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Abstract

This thesis studies quantum integrable structures such as Yangians and quantum
affine algebras that arise in and are inspired by the AdS/CFT duality, with a primary
emphasis on the exploration of integrable boundaries deeply hidden in the duality. The
main goal of this thesis is to find novel algebraic structures and methods that could lead
to new horizons in the theory of quantum groups and in the exploration of boundary
effects in the gauge/gravity dualities.

The main thrust of this work is the exploration of the AdS/CFT worlsheet scatter-
ing theory and of integrable boundaries that manifest themselves as Dp-branes (p+1-
dimensional Dirichlet submanifolds) which are a necessary part of the superstring the-
ory. The presence of these objects breaks some of the underlying symmetries and leads to
boundary scattering theory governed by coideal subalgebras of the bulk symmetry. Here
the boundary scattering theory for D3-, D5- and D7-branes is considered in detail, and
the underlying boundary Yangian symmetries are revealed.

The AdS/CFT worldsheet scattering theory is shown to be closely related to that of
the deformed Hubbard chain. This similarity allows us to apply the quantum deformed
approach to the boundary scattering theory. Such treatment of the system leads to quan-
tum affine symmetries that manifest themselves in a very elegant and compact form. In
such a way the symmetries of distinct boundaries that previously seemed to be unrelated
to each other emerge in a uniform and coherent form.

The quantum deformed approach also helps us to better understand the phenomena
of the so-called secret symmetry. It is called secret due to its peculiar feature of appear-
ing as a level-one generator of the Yangian of the system. However it does not have a
Lie algebra (level-zero) analogue. This symmetry is shown to have origins in the quan-
tum deformed model, where it manifest itselfs as two, level-one and level-minus-one,
generators of the corresponding quantum affine algebra.
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Preface

This manuscript will take the reader to a magical world of symmetries, where Yangian
and quantum affine algebras converge. It will lead on a magnificent journey following a
yellow-brick road of a superstring of infinite length and light-cone momentum through-
out the AdS5×S5 spacetime. We will encounter various D-branes blocking our way and
will find elegant integrable solutions giving a safe bypass from these obstacles.

The experience gained will allow the reader a glimpse into an even more extraor-
dinary world of quantum deformations, where the previously encountered structures
emerge in completely new prospects and require more elaborate methods for being con-
quered.

The final part of the manuscript will lead to a quest for the origins of the secret sym-
metry. This quest will require to scout through many strange worlds of quantum sym-
metries that are fearlessly protecting secrets of the AdS/CFT.
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Chapter 1

Introduction

During the last twenty years mathematics and physics have significantly influenced each
other and became highly entangled. Theoretical physics was always producing a wide
variety of new concepts and problems that became important subjects of mathematical
research. The growth of gauge, gravity and string theories have made the relation be-
tween these two disciplines closer than ever before. An important driving force was the
discovery of quantum groups [1–5] and of gauge/gravity dualities [6–8]. Here the lead-
ing role was played by the the so-called AdS/CFT correspondence and the underlying
integrable structure of it [9].

Quantum integrable systems constitute a special class of models in both mathematics
and physics and are studied principally through the quantum inverse scattering method
(QISM) and related methods [10–12]. Their properties allow them to be solved exactly
and thus integrable models form a very useful playground for studying various systems.
A common feature shared by these models is that they have hidden algebraic structures
with a Lie algebra at the core. Furthermore, such systems typically enjoy not only a
symmetry of Lie type, but also a much larger and more powerful symmetry, for example
of Yangian or quantum affine type.

A far-reaching concept in integrable systems is the effect of boundaries and the cor-
responding boundary conditions. They are unavoidable in almost all models of physics
and are of fundamental importance. The introduction of boundaries into the theory of
quantum groups leads to a whole new class of the so-called reflection algebras [13–15].
Such algebras were shown to appear in numerous models of physics and are at the core
of the integrable structure of them. However a coherent framework for describing such
algebras is not known, and many properties of reflection algebras are still an open ques-
tion.

When studying integrable models with periodic boundary conditions, the spectrum is
governed by the S-matrix and thus indirectly through the underlying symmetry algebra,
which is conventionally called the bulk symmetry. However, for integrable systems with
open boundaries, there is another object, called the reflection matrix, or K-matrix, which
describes the scattering of excitations from the boundary [16]. Generically, boundaries
preserve a subalgebra of the bulk Lie algebra and this subalgebra then determines the
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corresponding reflection matrix. However this is usually not enough to determine the
bound state reflection matrix and a coideal subalgebra of the corresponding bulk Yangian
or quantum affine algebra is required [17].

A very distinctive algebra arises at the core of the AdS/CFT duality [18–20] and leads
to a variety of coideal subalgebras [21–26]. These algebras have very specific properties
and hardly fit into the current classification of quantum groups. Thus new algebraic
methods must be developed to put these new algebras onto a firm ground.

The goal of my research is to explore the symmetries of the worldsheet scattering
in AdS/CFT by building a connection between the theory of quantum groups and the
integrable structure of AdS/CFT, in particular by shedding more light on the effects of
boundaries and different boundary configurations, and find elegant, exact solutions and
methods describing the models that arise from and are inspired by the gauge/gravity
dualities. An important part of my work is to link the integrable structures and boundary
algebras arising in AdS/CFT to the already known ones, in particular, to those of the
principal chiral model defined on a semi-infinite line [17, 27], to the deformed Hubbard
chain [28–30], and to the axiomatic theory of the quantum symmetric pairs [31, 32]. In
such a way the methods presented in this manuscript can be generalized and applied to
other gauge/gravity dualities and relevant models of both mathematics and physics.

In this chapter we will briefly recall the notion of integrability, the link between Hopf
algebras, quantum groups and the Yang-Baxter equation, and also between reflection
algebras and the reflection equation. We will then make a short glimpse at the integrable
structure of AdS/CFT and give an outline of this thesis. Some of the topics briefly covered
here will be explored in much more detail in the subsequent chapters and more references
to earlier works will be given.

1.1 Integrability and the algebraic Bethe ansatz for spin chains

We will introduce the notion of integrable systems through the Liouville theorem. Such
systems have a 2m-dimensional phase space M , and have m independent conserved
quantities (constants of motion) {Ij}j=1,...,m in involution. Then the Liouville theorem
states that such a system can be solved exactly. Examples of such systems are har-
monic oscillators in m dimensions, Toda lattices, nonlinear sigma models, Heisenberg
spin chain. There are also systems with k > m independent conserved quantities, for ex-
ample the Kepler system. Such systems are called superintegrable, however in this case
not all of the conserved quantities are in involution.

Let us start by recalling some basic definitions. A manifold M equipped with a non-
degenerate closed 2-form

ω : TM → T ∗M , (1.1.1)

between the tangent bundle TM and the cotangent bundle T ∗M , is called a symplectic
manifold with a symplectic 2-form ω and is conveniently denoted by (M,ω). The non-
degeneracy of ω implies that there exists a well-defined inverse

Ω : T ∗M → TM , Ω = ω−1 . (1.1.2)



Integrability and the algebraic Bethe ansatz for spin chains 3

In such a way any one-form df on M can be identified with a vector field and for any
differentiable function H : M → R, there exists a unique vector field XH called the
Hamiltonian vector field such that for any vector field Y on M the following identity
holds,

dH(Y ) = ω(XH, Y ) . (1.1.3)

We will use the notion of a Hamiltonian vector field to define a Poisson manifold.
Consider a bilinear map on M , called the Poisson bracket,

{· , ·} : C∞(M)× C∞(M)→ C∞(M) , (1.1.4)

such that for any f, g, h ∈ C∞(M)

{f, g} = ω(Xf , Xg) = df(Xg) = LXgf , (1.1.5)

where LX is the Lie derivative along the vector field X with the following properties:

• It is skew-symmetric: {f, g} = −{g, f} .
• It obeys the Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 .
• It is a derivation of C∞(M) in its first argument: {fg, h} = f{g, h}+ {f, h}g .

A Poisson manifold W is a manifold endowed with a Poisson backet satisfying the
properties above.

Let us make two remarks. First, any symplectic manifold is a Poisson manifold, but
the converse is not true. There are many Poisson manifolds that are not symplectic man-
ifolds. Secondly, a vector space of differentiable functions on a Poisson manifold has the
structure of a Lie algebra; the assignment f 7→ Xf is a Lie algebra homomorphism, whose
kernel consists of the (locally) constant functions.

We are now ready to define the notion of integrability. Consider a dynamical sys-
tem modeled by a symplectic manifold M equipped with a Poisson brackets and the
Hamiltonian H(M). and its time-evolution given by following the integral curves of the
Hamiltonian vector field XH on M corresponding toH,

XH(f) = {H, f} . (1.1.6)

Let f = f(m(t)), here m(t) is any integral curve of XH parametrized by t. Then (1.1.6)
becomes

df

dt
= {H, f} . (1.1.7)

The function f is called a conserved quantity (or an integral of motion) if it Poisson-
cummutes withH, i.e. {H, f} = 0 . Two functions f and g are in involution if {f, g} = 0 .
This terminology allows to give the following definition of a classical integrable system:

Definition 1.1.1. A classical dynamical system on a 2m-dimensional symplectic manifold M
with a Hamiltonian H is Liouville integrable if it possesses m independent conserved quanttities
{Ij}j=1,...,m in involution.
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Here the independence means that the tangent space of the surface defined by Ij = fj
exists everywhere and is of dimension m. Furthermore, there can be at most m indepen-
dent quantities in involution, otherwise the Poisson bracket would be degenerate.

There is also a notion of a quantum integrable system. In the quantum setting, func-
tions on the phase space must be replaced by self-adjoint operators on the Hilbert space,
and the notion of Poisson-commuting functions is replaced by commuting operators.
Consequently, a system is considered to be quantum integrable if there exist operators Îj
corresponding to conserved charges which can be simultaneously diagonalized together
with the Hamiltonian operator Ĥ,[

Ĥ, Îj
]

= 0 ,
[
Îj , Îk

]
= 0 . (1.1.8)

In the semiclassical limit, these operators correspond to symbols that are independent
Poisson-commuting functions on the phase space.

The importance of Liouville integrability, as the terminology implies, is that system
with such properties can be solved exactly. Solving the system is considered as finding
the resulting spectrum of H and Ij . A very simple but widely applied example of an
integrable system is the Heisenberg XXX 1

2
spin chain which can be exactly solved using

the Bethe ansatz.
The classical Bethe ansatz is applied to a periodic chain with L sites. At each site the

spin variable can be facing either up or down. Consequently the Hilbert space of the spin
chain is

H (L) =

L∏
n=1

⊗V
1
2 , (1.1.9)

where each local space V
1
2 is a spin-1

2 irrep of su(2) with a basis {↑, ↓}. Therefore the
dimension of the Hilbert space is dimH (L) = 2L. The Hamiltonian for a such system is
very simple,

H = −
L∑
i=1

(~σi · ~σi+1 − 1) , with ~σL+1 := ~σ1 , (1.1.10)

and reflects that the interactions are short ranged, – the nearest neighbours are inter-
acting only; here ~σi are the Pauli matrices acting on the i-th lattice site. Denote eiP the
operator shifting the states by one lattice unit. Then the Hamiltonian is clearly translation
invariant [

eiP , H
]

= 0 . (1.1.11)

The periodicity of the closed spin-chain gives

eiPL = 1 . (1.1.12)

Finally, define ∆(L)(X) =
∑L

i=1Xi, where Xi ∈ {σxi , σ
y
i , σ

z
i }. Then the Hamiltonian H is

su(2) symmetric,
[H,∆(L)(X)] = 0 . (1.1.13)
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Let us denote the state with all spins-down as the vacuum state. Next, we divide the
Hilbert space into subspaces of states with equal number of spins-up,

H (L) =

N∑
M=0

H
(L)
M , (1.1.14)

where H
(L)

0 represents the vacuum state, H
(L)

1 represents the subspace of all configura-
tions with one spin-up and etc. The dimension of each subspace is dimH

(L)
M =

(
L
M

)
.

The natural way to define the wave function for an eigenvector from the first sector is

|Ψ1〉 =

L∑
x=1

f(x) |x〉 , (1.1.15)

where |x〉 represents the state with spin-up at the site x. The function f(x) describes the
probability that a single spin-up is precisely at the site x. Next, translation invariance and
periodicity offer a very simple form of f(x), namely it is a plane wave,

f(x) = eikx , (1.1.16)

where k is momentum constrained by the periodicity f(x + L) = f(x) and is k = 2πI/L
with I = 0, 1, ..., L− 1.

The wave function for an eigenvector from the second sector is very similar,

|Ψ2〉 =
∑
x1,x2

f(x1, x2) |x1, x2〉 . (1.1.17)

Here |x1, x2〉 represents a vector in H
(L)

2 with spins-ups at the lattice sites x1 and x2. The
periodicity condition now reads

f(x1, x2) = f(x2, x1 + L) . (1.1.18)

The solution for the unknown function f(x1, x2) was found by Bethe and is [33]

f(x1, x2) = A12 ei(k1x1+k2x2) +A21 ei(k1x2+k2x1) , (1.1.19)

It respects the periodicity condition by requiring the following constraints to hold,

A12 = A21 eik1L , A21 = A12 eik2L , (1.1.20)

Finally, the full translational symmetry of the system requires

f(x1 + L, x2 + L) = f(x1, x2) , ei(k1+k2)L = 1 . (1.1.21)

The Bethe ansatz is treating the scattering of two spin waves as purely elastic. The
only dynamics allowed is the permutation of the quasi-momenta. This is the consequence
of integrability.
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The physical properties are encoded in the scattering amplitudes,

S12 =
A21

A12
, S21 =

A12

A21
, (1.1.22)

in terms of which Bathe ansatz reads as

f(x1, x2) = A12

(
ei(k1x1+k2x2) + S12 ei(k1x2+k2x1)

)
, (1.1.23)

and the scattering amplitudes satisfy

eik1LS12 = 1 , eik2LS21 = 1 . (1.1.24)

Let us continue and generalize these equations for an arbitrary number M of spins-
up. The generic form of a wave function is

|ΨM 〉 =
∑

1≤x1<x2<...<xM≤L
f(x1, ..., xM ) |x1, ..., xM 〉 , (1.1.25)

and the Bethe ansatz acquires the form

f(x1, ..., xM ) =
∑
p∈PM

Ap ei(kp(1)x1+...+kp(M)xM ), (1.1.26)

where the sums runs over the M ! permutations p of the labels of quasi-momenta ki. The
periodicity condition generalizes to

f(x1, ..., xM ) = f(x2, ..., xM , x1 + L) . (1.1.27)

And therefore we arrive to the Bethe ansatz equations (BAE)

eikiL =

M∏
j=1, j 6=i

Sji(kj , ki) , for i = 1, . . . ,M . (1.1.28)

It is worth considering the case M = 3 more explicitly as it is closely related to the
Yang-Baxter equation [34,35]. For a scalar S-matrix the ordering of factorization does not
play a role. However in the matrix case there are two inequivalent ways of factorizing
the three particle scattering. They are shown in figure 1.1 and represent the Yang-Baxter
equation,

S
(3)
123 = S23S13S12 = S12S13S23 . (1.1.29)

The Bethe equations can be derived heuristically if we considerM particles on a circle
of circumference L. Transporting the j’th particle around the circle reads as shifting of
the particle position lj by lj → lj +L. In the absence of other particles this transportation
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Figure 1.1: Factorization of the three particle scattering.

would produce a phase shift exp(ipjL) only. By introducing other particles we must in-
clude the scattering of the j’th particle with all the other particles around the circle and
therefore the phase picks up factors Sj,k for all k 6= j. Consequently, the heuristic deriva-
tion yields the BAE (1.1.28). In the L→∞ limit the system becomes infinite dimensional
and the number of conserved quantities becomes infinite as well. For more examples and
details how to treat infinite dimensional Hamiltonian systems we refer to e.g. [36]. The
properties of the S-matrix will be discussed in more detail in Chapter 3, where we will
consider the AdS/CFT worldsheet scattering.

Bethe ansatz equations can be easily generalized for a system with open boundaries.
In this case the periodicity condition corresponds to transporting the test particle along
the chain towards the right boundary, reflecting, translating backwards to the left bound-
ary, reflecting, and then translating it back to the initial site of the chain. In such a way
the Bethe ansatz equations become

e2ikiL = K(ki)
2

M∏
j=1, j 6=i

Sji(kj , ki) Sji(−kj , ki) , (1.1.30)

where K(ki) is the boundary reflection matrix. This time the M = 2 case is related to the
boundary Yang-Baxter equation shown in figure 1.2.

Figure 1.2: Factorization of the boundary scattering.

The statement of exact factorization reads as

K
(3)
123 = K23S21K13S12 = S21K13S12K23 , (1.1.31)
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where the underbarred notation denotes reflected states and the subindex 3 denotes the
boundary. Note that there can be two different boundary conditions, a trivial boundary
with no boundary degrees of freedom, and the one with a boundary state located at the
extra lattice sites L = 0 and L = M + 1. In such a way the explicit form of K(ki) depends
on the corresponding boundary conditions.

1.2 Hopf algebras and the YBE

Here we shall give a brief introduction to Hopf algebras and show how these naturally
produce the Yang-Baxter equation [34,35]. We will come back to this topic in more detail
in Chapter 2. For a comprehensive guide to Hopf algebras and quantum groups we refer
to [37].

We start from an associative unital algebra (A,m, i) over C. The associativity of mul-
tiplication map m : A⊗A → A for an arbitrary algebra elements a, b, c reads as

[m (m⊗ 1)] (a⊗ b⊗ c) = [m (1⊗m)] (a⊗ b⊗ c) . (1.2.1)

The unit map i is linked to unit element 1 ∈ A as i : λ ∈ C 7→ 1·λ ∈ A . Next we introduce
a comultiplication (coproduct) ∆ : A → A⊗Awhich we require to be coassociative

(∆⊗ id) ∆(a) = (id⊗∆) ∆(a) , (1.2.2)

where id is the identity map. One more required element for the coalgebra structure is a
counit map ε : A → C which satisfies

(id⊗ ε) ∆(a) = (ε⊗ id) ∆(a) = id . (1.2.3)

The structure (A,m, i,∆, ε) is an algebra and a coalgebra simultaneously and is called
a bi-algebra if comultiplication ∆ and counit ε are algebra homomorphisms,

ε(ab) = ε(a)ε(b) , ∆(ab) = ∆(a)∆(b) . (1.2.4)

By introducing an antipode S : A → Awhich is an anti-homomorphism

S(ab) = S(b)S(a) , (1.2.5)

satisfying the following condition

m (S ⊗ id) ∆(a) = m (id⊗ S) ∆(a) = ε(a)id , (1.2.6)

the bialgebra becomes a Hopf algebra. To summarize what was said, let us give an ex-
plicit definition.

Definition 1.2.1. A Hopf algebra over a fieldK is aK-moduleA equipped withK-module maps

m : A⊗A → A (multiplication), i : C→ A (unit map),
∆ : A → A⊗A (comultiplication), ε : A → C (counit map),
S : A → A (antipode), (1.2.7)
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such that m and ∆ are coalgebra homomorphisms, i and ε are algebra homorphisms, S is algebra
anti-homomorphism, and satisfy the following properties:

m ◦ (id⊗m) = m ◦ (m⊗ id) (associativity),
m ◦ (id⊗ i) ∼= m ◦ (i⊗ id) ∼= id (existence of unit),
(id⊗∆) ◦∆ = (∆⊗ id) ◦∆ (coassociativity),
(ε⊗ id) ◦∆ ∼= (id⊗ ε) ◦∆ ∼= id (existence of counit),
m ◦ (id⊗ S) ◦∆ = m ◦ (S ⊗ id) ◦∆ = i ◦ ε ,
∆ ◦m = (m⊗m) ◦ (∆⊗∆) (connection axiom). (1.2.8)

If the multiplication is commutative the algebra is called commutative, otherwise it is
a non-commutative algebra. A similar but slightly extended classification applies to coal-
gebras and Hopf algebras. These can be cocommutative or non-cocommutative. How-
ever some of the non-cocommutative Hopf algebras can be endowed with an additional
algebraic structure called the quasi-cocommutativity property. Such Hopf algebras inter-
polate between cocommutativity and (completely) non-cocommutativity in a controlled
and very special way. To explore such algebras we need to introduce a permutation map,

σ : A⊗A → A⊗A , a⊗ b 7→ b⊗ a , (1.2.9)

which acts by interchanging the order of the operands only. The Hopf algebra is cocom-
mutative iff

∆op(a) := σ ◦∆(a) = ∆(a) for all a ∈ A . (1.2.10)

Furthermore, ∆op(a) is also a comultiplication. In such a way the set (A, µop, i,∆op, ε, S′),
where S′(a) = S−1(a), is also a Hopf algebra and is convienently called as the opposite
Hopf algebra and is denoted by Aop. It is isomorphic to Aop ∼= A as a Hopf algebra. The
algebra of prime interest to us will be a quasitriangular Hopf algebra:

Definition 1.2.2. A given Hopf algebra is called quasitriangular if there exists an invertible
element, called the universal R-matrixR =

∑
i a
′
i ⊗ a′′i ∈ A⊗A, such that

∆op(a) = R∆(a)R−1 for all a ∈ A , (1.2.11)

and satisfying

(id⊗∆)R = R13R12 =
∑
i,j

a′ia
′
j ⊗ a′′j ⊗ a′′i , (1.2.12)

(∆⊗ id)R = R13R23 =
∑
i,j

a′i ⊗ a′j ⊗ a′′i a′′j , (1.2.13)

(S ⊗ id)R =
(
id⊗ S−1

)
R = R−1 . (1.2.14)

The notation used above is

R12 =
∑
i

a′i ⊗ a′′i ⊗ 1 , R13 =
∑
i

a′i ⊗ 1⊗ a′′i , R23 =
∑
i

1⊗ a′i ⊗ a′′i . (1.2.15)
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The quasitriangularity means that the comultiplication ∆ and its transpose ∆op are
related linearly. Heuristically it can be understood as an equivalence between two dif-
ferent ways of ‘adding things up’. A trivial example of a quasitriangular cocommutative
algebra is when R = C ⊗ C. A Hopf algebra is called triangular if R21 = R−1, where
R21 =

∑
i a
′′
i ⊗a′i. A noncocommutative quasitriangular Hopf algebra is called a quantum

group. The most interesting feature for us is that a quasitriangular Hopf algebra naturally
produces a solution to the Yang-Baxter equation in the so-called universal form.

