White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Quantum Algebras and Integrable Boundaries in AdS/CFT

Regelskis, Vidas (2012) Quantum Algebras and Integrable Boundaries in AdS/CFT. PhD thesis, University of York.

[img]
Preview
Text
thesis.pdf
Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (1404Kb)

Abstract

This thesis studies quantum integrable structures such as Yangians and quantum affine algebras that arise in and are inspired by the AdS/CFT duality, with a primary emphasis on the exploration of integrable boundaries deeply hidden in the duality. The main goal of this thesis is to find novel algebraic structures and methods that could lead to new horizons in the theory of quantum groups and in the exploration of boundary effects in the gauge/gravity dualities. The main thrust of this work is the exploration of the AdS/CFT worlsheet scattering theory and of integrable boundaries that manifest themselves as Dp-branes (p+1-dimensional Dirichlet submanifolds) which are a necessary part of the superstring theory. The presence of these objects breaks some of the underlying symmetries and leads to boundary scattering theory governed by coideal subalgebras of the bulk symmetry. Here the boundary scattering theory for D3-, D5- and D7-branes is considered in detail, and the underlying boundary Yangian symmetries are revealed. The AdS/CFT worldsheet scattering theory is shown to be closely related to that of the deformed Hubbard chain. This similarity allows us to apply the quantum deformed approach to the boundary scattering theory. Such treatment of the system leads to quantum affine symmetries that manifest themselves in a very elegant and compact form. In such a way the symmetries of distinct boundaries that previously seemed to be unrelated to each other emerge in a uniform and coherent form. The quantum deformed approach also helps us to better understand the phenomena of the so-called secret symmetry. It is called secret due to its peculiar feature of appearing as a level-one generator of the Yangian of the system. However it does not have a Lie algebra (level-zero) analogue. This symmetry is shown to have origins in the quantum deformed model, where it manifest itselfs as two, level-one and level-minus-one, generators of the corresponding quantum affine algebra.

Item Type: Thesis (PhD)
Keywords: AdS/CFT Correspondence, Quantum Integrable Systems, Quantum Groups, Exact S-Matrix, Boundary Field Theory
Academic Units: The University of York > Mathematics (York)
Depositing User: Mr Vidas Regelskis
Date Deposited: 13 Nov 2012 15:59
Last Modified: 08 Aug 2013 08:50
URI: http://etheses.whiterose.ac.uk/id/eprint/2905

Actions (repository staff only: login required)