investigate cell migration. It was found that cells reached higher 

speeds of migration in the three dimensional constructs compared to a flat substrate. 

Furthermore it was found that smaller pore sizes inhibited the movement of the cells leading 

to a less uniform distribution whereas cells moved faster and distributed more evenly in the 

scaffolds with the largest pores. The ratio of the different oligomers within the curing mixture 

was varied allowing control over the mechanical properties of the scaffold, making it possible 

to investigate the effect of scaffold elasticity on cell behaviour in structurally identical 

scaffolds. 

Cell migration studies involving natural matrix materials such as matrigel and ECM proteins 

derived from tissue have been extensively performed (Friedl and Wolf 2003; Grinnell et al. 

2006), as have studies involving traditional porous scaffold fabrication techniques such as gas 

foaming, particulate leaching and phase inversion (Panseri et al. 2008). Drawbacks with these 

studies include the variability of pore size within fabricated scaffolds and the highly cell 

adhesive nature of natural matrix materials, limiting cell migration. 2PP constructs allow 
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greater control over the material properties of the scaffold and the ability to define pore size 

and shape. 

As discussed earlier, Hsieh et al. (Hsieh et al. 2010) used two photon polymerization to 

produce three dimensional scaffolds from a commercially available non-degradable polymer 

for hepatocyte culture and demonstrated liver specific cell functions (urea synthesis and urea 

secretion) were retained for longer in cells cultured in the scaffold compared to cells cultured 

on spin coated substrates of the same polymer. This demonstrates the effect of culturing cells 

in three dimensional constructs instead of a flat monolayer fashion.  

Although non-bioresorbable, polyethylene glycol (PEG) has been used extensively in internal 

medical applications such as constipation aids (Tack 2011). Polyethylene glycol diacrylate 

(PEGDA) was investigated as a suitable material for the creation of 2PP structured scaffolds 

(Ovsianikov, Malinauskas, Schlie, Chichkov, Gittard, Narayan, Lobler, et al. 2011). A 

resolution of 200 nm was achieved, and the authors suggest that the technique may be used to 

explore the effect of surface topography on cell-scaffold interaction. Furthermore a thorough 

investigation of scaffold material/ photoinitiator toxicity was carried out and it was 

determined that freshly prepared scaffolds release photoinitiator and monomer material which 

is toxic to fibroblasts, however ageing of the samples in distilled water for 6 days led to much 

improved biocompatibility and negligible cytotoxicity. The swelling of the scaffold materials 

in water also suggests that although the devices may deviate slightly from their original shape 

the ensuing increase in porosity will allow greater nutrient transport within the scaffold and 

the scaffolds could be loaded with biological agents such as growth factors, as shown in 

previous studies highlighted by the authors (Gittard et al. 2010). 

1.9 Conclusions 

Two photon polymerization is becoming an established technology for the creation of 

designer tissue scaffolds. Scaffolds with appropriate dimensions for the engineering of tissues 

and organs which can be fabricated on a reasonable timescale have been produced (Hsieh et 

al. 2010). Smaller scale devices for niche applications have been fabricated demonstrating the 

potential of this technology for direct clinical applications (Ovsianikov, Chichkov, Adunka, 

et al. 2007). 

 More efficient photoinitiators (Lemercier et al. 2006) and new materials for 

microstereolithography (Melchels, Feijen, and Grijpma 2009) combined with new slicing 
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techniques for 3D scan path optimisation (Liao et al. 2007), voxel elongation (Li, Winfield, 

O'Brien, and Crean 2009) and parallel processing (Bhuian et al. 2007) are being developed to 

reduce the reliance of the technique on high-end laser systems whilst reducing processing 

times and limitations on the size of scaffold that can be achieved. Demonstrated advantages 

of custom scaffold features (Melchels et al. 2011) over first generation scaffolds made by 

simple bulk processing methods make microstereolithography, particularly 2PP an attractive 

technique for the creation of a new generation of functional tissue scaffolds.  

1.10 Thesis Aims and Objectives 

As can be seen throughout the literature review, the fundamental mechanisms of 

microstereolithography and its application to tissue engineering are well understood. Despite 

this the technique has not yet found routine clinical application. To address this, the aims of 

this thesis were to: 

1. Establish simple microstereolithography systems for device and microstructure 

fabrication. 

2. Prepare resins for microstereolithography based on materials in current clinical use, 

and assess their toxicity and ability to act as a substrate for cell growth. 

3. Use the developed microstereolithography systems with both the prepared resins and 

commercially available photocurable resins to create structures and explore cell-

structure interactions. 

4. Assess potential clinical applications of the technique as a proof of concept, 

preparing biocompatible microstructures with potential clinical applications. 
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Abstract 

A key limitation in the use of microstereolithography for tissue engineering applications is a 

lack of suitable materials. Excellent structuring results have been obtained with commonly 

used commercially available resins used for photolithography and rapid prototyping, however 

these materials are limited in their use due to their poor biocompatibility and limited cell 

adhesion. Most commonly used UV curable resins are also non-bioresorbable, which is a 

requirement for many tissue engineering devices. In this chapter the production of 

photocurable oligomers based on bioresorbable polymers such as polylactic acid (PLA) and 

poly(caprolactone) (PCL) which are already in routine clinical use is described. The materials 

were assessed for their biocompatibility and degradability and were found to be both 

degradable and biocompatible.   

2.1 Introduction 

In order to produce bioresorbable tissue scaffolds by microstereolithography, a versatile 

protocol for the synthesis of photocurable polymers with hydrolytically cleavable ester 

linkages was developed (Gill and Claeyssens 2011). Commercially available photocurable 

polymers such as polyethylene glycol di(meth)acrylate (PEGDA) have been explored for 

tissue engineering applications such as cell encapsulation (Durst et al. 2011), nerve guidance 

conduits (Arcaute et al. 2005) and the creation of experimental tissue scaffolds (Ovsianikov, 

Malinauskas, Schlie, Chichkov, Gittard, Narayan, Lobler, et al. 2011),  however unmodified 

PEGDA is not degradable and unless removed will remain intact indefinitely. Other 

commercially available materials for microstereolithography such as organically modified 

ceramic polymers (Ormocers) (Doraiswamy et al. 2005) share this limitation.  

Biodegradable polymers such as polylactic acid (PLA) (Kulkarni et al. 1971), 

poly(caprolactone) (PCL) (Porter, Henson, and Popat 2009), poly(glycolic acid) (PGA) 

(Ashammakhi et al. 2000), poly(trimethylene carbonate) (PTMC) (Hou, Grijpma, and Feijen 

2009) and poly(hydroxybutyrate-co-valerate) (PHBV) (Martin and Williams 2003) and their 

Chapter 2: Photocurable and 

Bioresorbable Polymers for Tissue 

Engineering 
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mixtures and copolymers are popular materials for tissue engineering purposes due to their 

bioresorbability and history of clinical use. Bioresorbable polyesters were first adopted in the 

1970’s for the production of sutures and devices for bone fixation (Kulkarni et al. 1971). 

Polymers based on lactide, glycolide and caprolactone monomers are now in common 

clinical usage (Griffith 2000). Other degradable polymers such as poly(3-hydroxybutyrate) 

(PHB) (Amass, Amass, and Tighe 1998) and PTMC (Pego et al. 2003) are still under 

development and have the potential to expand the range of tissue engineering applications for 

polymeric materials. 

These polymers are typically produced commercially by the ring opening polymerization of 

cyclic dimers or monomers. Polylactic acid for example is produced from lactic acid by the 

catalytic depolymerization of lactic acid oligomers into cyclic lactide dimers followed by the 

ring opening polymerization of the resulting dimers to produce high molecular weight PLA 

(Lim, Auras, and Rubino 2008).  

By using a multifunctional alcohol as an initiator, branched oligomers based on bioresorbable 

materials such as PCL, PTMC and PLA can be prepared  (Matsuda, Mizutani, and Arnold 

2000). The produced oligomers have hydroxyl terminated chains which can then be 

functionalized with photo-crosslinkable groups such as coumarins (Matsuda, Mizutani, and 

Arnold 2000) and methacrylates (Melchels, Feijen, and Grijpma 2009). By increasing the 

degree of branching, oligomers with a greater functionality can be prepared resulting in 

increased photocuring rates and shorter microstereolithography fabrication times (Matsuda, 

Mizutani, and Arnold 2000).   It is important to note that despite cross linking of the 

oligomers their degradability by hydrolysis is retained (Mizutani and Matsuda 2002b). 

Following a review of the literature a protocol for the production of a diverse range of 

photocurable bioresorbable resins was proposed. In step 1, the appropriate monomer and 

multifunctional alcohol initiator are selected and refluxed together in the presence of stannous 

octoate catalyst to produce multi-armed hydroxyl terminated oligomers. In step 2, the 

oligomers are functionalized with cross-linkable acrylate or methacrylate groups to yield a 

photocurable polymer. Finally, in step 3 the photocurable polymers are mixed with an 

appropriate photoinitiator and cured to yield a cross linked degradable network. This process 

is shown in figure 5. 
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Figure 5: The selected monomer and initiator are polymerized together to yield an oligomer 

of the desired functionality (step 1). The prepolymer or oligomer is then functionalized with a 

cross-linkable functional group such as an acrylate (step 2). Finally the curable oligomers 

are cross-linked by irradiation in the presence of a suitable initiator to form a cured network 

(step 3). Adapted from Gill and Claeyssens (Gill and Claeyssens 2011) with permissions. 

Functionalization of the oligomers with acrylate or methacrylate groups was chosen over 

functionalization with coumarin derivatives, as used for example by Mizutani and Matsuda 

(Mizutani and Matsuda 2002b) due to the commercially available nature of the necessary 

reagents. The synthesis of acyl chloride functionalized coumarin which can react with the 

free hydroxyl end groups of the oligomer requires several synthetic steps making this 

procedure less readily accessible.  

The suggested protocol allows the preparation of a wide range of copolymers, and the 

molecular characteristics and final mechanical properties can be controlled to a degree by the 

ratio of monomer to initiator. For the purposes of this project four armed oligomers based on 

PLA and PCL were prepared and their biocompatibility assessed. Initially the oligomers were 

functionalized using acryloyl chloride and triethylamine (TEA), as demonstrated by other 

authors (Claeyssens et al. 2009). Although this process yielded photocurable oligomers large 

quantities of salt were generated which required filtration to remove, after which the yield of 
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the final product was low despite repeated washing. The procedure also yielded highly 

chromophoric impurities which proved difficult to separate, resulting in a deep red coloration 

of the oligomer. Additionally, acrylate groups tend to be unstable under storage and the 

products had a tendency to cure prematurely. 

Another procedure for the methacrylate functionalization of hydroxyl terminated oligomers 

and proteins is the reaction of methacrylic anhydride in the presence of a base. This 

procedure was recently used by Ovsianikov et al. for the production of photocurable gelatin 

(Ovsianikov, Deiwick, et al. 2011), and by Seck et al. for the production of photocurable 

PLA-PEG-PLA triblock oligomers (Seck et al. 2010). This procedure was found to be the 

most accessible route for the production of photocurable oligomers. The products can be 

isolated by rotary evaporation followed by precipitation in cold isopropanol with little 

colouration due to impurities.  

2.2 Materials and Methods 

Two methacrylate functionalized resins were initially prepared, one based on PLA and the 

other on PCL. Initial characterization was performed using 
1
H NMR and IR spectroscopy, 

and the general biocompatibility was verified using techniques including MTT assay and 

fluorescence imaging of cells. The polymers were successfully cured under UV illumination 

and gave excellent structuring results. The resins were used in the following chapters to 

produce a range of structures by both one and two photon polymerization.  

2.2.1 Materials 

 The photocurable PLA and PCL were prepared via the ring opening polymerization of (3S)-

cis-3,6-dimethyl-1,4-dioxane-2,5-dione (Sigma-Aldrich, 98%) or ε-Caprolactone (Sigma-

Aldrich, 97%), using pentaerythritol (Sigma-Aldrich, >98%) as the multifunctional alcohol 

initiator and tin 2-ethylhexanoate (Sigma-Aldrich, 95%) as a catalyst with toluene (Sigma-

Aldrich, anhydrous, 99.8%) as solvent. The methacrylate functionalization was performed 

using triethylamine (Sigma-Aldrich, >99%) and methacrylic anhydride (Sigma-Aldrich, 

94%) with dichloromethane (Sigma-Aldrich, anhydrous, >99.8%, 50 ppm amylene stabilizer) 

as a solvent. Isopropanol (Sigma-Aldrich, anhydrous, 99.5%) was used for precipitation of 

the methacrylate functionalized oligomer. 
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2.2.2 Synthesis of Photocurable PLA 

A photocurable PLA oligomer with a targeted molecular weight of ~1200 g mol
-1

 was 

prepared and methacrylate functionalized as described below. All glassware was dried at 120 

°C overnight and flushed with nitrogen prior to use. Reactions were performed under a 

nitrogen atmosphere.  

The hydroxyl terminated oligomer was prepared by refluxing of (3S)-cis-3,6-dimethyl-1,4-

dioxane-2,5-dione (25.5 g, 0.177 moles, 8 molar equivalents) and pentaerythritol (3g, 0.022 

moles, 1 molar equivalent) at 160 °C in 50 mL of toluene in the presence of 1 drop of 

stannous octoate catalyst. After 8 hours the reaction was allowed to cool to room temperature, 

and the product formed as a viscous bottom layer. The toluene solvent was decanted and the 

oligomer dried by vacuum distillation to yield the product as a clear highly viscous resin. 

 

Scheme 1: Synthesis of four armed polylactic acid (PLA). The cyclic lactide dimer undergoes 

a ring opening polymerisation reaction in the presence of a multifunctional alcohol initiator 

(pentaerythritol) in the presence of stannous octoate catalyst at 160 °C for 8 hours using 

toluene as a solvent. 

The methacrylate functionalization was performed in a minimum quantity of 

dichloromethane as solvent. The hydroxyl terminated PLA oligomer (12.5 g, ~0.01 moles, 1 

molar equivalent) was carefully dissolved in the solvent in a round bottom flask under a 

nitrogen atmosphere. The solution was cooled to 0 °C in an ice bath and triethylamine (22.30 

ml, 0.16 moles, 16 molar equivalents) was added. Methacrylic anhydride (11.92 ml, 0.08 

moles, 8 molar equivalents) was then added dropwise using an addition funnel and the 

reaction was brought up to room temperature. The mixture was stirred for a further 24 h 

before the product was isolated by vacuum distillation followed by precipitation in 

isopropanol at – 20 °C. The precipitated product was collected by decanting the isopropanol 

and dried under vacuum at room temperature for 24 h to yield a clear viscous resin. 
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Scheme 2: The terminal OH groups on the four-armed PLA are methacrylate functionalised 

by reaction with methacrylic anhydride (MAA) in the presence of triethylamine (TEA) and 

dichloromethane (DCM) as solvent.  

2.2.3 Synthesis of Photocurable PCL 

ε-Caprolactone (Sigma-Aldrich, 97%), (0.1 mol, 11.2 g, 10.87 ml, 8 mol eq.) was added to a 

mixture of pentaerythritol (0.0125mol, 1.70 g, 1 mol eq.) in 100 ml of toluene under a 

nitrogen atmosphere with magnetic stirring. The reaction mixture was then brought up to 

160˚C and 1 drop of stannous octoate was added. The reaction mixture was then left for 8h 

and then cooled at room temperature allowing the precipitation of the product as a lower 

viscous layer which was separated by decanting the toluene, and the remaining solvent 

removed by rotary evaporation.  

 

Scheme 3: Synthesis of four armed polycaprolactone (PCL). The cyclic monomer ɛ-

caprolactone undergoes a ring opening polymerisation reaction in the presence of a 

multifunctional alcohol initiator (pentaerythritol) in the presence of stannous octoate catalyst 

at 160 °C for 8 hours using toluene as a solvent. 

The methacrylate functionalized oligomer was prepared by dissolving the hydroxyl 

terminated PCL (3.50 g, 0.003 mol, 1 molar equivalent) in 50 ml of dry dichloromethane and 

triethylamine (2.03 g, 2.79 ml, 0.02 mol, 8 mol eq.). Methacrylic anhydride (3.13 g, 2.98 ml, 

0.02 mol, 8 mol eq) was added dropwise using an addition funnel.  Following addition of the 

methacrylic anhydride the reaction mixture was brought up to room temperature and left to 

react for 24 h. The solvent and TEA were then removed under reduced pressure and the 

product purified in isopropanol at -20 °C. 
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Scheme 4: The terminal OH groups on the four-armed PCL are methacrylate functionalised 

by reaction with methacrylic anhydride (MAA) in the presence of triethylamine (TEA) and 

dichloromethane (DCM) as solvent. 

2.2.4 Polymer Characterisation 

The PLA and PCL based oligomers were analysed before and after methacrylate 

functionalization by 
1
H NMR spectroscopy. Samples were prepared by dissolving 20 mg of 

the sample in deuterated chloroform (Sigma-Aldrich, 100%, 99.96% atom D) and filtering 

into a standard NMR tube. Spectra were recorded at 400 MHz using a Bruker AV1-400 

spectrometer. IR Spectra of the photocurable PLA were obtained on a Perkin-Elmer 

SPECTRUM 2000 IR spectrometer, by sandwiching a small droplet of the resin between two 

KBr disks to create a thin film. 

Further characterisation of the products, for example by gel permeation chromatography was 

not performed. The focus of this thesis is in the structuring and biocompatibility of the 

polymers and their applications in microstereolithography. Extensive characterisation has 

been performed by other authors on this class of materials by other authors (Claeyssens et al. 

2009; Matsuda, Mizutani, and Arnold 2000; Seck et al. 2010; Meier and Schubert 2005). 

2.2.5 Thin Film Preparation by Spin Coating 

In order to create thin films for cell culture and surface characterisation, photosensitive 

solutions of the methacrylate functionalized PLA and PCL oligomers were prepared. In an 

amber glass vial 250 µl of 4-methyl-2-pentanone (Sigma-Aldrich, ≥98.5%) was added to 1 g 

of the photocurable oligomer and 20 mg of 4,4’-bis(diethylamino)benzophenone (Sigma-

Aldrich,  ≥99%) and the mixture was stirred for 15 minutes using a magnetic stirrer bar. Prior 

to use the mixture was taken up in a syringe and passed through a polycarbonate filter of 0.45 

µm pore size.  

The photocurable solution was then spin coated onto glass coverslips functionalized with 3-

methacryloxypropyltrimethoxysilane (MAPTMS) (Polysciences Inc.). MAPTMS 

functionalization was performed by soaking standard borosilicate glass coverslips in a 40 mM 
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solution of MAPTMS in chloroform (Sigma-Aldrich, amylene stabilized, ≥ 99%,) for a 

minimum of three hours. The silane functionalization provides methacrylate groups on the 

surface of the glass which allow the polymer to bind to the surface upon curing. Without this 

functionalization the films had a tendency to detach from the surface and float off during cell 

culture. Spin coating was performed by depositing 1 drop of the photosensitive material onto 

the glass substrate and spinning for 60 s at 4000 rpm followed by drying under vacuum to 

remove the solvent. Similar conditions were used for the spin coating of polycaprolactone by 

other authors (Marletta et al. 2005). The films were then cured using a UV lamp (EXFO 

Omnicure S1000 100W) for 300 s at 30 mW cm
-2.

  

2.2.6 Swelling Analysis and Degradation of Photocurable PLA 

In order to investigate the swelling behaviour of the photocurable PLA, the polymer was 

mixed with 2% w/w photoinitiator in 4-methyl-2-pentanone as described above and pipetted 

into a PDMS mould measuring 1 cm x 1 cm x 0.2 cm. The solvent was removed under 

vacuum until the sample reached a constant weight. The material was then cured by direct 

exposure to the UV lamp to produce cured squares of the material. Following curing the 

samples were developed by soaking in 4-methyl-2-pentanone for one hour and dried again 

under vacuum. For comparison, samples of linear PLA (NatureWorks Ingeo 7000D) with the 

same dimensions were cut from tensile testing samples prepared using a Haake MiniJet II 

injection moulding device at a temperature of 215 °C, a nozzle pressure of 600 bar and a 

mould temperature of 40 °C.  

The samples were all dried to a constant weight and the mass of each sample recorded before 

immersion in distilled water. The samples were removed from the water, wiped dry and the 

mass recorded before replacing in the water at each time point. For the degradation analysis 

the samples were immersed in 0.5 M aqueous sodium hydroxide solution, and the solution 

changed every day to maintain a constant concentration. 

2.2.7 Cell Culture 

The biocompatibility of the photocurable oligomers was initially verified using human 

dermal fibroblasts by MTT assay and confocal microscopy. MTT Assay gives an indication 

of the number of living cells on a sample by colorimetric methods, and can be used to 
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compare between material samples and a control. Confocal microscopy is used to examine 

cell morphology by staining cells with a fluorescent dye and imaging the fluorescence.   

2.2.8 Human Dermal Fibroblast Culture 

Human dermal fibroblasts were harvested from split thickness skin grafts (STSGs) obtained 

from specimens following routine abdominoplasties and breast reductions, with the informed 

consent of all patients for the skin to be used for research through a protocol approved by the 

Ethical Committee of the Northern General Hospital Trust, Sheffield, UK. Cell isolation and 

culture were as published previously (Smith, Rimmer and Macneil 2006). Cells were isolated 

by members of the Biomaterials and Tissue Engineering Group (University of Sheffield) and 

were received at P7 and used up until P12.  Cells are grown in an incubator at 37˚C gassed 

with 5% CO2 and cultured in completed Dulbecco’s modified Eagles media (cDMEM).   

2.2.9 Human Dermal Fibroblast Medium 

61.25 ml of DMEM (Dulbecco’s modified Eagle’s medium) are removed from a 500 ml 

flask. To the flask, Foetal Calf Serum (FCS) (50 ml), L-Glutamine (100×) (5 ml), penicillin-

streptomycin (10,000 µg/ml, 10,000 µg/ml) (5 ml) and amphotericin (Fungizone
TM

) (1.25 ml) 

were added to make 500 ml cDMEM. Sterility was checked by transferring 3 ml to an 

incubator and storing for 72 h, before examining under an optical microscope. The was stored 

for at 4˚C and was replaced every 4-6 weeks.  

2.2.10 Cell Passaging 

To passage cells the medium was removed, followed by washing twice with phosphate 

buffered saline (PBS) (removal of media containing proteins was essential to prevent 

inhibition of the trypsin). Following this, 1.5 ml of trypsin was then added and the flask 

incubated for 5 minutes at 37˚C. The flask was then tapped to detach the cells (detachment 

checked under microscope) and 10 ml of cDMEM added to quench the Trypsin. The resulting 

cell suspension was centrifuged for 5 minutes at 1000 rpm, the supernatant removed and the 

cell pellet resuspended in a known volume (1 ml) of medium. A cell count was then 

performed and 250,000 cells can be added to a T75 flask containing 15 ml of cDMEM. Cells 

should be used before 80% confluence. Optical microscopy images of typical human dermal 

fibroblasts approaching confluence are shown in figure 6. 
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2.2.11 Cell Counting 

To perform a cell count, 9 μl of cell suspension was pipetted into the chamber of a 

haemocytometer. The number of cells within the volume of the chamber was then counted, 

and multiplied by 10
4
 to give the number of cells in 1 ml of the suspension. To account for 

cells along the edges of the counting area, those touching the top and left side of the grid 

were counted, those touching the bottom and right were not. 

 

Figure 6: Human dermal fibroblasts cultured in a T75 flask in cDMEM. Cells are 

approaching 80% confluence and the typical human dermal fibroblast morphology can be 

observed. Scale bars: Left 100 µm, right 25 µm 

2.2.12 MTT Assay  

MTT Assay measures cell metabolic activity by the conversion of an artificial hydrogen 

acceptor substrate by dehydrogenase enzymes within the cells (Macneil et al. 1993; Ealey et 

al. 1988). The artificial substrate is reduced within the cells to form a coloured product which 

can be eluted and quantified by spectrometry. This can be used to give an indication of cell 

number as enzyme activity usually relates to cell number. In a typical procedure, cells are 

cultured overnight in a well plate. The medium is removed and the cells carefully washed 

once or twice with PBS (1 ml per well). 1 ml of MTT solution (0.5 mg/ml MTT powder in 

PBS) is added to each well and the plate left at 37˚C in an incubator for 40 minutes. The 

MTT is then removed and 300 μl acidified isopropanol (25 μl concentrated HCl in 20 ml 

isopropanol) is added to each well. Two 150 µl samples are then transferred to a 96 well plate 

and the optical density measured in a plate reader at 540 nm and referenced at 630 nm. 
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2.2.13 Statistical Analysis 

Statistical analysis (two tailed Student’s t-test) was performed using the program GraphPad 

Prism 6 (GraphPad Software Inc.) to indicate statistical significance.   

2.2.14 Confocal Microscopy and Cell Staining 

In order to visualise the cells using fluorescence microscopy, cells were stained with TRITC-

phalloidin (for actin) and 4',6-diamidino-2-phenylindole (DAPI) (for the nuclei). Human 

dermal fibroblasts were seeded in 1 ml of media at a density of 50,000 cells per ml and 

cultured on the samples for ten days. Following culture for the required amount of time, the 

cells were removed from the incubator and carefully washed with PBS. The samples were 

then left to soak in PBS at room temperature for 30 minutes, permeabilized by soaking in 

Triton X-100 in PBS for 5 minutes and then rinsed again three times with clean PBS. The 

PBS was then removed from the samples and enough staining solution (1:1000 parts 

phalloidin-TRITC and DAPI) to cover the samples was added. The solutions were left in 

contact with the samples at room temperature for 30 minutes before rinsing again three times 

with PBS. The samples were then mounted using fluorescent mounting medium for imaging 

using a using a Carl Zeiss LSM510-META confocal microscope. TRITC-phalloidin images 

(actin) were taken at λex = 545 nm/ λem = 573 nm, DAPI images (nuclei) were taken at λex 

= 358 nm/ λem = 461 nm. 

2.3 Results  

2.3.1 Polymer Characterisation and Cell Culture 

Photocurable resins based on PLA and PCL were synthesised as described in the methods 

section. The photocurable polymers were characterised using spectroscopic techniques 

(NMR, IR) prior to curing. The photocurable polymers were spin coated and cured to produce 

thin films on the surface of glass coverslips. A range of cell culture and imaging techniques 

were then used to determine the biocompatibility of the polymers post-curing. The films were 

further characterised using X-ray photoelectron spectroscopy, water contact angle analysis 

and SEM, as described in chapter 5. 
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2.3.2 Polymer Characterisation 

The polymer resins were characterised using 
1
H NMR spectroscopy. NMR Characterisation 

was used to determine the ratio of the initiator to monomer in the final resin, as demonstrated 

in (Claeyssens et al. 2009). Resins with a targeted molar ratio of a) 1 molar equivalent of 

initiator (pentaerythritol) to 8 molar equivalents of ε-caprolactone (monomer) and b) 1 molar 

equivalent of initiator (pentaerythritol) to 8 molar equivalents of lactide (a cyclic dimer of 

two lactic acid monomers) were prepared and the overall ratio of monomer to initiator was 

found to be in general agreement with the results of the NMR integration. The effect of side 

reactions and dimerization was not explored. The appearance of vinyl peaks in the 5.5-6.5 

ppm region of the 
1
H NMR spectra were used to verify the methacrylate functionalization. It 

is apparent from multiple peaks in the vinyl region that some methacrylic acid may remain in 

the sample as a side product, and that further purification (for example using an aqueous 

work up) would be needed to remove this. 