Proposition 1.2.1. Let (A,R) be a quasitriangular Hopf algebra. Then,

R12R13R23 = R23R13R12 . (1.2.16)

Proof. By (1.2.13) we have

[(σ ◦∆)⊗ id]R = σ12 (∆⊗ id)R = σ12 (R13R23) = R23R13 . (1.2.17)

On the other hand the same expression can be written as

[(σ ◦∆)⊗ id]R =
∑
i

∆op(a′i)⊗ a′′i =
∑
i

R12∆(a′i)R−1
12 ⊗ a

′′
i

= R12

(∑
i

∆(a′i)⊗ a′′i
)
R−1

12 = R12 [(∆⊗ id)R]R−1
12

= R12R13R23R−1
12 , (1.2.18)

and therefore (1.2.16) follows.

1.3 Reflection algebras and the BYBE

One of the most challenging questions in the scattering theory is the solution to the so-
called universal boundary Yang-Baxter equation,

K23R12K13R12 = R12K13R12K23 , (1.3.1)

where the underbarred notation is associated with the reflected states; we will explain
this point in more detail a little bit further. This equation is also called the reflection
equation [15]. Similarly, algebras defining solutions of the reflection equation are conve-
niently called reflection algebras (see e.g. [14, 38–43]).

There are several approaches leading towards the universal solution of (1.3.1) (see
e.g. [44,45]); however these are valid for specific cases only, and thus there is no canonical
approach in solving the reflection equation. In such a way in most cases the refection
equation is understood as a matrix equation.

Here we will briefly recall some aspects of the representation theory of the Hopf alge-
bras that will be relevant to us in defining the boundary reflection matrix. We will give
more details and references in Chapter 2.



Reflection algebras and the BYBE 11

Consider a quasitriangular Hopf algebra (A,R). Let V be a finite dimensional vector
space and Tz : A → End(V) be a finite dimensional representation of A, where z denotes
the evaluation parameter of the representation. Then the R-matrix can be defined as an
intertwining matrix

R = (Tz ⊗ Tw)[R] ∈ End
(
V ⊗ V

)
. (1.3.2)

and can be obtained by solving the intertwining equation

(Tz⊗ Tw)[∆op(a)]R−R (Tz⊗ Tw)[∆(a)] = 0 for all a ∈ A , (1.3.3)

Note that (Tz⊗Tw)[∆(a)] is required to be irreducible. Such R-matrix then automatically
satisfies (1.2.16) defined on the tensor space V ⊗ V ⊗ V .

Let B ⊂ A be a left coideal subalgebra,

∆(b) ∈ A⊗ B for all b ∈ B . (1.3.4)

LetW be a finite dimensional vector space and T̄s : B → End(W) be a finite dimensional
representation of B, called boundary representation, where s denotes a boundary spectral
parameter. Let T ∗z : A → End(V) be a conjugate representation of A, for example T ∗z ∼=
T1/z for quantum affine algebras, and T ∗z ∼= T−z for Yangian algebras. Then the boundary
reflection matrix can be defined as an intertwining matrix

K ∈ End(V ⊗W) , (1.3.5)

and can be obtained by solving the boundary intertwining equation

(Tz⊗ T̄s)[∆(b)]K −K (T ∗z ⊗ T̄s)[∆(b)] = 0 for all b ∈ B , (1.3.6)

Here (Tz⊗ T̄s)[∆(b)] is required to be irreducible. We are now ready to introduce a notion
of the reflection algebra. Let us give some necessary preliminaries. Define R12 := (Tz ⊗
T ∗w ⊗ id)[R12], and similarly for R12, R12. Set K23 = 1⊗K, and similarly for K13. Then:

Definition 1.3.1. A coideal subalgebra B ⊂ A is called a reflection algebra if the intertwining
equation (1.3.6) defines a K-matrix K ∈ End(V ⊗W) satisfying the reflection equation

K23R12K13R12 = R12K13R12K23 . (1.3.7)

The property that reflection algebra must be a coideal subalagebra was first observed
in [46]. We will consider such reflection algebras in more detail in Chapter 2. In the re-
maining part of this section we want to give an approach which could lead to a universal
solution of the reflection equation and a universal reflection matrix. This approach is in-
spired by the algebraic structures of the AdS/CFT duality and will be considered in more
detail in Chapters 3 and 4.

We would like to lift the considerations presented above to the algebra level. Suppose
there exists an involutive algebra automorphism

κ : A → A, a 7→ a := κ(a) , (1.3.8)
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and κ2 = id, such that
Tz( a ) = T ∗z (a) for all a ∈ A , (1.3.9)

and any pair of mutually compatible representations Tz and T ∗z in the sense as was de-
scribed above.

Definition 1.3.2. Let κ : A → A be an involutive algebra automorphism as defined above. Then
we call κ a reflection automorphism of A.

The reflection automorphism is a necessary step in the search of a universal reflection
matrix. Let us define a modified coproduct,

∆ref := (κ⊗ id) ◦∆ . (1.3.10)

Definition 1.3.3. We call ∆ref defined by (1.3.10) the reflected coproduct.

Now we are ready to introduce a notion of the universal reflection algebra and the
universal reflection matrix.

Definition 1.3.4. We call B a universal reflection algebra if there exists an invertible element,
called a universal K-matrix K =

∑
i a
′
i ⊗ b′′i ∈ A⊗ B, such that

∆ref (b) = K∆(b)K−1 for all b ∈ B , (1.3.11)

and satisfying the universal reflection equation (1.3.1)

K23R12K13R12 = R12K13R12K23 ,

where R12 =
∑

i a
′
i ⊗ a′′i ⊗ 1 , R12 = (id ⊗ κ ⊗ id)R12 =

∑
i a
′
i ⊗ a′′i ⊗ 1 , and similarly for

R12,R12; and K13 =
∑

i a
′
i ⊗ 1⊗ b′′i , K23 =

∑
i 1⊗ a′i ⊗ b′′i .

Note that a given Hopf algebraAmay have several inequivalent coideal subalgebras,
and thus there can be a family of reflection algebras leading to inequivalent reflection
matrices satisfying the reflection equation for a singleR-matrix. There are some universal
properties that are respected by all B’s:

Definition 1.3.5. Let b ∈ B be such that ∆ref (b) = ∆(b). Then we call b coreflective.

Proposition 1.3.1. Let c ∈ B be a central element of the algebra. Then c is coreflective.

Proof. This follows directly from (1.3.11).

The reflection matrix for the left boundary can be obtained by composing with the
flip operator σ,

Kop := σ(K) ∈ B ⊗A . (1.3.12)

Define ∆op.ref (b) := σ ◦∆ref . Then the relation (1.3.11) for the left boundary becomes

∆op.ref (b) = Kop ∆op(b) (Kop)−1 for all b ∈ B . (1.3.13)
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∆op.ref ∆ref

∆op ∆

� -

� -

?

6

?

6
σ

σ

id⊗ κ κ⊗ id

The maps σ and κ lead to the following commutative diagram,

A somewhat similar approach was considered in [44] where the role of the reflected
algebra Aref and the reflected coproduct ∆ref is played by a twisted Hopf algebra and
a twisted coproduct, and K ∈ A ⊗ Ã∗, where Ã∗ is a twisted-dual algebra to A, and
coincides with A as a linear space.

The key problem of the universal approach to the reflection equation presented above
is that it is not possible to construct the reflection automorphism κ for a generic algebra
A, thus this approach could be applied to specific algebras only.

An algebra which does have a reflection automorphism is the centrally extended
psu(2|2)C algebra playing a key role in the worldsheet scattering theory of the AdS/CFT
correspondence. An exclusive feature of this algebra is its braided Hopf algebra structure
and an SL(2) outer-automorphism group which accommodates the reflection automor-
phism. This algebra is very rich in coideal subalgebras which we will explore in Chapters
3 and 4. However, the universalR-matrix is not known for this algebra, and this obscures
finding a universal reflectionK-matrix. Nevertheless this approach has proved to be very
useful in finding worldsheet reflection matrices in AdS/CFT, and played a crucial role in
defining the representation of the reflected algebra and determining boundary algebras
for the q-deformed worldsheet scattering.

To finalize we want to give a ‘dictionary’ relating quantum groups and reflection
algebras.

Bulk Boundary
Hopf algebra A Coideal subalgebra B
Coproduct ∆(a) ∈ A⊗A, ∀a ∈ A Coproduct ∆(b) ∈ A⊗ B, ∀b ∈ B
Flip map σ Reflection map κ
Opposite coproduct ∆op = σ ◦∆ Reflected coproduct ∆ref = (κ⊗ id) ◦∆

R-matrixR ∈ A⊗A K-matrix K ∈ A⊗ B
∆op(a) = R∆(a)R−1 ∆ref (b) = K∆(b)K−1

YBE:R12R13R23 = R23R13R12 BYBE (RE): K23R12K13R12 = R12K13R12K23

Quantum group Reflection algebra
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1.4 Integrability in AdS/CFT

The AdS/CFT correspondence, as originally conjectured by Maldacena [6], states an
equivalence (or duality) between two very different theories:

• N = 4 super Yang-Mills theory in 4-dimensions with the gauge group SU(N) and
coupling constant gYM in the conformal phase;

• Type IIB superstring theory on AdS5 × S5 where both AdS5 and S5 have the same
radius and the coupling constant is gS = g2

YM ;

The AdS/CFT conjecture states that these theories, including operator observables, states,
correlation functions and full dynamics, are equivalent to each other.

In this section we shall briefly review the connection between the type IIB superstring
theory compactified on a AdS5 × S5 and the N = 4 super Yang-Mills theory. There are
currently many nice reviews on the subject [47–52]), the most recent and exhaustive one
being the review [9]. Thus we will be rather concise in this section and concentrate more
on the geometry, where D-branes live, the subject of our investigations.

Let us start from a flat ten dimensional Minkowski spacetime where the type IIB su-
perstring theory lives. The spacetime will become compatified to AdS5 × S5 by intro-
ducing a stack of N parallel D3-branes that are sitting together very closely to each other
and are extended along a (3 + 1) dimensional plane in the (9 + 1) dimensional spacetime.
String theory on this configuration contains two kinds of perturbative excitations, namely
closed and open strings. The closed strings are excitations of an empty space, while the
open strings end onD-branes and describe excitations of theD-branes. Open strings both
of whose end points are attached to a single brane can have arbitrary short length and
therefore can have massless modes, while the stings attached to different D-branes have
mass proportional to the distance between those D-branes and induce a U(1)N gauge
theory. In the limit when all D-branes become coincident, all of the open strings can be-
come arbitrary short and therefore at the low energy (supergravity) limit dominates, i.e.
only the massless modes survive giving raise to the full U(N) gauge symmetry on the
boundary (fig. 1.3). Although only a SU(N) gauge field theory is usually considered,
because the overall U(1) = U(N)/SU(N) factor corresponds to a global translation of
the stack of theD-branes thus can be ignored when considering the local dynamics of the
brane.

The massless modes of closed strings give a gravity supermultiplet in ten dimensions
and in the low energy limit (energies lower than the string scale 1/ls) the effective theory
is the type IIB supergravity. The low energy effective theory on the brane is the N = 4
super-Yang-Mills theory in its conformal phase with a gauge group SU(N). The complete
action of the configuration can be written in the form

S = Sbulk + Sbrane + Sint , (1.4.1)

which in the low energy limit becomes an effective action of massless modes and can be
read as

Seff = Ssugra + SSYM , (1.4.2)
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Figure 1.3: a) A stack of N separated D3-branes inducing massive U(1)N gauge theory,
b) The stack of N coincident D3-branes inducing massless U(N) gauge theory.

because the interaction part of the action Sint ∼ gs (α′)2, and thus the α′ → 0 limit (while
keeping gs fixed) gives Sint → 0. Therefore, the supergravity decouples from the brane
and in this sense is considered to be free. Note that it is still an interacting theory on its
own.

Lets take a closer look to the the D3-brane. This supergravity solution is of special
interest for several reasons. Its worldbrane has 4-dimensional Poincare invariance, it
has a constant axion and dilaton fields, and is self dual and regular at all points. The
spacetime metric of such configuration may be written in the following form

ds2 =

(
1 +

L4

y4

)− 1
2

ηijdx
idxj +

(
1 +

L4

y4

) 1
2 (
dy2 + y2dΩ2

5

)
, (1.4.3)

where i, j = 0 . . . 3 and the radius L of the D3-brane is given by

L4 = 4πgsN
(
α′
)2
. (1.4.4)

Figure 1.4: Minkowski and throat region of the AdS.

In the limit y � L we recover the flat spacetime R10, while y < L corresponds to the
geometry that is often referred to as the throat (Fig. 1.4) and would appear to be singular
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as y � L. Although, after introducing a coordinate

u ≡ L2

y
, (1.4.5)

the limit y � L reads as large u limit and transforms the metric to the following asymp-
totic form

ds2 = L2

(
1

u2
ηijdx

idxj +
du2

u2
+ dΩ2

5

)
, (1.4.6)

which is referred to a product geometry of five-sphere S5 with metric L2dΩ2
5 and the

hyperbolic spaceAdS5 with a conformal metric∝ du2 +ηijdx
idxj . It is a space of constant

negative curvature and in the general case AdSd can be defined by a Lobachevsky type
embedding in Rd+1. Using parametrization x0 = R cosh ρ cos τ , xd+1 = R cosh ρ sin τ and
xi = R sinh ρΩi, where

∑
i Ωi = 1, the metric of AdSd space can be written as

ds2 = R2
(
− cosh2 ρ dτ + dρ2 + sinh2 ρ dΩ2

)
, (1.4.7)

with ρ ≥ 0 and 0 ≤ τ ≤ 2π (fig. 1.5). This metric has a hyperboloid topology of S1×Rp+1

with S1 representing closed timelike curves in the τ direction. By setting d = 5 and taking
the limit τ → ∞ we obtain a flat 4-dimensional Minkowski space time on the boundary
of AdS5.

Figure 1.5: Anti de-Sitter spacetime parametrized by ρ and τ .

It is worth noting, that Anti de-Sitter space is a solution of the Einstein equation with
a constant negative cosmological constant

Rµν − 1
2gµνR = 8πGΛgµν . (1.4.8)

The Maldacena AdS/CFT duality considers the α′ → 0 limit while keeping gs and
N fixed. In such a way only the AdS5 × S5 region of the D3-brane geometry survives
and contributes to the string dynamics of physical processes, while the asymptotically
flat region decouples from the theory and does not influence the string dynamics. The
conjectures states that the supergravity and super Yang-Mills spectrum coincides. Any
field φ(~x, z) propagating in theAdS, where z is the distance from the boundary ofAdS, is
in one-to-one correspondence with some gauge invariant operatorO(~x) in the conformal
field theory. The correspondence is realised by a relation between the energy of the field
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and the scaling dimension of the of the operator in the field theory. The strongest conjec-
ture formulation states, that the generating functional of the correlation functions of the
conformal field theory side coincides with the partition function of the superstring theory
with the boundary condition stating that the field φ has the value φ0 on the boundary of
AdS, 〈

e
∫
d4xφ0(~x)O(~x)

〉
CFT

= Zstring [φ(~x, z)|z=0 = φ0(~x)] . (1.4.9)

This relation is valid for any field in the theory.
Quantum integrability, the study of exactly-solvable models of quantum physics, has

long enjoyed a fertile exchange between physics and mathematics. Most of the quan-
tum groups and associated algebras have their origin in some classical or quantum in-
tegrable system of fundamental physics. However, at the early stages of exploration of
the AdS/CFT duality, there were no signs of integrability observed. This changed in
2003, when integrability was found to govern certain limits of the duality, including non-
local charges [53] in the string sigma model [54], and the spin-chain picture on the gauge
side [55–57]. Since then, integrability became an important part of the core structure of
the duality and has led to an astonishing range of new results. The complete story of
the integrability has been merged into a comprehensive 23-part review, an overview of
which is given in [9].

The N = 4 super Yang-Mills is a non-Abelian gauge theory in 3 + 1 dimensions
with a G = SU(N) gauge group. This theory is unique, it has a vanishing β-function
at all values of the coupling constant gYM , and has the largest possible spacetime sym-
metry. The bosonic part of the global symmetry is SO(4, 2) × SO(6) and coincides ex-
actly with the isometries of the AdS5 × S5 background. The first factor is the conformal
group of four-dimensional spacetime and includes the Lorentz symmetry as a subgroup,
SO(3, 1) ⊂ SO(4, 2). The second factor is the so-called R-symmetry, SO(6) ' SU(4).
These symmetries are enhanced by 32 supercharges thus generating the PSU(2, 2|4) su-
pergroup.

The field content of this theory consists of a gauge field Aµ which is a singlet 1 under
the R-symmetry, six massless scalar fields φI , I = 1 . . . 6, transforming in 6, four chiral
and four anti-chiral fermions, ψaα and ψα̇a, a = 1 . . . 4, transforming in 4 and 4̄ of SU(4);
and α, α̇ = 1, 2 are spinoral indices of two independent SU(2) that constitute the Lorentz
algebra.

The natural observables are the correlation functions of local single-trace gauge-invar-
iant operators of ‘words’ composed of all possible ‘letters’, fields φI , ψaα, ψα̇a and covari-
ant derivativesDµ, all transforming in the adjoint representation of SU(N) and evaluated
at a point x. Such operators have a well-defined classical scaling dimension ∆ which is
simply a sum of the mass dimensions of each individual component.

Such operators can be classified by a sextuplet of charges, (∆, S1, S2; J12, J34, J56) of
the global PSU(2, 2|4), where ∆ is the aforementioned conformal dimension, S1 and S2

are the two charges (spins) of the Lorentz group, and Jij ’s are three independent R-char-
ges of SO(6). Then, by the AdS/CFT conjecture, operators of scaling dimension ∆ are
identified with string states of energy H = ∆. More precisely,
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• single trace operators are in one-to-one correspondence to single strings, multi-trace
operators correspond to multi-string states;

• the charges Si correspond to angular momenta of strings in AdS5, the three charges
Ji correspond to angular momenta of string in S5.

Consider an operator composed of fields Z = φ5 + iφ6 only, ΨL = Tr[ZL], with
L ≥ 2. This operator has a set of charges (L, 0, 0; 0, 0, L) satisfying ∆ = J56 and is a
chiral primary (BPS) operator. In such a way the classical conformal dimension ∆ of ΨL

is protected against quantum corrections and thus ΨL is a good starting point in trying
to solve the theory.

Choose L to be very large, L → ∞. Then the operator ΨL corresponds to a ligh-
cone superstring with an infinite momentum p+ → ∞ spinning in the maximal S2 ⊂
S5 stretched in the 56-plane. The light-cone gauge preserves a subgroup PSU(2|2)L ×
PSU(2|2)R ⊂ PSU(2, 2|4) of the global group. The same symmetry manifests itself in
the gauge theory side of the correspondence. The operator ΨL can be identified with a
periodic spin chain of length L and vacuum reference state Z = ↓. In such a way ΨL = |0〉
becomes the BMN vacuum state state of the theory with ‘zero energy’H=∆−J46 =0 [58].

Figure 1.6: Duality between the light-cone superstring stretching a maximal S2 ⊂ S5 and
an excited periodic spin chain; here Z = ↓ is the vacuum reference state and ↑ represents
any allowed excitation.

Then by replacing some of Z’s in ΨL by other super Yang-Mills fields, which in the
string side of the duality correspond to worldsheet excitations and in the spin chain lan-
guage are called magnons, one obtains an excited spin chain configuration with H =
∆− J56 > 0 (see figure 1.6) and an underlying centrally extended symmetry algebra,

psu(2|2)L × psu(2|2)R nR3 , (1.4.10)

where R3 = {H,C,C†} andC ∼ g(1−eipws) with pws being the worldsheet momentum of
an individual excitation satisfying

∑
pws = 0, i.e. the total worldsheet momentum of the

string is required to be vanishing [19]. Therefore the theory can be solved by applying the
standard Bethe ansatz and R-matrix techniques that we have discussed in the previous
sections. The symmetry algebra (1.4.10) implies that the worldsheet S-matrix factorized
into two equivalent and independence factors, left and right,

Sws = SL ⊗ SR , (1.4.11)
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each governed by a single copy of psu(2|2)nR3. In such a way one only needs to consider
one sector at a time, which simplifies the model significantly.

Figure 1.7: Duality between open light-cone superstrings ending on a D3-brane wrap-
ping a maximal S3 ⊂ S5 and open spin chains. Boundary conditions depend on the rel-
ative orientation of the string and the brane leading to two different cases: the vertically
oriented open string gives raise to a vector boundary, a boundary with boundary fields,
the horizontally oriented string gives raise to a singlet boundary, a boundary without
boundary fields.

So far we have only considered closed strings that correspond to periodic spin chains.
By introducing D-branes into the type IIB supertring theory one gets a whole family
of new configurations that were absent before – open strings ending on the D-branes,
the most famous ones being the D3-, D5- and D7-branes [59–65]. Such configurations
correspond to spin chains with open boundary conditions (see figure 1.7). Deep in the
bulk, i.e. far away from its ends, open strings behave exactly the same as their closed
relatives. However, by getting closer to the ends the boundary effects emerge into the
theory. These boundary effects are very extensive and depend not only on the type of the
D-brane the string is attached to, but also on the type of embedding of the brane inside
the AdS5 × S5 background and the relative orientation of the string and the brane, thus
leading to a vast variety of new phenomena. This requires new mathematical methods
to be invented which go far beyond the standard techniques.

1.5 Outline

In this chapter we have given a motivation for this manuscript – integrable structures
arising from and inspired by the AdS/CFT duality. In the subsequent chapters we will
give an exhaustive description of algebraic methods, quantum algebras, bulk and bound-
ary scattering theories that were developed in the quest for uncovering integrable bound-
aries in the AdS/CFT.

Each chapter will present an individual topic and, for readers’ convenience, will be
given in as much as possible self-contained way. However, the topics that will be covered
in this manuscript are intimately related to each other and thus each chapter serves as a
precursor for the subsequent one.

The second chapter presents the theory of reflection algebras that has been inspired
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by the algebraic structures and boundary scattering in AdS/CFT. This chapter is writ-
ten in as much as possible mathematically rigorous way and introduces a framework of
reflection algebras that are later used throughout the rest of the manuscript. Here we
give a generalization of the axiomatic theory of coideal subalgebras and quantum sym-
metric pairs for quantum affine algebras. We also present generalized twisted Yangian
algebras of two types. We then explicitly construct reflection algebras based on the afore-
mentioned constructions for two most simple Lie algebras, sl(2) and gl(1|1), for ‘singlet’
and ‘vector’ boundary conditions, and show a relation between such quantum affine and
Yangian reflection algebras.

In the third chapter we present reflection algebras and boundary scattering theory for
integrable boundaries in AdS/CFT. We start by recalling the necessary preliminaries and
the underlying symmetries of the light-cone superstring and worldsheet S-matrix. We
then proceed by presenting the well-known boundary configurations: D3-branes that are
also known as the maximal giant gravitons, and the D3-D7- and D3-D5-brane systems.
We construct generalized twisted Yangian algebras for these boundaries and calculate
fundamental and selected bound state reflection matrices.

The fourth chapter deals with a quantum deformed model of the AdS/CFT world-
sheet scattering. This approach is also known as the one-dimensional double-deformed
Hubbard chain, as the underlying symmetries of both models is the same. Here we con-
struct the bound state representation of the underlying quantum affine algebra of novel
type and the corresponding bound state S-matrix for arbitrary bound states. We also
construct quantum deformed models of selected boundaries considered in the previous
chapter. We show that quantum deformed approach to boundary scattering in AdS/CFT
leads to quantum affine reflection algebras that are of a very elegant and symmetric form
and fit into the generalized theory of quantum symmetric pairs presented in the second
chapter. We calculate fundamental and selected bound state reflection matrices that are
quantum analogues of the reflection matrices found in the third chapter.

The final chapter presents the so-called secret symmetry of the worldsheet S-matrix
and selected reflection matrices. This is a very distinctive symmetry observed in diverse
sectors of AdS/CFT, and thus is one of the most interesting mysteries of this duality.
Here we explore the quantum affine origin of this symmetry and build a bridge to its
relative of the quantum affine superalgebra Uq(ĝl(2|2)). Nevertheless this does not com-
pletely solve the mystery of this symmetry, as there are still quite a few of its properties
unknown. Thus we do not say the quest for integrable structures in boundary scattering
in AdS/CFT is accomplished, we rather say the quest continues!



Chapter 2

Reflection algebras

Quantum affine algebras and Yangians are the simplest examples of infinite-dimensional
quantum groups and play a central role in quantum integrable systems [1, 10, 12]. These
algebras were introduced in [1–5] and since then had a significant impact on the develop-
ment of the quantum inverse scattering method and related quantum integrable models.

The quantum affine algebra Uq(ĝ) and the Yangian Y(g) are deformations of the uni-
versal enveloping algebras U(ĝ) and U(g[u]) respectively, where ĝ is the affine Kac–Moody
algebra, a central extension of the Lie algebra of maps C× → g of a finite Lie algebra g,
and g[u] is a deformation of the Lie algebra of maps C → g. In such a way, Yangians
may be viewed as a specific degenerate limit of the quantum affine algebras [4]. We refer
to [37] for complete details on quantum groups.

In this chapter we will concentrate on finite dimensional representations of quantum
groups, the so-called evaluation representations. These are constructed via the epimor-
phisms eva : Uq(ĝ) → Uq(g) and eva : Y(g) → U(g) called the evaluation homomor-
phisms, which evaluate the g-valued polynomials at a point a ∈ C. Such representations
have wide applications in both mathematics and physics. However they can be con-
structed for some Lie algebras only.

We will consider integrable models with open boundary conditions, and concentrate
on the algebras that define solutions of the reflection equation [15]. These algebras are
one-sided coideal subalgebras and are conveniently called reflection algebras. Such al-
gebras have been extensively studied in e.g. [14, 38–43] and more recently in e.g. [66, 67].
For field theoretical applications of the coideal subalgebras and corresponding reflection
matrices we refer to [16, 17]. We have selected two simple Lie (super-)algebras, sl(2) and
gl(1|1), and have studied reflection algebras for the corresponding quantum groups: the
quantum affine (super-) algebras Uq(ŝl(2)) and Uq(ĝl(1|1)), and the Yangians Y(sl(2)) and
Y(gl(1|1)). We refer to [37] and [68–70] for details on these algebras. For each quantum
group we consider singlet and vector boundary conditions. The singlet boundary forms
a singlet (trivial) representation of the boundary (reflection) algebra, thus there are no
boundary degrees of freedom in the associated field theory. The vector boundary forms a
vector representation of the boundary algebra and has boundary degrees of freedom. Sin-
glet boundaries have been heavily studied and the corresponding boundary algebras and

21
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solutions of the reflection equation for most of the semisimple Lie (super-) algebras are
well known. However vector boundaries have not been studied as much as the singlet
ones. The corresponding reflection matrices are usually constructed via the bootstrap
procedure by fusing bulk S-matrices with an appropriate scalar reflection matrix (see
e.g. an overview [71]). Thus we hope the reflection algebras we have constructed in this
manuscript will serve not only as neat examples but will contribute to the exploration of
vector boundaries.

We show that reflection algebras for quantum affine algebras are quantum affine
coideal subalgebras that are a generalization of the quantum symmetric pairs of simple
Lie algebras considered in [31] and [32], where quantum symmetric pairs and the asso-
ciated coideal subalgebras for all simple Lie algebras have been classified. Such coideal
subalgebras were also considered in [72–74] and recently generalized for Kac-Moody al-
gebras in [75]. Similar quantum affine coideal subalgebra for algebra of type A(1)

1 was
considered in [76], for D(1)

n in [77], for the double affine Hecke algebras of type C∨Cn
in [78], for o(n) and sp(2n) in [79], and for the Sine-Gordon and affine Toda field theories
in [46,80,81]. These algebras also play a crucial role in the q-deformed AdS/CFT [25,26];
we will discuss this topic thoroughly in Chapter 4.

For the Yangian case we will consider two types of (generalized) twisted Yangians.
For a singlet boundary we will consider the twisted Yangian introduced in [40], while
for a vector boundary we will employ the twisted Yangian introduced in [23]. In order
to distinguish these two algebras and simplify the notation we name them the twisted
Yangian of type I and of type II respectively. We note that reflection algebras and Yangians
for gl(n) in various contexts have been extensively studied in [39,42,43], for superalgebras
sl(m|n) and gl(m|n) in [82–85]. We refer to [41] where twisted Yangians of type I and the
corresponding reflection matrices for generic classical Lie algebras and for both singlet
and vector boundaries were found. See [24] for an ‘achiral’ extension of such Yangians
(and Section 3.5).

We also give some arguments that quantum affine coideal subalgebras in the rational
q → 1 limit specialize to the twisted Yangians. This is an important but quite technical
question that is worthy of exploration on its own, thus we will be rather concise and
heuristic concerning this claim in the present manuscript. A thorough exploration of the
Yangian limit of the quantum affine enveloping algebras can be found in [86–89].

This chapter is organized as follows. In Section 2.1 we give the necessary prelimi-
naries. Here we will recall some of the mathematical formalism presented in Sections
1.2 and 1.3 that will be heavily employed in this chapter. We recap the construction of
quantum symmetric pairs and coideal subalgebras adhering closely to [31]. We then give
a definition of the quantum affine coideal subalgebra, and also definitions of the twisted
Yangians introduced in [40] and [23]. In Section 2.2 we construct reflection algebras
for the quantum affine algebra Uq(ŝl(2)). In Section 2.3 we construct twisted Yangians
for Y(sl(2)). In Sections 2.4 and 2.5 we repeat same derivations for quantum groups
Uq(ĝl(1|1)) and Y(gl(1|1)) respectively. Appendix A contains a heuristic Yangian limit
Uq(ŝl(2))→ Y(sl(2)).
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2.1 Preliminaries

Quasitriangular Hopf algebras and the Yang-Baxter equation. LetA be a Hopf algebra
over C equipped with multiplication µ : A ⊗ A → A, unit ι : C → A, comultiplication
∆ : A→ A⊗A, counit ε : A → C and antipode S : A → A. Let σ : A⊗A → A⊗A be the
C-linear map such that σ(a1⊗a2) = a2⊗a1 for any a1, a2 ∈ A. Then (A, µop, ι,∆op, ε, S−1),
where µop = µ ◦ σ and ∆op = σ ◦∆, is called the opposite Hopf algebra of A and denoted
Aop.

Let A be a quasitriangular Hopf algebra. Then there exists an invertible element R ∈
A⊗A called the universal R-matrix such that

∆op(a) = R∆(a)R−1 for any a ∈ A , (2.1.1)

which satisfies the universal Yang-Baxter equation

R12R13R23 = R23R13R12 , (2.1.2)

whereR12 ∈ A⊗A⊗ 1,R13 ∈ A⊗ 1⊗A andR23 ∈ 1⊗A⊗A.
Let A be a quantum affine universal enveloping algebra Uq(ĝ). Let V be a finite di-

mensional vector space and Tz : A → End(V) be a finite dimensional representation of
A, where z denotes the spectral parameter of the representation. Then (Tz ⊗ Tw) : R →
R(z/w) ∈ End(V ⊗ V) maps the universal R-matrix to a matrix called the trigonometric
R-matrix. In such a way (2.1.1) becomes the intertwining equation,

(Tz ⊗ Tw)[∆op(a)]R(z/w) = R(z/w) (Tz ⊗ Tw)[∆(a)] , (2.1.3)

and the Yang-Baxter equation (2.1.2) on the space V ⊗ V ⊗ V becomes

R12(z/w)R13(z)R23(w) = R23(w)R13(z)R12(z/w) . (2.1.4)

In the case of an irreducible representation Tz ⊗ Tw the intertwining equation (2.1.3) de-
fines the R-matrix uniquely up to an overall scalar factor. Furthermore, this R-matrix
satisfies (2.1.4) automatically.

Coideal subalgebras and the reflection equation. Consider the reflection equation [15]

R12(z/w)K13(z)R12(zw)K23(w) = K23(w)R12(zw)K13(z)R12(z/w) (2.1.5)

defined on the tensor space V⊗V⊗W , whereW is the boundary vector space. HereK13(z)
and K23(w) are reflection matrices such that K23(w) = 1⊗K with K ∈ End(V ⊗W), and
a similar relation holds for K13(z).

Let B ⊂ A be a left coideal subalgebra,

∆(b) ∈ A⊗ B for all b ∈ B . (2.1.6)

Let T̄s : B → End(W) be a finite dimensional representation of B, called the boundary
representation; here s denotes the boundary spectral parameter.
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Definition 2.1.1. A coideal subalgebra B is called a quantum affine reflection algebra if the in-
tertwining equation

(T1/z ⊗ T̄s)[∆(b)]K(z) = K(z) (Tz ⊗ T̄s)[∆(b)] for all b ∈ B , (2.1.7)

for some representation Tz and T̄s defines a K-matrix K(z) ∈ End(V ⊗ W) satisfying the
reflection equation (2.1.5).

Let the boundary vector space be one-dimensional,W = C. Then T̄s = ε and K(z) ∈
End(V). Note that V ⊗ C ∼= V as a vector space. In this case the intertwining equation
(2.1.7) becomes

(T1/z ⊗ ε)[∆(b)]K(z) = K(z) (Tz ⊗ ε)[∆(b)] for all b ∈ B . (2.1.8)

For an irreducible representation Tz (resp. Tz ⊗ T̄s) of B, the intertwining equation
(2.1.8) (resp. (2.1.7)) defines the K-matrix uniquely up to an overall scalar factor. Note
that the boundary representation T̄s may be different from Tz ; however, in this paper we
will consider the T̄s ∼= Tz case only (i.e. when the representations are isomorphic).

Definition 2.1.2. Let T̄s ∼= Tz be a non-trivial boundary representation. Then we call (2.1.7)
the intertwining equation for a vector boundary. We call (2.1.8) the intertwining equation for a
singlet boundary.

In the subsequent sections we will consider coideal subalgebras compatible with the
reflection equation for the quantum affine enveloping algebras and Yangians.

2.1.1 Coideal subalgebras for quantum deformed algebras

Quantum symmetric pairs and coideal subalgebras. We will begin by introducing the
necessary notation and then we will give the definition of the coideal subalgebras of the
universal enveloping algebras. We will be adhering closely to [31].

Let g be a semisimple Lie algebra of rank n. Let Φ denote the root space of g, and
Φ+ be the set of the positive roots. Let π = {αi}i∈I be a basis of simple positive roots in
Φ+. Here I = {1, . . . , n} denotes the set of Dynkin nodes of g. We will use λ to denote
any root in Φ. Let (·, ·) denote a non-degenerate Cartan inner product on h∗, the dual of
the Cartan subalgebra h of g. Then the matrix elements of the Cartan matrix (aij)i,j∈I are
given by aij = 2(αi, αj)/(αi, αi). There exists a set of coprime positive integers (ri) such
that (bij) = (riaij) is symmetric and is called the symmetrized Cartan matrix.

The triangular decomposition of g is given by n− ⊕ h⊕ n+, and the basis for n− (resp.
n+) is {fi}i∈I (resp. {ei}i∈I). Let hi = [ei, fi] for all i ∈ I. Then {ei, fi, hi}i∈I is a Chevalley
basis for g satisfying

[hi, hj ] = 0 , [ei, fj ] = δijhi , [hi, ej ] = ajiej , [hi, fj ] = −ajifj , (2.1.9)

and the Serre relations

(ad ei)
1−aji ej = 0 , (ad fi)

1−aji fj = 0 . (2.1.10)



Preliminaries 25

Let θ : g → g be a maximally split involutive Lie algebra automorphism (involution)
of g, i.e.

θ(h) = h , {θ(ei) = ei, θ(fi) = fi | θ(hi) = hi} , {θ(ei) ∈ n−, θ(fi) ∈ n+ | θ(hi) 6= hi} .
(2.1.11)

It defines a symmetric pair (g, gθ), where gθ is the θ–fixed subalgebra of g, and induces
an involution Θ of the root space Φ. Let πΘ = {Θ(αi) = αi |αi ∈ π} denote the Θ–fixed
subset of π. Then, by (2.1.11), Θ(−αj) ∈ Φ+ for all αj ∈ π\πΘ.

Let p be a permutation of {1, . . . , n} such that

Θ(αj) ∈ −αp(j) − ZπΘ for all αj /∈ πΘ , (2.1.12)

and p(i) = i otherwise. Let π∗ be a maximal subset of π\πΘ such that αj ∈ π∗ if p(j) = j,
or only one of the pair αj , αp(j) is in π∗ if p(j) 6= j. Then for a given j such that αj ∈ π∗
there exists a sequence {αj1 , . . . , αjr}, where αjk ∈ πΘ, and a set of positive integers
{m1, . . . ,mr} such that θ defined by

θ(fi) = fi , θ(ei) = ei , θ(hi) = hi for all αi ∈ πΘ , (2.1.13)

and

θ(fj) =
(
ad e

(m1)
j1
· · · e(mr)

jr

)
ep(j) , θ(fp(j)) = (−1)m(j)

(
ad e

(mr)
jr
· · · e(m1)

j1

)
ej ,

θ(ej) = (−1)m(j)
(
ad f

(m1)
j1
· · · f (mr)

jr

)
fp(j) , θ(ep(j)) =

(
ad f

(mr)
jr
· · · f (m1)

j1

)
fj ,

θ(hj) = −m1hj1 − . . .−mrhjr − hp(j) , θ(hp(j)) = −m1hj1 − . . .+mrhjr − hj ,
(2.1.14)

for all αj ∈ π∗ is an involution of g (up to a slight adjustment and rescaling of the defini-
tion of power (mj) such that [θ(ej), θ(fj)] = θ(hj) and(

ad f
(m1)
j1
· · · f (mr)

jr

)[(
ad e

(mr)
jr
· · · e(m1)

j1

)
ej
]

= ej ,(
ad e

(m1)
j1
· · · e(mr)

jr

)[(
ad f

(mr)
jr
· · · f (m1)

j1

)
fj
]

= fj , (2.1.15)

would hold). Here (ad a)b = [a, b] and m(j) = m1 + . . . + mr. Note that the notation
used in (2.1.14) corresponds to Θ(αj) = −m1αj1 − . . . −mrαjr − αp(j). The special case
Θ(αj) = −αj for all simple roots αj ∈ π gives Chevalley anti-automorphism κ(fj) = ej ,
κ(ej) = fj , κ(hj) = −hj .

Let the quantum deformed universal enveloping algebra Uq(g) of a semisimple com-
plex Lie algebra g of rank n be generated by the elements ξ±i , k

±1
i (ki = qrihi , i ∈ I, and

q ∈ C× is transcendental) that correspond to the standard Chevalley-Serre realization
satisfying

kik
−1
i = k−1

i ki = 1 , kikj = kjki ,

kiξ
±
j k
−1
i = q±bijξ±j , [ξ+

i , ξ
−
j ] = δij

ki − k−1
i

qi − q−1
i

, (2.1.16)
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and the quantum Serre relations

1−aij∑
m=0

(−1)m
[

1− aij
m

]
qi

(ξ±i )
m
ξ±j (ξ±i )

1−aij−m = 0 , for all i 6= j . (2.1.17)

The notation used in here is qi = qri and

[n]q =
qn − q−n

q − q−1
, [n]q! = [n]q[n− 1]q · · · [1]q ,

[
n
m

]
q

=
[n]q!

[n−m]q! [m]q!
. (2.1.18)

The algebra Uq(g) becomes a Hopf algebra when equipped with the coproduct ∆,
antipode S and counit ε given by

∆(ki) = ki ⊗ ki , S(ki) = k−1
i , ε(ki) = 1 ,

∆(ξ+
i ) = ξ+

i ⊗ 1 + ki ⊗ ξ+
i , S(ξ+

i ) = −k−1
i ξ+

i ,

∆(ξ−i ) = ξ−i ⊗ k
−1
i + 1⊗ ξ−i , S(ξ−i ) = −ξ−i ki , ε(ξ±i ) = 0 . (2.1.19)

Being a Hopf algebra, Uq(g) admits a right adjoint action making Uq(g) into a right mod-
ule. The right adjoint action is defined by(

adr ξ
+
i

)
a = k−1

i a ξ+
i − k

−1
i ξ+

i a ,
(
adr ξ

−
i

)
a = a ξ−i − ξ

−
i ki a k

−1
i , (adr ki) a = k−1

i a ki .
(2.1.20)

We shall also be using a short-hand notation
(
adr ξ

±
i · · · ξ

±
j

)
a =

(
adr ξ

+
i · · ·

(
adr ξ

+
j

))
a, for

any a ∈ Uq(g).
Let T be an abelian subgroup T ⊂ Uq(g) generated by k±i . Set Q(π) to be equal to the

integral lattice generated by π, i.e. Q(π) =
∑

1≤i≤n Zαi. Then there is an isomorphism τ
of abelian groups from Q(π) to T defined by τ(αi) = ki, thus for every λ ∈ Φ there is an
image τ(λ) ∈ T .

Consider the involution θ of g defined in (2.1.13) and (2.1.14). It can be lifted to the
quantum case in the following sense.