 

Figure 7: 
1
H NMR Spectrum of methacrylate functionalized PLA based oligomer prepared 

from a pentaerythritol initiator. Ratio of pentaerythritol methylene groups (CH2, ‘a) to CH 

group in lactide monomer (b/d) approximately 1:2, in agreement with theoretical ratio of 

pentaerythritol to lactide in reaction (1:8).Vinyl peaks (5.5-6.5 ppm) indicate methacrylate 

functionalization of oligomer. 
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Figure 8: IR Spectrum of methacrylate functionalized PLA oligomer indicating reduced 

intensity of –OH signal (~3000 cm
-1

) relative to OH signal at 3500 cm
-1

 and appearance of 

methacrylate signal (1650 cm
-1

). 

FT-IR spectroscopy was also used to confirm methacrylate functionalization of the 

oligomers, by the appearance of peaks characteristic of carbon-carbon double bonds at 1600 

cm
-1

.  Example spectra of the PLA based oligomer described in the methods section are 

provided above in figures 7 and 8.  

2.3.3 Swelling Analysis and Degradation  

The mass increase of the polymer samples was expressed as the percentage mass increase 

from the dry sample. The data reported is the average of three repeats. The photocured PLA 

samples were found to undergo rapid uptake of water upon immersion at room temperature, 

absorbing 9% of their dry mass in water and reaching maximum absorption after around three 

days. The linear injection moulded PLA samples on the other hand exhibited far more typical 

swelling behaviour, comparable to swelling values reported by other authors (Balakrishnan et 

al. 2011) (see figure 9). The high water uptake of the cured PLA sample indicates inefficient 

packing of the polymer chains as a result of the branched nature of the oligomers. Water is 

therefore able to penetrate into free space within the structure. The ability of the cured PLA 

to absorb more water may make this material less hydrophobic and allow greater cell 

attachment than linear PLA. 
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Figure 9: Swelling of linear and photocured PLA samples in distilled water expressed as 

percentage mass increase against time. Date is shown as mean ± standard deviation (n=3). 

The photocured PLA can be seen to increase in mass to around 9% higher than original 

value whereas the commercially available PLA gains less than 1% in mass. 

The degradation profile of cured PLA was compared to that of linear PLA by immersion in 

0.5 M aqueous sodium hydroxide solution (pH: 13.7). It became impossible to measure the 

mass loss (or increase due to swelling) of the cured PLA samples due to the rapid change in 

sample structure. After 24 h immersion in the solution the cured PLA samples had begun to 

swell and turned opaque. After 48 h immersion the samples had swollen to several times their 

original size indicating rapid breakdown of the structure due to ester hydrolysis and 

subsequent water uptake. After seven days in the solution the structure has broken down 

completely leaving swollen fragments of the material in solution. The linear PLA control 

samples on the other hand had retained their original structure and appearance, losing around 

0.15% of their original mass after 7 days (data not shown). 

Although the photocurable PLA samples did undergo breakdown in aqueous sodium 

hydroxide solution, further work is needed to verify that the photocured material will undergo 

hydrolysis at physiological pH. The data presented here indicates that the material forms a 

branched network upon curing facilitating rapid uptake of water and swelling of the material. 

The material was also shown to degrade in basic conditions and is susceptible to ester 

hydrolysis.  
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Figure 10: Swelling and fragmentation of cured PLA samples. The PLA samples rapidly 

increased in mass, turning opaque and finally undergoing fragmentation. Images taken after 

0, 1, 2 and 7 days (left to right).  

The increased swelling and rapid degradation of the structure compared to linear PLA may 

also result from decreased crystallinity due to the high degree of cross-linking and branching 

in the cured polymer. Crystallinity reduces the overall permeability of PLA by reducing the 

amorphous fraction in which diffusion of penetrants may occur by molecular ‘hopping’ 

between voids created by random thermal motion of the polymer chains (Drieskens et al. 

2009). 

2.3.4 Human Dermal Fibroblast Culture on Polymeric Thin Films 

In order to investigate the biocompatibility of the photocured PLA and PCL based polymers 

an MTT assay was performed. Using the protocol described in the methods section human 

dermal fibroblast proliferation on thin films of the cured PLA and PCL was compared to 

proliferation on a glass coverslip control. Using 50,000 cells per sample in 1 ml of medium 

the samples were cultured for 1, 3 and 7 days in a 24 well plate. Medium was changed every 

three days or as necessary. Six repeats per sample were performed. 

The results of the MTT assay indicate that the photocured PLA and PCL have no negative 

effect on fibroblast proliferation, as would be expected for polymers based on these materials. 

In fact, the MTT assay indicates that cell proliferation is significantly better on the 

photocured PLA after three and seven days and better on the photocured PCL after seven 

days (p <0.05). The growth curve on the glass, PLA and PCL substrates are similar showing 

the same general trend. The higher cell count on the polymeric substrates as inferred by 

higher absorption at 540 nm may imply better cell adhesion on the cured polymers than on 

the glass. As a result of the improved adhesion the cells may proliferate more rapidly or be 
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more difficult to dislodge when removing media or PBS prior to the MTT assay. The better 

adhesion may be a result of the high water absorption of the polymers. 

To verify that the higher MTT absorbance values were not the result of a chemical reaction 

between the polymers and the MTT substrate, MTT solution was applied to cured PLA and 

PCL films directly and incubated for 40 minutes, however no colour change resulted 

indicating that the MTT was not reduced by the polymers (or impurities such as remaining 

photoinitiator contained within the film).  

 

Figure 11: MTT Comparing proliferation of human dermal fibroblasts on spin coated PLA 

and glass coverslip control. Data reported as mean ± standard deviation (n=6). Data were 

analysed using two-tailed Student’s t-test; ****p<0.0001, ***p<0.0003. The result indicates 

cell proliferation was significantly higher on the photocured PLA after 3 and 7 days. 

The adhesion of human dermal fibroblasts on the photocurable PCL material was further 

compared to glass coverslips and a tissue culture plastic control using MTT assay. 

Photocured PCL films, glass coverslips and empty tissue culture plastic (TCP wells) were 

seeded with 50,000 cells in 1 ml of media for 24h. The glass coverslips and PCL films were 

then transferred to an empty well plate and MTT assay performed both in the wells the 

samples were removed from, and on the films in the new well plate to determine the 

proportion of cells growing on the material compared to the number growing in the well. The 

proportion of cells growing on the PCL film was determined to be 95%, whereas the 

proportion growing on the glass coverslips was found to be 75% (see figure 13).  
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Figure 12: MTT Comparing proliferation of human dermal fibroblasts on spin coated PCL 

and glass coverslip control. Data reported as mean ± standard deviation (n=6). Data were 

analysed using two-tailed Student’s t-test; **p<0.005. The results indicate that proliferation 

was higher on the photocurable PCL after 7 days. 

To assess the morphology of human dermal fibroblasts cultured on the photocurable 

polymers, cells were seeded at a density of 50,000 cells per well in 1 ml of medium and 

cultured for ten days. The cells were then fixed and stained with DAPI (to visualize the 

nuclei) and TRITC-phalloidin to visualize the actin filaments. The cells had reached 

confluence and were observed to exhibit a typical fibroblast morphology, spreading over the 

surface and appearing elongated with long actin fibres.  

Cells cultured on a material which either has a degree of toxicity or which they cannot attach 

to typically appear very rounded and ball like, and proliferation is retarded. The confocal 

images obtained at ten days indicate that cells are capable of attaching to and proliferating on 

this material as well as exhibiting typical fibroblast morphology. The proliferation assay 

results also indicate the materials are biocompatible and cells exhibit some degree of 

attachment. 
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Figure 13: MTT of human dermal fibroblasts cultured on TCP control, photocured PCL and 

Glass coverslips. Cells were cultured on slides for 24h before the slides were moved to new 

wells for the MTT assay. MTT assay was then performed on both the relocated slides and the 

original wells, to determine the proportion of cells attached to the coverslipas compared to 

those left in the original well.  Data reported as mean ± standard deviation (n=6). Data were 

analysed using two-tailed Student’s t-test; ****p<0.0001.  

The preliminary results of both the MTT assay and confocal microscopy indicate that the 

photocurable polymers are both biocompatible and cell adhesive once cured as a thin film. 

Human dermal fibroblasts have been shown to proliferate normally at one three and seven 

days in culture, and exhibit typical fibroblast like morphology after ten days in culture. The 

adhesion of neuronal type cells on the photocurable polymers will be examined in greater 

detail in chapters 5 and 6, along with further techniques such as DNA quantification assay 

and live dead staining. Advanced techniques such as Comet assay are demonstrated in 

chapter 6.  
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Figure 14: Human dermal fibroblasts cultured on photocurable PLA for ten days and 

visualized by confocal microscopy. Nuclei are indicated by blue stain (DAPI) whereas actin 

filaments throughout cell body appear red (TRITC-phalloidin).Cells appear confluent 

exhibiting a typical fibroblastic morphology. Scale bars 5 µm. 

2.4 Discussion 

The preparation of photocurable oligomers based on polylactic acid and polycaprolactone 

was performed using commonly used synthetic techniques. The use of these materials in 

microstereolithography is attracting an increasing number of publications (Melchels, Feijen, 

and Grijpma 2009; Mizutani and Matsuda 2002b; Claeyssens et al. 2009) expanding the 

range of applications for microstereolithography in tissue engineering.  

The characterisation of the materials produced in this chapter indicates that the oligomers 

were successfully methacrylate functionalized, and cured films and blocks of the material 

were produced. The photocurable PLA based material was shown to absorb significantly 

more water than the thermoplastic linear analogue. The photocured PLA material was also 

shown to degrade more rapidly in sodium hydroxide solution than thermoplastic PLA. This 

would indicate a network of cross-linked oligomers with loose packing of the polymer chains. 

Cell viability of the materials was investigated using both fluorescent microscopy (to assess 

cell morphology) and MTT assay (to assess cell metabolic activity, which is indicative of cell 

number). The data collected suggest that these materials are suitable for cell culture, with cell 

proliferation and adhesion on the photocurable materials being significantly better than on the 

glass coverslip controls.  
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Further work is needed in order to characterise better the molecular weight and distribution of 

the synthesised polymers, as well as the mechanical properties and full degradation profile in 

physiological conditions. The focus of this thesis is the structuring and biocompatibility of 

these materials, and this is investigated thoroughly in the following chapters. The synthesis of 

these oligomers has shown that photocurable analogues of common bioresorbable polymers 

may be produced.  

Copolymer production and control of molecular weight allows control over characteristics 

such as degradation rate (Choi and Park 2002), modulus (Cohn and Salomon 2005), 

elongation at break (Zhang et al. 2012) and hydrophobicity (Kim et al. 2003).  The 

combination of polymers with customised properties and user defined structuring by 

microstereolithography will allow the creation of tissue engineering devices with designer 

mechanical performance and structure, allowing scaffolds to match the wide range of tissue 

environments encountered within the human body. 

2.5 Conclusions 

A protocol for the production of a range of photocurable biomaterials with a range of 

properties was described. Two example resins based on polycaprolactone and polylactic acid 

were prepared and characterised, and their biocompatibility was assessed using MTT assay 

and cell imaging techniques and primary human cell lines. As described in chapter one, 

material properties can influence the behaviour of cells, for example by influencing stem cell 

specification. In the following chapters the structuring of these materials will be detailed, in 

order to combine designer biomaterials with bespoke microstructure fabrication in order to 

create next generation tissue scaffolds.  
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Abstract  

In this chapter the design and construction of a projection microstereolithography workstation 

based on a digital multimirror device (DMD) allowing user defined patterning of 

photocurable materials is described. Using a cure depth control approach the system was also 

used to create three-dimensional porous constructs from both commercially available resins 

and in-house prepared photocurable resins. Cell culture was performed on the structures to 

demonstrate potential applications of this technology, and applications in tissue scaffold 

fabrication, corneal cell delivery devices and nerve guidance conduits were explored. A 

horizontal resolution of 10 µm was achieved, and structures on the centimetre scale were 

produced. 

3.1 Introduction 

Microstereolithography was first developed in the 1980’s as a rapid prototyping technology 

for the fabrication of small parts or ‘prototypes’ using a focussed beam of light to selectively 

polymerize or cure patterns into a photosensitive resin according to a three-dimensional 

computer model (Narayan et al. 2010). To create three-dimensional structures a layer-by-

layer methodology is used in which the three dimensional computer model is converted into 

horizontal slices which are sequentially written out with stepping in the z-direction. The 

material to be cured is commonly a liquid pre-polymer, but may also take the form of a 

powder or whole sheets of material.  

The ability of microstereolithography to rapidly create small parts with a high amount of 

detail has attracted the attention of tissue engineers due its suitability for the creation of tissue 

scaffolds with optimised pore geometry for cell and nutrient diffusion (Melchels, Barradas, et 

al. 2010; Melchels et al. 2011), nerve repair devices with unique architecture allowing greater 

cell loading (Arcaute et al. 2005), patterned networks of encapsulated cells (Liu and Bhatia 

2002), patient or structure specific scaffolds created from reconstructed microtomography 

data (Solaro et al. 2008), potential vascular networks  or grafts (Baudis et al. 2009) microwell 

Chapter 3: Dynamic Projection 

Microstereolithography for Tissue 

Engineering 
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arrays loaded with cells  and other devices for studying cell-structure interactions such as 

grooved surfaces and a wide range of geometrically optimised structures (Chua et al. 2003a, 

2003b). 

Microstereolithography first evolved around more commonly observed one photon based 

curing processes, however two photon based techniques are growing in their application to 

microfabrication for tissue engineering (Maruo and Fourkas 2008). In this chapter, one 

photon microstereolithography will be explored with a focus on dynamic mask projection. In 

following chapters two photon microstereolithography will be explored in more detail.  

One photon microstereolithography, in which curing is initiated by the absorption of one 

photon by a photoinitiator is accomplished by two distinctly different approaches. In 

projection microstereolithography, an image is projected into the curable polymer resulting in 

curing according to the projected pattern (Han et al. 2008). In scanning 

microstereolithography, the focal point of a laser is scanned across the surface of the resin in 

order to write out the desired pattern in a point to point fashion (Kwon and Matsuda 2005). A 

further advancement in the field of projection microstereolithography is the use of dynamic 

masking technology (Choi, Wicker, Cho, et al. 2009), which eliminates the need for the 

creation of individual masks prior to structuring. 

In this study the construction and operation of a dual light source projection 

microstereolithography workstation is described. The system may be used with either an 

ultraviolet (UV) light source with a peak emission at 365 nm or a blue laser operating at 

473 nm, allowing curing with different photoinitiators at two different wavelengths. Patterned 

light is generated using a digital micromirror device (DMD) and the resulting image is 

projected into a photosensitive resin supported in a sample holder. Vertical stepping to 

generate three dimensional structures was accomplished using a three axis translation stage. 

The system was used for the production of experimental tissue scaffolds, nerve guidance 

conduits and polymeric rings containing micropockets which may be used as stem cell 

delivery vehicles with further development. The produced structures represent valid potential 

clinical applications for this technology. Further development of the described innovative 

applications in corneal regeneration and nerve repair is ongoing. 
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3.2 Materials and Methods 

The initial development and construction of the system is detailed in the following design 

study. The system was used to produce a range of patterns and single layer structures before 

layer-by-layer stepping and direct z translation were used to create three-dimensional devices, 

which were imaged using optical microscopy and scanning electron microscopy. Cell culture 

was used to demonstrate potential applications of this technology for the production of tissue 

scaffolds and tissue engineering devices. 

3.2.1 Design Study: Development of a Projection Microstereolithography Workstation 

A projection microstereolithography workstation based on a DMD dynamic projection 

system was designed and built. The system incorporates interchangeable light sources, beam 

forming optics, a DMD for image formation, image focusing optics and a sample support 

mounted on an (x,y,z) translation stage in order to position the sample in the horizontal plane 

and provide vertical stepping. The system was constructed on an optical breadboard to allow 

precise positioning of optical components. A simplified schematic of the projection system is 

shown in figure 15. 

 

Figure 15: Schematic of projection stereolithography system. Radiation is emitted and passes 

through an optical arrangement in order to form a suitable beam. The beam is reflected by a 

digital micromirror device which generates images according to a computer model. The 

image then passes through a lens where it is focussed into a photosensitive solution where 

curing occurs. Vertical stepping is accomplished using a translation stage. 
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The projection microstereolithography device was built on an anodised aluminium optical 

breadboard (Thorlabs). The selected breadboard has a matte black finish preventing unwanted 

reflections which present a potential hazard when working with lasers. The breadboard 

allows exact positioning and interchanging of optical components. The system was enclosed 

within a metal framed cage (Thorlabs) covered with black cardboard panels to contain the 

radiation during curing. Furthermore, when using the laser device the system was interlocked 

to prevent accidental exposure to radiation. All lenses, lens mounts and optical posts were 

supplied by Thorlabs unless otherwise specified. 

Two different light sources were selected for illumination. The system was first assembled 

with a UV lamp (EXFO Omnicure S1000 100 W) as the light source. The lamp generates UV 

light over a range of wavelengths with a peak emission at 365 nm. Since the lamp produces a 

divergent beam, the light requires collimation to maintain a uniform diameter and intensity 

along the beam path.  To collimate the beam, the radiation is passed through a lens with a 

focal length of 2.5 cm. At the focal length of this lens (2.5 cm) a pinhole lens is used to block 

any scattered radiation, and a lens with a focal length of 5 cm is placed 5cm from the pinhole 

(7.5 cm from the 2.5 cm lens). This results in a collimated beam. To achieve light of only one 

wavelength, a filter can also be placed in the beam, this avoids chromatic aberration. Figures 

16 and 17 demonstrate the process of collimating the beam. 

 

Figure 16: Collimation of the UV Lamp. The beam is emitted (A) and passes through a 2.5 

cm lens (B). Scattered light (E) is blocked by a pinhole lens (C) and the beam is directed 

towards the DMD using a 5 cm lens (D) resulting in a collimated beam (F). 
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Figure 17: Formation of a collimated UV beam. Light from the UV lamp is emitted through 

an optical cable (A) and passes through a telescopic lens set (B) with a pinhole lens in the 

centre to block stray radiation. The collimated beam passes through a monochromatic filter 

(D) allowing only light of a specific wavelength (365 nm) to pass through. 

As an alternative light source to the UV lamp a blue laser (CNI Laser, MBL-473, 473 nm~ 

150 mW) was used. The benefit of using a laser is that the beam does not require collimation, 

and only light of a single wavelength is generated. Furthermore, the beam is not divergent 

preventing distortion or blurring of the image. Since the beam diameter emitted by the laser is 

not large enough to cover the whole of the DMD surface, the beam was again expanded using 

a telescopic lens arrangement. The beam passes through a lens with a focal length of 2.5 cm 

followed by a 15 cm lens place 17.5 cm (2.5 + 15 cm) later. This results in an 6 × expansion 

of the beam diameter allowing larger structures to be produced. 

In order to form the desired image a digital micromirror device (DMD) (Texas Instruments) 

was used. The DMD consists of an array of micromirrors (768 rows of 1024 mirrors each) 

which can be turned on or off according to a bitmap. By creating a bitmap of the desired 

image the user can control directly the pattern that is reflected by the DMD. Each 

micromirror on the DMD is on a hinge which can be rotated to either plus or minus 12°. The 

on and off position correspond to either plus or minus 12° as determined by the user. When 

the DMD is illuminated the mirrors which are ‘on’ will reflect the light in the direction of the 

focusing lenses, and those that are ‘off’ will reflect the negative of the desired image in a 

dummy direction where it is absorbed by a beam stop. The use of a DMD has been 
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demonstrated for example by several authors (Choi, MacDonald, and Wicker; Han et al. 

2008).  

Once the desired image has been formed the image focussed into the photocurable resin using 

a lens, typically with a magnification of 5-10 times. The size of the image and also the 

resolution can be controlled by the power of the final focusing lens. A more powerful lens 

can create a smaller structure with a better resolution, whereas a lens of lower power can 

create a larger image with a larger minimum feature size. 

In order to create structures in three dimensions a three axis linear translation stage (PT3 

Translation Stage, Thorlabs) was used. By curing onto a surface which could be lowered into 

the photocurable resin three dimensional objects could be created, either by lowering the 

sample continuously into the resin or by curing the sample in a layer-by-layer fashion and 

lowering the sample holder to maintain a fixed distance between the surface of the resin and 

the focusing lens. The most rapid method of producing simple structures such as hollow tubes 

was to lower the structure continuously into the resin whilst curing. This technique was 

explored for the production of nerve guidance conduits, as described later in this chapter. 

Han et al. demonstrate the fabrication of tissue engineering scaffolds using a layer-by-layer 

method (Han et al. 2008). This method allows the creation of structures with well resolved 

internal geometry. Between the curing of consecutive layers the structure being created is 

lowered into an inert liquid which has a higher density than the photosensitive resin and 

forms a lower layer. As the structure is lowered into the inert liquid partially cured oligomers 

which can build up between the internal features are washed away, resulting in improved 

resolution. The drawback of this method is that cure times are increased. This technique may 

be explored in future studies with the microstereolithography work station.  

3.2.2 Photocurable Material Preparation 

For initial curing trials with the microstereolithography system using the ultraviolet lamp a 

commercially available UV curable adhesive known as NOA 81 was used (Norland Optical 

Adhesive 81, Norland Products). This clear and transparent viscous liquid material cures 

rapidly in the presence of UV radiation and is used directly from the bottle without the need 

to add a photoinitiator. 
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Structures were also created using low molecular weight polyethylene glycol (PEGDA) 

diacrylate (Mw 258 g/mol, 100 ppm MEHQ inhibitor, Sigma-Aldrich). To prepare this 

polymer for photocuring, the material was first passed through an inhibitor remover column 

(Aldrich) to remove the inhibitor.  

For the ultraviolet light source, 4,4’-bis(diethylamino)benzophenone was added to the 

solution to the concentration stated in the individual experiments (typically 1-2%) and 

sonicated thoroughly for 10 minutes in a sonic bath at room temperature. To prepare the 

material for curing with the blue laser light source camphorquinone (97%, Sigma-Aldrich) 

was used as a photoinitiator, and prepared by sonication in order to mix the powder with the 

resin. Photocurable polylactic acid resin was prepared as described in chapter 2. The analysis 

of cell viability and adhesion on this material and the interaction of cells with devices created 

from this material is examined in detail in chapters 4, 5 and 6.  

3.2.3 Sample development 

Samples prepared from NOA81 were developed by immersion in toluene for ten minutes in 

order to remove uncured material. Polyethylene glycol diacrylate structures were developed 

by soaking in isopropanol overnight unless stated otherwise. Photocurable PLA structures 

were developed by immersion in 4-methyl-2-pentanone and rinsing with isopropanol as 

described in following chapters. 

3.2.4 Scanning Electron Microscopy 

Samples were imaged using an Inspect F scanning electron microscope (SEM) using an 

accelerating voltage of 10 kV and a spot size of 3, after the application of a thin gold coating 

to the samples using an Emscope SC500 sputter coater. Samples containing cells from cell 

culture were dehydrated using increasing concentrations of ethanol in distilled water, 

followed by pure ethanol, ethanol mixed with hexamethyldisilazane (HMDS, ≥ 97%, Sigma-

Aldrich) and finally pure HMDS according to the protocol presented in chapter 5. 

3.2.5 Cell Culture Methods 

Human dermal fibroblasts were extracted from human skin under a tissuebank licence. Rabbit 

limbal fibroblasts were kindly supplied by Dr Í. Ortega (University of Sheffield). In brief, the 

cells were extracted from waste rabbit eyes from a pet food company (Woldsway Foods Ltd, 
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Spilsby, UK). The cells were cultured in completed Dulbecco’s modified Eagles medium 

(cDMEM) containing foetal calf serum, Fungizone
TM

 (amphotericin B), L-Glutamine and 

penicillin/ streptomycin. 

To visualise the cells by MTT staining, cells were cultured according to the individual 

experiment before washing twice with phosphate buffered saline (PBS) before incubation at 

37 °C for 40 minutes in a prepared by adding 0.5 mg MTT in 20 mL of PBS. After the 

required time the solution was removed before imaging of the cells.  

3.3 Results and Discussion 

The microstereolithography system was first used to create patterned arrays from 

photocurable materials in order to investigate the ability of the system to recreate the input 

bitmap. Three dimensional structuring was then demonstrated and structures were selected in 

order to represent potential applications of this technology in tissue engineering.  

The development of a dynamic mask projection based microstereolithography device as 

discussed in the previous section allows the production of a wide variety of surface patterns 

which can be modified simply by changing the computer design. In order to create the desired 

surface morphology a bitmap is created and loaded into the control software, forming the 

desired pattern on the surface of the DMD, which is then projected into the photosensitive 

resin by exposure to the curing radiation. The dynamic masking capability provides 

advantages over established photomask based lithography techniques, eliminating time 

consuming and costly photomask production techniques such as electron beam etching, step 

by step production or laser printing (Chen et al. 1998). 

The generation of structures directly from a bitmap was demonstrated by exposure of a 

photocurable material to UV light. A readily available photocurable material (Norland 

Optical Adhesive 81, Norland Products) was used to test the image reproduction of the 

system developed in the previous section. A bitmap was created using CorelDraw, and loaded 

into the DMD control software. A 13 mm glass coverslip spin-coated with a thin layer of 

optical adhesive was positioned in the sample support and exposed to ultraviolet radiation 

(365 nm) from the UV lamp at an intensity of 10 mWcm
-2

 for 30 s. The resulting structure 

was developed by immersion in toluene and the resulting structure imaged using a light 

microscope.  
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Figure 18: Input bitmap loaded into DMD device (left) and resulting structure formed curing 

of the material (right, scale bar 200 µm). The bitmap was recreated accurately in the 

material indicating that the system is well aligned. 

As shown in figure 18 the structure accurately reproduces the projected bitmap, resulting in a 

well-defined structure. Slight ‘blurring’ of the features towards the bottom right of the 

structure as displayed in figure 18 has occurred, most likely due to variations in intensity 

across the diameter of the beam, however this may be alleviated by careful control of curing 

conditions such as exposure time and layer thickness. Close examination of the structure of 

the pattern indicates a feature resolution of around 25 µm and a clear boundary between the 

cured material and glass substrate. 

 

Figure 19: Honeycomb patterned layer created using photocurable material NOA81 cross-

linked by exposure to patterned ultraviolet (UV) light using the developed 

microstereolithography device, demonstrating the machines ability to produce surfaces of 

varied morphology.  

The structure displayed in figures 18 and 19 also demonstrates further the potential 

applications of the projection lithography technique, as comparisons may be drawn with the 
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structures produced by Engelmayr et al. produced for cardiac tissue engineering where the 

unique scaffold structure allowed the anisotropic properties of the native tissue to be 

recreated (Engelmayr et al. 2008). 