Theorem 2.1.1 (Theorem 7.1 of [31]). There exists an algebra automorphism θ̃ of Uq(g) such
that

θ̃(q) = q−1 ,

θ̃(ξ±i ) = ξ±i for all αi ∈ πΘ ,

θ̃(τ(λ)) = τ(Θ(−λ)) for all τ(λ) ∈ T ,

θ̃(ξ−j ) =
[(

adr ξ
+
j1

(m1) · · · ξ+
jr

(mr))k−1
p(j)ξ

+
p(j)

]
and θ̃(ξ−p(j)) = (−1)m(j)

[(
adr ξ

+
jr

(mr) · · · ξ+
j1

(m1))
k−1
j ξ+

j

]
for all αj ∈ π∗ . (2.1.21)

This construction allows us to define a left coideal subalgebra of Uq(g) induced by the
involution Θ. Let TΘ = {τ(λ) |Θ(λ) = λ} be a Θ–fixed subalgebra of T . LetM be a Hopf
subalgebra of Uq(g) generated by ξ±i , k±1

i for all αi ∈ πΘ. Note that kjk−1
p(j) ∈ TΘ for all

αj ∈ π∗, thus TM ⊆ TΘ where TM = {k±1
i } is the Cartan subgroup ofM. Furthermore,

θ̃2 = id when restricted toM and to T . Finally, in the q → 1 limit θ̃ specializes to θ.
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Theorem 2.1.2 (Theorem 7.2 of [31]). The subalgebra B ⊂ Uq(g) generated byM, TΘ and the
elements

B−j = ξ−j kj − dj θ̃(ξ
−
j )kj for all αj ∈ π\πΘ , (2.1.22)

and suitable dj ∈ C× is a left coideal subalgebra of Uq(g).

Let U+ (resp. U−) be the subalgebra of Uq(g) generated by ξ+
i (resp. kiξ−i ) for all αi ∈

πΘ. SetM± = U± ∩M. By the definition, the elements θ̃(ξ−j )kj are such that (see Section
6 and the proof of the Theorem 7.2 of [31]),

∆(θ̃(ξ−j )kj) ∈ kj ⊗ θ̃(ξ−j )kj + Uq(g)⊗M+TΘ ⊂ Uq(g)⊗ B . (2.1.23)

Hence the coproducts of B−j are of the following form,

∆(B−j ) ∈ kj ⊗B−j + Uq(g)⊗M+TΘ ⊂ Uq(g)⊗ B . (2.1.24)

Corollary 2.1.1. The subalgebra D ⊂ B generated byM, TΘ and the elements B−j for any
but not all αj ∈ π\πΘ is a left coideal subalgebra of Uq(g).

The pair (Uq(g), B) is called the quantum symmetric pair and is the quantum analog
of the pair of enveloping algebras (U(g), U(gθ) ). For more details consult Section 7 of [31];
for explicit B’s and corresponding suitable choices of dj ’s for various simple Lie algebras
see [32]. Note that the action of θ̃ on ξ+

j is not explicitly defined by Theorem 2.1.1, but is
constrained by requiring θ̃ to be an automorphism of Uq(g).

In some cases it is more convenient to work with an equivalent coideal subalgebra B′
which is obtained by interchanging all ξ−i and k−1

i ξ+
i , {i ∈ I}. Let us show this explicitly.

Consider a C-linear algebra anti-automorphism κB of Uq(g) given by

κB(ξ−i ) = c−1
B k−1

i ξ+
i , κB(ξ+

i ) = cB ξ
−
i ki , κB(τ(λ)) = τ(λ) . (2.1.25)

Then there exists cB ∈ C× such that κB(B) = B holds. This is easy to check. Firstly,

κB((adr ξ
+
i )b) = −cB(adr ξ

−
i )κB(b) , κB((adr ξ

−
i )b) = −c−1

B (adr ξ
+
i )κB(b) . (2.1.26)

Recall that(
adr ξ

−
j1

(m1) · · · ξ−jr
(mr))(adr ξ

+
jr

(mr) · · · ξ+
j1

(m1))
k−1
j ξ+

j = k−1
j ξ+

j . (2.1.27)

This gives

κB(B−j ) = c−1
B

(
qajjk−1

j ξ+
j kj − d

′
j

[(
adr ξ

−
j1

(m1) · · · ξ−jr
(mr))ξ−p(j)]kj)

= c−1
B qajjd′j(−1)m(j)

[(
adr ξ

−
j1

(m1) · · · ξ−jr
(mr))B−p(j)] k−1

p(j)kj , (2.1.28)

where d′j = djc
m(j)+2

B q
∑
kmkajjk−ajj , and we have required d′j = qajjd−1

p(j). Thus κB(B−j ) ∈
B, and in a similar way one could show that κB(B−p(j)) ∈ B. Finally, the property is
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manifest forM and of TΘ. This implies that one can replace all generators B−j (2.1.22) by
an equivalent set of generators B+

j that are obtained by interchanging all ξ−i and k−1
i ξ+

i

(i ∈ I) in (2.1.21) and (2.1.22) giving [72]

B+
j = ξ′+j kj − dj θ̃

′(ξ′+)kj for all αj ∈ π\πΘ , (2.1.29)

and suitable dj ∈ C×; here ξ′+j = k−1
j ξ+

j and θ̃′ is defined by

θ̃′(ξ′+j ) = (−1)m(j)
[(

adr ξ
−
j1

(m1) · · · ξ−jr
(mr))ξ−p(j)] ,

θ̃′(ξ′+p(j)) =
[(

adr ξ
−
jr

(mr) · · · ξ−j1
(m1))

ξ−j
]
. (2.1.30)

The coproducts of B+
j have the following form

∆(B+
j ) ∈ kj ⊗B+

j + Uq(g)⊗M−TΘ . (2.1.31)

This leads to the following corollaries:

Corollary 2.1.2. There exists an algebra automorphism θ̃′ of Uq(g) such that

θ̃′(q) = q−1 ,

θ̃′(ξ±i ) = ξ±i for all αi ∈ πΘ ,

θ̃′(τ(λ)) = τ(Θ(−λ)) for all τ(λ) ∈ T , (2.1.32)

and (2.1.30) holds for all αj ∈ π∗. It is an involution θ̃′2 = id when restricted toM and to
T . In the q → 1 limit θ̃′ specializes to θ.

Corollary 2.1.3. The subalgebra B′ ⊂ Uq(g) generated byM, TΘ and the elements

B+
j = ξ′+j kj − d

′
j θ̃(ξ

′+
j )kj for all αj ∈ π\πΘ , (2.1.33)

and suitable d′j ∈ C× is a left coideal subalgebra of Uq(g).

Corollary 2.1.4. The subalgebra D′ ⊂ B′ generated by M, TΘ and the elements B+
j for

any but not all αj ∈ π\πΘ is a left coideal subalgebra of Uq(g).

Note that in this case the action of θ̃′ on ξ−j is not explicitly defined, but is constrained
requiring θ̃′ to be an automorphism of Uq(g).

Quantum affine coideal subalgebras. We will further be interested in two particular
extensions of the coideal subalgebras defined above. We will construct coideal subalge-
bras of the quantum affine algebra Uq(ĝ) that are associated with the singlet and vector
boundaries.

Let ĝ be the (untwisted) affine Kac–Moody algebra. Let (âij)i,j∈Î denote the extended

Cartan matrix and (̂bij) = (r̂i âij) be the symmetrized extended Cartan matrix. Here
Î = {0, 1, . . . , n} denotes the set of Dynkin nodes of ĝ. The set of the simple positive roots
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is given by π̂ = α0 ∪ π, where α0 is the affine root. Recall that ĝ is an one–dimensional
central extension of the Lie algebra L(g) = g[z, z−1] of Laurent polynomial maps C× → g
under point–wise operations, i.e. there exists a well–defined Lie bracket. The triangular
decomposition is given by ĝ = n̂+ ⊕ ĥ⊕ n̂−, where

n̂± = z±1 C[z±1]⊗ (n∓ ⊕ h)⊕ C[z±1]⊗ n± , ĥ = (1⊗ h)⊕ CK ⊕ CD , (2.1.34)

Here K is the central element and D is the derivation of the algebra. The Chevalley
generators are given by

E+
i = 1⊗ ei , E+

0 = z ⊗ e0 ∈ z ⊗ n− ⊂ n̂+ ,

E−i = 1⊗ fi , E−0 = z−1 ⊗ f0 ∈ z−1 ⊗ n+ ⊂ n̂− ,

Hi = 1⊗ hi , H0 = [E+
0 , E

−
0 ] ∈ [e0, f0] + CK ⊂ ĥ , (2.1.35)

where e0 ∈ g−ϑ, f0 ∈ gϑ are such that ϑ ∈ Φ+ is the highest root of g.
The elements E±i , Hi (i ∈ Î) generate a subalgebra g̃ ⊂ ĝ such that ĝ = g̃ ⊕ CD is a

semi–direct product Lie algebra. The derivation D = z d/dz of C[z, z−1] acts on g̃ by

[D,E±0 ] = ±E±0 and [D,H0] = [D,Hi] = [D,E±i ] = 0 for all i ∈ I . (2.1.36)

Set δ ∈ ĥ∗ such that δ(D) = 1 and δ(h ⊕ CK) = 0. Then the affine root is given by
α0 = δ − ϑ.

Consider an involution θ of g̃ such that the associated root space involution Θ is given
by

Θ(α0) ∈ −αp(0) − Z(π\αp(0)) and Θ(αi) = αi for all αi ∈ π\αp(0) , (2.1.37)

and satisfying the following constraint,

α0 −Θ(α0) = kδ , where

{
k = 1 for p(0) 6= 0 ,

k = 2 for p(0) = 0 ,
(2.1.38)

here p(0) ∈ {0, . . . , n}, and π\αp(0) = π if p(0) = 0. Define θ(D) = −D. Then, for the
p(0) = 0 case, the relations

[θ(D), θ(E±0 )] = θ([D,E±0 ]) and [θ(D), θ(E±i )] = θ([D,E±i ]) for all i ∈ I
(2.1.39)

are satisfied, and thus the involution θ can be naturally lifted to an involution of ĝ. Other-
wise, if p(0) 6= 0, relations (2.1.39) do not hold and such lift is not possible. Nevertheless,
θ2 = id on ĝ for both cases.

Let Uq(ĝ) be the universal enveloping algebra of ĝ. The algebra Uq(ĝ) in the standard
Drinfeld-Jimbo realization is generated by the elements ξ±i , k±i (i ∈ Î) satisfying (2.1.16)
and (2.1.17) with aij (resp. bij) replaced by âij (resp. B̂ij). The subalgebra of Uq(ĝ) gener-
ated by ξ±i , k±1

i (i ∈ I) is a Hopf subalgebra and is isomorphic as a Hopf algebra to Uq(g).
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In this way, the modules of Uq(ĝ) restrict to the modules of Uq(g) [90]. The involution
θ defines a Hopf subalgebra M ⊂ Uq(ĝ) generated by ξ±i , k±1

i for all αi ∈ π\αp(0) and
an abelian subgroup TΘ in the sense as described above. Furthermore, the involution θ
induces an automorphism of Uq(ĝ) in the following way.

Conjecture 2.1.1 (Theorem 2.1.1 for the quantum affine algebras). Let a root space invo-
lution Θ be defined as in (2.1.37). Then there exists a sequence {α01 , . . . , α0r}, where α0k ∈
π\αp(0), and a set of positive integers {m1, . . . ,mr} such that the algebra map θ̃ defined by

θ̃(q) = q−1 ,

θ̃(ξ±i ) = ξ±i for all αi ∈ π\αp(0) ,

θ̃(τ(λ)) = τ(Θ(−λ)) for all τ(λ) ∈ T ,

θ̃(ξ−0 ) =
[(

adr ξ
+
01

(m1) · · · ξ+
0r

(mr))k−1
p(0)ξ

+
p(0)

]
and θ̃(ξ−p(0)) = (−1)m(0)

[(
adr ξ

+
0r

(mr) · · · ξ+
01

(m1))
k−1

0 ξ+
0

]
, (2.1.40)

can be extended to an automorphism of Uq(ĝ). Furthermore, it is an involution θ̃2 = id when
restricted toM and to T . In the q → 1 limit θ̃ specializes to θ.

Note that for p(0) = 0 case the last two lines of (2.1.40) are equivalent. The proof of
this conjecture would be a lift of the proof of the Theorem 7.1 of [31]. This is because
the sequence {m1, . . . ,mr} does not include the affine root, which makes the whole con-
struction very similar to the non-affine case. However here we will not attempt to give
a proof as it goes beyond of the scope of the present work. We will concentrate on the
quantum affine coideal subalgebras B ⊂ Uq(ĝ) compatible with the reflection equation.
Set π̂∗ = {α0, αp(0)} if p(0) 6= 0, and π̂∗ = {α0} otherwise. Then:

Theorem 2.1.3. The algebra B generated byM, TΘ, and the elements

B−j = ξ−j kj − dj θ̃(ξ
−
j )kj for αj ∈ π̂∗ , (2.1.41)

and suitable dj ∈ C× is a quantum affine coideal subalgebra of Uq(ĝ) .

Proof. The proof of this theorem is a direct lift of the proof of the Theorem 2.1.2 (Theorem
7.2 of [31]). We need to check that

∆(b) ∈ Uq(ĝ)⊗ B for all b ∈ B . (2.1.42)

This property is manifest for all generators ofM and of TΘ. Next we need to show that
it also holds for B−j . By the definition θ̃(ξ−j ) is such that

∆(θ̃(ξ−j )kj) ∈ kj ⊗ θ̃(ξ−j )kj + Uq(ĝ)⊗M+TΘ . (2.1.43)

Hence

∆(B−j ) ∈ kj ⊗B−j + Uq(ĝ)⊗M+TΘ ⊂ Uq(ĝ)⊗ B , (2.1.44)

and the theorem follows.
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Analogously to the non-affine case, we could instead introduce an equivalent coideal
subalgebra B′ which is obtained by interchanging all ξ−i and k−1

i ξ+
i , {i ∈ Î}. This leads to

the following corollaries:

Corollary 2.1.5. There exists an algebra automorphism θ̃′ of Uq(ĝ) such that

θ̃′(q) = q−1 ,

θ̃′(ξ±i ) = ξ±i for all αi ∈ π\αp(0) ,

θ̃′(τ(λ)) = τ(Θ(−λ)) for all τ(λ) ∈ T ,

θ̃′(ξ′+0 ) = (−1)m(0)
[(

adr ξ
−
01

(m1) · · · ξ−0r
(mr))ξ−p(0)

]
and θ̃′(ξ′+p(0)) =

[(
adr ξ

−
0r

(mr) · · · ξ−01
(m1))

ξ−0
]
, (2.1.45)

Furthermore, it is an involution θ̃′2 = id when restricted to M and to T . In the q → 1
limit θ̃′ specializes to the involution θ.

Corollary 2.1.6. The subalgebra B′ ⊂ Uq(ĝ) generated byM, TΘ and the elements

B+
j = ξ′+j kj − d

′
j θ̃(ξ

′+
j )kj for αj ∈ π̂∗ , (2.1.46)

and suitable d′j ∈ C× is a left coideal subalgebra of Uq(ĝ).

Conjecture 2.1.2. The coideal subalgebra B defined above with suitable dj ∈ C× is a quantum
affine reflection algebra.

Corollary 2.1.7. The coideal subalgebra B′ defined above with suitable d′j ∈ C× is a quan-
tum affine reflection algebra, and is isomorphic to B.

In the cases when it is obvious from the context we will further refer to a quantum
affine reflection algebra simply as a reflection algebra. The parameters dj (resp. d′j) are
constrained by solving the intertwining equation (2.1.7) for all generators of B (resp. B′).
In certain cases, in particular for p(0) 6= 0, the requirement for dj (or equivalently for d′j)
to be non-zero is too restrictive. Thus in such cases it can be more convenient to deal with
a coideal subalgebra defined in the following way.

Conjecture 2.1.3. The subalgebra B ⊂ Uq(ĝ) generated byM, TΘ and the elements

B−0 = ξ−0 k0 − d−θ̃(ξ−0 )k0 and B+
0 = ξ′+0 k0 − d+θ̃

′(ξ′+0 )k0 (2.1.47)

with suitable d± ∈ C is a quantum affine reflection algebra.

Definition 2.1.3. We call B±0 the twisted affine generators.

We will give explicit examples supporting the claims above for both singlet and vector
boundaries in the following sections. In Section 2 we will construct coideal subalgebras
for Uq(ŝl(2)), and in Section 4 for Uq(ĝl(1|1)).
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Note that for the p(0) = 0 case inclusion of both B+
0 and B−0 could potentially lead to

an unwanted growth of B. This can be avoided by a suitable choice of d±. Let us show
this explicitly. Consider the following element,

− d−
[(

adr ξ
+
01

(m1) · · · ξ+
0r

(mr))B+
0 kϑ

]
=
[
− d−θ̃(ξ−0 ) + d−d+

(
adr ξ

+
01

(m1) · · · ξ+
0r

(mr)ξ−0r
(mr) · · · ξ−01

(m1))
ξ−0
]
k0kϑ = B−0 kϑ ,

(2.1.48)

where kϑ = k1 · · · kn ∈ TΘ. The last equality holds for a suitable choice of d±. Finally note
that one could equivalently choose ξ′+j = ξ+

j k
−1
j in (2.1.47). This would introduce a factor

of q±âjj for d±.

2.1.2 Coideal subalgebras for Yangian algebras

Yangian. The Yangian Y(g) of a Lie algebra g is a deformation of the universal envelop-
ing algebra of the polynomial algebra g[u]. It is generated by the level-zero g generators
ja and the level-one Yangian generators ĵa. Their commutators have the generic form

[ja, jb ] = fabc j
c,

[
ja, ĵb

]
= fabc ĵ

c, (2.1.49)

and are required to obey Jacobi and Serre relations[
j[a,

[
jb, jc]

]]
= 0 ,

[
ĵ[a,

[
ĵb, jc]

]]
= α2 aabcdef j

{djejf} , (2.1.50)

where [a b c] denotes cyclic permutations, {d e f} is the total symmetrization, and aabcdef =
1
24f

ag
d f

bh
e f

ck
f fghk. For g = sl(2) the second equation in (2.1.50) is trivial and[[

ĵa, ĵb
]
,
[
jl, ĵm

]]
+
[[
ĵl, ĵm

]
,
[
ja, ĵb

]]
= α2(aabcdegf

lm
c + almcdegf

ab
c) ĵ
{dje jg} (2.1.51)

needs to be used instead [3, 4]. The indices of the structure constants fabd are lowered by
the means of the inverse Killing–Cartan form gbd. Here α is a formal level-one deforma-
tion parameter which is used to count the formal level of the algebra elements. In such
a way the left and right hand sides of the expressions in (2.1.50) and (2.1.51) are of the
same level.

The Hopf algebra structure is then equipped with the following coproduct ∆, an-
tipode S and counit ε,

∆(ja) = ja ⊗ 1 + 1⊗ ja, S(ja) = −ja , ε(ja) = 0 ,

∆(ĵa) = ĵa ⊗ 1 + 1⊗ ĵa +
α

2
fabcj

b ⊗ jc , S( ĵa) = −ĵa +
cg
4
ja , ε(ĵa) = 0 , (2.1.52)

where cg is the eigenvalue of the quadratic Casimir operator in the adjoint representation
(f bc
a fcbd = cg gad) and is required to be non-vanishing.

The finite-dimensional representations of Y(g) are realized in one-parameter families,
due to the “evaluation automorphism”

τu : Y(g)→ Y(g) ja 7→ ja , ĵa 7→ ĵa + uja , (2.1.53)



Preliminaries 33

corresponding to a shift in the polynomial variable. On (the limited set of) finite-dimen-
sional irreducible representations of g which may be extended to representations of Y(g),
these families are explicitly realized via the “evaluation map”

evu : Y(g)→ U(g) ja 7→ ja , ĵa 7→ uja , (2.1.54)

which yields “evaluation modules” and u is the spectral parameter.

The level-two Yangian generators may be obtained by commuting level-one genera-
tors as

̂̂
ja =

1

cg
fabc [ ĵc, ĵb] , and [ ĵa, ĵb] = fabc

̂̂
jc +Xab, (2.1.55)

where the non-zero extra term Xab is constrained by the Serre relations (2.1.50) to sat-
isfy f [ab

dX
c]d = Y abc, here Y abc is the right hand side of the second equation in (2.1.50)

(and thus a fixed cubic combination of level-zero generators), and by (2.1.55) to satisfy
fabcX

bc = 0 [17].

Let V be a finite dimensional vector space and Tu : Y(g) → End(V) be an evaluation
representation of Y(g) on V . Then (Tu ⊗ Tv) : R → R(u − v) ∈ End(V ⊗ V) maps
the universal R-matrix to a matrix, called the additive R-matrix. In such a way (2.1.1)
becomes the intertwining equation,

R(u− v) (Tu ⊗ Tv)[∆(a)] = (Tu ⊗ Tv)[∆op(a)]R(u− v) for all a ∈ Y(g) , (2.1.56)

and equivalently the Yang-Baxter equation (2.1.2) becomes

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) . (2.1.57)

Generalized twisted Yangians and the reflection equation. The reflection equation for
the Yangian algebra is obtained from (2.1.5) in the same way as (2.1.57) from (2.1.4) giving

R12(u− v)K13(u)R12(u+ v)K23(v) = K23(v)R12(u+ v)K13(v)R12(u− v). (2.1.58)

Let B ⊂ Y(g) be a left coideal subalgebra,

∆(b) ∈ Y(g)⊗ B for all b ∈ B . (2.1.59)

Let T̄s : B → End(W) denote an evaluation representation of B on the boundary vector
spaceW . Here we assumeW to be finite dimensional.

Definition 2.1.4. The coideal subalgebra B is called a Yangian reflection algebra if the intertwin-
ing equation

(T−u ⊗ T̄s)[∆(b)]K(u) = K(u) (Tu ⊗ T̄s)[∆(b)] for all b ∈ B , (2.1.60)

defines a K-matrix K(u) ∈ End(V ⊗W) satisfying the reflection equation (2.1.58).
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Let the boundary vector space be one-dimensional,W = C. Then T̄s = ε and K(u) ∈
End(V ⊗ C). In this case the intertwining equation (2.1.60) becomes

(T−u ⊗ ε)[∆(b)]K(z) = K(z) (Tu ⊗ ε)[∆(b)] for all b ∈ B . (2.1.61)

Note that (2.1.60) and (2.1.61) are the Yangian equivalents of the quantum affine inter-
twining equations (2.1.7) and (2.1.8). Finally, for an irreducible representation Tu (resp.
Tu ⊗ T̄s) of B the intertwining equation (2.1.61) (resp. (2.1.60)) defines the K-matrix uni-
quely up to an overall scalar factor. As in the quantum affine case, the boundary repre-
sentation T̄s may be different from Tu. Here we will consider the T̄s ∼= Tu case only.

We will next identify two types of coideal subalgebras of Y(g) that are compatible
with the reflection equation. These are the so-called generalized twisted Yangians intro-
duced in [40] and [23], and are constructed by defining involutions of Y(g) and requiring
the coideal property to be satisfied. We will be calling these twisted Yangians to be of
type I and type II respectively. These twisted Yangians are formulated using Drinfeld-
Jimbo realization of Yangians [2, 3] and hence are conventionally called the generalized
twisted Yangians [40, 41] or MacKay twisted Yangians [67] to distinguish them from the
Olshanskii twisted Yangians constructed using the RTT realization of Yangians [38].

We give the next two propositions without the proofs as they are straightforward.

Proposition 2.1.1. Let a subalgebra a ⊂ g be such that the splitting g = a⊕b forms a symmetric
pair

[a, a] ⊂ a, [a, b] ⊂ b, [b, b] ⊂ a . (2.1.62)

This splitting allows us to introduce an involution θ of g such that

θ(ji) = ji , θ(jp) = −jp , where ji ∈ a , jp ∈ b . (2.1.63)

Then θ can be extended to the involution θ̄ of Y(g) such that

θ̄( ĵi) = −ĵi , θ( ĵp) = ĵp , θ(α) = −α . (2.1.64)

Proposition 2.1.2. Let θ be the trivial involution of g,

θ(ja) = ja , ja ∈ g . (2.1.65)

Then it can be extended to a non-trivial involution θ̄ of Y(g) such that

θ̄( ĵa) = −ĵa , θ(
̂̂
ja) =

̂̂
ja , θ(α) = −α . (2.1.66)

Involution θ̄ endows Y(g) with the structure of a filtered algebra which combined
with the requirement for the coideal property

∆
(
θ̄
(
Y(g)

))
⊂ Y(g)⊗ θ̄

(
Y(g)

)
, (2.1.67)

to be satisfied defines the twisted Yangian Y(g, θ(g)). Here θ̄
(
Y(g)

)
denotes the θ̄–fixed

subalgebra of Y(g), and θ(g) denotes the θ–fixed subalgebra of g.
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Definition 2.1.5. Let a = θ(g) be a non-trivial θ–fixed subalgebra of g. Then the twisted Yangian
Y(g, a) of type I is a left coideal subalgebra of Y(g) generated by the level-zero generators ji and
the twisted level-one generators [40, 41].

j̃p = ĵp + α t jp +
α

4
fpqi

(
jq ji + ji jq

)
, ∆(j̃p) = j̃p ⊗ 1 + 1⊗ j̃p + αfpqi j

q ⊗ ji , (2.1.68)

where i(, j, k, ...) run over the a-indices and p, q(, r, ...) over the b-indices, and t ∈ C is an
arbitrary complex number.

Definition 2.1.6. Let θ(g) = g be the trivial involution of g. Then the twisted Yangian Y(g, g)
of the type II is a left coideal subalgebra of Y(g) generated by the level-zero generators ja and the
twisted level-two generators [23]

˜̃
ja = α t ĵa +

1

cg
fabc

(
[ ĵc, ĵb] +

α

2
f cde j

d[ ĵb, je] +
α

2
f bde j

d[ je, ĵc]
)

=
̂̂
ja + α t ĵa +

α

2cg
fabc

(
f cde j

d[ ĵb, je] + f bde j
d[ je, ĵc]

)
, (2.1.69)

having coproducts of the form

∆(
˜̃
ja) =

˜̃
ja ⊗ 1 + 1⊗ ˜̃ja +

α

cg
fabc

(
f cde[ j

d, ĵb]⊗ je + f bde[ ĵ
c, jd]⊗ je

)
+

1

cg
O(α2) ,

(2.1.70)

where a(, b, c, ...) run over all indices of g, and t ∈ C is an arbitrary complex number. The order
O(α2) terms are are cubic in the level-zero generators and thus automatically satisfy the coideal
property (2.1.67).

Remark 2.1.1. In the case when cg = 0 (and gad is degenerate) the twisted level-two
generators can be alternatively defined by˜̃

jcb = [ ĵc, ĵb] + α t [jc, ĵb] +
α

2
f cde j

d[ ĵb, je] +
α

2
f bde j

d[je, ĵc] . (2.1.71)

Theorem 2.1.4. The twisted Yangian of type I with suitable t ∈ C is a Yangian reflection algebra.

Proof. The proof is given in [67].

Conjecture 2.1.4. The twisted Yangian of type II with suitable t ∈ C is a Yangian reflection
algebra.

In the following sections we will give explicit examples of the twisted Yangians of
both types and show that they are Yangian reflection algebras. In section 3 we will con-
struct twisted Yangians for Y(sl(2)), and in Section 5 for Y(gl(1|1)).

Let us give a final conjecture regarding which we will give some explicit details for
the coideal subalgebras we will be considering in the remaining parts of this chapter.

Conjecture 2.1.5. In the rational q → 1 limit the quantum affine coideal subalgebra defined by
the conjecture 2.1.2 specializes to the twisted Yangian of type I if p(0) 6= 0, and to the type II if
p(0) = 0 .
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2.2 Reflection algebras for Uq(ŝl(2))

Algebra. The quantum affine Lie algebra Uq(ŝl(2)) in the Drinfeld-Jimbo realization
is generated by the Chevalley generators ξ±1 , the Cartan generators k1, k−1

1 , the affine
Chevalley generators ξ±0 and the corresponding Cartan generators k0, k−1

0 . The extended
(symmetric) Cartan matrix is given by

(âij)0≤i,j≤1 =

(
2 −2
−2 2

)
. (2.2.1)

The corresponding root space Φ is generated by π̂ = {α0, α1}. The commutation relations
of the algebra are as follows,

[ki, kj ] = 0 , ki ξ
±
j = qâijξ±j ki , [ξ+

i , ξ
−
j ] = δij

ki − k−1
i

q − q−1
. (2.2.2)

Representation. We define the fundamental evaluation representation Tz of Uq(ŝl(2)) on
a two-dimensional vector space V with basis vectors {v1, v2}. Let ej,k be 2 × 2 matrices
satisfying (ej,k)j′,k′ = δj,j′δk,k′ or equivalently ei,j vk = δj,k vi (i.e. for any operator A its
matrix elements Aij are defined by Avi = Ajivj). Then the representation Tz is defined
by

Tz(ξ
+
1 ) = e1,2 , Tz(ξ

−
1 ) = e2,1 , Tz(k1) = q e1,1 + q−1e2,2 ,

Tz(ξ
+
0 ) = z e2,1 , Tz(ξ

−
0 ) = z−1e1,2 , Tz(k0) = q−1e1,1 + q e2,2 , (2.2.3)

We choose the boundary vector spaceW to be equivalent to V . The boundary represen-
tation Ts is obtained from (2.2.3) by replacing z with s.

The fundamentalR-matrixRij(z) ∈ End(Vi⊗Vj) satisfying the Yang-Baxter equation
(2.1.4)

R12(z/w)R13(z)R23(w) = R23(w)R13(z)R12(z/w) ,

is given by

R(z) =


1 0 0 0
0 r 1− q r 0
0 1− r/q r 0
0 0 0 1

 , where r =
z − 1

q z − 1/q
. (2.2.4)

2.2.1 Singlet boundary

Consider the reflection equation (2.1.5) on the space V ⊗V ⊗C with the R-matrix defined
by (2.2.4) and the K-matrix being any 2× 2 matrix satisfying

R12(z/w)K13(z)R12(zw)K23(w) = K23(w)R12(zw)K13(z)R12(z/w) .
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The general solution is [16]

K(z) =

(
1 a k′

b k′ k

)
, where k =

c z − 1

z(c− z)
, k′ =

1− z2

z(c− z)
, (2.2.5)

and a, b, c ∈ C are arbitrary complex numbers.
We are interested in a solution compatible with the underlying Lie algebra. The min-

imal constraint is to require the reflection matrix to intertwine the Cartan generators,

(T1/z ⊗ ε)[∆(ki)]K(z)−K(z) (Tz ⊗ ε)[∆(ki)] = 0 . (2.2.6)

This constraint restricts the K-matrix (2.2.5) to be of diagonal form (a = b = 0)1. Next, it
is easy to see that such a K-matrix does not satisfy the intertwining equation for any of
the Chevalley generators,

(T1/z ⊗ ε)[∆(ξ±i )]K(z)−K(z) (Tz ⊗ ε)[∆(ξ±i )] 6= 0 . (2.2.7)

We call Cartan generators ki the preserved generators, while the Chevalley generators ξ±i
are the broken generators. This setup is consistent with the following quantum affine
coideal subalgebra.

Proposition 2.2.1. Let the involution Θ act on the root space Φ as

Θ(α0) = −α1 . (2.2.8)

Then it defines a quantum affine coideal subalgebra B ⊂ A = Uq(ŝl(2)) generated by the Cartan
element k0k

−1
1 and the twisted affine generators

B+
0 = ξ′+0 k0 − d+ θ̃(ξ

′+
0 )k0 , θ̃(ξ′+0 ) = ξ−1 ,

B−0 = ξ−0 k0 − d− θ̃(ξ−0 )k0 , θ̃(ξ−0 ) = ξ′+1 , (2.2.9)

where ξ′+0 = k−1
0 ξ+

0 and d± ∈ C are arbitrary complex numbers.

Proof. The generators (2.2.9) satisfy the coideal property

∆(B+
0 ) = ξ′+0 k0 ⊗ 1− d+ ξ

−
1 k0 ⊗ k0k

−1
1 + k0 ⊗B−0 ∈ A⊗ B ,

∆(B−0 ) = ξ−0 k0 ⊗ 1− d− ξ′+1 k0 ⊗ k0k
−1
1 + k0 ⊗B+

0 ∈ A⊗ B , (2.2.10)

and the property is obvious for k0k
−1
1 .

Proposition 2.2.2. The quantum affine coideal subalgebra defined above with d+ q = d−/q = c,
where c ∈ C, is a reflection algebra for a singlet boundary.

1This constraint may be alternatively obtained by requiring the unitarity property to hold,K(z−1)K(z) =
id.
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Proof. The representation of the generators of B is given by

Tz(k0k
−1
1 ) = q−2e1,1 + q2e2,2 , Tz(B

+
0 ) = q−2(z − q d+)e2,1 , Tz(B

−
0 ) = (q z−1 − d−)e1,2 .

(2.2.11)

Let K(z) be any 2 × 2 matrix. The intertwining equation for k0k
−1
1 restricts K(z) to be

of a diagonal form, thus up to an overall scalar factor, K(z) = e1,1 + k e2,2. Next, the
intertwining equation for B± gives

1 + q z d+(k − 1)− z2k = 0 , d−(k − 1) + q (z−1 − z k) = 0 , (2.2.12)

having a unique solution d+ q = d−/q = c and k =
c z − 1

z(c− z)
, where c ∈ C is an arbitrary

complex number. This coincides with (2.2.5) provided a = b = 0 .

2.2.2 Vector boundary

Consider the reflection equation (2.1.5) in the tensor space V ⊗ V ⊗W with the R-matrix
defined by (2.2.4). Then there exists a solution of the reflection equation,

K(z) =


1 0 0 0
0 1− k/q k 0
0 k 1− q k 0
0 0 0 1

 , where k =
(q − q−1)(z2 − 1)

q−2 − c z + q2z2
, (2.2.13)

and c ∈ C is an arbitrary complex number. This K-matrix satisfies the intertwining
equation (2.1.7)

(T1/z ⊗ Ts)[∆(b)]K(z)−K(z) (Tz ⊗ Ts)[∆(b)] = 0 for all b ∈ Uq(sl(2)) . (2.2.14)

We call Cartan generators ki and Chevalley generators ξ±1 the preserved generators, while
the affine Chevalley generators ξ±0 are the broken generators. Next, we identify the corre-
sponding quantum affine coideal subalgebra consistent with the reflection matrix (2.2.13).

Proposition 2.2.3. Let the involution Θ act on the root space Φ as

Θ(α0) = −α0 − 2α1 , Θ(α1) = α1 . (2.2.15)

Then it defines a quantum affine coideal subalgebra B ⊂ A = Uq(ŝl(2)) generated by the Cartan
generator k1, the Chevalley generators ξ±1 , and the twisted affine generator

B−0 = ξ−0 k0 − d− θ̃(ξ−0 )k0 , θ̃(ξ−0 ) =
(
adr ξ+

1 ξ
+
1

)
ξ′+0 , (2.2.16)

where ξ′+0 = k−1
0 ξ+

0 and d− ∈ C× is an arbitrary non-zero complex number.
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Proof. The twisted affine generator (2.2.16) satisfies coideal property

∆(B−0 ) = ξ−0 k0 ⊗ 1− d− θ̃(ξ−0 )k0 ⊗ k−2
1 + k0 ⊗B−0

+ d−q
2(q2 − q−2)

(
ξ+

0 ⊗ (adr ξ+
1 )ξ′+1 − k0 (adr ξ+

1 )ξ′+0 ⊗ k
−1
1 ξ′+1

)
∈ A⊗ B .

(2.2.17)

The property is satisfied by the definition for the rest of the generators.

Remark 2.2.1. This algebra may be alternatively generated by k1, ξ±1 , and the twisted
affine generator

B+
0 = ξ′+0 k0 − d+ θ̃(ξ

′+
0 )k0 , θ̃(ξ′+0 ) =

(
adr ξ−1 ξ

−
1

)
ξ−0 , (2.2.18)

having coproduct

∆(B+
0 ) = ξ′+0 k0 ⊗ 1− d+ θ̃(ξ

′+
0 )k0 ⊗ k−2

1 + k0 ⊗B+
0

− d+(q2 − q2)
(
ξ−0 k0 ⊗ (adr ξ−1 )ξ−1 − q

−2 k0 (adr ξ−1 )ξ−0 ⊗ k
−1
1 ξ−1

)
∈ A⊗ B ,

(2.2.19)

and d+ = d −1
− (q−1 + q)−2. Generators B±0 are related by

B−0 = −d−
[
(adr ξ

+
1 ξ

+
1 )B+

0 k1

]
k−1

1 . (2.2.20)

Proposition 2.2.4. The quantum affine coideal subalgebra defined above with q2d+ = q−2d− =
(q + q−1)−1 is a reflection algebra for a vector boundary.

Proof. The representation (Tz ⊗ Ts) of the coproducts of the Lie generators of B is given
by

(Tz ⊗ Ts)[∆(k1)] = q2e1,1 + e2,2 + e3,3 + q−2e4,4 ,

(Tz ⊗ Ts)[∆(ξ+)] = q e1,2 + e1,3 + e2,4 + q−1e3,4 ,

(Tz ⊗ Ts)[∆(ξ−)] = e2,1 + q−1e3,1 + q e4,2 + e4,3 , (2.2.21)

and of the twisted affine generators by

(Tz ⊗ Ts)[∆(B+
0 )]

=
(
q−3s+ d+(s−1(q−2 + 1)− z−1(q−4 − 1))

)
e2,1 + q−2

(
z + d+z

−1(q + q−1)
)
e3,1

+
(
q−2z + d+q

2z−1(q + q−1)
)
e4,2 +

(
q−1s+ d+(s−1(q2 + 1)− z−1(q4 − 1))

)
e4,3 ,

(Tz ⊗ Ts)[∆(B−0 )]

=
(
s−1 + q−1d−(s(q−2 + 1)− z(q−4 − 1))

)
e1,2 +

(
q z−1 + d−z(q

−4 + q−2)
)
e2,4

+
(
q z−1 + d−z(q

2 + 1)
)
e2,4 +

(
q2s−1 + q−1d−(s(q2 + 1)− z(q4 − 1)

)
e3,4 . (2.2.22)

Let K(z) be any 4 × 4 matrix. Then the intertwining equation for the Lie generators
(2.2.21) constrain K(z) to the form given in (2.2.13) up to an unknown function k and
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an overall scalar factor. Next, the intertwining equation for the twisted affine generators
(2.2.22) has a unique solution,

q2d+ = q−2d− = (q + q−1)−1 , k =
(q − q−1)(z2 − 1)

q−2 − (s−1 + s)z + q2z2
, (2.2.23)

which coincides with k given in (2.2.13) provided c = s+ s−1.

Remark 2.2.2. Reflection matrix (2.2.13) satisfies the intertwining equation for all Cartan
generators ki ∈ T , thus the subalgebra B ⊗ T ⊂ A is also a reflection algebra. The same
is true for the reflection algebra of a singlet boundary.

Remark 2.2.3. The coideal subalgebra defined in proposition 2.2.2 is also compatible with
a vector boundary. The corresponding reflection matrix is

K(z) =


1 0 0 0
0 1 + s(q2z − c)k qs(c− s)k 0
0 q(cs− 1)k k′ + s(z−1− q2c)k 0
0 0 0 k′

 , (2.2.24)

where

k =
(q2 − 1)(z2 − 1)

(c− z)(q2z − s)(q2sz − 1)
, k′ =

c z − 1

z(c− z)
, (2.2.25)

and c, s ∈ C are arbitrary complex numbers. This vector boundary reflection matrix can
be obtained using the boundary fusion procedure [15, 91], which in this case is simply
KV (z) = P R(zs) (1 ⊗ KS(z))P R(z/s), where KV (z) is (2.2.24), KS(z) is (2.2.5) with
a = b = 0, and P = R(0) with R(z) given by (2.2.4).

Similarly, the coideal subalgebra defined in proposition 2.2.4 is compatible with a
singlet boundary. However, the corresponding reflection matrix is trivial,

K =

(
1 0
0 1

)
. (2.2.26)

This reflection matrix can be obtained by solving the boundary intertwining equation for
the Lie algebra generators only, and thus the twisted affine symmetries are redundant in
this case. Then the reflection matrix (2.2.13) can be obtained using an equivalent fusion
procedure as above. These properties will further reappear in the Yangian case and for
the GL(1|1) algebra for both affine and Yangian cases. In these cases we will simply state
that the corresponding reflection matrix is trivial and omit repeating the expression for
the fusion procedure.

Remark 2.2.4. Let Tl,z be a finite-dimensional irreducible representation of the algebra
Uq(ŝl(2)). Let l be an integral or half-integral non-negative number and Vl be a (2l + 1)–
dimensional complex vector space with a basis {vm |m = −l,−l + 1, · · · , l}. For con-
venience we set v−l−1 = vl+1 = 0. The operators Tl,z(ξ±i ), Tl,z(ki) act on the space Vl
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by

Tl,z(ξ
±
1 ) vm = ([l ∓m]q[l ±m+ 1]q)

1/2 vm+1 , Tl,z(k1) vm = q2mvm ,

Tl,z(ξ
±
0 ) vm = z±1 ([l ∓m]q[l ±m+ 1]q)

1/2 vm+1 , Tl,z(k0) vm = q−2mvm , (2.2.27)

Let the boundary vector spaceWl and the boundary representation Tl,s be defined in the
same way. Then all the constructions of the quantum affine coideal subalgebras presented
above apply directly for any finite-dimensional representation Tl,z and lead to a unique
solution (for fixed l) of the reflection equation (for a singlet boundary this was explicitly
shown in [76]).

The coideal subalgebras given in propositions 2.2.2 and 2.2.4 by the construction are
closely related to the orthogonal and symplectic twisted q-Yangians Ytw

q (o2) and Ytw
q (sp4)

introduced in [79], however we do not know the exact isomorphism.