The resolution of the device was further verified by creating a structure using polyethylene 

glycol diacrylate (PEGDA). A solution of PEGDA containing 2% w/w of the photoinitiator 

4,4’-bis(diethylamino)benzophenone was prepared, and a thin film of the resin was deposited 

onto a 13 mm coverslip in a 12 well plate supported in the sample holder.  Using the UV light 

source and an intensity of 30 mWcm
-2

 and an exposure time of 60 s, a circular image 

consisting of lines with a thickness of 1 pixel was loaded into the DMD control software and 

cured into the resin. The thick circular structure was used to act as a support and protect the 

fine lines in the developing process. Using lines of 1 pixel in thickness the minimum 

resolution of the machine could be determined. 

The structure was developed by soaking thoroughly in isopropanol as described in the 

methods section and then left under vacuum to dry overnight. A 10-20 nm thick coating of 

gold was then applied to the structure, which was then visualised using scanning electron 

microscopy. The thickness of the lines was again determined to be approximately 25 µm (see 

figure 20), representing the resolution of the machine. 

 

Figure 20: PEGDA Structure produced by projection microstereolithography, demonstrating 

a resolution of 25 µm. 

The ability of the device to produce larger grooved devices was demonstrated by projecting 

images into optical adhesive. Grooves of different thicknesses were created using optical 
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adhesive as shown in figure 21. Groove widths of 100 and 200 µm, and single and parallel 

geometries were explored. Microblocks of photocurable polylactic acid were also produced 

using spin coated films of photocurable PLA from a photosensitized solution as described in 

chapter 2. Using an exposure time of 60 s and an intensity of 30 mWcm
-2

 blocks of PLA with 

dimensions of 50 µm by 50 µm were prepared as shown in figure 21. 

 

Figure 21: Microgrooves produced from optical adhesive (left, centre) and microblocks of 

photocured PLA (right) using the developed projection microstereolithography device. Scale 

bars: left 200 µm, centre and right 100 µm. 

Surface structure and topography is an important factor affecting the behaviour of cells in 

culture, and can influence the cellular response to an implant surface in vivo (Scheideler et al. 

2003). Chen et al. were able to demonstrate the relationship between cell shape and cell 

function using a microcontact printing technique to create cell adhesive islands of fibronectin 

on a non cell adhesive substrate (Chen et al. 1998). By restricting cell attachment to the 

fibronectin coated areas cell shape could be controlled by changing the shape of the 

fibronectin deposits. Reducing the size of cell adhesive areas was demonstrated to switch the 

behaviour of cells from growth to apoptosis. Cell shape was demonstrated to determine cell 

fate, regardless of the type of protein or integrin mediating adhesion (Chen et al. 1997).  

The effect of surface structure on cell alignment is also of interest in neural tissue 

engineering, and is an important step towards creating nerve repair devices or ‘conduits’ with 

in-built structural cues which can enhance functional recovery (Lietz et al. 2006).  Hsu et al. 

demonstrated that nerve guidance conduits for peripheral nerve repair prepared by a 

combined phase transition/ microprinting technique performed better when a grooved surface 

was created on the conduit rather than a smooth one, as evidenced by improved myelination 

and a greater number of regenerated vessels following animal implantation. Furthermore, 

functional recovery was shown to be greater in the grooved conduits (as opposed to smooth 

ones) implanted into rats with transected sciatic nerve injury, demonstrated by walking track 
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analysis (Hsu and Ni 2009). The effect of microchannels on the 10-100 µm scale has been 

shown to influence neurite extension and alignment (Mahoney et al. 2005). Micro-grooved 

substrates created from NOA 81 are shown in figure 22. 

 

Figure 22: Microgrooved surfaces produced in Norland Optical Adhesive (NOA) 81 using in-

house projection microstereolithography device. Scale bars indicate 500 µm (left) and 250 

µm (right). 

In order to take the applications of projection microstereolithography beyond surface 

patterning, structuring must be achieved in all three dimensions. Microstereolithography is 

well suited to the creation of small scale devices with complex geometries, having been 

developed originally as a rapid prototyping technique (Yan and Gu 1996). 

In order to create true three dimensional structures, a layer-by-layer methodology was used. 

Curing of multiple layers can present problems due to overcuring and over-penetration of 

radiation, and a balance must be between cure time, intensity and the extent of curing. If 

insufficient cure time or exposure is used, then the structure may not cure completely and will 

become brittle, however excessive curing will lead to loss of resolution. Choi et al. 

demonstrated that by using a small percentage of a light absorbing die, the penetration depth 

of the curing radiation can be reduced, which allows multilayer structures to be built without 

loss of features in the vertical plane (Choi, Wicker, Cho, et al. 2009).  

A test structure was created to assess the cure depth of the radiation using the 473 nm blue 

laser. The structure consisted of alternating layers of square ‘posts’ acting as spacers and a 

hollow square structure to act as a cross-beam between the posts (see figure 23). This design 

was intended to demonstrate the effect of overcuring on vertical resolution. As can be seen 

from the figure, no gaps were observed between the individual layers, as a result of curing 

beyond the desired depth. 
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Figure 23: Design for multilayer structure (left) and illustration of overcuring (right). Right 

image shows desired layer thickness (a) and extent of overcure (b). Overcuring between 

layers is a common problem encountered with microstereolithography systems and 

prevention requires careful adjustment of cure time and exposure intensity. 

Structures based on the design in figure 23 were created, however instead of using alternating 

layers a table like structure was created. By the addition of a small quantity of the dye Eosin-

Y, the cure depth of the laser system was successfully reduced, allowing the creation of well-

defined three dimensional structures with good vertical resolution. The table created using a 

light absorber in the photosensitive mixture showed far better vertical resolution than the 

structure created without the dye (see figure 24). This was due to absorption of the curing 

radiation leading to reduced penetration depth. 

A variation of this method was also demonstrated by Choi et al. where samples were exposed 

to radiation for different time points. Following exposure the depth of cure was determined 

by measuring the thickness of the upper layer and the results were used to plot a calibration 

graph. By selecting the desired cure depth the correct exposure time may be selected (Choi, 

Wicker, Cho, et al. 2009). This was demonstrated in this study using NOA81, by determining 

the cure depth for different time points as shown in figure 25. 
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Figure 24:  Reduction of cure depth using light absorbing dye. Left hand structure in both 

images was created from solution containing light absorbing dye, whilst right hand structure 

was not. Warping of structures caused by contraction of low molecular weight PEGDA upon 

drying. 

 

 

Figure 25: Cure depth control plot for NOA81. Increased exposure time leads to greater cure 

depth, as does increased intensity. The cure depth appears to reach a limiting value 

determined by the intensity, as described by the Beer-Lambert law. 

 

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

C
u

re
 D

ep
th

 (
m

m
) 

Exposure Time (s) 

3 mWcm-2

2.5 mWcm-2

2 mWcm-2



65 

 

Tissue engineering seeks to create replacements for damaged or diseased tissues through the 

use of tissue scaffolds. As discussed in the introduction tissue scaffolds form a porous 

support structure for cells as they build up a new tissue. Scaffolds produced from resorbable 

materials protect cells as they build up a new extracellular matrix within the pores of the 

scaffold. As the tissue forms the scaffold will degrade at an appropriate rate so that it will be 

replaced by the tissue, eventually resulting in an engineered tissue. Scaffolds may be 

explored for a wide range of applications, for example creating new bone, skin or nervous 

tissue. Therefore a wide range of geometries and also materials must be explored to provide 

scaffolds with the correct properties for the selected applications. The process of scaffold 

based tissue engineering is demonstrated in figure 26. 

 

Figure 26: Simplified process diagram of tissue engineering using tissue scaffolds. A 

degradable porous scaffold is loaded with cells which create new extracellular matrix (ECM) 

as the scaffold degrades. 

Using a layer-by-layer approach experimental tissue scaffolds were created using layer-by-

layer microstereolithography. The scaffolds were created from a 50/50 mixture of 

photocurable PLA and PEGDA, which was used to adjust the viscosity. Camphorquinone 

initiator was also used at 2% w/w and Eosin Y was used to reduce the cure depth of the laser. 

The scaffolds were designed with a three dimensional open geometry to maximise nutrient 

diffusion and cell dispersion. The scaffolds were soaked in de-ionised water for seven days 

before seeding with human dermal fibroblasts and culturing in an incubator at 37 °C for 7 

days. The cell culture media was then removed and the cells stained for 40 minutes with 

MTT solution. The resulting blue staining indicated the location of living cells. As can be 
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observed from the staining, the cells have successfully attached to and proliferated on the 

scaffolds (see figures 27 and 28).  

 

Figure 27: PLA/ PEGDA Scaffolds created by layer-by-layer microstereolithography. Human 

dermal fibroblasts located on the scaffolds stained blue using MTT solution. 

The preparation of scaffolds with user defined architecture has been demonstrated for 

example by Grijpma et al. in the creation of tissue scaffolds with optimised geometries for 

cell and nutrient dispersion and the maintenance of cell viability (Melchels, Bertoldi, et al. 

2010; Melchels et al. 2011). Another advantage of user defined structuring is the control over 

scaffold mechanical properties, which can be poor when porous foams and other high 

porosity structures are used (Hutmacher et al. 2001; Hollister 2005). 

 

Figure 28: Human dermal fibroblasts cultured on scaffolds produced by layer-by-layer 

projection microstereolithography. Scale bars: left 200 µm, right 100 µm. 
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3.4.1 Applications: Microfabricated Stem Cell Niches for Corneal Repair  

Stem cells are vital in the regrowth, renewal and maintenance of healthy tissue. They possess 

the ability to self-renew and differentiate towards a certain cell type depending on specific 

metabolic and environmental signals (R. Lanza 2006).  Stem cell niches, as observed by 

Fuchs et al. (Fuchs, Tumbar, and Guasch 2004) are specific microenvironments in which 

stem cells reside. The niches present certain structural and biochemical cues which regulate 

the cell behaviour and ensure the survival of a constant population of healthy stem cells 

which support tissue renewal. Examples of anatomically defined niches include the crypts of 

the intestinal villus, and the bulge section of hair follicles (Tumbar et al. 2004). 

Corneal stem cells, located in the limbus (the region between the cornea and sclera) 

(Schermer, Galvin, and Sun 1986) are vital for the constant renewal of the cornea. Cells 

migrate from the limbus across the surface of the cornea maintaining a healthy and 

transparent tissue (Cotsarelis et al. 1989; Ebato, Friend, and Thoft 1987). The niches within 

the limbus are referred to as the palisades of Vogt. Destruction of the limbus, occurring when 

the cornea is injured results in loss of the stem cell population, and migration of cells from 

the neighbouring conjunctiva results in scar tissue formation leading to corneal blindness 

(Huang and Tseng 1991).  

Corneal blindness is mainly treated by corneal or stem cell transplantation from a donor 

cornea (allografting) (Coster, Aggarwal, and Williams 1995). One obvious drawback of this 

procedure is the requirement for a donor cornea. The success rate one year after 

transplantation is 93 %, falling to 72 % after 5 years (Henderson, Coster, and Williams 2001). 

If a donor cornea is not available then one alternative treatment is stem cell delivery, this is 

typically achieved by delivering cultured stem cells on a donor amniotic membrane, which 

possesses suitable transparency and anti-inflammatory properties (Tseng et al. 1998). This 

technique is again limited by donor availability with respect to the membrane, and also the 

possibility of viral and bacterial transmission. The success rate of this technique is around 

85 % after one year, although this is reduced to 45 % after three years. 

Limitations of existing therapies present a clear need for synthetic or more readily available 

alternatives to existing donor tissue based stem cell transplantation. Alternative carriers under 

development include modified (cross-linked) human collagen (Dravida et al. 2008), 

polyethylene glycol based hydrogels (Sitalakshmi et al. 2008) and also electrospun 

membranes based on poly(lactide-co-glycolide) (Deshpande et al. 2010).  
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A further possibility is the microfabrication of custom stem cell delivery devices by 

microstereolithography, as will be discussed in this chapter. This application presents many 

possibilities for which the technique of microstereolithography is ideal. The technique allows 

the creation of patient specific devices, incorporating important structural cues which will 

provide a suitable microenvironment for stem cells. Custom polymers would allow tuning of 

the mechanical cues experienced by the cells, and further functionalization may provide 

chemical and biological cues. 

The initial aim of this work was to develop a transplantable polyethylene glycol diacrylate 

ring containing stem cell niches for cell delivery. The ring was designed to match the 

approximate dimensions of the limbus of the human eye, with an approximate outer diameter 

of 1.2 cm. The niches, based on the dimensions of the palisades of Vogt, are located around 

the centre or inner diameter ring with approximate dimensions of 150 µm in width and 30 µm 

in depth. The basic process conditions were optimized and niches of two distinctly different 

morphologies were produced. Preliminary cell culture was performed using rabbit limbal 

fibroblasts. Morphology and location of the cells was examined using scanning electron 

microscopy (SEM). Further development work into the use of biodegradable materials, 

surface functionalization of the niches for stem cell adhesion and also the combination of 

microstereolithography with other techniques is ongoing, with a view to taking this 

technology to the clinic in next few years. 

The projection microstereolithography workstation developed as discussed earlier in this 

chapter was used to fabricate rings containing micropockets or potential ‘niches’. As a 

starting material for fabrication, polyethylene glycol diacrylate was chosen due to its history 

of clinical use. Low molecular weight PEGDA was used due to its low viscosity, facilitating 

easy delivery into the curing system. 

Polyethylene glycol diacrylate was passed through an inhibitor removal column (Aldrich) to 

remove the inhibitor prior to use, to facilitate curing of the resin. To prepare a photosensitive 

mixture 0.1 g of camphorquinone as initiator (97%, Aldrich) was added to an amber glass 

vial and made up to 10 g with PEGDA, resulting in a 1 % w/w solution. The mixture was 

then stirred for 10 minute using a magnetic stirrer bar. Camphorquinone is approved for 

medical use, and is sensitive at the emission wavelength of the blue laser. 

Initial optimisation of the photocuring mixture was performed using higher concentrations of 

camphorquinone, and also ethyl 4-(dimethylamino)benzoate (EDAB) as a co-initiator. Curing 
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was also attempted without the use of the inhibitor removal column. Without the use of the 

column curing results showed a greater degree of variability, possibly due to a higher 

threshold power required for curing making the curing process more sensitive to slight 

variations in the power of the beam or oxygen quenching. The use of EDAB as a co-initiator 

greatly increased the rate of curing, but also affected the viability of cells cultured on the 

resulting structures (data not shown), in agreement with other studies (Nie and Bowman 

2002). Optimization of the curing times was therefore performed based on a 1 % w/w 

solution of camphorquinone in PEGDA. 

The projection microfabrication workstation was used as described earlier in this chapter, 

using the blue laser (MBL-III 473 nm) as a light source. The laser power before beam 

expansion and focusing was measured to be 150 mW.  A simple two layer approach was used 

for fabrication of the rings containing micropockets, as demonstrated in figure 29. A base 

layer was created consisting of a flat ring, and an upper layer containing the pockets was 

subsequently cured on top. Curing was performed on top of a thin Teflon sheet in a 12 well 

plate, the Teflon sheet facilitating detachment of the final structure. The photocurable 

solution was added by pipette, again in a layer-by-layer fashion to build up the final structure. 

The ideal fabrication conditions were determined by experiment to be a two layer projection 

of 60 s for each layer. 

The simple two layer nature of the rings allows optimisation of the cure conditions manually 

without the need to calibrate the cure depth of the resin. As the height of the ring increases 

the distance from the focusing lens changes leading to blurring of the image, however the 

rings are sufficiently thin to not require height adjustment using the translation stage. 
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Figure 29: Curing process for production of microfabricated rings. A drop of the 

photocurable solution is deposited onto a Teflon sheet in a 12 well plate an allowed to spread 

evenly over the surface. The first layer of the structure is then cured by exposure to the 

projected image (indicated in the figure by a blue rectangle). A further drop is then deposited 

and the second layer of the structure is created by exposure to the new image. The structure 

is then developed by washing to remove any uncured resin leaving the final structure which 

may be detached from the Teflon. 

 

In figure 30 the effects of overcuring are demonstrated, and overcuring of the polymer can be 

clearly observed as excess material around ring and poorly defined niches. A close up image 

of a niche on a ring produced using the optimized conditions is also shown. 
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Figure 30: Overcured rings (left and middle) and optimized ring/ niche (right) produced by 

microstereolithography. Overcuring is characterised by spreading of features beyond their 

intended position and blurring of the final features. 

Niches of different geometries were created using the optimized curing conditions. The rings 

were developed by soaking in isopropanol overnight followed by soaking in phosphate 

buffered saline for 7 days to remove any impurities such as remaining photoinitiator.  

Rings of the desired diameter of 1.2 cm were successfully created in a reproducible manner 

by layer-by-layer microstereolithography. Furthermore different micropocket geometries 

were also explored, as shown in figure 31. By changing the input design on the DMD 

micropockets with both open rectangular morphology and also circular morphology were 

produced.  

 

Figure 31: Micropockets with open rectangular morphology (left) and circular morphology 

(right). Scale bars 300 µm. 

 

The morphology of rabbit limbal fibroblasts located within the micropockets was assessed 

using scanning electron microscopy (SEM). The cells were seeded onto the micropockets 

using an Eppendorf Micropipette, by taking 1 µl of a concentrated cell solution (175,000 cells 
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ml
-1

) and dispensing directly onto the micropockets. To aid in visualization of the 

micropocket and facilitate accurate dispensing a dissection microscope (Wild Heerbrugg M 

3Z) was used. Medium was then added (1 ml) and the cells cultured on the construct for 7 

days before fixing with HDMS and visualizing under SEM. Soaking of the constructs in PBS 

for sufficient time prior to cell seeding was found to be crucial in order for cells to attach. If 

the samples were not soaked for 7 days prior to cell culture cells appeared ball like and did 

not exhibit a typical fibroblast morphology. However, samples that were soaked for 7 days in 

PBS proved suitable for cell attachment, and fibroblasts exhibited a greater degree of 

spreading on the surfaces. This can be observed in figure 32, where cells cultured on a non-

washed ring appear markedly different compared to those cultured on a washed ring. 

 

Figure 32: Fibroblasts cultured on a non-washed ring (left) appear ball like and fail to 

proliferate whereas cells cultured in circular and open micropockets (center and left) on 

rings soaked for 7 days in PBS appear normal. 

 

Preliminary work towards the development of a transplantable ring containing micropockets 

as potential stem cell niches was presented. Cell proliferation within the niches was verified 

by SEM, and the necessity of soaking of the samples in PBS for at least 7 days following 

production in order to remove photocuring process related impurities was demonstrated, in 

agreement with other published studies on microstereolithography (Narayan et al. 2010). The 

optimum process conditions for two layer microstereolithography were determined and rings 

with micropockets of differing geometry were produced.  

Rings containing micropockets capable of mimicking the stem cell niche are now being 

developed in order to bring this technology to the clinic. The remaining challenges include 

creating a true stem cell ‘niche,’ by surface functionalization and material optimization. 
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3.4.2 Applications: Nerve Guidance Conduits 

The peripheral nervous system is an attractive target for tissue engineering due to its unique 

ability to regenerate, in contrast for example with the central nervous system in which 

inhibitory factors prevent regeneration following injury (Bell and Haycock 2012). In order to 

utilize the regenerative potential of the peripheral nervous system, various clinical techniques 

have been developed for the treatment of peripheral nerve injury. Established techniques 

include autografts, allografts and more recently nerve guidance conduits. Autografting is 

commonly considered as the ‘gold standard’ treatment for transected nerves, however this 

requires a second surgical site to harvest the donor nerve and also results in donor site 

morbidity (Millesi and Schmidhammer 2007). Donor availability and also the requirement for 

immune suppression presents problems with allografts, however results comparable to 

autografting are achieved (Mackinnon et al. 2001).  

A promising alternative to transplantation is the use of artificial nerve guidance conduits 

(Jiang et al. 2010). These devices work primarily by entubulation of the severed nerve and 

the incorporation of biological, mechanical and structural cues in order to guide functional 

recovery of the nerve. Nerve guidance conduits and their structure and function are described 

in more detail in chapter 6. 

Simple tubular conduits were initially produced using low molecular weight polyethylene 

glycol diacrylate (PEGDA, a low viscosity resin) due to its commercial availability and low 

viscosity, which made it possible to make structures by lowering the sample support into the 

resin at a constant rate. The first tubes to be produced were created using the UV light source, 

but later devices were produced using the blue laser due to the formation of surface grooves 

by extension of the pixels in the z-plane as will be discussed.  

The projection microstereolithography workstation was used as described in the design study. 

In brief light from the blue laser (MBL-III 473 nm, 150 mW) was expanded to cover the face 

of the digital micromirror device (DMD), which formed the desired image according to a user 

created bitmap. The reflected image was focussed using a mirror for beam direction onto a 

sample support through a final focusing lens. In this case the sample support was a thin 

anodized aluminium strip of approximately 1 cm in width and 5 cm in length, with the final 1 

cm end section folded at 90 ° to make an ‘L’ shape. This sample support was attached to the 

z-stage (Thorlabs) using carbon sticky tape as used to hold samples in place for scanning 

electron microscopy (SEM). This allowed the sample support to be lowered at a uniform 
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speed into the photocurable solution contained in the well of a 24 well tissue culture plate, 

giving translation in the z-plane. This process is demonstrated in figure 33. 

 

Figure 33: Experimental set-up for making the NGC tubes.  Vertical translation of sample 

support was achieved by attachment to a single axis Thorlabs translation stage, which 

allowed the structure under production to be gradually lowered into the resin. Following the 

curing process the structure was lifted out of the resin, detached and developed. 

 

An important factor in the accurate fabrication of the conduits was the speed at which the z-

stage lowered the sample into the resin. Lowering the sample too rapidly caused poorly 

formed or no samples due to insufficient cure time, and lowering the samples too slowly 

caused overcuring of the features. The samples were cured in the well of a 24 well plate, and 

the maximum conduit length was limited by the depth of the well.  

Initially a simple open tubular structure was created using the UV lamp (and 4,4’-

bis(diethylamino)benzophenone at 2% by weight as photoinitiator). By experiment an 

optimum write speed of 50 µm s
-1

 was determined. An open tubular conduit was produced by 

projecting a circular image with the DMD and lowering the sample support into the 

photocurable PEGDA solution. With a write speed of 50 µm s
-1

 the production step lasted 

three minutes (9 mm/ 0.05 mm s
-1

). The resulting structure and an example design are shown 

in figure 34. 
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Figure 34: A hollow PEGDA tube produced by projection microstereolithography shown 

with example image for DMD projection. 

 

The unintended pixelation effect encountered when combining the blue laser with the DMD 

was found to be of benefit when producing potential conduits with the projection 

microstereolithography device. Extension of the pixels in the vertical plane created a grooved 

effect which was observed on the resulting conduits, creating a potential guidance mechanism 

for axonal regeneration. The grooved effect can be observed in figure 35. 

 

Figure 35: Side-on view of nerve guidance conduit produced by microstereolithography. 

Grooves caused by pixelation of image and translation in z-direction are visible, creating 

contact guidance mechanism for cell alignment. 
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The incorporation of multiple inner lumens into nerve guidance conduits allows a greater 

surface area for Schwann cell attachment. Schwann cells have been shown to be beneficial 

when incorporated into nerve guidance conduits, and play a key role in regeneration of 

peripheral nerve. The multi-lumen structure also matches more closely the structure of 

peripheral nerves, as demonstrated in figure 36. This topic is explored in greater detail in 

chapter 6. 

 

Figure 36 Cross section of multi-lumen nerve guidance conduit prepared by 

microstereolithography (left) designed to mimic structure of peripheral nerve epineurium 

represented in diagram (right) showing epineurium (A), perineurium (B), endoneurium (C) 

and basal lamina (D) consisting of axons encircled by Schwann cells. Diagram adapted from 

Schmidt and Leach (Schmidt and Leach 2003). 

3.5 Discussion 

To date microstereolithography has been mainly applied to experimental studies aimed at 

demonstrating factors such as the relationship between diffusion, pore size, cell viability and 

scaffold mechanical performance (Melchels et al. 2011). Less attention has been focussed on 

the actual clinical applications of microstereolithography. This is due to various factors 

including the limited size of the structures which may be produced, a lack of materials 

suitable for internal medical use (as discussed in chapter 2) and also concerns regarding the 

biocompatibility of the initiators required (Ovsianikov, Malinauskas, Schlie, Chichkov, 

Gittard, Narayan, Lobler, et al. 2011).  
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In this chapter the design and operation of a simple projection microstereolithography system 

was demonstrated and potential applications in the production of tissue scaffolds, the 

fabrication of stem cell delivery devices for corneal regeneration and also the production of 

nerve guidance conduits was demonstrated. These represent potential real world applications 

in which the structuring ability and resolution of microstereolithography offers advantages 

over existing technology. 

3.6 Conclusions 

In this chapter the construction of a dynamic projection microstereolithography workstation 

has been detailed. The microstereolithography system was used to generate patterned surfaces 

and 3D structures of interest in tissue engineering and biology. The use of photocurable 

biomaterials was combined with bespoke microfabrication techniques in order to produce 

experimental tissue scaffolds and nerve guidance conduits. Production of constructs for 

further clinical applications such as stem cell transplantation for corneal blindness was also 

explored. 
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Abstract 

In this chapter the design, construction and operation of a laser direct write system capable of 

high resolution microstructuring via two photon polymerization is described. The system was 

constructed using a titanium-sapphire laser as a power source, a high numerical aperture 

objective fixed on an aluminium support to focus the beam and a high precision translation 

stage in order to write structures directly into a photocurable resin. The structuring of a 

photocurable polylactic acid oligomer synthesised as described in chapter 2 on a single 

micrometre scale was demonstrated, and further modifications to the structuring system 

including the use of low cost micro-lasers were explored. Cell interactions with the 

microstructures were also explored with potential applications as cell niches. 

4.1 Introduction 

Microstereolithography was developed as a rapid prototyping technology in the 1980’s 

(Narayan et al. 2010). Early systems were based on curing via one photon absorption, using 

photomasks or scanning of the beam in a point to point fashion. Limitations of the technique 

include over-penetration of the curing radiation leading to overcuring between layers, 

scattering of radiation within the resin and the resulting accumulation of partially cured 

oligomers within the internal parts of structures with increasing cure time (Han et al. 2008). 

Two photon polymerization emerged as a technique for microfabrication was first reported by 

Maruo, Nakamura and Kawata  in 1997 (Maruo, Nakamura, and Kawata 1997; Sun and 

Kawata 2004). Originally described theoretically by Maria Goeppert-Mayer in 1931, 

multiphoton excitation was first demonstrated in the early 1960’s by Kaiser and Garrett 

(Kaiser and Garrett 1961). In their work CaF2:Eu
2+

 crystals
 
were excited with a ruby laser 

(694 nm) to emit fluorescent blue light (425 nm). Multiphoton excitation occurs when two or 

more photons interact with the same molecule in a single quantum event to excite a molecule 

by a single quantum of energy. The frequency with which this process occurs is very low, 

requiring very high photon flux in order for the necessary photons to interact within the 

Chapter 4: Development of a 

 Two photon Laser Direct Write 

Workstation 
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lifetime of the event. In the context of microstereolithography, two photon excitation is 

initiated by the subsequent absorption of two photons of light by a photoinitiator, leading to 

the generation of radicals and initiation of the curing process (Lee et al. 2006). 