2.3 Reflection algebras for Y(sl(2))

Algebra. The Yangian Y(sl(2)) is generated by the level-zero Chevalley generators E±,
Cartan generator H , and the level-one Yangian generators Ê± and the corresponding
level-one Cartan generator Ĥ . The commutation relations of the algebra are given by

[H,E±] = ±2E± , [E+, E−] = H , [H, Ê±] = ±2Ê± , [E±, Ê∓] = ±Ĥ , [H, Ĥ] = 0 .
(2.3.1)

The Hopf algebra structure is equipped with the following coproduct,

∆(H) = H ⊗ 1 + 1⊗H , ∆(Ĥ) = Ĥ ⊗ 1 + 1⊗ Ĥ − α (E+ ⊗ E− − E− ⊗ E+) ,

∆(E±) = E± ⊗ 1 + 1⊗ E± , ∆(Ê±) = Ê± ⊗ 1 + 1⊗ Ê± ± α

2
(E± ⊗H −H ⊗ E±) .

(2.3.2)

Representation. The fundamental evaluation representation ofY(sl(2)) on the two-dimen-
sional vector space V is defined by

Tu(E+) = e1,2 , Tu(E−) = e2,1 , Tu(H) = e1,1 − e2,2 ,

Tu(Ê+) = u e1,2 , Tu(Ê−) = u e2,1 , Tu(Ĥ) = u (e1,1 − e2,2) . (2.3.3)

We set Tu(α) = 1. The boundary representation Ts is obtained by replacing u with s.
The fundamentalR-matrixRij(u) ∈ End(Vi⊗Vj) satisfying the Yang-Baxter equation

(2.1.57)

R12(u− v)R13(u)R23(v) = R23(v)R13(u)R12(u− v) ,

is given by

R(u) =


1 0 0 0
0 r 1− r 0
0 1− r r 0
0 0 0 1

 , where r =
u

u− 1
. (2.3.4)
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2.3.1 Singlet boundary

Consider the reflection equation (2.1.58) in the space V⊗V⊗C with theR-matrix defined
by (2.3.4) and the K-matrix being any 2× 2 matrix satisfying

R12(u− v)K13(u)R12(u+ v)K23(v) = K23(v)R12(u+ v)K13(v)R12(u− v) .

The general solution is [14]

K(u) =

(
1 a k′

b k′ k

)
, where k =

c+ u

c− u
, k′ =

u

c− u
, (2.3.5)

and a, b, c ∈ C are arbitrary complex numbers.
Once again we are interested in a solution compatible with the underlying Lie algebra

and thus require the reflection matrix to intertwine the Cartan generator H ,

(Tu ⊗ ε)[∆(H)]K(u)−K(u) (Tu ⊗ ε)[∆(H)] = 0 . (2.3.6)

This requirement restricts K-matrix (2.2.5) to be of the diagonal form (a = b = 0). Next,
it is easy to check that such a K-matrix does not satisfy the intertwining equation for any
other generators of sl(2) (and Y(sl(2)) ). Hence we call Cartan generator H the preserved
generator, while the rest are the broken generators. This setup allows us to define the
following involution and the twisted Yangian:

Proposition 2.3.1. Let the involution θ act on Lie algebra g = sl(2) as

θ(H) = H , θ(E±) = −E± , (2.3.7)

defining a symmetric pair (g, θ(g)), where θ(g) is a θ–fixed subalgebra of g. Then the involution
θ can be extended to the θ̄ involution of Y(g) such that

θ̄(Ĥ) = −Ĥ , θ̄(Ê±) = Ê± , θ̄(α) = −α . (2.3.8)

This involution is obvious and thus we do not give a proof of it; we will follow the
same strategy, when appropriate, in further sections.

Proposition 2.3.2. The twisted Yangian Y(g, θ(g)) of type I for g = sl(2) and θ(g) = H is the
θ̄–fixed coideal subalgebra of Y(g) generated by the Cartan generator H and the twisted Yangian
generators [38]

Ẽ± = Ê± ± α tE± ± α

4
(H E± + E±H) . (2.3.9)

Here t ∈ C is an arbitrary complex number.

Proof. The twisted generators (2.3.9) are in the positive eigenspace of the involution θ̄ and
satisfy the coideal property

∆(Ẽ±) = Ẽ± ⊗ 1± αE± ⊗H + 1⊗ Ẽ−1 ∈ Y(g)⊗ Y(g, θ(g)) . (2.3.10)

The same properties for H follows from the definition.
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Proposition 2.3.3. The twisted Yangian Y(g, θ(g)) defined above is a reflection algebra for a
singlet boundary.

Proof. The representation Tu of the generators of Y(g, θ(g)) is given by

Tu(H) = e1,1 − e2,2 , Tu(Ẽ+) = (u+ t) e1,2 , Tu(Ẽ−) = (u− t) e1,2 . (2.3.11)

Let K(u) be any 2 × 2 matrix. Then the intertwining equation for H restricts K(u) to
be of the diagonal form, thus up to an overall scalar factor, K(u) = e1,1 + k e2,2. Next,

the intertwining equation for Ẽ± has a unique solution k =
t+ u

t− u
which coincides with

(2.3.5) provided c = t and a = b = 0.

2.3.2 Vector boundary

Consider the reflection equation (2.1.58) in the tensor space V ⊗V ⊗W with the R-matrix
defined by (2.3.4). Then there exists a solution of the reflection equation,

K(u) =


1 0 0 0
0 1− k k 0
0 k 1− k 0
0 0 0 1

 , where k =
2u

c2 − (u− 1)2
, (2.3.12)

and c ∈ C is an arbitrary complex number.
This K-matrix satisfies the intertwining equation

(T−u ⊗ Ts)[∆(b)]K(u)−K(u) (Tu ⊗ Ts)[∆(b)] = 0 for all b ∈ sl(2) . (2.3.13)

Thus we call the level-zero sl(2) generators E± and H the preserved generators, while
the level-one generators Ê± and Ĥ are the broken generators. This setup leads to the
following involution and the twisted Yangian.

Proposition 2.3.4. Let θ be the trivial involution of the Lie algebra g = sl(2),

θ(H) = H , θ(E±) = E± =⇒ θ(g) = g . (2.3.14)

Then it can be extended to a non-trivial involution θ̄ of Y(sl(2)) such that

θ̄(Ĥ) = −Ĥ , θ̄(Ê±) = −Ê± , θ̄(α) = −α . (2.3.15)

Proposition 2.3.5. The twisted Yangian Y(g, g) of type II for g = sl(2) and θ(g) = g is the
θ̄–fixed coideal subalgebra of Y(g) generated by all level-zero generators and the level-two twisted
Yangian generators

˜̃
E± = ±1

2

(
[Ĥ, Ê±]− α

(
t Ê± + E±Ĥ −H Ê±

))
and ˜̃

H = [
˜̃
E+, E−] , (2.3.16)

where t ∈ C is an arbitrary complex number.
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Proof. The twisted generators (2.3.16) are in the positive eigenspace of the involution θ̄
and satisfy the coideal property

∆
( ˜̃
E±

)
=
˜̃
E± ⊗ 1 + 1⊗ ˜̃E± ± α (Ĥ ⊗ E± − Ê± ⊗H) +O(α2) ∈ Y(g)⊗ Y(g, g) ,

∆
( ˜̃
H
)

=
˜̃
H ⊗ 1 + 1⊗ ˜̃H + 2α (Ê− ⊗ E+ − Ê+ ⊗ E−) +O(α2) ∈ Y(g)⊗ Y(g, g) .

(2.3.17)

The same properties for the level-zero generators follow from the definition.

Proposition 2.3.6. The twisted Yangian Y(g, g) defined above with t = −2 is a reflection algebra
for a vector boundary.

Proof. The representation (Tu ⊗ Ts) of the coproducts of the Lie generators of Y(g, g) is
given by

(Tu ⊗ Ts)[∆(E+)] = e1,2 + e1,3 + e2,4 + e3,4 , (Tu ⊗ Ts)[∆(H)] = 2 (e1,1 + e4,4) ,

(Tu ⊗ Ts)[∆(E−)] = e2,1 + e3,1 + e4,2 + e4,3 , (2.3.18)

and of the twisted Yangian generators by

(Tu ⊗ Ts)[∆(
˜̃
E+)] = α e1,2 + β e1,3 + γ e2,4 + δ e3,4 ,

(Tu ⊗ Ts)[∆(
˜̃
E−)] = δ e2,1 + γ e3,1 + β e4,2 + α e4,3 ,

(Tu ⊗ Ts)[∆(
˜̃
H )] = λ e1,1 + µ e2,2 − µ e3,3 − λ e4,4 + η (e2,3 − e3,2) , (2.3.19)

where

α = 1
16((4s+ t+ 2)2− (t+ 4)2)− u− 1

2 , λ = 1
16((4u+ t+ 2)2+ (4c+ t+ 2)2

β = 1
4(2u+ 1)(2u+ t+ 3) , − 2(t+ 2)2)− 1

2 ,

γ = 1
4(2u− 1)(2u+ t+ 1) , µ = 1

16((4u+ t+ 2)2− (4c+ t+ 2)2) + 1 ,

δ = 1
16((4s+ t+ 2)2 − t2) + u− 1

2 , η = −(2u+ t/2 + 1) . (2.3.20)

Let K(u) be any 4 × 4 matrix. Then the intertwining equation for the Lie generators
(2.3.18) constrain K(u) to the form given in (2.3.12) up to an unknown function k and an
overall scalar factor. Next, the intertwining equation for the twisted Yangian generators

(2.3.19) constrain t = −2 and has a unique solution k =
2u

s2 − (u− 1)2
which coincides

with (2.3.12) provided c = s .

Remark 2.3.1. Following the same pattern as in the quantum affine case, the twisted
Yangian given in proposition 2.3.3 is also compatible with a vector boundary. The corre-
sponding fundamental reflection matrix is

K(z) =


1 0 0 0
0 1 + (u− 1− c)k (c− s)k 0
0 (c+ s)k k′ + (1− c− u)k 0
0 0 0 k′

 (2.3.21)
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where

k =
2u

(c− u)(1 + s− u)(u+ s− 1)
, k′ =

c+ u

c− u
, (2.3.22)

and c, s ∈ C are arbitrary complex numbers.
The twisted Yangian given in proposition 2.3.6 is compatible with a singlet boundary,

and the corresponding reflection matrix is trivial.

Remark 2.3.2. Let Tl,u be a (2l + 1)-dimensional representation of Y(sl(2)). Let Vl be a
vector space defined in remark 2.2.4. The generators of Y(sl(2)) act on the space Vl by [37]

Tl,u(E±) vm = ((l ∓m)(l ±m+ 1))1/2 vm+1 , Tl,u(H) vm = 2mvm ,

Tl,u(Ê±0 ) vm = 2 l u ((l ∓m)(l ±m+ 1))1/2 vm+1 , Tl,u(Ĥ) vm = 4ml u vm , (2.3.23)

Let the boundary vector spaceWl and the boundary representation Tl,s be defined in the
same way. Then all the constructions of twisted Yangians presented above apply directly
for any finite-dimensional representation Tl,u and lead to unique solution (for fixed l) of
the reflection equation.

To finalize this section we want to note that the twisted Yangian of type I given in
proposition 2.3.3 is isomorphic to the orthogonal twisted Yangian Y+(2) of [38,92] and to
B(2, 1) of [39]. The twisted Yangian of type II given in proposition 2.3.6 is isomorphic to
the symplectic twisted Yangian Y−(2) of [38, 92] and to B(2, 0) of [39] (see also [66]).

2.3.3 Yangian limit

The algebra Uq(ĝ) does not contain any singular elements, and in the q → 1 limit special-
izes to U(g) via the composite map ϕ such that

Uq(ĝ) −→
q→1
U(L(g)) −→

z→1
U(g) . (2.3.24)

Set q = eα~ and z = e−2~u. Then the q → 1 limit is obtained by setting ~ → 0, where ~
is an indeterminate deformation parameter that can be regarded as the Planck’s constant
when the Yangian is an auxiliary algebra and α is a formal parameter used to track the
“level” of the Yangian generators and is usually set to unity [17]. Consider an extended
algebra

Ũq(ĝ) = Uq(ĝ)⊗C[[~]] C((~)) , (2.3.25)

Here C[[~]] (resp. C((~)) ) denotes the formal power (resp. Laurent) series in ~. This alge-
bra contains singular elements those that do not have a properly defined q → 1 limit. Let
A ⊂ Ũq(ĝ) be the subalgebra generated Uq(ĝ) and ~−1ker(ϕ). Then the Yangian Y(g) as
an algebra is isomorphic to the quotient A/~A ∼= Y(g) [4].

In such a way the Yangian Y(sl(2)) can be obtained by taking a rational q → 1 limit
of certain singular combinations of the generators of Uq(ŝl(2)). Here we shall be very
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concise and rely a lot on the evaluation map (for some heuristic arguments see appendix
A; for more thorough considerations see e.g. [86–89]). The Yangian generators of Y(sl(2))
are obtained by the following prescription,

Ê± = ±α lim
q→1

ξ∓0 − ξ
±
1

q − q−1
. (2.3.26)

The Lie algebra generators are recovered by

E± = lim
q→1

ξ±1 = lim
q→1

ξ∓0 and H = lim
q→1

h1 = −lim
q→1

h0 . (2.3.27)

We will next show that the quantum affine reflection algebras considered in sections
2.2.1 and 2.2.2 in the rational q → 1 limit specializes to the Yangian reflection algebras
considered in sections 2.3.1 and 2.3.2 respectively.

Proposition 2.3.7. The quantum affine coideal subalgebra B ⊂ Uq(ŝl(2)) defined by the Propo-
sition 2.2.2 in the rational q → 1 limit specializes to the twisted Yangian Y(g, a) of type I defined
by the Proposition 2.3.3.

Proof. Recall that B is generated by the twisted affine generators (2.2.9)

B+
0 = ξ′+0 k0 − c/q ξ−1 k0 , B−0 = ξ−0 k0 − c q ξ′+1 k0 . (2.3.28)

and the Cartan element k0k
−1
1 . Note that ξ′+0 k0 = q−2ξ+

0 . We will be using the following
series expansion,

ki → 1 + (q − 1)hi +O(α2) , (2.3.29)

where O(α2) represent the higher order in α terms (here α ∼ ~). Then by substituting
c→ q−2t we find

lim
q→1

α q2B+
0

q − q−1
= lim

q→1

[
α
ξ+

0 − ξ
−
1

q − q−1
+ α

q − 1

q − q−1

(
2t ξ−1 − ξ

−
1 − ξ

−
1 h0

)
+O(α2)

]
= −Ê− + α tE− +

α

4
(E−H +H E−) = −Ẽ− , (2.3.30)

and

lim
q→1

αB−0
q − q−1

= lim
q→1

[
α
ξ−0 − ξ

+
1

q − q−1
+ α

q − 1

q − q−1

(
ξ−0 h0 − (1− 2t)ξ+

1 − ξ
+
1 h0 + h1ξ

+
1

)
+O(α2)

]
= Ê+ + α tE+ +

α

4
(E+H +H E+) = Ẽ+ . (2.3.31)

Finally,

lim
q→1

1− k0k
−1
1

q − q−1
= H . (2.3.32)

These coincide with (2.3.9) as required.
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Proposition 2.3.8. The quantum affine coideal subalgebra B ⊂ Uq(ŝl(2)) defined by the Proposi-
tion 2.2.4 in the rational q → 1 limit specializes to the twisted Yangian Y(g, g) of type II defined
by the Proposition 2.3.6.

Proof. We will prove this proposition for the representations only. Let z = q−4 l u. Then,
upon rescaling s → q4 k s, the twisted affine generators (2.2.16) and (2.2.18) in the ratio-
nal q → 1 limit specialize to the twisted Yangian generators (2.3.16) by the following
prescription,

lim
q→1

q−2 Tl,z(B
−
0 )− 2Tl,z(ξ

′+
1 )

(q − q−1)2
= Tl,u(

˜̃
E+) , lim

q→1

q2 Tl,z(B
+
0 )− 2Tl,z(ξ

−
1 )

(q − q−1)2
= Tl,u(

˜̃
E−) ,

(2.3.33)

and

lim
q→1

q−2 (Tl,z ⊗ Tk,s)[∆(B−0 )]− 2 (Tl,z ⊗ Tk,s)[∆(ξ′+1 )]

(q − q−1)2
= (Tl,u ⊗ Tk,s)[∆(

˜̃
E+)] ,

lim
q→1

q2 (Tl,z ⊗ Tk,s)[∆(B+
0 )]− 2 (Tl,z ⊗ Tk,s)[∆(ξ−1 )]

(q − q−1)2
= (Tl,u ⊗ Tk,s)[∆(

˜̃
E−)] . (2.3.34)

2.4 Reflection algebras for Uq(ĝl(1|1))

Algebra. The quantum affine Lie superalgebra Uq(ĝl(1|1)) in the Drinfeld-Jimbo realiza-
tion is generated by the fermionic Chevalley generators ξ±1 , the Cartan generators k1, k2

and their inverses (here k2 = qh2 , and h2 is the non-supertraceless generator completing
the superalgebra sl(1|1) to gl(1|1) ), and the affine fermionic Chevalley generators ξ±0 and
the corresponding affine Cartan generators k0, k−1

0 . The extended (symmetric) Cartan
matrix is given by

(âij)0≤i,j≤2 =

 0 0 −2
0 0 2
−2 2 0

 . (2.4.1)

The corresponding root space has a basis of two fermionic roots, π̂ = {α0, α1}. The com-
mutation relations are as follows, for 0 ≤ i, j ≤ 2 (Chevalley generators corresponding to
the Cartan generator k2 are absent):

[ki, kj ] = 0 , [ki, ξ
±
j ] = q±âijξ±j , {ξ+

i , ξ
−
j } = δij

ki − k−1
i

q − q−1
. (2.4.2)

Here {a, b} = a b + b a denotes the anti-commutator. The graded right adjoint action is
defined by(

adr ξ
+
i

)
a = (−1)[ξ+i ][a]k−1

i a ξ+
i − k

−1
i ξ+

i a ,
(
adr ξ

−
i

)
a = (−1)[ξ−i ][a]a ξ−i − ξ

−
i ki a k

−1
i .

(2.4.3)
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where (−1)[ξ±i ][a] is the grading factor. Notice that the block (âij)0≤i,j≤1 is trivial, and thus
the right adjoint action for this block is equivalent to the regular graded commutator. This
shall have important consequences for constructing the reflection algebra for a vector
boundary. For this reason we shall also be in the need of the level-one Cartan generators
h±2 , which have coproducts defined by

∆h+
2 = h+

2 ⊗ 1 + 1⊗ h+
2 + 2 ξ+

0 k1 ⊗ ξ+
1 ,

∆h−2 = h−2 ⊗ 1 + 1⊗ h−2 + 2 ξ−0 ⊗ k
−1
0 ξ−1 . (2.4.4)

Representation. We define the fundamental evaluation representation Tz of Uq(ĝl(1|1))
on a graded two-dimensional vector space V . Let V = {v1, v2} and V ′ = {v′1, v′2}, then
v1v
′
1 = v′1v1, v2v

′
2 = −v′2v2, and v2v2 = v′2v

′
2 = 0. Let ej,k be 2 × 2 matrices satisfying

(ej,k)j′,k′ = δj,j′δk,k′ . Then the representation Tz is defined by

Tz(ξ
+
1 ) = e1,2 , Tz(ξ

+
0 ) = z e2,1 , Tz(h2) = e1,1 − e2,2 ,

Tz(ξ
−
1 ) = e2,1 , Tz(ξ

−
0 ) = −z−1e1,2 , Tz(h

±
2 ) =

z±1q

q−1 − q
(e1,1 − e2,2) ,

Tz(k1) = q e1,1 + q e2,2 , Tz(k0) = q−1e1,1 + q−1e2,2 , Tz(k2) = q e1,1 + q−1e2,2 . (2.4.5)

We choose the boundary vector spaceW to be equivalent to V . Then the boundary rep-
resentation Ts onW is obtained from (2.4.5) by replacing z with s.

The fundamental R-matrix satisfying Yang-Baxter equation (2.1.4) is given by

R(z) =


1 0 0 0
0 r 1− q r 0
0 1− r/q r 0
0 0 0 −1 + (q + 1/q) r

 , where r =
z − 1

q z − 1/q
.

(2.4.6)

2.4.1 Singlet boundary

Consider the reflection equation (2.1.5) in the space V ⊗V ⊗C with the R-matrix defined
by (2.4.6). Then the general solution of the reflection equation is [93]

K(z) =

(
1 0
0 k

)
, where k =

c z − 1

z(c− z)
, (2.4.7)

and c ∈ C is an arbitrary complex number.
The general solution (2.4.7), in contrast to (2.2.5), is already of the diagonal form and

thus intertwines all (level-zero) Cartan generators ki, but does not satisfy the intertwining
equation neither for any of the Chevalley generators nor for the level-one Cartan genera-
tors h±2 . Hence we call Cartan generators ki the preserved generators, while the generators
ξ±i and h±2 are the broken generators. This setup is consistent with the following involu-
tion and the quantum affine coideal subalgebra.
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Proposition 2.4.1. Let the involution Θ act on the root space Φ as

Θ(α0) = −α1 . (2.4.8)

Then it defines a quantum affine coideal subalgebra B ⊂ A = Uq(ĝl(1|1)) generated by the Cartan
elements k2, k0k

−1
1 , and the twisted affine generators

B+
0 = ξ′+0 k0 − d+ θ̃(ξ

′+
0 )k0 , θ̃(ξ′+0 ) = ξ−1 ,

B−0 = ξ−0 k0 − d− θ̃(ξ−0 )k0 , θ̃(ξ−0 ) = ξ′+1 , (2.4.9)

where ξ′+i = k−1
i ξ+

i and d± ∈ C are arbitrary complex numbers.

Proof. The coideal property is trivial for the Cartan elements, and for (2.4.9) follows di-
rectly from (2.2.10).

Proposition 2.4.2. The quantum affine coideal subalgebra defined above with d+ = −d− = q c
where c ∈ C is an arbitrary complex number, is a reflection algebra for a singlet boundary.

Proof. The representation Tz of the generators of B is given by

Tz(k0k
−1
1 ) = q−2(e1,1 + e2,2) , Tz(B

+
0 ) = (z − q−1d+) e2,1 , Tz(B

−
0 ) = q−2(q z−1 − d−)e1,2 .

(2.4.10)

and Tz(k2) was given in (2.4.5). Let K(z) be any 2 × 2 matrix. Then the intertwining
equation for k0k

−1
1 and k2 restricts K(z) to be of the diagonal form. This gives K(z) =

e1,1 + k e2,2 up to an overall scalar factor. Next, the intertwining equation for B± gives

d+(k − 1)z − q(z2k − 1) = 0 , d−(k − 1)z + q(z2k − 1) = 0 , (2.4.11)

having a unique solution d+ = −d−= q c and k =
c z − 1

z(c− z)
, where c ∈ C is any complex

number. This coincides with (2.4.7).

2.4.2 Vector boundary

Consider the reflection equation (2.1.5) in the tensor space V ⊗ V ⊗W with the R-matrix
defined by (2.4.6). Then there exists a solution of the reflection equation

K(z) =


1 0 0 0
0 1− k/q k 0
0 k 1− q k 0
0 0 0 1− (q + q−1) k

 , where k =
(q − q−1)(z2 − 1)

q−2 − c z + q2z2
,

(2.4.12)

and c ∈ C is an arbitrary complex number.
This K-matrix satisfies the intertwining equation (2.1.7) for all generators of the Lie

superalgebra gl(1|1). Thus we call Cartan generators ki and Chevalley generators ξ±1 the
preserved generators, while the affine Chevalley generators ξ±0 and the level-one Cartan
generators h±2 are the broken generators. Next, we identify the corresponding quantum
affine coideal subalgebra consistent with the reflection matrix (2.4.12).
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Proposition 2.4.3. Let the involution Θ act on the root space Φ as

Θ(α0) = −α0 − 2α1 , Θ(α1) = α1 . (2.4.13)

Then it defines a quantum affine coideal subalgebra B ⊂ A = Uq(ĝl(1|1)) generated by the Cartan
generators ki, the Chevalley generators ξ±1 , and the twisted affine generator

B−0 = ξ−0 − d− θ̃(ξ
−
0 ) , θ̃(ξ−0 ) = [h+

2 , ξ
′+
1 ] , (2.4.14)

where ξ′+i = k−1
i ξ+

i and d− ∈ C× is an arbitrary complex number.

Proof. The twisted affine generator (2.4.14) satisfies coideal property,

∆(B−0 ) = ξ−0 ⊗ k
−1
0 − d− θ̃(ξ

−
0 )⊗ k−1

1 + 1⊗B−0 + 2d−{ξ′+0 , ξ′+1 } ⊗ k
−1
0 k−1

1 ξ′+1 ∈ A⊗ B .
(2.4.15)

The property follows by definition for ki and ξ±1 .

Remark 2.4.1. This algebra may alternatively be generated by ki, ξ±1 , and the twisted
affine generator

B+
0 = ξ′+0 − d+ θ̃(ξ

′+
0 ) , θ̃(ξ′+0 ) = [h−2 , ξ

−
1 ] , (2.4.16)

having coproduct

∆(B+
0 ) = ξ′+0 ⊗ k

−1
0 − dx θ̃(ξ

′+
0 )⊗ k−1

1 + 1⊗B+
0 + 2d+{ξ−0 , ξ

−
1 } ⊗ k

−1
0 k−1

1 ξ−1 ∈ A⊗ B ,
(2.4.17)

and d+ = d −1
− (q−1 − q)2/4. The generators B±0 are related by

(adr ξ
−
1 )B−0 =

2d−
q − q−1

(adr ξ
+
1 )B+

0 . (2.4.18)

Remark 2.4.2. This algebra is not of a canonical form (compare (2.1.47), (2.2.16) and
(2.4.14)). This is due to the all-zero entries in the block 0 ≤ i, j ≤ 1 of the extended
Cartan matrix âij (2.4.1), and thus the adr-action is equivalent to the usual graded com-
mutator. In such a way the level-one generators h±2 are employed to ensure the coideal
property.

Proposition 2.4.4. The quantum affine coideal subalgebra defined above with
d−= d+ = (q−1 − q)/2 is a reflection algebra for a vector boundary.

Proof. The representation (Tz ⊗ Ts) of the coproducts of the Lie generators of B is given
by

(Tz ⊗ Ts)[∆(ξ+)] = q e1,2 + e1,3 + e2,4 − q e3,4 ,

(Tz ⊗ Ts)[∆(ξ−)] = e2,1 + q−1e3,1 + q−1e4,2 − e4,3 ,

(Tz ⊗ Ts)[∆(k0)] = q−2(e1,1 + e2,2 + e3,3 + e4,4) ,

(Tz ⊗ Ts)[∆(k1)] = q2 (e1,1 + e2,2 + e3,3 + e4,4) ,

(Tz ⊗ Ts)[∆(k2)] = q2e1,1 + e2,2 + e3,3 + q−2e4,4 , (2.4.19)
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and of the twisted affine generators by

(Tz ⊗ Ts)[∆(B+
0 )] = α e2,1 + β e3,1 + β e4,2 − α e4,3 ,

(Tz ⊗ Ts)[∆(B−0 )] = γ e1,2 + δ e1,3 + γ e2,4 − γ e3,4 , (2.4.20)

where

α = q s+ 2d+((q−2 − 1)−1s−1 − z−1) , β = q(q z − 2d+(q2 − 1)−1z−1) ,

γ = −q−1(q s−1 + 2d−((q−2 − 1)s− z)) ,δ = −(q z−1 − 2d−(q2 − 1)−1z) , (2.4.21)

Let K(z) be any 4 × 4 matrix. Then the intertwining equation for the Lie generators
(2.4.19) constrain K(z) to the form given in (2.4.12) up to an unknown function k and
an overall scalar factor. Next, the intertwining equation for the twisted affine generators
(2.4.20) has a unique solution

d+ = d− = (q−1 − q)/2 , k =
(q − q−1)(z2 − 1)

q−2 − (s+ s−1)z + q2z2
, (2.4.22)

which coincides with k given in (2.4.12) provided c = s+ s−1.

Remark 2.4.3. The coideal subalgebra given in proposition 2.4.2 does not lead to a unique
reflection matrix for a vector boundary. The boundary intertwining equation in this case
defines the reflection matrix up to an overall scalar factor and one unknown function,

K(z) =


1 0 0 0
0 1 + (q2z − c)k′ q(c− s)k′ 0
0 q(c− s−1)k′ 1 + k 0
0 0 0 1 + k + (q2z−1 − c)k′

 (2.4.23)

where

k =
q2
(
s+ z(c− s)(cs− 1)k′ − s z2

)
s z (q2z − c)

, (2.4.24)

and c, s ∈ C are arbitrary complex numbers. Here k′ = k′(z) is an unknown function that
needs to be obtained by solving the reflection equation (giving i.e. k′ = 0). In such a way
this coideal subalgebra is not a reflection algebra for a vector boundary as it does not lead
to a reflection matrix automatically satisfying the reflection equation.

The coideal subalgebra given in proposition 2.4.4 is compatible with a singlet bound-
ary; the corresponding reflection matrix is trivial.

2.5 Reflection algebras for Y(gl(1|1))

Algebra. The Yangian Y(gl(1|1)) is generated by the level-zero Chevalley generators
E±, Cartan generators H and the non-supertraceless generator H2, and the level-one
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Yangian generators Ê± and the corresponding level-one Cartan generators Ĥ and Ĥ2 .
The commutation relations of the algebra are

{E+, E−} = H , {E±, Ê∓} = Ĥ , [H,E±] = [H, Ê±] = [H, Ĥ] = 0 ,

[H2, E
±] = ±2E± , [H2, Ê

±] = [Ĥ2, E
±] = ±2Ê± . (2.5.1)

The Hopf algebra structure is equipped with the following coproduct,

∆(H) = H ⊗ 1 + 1⊗H , ∆(Ĥ) = Ĥ ⊗ 1 + 1⊗ Ĥ ,

∆(H2) = H2 ⊗ 1 + 1⊗H2 , ∆(Ĥ2) = Ĥ2 ⊗ 1 + 1⊗ Ĥ2 − α (E+ ⊗ E− + E− ⊗ E+) ,

∆(E±) = E± ⊗ 1 + 1⊗ E± , ∆(Ê±) = Ê± ⊗ 1 + 1⊗ Ê± ∓ α

2
(E± ⊗H −H ⊗ E±) .

(2.5.2)

Representation. The evaluation representation on the graded two-dimensional vector
space V is defined by

Tu(E+) = e1,2 , Tu(E−) = e2,1 , Tu(H) = e1,1 + e2,2 , Tu(H2) = e1,1 − e2,2 ,

Tu(Ê+) = u e1,2 , Tu(Ê−) = u e2,1 , Tu(Ĥ) = u (e1,1 + e2,2) , Tu(Ĥ2) = u (e1,1 − e2,2) ,
(2.5.3)

and Tu(α) = 1. We choose the boundary vector space W to be equivalent to V . The
boundary representation Ts onW is obtained from (2.5.3) by replacing z with s.

The fundamental R-matrix satisfying Yang-Baxter equation (2.1.57) is

R(u) =


1 0 0 0
0 r 1− r 0
0 1− r r 0
0 0 0 −1 + 2r

 , where r =
u

u+ 1
. (2.5.4)

2.5.1 Singlet boundary

Consider the reflection equation (2.1.58) in the tensor space V ⊗ V ⊗C with the R-matrix
defined by (2.5.4). Then the general solution of the reflection equation is [83]

K(u) =

(
1 0
0 k

)
, where k =

c+ u

c− u
, (2.5.5)

and c ∈ C is an arbitrary complex number.
This K-matrix intertwines the Cartan generators H and H2, but does not satisfy the

intertwining equation for any other generators of gl(1|1) (and Y(gl(1|1)) ). Hence we
call Cartan generators H and H2 the preserved generators, while the rest are the broken
generators. This setup allows us to define the following twisted Yangian.
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Proposition 2.5.1. Let the involution θ act on the Lie algebra g = gl(1|1) as

θ(H) = H , θ(H2) = H2 , θ(E±) = −E± , (2.5.6)

defining a symmetric pair (g, θ(g)). Then involution θ can be extended to the involution θ̄ of Y(g)
such that

θ̄(Ĥ) = −Ĥ , θ̄(Ĥ2) = −Ĥ2 , θ̄(Ê±) = Ê± , θ̄(α) = −α . (2.5.7)

Proposition 2.5.2. The twisted Yangian Y(g, θ(g)) of type I for g = gl(1|1) and θ(g) = {H,H2}
is θ̄–fixed coideal subalgebra of Y(g) generated by the Cartan generators H and H2, and the
twisted Yangian generators

Ẽ± = Ê± ± αtE± ∓ α

2
HE± , (2.5.8)

where t ∈ C is an arbitrary complex number.

Proof. The twisted generators (2.5.8) are in the positive eigenspace of the involution θ̄
(2.5.7) and satisfy the coideal property

∆(Ẽ±) = Ẽ± ⊗ 1 + 1⊗ Ẽ± ∓ αE± ⊗H ∈ Y(g)⊗ Y(g, θ(g)) . (2.5.9)

The same properties are obvious for H and H2.

Proposition 2.5.3. The twisted Yangian Y(g, θ(g)) defined above is a reflection algebra for a
singlet boundary.

Proof. The representation Tu of the twisted generators of Y(g, θ(g)) is given by

Tu(Ẽ+) = (u+ t− 1/2) e1,2 , Tu(Ẽ−) = (u− t+ 1/2) e1,2 , (2.5.10)

For H and H2 it was given in (2.5.3). Let K(u) be any 2× 2 matrix. Then the intertwining
equation for H and H2 restricts K(u) to be of the diagonal form. This gives K(u) =

e1,1 + k e2,2 up to an overall scalar factor. Next, the intertwining equation for Ẽ± has a

unique solution k =
t+ u− 1/2

t− u− 1/2
which coincides with (2.5.5) provided t = c + 1/2 and

a = b = 0.

2.5.2 Vector boundary

Consider the reflection equation (2.1.5) in the tensor space V ⊗ V ⊗W with the R-matrix
defined by (2.3.4). Then there exists a solution of the reflection equation,

K(u) =


1 0 0 0
0 1− k k 0
0 k 1− k 0
0 0 0 1− 2k

 , where k =
2u

(u+ 1)2 − c2
, (2.5.11)
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and c ∈ C is an arbitrary complex number.
This K-matrix satisfies the intertwining equation for all generators of gl(1|1). We

call the level-zero generators E±, H and H2 the preserved generators, while the level-one
generators Ê±, Ĥ and Ĥ2 are the broken generators. This setup leads to the following
twisted Yangian.

Proposition 2.5.4. Let θ be the trivial involution of the Lie algebra g = gl(1|1),

θ(H) = H , θ(H2) = H2 , θ(E±) = E± =⇒ θ(g) = g . (2.5.12)

Then it can be extended to a non-trivial involution θ̃ of Y(gl(1|1)) such that

θ̄(Ĥ) = −Ĥ , θ̄(Ĥ2) = −Ĥ2 , θ̄(Ê±) = −Ê± , θ̄(α) = −α . (2.5.13)

Proposition 2.5.5. The twisted Yangian Y(g, g) of type II for g = gl(1|1) and θ(g) = g is θ̄–
fixed coideal subalgebra of Y(g) generated by the level-zero generators and the level-two twisted
Yangian generators

˜̃
E± = ±1

2

(
[Ĥ2, Ê

±] + α (±t Ê± + E±Ĥ − Ê±H)
)

and ˜̃
H = {E±, ˜̃E∓} ,

(2.5.14)

where t ∈ C is any complex number.

Proof. The twisted generators (2.5.14) are in the positive eigenspace of the involution θ̄
(2.5.13) and satisfy the coideal property

∆(
˜̃
E±) =

˜̃
E± ⊗ 1 + 1⊗ ˜̃E± ± α (Ĥ ⊗ E± − Ê± ⊗H) +O(α2) ∈ Y(g)⊗ Y(g, g) ,

(2.5.15)

and for ˜̃H and the level-zero generators these properties follow identically.

Proposition 2.5.6. The twisted Yangian Y(g, g) defined above with t = 0 is a reflection algebra
for a vector boundary.

Proof. The representation (Tu ⊗ Ts) of the coproducts of the Lie generators of Y(g, g) is
given by

(Tu ⊗ Ts)[∆(E+)] = e1,2 + e1,3 + e2,4 − e3,4 , (Tu ⊗ Ts)[∆(H)] = 2
∑4

i=1 ei,i ,

(Tu ⊗ Ts)[∆(E−)] = e2,1 + e3,1 + e4,2 − e4,3 , (Tu ⊗ Ts)[∆(H2)] = 2 (e1,1 − e4,4) ,
(2.5.16)

and of the twisted Yangian generators by

(Tz ⊗ Ts)[∆(
˜̃
E+)] = α e1,2 + β e1,3 + β e2,4 − α e3,4 , (Tz ⊗ Ts)[∆(

˜̃
H)] = η

∑4
i=1 ei,i ,

(Tz ⊗ Ts)[∆(
˜̃
E−)] = γ e2,1 + δ e3,1 + γ e4,2 − γ e4,3 , (2.5.17)
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where

α = 2s(2s+ t) + 4u+ t− 3 , β = (2u− 1)(2u+ t− 1), η = 1
16((4s+ t)2+ (4u+ t)2

γ = 2s(2s+ t)− 4u− t− 3 , δ = (2u+ 1)(2u+ t+ 1), − 2t2− 8). (2.5.18)

Let K(u) be any 4 × 4 matrix. The intertwining equation for the Lie generators (2.5.16)
constrain K(u) to the form given in (2.5.11) up to unknown function k and overall scalar
factor. Next, the intertwining equation for the twisted Yangian generators (2.5.17) con-

strain t = 0 and has a unique solution k =
2u

(u+ 1)2 − s2
which coincides with (2.5.11)

provided c = s .

Remark 2.5.1. The twisted Yangian given in proposition 2.5.3 does not lead to a unique
reflection matrix for a vector boundary. The boundary intertwining equation in this case
defines the reflection matrix up to an overall scalar factor and one unknown function,

K(z) =


1 0 0 0
0 1 + (1− c+ u)k′ (c− s)k′ 0
0 (c+ s)k′ 1 + k 0
0 0 0 1 + k + (1− c− u)k′

 (2.5.19)

where

k =
(c2 − s2)k′ − 2u

1− c+ u
, c = t− 1/2 , (2.5.20)

and t, s ∈ C are arbitrary complex numbers. Here k′ = k′(u) is an unknown function
that needs further to be obtained by solving the reflection equation (giving i.e. k′ = 0 or
k′ = (2u)/(s2+c(1+u)2−u(1+u)2)). In such a way this twisted Yangian is not a reflection
algebra for a vector boundary as it does not lead to a reflection matrix automatically
satisfying the reflection equation. This is in agreement with the remark 2.4.3.

The twisted Yangian given in proposition 2.5.6 is compatible with a singlet boundary;
the corresponding reflection matrix is trivial.

2.5.3 Yangian limit

Lie algebras sl(2) and gl(1|1) are very similar, thus the Yangian limit of coideal subal-
gebras of Uq(ĝl(1|1)) is obtained in a very similar way as it was done in section 2.3.3.
The Yangian Y(gl(1|1)) can be obtained by taking a rational q → 1 limit of the singular
combinations of the generators of Uq(ĝl(1|1)),

Ê± = α lim
q→1

ξ∓0 ± ξ
±
1

q − q−1
, (2.5.21)

The Lie algebra generators are given by

E± = lim
q→1

ξ±1 = ∓lim
q→1

ξ∓0 and H = lim
q→1

h1 = −lim
q→1

h0 . (2.5.22)
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Next will show that the quantum affine reflection algebras considered in sections 2.4.1
and 2.4.2 in the rational q → 1 limit specializes to the Yangian reflection algebras consid-
ered in sections 2.5.1 and 2.5.2 respectively.

Proposition 2.5.7. The quantum affine coideal subalgebra B ⊂ Uq(ĝl(1|1)) defined by the Propo-
sition 2.4.2 in the rational q → 1 limit specializes to the twisted Yangian Y(g, a) of type I defined
by the Proposition 2.5.3.

Proof. Recall that B is generated by the twisted affine generators (2.4.9)

B+
0 = ξ′+0 k0 − c q ξ−1 k0 , B−0 = ξ−0 k0 + c q ξ′+1 k0 . (2.5.23)

and Cartan element k0k
−1
1 . Firstly note that ξ′+0 k0 = ξ+

0 . Then by substituting c →
q2(t−1/2) and using the expansion (2.3.29) we find

lim
q→1

αB+
0

q − q−1
= lim

q→1

[
α
ξ+

0 − ξ
−
1

q − q−1
− α q − 1

q − q−1

(
2 t ξ−1 + ξ−1 h0

)
+O(α2)

]
= Ê− − α tE− +

α

2
HE− = Ẽ− , (2.5.24)

and

lim
q→1

αB−0
q − q−1

= lim
q→1

[
α
ξ−0 + ξ+

1

q − q−1
+ α

q − 1

q − q−1

(
2 t ξ+

1 + ξ−0 h0 + ξ+
1 (h0 − h1)

)
+O(α2)

]
= Ê+ + α tE+ − α

2
HE+ = Ẽ+ . (2.5.25)

Finally, H2 = lim
q→1

(k2
2 − 1)/(q − q−1), and the Cartan generator H is obtained in an equiv-

alent way as in (2.3.32). These coincide with (2.5.8) as required.

Proposition 2.5.8. The quantum affine coideal subalgebra B ⊂ Uq(ĝl(1|1)) defined by the Propo-
sition 2.4.4 in the rational q → 1 limit specializes to the twisted Yangian Y(g, g) of type II defined
by the Proposition 2.5.6.

Proof. We will prove this proposition for the representations only. Let z = q2u. Then,
upon rescaling s → q2 s, the twisted affine generators (2.4.14) and (2.4.16) in the ratio-
nal q → 1 limit specialize to the twisted Yangian generators (2.5.14) by the following
prescription,

lim
q→1

Tz(B
+
0 )− 2Tz(ξ

−
1 k1)

(q − q−1)2
= Tu(

˜̃
E−) , lim

q→1

Tz(B
−
0 ) + 2Tz(ξ

+
1 )

(q − q−1)2
= −Tu(

˜̃
E+) ,

(2.5.26)

and

lim
q→1

(Tz ⊗ Ts)[∆(B+
0 )]− 2 (Tz ⊗ Ts)[∆(ξ−1 k1)]

(q − q−1)2
= (Tu ⊗ Ts)[∆(

˜̃
E−)] ,

lim
q→1

(Tz ⊗ Ts)[∆(B−0 )] + 2 (Tz ⊗ Ts)[∆(ξ+
1 )]

(q − q−1)2
= −(Tu ⊗ Ts)[∆(

˜̃
E+)] . (2.5.27)
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A The Yangian limit of Uq(ŝl(2))

Here we give a heuristic derivation of the Yangian limit of Uq(ŝl(2)). We will recover the
level-one generators of Y(sl(2)) by calculating the rational q → 1 limit of certain singular
combinations of the generators of Uq(ŝl(2)) that otherwise do not have a propierly defined
q → 1 limit.