Two mechanisms of two photon absorption exist. The first mechanism is sequential 

excitation, in which one photon is absorbed by the initiator which is promoted to a ‘real’ 

intermediate excited state with a lifetime of 10
-4

 to 10
-9

 s. A second photon is absorbed within 

this lifetime leading to initiation. The second mechanism proceeds via a virtual excited 

caused following the interaction of the initiator with one photon. The virtual excited state has 

a much shorter lifetime of just 10
-15

 seconds, during which the second photon must be 

absorbed (Lee et al. 2006).  The second mechanism requires very high photon density or flux 

in order to proceed, typically requiring a femtosecond laser. Both processes proceed by the 

promotion of an electron by the absorption of two photons, each possessing half the total 

energy of the transition. Ti: sapphire lasers are therefore favoured for this process since their 

central wavelength of 800 nm is approximately half the wavelength or energy required for the 

excitation most ultraviolet photoinitiators. They also have a suitable energy profile for two 

photon absorption, as multiphoton absorption requires high pulse intensity but the average 

power is low due to the short pulse duration which is typically five or six times shorter than 

the repetition rate of the laser (LaFratta et al. 2007). 

Originally explored for applications in physics and optics, two photon polymerization is 

increasingly being explored for medical applications, partly because of the emergence of new 

photocurable materials which are more appropriate for tissue engineering. In this chapter a 

basic 2PP system is constructed and used for the structuring of photocurable polylactic acid, 

prepared as described in chapter 2. The precise structuring of this material is demonstrated 

and initial cell culture work performed, demonstrating a proof of concept study on the 

structuring of biopolymers via high resolution microstereolithography.  

4.2 Materials and Methods 

The photocurable PLA based material was synthesised as described in chapter 2, based on a 

molar ratio of 1 molar equivalent of pentaerythritol to 8 molar equivalents of lactide dimer. 

The oligomer was methacrylate functionalized and the ratio of monomer to initiator as well as 

the presence of methacrylate functional groups was checked using NMR and IR 

spectroscopy, as described in chapter 2. In this section the construction and operation of the 
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developed laser direct write system will be outlined, as well as the preparation and 

development of resin samples and the creation of basic programs which direct the fabrication 

process. 

4.2.1 Design Study: Two Photon Laser Direct Write System 

The two photon fabrication process is commonly achieved by one of two different 

mechanisms for translation of the focal spot. Either the beam is focussed to a fixed spot and 

the sample itself is moved using a high precision translation stage, or the sample is fixed in 

place and a set of translation mirrors known as a Galvano scanner is placed before the 

objective in order to manipulate the horizontal position of the focal spot, and vertical stepping 

is achieved using a z-stage. In this study the former technique is used, reducing the cost of the 

system by eliminating the need for a Galvano-scanner. Claeyssens et al. demonstrate a 

combination of the two systems in which the Galvano scanner is used to write the structure 

and a piezo-electric stage shifts the sample so that the same structure can be repeated and 

overlapped, allowing larger structures to be created in a step and repeat methodology 

(Claeyssens et al. 2009).   

The in-house laser direct write system developed in the study presented here was based on a 

femtosecond pulsed laser focussed through a high numerical aperture microscope objective. 

Translation of the focal spot was achieved by moving the sample using a high precision 

(x,y,z) stage controlled by a computer. Power was controlled using a mounted reflective 

variable neutral density filter (Thorlabs), and beam delivery controlled using a beam shutter 

(response time <1.5 ms, Thorlabs) linked to a shutter controller (SC10, Thorlabs). The system 

was constructed on an optical breadboard, supported on an optical table to reduce the effect 

of vibrations. The system is outlined in figure 37. 

4.2.2 Laser Selection 

Two photon polymerization is initiated by the subsequent absorption of two photons of light 

within a finite lifetime determined by the half-life of the intermediate state of the initiator. 

The absorption rate depends on the square of the laser intensity, and is affected by the 

penetration depth of the radiation as well as the tight confinement of the light using a high 

numerical aperture (NA) lens. One limitation on the process is the poor sensitivity of  

commonly used commercially available ultraviolet sensitive photoinitiators to two photon 
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excitation (Wang et al. 2002). The poor sensitivity of commercial photoinitiators necessitates 

the use of lasers with high peak powers, fast repetition rates and ultrashort pulse widths in 

order to generate the high intensities required. As a result of this Ti: sapphire lasers are 

commonly employed in two photon stereolithography. Although capable of producing 

excellent structuring results, the high intensities used risk damage to the material being cured 

and present a narrow processing power window within which to operate. Research into more 

efficient photoinitiators for two photon initiated polymerization is expanding the range of 

wavelengths and laser systems which can be used for the technique (Lemercier et al. 2006).   

 

Figure 37: Schematic of in-house laser direct write system. The laser beam is focussed within 

the volume of the resin using a high NA objective lens, where polymerization occurs. The 

structure is written out by translation of the sample by the translation stage, and beam 

delivery and power controlled by a shutter and neutral density filter respectively. 

 

The in-house 2PP system was constructed around a Ti: sapphire laser (Coherent Mira-900 

810 nm, repetition rate 76MHz, pulse width 200fs) supplied by the laser loan pool. This laser 

model has been used in many studies and allows structuring by two photon induced 

polymerization initiated using Michler’s ketone (4,4’-bis(diethylamino)benzophenone), the 

same photoinitiator as used in previous sections. A diode pumped Q switched Nd:Yag laser 

(PULSELAS-P-1064-300-FC, Alphalas, 532 nm, repetition rate 15 kHz, duration 800 ps) was 

also used as an alternative light source as described later. 
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4.2.3 Assembly of the System 

Due to the space and carefully controlled environment required by the system, a dedicated 

laser room was required. To prepare the room for this, all windows and points of exit for the 

laser beam were covered in black cladding. This was necessary in order to prevent stray 

radiation exiting the room, which prevents a risk to safety. An interlock system was installed 

in order to remove power from the laser should the door be opened unexpectedly. Where 

possible, the beam path was shielded from view to prevent accidental exposure. 

To prevent vibrations interfering with the accuracy of the write process, the laser system was 

situated on an aluminium breadboard (Thorlabs). The optical components were also 

supported on a separate damped matte black breadboard. The overall layout of the system is 

shown in figure 38.  

 

Figure 38: Overview of Laser direct write System showing cooling unit (1), breadboard (2), 

Ti: sapphire laser (3) laser power pack (4) and optical assembly (5). The optical assembly is 

shown in more detail in figure 39. 

The arrangement of the optical assembly is shown in figure 39. The assembly consisted of a 

mirror to direct the radiation from the laser, a neutral density filter in order to reduce the 

power of the beam, an analogue power meter (to measure beam power) and a telescopic lens 

set to expand the beam diameter before the final mirror guides the radiation into the 
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objective. The objective was supported on a solid aluminium post secured on the breadboard. 

In figure 39, only the supports for the telescopic lens set and power meter are shown. 

 

Figure 39: Optical components in laser direct write system. The laser beam (path indicated 

by red line) is directed by the mirrors (1 & 4) through the neutral density filter (3) which 

controls the power. The beam power may be measured using a power meter fixed after the 

neutral density filter, and expanded by placing a telescopic lens arrangement in the included 

posts (2).  The final mirror directs the beam into the objective (5), which focusses the beam to 

within the volume of the resin supported in place on the high precision translation stage (6). 

In order to produce structures, the sample is prepared on a glass coverslip which is fixed in 

place on an aluminium ring over the objective lens. The beam is focussed to a point within 

the resin and the movement of the stage writes the sample directly into the photocurable 

polymer. A close up image of the objective lens, and structures fabricated using this system 

are shown in figure 40.  

4.2.4 Preparation of a Photosensitive Solution 

In a first approach we used ORMOCERs (ORganically MOdified CERamics). The Ormocer 

material (Ormocomp US-S4 hybrid polymer) was used as supplied, as it already contained 

the necessary photoinitiator. To prepare a photosensitive solution of the photocurable PLA, 
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2% w/w of the photoinitiator 4,4’-bis(diethylamino)benzophenone (≥ 98%, Aldrich) was 

added to 0.5 g of the photocurable PLA dissolved in 250 µl of 4-methyl-2-pentanone and the  

 

 

Figure 40: Close up of objective lens (2) supported on aluminium post. Light is directed into 

the central area of the objective by a mirror (3) and focussed into the volume of a 

photocurable resin supported on the aluminium ring (1). The right hand image shows various 

structures produced by the system following development, as described later in the methods 

section. 

solution was stirred for 15 minutes using a magnetic stirrer bar. The solution was then passed 

through a 0.45 µm pore size polycarbonate filter to remove any particulate matter. 

In order to structure the photocurable PLA and polyethylene glycol diacrylate with the 

Nd:YAG microlaser., the polymers were mixed directly with 3% by weight of the UV 

sensitive photoinitiator of Irgacure 127, in order to structure with the laser emission at 532 

nm. 

4.2.5 Sample Preparation for Laser Direct Write 

Samples were prepared for structuring by sandwiching a drop of photosensitive solution 

between a silanized coverslip and a glass microscopy slide. In the case of the photocurable 
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PLA, this was accomplished by depositing one drop of the material in the centre of a glass 

coverslip and vacuum drying overnight to remove the solvent. Strips of adhesive tape were 

applied between the coverslip and slide in order to act as spacers. This ‘sample sandwich’ 

format has been demonstrated previously by other authors (Claeyssens et al. 2009). 

Alternative spacers such as fine polydimethylsiloxane (PDMS) rings have also been 

demonstrated. Silane treatment of the glass coverslips allows the fabricated structures to bind 

covalently to the surface, preventing detachment of the structures during the development 

process.  

 

Figure 41: Sample sandwich format. The photosensitive resin is deposited on a coverslip and 

any solvent removed under vacuum. The resin is then sandwiched between the coverslip and 

a microscope slide using adhesive tape as a spacer. 

4.2.6 Focusing of the Beam  

In order to constrain the initiating radiation to a point of intensity where two photon initiated 

curing was possible, the beam was focussed using a high numerical aperture lens (20×, 0.75 

NA, Nikon). The area in which is cured during exposure is known as a voxel (volume-pixel). 

The volume of the voxel is determined by the laser intensity, the numerical aperture of the 

lens, exposure time and also the curing efficiency of the material. 

In common two photon polymerization systems, the 3D CAD model is sliced into a series of 

layers in the (x,y) plane, so that the structure to be created is sliced into a stacked series of 

(x,y) sections. In order to write out the individual layers the control software will create a path 

along which the voxel will be scanned to create the layers. The spacing of the lines which 

will create the (x,y) sections is determined by the horizontal cross section is determined by 

the diameter of the voxel, and the vertical spacing of the layers is determined by its height. 
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Galvano scanners have been used by many authors in order to facilitate translation of the 

voxel. Using a set of mirrors the central area of the beam is scanned in the (x,y) plane and a 

translation stage provides stepping in the z-direction. 

The photocurable sample was prepared in the sample sandwich format as previously 

described, and fixed in place on a sample holder attached to the translation stage. The system 

was configured so that the objective remains stationary and the photosensitive resin sample is 

moved using the stage to provide translation of the focal point within the resin. 

 

Figure 42: Radiation focussed within volume of the resin. The resin is cured selectively only 

at the focal point of the beam within the resin. Translation of the sample by a motorised stage 

allows direct writing of structures. 

In order to locate the surface of the sample, a series of lines were written at 10 µm increments 

in the z-plane starting above the height of the resin. The onset of curing (see figure 42), which 

was indicated by bright fluorescence of the resin, indicated the boundary of the upper surface 

of the resin and the coverslip, and thus the first layer of the structure. Two photon 

polymerization systems commonly direct the exciting radiation into the Galvano scanner 

using a dichroic mirror. By positioning a CCD camera behind the dichroic mirror the curing 

process can be visualized by a change in the refractive index of the resin. This allows the 

surface of the coverslip to be located with ease, by creating a series of single exposures until 

the voxel is located at the boundary of the resin and the coverslip. This provides a more 

reliable way of locating the surface. 

The incorporation of a dichroic mirror and CCD camera and dichroic mirror into the system 

was explored, however problems were encountered in focusing of the camera, the 

transparency of the mirror and also insufficient illumination in order to visualize the curing of 
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the resin online through the CCD. The stereolithography systems described in the coming 

chapters use an LED lamp in order to illuminate the sample, and incorporation of an 

illumination source into the system would be an objective for future work. 

4.2.7 Writing of the Sample 

The use of a high precision translation stage allowed structures to be created without the need 

for a Galvano scanner. Instead, structures were created by fixing the objective lens in place, 

and moving the photosensitive sample using the translation stage. The system performed 

structuring at a high speed partly due to the large voxel dimensions achieved. In order to 

create the ~10 µm thick walls of the structures described in the results section, only a single 

pass was required to create the entire wall. In a Galvano system a much smaller voxel size 

(e.g. diameter 250 nm) would be used and the wall would be written by overlapping parallel 

scans in order to write the entire wall. For a 10 µm thick object, this would require at least 40 

250 nm thick scans in order to write one 10 µm object. A reduced voxel size was also 

achieved using telescopic lenses as described above, if required for higher resolution 

structures. 

The translation stage (Aerotech) was controlled using the supplied nView software. 

Commands were supplied to the stage as a series of linear instructions. The user interface 

allowed individual instructions to be given to the stage, by specifying the direction, axis and 

velocity. To create structures in an automated fashion a simple program can also be created as 

a sequence of commands which specify speed (denoted ‘F’ in the program, in mm per 

second), direction (+/- x, y or z) and distance, and the number of repeats. As an example, to 

write a series of ten parallel 0.5 mm lines in the x direction, with a speed of 5 mm s
-1

 and a 

spacing of 50 µm the following series of commands would be entered: 
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Figure 43: Example of code used by nView program. Instructions are given in bold and 

correspond to actions to be performed by the translation stage. Descriptions of each 

instruction are entered in italics to assist the user. 

 

Other commands include steps in the z direction, entered in the same way as the x and y 

commands, and potentially commands to send a signal that opens or closes a shutter device. 

This was not implemented during this study but would improve the capabilities of the system. 

In order to write structures, without control of the shutter by the program the shutter open 

command must be pressed manually by hand before the writing process, and at the end of the 

program the shutter close button must be pressed quickly, to prevent the sample burning due 

to prolonged exposure of a single point to the laser radiation.  

4.2.8 Sample Development  

The PLA based samples were developed by soaking in 4-methyl-2-pentanone for 30 minutes 

before rinsing with isopropanol and drying under vacuum. The samples produced from 

ormocer were developed using toluene as a solvent and the PEGDA samples were washed 

with methanol followed by soaking in water. 

4.2.9 Cell Culture Methods 

NG108-15 neuronal cells were used as a readily available cell line to investigate basic cell-

structure interactions. The cells were supplied by the American Type Culture Collection 

(ATCC). This cell line is a hybrid of mouse neuroblastoma and rat glioma cells displaying a 

neuronal morphology serving as a neuronal type cell line. 
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 Cells were cultured in completed 10% high glucose DMEM (Dulbecco’s Modified Eagles 

Medium (DMEM)). To prepare the completed solution one vial of penicillin/ streptomycin (5 

ml), one vial of glutamine (5 ml), 1 vial of Fungizone
TM

 (1.25 ml) and 1 vial of foetal calf 

serum (50 ml) were added to a 500 ml flask of 10% high glucose DMEM with 61.25 ml of 

the media removed giving a final volume of 500 ml. 

To detach the cells for subculture, trypsin is not necessary. Instead the flask may be tapped 

sharply and pipetted back and forth a few times to obtain an even cell suspension. To 

subculture, 0.5 ml of cell suspension is seeded into a T75 flask containing to 9.5 ml of 

medium. The cells are ready for subsequent sub-culturing after 3-5 days. 

4.2.10 Scanning Electron Microscopy 

Images were obtained on an Inspect F field emission gun SEM, using a spot size of 3 and an 

accelerating voltage of 10 kV. Samples were coated in a fine layer of gold using an Emscope 

SC 500 sputter coater prior to imaging. To prepare cell culture samples for imaging, samples 

were fixed using hexamethyldisilazane (HMDS) procedure (Bray, Bagu, and Koegler 1993). 

4.3 Results  

The structuring ability of the laser direct write system was first assessed using a 

commercially available UV curable ormocer resin in order to demonstrate the structuring 

ability of the system. Following successful structuring of the Ormocomp material, large 

microstructures on the millimetre scale were quickly fabricated from a photocurable 

polylactic acid analogue synthesised as described in chapter 2. The voxel size of the system 

was then reduced using a telescopic lens set in order to demonstrate the resolution achievable 

with this structuring system and resin. Structuring with a low cost Nd:Yag microlaser and 

polydimethylsiloxane (PDMS) replication were also explored in order to demonstrate the 

possibility of reduced cost and cycle times for simple microstructure replication. Basic cell-

microstructure interactions were also investigated with potential applications as tissue 

scaffolds and stem cell niches. 

4.3.1 Microstructuring of Photocurable PLA and Ormocer 

The laser direct write system was first assessed using a commercially available Ormocer 

(organically modified ceramic polymer) (Ormocomp US-S4 hybrid polymer). This hybrid 
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material, also referred to by the trade name Ormocomp is an ultraviolet sensitive material 

containing the photoinitiator Irgacure 369. Although non-bioresorbable, these materials have 

been shown to be non-cytotoxic and suitable for cell attachment as well as giving excellent 

structuring results (Doraiswamy et al. 2006; Doraiswamy et al. 2005; Ovsianikov, Chichkov, 

Adunka, et al. 2007). Using a power of 50 mW and a write speed of 50 mm s
-1

 a test structure 

was manually created by giving the translation stage a series of linear translations using the 

control software. The laser trace and the resulting structure are shown in figure 44. 

 

Figure 44: Path followed by laser trace and resulting structure made from ormocer. The 

translation stage performs the instructions given in the nView code (represented by the trace 

in the top part of the figure) writing out the resulting structure (bottom). 

 

It can be observed in figure 44 that the width of the lines in the horizontal (x,y) plane is 

around 10 µm. At one point in the fabrication process a command was incorrectly repeated 

resulting in an additional line extending from the structure, as indicated by the arrow in figure 

44. Following development of the structure (in toluene solvent to remove uncured Ormocer) 

this arm rotated and was observed lying flat. This allowed the height of the voxel in the z 



91 

 

direction to be determined as 20 µm. The conditions employed therefore resulted in a typical 

elongated voxel with a diameter of 10 µm and a height of 20 µm for this material. Accurate 

structuring of the Ormocer material was successfully achieved using the laser direct write 

system.  

4.3.2 Structuring of the Photocurable PLA 

Accurate microstructuring of the Ormocer substrate was demonstrated using conditions 

similar to those used in other studies with this material. In order to explore applications of 

this technology in tissue engineering, and in particular for the creation of bioresorbable 

medical devices such as tissue scaffolds, a wider range of materials for stereolithography 

must be developed. Polymers such as polylactic acid (PLA) and polycaprolactone (PCL) may 

be functionalized in order to make them photocurable (Gill and Claeyssens 2011; Elomaa et 

al. 2011; Melchels, Feijen, and Grijpma 2009). A photocurable analogue of PLA was 

prepared according to the protocol described in chapter 2, and the material was investigated 

for microstructuring using the in-house two photon polymerization system. 

To determine the optimum conditions for structure fabrication a test program was created 

which wrote a sequence of parallel lines in the resin with increasing speed, resulting in the 

array of lines presented in figure 45. A power of 1W was used, giving rapid curing of the 

material requiring short exposure times. The material proved to be generally stable during the 

write process even at powers exceeding this level, indicating a high polymerization threshold 

for this material. Typical powers used in two photon polymerization are on the scale of 30-50 

mW and exceeding these powers may lead to burning of the sample. The material was found 

to give good structuring with a write speed of 5 mm s
-1

. A cross hatched structure was then 

created using this power and write speed, as shown in the figure below. 
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Figure 45: Lines fabricated in the photocurable PLA based resin at 1W and different write 

speeds (left, scale bar 100 µm) and 2mm x 2mm cross-hatched structure fabricated at 1mms
-1

 

(right, scale bar 250 µm). 

The voxel dimensions are dependent on exposure time, power, the refractive index of the 

material and the numerical aperture of the objective (Lee et al. 2006). Exposure time is also 

related to the write speed, as the amount of time any selected point in the write path is 

exposed reduces with increasing write speed. This can be clearly observed in figure 45 as a 

thinning of the lines as the speed increases. By varying the power the voxel aspect ratio may 

be controlled, this is an important aspect for accurate microstructuring. 

In order to create basic structures for cell culture, a series of 3mm x 3mm cross hatched 

structures were created using the microstereolithography device. The structures were written 

onto methacrylate functionalized glass coverslips in a layer-by-layer fashion in order to create 

a series of microwells into which cells could migrate. The line centre to line centre spacing in 

the (x,y) plane was 50 µm and the line thickness was around 10 µm. The structures consisted 

of two layers, fabricated with the first layer suspended in the resin second and the second 

layer on the surface of the coverslip, holding the structure on the surface. 

The structures were written by first creating the horizontal lines in the x direction, then 

writing the lines in the y direction before stepping up 10 µm in the z direction and writing the 

next identical layer on top. One of the cross-hatched structures created by this process is 

shown in figure 46. The total write time for this structure was below ten minutes. With a 

write speed of 5 mm s
-1

 a 3 mm by 3 mm dimensions consisting of two layers, each 

consisting of two sets of 60 parallel 3 mm lines can be accomplished in less than 3 minutes. 

The system was therefore capable of producing 3 mm
2
 structures very quickly by two photon 
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microstereolithography. A collection of these structures is shown in figure 40. A scanning 

electron microscope image of a cross hatched structure produced by this method is shown in 

figure 46.  

 

Figure 46: Cross hatched structures produced from photocurable PLA using the in house 

laser direct write system, with a nominal resolution of 10 µm. Magnification: left 65× (scale 

bar 2 mm), middle 750× (scale bar 200 µm) and right 5000× (scale bar 20 µm). 

4.3.3 Improved Resolution using a Telescopic Lens Arrangement 

Using a telescopic arrangement of lenses, the beam may be expanded before entering the 

objective, resulting in better resolution. A lens with a focal length of 5 cm was placed before 

the attenuator, and a 15 cm lens placed 20 cm from the 5 cm lens in order to expand the beam 

approximately three times. By expanding the beam a resolution of approximately 1 µm in the 

(x,y)-direction and 2 µm in the z plane indicating a typical ovoid voxel with a high aspect 

ratio was achieved.  
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Figure 47: PLA Structures made using in house direct write system with a resolution of 

around 1 µm. Magnification: 750× (left, scale bar 100 µm), 50,000× (middle, scale bar 

2 µm) and 4000× (right, scale bar 30 µm). 

 

Three dimensional porous structures were also produced at this resolution, and by translation 

in the z-plane and offsetting alternate cross hatched layers in order to produce experimental 

scaffolds with defined pores on the single micrometre scale. Individual pores in the structure 

with an approximate diameter of 2.5 µm were visible under SEM, although some narrowing 

and filling of the gaps within the pore spaces was apparent due to curing spreading around the 

focal point of the laser. 

 

Figure 48: Three-dimensional structures with ~1 µm line resolution fabricated in the 

photocurable PLA material by writing out layers in the (x,y) plane and stepping in the z-

direction. Magnification: 6000× (left, scale bar 20 µm), 10,000× (middle, scale bar 10 µm) 

and 750× (scale bar 100 µm). 

The combination of bioresorbable PLA based photoresins with a high accuracy 

microstructuring technique in order to produce truly three dimensional user defined scaffolds, 
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demonstrating the potential application of microstereolithography for tissue engineering 

applications. 

4.3.4 Use of Solid State Lasers as a Compact Low Cost Light Source 

The use of low cost solid state lasers offers considerable savings in cost and space when 

employed as a light source for two photon polymerization (Wang et al. 2002). The in-house 

laser direct write system was adapted to use a Nd:YAG microchip laser (specifics), and 

structuring using the emission at 532 nm was attempted with photocurable PEGDA and 

photocurable PLA. Photocurable solutions were prepared by mixing the photocurable 

material with 3% by weight with the initiator Irgacure 127.  An initial experiment was 

performed in order to optimise the write speed and power. Using a write speed of 0.5 mms
-1

 a 

series of test structures were created using PEGDA, beginning with maximum laser output 

and incrementally decreasing the laser power. Decreasing the power led to poor structuring 

results, resulting in the structure breaking up as shown in figure 49.  

 

a b c

d e f

 

Figure 49: PEGDA Structures Fabricated at 0.5mms
-1

 with LD Current of 2.7 (a) to 2.2 (f) at 

0.1 Intervals. Scale Bars are 0.25mm 
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The small voxel size of the microchip laser necessitated careful focusing of the beam in order 

to give good structuring results. If the focal point was located within the glass, the surface 

would be etched, leading to cracking. If the focus was not close enough to the surface, the 

structure would not attach, as indicated in figure 50. 

 

Figure 50: PEGDA test structure made with focus within glass leading to etching (left), on 

surface giving good structuring (middle) and above surface leading to detachment of 

structure (right). 

The microlaser system was found to give good structuring results with PLA. The PEGDA 

structures produced showed visible ‘rippling’ of the lines. The photocurable PLA on the other 

hand was well defined with straight edges, as can be seen in figure 51.  

 

Figure 51: PLA structure Fabricated with microlaser,imaged under an optical microscope 

prior to development. Voids created by 'dust' or impurities in the resin are visible. Scale bar 

250 µm 
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It is clear that the write speed of the low cost microlaser system is much lower than the 

femtosecond laser based system, but allowing savings in both space and equipment costs to 

be made. The reduced space requirements may allow the production process to be sped up by 

creating multiple parallel systems in the same room, as the entire system only requires the 

equivalent space of around half an optical breadboard as opposed to a whole room for the 

larger system. The synthesis of more efficient photoinitiators will facilitate rapid 

microstructure fabrication allowing this technology to achieve credible structuring speeds for 

microdevice fabrication. 

4.3.5 Microfabrication of Lab on a Chip Arrays for the Analysis of Neuronal Cells 

Typical applications for microstereolithography include the fabrication of porous cell 

scaffolds (Hsieh et al. 2010), cell encapsulating scaffolds (Lee, Rhie, and Cho 2008), medical 

prototyping (Narayan et al. 2010) and micro-medical devices (Gittard et al. 2011; Schizas et 

al. 2010). Further potential applications include cell container arrays as geometrically defined 

cell microenvironments (Truckenmuller et al. 2012) and niches (Lutolf and Blau 2009) which 

regulate stem cell proliferation and differentiation as well as protecting the cells from 

external environmental stresses (Underhill and Bhatia 2007).  

Microfabrication of microwell arrays, allowing individual cells to be isolated and tracked is 

of particular interest in stem cell biology (Underhill and Bhatia 2007). The ability to fabricate 

and reproduce microwell arrays with user defined geometry allows for greater miniaturization 

of established cell culture techniques, and is much more efficient than the use of multiple 

well and plate assays.. Chin et al. (Chin et al. 2004) used microfabrication to create a 10,000 

well microwell array on a single glass chip that allowed the study of individual stem cell 

proliferation and differentiation. The typical well dimensions were between 10-500 µm in 

height and 20 to 500 µm in diameter.  

In this study, microwell devices were fabricated from the photocurable PLA and reproduced 

using PDMS stamping (which is examined in more detail in chapter 6). Two photon 

polymerization allows the rapid fabrication of microwell arrays of a user defined geometry in 

a short amount of time with excellent resolution and eliminates the use of complex static 

photomasks as used in other studies. A photocurable PLA based microwell structure and its 

PDMS replicated replica is shown in figure 52. 
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Figure 52: PLA structure created by laser direct write (left) and PDMS stamping (right). 

Line widths of replica structure remain within 10% of original thickness, although some 

differences in the definition of the lines is observable. 

4.3.6 Porous Microstructures as Neural Cell Scaffolds or Niches 

The interaction of NG108-15 neuronal cells with the photocurable PLA based 

microstructures was examined using scanning electron microscopy. An analysis of the 

material biocompatibility was performed in chapter 2, and the adhesion and viability of this 

cell line cultured on photocured PLA is examined in detail in chapter 5. Primary Schwann 

cell viability, adhesion and morphology are examined in chapter 6. In this experiment we 

examine the migration of cells into the scaffolds and also the cellular extensions between the 

wells. 

PLA scaffolds were produced by both microstereolithography and PDMS replication before 

soaking in phosphate buffered saline (PBS) overnight and then seeded with NG108-15 

neuronal cells at a density of 5,000 cells per well in 2 mL of media per sample. The cells 

were fixed for SEM between 2 and 7 days and imaged by SEM. The samples were seeded in 

triplicate and representative images are shown in figure 53. 
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Figure 53: NG108-15 neuronal cells cultured on microfabricated photocurable PLA 

scaffolds for two days (top row) and seven days (bottom row). 

The cells were observed to have proliferated on the PLA material and had filled the majority 

of micropockets. The images taken after two days show multiple individual cells in each 

micropocket, expressing cellular projections or neurites typical of neuronal cells. After seven 

days in culture the cells had formed a monolayer over the structure, making it difficult to 

distinguish individual cells. This indicates that the cells have continued to proliferate beyond 

two days and been able to form a confluent layer of cells on the microstereolithography 

produced and PDMS replicated scaffolds created from photocurable PLA. 

After two days in culture, the extent to which cells had filled the micropockets or ‘niches’ 

was quantified by cell counting using SEM images. Three areas were selected at random and 

imaged at a magnification of 750×. Niches at the edge of the image with part of the pocket 

outside the image were not counted. The average number of niches per image was 34.7 ±0.6. 
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The distribution of the cells within the pockets is shown in figure 54, showing the number of 

cells per well by percentage of the total number of cells for each image. Cells sitting between 

the pockets were not counted. 

 

Figure 54: Average cell count based on SEM study of PLA microwell structures. More than 

95% of the wells contained cells after 48h in culture. Values reported are average of three 

repeats (n=3) ± the standard deviation. 

 

It can be seen from figure 54 that the cells have migrated successfully into the pockets. 

Around 50% of the wells contain two cells, and less than 5% of the wells contain no cells at 

all. Further studies, for example by live dead staining could be used to verify the viability of 

the cells located within the pockets although this has not been performed at this stage. 

Staining of the nuclei with DAPI would also allow more accurate cell counting, as the fibrous 

morphology displayed in these images makes it difficult to image individual cells. Long 

cellular projections between individual cells (demonstrated to be neurites, as verified by DAB 

staining of β-III tubulin in chapter 5) were also observed (see figure 70). 

The rapid microstructuring of microwell arrays from photocurable PLA by two photon 

polymerization has been demonstrated, and the technique allows the creation of pockets with 

user defined geometry according to a computer model. This technique may find applications 

in quantitative stem cell studies and the fabrication of potential stem cell niches long 

extensions between cells are present and extend over the surface of the structure. 
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Figure 55: NG108 neuronal cells cultured in PLA microwells after two days in culture. 

Neurites expressed by the cells are present on the structure indicating that the cells are 

highly adherent. 

4.4 Discussion 

In this study the development of a laser direct write system capable of high resolution (1-2 

µm) and fast microstructuring with a polylactic acid (PLA) based photocurable oligomer was 

demonstrated. The incorporation of a low cost microlaser was also demonstrated however 

much optimisation work still needs to be performed. Cell-structure interactions were 

investigated with microwell arrays fabricated from the photocurable PLA and potential 

applications in the creation of stem cell niches were explored. 

The use of low cost microlasers is attracting growing attention and the subsequent reductions 

in cost this will achieve will ensure that this technology is available to a wider range of 

researchers. The development of efficient photoinitiators will help drive this technology and 

rapid high resolution microstructuring will become a reality. In this study a commercially 

available polymer and initiator were combined with promising results. The photocurable PLA 

was also cured successfully with this system. 

Migration of neuronal type cells into PLA micropockets was successfully demonstrated and 

further work will focus on the relationship between dimensions, geometry and cell ingrowth 

into the micropockets, potentially allowing arrays of single cells to be created and studied. In 
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chapters 5 and 6 the use of a Galvano scanner will be explored for more complex structuring 

of this material allowing the creation of cell loaded devices as neural cell delivery vehicles or 

Schwann cell loaded implants which may be incorporated into nerve guidance conduits 

leading to improved recovery of damaged nerves.  

4.5 Conclusions 

In this chapter a custom made two photon laser direct write system was constructed, and used 

for the accurate microstructuring of a photocurable PLA based material. The system was able 

to rapidly fabricate large microstructures with good (10 µm) resolution in just a few minutes. 

A maximum resolution of around 1 µm was achieved by expanding the beam using a 

telescopic lens arrangement. The speed and resolution achieved with the system was 

comparable to commercially available microstereolithography systems, and the PLA based 

resin gave excellent structuring results. Further to this, the accurate structuring of both 

commercially available polyethyleneglycol diacrylate and also the photocurable PLA was 

demonstrated using a low cost micro-laser, making this technology more accessible in terms 

of cost. The results achieved demonstrate how this technology may one day be able to create 

bioresorbable devices for tissue engineering.  
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Aspects of this chapter published in (Melissinaki et al. 2011) with significant modification. 

The author would like to thank V. Melissinaki (IESL-FORTH) for assistance with 

microstructure fabrication and imaging, PC12 cell culture and live-dead staining. The author 

was responsible for resin synthesis and characterisation, thin film preparation and analysis, 

NG108 neuronal cell culture and analysis and aspects of the microstructure design and 

fabrication. 

Abstract 

In this chapter, the use of photocurable analogues of polylactic acid (PLA) and also 

polycaprolactone (PCL) for neural applications is investigated. Neuronal cell type (NG108-

15 and PC-12) and also NIH-3T3 fibroblast viability, proliferation and adhesion on thin films 

of the photocurable materials were evaluated. Accurate two photon microstructuring of the 

photocurable PLA with a Galvano scanner was investigated and the material was shown to 

give excellent structuring results. Potential applications for microfabricated structures were 

investigated including cell delivery vehicles and devices for studying cell alignment, an 

important factor for nerve repair devices. 

5.1 Introduction 

It has been demonstrated that cells are directly influenced by the three-dimensional 

environment in which they are cultured, and cells grown in a monolayer fashion respond 

differently to biochemical stimuli compared to those cultured in a three-dimensional matrix 

(Abbott 2003). The relationship between surface chemistry, mechanical properties, 

microstructure and nanotopography and the effect these factors have on cellular behaviour 

within a tissue scaffold are an important aspect of tissue engineering (Haycock 2011). Three-

dimensional cell culture seeks to recreate accurately the physiology of living tissue. Beyond 

cell-scaffold interactions, tissue scaffold structure and the degree of porosity also have an 

Chapter 5: Two Photon Laser Direct Write 

of Bioresorbable Resins for Neural Tissue 

Engineering Applications 
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effect on the mechanical performance of the device (Hutmacher et al. 2001; Hutmacher, 

Sittinger, and Risbud 2004). 

Tuning of surface morphology and wettability can influence cell adhesion (Falconnet et al. 

2006; Ranella et al. 2010), and features such as ideal pore size can vary depending on cell or 

tissue type. Pore size is a critical factor in tissue scaffold design (Whang et al. 1999). It has 

been demonstrated for example that a pore size of 5 µm has been reported to be optimal for 

neovascularization in bone tissue (Brauker et al. 1995), pores of 5-15 µm in size facilitate the 

ingrowth of fibroblasts whereas pores of 40-100 µm facilitate osteoid (bone) cell ingrowth 

(Klawitter and Hulbert 1971) and that mammalian skin regeneration requires pore sizes of 

20-125 µm (Gogolewski and Pennings 1983). It was originally determined that the optimal 

pore size for bone regeneration was between 200–350 µm (Klawitter and Hulbert 1971), 

large enough to facilitate the process of ‘osteoconduction’ in which microvasculature and 

osteal progenitor cells migrate from the surrounding bone into the pores of the scaffold and 

develop into bone tissue, a process known as ‘creeping substitution’  (Stoelinga and Cawood 

2011). This was later revised by Whang et al. using poly(lactide-co-glycolide) scaffolds 

prepared using freeze drying technique (Whang et al. 1999), as the limited technology of the 

time did not allow accurate determination of pore size in the earlier studies. It was found that 

bone regeneration could occur in scaffolds with median pore sizes of 16 µm, by the 

infiltration of osteoprogenitor cells via capillary action. Capillary action as a result of surface 

wettability and pore size was found to be a crucial factor in bone regeneration. Furthermore,  

if a scaffold does not allow sufficient nutrient diffusion then cells will only exist on the outer 

surfaces (around 200 µm) of the structure, as cells isolated from a supply of nutrients such as 

oxygen will die (Laschke et al. 2006).  

Bulk methods for porous scaffold fabrication including gas foaming (Sheridan et al. 2000), 

phase separation and particulate leaching (Cai et al. 2002) may allow some degree of control 

over pore size, but pore interconnectivity can be poor preventing cell infiltration into the 

scaffold. Cell dispersion within scaffolds fabricated by microstereolithography with a gyroid 

architechture designed to enhance cell and nutrient distribution was compared to scaffolds of 

a similar porosity and pore size (determined by microcomputed tomography (µ-CT)) 

prepared by particulate leaching by Melchels et al. (Melchels, Barradas, et al. 2010),. After 

five days in static culture, cells were found to be evenly dispersed throughout the 

microfabricated gyroid scaffold however on the scaffold prepared by particulate leaching 

cells were limited to the outer surface of the scaffold, as visualised by methylene blue 
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staining. Interestingly, the further importance of nutrient diffusion and waste metabolite 

dispersion was demonstrated by the lack of living cells within the gyroid scaffold after 20 

days in static culture. This was rationalized to limitations on how long scaffolds can be 

cultured in static conditions. The use of microstereolithography to create larger 

interconnecting ‘vascular’ channels was suggested as a solution.  

The use of laser direct write (LDW) by two photon polymerization (2PP) allows far higher 

resolution than one photon techniques and has been demonstrated for a range of experimental 

tissue engineering and biomedical applications, as well as medical prototyping (Narayan et al. 

2010). In this study the use of a Galvano-scanner for the accurate microstructuring of a 

photocurable PLA based polymer was demonstrated. Galvano-scanners consist of a set of 

mirrors controlled using a computer in order to translate the focus of a laser beam within the 

focal plane of a microscope objective, allowing accurate microstructuring according to a 

computer model. Vertical stepping was achieved with a high precision translation stage. A 

schematic of the key features of the structuring system is shown in figure 56. 

 

Figure 56: Two photon microstereolithography system with Galvano-scanner. 

This system has been previously demonstrated for the microstructuring of a biodegradable 

triblock copolymer based on polyethylene glycol, polycaprolactone and polylactic acid 
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segments (Claeyssens et al. 2009).  In this study a low molecular weight photocurable PLA 

based oligomer with a higher degree of methacrylate was demonstrated, and potential neural 

tissue engineering applications of this technology were explored. A PCL based photocurable 

oligomer was also prepared and evaluated alongside the photocurable PLA to further 

investigate neuronal cell adhesion on these photocurable oligomers. Microstructuring was 

however focussed on the PLA based material. 

5.2 Materials and Methods 

5.2.1 Synthesis of Photocurable PLA and PCL  

The synthesis of the photocurable polymers was described in detail in chapter 2. In brief, a 

photocurable PLA based oligomer with four arms and four lactic acid monomers per arm, and 

a four armed PCL oligomer with two caprolactone monomers per arm was targeted. This was 

achieved using pentaerythritol (pentaerythritol (Sigma-Aldrich, >98%) as a multi-armed 

initiator and either ε-caprolactone (Aldrich, 97%) or (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-

dione (Sigma-Aldrich, 98%) in a molar ratio of 1:8 (pentaerythritol: cyclic monomer 

(caprolactone) or dimer (lactide)) with stannous octoate (Aldrich, 98%) as catalyst. The 

reaction was performed using an appropriate quantity of toluene (anhydrous, Sigma-Aldrich, 

99.8%), as solvent for 8h in dry glassware before cooling, precipitation of the product and 

vacuum drying to remove solvent. The products were methacrylate functionalized in 

dichloromethane solvent (anhydrous, ≥99.8%) using a 16 molar excess of triethylamine 

(TEA) (Sigma-Aldrich, >99%) and methacrylic anhydride (MAA) (Sigma-Aldrich, 94%) 

based on the predicted molar mass of the oligomer and allowed to react for 24 h at room 

temperature. The products were isolated by vacuum distillation to remove the unreacted TEA 

and MAA and the products precipitated in isopropanol at -20 °C. 

5.2.2 Photocurable Polymer Characterization  

The photocurable polymers were characterized as described in chapter 2. Briefly, the 

polymers were characterized by FT-IR spectrometry using a Perkin-Elmer SPECTRUM 2000 

spectrometer, by deposition of a thin film of the hydroxyl terminated and methacrylate 

functionalized oligomer between two KBr Discs. 
1
H NMR Spectra were taken by preparing 

20-40 mg of the oligomer in deuterated chloroform (100%, 99.6 atom%, Aldrich) and 
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filtering into a standard NMR tube. Spectra were recorded on a Bruker AV1-400 

spectrometer operating at 400 MHz. 

5.2.3 Photosensitive Solution Preparation 

To prepare a photosensitive solution, one gram of the photocurable polymer was mixed with 

20 mg of 4,4’-bis(diethylamino)benzophenone (≥98%, Aldrich) and 250 µl of 4-methyl-2-

pentanone (≥98.5%, Sigma-Aldrich). The solution was stirred for 15 minutes using a 

magnetic stirrer bar and taken up in a syringe and filtered through a polycarbonate filter (pore 

size 0.45 µm) into an amber glass vial. Filtering of the sample is essential to remove any 

particulate matter present in the sample, such as agglomerates of photoinitiator. Samples 

containing particulates had a tendency to ignite or ‘bubble’ when the sample was irradiated 

due to the highly focussed radiation. The photocurable material itself is largely transparent to 

the radiation, however particulate debris is quickly ignited destroying the surrounding 

structure. This was observed as the sudden appearance of large bubbles on the CCD display 

used to monitor the fabrication process. 

5.2.4 Thin Film Preparation 

The photocurable solution was spin coated onto glass coverslips functionalized with 3-

methacryloxypropyltrimethoxysilane (MAPTMS) (Polysciences Inc.). MAPTMS 

functionalization was performed by soaking standard borosilicate glass coverslips in a 40 mM 

solution of MAPTMS in chloroform (Sigma-Aldrich, amylene stabilized, ≥ 99%) for a 

minimum of three hours. The silane functionalization provides methacrylate groups on the 

surface of the glass which allow the polymer to bind to the surface covalently. Without this 

functionalization the films had a tendency to detach from the surface and float off during cell 

culture. Spin coating was performed by depositing 1 drop of the photosensitive material onto 

the glass substrate and spinning for 60 s at 4000 rpm followed by drying under vacuum to 

remove the solvent. The films were then UV cured using either a UV lamp (EXFO Omnicure 

S1000 100W) for 300 s at 30 mW cm
-2

 or an excimer laser (Lambda-Physic, LPX 210, 248 

nm, 34 ns) using 20 shots at 58 mJ cm
-2

. The cured films were developed by immersion in 4-

methyl-2-pentanone for 5 minutes before drying in a vacuum oven for 24 h.  

In order to prepare commercially available linear PLA and PCL films for comparison, the 

polymers were each dissolved in dichloromethane (DCM) to make a 4% w/w solution of PLA 
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or PCL in DCM. The solutions were spin coated onto glass coverslips and dried under 

vacuum to remove the solvent. 

5.2.5 Sample Preparation for Laser Direct Write 

To prepare samples for laser direct write (LDW), one drop of the photocurable solution was 

deposited onto the methacrylate functionalized coverslips and dried under vacuum overnight 

to remove the solvent. The presence of solvent in the photocurable solution was also found to 

lead to bubbling or burning of the samples during the direct write process. The glass coverslip 

was placed on the sample support in the LDW system with the polymer ‘droplet’ facing up 

and laser illumination occurring from below the sample. 

5.2.6 Laser Direct Write of 3D Structures 

Laser direct write was performed as described extensively by other authors (Klein et al.; 

Farsari and Chichkov 2009). In this study a Ti: sapphire laser (Femtolasers Fusion) emitting 

at 800 nm with a repetition rate of 75 MHz and sub 20 fs pulse duration was used to supply 

the exciting radiation. This laser has a maximum output power of 450 mW and a beam 

diameter of approximately 2 mm. The beam was expanded 5x using a telescopic lens set in 

order to fully illuminate the back aperture and achieve the best possible resolution. The 

expanded beam was focussed within the volume of the resin using a high numerical aperture 

lens (40x, 0.95 NA, Zeiss, Plan Apochromat). Resin samples were prepared by depositing a 

drop of the photosensitized solution (prepared as described in section 2.3) onto a MAPTMS 

coverslip and removing the solvent under vacuum for 24 h. Scanning of the laser beam was 

achieved using an (x,y) scanner (Scanlabs Hurryscan II computer-controlled by SCAPS 

SAMLight software). Translation in the z plane and large (x,y) translations were 

accomplished using a high precision (x,y,z) translation stage (PI). Beam delivery was 

controlled using a mechanical shutter (Uniblitz) and beam power was tuned using a 

motorized attenuator (Altechna). Overall control of the system was controlled using 3DPoli 

software (3DPoli@gmail.com). Visualization of the direct write process and location of the 

substrate surface was achieved using a CCD camera mounted behind a dichroic mirror. 

Structures were fabricated layer-by-layer with fine stepping in the z-plane. The final layer of 

each structure was located on the MAPTMS functionalized coverslip in order to covalently 

bind the structure to the surface and avoid detachment. Structures were developed post curing 

by immersion in 4-methyl-2-pentanone for one hour.    

mailto:3DPoli@gmail.com
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5.2.7 Characterisation of Thin Films 

5.2.7.1 X-Ray Photoelectron Spectroscopy 

Thin films of the photocurable PLA were prepared by spin coating as described above and 

analysed by X-ray photoelectron spectroscopy (XPS) using an Axis Ultra DLD spectrometer 

(Kratos Analytical, UK). Scan spectra were obtained from the surface at 160 eV pass energy, 

1 eV step size, from 1200 eV to -5 eV and processed using Casa XPS.   

5.2.7.2 Surface Wettability by Water Contact Angle Measurement 

Water contact angle measurements were conducted using a Rame-Hart Contact Angle 

Goniometer by the deposition of a drop of deionised water on the surface of the sample and 

measuring the angle between the droplet edge at the contact point of the surface and the 

surface itself.  

5.2.7.3 Scanning Electron Microscopy 

SEM was used to determine film thickness by scratching the surface with a metal tip before 

applying a thin (~10 nm) gold coating. Images were taken on an Inspect F field emission gun 

scanning electron microscope (FEG-SEM) using an accelerating voltage of 10 kV and a spot 

size of 3. By taking the images from an oblique angle the depth of the scratch could be used 

to determine the film thickness and smoothness.  

5.2.8 Cell Culture and Biological Testing 

5.2.8.1 General Cell Culture 

In order to investigate the suitability of the photocured PLA resin for biological applications, 

particularly with respect to neuronal applications two neuronal cell lines were used for cell 

culture. NG108-15 and PC-12 cells were obtained from the American Type Culture 

Collection (ATCC). Cell counting with a 1:1 0.4 % Trypan blue stain was performed using a 

Neubauer chamber and cells were seeded as required by the individual experiment. The 

NG108-15 cell line was cultured in T-75 flasks using 10% high glucose DMEM containing 

Foetal Bovine Serum (FBS, 10 %), glutamine (1 %) and penicillin-streptomycin (1 %) and 

fungizone (0.25 %). PC12 Cells were cultured using DMEM containing 10 % horse serum, 5 
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% FBS and 1% antibiotic solution (GIBCO, Karlsruhe, Germany). Cells were incubated at 

37 °C in a humidified atmosphere with 5 % CO2 according to standard procedure. Cells were 

grown to within 80 % of confluence before being shaken vigorously to detach the cells and 

seeded according to the specified density for the individual experiment. 

5.2.8.2 Sample Fixation for SEM  

In order to prepare samples with cells for scanning electron microscopy, the cells were 

dehydrated using hexamethyldisilazane (HMDS) (Bray, Bagu, and Koegler 1993). Following 

cell culture the cells were washed twice with phosphate buffered PBS for 2 minutes each 

time, in order to remove the media. The PBS was removed and the samples rinsed with 

glutaraldehyde solution (2.5% in PBS for one hour). The samples were washed again with 

PBS three times, leaving for 15 minutes each time. The samples were then rinsed with 

distilled water and dehydrated using a series of ethanol dilutions, leaving each solution for 15 

minutes at a time. The solutions used were 35% ethanol in water, followed by 60% ethanol, 

80%, 90% and then 100% in ethanol followed by soaking in a 1:1 solution of 

hexamethyldisilazane (HMDS) and ethanol for one hour followed by soaking twice in pure 

HDMS for five minutes at a time. Following removal of the HDMS the samples were left to 

dry in a desiccator or other dry environment before sputter coating with a thin coating of gold 

or Palladium for SEM microscopy.  

5.2.8.3 MTT Assay 

The MTT assay measures cell metabolic activity by the conversion of an artificial hydrogen 

acceptor substrate (MTT, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) by 

dehydrogenase enzymes within the cell. The artificial substrate is reduced within the cells to 

form a purple formazan product which can be eluted using acidified isopropanol and 

quantified by spectrophotometry. This can be used to give an indication of cell number as 

dehydrogenase enzyme activity usually relates to cell number.  

Following cell seeding according to the particular experiment, the medium was removed and 

the cells carefully washed once or twice with PBS (1 ml per well). 1 ml of MTT solution (0.5 

mg/ml MTT powder in PBS) was added to each well and the plate left at 37˚C in an incubator 

for 40 minutes. The MTT was then removed and 300 μl acidified isopropanol (25 μl 

concentrated HCl in 20 ml isopropanol) was added to each well. Two 150 µl samples were 
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then transferred to a 96 well plate and the optical density measured in a BIO-TEK ELx plate 

reader set to 540 nm and referenced at 630 nm. 

5.2.8.4 PicoGreen DNA Quantification Assay 

The DNA quantification assay works by extracting genetic material from cells by repeated 

freeze thawing, followed by binding a fluorescent marker to the extracted DNA allowing the 

total DNA to be determined by measuring the fluorescence. The assay allows total cell 

number between samples to be compared, with a higher fluorescence indicating a greater 

amount of DNA and therefore a greater number of cells. By seeding known cell numbers and 

performing the assay a calibration curve may be prepared to estimate the actual number of 

cells, however in this case the values were only used comparatively. Following cell culture 

the samples were treated with Triton X-100 solution (500 μM) in 1% carbonate buffer and 

freeze thawed three times from -80˚C to 37˚C. A standard PicoGreen DNA protocol was 

followed (500 μl trypsin-EDTA 1:20 in H2O with 500 μl PicoGreen 5:1000 in trypsin-EDTA 

solution. Reagent bound DNA fluorescence was measured at 520 nm with an excitation 

wavelength of 480 nm using a BIO-TEK ELx 80 plate reader. 

5.2.8.5 Live-Dead Assay 

The ratio of living to dead cells (PC12 cell line) was examined on the photocured PLA films 

using live-dead assay. Following cell culture a live-dead cell staining kit (BioVision) was 

used to differentiate between live and dead cells. Only living cells are stained by the live only 

cell permeable dye (Syto-9, excitation 488 nm, emission 518 nm) and fluoresce green 

whereas dead cells are stained by the non cell-permeable propidium iodide (ex: 488 nm, em: 

615) and fluoresce yellow/ red. Cell viability can be inferred by counting the number of red 

and green cells in randomly selected areas. 
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Figure 57: Optical micrograph of NG108 cells showing randomly selected areas for cell 

counting using ImageJ program. 

5.2.8.6 Statistical Analysis and Significance 

Cell viability assays were performed in triplicate, and unpaired Student’s t-test was used to 

compare significance levels between test and control values where appropriate. 

5.2.8.7 Phenotypic Analysis of NG108-15 Cells  

In order to verify the phenotypic purity of the NG108-15 cells and to facilitate imaging of the 

neurites without fluorescent microscopy techniques 3,3’-diaminobenzidine (DAB) staining 

was used. NG108-15 Cells were seeded on 10 µm diameter lines of the photocured PLA 

created by laser direct write on a silane functionalized coverslip at a density of 10,000 cells 

per ml in 1 ml of media per sample and cultured for 72 h. The cells were then fixed and 

permeabilized before immunostaining with monoclonal mouse anti-β-tubulin III antibody 

(1:2000, Promega, UK) overnight. The following day the samples were washed with PBS and 

incubated with horseradish peroxidase (HRP) conjugated anti-mouse secondary antibody 

(1:250) before rinsing with PBS and addition of the DAB staining solution (Vector 

Laboratories) at room temperature for approximately 5 minutes until appropriate staining 

developed. The stained samples were carefully mounted and imaged on a MOTIC digital 

phase contrast microscope. This strategy for specific staining of β-III-tubulin was adapted 

from that used by Kaewkhaw et al. for the verification of NG108-15 cell purity (Kaewkhaw, 

Scutt, and Haycock 2011). 
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5.2.8.8 Cell Visualization Using Confocal Microscopy  

NG108-15 neuronal cells were cultured as above on the linear PLA structures and stained for 

confocal microscopy. Actin filaments were stained using TRITC-phalloidin, and nuclei 

stained using DAPI. Samples were imaged using a Confocal Microscope (Carl-Zeiss 

LSM510-META). TRITC-phalloidin images (actin) were collected at λex = 545 nm/ λem = 

573 nm, DAPI images (nuclei) were collected at λex = 358 nm/ λem = 461 nm. 

5.3 Results and Discussion 

The photocurable polylactic acid (PLA) and polycaprolactone (PCL) oligomers described in 

chapter 2 were prepared as described in the methods. The surface properties of the PLA based 

material were examined in detail using x-ray photoelectron spectroscopy (XPS) and contact 

angle analysis. A more detailed study of cell proliferation and adhesion on both materials was 

performed using NG108-15 neuronal type cells and the results compared with the results of 

the surface characterization studies. A combined study of the material surface properties and 

the effect on cell adhesion demonstrates the suitability of this type of materials for neural 

tissue engineering applications. 

Due to the ability of neural cells to attach to and proliferate on this material, a range of 

microdevices which contained open pores of different geometries were created using two 

photon polymerization (2PP), as potential cell delivery vehicles which can be injected into 

the site of a brain injury, for example following a stroke where a section of brain tissue has 

died. The increased area for cell attachment and the mechanical protection this provides 

would offer benefits over simple spherical microparticles of degradable poly(lactide-co-

glycolide) (PLGA) which have been investigated for this purpose (Bible et al. 2009b). 

Furthermore, cell alignment and attachment on structures fabricated from this material by 

2PP was investigated using a combination of fluorescence microscopy, immunostaining and 

scanning electron microscopy (SEM). Three dimensional structures consisting of 

‘guidewires’ or posts suspended between two solid blocks were created, with posts of 

different diameter and structures with guidewires at different heights and spacing were 

created as a proof of principle model for studying optimum fibre diameter and spacing for 

cell attachment and fibre myelination in nerve guidance conduits (Ahmed and Brown 1999). 
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5.3.1 Polymer Characterisation 

The polymer resins were characterised using 
1
H NMR spectroscopy. NMR characterisation 

was used to determine the ratio of the initiator to monomer in the final resin, as demonstrated 

in Claeyssens et al. (Claeyssens et al. 2009). Furthermore, the appearance of vinyl peaks in 

the 5.5-6.5 ppm region were used to verify the methacrylate functionalization. FT-IR 

spectroscopy was also used to confirm the methacrylation of the oligomers, by the 

appearance of peaks characteristic of carbon- carbon double bonds at 1600 cm
-1

.  

5.3.2 Surface Characterisation of Photocured Polylactic acid Thin Films 

Thin films of the photocurable PLA were cured onto the surface of glass coverslips 

functionalized with MAPTMS as described in chapter 2. If MAPTMS functionalization was 

not performed the films detached when submerged in cell culture media during incubation. 

The films were gold coated and examined under SEM in order to determine the surface 

roughness and thickness. By scratching the film using a fine steel tip the thickness of the film 

could be visualised. The films were found to be smooth on the micrometer scale, with a 

thickness of around 1 µm. The thickness of the films is expected to be sufficient for 

investigation of cell adhesion, which is influenced by the chemical functionality of the top 0.4 

nm of a surface (Zelzer et al. 2008). A scratched film of the photocured PLA is shown in 

figure 58.  

 

Figure 58: SEM images of photocured PLA thin films scratched using a metal tip, allowing 

thickness of the film to be determined. 

Surface topography or ‘roughness’ has been demonstrated to influence cell response on 

chemically identical materials (Kaiser, Reinmann, and Bruinink 2006; Jain and von Recum 
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2004). From the SEM images it can be seen that the polymer thin films are smooth on the 

sub-micrometer scale. 

In order to characterise the surface of the photocured material, x-ray photoelectron 

spectroscopy (XPS) and water contact angle measurements were used on the photocured PLA 

films. Developed by Kai Seigbahn in the 1960’s (Hagstrom, Nordling, and Siegbahn 1964), 

XPS is one of the most commonly used surface characterization techniques (McArthur 2006). 

The sample surface (in this case the photocured PLA film) is irradiated with an X-ray source 

resulting in the ejection of photoelectrons within the top 10 nm of the sample. The energy of 

the ejected electrons may be assigned to particular elements in order to identify the elemental 

composition of the surface. The chemical state of the surface elements may also be identified, 

as the binding energy of an electron emitted from a carbon atom in an aliphatic hydrocarbon 

will be lower than that of an electron emitted from a carbon belonging to a carbonyl group. 

This allows polymer structures to be verified by a comparison of the stoichiometry of 

different carbon environments. This technique has been applied for example to polylactic 

acid, where the polymer stoichiometry was verified by comparing the C1s core level (Barry 

et al. 2006). 

In the case of the photocured PLA, the survey scan reveals a carbon to oxygen ratio of 1.83 

(C/O), close to the figure indicated by the NMR spectrum and the theoretical value of 1.73. 

The high resolution C1s scan indicates 38.5% C-C bonding, 24.5% O-C=O bonding, 25.5% 

C-O bonding and 11.5% C-COOH bonding, indicating the presence of some carboxyl groups, 

which could be created by oxidation and chain scission during UV curing. The XPS spectrum 

is shown in figure 59. 
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Figure 59: XPS spectrum of PLA cured films 

The photocured PLA thin films were compared to commercially available linear PLA thin 

films using contact angle analysis. Surface chemistry, and in particular surface energy has a 

strong effect on cell attachment (Roach et al. 2010; Zelzer et al. 2008). Surface wettability, as 

determined by surface contact angle measurement is one of the most commonly examined 

surface properties due to the simplicity with which a reading can be taken. Although the 

technique does not give any indication as to the identity or concentration of the surface 

groups, it is very fast and surface sensitive (the depth of sensitivity is within 0.33 to 1 nm of 

the surface) (Bain and Whitesides 1988). 

The contact angle is measured as the tangent of the droplet surface at the point at which it 

meets the sample (in this case the PLA and cured PLA films). The resulting figure is the 

result of a balance of three interfacial forces, the solid: liquid interface, the liquid: vapour 

interface and the solid: vapour interface.  As a result of the balance between these forces the 

droplet may spread over the sample surface or remain as a droplet. A high water contact 

angle indicates a hydrophobic surface, whereas a low angle indicates a hydrophilic one.  
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The dominant factor in cell-surface adhesion in serum-containing media is protein adsorption 

(Koenig, Gambillara, and Grainger 2003). Cell-surface interactions are often discussed in 

terms of surface energetics, with water contact angle being the most commonly reported 

parameter (Sigal, Mrksich, and Whitesides 1998). Increased cell density is often correlated 

with lower water contact angle and therefore lower hydrophobicity, as demonstrated in 

several studies (Koenig, Gambillara, and Grainger 2003; Keselowsky, Collard, and Garcia 

2003, 2004).  

To compare the surface wettability of the photocured and linear PLA, the pH of the droplet 

was varied from pH 7 to pH 2 in order to investigate the effect of UV exposure on surface 

oxidation, which generates acidic groups (Koo and Jang 2008), in addition to those already 

present in linear PLA. The contact angle of the commercially available PLA remains at 69° 

over the pH range. The photocured PLA film has a contact angle of 67° at pH 7 but below pH 

4 rises to 69°. The irradiated commercially available PLA reduces to 65° at pH 7 but returns 

to 69° at pH 2.2 due to protonation of the surface acid groups. The reduction in contact angle 

at pH 7 is less pronounced in the photocurable PLA compared to the commercially available 

PLA, and the effect of surface oxidation on cell attachment is expected to have little effect on 

the attachment of cells on UV cured films compared to those cured using infra-red radiation 

during the two photon polymerization process. 

 

Water Contact Angle  

 

Commercially 

available PLA 

Commercially 

available PLA: 9 

W/cm
2 
UV light 

Photocured PLA: 9 

W/cm
2 
UV light 

pH 7.0 69.4 º ± 0.9º 65.4º ± 0.5º 67.2º ± 1.3º 

pH 2.2 69.0 º ± 0.9 º 69.0º ± 1.2º 69.4º ± 2.3º 

 

Table 1: Effect of UV irradiation on surface oxidation of PLA films on surface 

hydrophobicity, determined by exposure of films to radiation and measurement of contact 

angle at different pH values. Repeat measurements were taken five times (n=5) and values 

are reported as mean ± standard deviation. 
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5.3.3 Structuring of the Photocurable PLA 

After some optimization the PLA based photocurable oligomer was found to give accurate 

structuring with a laser power of 30 mW and a write speed of 50 µm s
-1

. These figures are 

comparable with data reported by Claeyssens et al. (Claeyssens et al. 2009) who reported on 

the structuring of polycaprolactone (PCL) based photocurable polymers using the same 

system. The photocurable PLA material was shown to produce excellent structuring results, 

with little shrinkage or swelling/ cracking occurring post-development. A minimum 

resolution of 800 nm was demonstrated in this study. Structures showing the minimum 

resolution and excellent structuring results are shown in figure 60. 

 

Figure 60: Cross-hatched structure showing ~800 nm resolution (left) and ‘sea-shell’ 

structure showing accuracy of  the 2PP technique (right). 

5.3.4 Neuronal Cell Growth and Viability on Polymer Thin Films 

The ratio of live to dead cells (PC12 and NG108-15 cell lines) was examined on thin films of 

the photocured polymers using live-dead staining (PC12 cells at 1, 3 and 5 days) and in more 

detail using the more adherent NG108-15 cell line at 24, 48 and 72 h (proliferation assay), 72 

h (DNA quantification assay) and 24, 72 and 120 h (MTT assay). Neuronal type cells were 

selected to reflect potential applications of microstereolithography in neural tissue 

engineering, where aligned cell growth induced by scaffold microstructure and architecture is 

an important area of research (Ribeiro-Resende et al. 2009).  
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5.3.5 MTT and Cell Proliferation Assay with NG108-15 Cell Line 

MTT assay provides an indication of cell number by colorimetric methods and was discussed 

in detail in chapter 2. In this study NG108 proliferation on thin films of the photocured PLA 

was compared to a proliferation on a glass coverslip control at 24, 72 and 120 h. Additional 

controls included tissue culture plastic, the methacrylate functionalized glass coverslips and 

spin coated thin films of linear PLA for comparison (all examined at 24 h and 72 h). This 

extensive set of controls shows no significant difference for the TCP or methacrylate 

functionalized glass from the standard glass coverslips, indicating that the glass coverslips are 

a valid control and also that the silane treatment of the coverslips does not cause a cytotoxic 

effect. After 120 h the cell metabolic activity is significantly higher (p<0.05, Student’s t-test) 

on the photocured PLA film, indicating a higher cell count. This potentially indicates better 

cell adhesion on this material, however further in depth analysis would be required to verify 

that the cells on the glass coverslip control have not become over-confluent more rapidly than 

on the PLA substrate.  

 

Figure 61: MTT Assay of Photocurable PLA and controls, comparing NG108 neuronal cell 

number (as indicated by metabolic activity) on the photocurable PLA and glass, linear PLA, 

MAPTMS treated glass and tissue culture plastic controls. Values reported are mean of six 

repeats (n=6) ± standard deviation. Significance determined by two-tailed Student’s t-test; 

***p<0.0003.   
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In order to visually examine the confluence of the NG108 cells and corroborate the results of 

the MTT assay, cell proliferation was also compared using cell counting. Cells were seeded 

on thin films of the photocurable PLA and also photocurable PCL material for comparison, 

and again compared to a glass coverslip control at 24, 48 and 72 h. Cell numbers were 

counted from randomly selected areas as discussed in the methods section. The proliferation 

rate increased in a similar fashion on all three substrates over the duration of the test, in 

agreement with the results of the MTT assay. 

 

Figure 62: Phase contrast micrographs of  NG108 cells cultured on photocurable PLA, PCL 

and glass coverslip controls at 24, 48 and 72 h in culture. Scale bar 200 µm.  
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Figure 63: NG108 neuronal cell density at 24, 48 and 72h as determined by cell counting 

using optical microscopy. Samples are reported as mean of 15 repeats (n=15) ± standard 

deviation. 

5.3.6 DNA Quantification Assay  

DNA Quantification assay quantifies the relative number of cells present in a sample by the 

lysis and fluorescent labelling/ measured fluorescence of cell genetic material. Using a 

calibration curve the actual number of cells in a sample can be determined. The technique is 

also suitable for giving comparative values between samples, and was used to compare 

between the number of cells present on photocured PLA and PCL thin films and a glass 

coverslip at 72 h. The results were in agreement with the MTT and proliferation assay, and 

verify that the photocurable thin films have no effect on cell proliferation rates compared to a 

glass coverslip control. The DNA quantification assay selectively labels double stranded 

DNA (dsDNA), and does not distinguish between living and dead cells. In combination with 

the other techniques the effect of the photocurable polymers on cell proliferation was 

thoroughly examined using this technique.  

5.3.7 Live-Dead Staining with PC12 Cells 

The live-dead assay is a fluorescent staining technique which allows the quantification of 

living and dead cells in a sample population. Living cells are selectively stained green 
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whereas dead cells are stained red. PC12 cells cultured on the photocurable PLA were 

compared to a glass control at 25, 72 and 120 h on the material.  

 

Figure 64: Typical Live-Dead Stain of PC12 cells cultured on photocured PLA squares. Live 

cells are labelled green, whereas dead cells are red. Scale bar 50 µm.  

The overall viability of the PC12 days after 5 days in culture was 91%, with 9% of the cells 

being dead. This high value is comparable to the glass control. Overall the live cell density on 

the photocured PLA thin films increased more rapidly than on the glass controls, as shown in 

figure 65. The results of the live dead stain are in agreement with the MTT assay, 

proliferation assay and DNA quantification assay indicating that the photocurable PLA is 

capable of supporting neuronal cell growth and attachment.  
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Figure 65: Quantification of cell (PC12) density at 24, 72 and 120 h on spin coated thin films 

of the photocurable PLA compared to a glass control. Sample reported as average of four 

repeats (n=4) ± standard deviation. Cell density is significantly higher on the photocured 

PLA compared to the glass control after 5 days  (****p<0.0001). 

5.3.8 Cell Morphology on Photocurable PCL Thin Films 

An important indicator of cell adhesion on a surface is cell morphology. If cells are poorly 

attached to a surface, or experiencing a cytotoxic effect they will appear rounded or ‘ball like’ 

and detach easily, whereas cells cultured on a surface on which they have a high degree of 

attachment will exhibit a high degree of spreading and display a flattened morphology, with 

projections such as neurites or filopodia extending from the cell body. NG108 cells were 

cultured on thin films of the photocurable PCL and their morphology compared to that of 

those cells cultured on thin films of linear PCL. The cells cultured on the photocured PCL 

exhibited a higher degree of spreading on the cured PCL surface, whereas those on the linear 

PCL where rounded. The high hydrophobicity of PCL is often cited as the reason for its poor 

cell adhesion, however the photocurable PCL appears to be a better cell substrate than its 

linear analogue. 
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Figure 66: NG108 cells cultured on photocured PCL (left) and linear PCL (right). Scale bars 

125 µm. Cells cultured on photocured PCL exhibit a greater degree of spreading with more 

visible neurites (not quantified) whereas cells cultured on commercially available linear PCL 

appear ball like and ready to detach.  

5.3.9 Cell Culture on Microfabricated Structures 

The high resolution and three dimensional structuring capabilities two photon polymerization 

(2PP) allow the production of highly detailed bespoke structures according to a user 

generated model. The combination of 2PP with photocurable materials based on polymers 

approved for internal medical use makes possible the production of advanced medical 

devices. The structures created in this study were chosen to reflect potential applications for 

this technology, for example where the internal features of the scaffold may be used to 

influence cell behaviour and lead to improved recovery from injury. Applications where 

precise or designed microstructure and topography have been demonstrated to be beneficial 

include regenerative therapies in the peripheral and central nervous system (Huang and 

Huang 2006) and scaffolds requiring complex responses to environmental forces such as 

stretching, as demonstrated by Engelmayr et al. (Engelmayr et al. 2008). 

The fabrication of cell delivery vehicles or self-assembled scaffolds was also explored. The 

use of degradable microspheres as a supporting matrix for neural stem cells has been 

suggested as a treatment for brain injuries or strokes (Bible et al. 2009a). The fabrication of 

micro-scale porous blocks or ‘scaffolds’ was explored and cell migration into the 

microcarriers demonstrated using neuronal type cells. Cell attachment to three dimensional 

structures created from the photocurable PLA material was demonstrated using PC12 cells 
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(figure 67). The cells successfully attached to the structures and grew in a three dimensional 

fashion, with cells connecting between adjacent structures as observed in figure 67. 

 

Figure 67: Scanning electron micrographs of PC12 cells cultured on PLA microstructures. 

Cells can be observed adhering to the microstructures and interacting with cells situated on 

neighbouring structures. 

5.3.10 Guided Cell Growth on Aligned Microstructures 

In peripheral nervous system injury, a key strategy towards improved functional recovery is 

the enhancement of axon regeneration through the use of nerve guidance conduits containing 

advanced structural features. By the inclusion of guidance channels or microfibres into nerve 

entubulation devices, functional recovery is enhanced by guided cell migration (Huang and 

Huang 2006). Aligned cell growth is often demonstrated in two and a half dimensions using 

grooved structures produced by photomask based lithography (Mahoney et al. 2005), ion 

etching on silicon chips (Lietz et al. 2006)  or surface patterning techniques (Schneider et al. 

2001). In three dimensions, a common technique for fibre production is electrospinning 

(Daud et al. 2012). Two photon polymerization (2PP) presents an ideal method for the 

production of aligned microfibres with user defined geometry, spacing and length, in order to 

optimise these features with simple lab scale studies. Using suspended fibres may present the 

possibility of studying Schwann cell myelination of fibres, which is not possible on flat 

‘tracks’ or lines, as the cells cannot completely encircle the structure (Ahmed and Brown 

1999). 

To demonstrate potential applications of 2PP, a series of fibres were fabricated onto glass 

coverslips and the growth and alignment of NG108 cells was investigated using different 

imaging techniques. Furthermore, to demonstrate the true three dimensional nature of 2PP 

and its suitability for this application a series of suspended horizontal posts of varying 
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spacing and diameter were fabricated, and preliminary cell culture with neuronal type 

(NG108) cells was performed.  

5.3.11 Neuronal Cell Attachment and Growth on PLA Lines  

In a first experiment, 7 µm thick lines of the photocured PLA with a spacing of 50 µm were 

fabricated on silane treated glass coverslips. NG108 cells were seeded on the structures at a 

density of 5000 cells ml
-1

 and cultured for 48 h. The cells were then fluorescently labelled 

with TRITC-phalloidin (for actin) and DAPI (for the nuclei). The samples were cultured in 

triplicate and representative images are shown. 

The PLA material was found to be auto-fluorescent throughout the range of wavelengths 

achievable with the microscope, making it difficult to visualize cell projections on the lines. It 

was however possible to image the cell bodies, which were shown to be in contact with the 

lines and exhibiting some degree of attachment. The lines were also visible due to 

autofluorescence (see figure 68). 

 

Figure 68: Confocal Images of NG108-15 cells cultured on PLA filaments fabricated by two 

photon laser direct write. With a thickness of around 10 µm. Scale bars: left 20 µm, centre 

100 µm and right 20 µm.  

In order to visualize more closely the presence of neurites extending from the cells, scanning 

electron microscopy was used. Cells were cultured as for the confocal experiment, and again 

cells were observed to be attached to the PLA lines, with some degree of orientation (see 

figure 69). The results shown in both figure 68 and 69 are representative of a minimum of 

three repeats. 
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Figure 69: SEM Images of NG108-15 cells extending along PLA filaments. Scale bars: left 

40 µm and right 50 µm. 

5.3.12 Visualization of Neurites by Labelling for β-III tubulin 

To verify the presence of neurites extending along the polymer ‘tracks’, 3,3’ 

diaminobenzidine (DAB) staining was used. This technique also allowed the observation of 

NG108 cells using optical microscopy without the problem of polymer autofluorescence, and 

also verified the phenotypic purity of the cell line. The DAB staining kit allowed the specific 

staining of HRP labelled β-III tubulin.  NG108-15 cells were observed to exhibit a degree of 

alignment on the photocured tracks of PLA. 

 

Figure 70: Aligned NG108-15 cells cultured on photocured PLA tracks with a thickness of 

around 10 µm, fabricated by two photon laser direct write. The cells were visualised by first 

labelling β-III tubulin with horseradish peroxidase (HRP). By applying DAB solution the 

HRP labelled β-III tubulin was stained brown allowing the cells to be observed using optical 

microscopy. 
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5.3.13 NG108 Cell Growth on Suspended Fibre Model Structures 

Further studies were performed using PC-12 and NG108-15 cells on fully three dimensional 

suspended fibres. Fibres of varying diameter and spacing were fabricated and cells cultured 

on the created structures, in order to study cellular alignment in three dimensions.  Cells were 

observed growing on the suspended wires, as demonstrated in figure 71. 

 

Figure 71: PC12 cells cultured on suspended post structures and imaged using SEM. Cells 

appear to have attached more to thicker posts (top row) as opposed to thinner posts (bottom 

row). Cells cultured on thinner posts exhibit a more flattened morphology.   

From a qualitative examination of the images shown it appears that a critical diameter is 

reached between 10 and 50 micrometers, beyond which the cells can no longer entirely 

encircle the fibres (as seen in figure 72) and instead attach and migrate along the wire.  

5.3.14 Self Assembled Scaffolds and Cell Delivery Vehicles 

The write area or ‘footprint’ of the Galvano scanner is limited to the focal area of the 

objective used. The large fabrication times required also prevented the production of larger 

structures (medical devices or tissue scaffolds).  The narrow footprint of the technique may 

be overcome by combining the scanning method with a high precision translation stage, using 

a ‘step and repeat’ methodology as demonstrated by Claeyssens et al. (Claeyssens et al. 2009) 

in which the structure size is increased by creating the scaffold as a series of overlapping 

identical structures. Write times are also improving with the creation of more efficient  
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Figure 72: PC12 cells cultured on suspended posts of different diameters. Cells cultured on 

thinner posts spread along and encircle the posts (highlighted by arrows in top row) whereas 

on thicker posts multiple cell bodies may be observed (indicated by arrows on bottom row. 

photoinitiators, materials and scanning systems. Hsieh et al. for example reported on the 

fabrication of a porous scaffold by 2PP with dimensions of 2.5 mm
3
 (Hsieh et al. 2010). 

Compared to other fabrication techniques such as robocasting however the technique is still 

too slow for the creation of large scale implants. 

One solution to this is the creation of self-assembled scaffolds or cell carriers. In this modular 

approach the scaffold is created as a series of individual porous blocks which are loaded with 

cells and then injected into the site of injury, where the cells will create the matrix which 

binds the blocks together. Chemical functionalization may be used to guide the self-

association of the blocks into structures, for example to sequentially assemble vascular tubes 

from hydrogel encapsulated cells (Du et al. 2011). The 2PP based fabrication of arrays of 

identical structures such as micro-needles has been demonstrated in numerous studies 

(Gittard et al. 2011; Gittard et al. 2010; Ovsianikov, Chichkov, Adunka, et al. 2007), and the 

production process may be sped up by the use of advanced optical techniques such as voxel 

elongation (Li, Winfield, O'Brien, and Chen 2009; Li, Winfield, O'Brien, and Crean 2009), 
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patterned beam delivery (Bhuian et al. 2007) and multiple spot fabrication with microlens 

arrays (Kato et al. 2005).  

The use of polymeric microspheres as injectable cell delivery has been investigated as a 

treatment for brain injuries such as strokes (Bible et al. 2009a). Chen et al. demonstrated the 

use of porcine gelatin based micro-carriers for the modular assembly of adult bone tissue 

from adult mesenchymal stem cells (MSCs) (Chen et al. 2011), overcoming the diffusion 

limit associated with monolithic scaffold structures. In our work the rapid microfabrication of 

micro-scale cell carriers with different pore sizes and morphologies from photocurable PLA 

was demonstrated. After 5 days in culture the scaffolds were completely filled with cells, as 

shown in figure 73.  

 

Figure 73: Scanning electron microscopy images of cell delivery vehicles fabricated from 

photocurable PLA after culture with NIH-3T3 cell line. Cell ingrowth into structures 

demonstrates potential application as cell delivery vehicles, as discussed in section 5.3.14. 
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5.4 Conclusions 

In this chapter the use of a Galvano scanner based two photon polymerization system for the 

structuring of a PLA based photocurable oligomer was reported, with a previously unreported 

resolution for this polymer of 800 nm. Applications in neural tissue engineering were 

investigated, and the adhesion and viability of neuronal type cells (NG108-15 and PC12) on 

the photocurable PLA as well as a photocurable PCL based oligomer were investigated in 

combination with surface characterisation techniques (water contact angle and X-ray 

photoelectron spectroscopy).  

Cell viability was found to be as good on these materials as on glass controls, indicating no 

cytotoxic effect due to contamination (for example by remaining uncured oligomers or 

photoinitiator. Cell adhesion on these materials was found to be good, with cells exhibiting a 

flattened morphology on these materials, compared with a ‘ball like’ morphology on (for 

example) linear PCL controls. The growth rate of cells on these materials also appeared to be 

higher than on glass controls, indicating a high affinity for the polymer surface. In the case of 

microstructures fabricated from the photocurable PLA, scanning electron microscopy 

imaging revealed adherent cells proliferating on the structures. 

On linear structures fabricated from the PLA material, adherent cells exhibited a degree of 

alignment as evidenced by SEM, confocal microscopy and DAB staining/ optical 

microscopy. In three dimensional scaffolds cells quickly migrated into the pores, completely 

filling the structures. In summary the potential application of photocurable biomaterials and 

laser direct write technology to neural tissue engineering, via modular scaffold self-assembly 

and the creation of microfiber scaffolds was demonstrated. 
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Abstract 

The use of soft lithography (PDMS) stamping enables rapid reproduction of structures 

created by two photon polymerization (2PP) providing that the structure allows removal of 

the mould, containing no overhanging features that prevent ‘lifting off’ of the PDMS stamp. 

In this chapter the production by 2PP of stackable ‘discs’ consisting of an array parallel tubes 

designed for cell migration, and their assembly into scaffolds by PDMS replication is 

demonstrated. The use of a photocurable PLA based material for the production of both the 

initial structures by 2PP and also for curing in the PDMS mould is explored, and the ability of 

this material to support Schwann cell adhesion and growth was investigated. Schwann cell 

growth was demonstrated up to 7 days on thin films and structures of the cured material. A 

Schwann cell purity of 99% was determined by S100β staining, and bipolar and tripolar cell 

morphology was observed with an ordered arrangement of actin filaments and focal 

adhesions, indicating that this material supports Schwann cell growth and adhesion. The 

structures were successfully replicated with a dimensional accuracy of ≥ 95%.  

It was successfully demonstrated that i) multilumen discs may be created with high resolution 

using 2PP, and replicated accurately using soft lithography resulting in a reduction of 

production time  ii) the photocurable PLA based material supports Schwann proliferation and 

adhesion and iii) the stackable multi-lumen discs provide a suitable environment for Schwann 

Chapter 6: Replication of Two photon 

Laser Direct Write Produced Structures 

for Nerve Guidance Conduits with 

Functional Structure 
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cell migration and after 7 days in culture the scaffold contains adherent Schwann cells, which 

assist in axon regeneration by guiding growth and releasing nerve growth factor (NGF).  

6.1 Introduction 

As discussed in chapter 3, peripheral nervous system (PNS) injury can lead to a significant 

reduction in quality of life, due to loss of sensory and/ or motor function. PNS injury is 

estimated to affect 1 in 1000 individuals annually, making this a very common type of injury. 

Functional recovery of the nerve is possible due to the regenerative potential of the peripheral 

nervous system, however for injuries greater than around 2 mm axonal regeneration is not 

possible (Schmidt and Leach 2003). Large numbers of nerve cells undergo apoptosis 

following traumatic nerve injury (transection) leading to reduced functional recovery of the 

nerve, and loss of sensation or motor function (Bell and Haycock 2012; Schmidt and Leach 

2003). Individuals receiving this type of injury will suffer lifelong impairment of sensory and 

motor ability. Surgical options include auto/ allografting and also the use of entubulation 

devices. Nerve entubulation devices provide a protected environment for axon regeneration, 

and may contain structural, cellular and chemical clues which guide regrowth (Schmidt and 

Leach 2003). 

The one step fabrication of multi-lumen nerve guidance conduits (NGC’s) was described in 

chapter 3. In chapter 5 the use of two photon polymerization (2PP) for neural applications 

was discussed, and the potential use of 2PP for the optimization of fibre spacing and diameter 

for neuronal type cell (NG108-15) alignment was explored. In this section the use of a 

combination of techniques (2PP and microreplication) to produce stackable discs for 

incorporation into NGC’s is demonstrated. The ability of the photocurable PLA material to 

support Schwann cell growth and attachment, and furthermore the interaction of Schwann 

cells with the features of the stackable discs was studied. The process of using 2PP to 

produce multi-lumen discs, and replication and stacking of these discs by PDMS stamping is 

outlined in figure 74. Reproduction of structures produced by 2PP using PDMS stamping 

allows the rapid reproduction of suitably designed structures, overcoming the problem of low 

production rates associated with 2PP. 
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Figure 74: A multi-lumen disc is produced by 2PP (a), multiple PDMS stamps are made 

using the original structure and the resulting stamps are used to create many replica 

structures by UV curing, taking just a few minutes (b) and finally the resulting structures are 

stacked to form a tube or conduit (c). 

6.1.1 Soft Lithography using Poly(dimethylsiloxane) 

One focus in this chapter was the reduction in production time required for the discs by the 

use of PDMS stamping. The time required to fabricate one structure by 2PP can be as long as 

several hours. Using PDMS replication, one structure may be used to produce several moulds 

and the production rate of the discs increases rapidly. Poly(dimethylsiloxane) (PDMS) 

possesses a unique balance of properties including resistance to degradation by light/ 

radiation and heat, chemical resistance and importantly, high flexibility and low surface 

energy (Esteves et al. 2009). PDMS replication has been applied to flexible and stretchable 

electronic devices (Morent et al. 2007), corrosion resistant and anti-fouling coatings (Kim et 

al. 2012; Sugama, Brothers, and Weber 2003) as well as biomedical devices (Xia and 

Whitesides 1998; Abbasi, Mirzadeh, and Katbab 2002; Koroleva et al. 2010) 

Various strategies for PDMS replication have been developed, as reviewed by Xia and 

Whitesides (Xia and Whitesides 1998). Four distinct methodologies exist for the reproduction 

of structures and surface patterns, replica molding (REM), microtransfer molding (µTM), 

micromolding in capillaries (MIMIC) and solvent assisted micromolding (SAMIM). Whereas 

µTM, MIMIC and SAMIM are largely layer-by-layer or surface patterning techniques, REM 

allows the accurate reproduction of whole structures by curing within a mold. UV curable 

polymers typically undergo shrinkage of less than 3 % upon curing and therefore can 

accurately replicate structures with high fidelity. The accuracy of replication is determined by 

the degree of mold filling, van der Waals interactions between the curable substrate and the 

mold and the wettability of the mold surface. The low surface energy of PDMS makes it ideal 

for REM, with an achievable resolution of replication of <100 nm (Xia and Whitesides 

1998).   
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In this chapter the use of PDMS replica micromolding using photocurable PLA for both the 

original structure (by 2PP) and replication (by REM) is demonstrated. In a multi-step process 

2PP is first used to create a PLA microstructure, which is then developed (washed with 

solvent) to remove uncured resin. The structure is then reproduced by covering in PDMS 

contained within a thin aluminium tube and vacuumed to remove trapped air. The PDMS is 

then cured using heat to create the negative replica or ‘mold’. The PDMS mold can then be 

filled with photosensitized PLA and cured by UV exposure multiple times to create several 

stackable PLA discs. The soft elastomeric nature and low surface energy of PDMS prevents 

damage to the negative mold allowing multiple (>10) PLA copies to be reproduced without 

damage to the mold (Xia and Whitesides 1998). The creation of a multi-lumen structure 

within nerve guidance conduits can enhance nerve regeneration by providing a larger surface 

area for Schwann cell adhesion and also by contact guidance. 

6.1.2 Synthetic Materials for Nerve Guidance Conduits 

An important aspect of nerve repair device design is the choice of material. The benefits of 

autologous transplantation (no rejection, ideal material and structural properties) are balanced 

with the need for two operation sites and also the loss of function in the donor site. Other 

autologous transplant options include arteries/veins. Natural materials such as chitosan and 

collagen have also been explored (Phillips et al. 2005; Yang et al. 2004). As discussed in 

chapter 2, the biocompatibility and tuneability of synthetic and resorbable materials in terms 

of stiffness or elasticity, degradation rate and to a degree hydrophobicity make polymers such 

as polylactic acid (PLA), poly(lactide-co-glycolide) (PLGA) and polycaprolactone (PCL) an 

attractive and readily available alternative to naturally harvested materials (Gill and 

Claeyssens 2011; Bell and Haycock 2012; Hutmacher et al. 2001; Martina and Hutmacher 

2007). By producing photocurable analogues of these bioresorbable synthetic polymers, 

conduits with bespoke geometrical features may be fabricated with unparalleled resolution 

using microstereolithography.  

6.1.3 The Role of Schwann Cells in Nerve Regeneration 

Peripheral nerves consist of multiple sensory and motor axons within an organised tissue 

matrix, which provides protection from external forces experienced during the natural 

movement of the body. The functional unit of the peripheral nervous system is the nerve 

fiber, consisting of an axon ensheathed within multiple layers of Schwann cell plasma 
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membrane known as the myelin sheath. Individual Schwann cells arranged in a parallel 

fashion encircle sections of the axon several times with their plasma membrane to form this 

sheath, which helps to maintain action potentials, the electrical impulses which transmit 

sensory and motor information along the nerve (Topp and Boyd 2012). 

Since the work of Ramón y Cajal (Cajal and May 1928) it has been understood that Schwann 

cells are essential in guiding axonal growth and regeneration. Following transection of a 

peripheral nerve, a process known as Wallerian degeneration occurs, in which the axons 

undergo degeneration and Schwann cells degrade their myelin sheath. The remaining debris 

is then removed by macrophages and Schwann cells (Zhu et al. 2012). Following this 

process, which is essential for regeneration of the axon, the surrounding Schwann cells 

dedifferentiate and proliferate to form tubular structures known as the bands of Büngner, 

which act as cables to guide regrowth of the axon (Schmidt and Leach 2003). By the 

incorporation of fibres into nerve guidance conduits artificial bands of Büngner are created, 

which improve neuronal cell alignment and migration (Ribeiro-Resende et al. 2009). In this 

study the aim was to create microchannels along the axis of the conduit in the form of 

stackable discs consisting of parallel cylindrical tubes, which would provide a suitable 

environment for aligned Schwann cell migration improving axonal alignment and 

reinnervation. 

The inclusion of cells, and in particular Schwann cells into nerve guidance conduits is one of 

the most widely explored strategies for enhancing the distance over which functional 

recovery can be achieved using nerve entubulation devices (Ruiter et al. 2009). In small gap 

defects, following entubulation of the nerve endings within a nerve guidance conduit a fibrin 

matrix builds up upon which Schwann cells migrate. It is unknown whether this fibrin 

structure builds up in the absence of an entubulation device (Schmidt and Leach 2003). Over 

larger distances Schwann cells may help bridge the gap, guiding the axons towards the bands 

of Büngner (Torigoe et al. 1996). Schwann cells also aid in recovery by the secretion of 

extracellular matrix proteins such as laminin, and furthermore by secretion of signals such as 

nerve growth factor (NGF) (Assouline et al. 1987), stimulating regeneration. 

6.1.4 An Optimized Approach to Nerve Guidance Conduits 

The aim of this study was to optimize every aspect of the production of nerve guidance 

conduits demonstrating a combined approach of 2PP and soft lithography. Production times 
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were optimized by the use of soft lithography for reproduction of the multi-lumen discs. The 

increased surface area of the multi-lumen provides greater area for cell attachment, and the 

subsequent release of regenerative factors from the adherent Schwann cells. The enhanced 

microstructure will also help to stabilize the fibrin matrix formed within the nerve tube, and 

additionally may guide regenerating cells by ‘contact guidance’ (Ruiter et al. 2009).   

6.2 Materials and Methods 

6.2.1 Photocurable Material Synthesis and Preparation 

Photocurable PLA was produced according to the protocol described in chapter 2. In brief a 

four armed oligomer with a targeted molecular weight of ~1290 gmol
-1

 was produced by the 

reaction of 1 molar equivalent of pentaerythritol to 8 molar equivalents of lactide. As one 

lactide ring contains two lactic acid monomers this corresponds theoretically to four lactic 

acid monomers per each of the four arms.  

In the synthesis step (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (98%), pentaerythritol 

(>99%), stannous octoate (95%), toluene (anhydrous, 99.8%), methacrylic anhydride (94%), 

triethylamine (>99 %), dichloromethane (95.5%) and isopropanol (>99%) were used as 

purchased from Sigma-Aldrich, UK without further purification. The photocurable mixture 

was prepared using Irgacure 369 (Ciba). Glassware was dried at 120 °C overnight prior to 

use.  

6.2.2 Four-armed PLA synthesis 

In the ring opening polymerization step, (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (8.07 g, 

0.056 moles, 8 molar equivalents) and pentaerythritol (1.0 g, 0.007 moles, 1 molar 

equivalent) were stirred in 100 mL of toluene as solvent using a magnetic stirrer bar and 

brought up to 160 °C under reflux conditions with a nitrogen atmosphere. One drop of 

stannous octoate catalyst was added and the polymerization was continued at 160 °C for 8 h 

before cooling, upon which the oligomer precipitated as a lower viscous clear layer. The 

product was decanted and dried in vacuo to yield 8.73 g of the product as a highly viscous 

clear resin. 
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6.2.3 Methacrylate Functionalization of the Four Armed PLA 

Using a dry reaction vessel purged with nitrogen, the dry four armed PLA (8.73 g, 0.007 

moles, 1 molar equivalent) was dissolved in 100 mL of dry dichloromethane and 

triethylamine (11.34 g, 0.112 moles, 16 molar equivalents) and the solution was cooled to 

0 °C using an ice bath. To this solution methacrylic anhydride (8.63 g, 0.056 moles, 8 molar 

equivalents) in 50 mL of dry dichloromethane was added dropwise using an addition funnel 

with vigorous stirring using a magnetic stirrer bar. The mixture was raised to room 

temperature and the solution allowed to react for 24 h. The reaction mixture was then 

evaporated using vacuum distillation and the photocurable polymer precipitated in ice cold 

isopropanol at -20 °C overnight. The precipitated polymer was isolated by decanting the 

isopropanol and drying under vacuum for at least 24 h. The product was a clear highly 

viscous resin. 

6.2.4 Photosensitive Solution Preparation 

To prepare a photosensitive solution, the methacrylate functionalized PLA was mixed with 

2% w/w of Irgacure 369, a commercially available photoinitiator sensitive to UV radiation. 

6.2.5 Two Photon Laser Direct Write 

Two photon polymerization of the photocurable PLA based resin was accomplished using a 

system previously described by Gittard et al. (Gittard et al. 2011). The photocurable material 

was sandwiched between two glass coverslips spaced by a 1 mm thick ring of PDMS, 

facilitating easy separation of the slides following curing of the material. The direct write 

system consists of a Chameleon titanium:sapphire laser (Coherent, Santa Clara, CA) emitting 

at 780 nm delivering 120 fs pulses of radiation at a repetition rate of 80 MHz in this case 

focussed to within the volume of the sample with a 20× microscope objective (Zeiss, 

Epiplan). Horizontal (x,y) scanning within the resin in the plane of the objective was 

accomplished using a hurrySCAN Galvano scanner (Scanlabs, Puchheim, Germany). 

Translation in the Z axis was accomplished using three linear translation stages (model C-

843, Physik Instrumente, Karlsruhe, Germany) and stereolithography (STL) files were 

generated using Solidworks Education Edition 2009 (Dassault Systems SA, Velizy, France), 

a commercially available software package. Following the laser direct write process the 
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produced structure is developed by soaking in a mixed (1:1) solvent system of isopropanol 

and 4-methyl-2-pentanone (≥98.5%, Sigma-Aldrich).  

6.2.6 PDMS Replication of Structures 

Using a precision micromolding technique (previously described by Koroleva et al. 

(Koroleva et al. 2010)) the discs produced by laser direct write were reproduced by PDMS 

stamping. The 2PP fabricated structure was placed in an aluminium ring with 1 cm high 

walls, which was then filled with liquid PDMS (Sylgard 184, Dow Corning). The material 

was then degassed under vacuum and cross-linked by curing at 100 °C for 1h. The resulting 

PDMS mold contained within the aluminium ring was then attached to a high precision 

piezo-electric stage and the structure fixed in place. The mold was then carefully lifted 

upwards at a speed of 10 µm s
-1

 to detach it from the structure. Following creation of the 

PDMS mold the structure could be reproduced by filling the mold with the photosensitive 

PLA material, curing with a UV lamp (EXFO 100W) in contact with a surface for structure 

adhesion and lifting the mold off of the structure once again. The soft and non adhesive 

nature of the PDMS mould allows the release of the structures without damage.  

6.2.7 Materials Characterization 

The photocurable PLA was characterized with FT-IR and NMR as described in chapter 2. IR 

Spectra were recorder on a Perkin Elmer SPECTRUM 2000 spectrometer. NMR Spectra 

were recorded at 400 MHz on a Bruker AV1-400 spectrometer. NMR Samples were prepared 

by dissolving 20 mg of the polymer in deuterated chloroform and filtering into a standard 

NMR tube.  

The 3D structures and films were observed using a FEI Sirion FEG SEM microscope using 

an accelerating voltage of 10 kV and a spot size of three. Samples were coated with a ~20 nm 

thick layer of gold prior to imaging using an Emscope SC 500 coating device. 

6.2.8 Cell Culture and Analysis 

6.2.8.1 Schwann Cell Isolation and Culture 

Cell culture was mainly performed using primary Schwann cells obtained from adult male 

Wistar rats. An isolation procedure described previously (Kaewkhaw, Scutt, and Haycock 
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2012) was used with some modification. Connective tissue extracted from 2-3 mm sections of 

sciatic nerve was teased out and incubated for 60 minutes at 37 °C in in 0.05% w/v 

collagenase solution (Sigma UK). Macroscopic debris was removed by passing the solution 

through a Falcon filter (40 µm, Becton Dickinson, USA), and the cells formed into a pellet by 

centrifugation at 400 g for 5 minutes. The pellet was then rinsed carefully with a solution of 

Dulbecco’s modified Eagle’s medium (DMEM, D-valine) containing 10% v/v foetal bovine 

serum (FBS). The cell pellet was then resuspended in Schwann cell growth medium 

consisting of DMEM-D valine (PAA, UK), glutamine (2 mM), FBS (10% v/v), N2 

supplement (Gibco BRL, UK), bovine pituitary extract (20 µg ml
-1

), forskolin (5 µM, Sigma-

Aldrich, UK), penicillin (100 µg mL
-1

), streptomycin (100 µg mL
-1

) and amphotericin B 

(0.025 µg mL
-1

). The resulting suspension of cells was seeded in a 35 mm Petri dish pre-

coated with 0.01% poly-L-lysine (Sigma-Aldrich, UK). The cells were then cultured in an 

incubator at 37 °C with 5% CO2. 

For sub culturing of Schwann cells the media solution was removed and the cells washed 

twice with warmed PBS. The cells were then covered with trypsin for 5 minutes in an 

incubator and the flask tapped to detach the cells. Cells were then passaged as described in 

the procedure in chapter 3 and seeded according to the individual experiment. 

6.2.8.2 Material Genotoxicity Analysis using Comet Assay 

Comet assay is used to quantify the degree of genetic damage experienced by cells (Kent et 

al. 1995). The technique was first established in 1984 as a combination of DNA gel 

electrophoresis and fluorescence imaging for the study the migration of damaged DNA 

strands from individual cells embedded in an agarose slab (Ostling and Johanson 1984). As 

DNA is negatively charged, damaged fragments may migrate out during electrophoresis, 

forming a ‘tail’ of genetic material which may be labelled with a fluorescent dye. Undamaged 

strands prove too large to migrate out and remain trapped within the cell. By comparing the 

tail length (moment), or intensity of the tail of a sample population of cells the degree of 

genetic damage can be quantified (Olive and Banath 2006). Visual scoring methods can be 

used (Collins 2004) however automatic software makes the random sampling and scoring of 

a large number of cells possible.  

The genotoxicity of the photocured PLA thin films was assessed using human SH-SY5Y 

neuroblastoma cells (provided by DSZM-German collection of microorganisms and cells, 
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Braunschweig, Germany). These neuroblastoma cells are formed by neuronal stem cells, and 

are derived from a tumor in children consisting of neuroblasts and Schwannian like cells.  

The aim of the Comet assay was used to detect any genetic damage caused by the 

photocurable PLA based material. Genetic damage will lead to cell death or mutations, and 

must be ruled out if a material is to be considered for use in biomedical devices (Schlie et al. 

2007). Using thin films of PLA prepared as described in chapter 2, two sets of samples were 

tested. In one group, the thin PLA films were washed in distilled water for a week, and in the 

other the samples were soaked in 70% ethanol for a week before washing for an additional 

day in distilled water. Both sample sets were then sterilized by UV exposure for 30 minutes 

and placed in a 24 well plate, along with a glass control. The samples were covered with 2 

mL of media per well (DMEM-F12, Sigma-Aldrich, Taufkirchen, Germany) supplemented 

with 10% FCS and antibiotics). The samples were then seeded with SH-SY5Y neuroblastoma 

cells and cultured for 24h in an incubator (Heraeus, Hanau, Germany) gassed with 5% CO2. 

The cells were then trypsinised, collected and reduced to a pellet by centrifugation at 800 g 

for 10 minutes. The cells were resuspended in PBS to a concentration of 2 x 10
6
 cells ml

-1
. 50 

µL of the resulting solution was then mixed with 100 µL of low melting agarose (0.6%). 100 

µL of this solution was taken up in a pipette and deposited on agarose coated glass slides. A 

microscope cover slip was then placed on top, and the samples were solidified at 4 °C for ten 

minutes. The cover slips were removed and a further 100 µL of agarose added. After a further 

10 minutes solidifying at 4 °C the slabs were incubated for 90 minutes in a pH10 lysis buffer 

containing 2.5 M sodium chloride, 100 mM disodium EDTA, 10 mM Tris, 1% lauryl 

sarcosin, 1% Triton X-100 and 10% DMSO. 

Following the lysis step the samples were placed in a chamber for horizontal gel 

electrophoresis, and covered in electrophoresis buffer for alkaline Comet assay (1 mM 

disodium EDTA, 300 mM sodium chloride, pH ≥13). After 40 minutes soaking in the buffer, 

electrophoresis was carried out (25 V, 300 mA, 4 °C, 20 minutes). Following separation, the 

slabs were neutralized by washing three times by washing with Tris-buffer (pH 7.4, 400 mM) 

and air dried at room temperature.  

The tail moment or ‘Comets’ were visualized by staining with ethidium bromide (20 µg mL
-1) 

and observed
 

using a fluorescence microscope (Zeiss, Oberkochen, Germany) at a 

magnification of 200 x. Illumination was performed with a Xenon lamp using a filter set for 

ethidium bromide excitation at 520 nm. Image acquisition was performed using a CCD 
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camera (‘Xaw TV’). Automatic scoring of the collected images was performed using 

software created for Comet assay (http://autocomet.com/home.php). Results were displayed 

as mean value (Tailmoment) ± standard error of the means (n=4, four samples per washing 

regime). A minimum of 1000 cells per regime were analysed. 

6.2.8.3 Schwann Cell Proliferation, Morphology and Purity on PLA Substrates 

To assess primary Schwann cell proliferation on the spin coated PLA films, cell counting and 

MTT assay was performed. The cell proliferation assay provides a visual quantification of 

cell number at selected timepoints by manual counting of cells in randomly selected image 

areas. The MTT assay provides an indication of the number of metabolically active cells by 

conversion of a substrate to produce a highly chromophoric product which can be quantified 

by absorbance using a spectrophotometer. This is discussed in more detail in chapter 2.  

6.2.8.4 Cell Proliferation Assay 

In the cell counting experiment Schwann cells were seeded on PLA films and a glass 

coverslip control in 1 mL of media per well in a 24 well plate, at a density of 5 x 10
4
 cells per 

well. Optical microscope images were taken at one, three and seven days using an Olympus 

CK40 phase contrast microscope, allowing the cell number per unit area to be counted. Using 

the program ImageJ five discreet areas of 0.015 mm
2
 were randomly selected in each sample 

and the cells counted manually for quantification. 

6.2.8.5 MTT Assay 

MTT assay was used to assess cell viability after 48 h in culture. Primary Schwann were 

seeded as for the proliferation assay in a 24 well plate at a density of 5 x 10
4
 cells per well, in 

1 mL of media on PLA and glass controls. The media was then removed and the cells washed 

carefully with PBS and 1 mL MTT solution added. After 40 minutes the solution was 

removed and the stain taken up in 300 µL of acidified isopropanol. The eluted MTT in each 

well was thoroughly mixed and transferred to a 96 well plate. Absorbance was measured at 

540 nm and referenced at 630 nm using a BIO-TEK ELx 800 microplate reader. 

http://autocomet.com/home.php
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6.2.8.6 Scanning Electron Microscopy  

Schwann cells cultured on both thin films of the photocurable PLA based material and also 

the multi-lumen discs were imaged using scanning electron microscopy (SEM). In the thin 

film experiment Schwann cells were seeded on spin-coated cured PLA films, which had been 

washed using the ethanol soaking regime to avoid any possible cytotoxic effect influencing 

cell morphology. The cells were seeded at a density of 5 x 10
4
 cells ml

-1
 in 1 ml of media and 

maintained in an incubator for ten days before fixation. In the multilumen disc experiment the 

same cell number and media quantity was used, however the cells were seeded directly onto 

the structure before careful addition of the media and maintained for 7 days before fixation 

for imaging.  

Samples were fixed and dehydrated for SEM imaging using an adaptation of the 

hexamethyldisilazane (HMDS) procedure (Bray, Bagu, and Koegler 1993). The cells were 

first fixed in glutaraldehyde (2.5 % in PBS buffer) for one hour then washed with PBS and 

finally distilled water. The samples were then dehydrated using progressively higher 

concentrations of ethanol (from 35 to 100%) with soaking for 15 minutes at each 

concentration. The final drying step was completed by soaking in a 1:1 solution of 

hexamethyldisilazane (HMDS): ethanol for one hour and then 100% HMDS for 5 minutes. 

Following removal of the HMDS solution the samples were allowed to dry in a fume hood 

overnight before sputter coating with a thin layer of gold (Emscope SC 500 coater) and 

imaging using a FEI Sirion FEG SEM with an accelerating voltage of 15 kV and a spot size 

of three, as determined for the photocurable PLA based structures described in chapter 4. 

6.2.8.7 Confocal Imaging of Schwann Cells 

For confocal imaging, films were prepared by ethanol soaking and Schwann cells were 

seeded at a concentration of 5 x 10
4
 cells mL

-1
 in 1 mL of media per well. Initial staining for 

actin filaments (with TRITC-phalloidin) and nuclei (with DAPI) was performed in order to 

visualize the overall cell morphology as well as the organization of actin filaments within the 

cell body. This experiment was repeated with additional staining of focal contacts using 

vinculin monoclonal antibody, in which case an actin cytoskeleton and focal adhesion 

staining kit (Millipore) was used.  

Cells were first fixed in formalin (10% in PBS) for 30 minutes at room temperature. This 

solution was then removed and phalloidin-TRITC and DAPI were added at a concentration of 
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1:1000 in PBS and left for 30 minutes. Cells were then washed twice with PBS and mounted 

on microscopy slides using a fluorescent mounting medium (Cityfluor Glycerol/ PBS 

solution. Samples were stored in a fridge and observed using a confocal microscope (Carl 

Zeiss LSM510-META, Germany).  

6.2.8.8 Statistical Testing 

Significance was determined between sample and control values using two-tailed Student’s t-

test, and p-values are stated where relevant.  

6.2.8.9 Quantification of Schwann Cell Purity 

In order to verify the purity of cultured Schwann cells S100β positive immunolabelling was 

used. Schwann cells were cultured on PLA, glass and laminin coated glass controls. The cells 

were seeded at a concentration of 5 x 10
4
 cells per sample and cultured for 7 days. The 

samples were then fixed by soaking in paraformaldehyde solution (4% v/v) for 20 minutes 

and then permeabilized using 0.1% Triton X-100 for a further 20 minutes. The cells were 

then washed carefully three times for 10 minutes per wash with PBS and blocked with bovine 

serum albumin (BSA, 7.5% w/v) by soaking for 60 minutes, and incubated with polyclonal 

rabbit anti-S100β (1:250, Dako, Denmark) in 1% BSA overnight at 4°C. The samples were 

then washed with PBS three times as before and conjugated with FITC-conjugated secondary 

anti-rabbit IgG antibody (1:100 in 1% BSA, Vector Laborotories, USA) for 90 minutes and 

washed again with PBS. Nuclei staining was then performed by the addition of DAPI (1:1000 

in PBS). Samples were stored in a refrigerator and observed first using fluorescent 

microscopy (Carl Zeiss LSM510-META, Germany).  DAPI images (nuclei) were taken at λex 

= 358 nm/ λem = 461 nm, and FITC labelled S100β at λex = 495 nm/ λem =515 nm. 

6.3 Results 

Successful structuring of the photocurable PLA based resin was achieved with both 2PP and 

micromolding techniques. The biocompatibility of the material as well as its ability to support 

Schwann cell growth and attachment was assessed in vitro. Finally the migration and 

morphology of Schwann cells was assessed in culture on multi-lumen discs mimicking the 

native structure of human nerve tissue, in order to investigate potential applications for this 

technology in the production of improved nerve guidance conduits. A soft lithography 
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strategy (PDMS stamping) was applied in order to reproduce the original structures produced 

by 2PP. The use of PDMS replication allows rapid reproduction of the original structure 

created by 2PP, a time consuming process. 

6.3.1 Structuring Resolution 

The PLA based photocurable resin was again found to give excellent structuring results with 

the laser system and photoinitiator described in the methods section. Parallel lines with a 

thickness of approximately 250 nm and a length of 100 µm were fabricated on a silane 

treated glass surface in order to demonstrate the minimum feature size (see figure 75). The 

high degree of methacrylate functionality present in the resin due to the low molecular weight 

and multi-armed nature of the oligomer may facilitates rapid curing and crosslinking, 

allowing a good resolution. As a comparison, linear PCL based photocurable polymers cured 

by 2PP with a much higher molecular weight can achieve a resolution of 4 µm (Claeyssens et 

al. 2009), indicating a 16-fold improvement in terms of resolution. 

 

Figure 75: Lines written in photocurable PLA using laser direct write. Close up detail (right) 

illustrates a line width of around 250 nm. 

6.3.2 Direct Write of Multi-Lumen Discs 

Using laser direct write stackable discs were fabricated as a series of open parallel cylinders, 

the cylinders possessing a wall thickness of 20 µm, an inner diameter of 100 µm and a height 

of 300 µm. The open features were incorporated in order to facilitate easy replication by 

micromoulding technique with polydimethylsiloxane (PDMS). PDMS is a soft elastomeric 
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material used for micromoulding. The low adhesiveness of the material combined with its 

softness facilitates easy separation of the produced replicas. By creating multiple negative 

replicas of the 2PP produced structures in PDMS a large number of stackable discs may be 

produced in a relatively short time. 

In figure 76 a 2PP created disc is shown along with a stacked series of discs replicated by 

PDMS stamping, it was observed using SEM that the replicated discs reproduced the 

originals with an overall dimensional accuracy of 99 %, and the wall thickness were within 

5 % of the 2PP produced scaffold dimensions. Slight damage is evident on the outer edges of 

the scaffold however the bulk features and interconnecting pores within remain intact.  

 

Figure 76: Stackable photocured PLA structures produced by 2PP (left) and PDMS 

stamping. (middle and right). Height of individual discs around 100 µm. 

6.3.3 Material Genotoxicity Analysis using Comet Assay 

Comet assay examines the degree of genetic damage within cells cultured on a given 

substrate, giving a clear indication of the genotoxicity of a material. Using electrophoresis 

damaged genetic material is fluorescently labelled leading to the appearance of a ‘tail’ similar 

to that of a comet which is examined using a fluorescent microscope.  

The comet assay was used to compare two different washing regimes on the spin coated PLA 

films post cure. Interestingly the material was shown to produce significant genetic damage 

compared to the glass control when washed in only water (p<0.01) however when soaked in 

ethanol for 7 days and rinsed for 24 h with water no cytotoxic effect was observed. 
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Treatment Comet Tailmoment ± S.E.M 

Control 1.19 ± 0.07 

7 Days soaking in ethanol, 24 h water rinse 1.24 ± 0.1 

7 Days soaking in water 1.75 ±0.15 

 

Table 2: Comet assay comparing ethanol and water treatment of samples and their effect on 

the degree of genetic damage caused by the photocurable PLA compared to a control. Values 

repeated as mean of four repeats (n=4) ± S.E.M. 

6.3.4 Schwann Cell Viability and Adhesion 

In order to verify that Schwann cell viability (and also adhesion) was maintained over 

extended time periods, the ability of the photocurable PLA to support Schwann cell survival 

and attachment was therefore examined using a cell counting based proliferation assay, MTT 

assay and a range of imaging techniques in order to examine cell morphology and focal 

adhesions.  

6.3.5 Schwann cell Proliferation Assay 

Schwann cell proliferation was compared on thin films of spin coated PLA (prepared as 

described in chapter 2) and glass coverslip controls after 1, 3 and 7 days by cell counting and 

after 2 days using MTT assay. Cell counting was performed using 30 randomly selected areas 

of 0.015 mm
2
 photographed with an optical microscope and the results converted to cell 

number per mm. At all timepoints in the cell counting experiment the average cell number 

was higher than on the glass control, however the large error bars typical of cell counting due 

to the random dispersion of cells prevented statistical significance being determined (in all 

cases PLA vs Glass p> 0.05). Both glass and PLA films supported cell attachment and a 

similar rate of cell proliferation. The MTT assay at 48 h demonstrated significantly higher 

Schwann cell numbers on the PLA films compared to the glass control (p<0.01). The results 

are presented in figure 77. Schwann cells proliferating on and adhering to spin coated films of 

the photocured PLA are shown in figure 78.  
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Figure 77: Schwann cell density at 1, 3 and 7 days determined by cell counting using optical 

microscopy images (left) and MTT assay at 48 h (right) on both photocurable PLA and glass 

substrates. Similar growth rates are observed on both materials. 

Schwann cell adhesion on the photocurable PLA was also compared to linear high molecular 

weight PLA. Cells were seeded at a density of 50,000 per well in 1 ml of cell culture media 

and cultured for three days. After 72 h in culture more Schwann cells were clearly visible on 

the spin coated photocured PLA, as shown in figure 79. Schwann cell proliferation on linear 

and photocurable PLA was not compared quantitatively, however the visibly higher cell 

density on the photocurable PLA indicates good cell adhesion on the photocurable polymers,  

 

Figure 78: Schwann cells proliferating successfully on spin coated photocurable PLA films at 

24, 48 and 72 h. Cells are observed to retain Schwannian morphology indicating the material 

supports growth and attachment. 

in agreement with other results such as figure 13 in chapter 2, where cell adhesion on glass 

coverslips is compared with adhesion on a glass coverslip control by MTT assay, and figure 

65 in chapter 5 where cell adhesion on photocured PLA thin films is compared with a glass 

control for up to 5 days, by cell counting. 

The improved cell adhesion on the cured polymers compared to their linear analogues may be 

due to the increased swelling of the photocurable polymers due to the high degree of 

branching in the structure, as examined in chapter 2. The increased water uptake reduces the 
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hydrophobicity of the photocurable polymers, whereas in the linear polymers the chains are 

tightly packed and water is unable to penetrate to the same extent. Samples of photocurable 

PLA were shown to increase to ~9% of their original mass by immersion in water after 

around three days, whereas the linear PLA reached a maximum value of ~0.5%.  

 

Figure 79: Phase contrast micrographies of PSC’s grown on photocurable (a) and linear 

PLA (b) for 72h. These typical microscopy images indicate that cells have proliferated more 

on the photocurable PLA cured film. The morphological appearance of the cells indicates a 

high affinity for this material compared to the linear polymer, as observed using confocal 

microscopy below.   

 

The combination of multiple assays and also optical microscopy imaging supports the 

hypothesis that the photocurable PLA based resin is capable of supporting Schwann cell 

adhesion and proliferation over a period of at least 7 days. This suggests that nerve guidance 

conduits produced from this material would support Schwann cell culture without the need 

for coating with adhesive proteins or other materials.  

6.3.6 Analysis of Schwann Cell Morphology 

The suitability of a material for the culture of different cell types may be examined using high 

resolution confocal microscopy and scanning electron microscopy (SEM). In confocal 

microscopy specific cellular proteins or regions may be labelled with fluorescent dyes either 

directly or through a linking molecule such as phalloidin. 

Initial confocal microscopy was performed on Schwann cells cultured on the PLA thin films 

after 7 days in culture. Staining was performed using TRITC-phalloidin (for actin filaments) 
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and DAPI (for the cell nuclei). Schwann cells were observed to have grown to confluence, 

and to exhibit a range of different morphologies on the PLA based material. Predominantly 

cells adopted a more flattened tri-polar morphology which is not commonly encountered with 

Schwann cells. Irrespective of this the cells displayed organized actin filaments running 

throughout the cellular body from the nucleus through the plasma membrane (as can be 

observed in figure 80) indicating a structured cytoskeleton and adhesion on the polymer 

surface. Cells were also examined exhibiting the more typical elongated bi-polar Schwann 

cell morphology, indicated by arrow ‘b’ in figure 80. 

Potential contamination of the Schwann cell culture with fibroblasts during the extraction 

procedure would give a possible explanation for the fibroblast like nature of the cells 

observed using the confocal microscope (Schmidt and Leach 2003). To quantify their 

phenotypic purity the Schwann cells were immunolabelled with FITC for S100β glial marker 

and also stained with DAPI, to allow Schwann and total cell count to be performed.  

Using a fluorescent microscope the cells were then imaged and cell counting was carried out 

on the DAPI and S100β images in order to determine the Schwann cell purity. On the PLA 

surface Schwann cell purity was 99.2 ± 0.4%, on the glass surface 99.6 ± 0.2% and on the 

poly-L-lysine surface 99.3 ±0.9%, indicating that the culture consisted predominantly of 

Schwann cells, with no significant difference between the three surfaces (p> 0.05). The 

Schwann cells cultured on the poly-L-lysine coated surface exhibit a more commonly  
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Figure 80: Primary Schwann cells cultured on photocurable PLA for 7 days stained for actin 

(red) and nuclei (blue). Arrows indicate Schwann cells with tripolar morphology (a), 

elongated bi-polar morphology (b) and flattened morphology with actin filaments extending 

from the PLA surface through the cytoskeleton to the nucleus (c). The cell indicated by arrow 

‘b’ is the only cell exhibiting typical Schwann cell morphology. 

 

observed spindle like morphology and the cells form a ‘swirling’ pattern on the substrate, 

(also described by Kreider et al. (Kreider et al. 1981)). Schwann cells cultured on the PLA 

and glass surfaces however exhibit the more heterogeneous morphology observed in the 

confocal experiment. The S100β labelled cells are shown in figure 81. 

 

 

Figure 81: Primary Schwann cells cultured on glass, poly-L-lysine coated TCP and 

photocurable PLA for 7 days visualised by S-100β immunostaining. 

Schwann cells were also observed after ten days in culture on PLA thin films after fixing with 

HDMS solution and gold coating. The cells were observed to be highly confluent, and exhibit 
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a mixture of both flattened and spindle like morphology. The cells exhibit a high degree of 

spreading, with a large cytoplasmic area and clear adhesions on the surface and cell to cell 

contacts, indicating strong adhesion on this material. Extensions present between the 

Schwann cells (inset figure 82), also observed in figure 84 have been suggested to carry 

information such as signals for directional alignment between cells (Ahmed and Brown 

1999). The presence of aligned neurites extending from NG108 cells was demonstrated by 

expression of β-tubulin III in chapter 5. 

 

Figure 82: Primary Schwann cells cultured on photocurable PLA for 10 days imaged by 

SEM. The cells are highly confluent and the high degree of spreading indicates that the cells 

are capable of attaching to the photocured PLA surface. 

To further verify adhesion of the Schwann cells co-staining of actin and vinculin was 

performed. Discreet sub 1 µm regions corresponding to focal adhesions were observed in the 

central body of the cells, with a mainly orthogonal arrangement of actin filaments. Initial 

imaging was performed using an axon microscope, which allowed the observation of a 

confluent layer of Schwann cells with focal adhesions localised to the central cell body (see 

figure 83).  
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Figure 83: Confluent Schwann cells proliferating on thin films of photocured PLA. The cells 

were stained with FITC-phalloidin for actin (green) and vinculin for focal adhesions (red). 

Nuclei were stained with DAPI (blue). Scale bars 125µm. 

In order to examine the precise distribution of the focal adhesions a high resolution confocal 

microscope was used. This allowed direct imaging of the focal adhesions, observed as sub-

micron punctate regions in the central cell body, as seen in figure 84 confirming the 

formation of focal adhesions on the photocured PLA. 

 

Figure 84: Schwann cells displaying nuclei (blue), actin filaments (green) and focal 

adhesions (red). 

6.3.7 Schwann Cell Culture on Stackable Multi-Lumen Discs 

Loading of Schwann cells into the PLA discs created by PDMS stamping was visualized 

using SEM. Cells were seeded directly onto the structures before the addition of media, then 

dehydrated and fixed for SEM imaging. After seven days in culture the majority of lumens 
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were filled with Schwann cells. The Schwann cells exhibited a mixture of morphologies, with 

flattened cells migrating along the intraluminal walls and ‘spindle like’ bipolar and tripolar 

cells aligning with the features of the scaffold and spanning from the top to the bottom of the 

cavities (see figure 85). It is interesting to note that Schwann cells cultured on flat photocured 

PLA surfaces appear to exhibit the more flattened fibroblast like morphology described 

previously, whereas those existing on the three dimensional scaffold features display much 

more variation in morphology. This extent of this effect was not quantified but would be an 

interesting point for further investigation. It is possible that the 3D environment forces the 

Schwann cells to adopt a different morphology in order to attach securely to the surface, or 

that the structure provides some protection for the bipolar Schwann cells (which are typically 

less adherent (Kreider et al. 1981)) from flow forces experienced during culture caused by 

pipetting of media or washing with PBS prior to fixation. 

 

Figure 85: Individual microchannels in PLA multi-lumen disc loaded with Schwann cells 

after 7 days in culture. 

One of the most important functions of Schwann cells within nerve conduits is the excretion 

of NGF. Devices which contain NGF within the polymer matrix, slowly releasing the factor 

over time have been suggested as a strategy to mimic the action of Schwann cells. This would 

eliminate the need to harvest Schwann cells from the patient (or a donor, leading to immune 

rejection issues) for incorporation into the device pre-surgery. The limitations of NGF 

incorporation in the polymer matrix include loss of activity over time or during the 

sterilization process (Ruiter et al. 2009). The incorporation of living Schwann cells allows a 

constant and steady release of these factors providing cell viability is maintained. This 

observation also indicates that Schwann cell migration into the multi-lumen conduit would 

readily occur. The SEM images shown in figure 85 indicate that the PLA discs support 

Schwann cell growth, adhesion and proliferation for at least 7 days. 
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6.4 Discussion 

In this chapter a combined approach to scaffold fabrication was demonstrated, using a 

photocurable PLA based resin for the fabrication of microdevices by 2PP and furthermore for 

replication of these devices by PDMS stamping and UV curing. Using the same photoinitiator 

the material was cured (cross-linked) by both ultraviolet light (by one photon processes) and 

infra-red (IR) radiation (by two photon initiation). A resolution of approximately 250 nm was 

determined for curing of the resin using the described laser direct write system and initiator 

(Irgacure 369).  

The genotoxicity of the photocurable material was assessed using Comet assay. The 

importance of proper sample pre-treatment, by soaking in ethanol for seven days and rinsing 

in distilled water prior to cell culture was clearly demonstrated by this technique. The likely 

cause of the genotoxicity demonstrated by the Comet assay for the material not soaked in 

ethanol is remaining photoinitiator. This finding is in agreement with results reported by 

other authors (Ovsianikov, Malinauskas, Schlie, Chichkov, Gittard, Narayan, Löbler, et al. 

2011). Soaking of samples in a suitable solvent prior to cell culture in order to remove trace 

chemicals remaining from the fabrication process is not unique to microstereolithography, 

and has been demonstrated to affect cell attachment on scaffolds prepared by electrospinning, 

a technique widely explored by the tissue engineering community and also used in clinical 

applications (Murray-Dunning et al. 2011). 

The inclusion of Schwann cells into nerve guidance conduits has been shown to improve 

neural regeneration distance (Tohill et al. 2004). The ability of the photocurable PLA based 

material to support Schwann cell growth and proliferation was investigated using a range of 

techniques. Schwann cell purity after 7 days in culture on thin films of the cross-linked 

material was quantified by staining for a specific Schwann cell marker (S100β) and compared 

to both glass and poly-L-lysine controls. Schwann cell purity was determined to be around 

99.5% on all surfaces with no significant difference between batches.  

A thorough analysis of Schwann cell morphology was also performed using a combination of 

optical microscopy, SEM and confocal imaging. The cells were observed to adopt a both 

bipolar and triplicate morphology on the material. The more fibroblast like triplicate cells 

were shown to adopt a ‘wreath-like’ organization of actin filaments around the nucleus and 

central cell body with focal adhesions (visualized by fluorescent labelling of vinculin, a 

component of focal adhesions) around the central and intermediate regions of the cell. As 
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discussed in detail by Weiner et al. (Weiner et al. 2001) this indicates that the Schwann cells 

exhibit a high affinity for the PLA based material.  

The ability of the photocurable PLA material to support Schwann cell attachment indicates 

that this or similar materials may be suitable for the creation of nerve guidance conduits. The 

fabrication of stackable discs by 2PP and their replication using PDMS stamping was shown 

to be an efficient method for the production of devices that may interact with Schwann cells 

in a way that is beneficial for nerve regeneration. In culture conditions Schwann cells seeded 

on the stackable discs migrated throughout the structure and filled the majority of the 

cylindrical voids, expressing both a flattened morphology and adhering to the inner walls of 

the tubes and also expressing a more Schwann cell like bipolar morphology when spanning 

the length of the tubes.  

From a materials perspective polylactic acid (PLA) possesses an intermediate degradation 

rate, degrading more slowly than polycaprolactone (PCL) but more rapidly than poly(lactide-

co-glycolide) (PLGA) or polyglycolide (PGA). PLGA is in fact a copolymer of lactic and 

glycolic acid, and the degradation rate increases with increasing glycolic acid content, due to 

the susceptibility of the glycolic acid monomer to ester hydrolysis (Anderson and Shive 

1997). The degradation rate of the photocurable PLA, and other photocurable biomaterials 

produced using the same strategies requires further investigation, however similar 

photocurable materials have been shown to undergo degradation by hydrolysis in vitro 

(Mizutani and Matsuda 2002b).  

FDA approved nerve guidance conduits in current clinical use have been produced from 

natural materials (type I collagen, porcine small intestinal sub mucosa (SIS)) and various 

synthetic polymers (polyvinyl alcohol (PVA), PGA and poly(DL-lactide-ε-caprolcatone)/ 

polycaprolactone) (Kehoe, Zhang, and Boyd 2012). Although the synthetic devices overcome 

the rejection issues and natural variability of natural materials some progress is still to be 

made. Conduits made from PGA for example suffer from a high degradation rate and build 

up of acidic breakdown products leading to necrosis (Schlosshauer et al. 2006). Despite these 

limitations however PGA based nerve guidance conduit (Neurotube®) was shown in random 

clinical trials to be as effective as the gold standard for defects up to 20 mm in length (Kehoe, 

Zhang, and Boyd 2012). The poly(lactide-co-caprolactone) based conduit Neurolac®, 

containing in part the same monomeric units as the photocurable PLA in this study have been 

shown to be as effective as the gold standard in defects up to 20 mm in size in humans, but do 

suffer limitations due to the high stiffness of the material leading to ruptures at the implant/ 
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nerve surface due to the poor match in mechanical properties (Kehoe, Zhang, and Boyd 

2012).  

This issue would likely occur in conduits prepared from the photocurable PLA also due to the 

stiffness of linear PLA and the high degree of cross linking. If the stackable discs of 

photocured PLA were filled in a flexible tube this may be alleviated to a degree. Photocurable 

and bioresorbable elastomers such as trimethylene carbonate have also been prepared which 

would provide a more suitable mechanical match to the properties of nerve tissue (Bat et al. 

2011). 

6.5 Conclusions 

The incorporation of multiple lumens into nerve guidance conduits may improve the distance 

over which functional recovery of transected peripheral nerves is possible. This is due to 

increased surface area, over which a) the resulting fibrin matrix that develops within the 

conduit is protected and b) Schwann cells may attach, guiding axon regeneration. 

Furthermore, the presence of multiple lumens may guide axon regeneration the by contact 

guidance. The production of these multilumen devices can be accomplished with unparalleled 

resolution using 2PP, however the process is time consuming. The use of PDMS for the 

replication of these structures allows the rapid reproduction of these discs. The accuracy of 

the PDMS based soft lithography technique was shown to be within 99 % of the original 

overall dimensions, and the internal walls did not deviate from the original thickness by more 

than 5 %. 

The loading of Schwann cells into nerve guidance conduits has been widely investigated and 

shown to result in improved recovery. The ability of the photocurable PLA based material to 

support Schwann cell adhesion and proliferation was demonstrated by a range of different 

assays and imaging techniques. Furthermore the material was shown to be non-genotoxic by 

Comet assay, an important feature for biomedical materials. Photocurable PLA based discs 

loaded with Schwann cells were prepared and imaged using scanning electron microscopy 

after 7 days. 

In summary the photocurable PLA resin has been shown to be a suitable material for the 

creation of Schwann cell loaded nerve guidance conduits, being non-genotoxic and Schwann 

cell adhesive. The use of both 2PP and PDMS replication has been shown to be an effective 

method for the microstructuring of experimental nerve repair devices. Further optimization of 

both the device geometry and also material mechanical properties, as well as a thorough 
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analysis of the material degradation rate in vivo would be required to take this technology to 

the clinic. 
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Abstract 

In this short chapter the original rationale behind the research presented is examined in light 

of the results described in the preceding chapters. Future work based on the techniques 

established within the studies performed to date is suggested and progress towards taking this 

technology towards real world clinical applications is discussed. 

7.1 Microfabrication of Designer Tissue Engineering Devices  

The fabrication of devices with user defined architecture in a CAD-CAM fashion, from 

materials which can be customised in terms of mechanical and physical properties through 

the use of selected copolymers allows total control over the three dimensional environment 

experienced by the cells within (although the influence of mechanical properties was not 

studied in this thesis). Cells have been demonstrated to be directly influenced by their 

surrounding environment, completely changing their behaviour depending on both the three-

dimensional environment in which they are cultured (Abbott 2003), and also the modulus or 

‘elasticity’ of the substrate on which they are cultured (Engler et al. 2006). 

In their native tissue cells are supported within the extracellular matrix (ECM), a network of 

proteins such as laminin, collagen and elastin that acts as a support structure and it is these 

proteins that control the mechanical properties of the tissue. The activation of receptors for 

these proteins within cells has a direct influence on cellular behaviour. In one study, matrix 

elasticity was shown to influence stem cell differentiation (Engler et al. 2006). This is 

suggested to occur by the contraction of the transmembrane protein actomyosin, acting as a 

spring through which the cell can ‘pull’ against the substrate in order to determine the elastic 

response (Even-Ram, Artym, and Yamada 2006).  

Key properties such as the degradation rate of tissue scaffolds are also important in order to 

prevent the support structure resorbing before the growing tissue is fully formed and capable 

of maintaining structural integrity, or conversely remaining intact too long and inhibiting 

Chapter 7: Thesis Summary  
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tissue growth. Manipulation of polymer degradation by blending or copolymerization is 

commonly employed in order to manipulate degradation characteristics, so that degradation 

occurs on a timescale that matches that of tissue growth (Kim et al. 2003). 

The creation of scaffolds with user defined structure by projection microstereolithography 

was demonstrated in chapter 3, and has been successfully explored by other authors in order 

to demonstrate better cell distribution compared to bulk porous structures (Melchels et al. 

2011). In chapter 3 and chapter 6 the preparation of multi-lumen structures for nerve 

guidance conduits was presented demonstrating how high surface area structures may be used 

to achieve high loadings of adherent Schwann cells, demonstrated to aid in peripheral nerve 

recovery (Ruiter et al. 2009). The demonstrated adhesion of Schwann cells on the PLA based 

material eliminates the need for coating of the internal features with proteins such as laminin, 

as demonstrated by some authors working with linear PLA (Rangappa et al. 2000). In chapter 

5 the preparation of cell delivery devices with user defined structure and high porosity was 

explored and cell infiltration into the scaffolds was demonstrated, as well as the effect of 

structural characteristics on cell alignment (Melissinaki et al. 2011). Microfabricated self-

assembled scaffolds produced by two photon polymerization presents a novel application of 

this technology. 

7.2 Custom Polymers and Designer Biomaterials for Tissue Engineering 

Two photocurable resins based on bioresorbable polymers currently approved for internal 

medical use were prepared according to a published protocol as a proof of concept for this 

type of material (Gill and Claeyssens 2011). The resins were shown to be curable, 

biocompatible and capable of supporting cell attachment. Excellent structuring results were 

achieved with the different microstereolithography systems used, and structuring by two 

photon polymerization with a resolution of around 250 nm with the polylactic acid (PLA) 

based resin was achieved.  

7.3 Device Fabrication using Microstereolithography 

The key feature linking the applications of microstereolithography in this thesis has been the 

creation of a microenvironment where a defined three-dimensional structure has offered clear 

advantages over existing technologies which have so far been demonstrated. In the 

development of improved nerve guidance conduits, the enhanced microstructure has allowed 
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greater cell loading and alignment when compared with hollow tube based devices (Koroleva 

et al. 2012). In the development of injectable cell carrier devices the benefit achieved is 

higher potential cell loading and mechanical protection compared to simple microspherical 

cell carriers (Melissinaki et al. 2011; Bible et al. 2009b). The microfabricated rings for 

corneal repair will contain a physically protected space for a self-renewing population of 

stem cells, the lack of which is often a cause of failure for the current therapy in which a 

membrane is loaded with cells before degrading and depositing the cells onto the cornea 

(Deshpande et al. 2010). 

Microfabrication has been attracting growing interest in recent years due to the ability to 

accurately mimic the structure of native tissues within the human body (Berthiaume, 

Maguire, and Yarmush 2011). The ability to recreate body sections from medical imaging for 

the purpose of prostheses, surgical planning and potentially tissue scaffolds and other 

implantable devices is becoming a reality (Rengier et al. 2010). Two photon polymerization 

possesses clear advantages over competing techniques including the unparalleled resolution 

and in-volume true three dimensional writing ability which allow unique micro-devices to be 

created according to a computer model (Narayan et al. 2010; Ovsianikov, Chichkov, Adunka, 

et al. 2007; Schizas et al. 2010). Progress in the development of suitable materials and 

initiators (Lemercier et al. 2006), improvements in fabrication time, efficiency and cost 

(Wang et al. 2002; Hsieh et al. 2010) and efforts to address concerns regarding the 

biocompatibility of photoinitiators take this technology even closer to the clinic. 

7.4 Future Work 

The characterisation of these resins was only taken to a very preliminary level. Further work 

is required to examine in detail the molecular characteristics of these materials, characterising 

fully the molecular weight, polydispersity and extent of functionalization of the resins. 

Potential exists for the preparation of a vast range of copolymers and block copolymers, 

taking into account polymer miscibility. Varying the functionality of the initiator in order to 

create multi-armed oligomers and careful control over molecular weight and functionalization 

with different cross-linkable groups would allow the creation of resins with enhanced curing 

characteristics and final mechanical properties (Matsuda and Mizutani 2000; Matsuda, 

Mizutani, and Arnold 2000).  
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Advanced techniques for the selective spatial patterning of proteins within hydrogels, such as 

the use of using two photon labile protecting groups which break down upon two photon 

initiation to anchor growth factors to an agarose substrate allow the direct writing of cell 

adhesive networks in three dimensions (Luo and Shoichet 2004; Wylie and Shoichet 2011). 

Another possibility currently being explored is patterned surface function of polymeric 

devices in order to enhance cell attachment and survival. Functionalization of the ring based 

micropockets described in chapter 3 with surface-bound proteins is being explored in order to 

create biochemically enhanced limbal stem cell niches, with the potential of taking this 

technology to the clinic. 

The work presented in this thesis has demonstrated that microfabrication with photocurable 

polymers based on materials already approved for internal medical use is possible by both 

one and two photon methods with excellent structuring results. Several potential applications 

have been investigated and it has been shown how this technology may be used to address 

real world healthcare problems such as traumatic nerve injury and corneal blindness. 

Remaining research challenges include i) the optimisation of material characteristics, by the 

development of copolymers suitable for their selected applications ii) determination of the 

necessary structural features for each selected application iii) optimisation of the fabrication 

process in terms of fabrication time and equipment cost (through development of suitable 

initiators and low cost microlasers) and iv) an understanding of the translational framework 

in order to bring these products to the clinic. 
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