Set g = sl(2). Recall that ŝl(2) ∼= L(g). Let the Chevalley basis of U(g[u]) be given by

E+ = 1⊗ e , E− = 1⊗ f , H = 1⊗ h ,
Ê+ = u⊗ f , Ê− = −u⊗ e , Ĥ = u⊗ h . (A.1)

Let eq, fq and kq = qh be the basis of Uq(g). Let the basis of Uq(L(g)) be given by

ξ+
1 = 1⊗ eq , ξ−1 = 1⊗ fq , h1 = 1⊗ h , k1 = qh1 ,

ξ+
0 = z ⊗ f , ξ−0 = z−1 ⊗ e , h0 = −h1 , k1 = qh1 . (A.2)

Set q = eα~ and z = e−2~u. Then the q → 1 limit is obtained by setting ~ → 0. The
expansion in series of the Cartan generators ki at the point ~ = 0 is given by

ki → 1 + (q − 1)hi +O(α2) , (A.3)

where O(α2) denotes higher order in α terms (α ∼ ~). Note that the (full) q → 1 limit
gives

E+ = lim
q→1

ξ+
1 = lim

q→1
ξ−0 , E− = lim

q→1
ξ−1 = lim

q→1
ξ+

0 . (A.4)

Choose
ξ+
α =

α

q − q−1
(ξ−0 − ξ

+
1 ) , ξ−α = − α

q − q−1
(ξ+

0 − ξ
−
1 ) . (A.5)

Then

lim
q→1

ξ+
α = lim

q→1
α
z−1 − 1

q − q−1
⊗ eq = u⊗ e = Ê+

α ,

lim
q→1

ξ−α = lim
q→1

α
1− z
q − q−1

⊗ fq = −u⊗ f = Ê−α , (A.6)

and

lim
q→1

∆(ξ+
α ) = lim

q→1

α

q − q−1
(ξ−0 ⊗ k

−1
0 + 1⊗ ξ−0 − ξ

+
1 ⊗ 1− k1 ⊗ ξ+

1 )

= lim
q→1

[
α
ξ−0 − ξ

+
1

q − q−1
⊗ 1 + 1⊗ α ξ

−
0 − ξ

+
1

q − q−1

− α q − 1

q − q−1
(ξ−0 ⊗ h0 + h1 ⊗ ξ+

1 ) +O(α2)
]

= Ê+
α ⊗ 1 + 1⊗ Ê+

α +
α

2
(E+ ⊗H −H ⊗ E+) = ∆(Ê+

α ) , (A.7)
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lim
q→1

∆(ξ−α ) = lim
q→1

α

q − q−1
(−ξ+

0 ⊗ 1− k0 ⊗ ξ+
0 + ξ−1 ⊗ k

−1
1 + 1⊗ ξ−1 )

= lim
q→1

[
α
ξ−1 − ξ

+
0

q − q−1
⊗ 1 + 1⊗ α ξ

−
1 − ξ

+
0

q − q−1

− α q − 1

q − q−1
(ξ−1 ⊗ h1 + h0 ⊗ ξ−0 ) +O(α2)

]
= Ê−α ⊗ 1 + 1⊗ Ê−α −

α

2
(E− ⊗H −H ⊗ E+) = ∆(Ê−α ) , (A.8)

which coincide with (2.3.2).



Chapter 3

Integrable boundaries in AdS/CFT

It has been recognized in recent years that the planar limit of N = 4 super Yang-Mills
is integrable, and the worldsheet S-matrix approach allows us to successfully study the
spectra of the light-cone superstrings propagating freely in AdS5 × S5 spacetime in the
framework of the AdS/CFT correspondence conjectured by Maldacena et al. [6] (see
also the review [9]). The S-matrix approach [94–96] was first developed in the spin chain
framework in the perturbative regime of the gauge theory, where it allows one to con-
jecture the corresponding (all-loop) Bethe equations describing the asymptotic spectrum
of the gauge theory [19, 57, 97]. The integrability allows one to find the exact expres-
sions of the S-matrices by requiring them to respect the underlying symmetries of the
model. It is well-known that the S-matrix for the fundamental excitations in the bulk can
be determined up to an overall (so-called ‘dressing’) phase factor from just the centrally
extended psu(2|2)C symmetry [18, 19, 98], and the S-matrix obtained in this way respects
the Yang-Baxter equation (YBE) and a generalized physical unitarity condition. The over-
all phase factor is severely constrained by the crossing symmetry [99]. This non-analytic
overall phase factor constitutes an important feature of the string S-matrix and has been
the subject of intensive research [100–103].

In the limit of infinite light-cone momentum, in addition to the fundamental states,
the spectrum of the string sigma model contains an infinite tower of bound states [104–
106]. These manifest themselves as poles of the multi-magnon S-matrix built from the
fundamental S-matrix SAA, where A is used to denote the fundamental state. The generic
bound state S-matrix SMN is then obtained by considering a tensor product of the 4M -
and 4N -dimensional atypical (short) supersymmetric multiplets of the psu(2|2)C [20,104,
107]. These multiplets can be obtained from the (M + N)-fold tensor product of the
fundamental representation by projecting it onto the totally symmetric component.

As was shown in [108], the construction of the bound state S-matrix relies on the ob-
servation that an M -magnon bound state representation of the psu(2|2)C algebra may be
realized on the space VM of homogeneous supersymmetric polynomials of degree M de-
pending on two bosonic and two fermionic variables, ωa and θα respectively. Thus, the
representation space is identical to an irreducible short superfield ΦM (ω, θ). In this real-
ization the algebra generators are represented by differential operators linear in variables

59
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ωa and θα with the scattering coefficients being functions of the parameters describing
the representation. The introduction of a space DM dual to VM , which may be realized
as the space of differential operators preserving the homogeneous gradation of ΦM (ω, θ),
allows one to define the S-matrix as (an element of)

SMN ∈ End(VM ⊗ VN ) ≈ VM ⊗ VN ⊗DM ⊗DN .

Thus the S-matrix SMN may be written as a differential operator of degree M +N acting
on the product of two superfields ΦM (ω, θ) and ΦN (ω, θ).

Finding the generic bound state S-matrices is very complicated, as the psu(2|2)C sym-
metry alone is not enough to determine all of the scattering coefficients. Further con-
straints are required, either from the YBE or the underlying Yangian symmetry [20].

The underlying Yangian symmetry, which goes back to the inception of quantum
groups, is at the core of the general strategy for finding the higher-order bound state
S-matrices [109]. The Yangian symmetry is essential since the fusion procedure does not
work straightforwardly for AdS/CFT S-matrices [108]. These higher-order S-matrices
play an important role in understanding the underlying integrability and deriving the
transfer matrices, Bethe ansatz equations, writing T - and Y -systems, and other impor-
tant algebraic objects of the theory. It is worth recalling that Yangians generically have
some very nice properties, particularly at the level of representation theory [17, 110]. So
the appearance of Yangian symmetry in the string context – for example, via the universal
R-matrix [111–113] – is a very welcome feature.

A specific case of worldsheet scattering is the boundary scattering which has attended
lots of research interest and development on its own due to a large variety of the bound-
ary conditions that arise when open strings end on D-branes embedded in the AdS5×S5

background (See e.g. [59, 61–63, 114–124]). Boundary conditions depend not only on the
type of the D-brane the string is attached to, but also on the type of embedding and the
relative orientation of the string and the brane. The emerging integrable configurations
have been classified in [65].

Deep in the bulk of an open string the theory is indistinguishable from the pureN = 4
super Yang-Mills, thus the symmetry arguments discussed above remain valid, and the
bulk S-matrix may be used without modifications. The task is then to determine the
reflection of magnons from the end of the string, where the residual symmetries of the
boundary are crucial in determining the structure of the reflection K-matrix. However it
is a great challenge to understand the residual boundary symmetries in full generality.

An important feature of quantum integrability is that the presence of suitable bound-
ary conditions may break a bulk Yangian symmetry without spoiling integrability. In
such a way one can find a boundary Yangian symmetry which is a coideal subalgebra of
the bulk Yangian symmetry, and in many cases appearing in the AdS/CFT this was show
to be generalized twisted Yangian algebras discussed in Chapter 2.

This chapter is organized as follows. In Section 3.1 we recap the underlying symme-
tries and the worldsheet S-matrix of the light-cone superstrings in AdS/CFT. In Section
3.2 we review the spectrum of integrable boundaries and give the necessary preliminar-
ies for the boundary scattering theory. Sections 3.3 and 3.4 contain description of bound-
ary symmetries and boundary scattering theory for giant gravitons and D7-branes, that
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share a lot of common features from the boundary scattering point of view. Section 3.5
considers boundary scattering for the D5-brane. This boundary was long thought not
to be integrable. Here we show that it is indeed integrable and is of a specific ‘achiral’
type. This type of boundary symmetry was not considered explicitly in Chapter 2, thus
this sections also contains the general considerations for this type of algebra. Appendix
B accommodates explicit expressions of selected bound state reflection matrices.

3.1 Worldsheet scattering

3.1.1 Underlying symmetries

The symmetry algebra of excitations in the light-cone superstring theory on theAdS5×S5

background and for the single-trace local operators in the N = 4 supersymmetric Yang-
Mills gauge theory is given by two copies (left and right) of the centrally-extended Lie
superalgebra [18, 125]

psu(2|2)C = psu(2|2) nR3 . (3.1.1)

3.1.1.1 Lie algebra

The algebra psu(2|2)C contains two sets of bosonic su(2) rotation generators R b
a , L β

α , two
sets of fermionic supersymmetry generators Q a

α ,G α
a and three central elements H, C and

C†. The non-trivial commutation relations are

[L β
α , Jγ ] = δβγ Jα − 1

2δ
β
α Jγ , {Q a

α ,Q b
β } = εabεαβ C ,

[L β
α , Jγ ] = −δγα Jβ + 1

2δ
β
α Jγ , {G α

a ,G
β
b } = εαβεabC† ,

[R b
a , Jc] = δbc Ja − 1

2δ
b
a Jc , {Q a

α ,G
β
b } = δab L α

β + δαβ R a
b + 1

2δ
a
b δ
α
β H ,

[R b
a , Jc] = −δca Jb + 1

2δ
b
a Jc , (3.1.2)

where a, b, ... = 1, 2 and α, β, ... = 3, 4, and the symbols Ja, Jα with lower (or upper)
indices represent any generator with the corresponding index structure.

Hopf algebra. This algebra may be equipped with a non-trivial (braided) Hopf algebra
structure [126] such that for any JA ∈ psu(2|2)C ,

∆(JA) = JA ⊗ 1 + U[[A]] ⊗ JA , ∆op(JA) = JA ⊗ U[[A]] + 1⊗ JA . (3.1.3)

Here U is the so-called braiding factor, and is a group-like element of the algebra,

∆(U) = U⊗ U . (3.1.4)

The additive quantum number [[A]] equals 0 for generators in su(2)⊕su(2) and for H, 1
2 for

Q a
α , −1

2 for Gα
a , 1 for C and −1 for C†. This number is sometimes called the hypercharge.

We will come back to it a little bit further.
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The Hopf algebra structure becomes complete after defining the antipode map S and
the counit map ε,

S(1) = 1 , S(U±1) = U∓1, S(JA) = −U−[[A]]JA ,
ε(1) = ε(U±1) = 1 , ε(JA) = 0 . (3.1.5)

The braided structure of the algebra imposes additional constraints on the central
generators C and C†. The co-commutativity requirement gives

∆(C) = ∆op(C) ⇒ C⊗
(
1− U+2

)
=
(
1− U+2

)
⊗ C ⇒ C ∝ (1− U+2) ,

∆(C†) = ∆op(C†) ⇒ C†⊗
(
1− U−2

)
=
(
1− U−2

)
⊗ C† ⇒ C†∝ (1− U−2) . (3.1.6)

One can further introduce universal proportionality coefficients α, α† and g such that

C = g α (1− U+2) , C† = g α† (1− U−2) , CC† − g αC† − g α†C = 0 . (3.1.7)

Here g plays the role of the coupling constant of the corresponding string theory. In the
g → 0 limit central generators C and C† vanish and and the psu(2|2)C algebra specializes
to su(2|2).

Automorphism group. The psu(2|2) algebra has no matrix representation, but the cen-
trally extended algebra does, and the representations may be traced back from the su-
peralgebra gl(2|2) using an SL(2) outer-automorphism group of the algebra [127]. This
outer automorphism reveals itself in the ε → 0 limit of the exceptional superalgebra
d(2, 1; ε) [128]. The SL(2) automorphism transforms the supersymmetry generators of
the algebra as

Q′ aα = u1 Q a
α − u2 ε

ab εαβ G β
b , G′ αa = v1 G α

a − v2 εab ε
αβ Q b

β , (3.1.8)

and the central generators as

C′ = u2
1 C + u2

2 C† + u1u2 H , C′† = v2
1 C† + v2

2 C + v1v2 H ,

H′ = (u1v1 + u2v2)H + 2u1v2 C + 2u2v1 C† . (3.1.9)

The parameters ui and vi satisfy the non-degeneracy constraint u1v1 − u2v2 = 1 and may
be combined into an SL(2) matrix

hout =

(
u1 u2

v2 v1

)
. (3.1.10)

We shall be interested in the unitary representations of psu(2|2)C . The latter requirement
restricts the SL(2) automorphism group to its real form SU(1, 1) upon imposing the uni-
tarity constraints v∗1 = u1 and v∗2 = u2 .

It is important to note that the outer-automorphism group leaves the combination
~H2 := H2 − 4CC† of the central charges invariant, i.e. this combination defines the orbits
of the SL(2).
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Hypercharge and reflection map. Set u2 = v2 = 0 and choose u1 = eiφ, v1 = e−iφ for
some real φ. This setup defines a U(1) ⊂ SU(1, 1) subgroup of the outer-automorphism
group discussed above given by

Qa
α → eiφQa

α , G α
a → e−iφG α

a , C→ e2iφC , C† → e−2iφC† . (3.1.11)

This soubgroup has several important and far-reaching properties that we will encounter
in the boundary scattering.

The corresponding Lie generator Y serves as a hypercharge for the generators of
psu(2|2)C ,

[Y, JA] =
[[A]]

2
JA , (3.1.12)

more explicitly:

[Y,Q a
α ] = +1

2Q
a
α , [Y,C] = +C , [Y,L b

a ] = [Y,R β
α ] = [Y,H] = 0 ,

[Y,G α
a ] = −1

2G
α
a , [Y,C†] = −C† . (3.1.13)

Set u2
1 = −U−2, v2

1 = −U2. Recall that U is a group-like element, thus can be repre-
sented as U ≡ eip/2 for some p. Then the corresponding generator κ ∈ U(1), as we will
show in the Section 3.3.2, can be interpreted as the reflection map.

Representations. The psu(2|2)C algebra has several different types of finite-dimensional
representations. The most relevant representations for AdS/CFT superstrings are called
long (typical) and short (atypical). There are also anomalous (singlet and adjoint) repre-
sentations. See [18] and [19] for a comprehensive review and details. A tensor product of
two short representations generically yields a sum of long multiplets. The long represen-
tations are generically irreducible, but become reducible for some specific eigenvalues of
the central charges. Next we will briefly review the decomposition of the tensor product
of two fundamental representations and the tensor product of two 2-particle bound state
representations, as this will be important to us later on.

The fundamental excitations (asymptotic states) of the superstring transform in the
4-d(imensional) short (fundamental) representation �. The tensor product of two funda-
mental representations gives a 16-d irreducible long multiplet. This is the smallest long
representation. At the special points (corresponding to special eigenvalues of the central
charges) one may decompose the 16-d long multiplet into two 8-d short representations
(totally symmetric and totally antisymmetric), or into two singlets (corresponding to the
fundamental singlet state of the spectrum) and a minimal 14-d adjoint, which may further
be reduced to (3 + 2× 4 + 3)-d totally symmetric multiplets. We shall mainly focus on
supersymmetric short and singlet representations, where the interesting physical states
(magnons and their bound states) of the AdS/CFT superstring live. A multiplet short-
ening constraint defining a supersymmetric (or equivalently anti-supersymmetric) short
representation is given by

H2 − 4CC† = 1 . (3.1.14)
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Two-particle bound states live in an 8-d supersymmetric short representation ��. A
tensor product of two such representations decomposes into a sum of two long, 16-d
and 48-d, representations. This tensor product is very important in the scattering the-
ory we shall be considering, as it is the simplest representation for which the Lie algebra
is not enough to determine all the scattering coefficients and additional constraints are
required [108]. Thus this representation serves as the most simple non-trivial test of Yan-
gian symmetry.

The supersymmetric short representation describing an M -particle bound state con-
sists of vectors |m,n, k, l〉 ∈ V (p) where k+ l+m+n = M , and V (p) is the corresponding
vector space of the excitations with momentum p. The labels m,n denote fermionic de-
grees of freedom and k, l denote the bosonic part. The symmetry generators act on the
basis vectors as

R 1
1 |m,n, k, l〉 = 1

2(l − k) |m,n, k, l〉 , L 3
3 |m,n, k, l〉 = 1

2(m− n) |m,n, k, l〉 ,
R 1

2 |m,n, k, l〉 = k |m,n, k − 1, l + 1〉 , L 4
3 |m,n, k, l〉 = |m+ 1, n− 1, k, l〉 ,

R 2
1 |m,n, k, l〉 = l |m,n, k + 1, l − 1〉 , L 3

4 |m,n, k, l〉 = |m− 1, n+ 1, k, l〉 , (3.1.15)

while the action of the supercharges is defined by

Q 2
4 |m,n, k, l〉 = a (−1)ml |m,n+ 1, k, l − 1〉+ b |m− 1, n, k + 1, l〉 ,

G 4
2 |m,n, k, l〉 = c k |m+ 1, n, k − 1, l〉+ d (−1)m |m,n− 1, k, l + 1〉 . (3.1.16)

The explicit action of the rest of the generators is easily obtained by the defining commu-
tation relations (3.1.2). Finally, the action of central elements is given by

C |m,n, k, l〉 = M ab |m,n, k, l〉 , C† |m,n, k, l〉 = M cd |m,n, k, l〉 ,
H |m,n, k, l〉 = M (a d+ b c) |m,n, k, l〉 U |m,n, k, l〉 = U |m,n, k, l〉 , (3.1.17)

where the braiding factor in this representation is related to the momentum of the magnon,
U = eip/2. In such a way the multiplet shortening constraint (3.1.14) becomes

a d− b c = 1 , (3.1.18)

while (3.1.7) gives

M ab = g α (1− U2) , M c d = g α† (1− U2) . (3.1.19)

A convenient parametrization of the representation labels satisfying (3.1.18) and (3.1.19)
is [18, 108]

a =

√
g

M
γ, b =

√
g

M

α

γ

(
1− x+

x−

)
, c =

√
g

M

i γ

αx+
, d =

√
g

M

i x+

γ

(
x−

x+
− 1

)
,

(3.1.20)
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where M is the bound state number (M = 1 corresponds to the fundamental represen-
tation), g is the coupling constant, and x± are the spectral parameters (eip = x+

x− ). The
multiplet shortening constraint in this parametrization becomes

x++
1

x+
− x−− 1

x−
=
iM

g
. (3.1.21)

and is conveniently called the mass-shell constraint. The parameters γ and α are internal
parameters of the representation and define the relative normalization between bosons
and fermions. The unitarity imposes α† = α−1 and γ = eiϕ

√
i (x−− x+) , where the

arbitrary phase factor eiϕ reflects the freedom in choosing x± and is conveniently set to
ϕ = p/4. The rapidity of the magnon in the x± parametrization is defined to be

u = x++
1

x+
− iM

2 g
. (3.1.22)

Finally let us note that this algebra does not have a well-defined quadratic Casimir
operator due to the degeneracy of the Killing-Cartan form. Consider a Casimir-like
quadratic generator W,

W := R b
a R a

b − L β
α L α

β + Q a
α G α

a −G α
a Q a

α . (3.1.23)

Enhance the algebra by an extra non-supertraceless generator B ∈ gl(2|2) such that

B |m,n, k, l〉 =
1

2(a d+ b c)
(m+n−k−l) |m,n, k, l〉 . (3.1.24)

Then one can define an extended quadratic generator

T := BH + W , such that [JA, T] |m,n, k, l〉 = 0 , (3.1.25)

for all JA ∈ psu(2|2)C . This generator is called the generalized quadratic Casimir operator
of psu(2|2)C . The generator B is closely related to the so-called ‘secret’ symmetry of the
AdS/CFT. We will consider this symmetry in more detail in Section 5.

3.1.1.2 Yangian

The Yangian algebra for planar AdS/CFT was constructed in [20] and has been further
investigated in [109, 113, 128–132]. The coproducts of the Yangian charges are defined as

∆(ĴA) = ĴA ⊗ 1 + U[[A]] ⊗ ĴA + 1
2f

A
BC U[[C]]JB ⊗ JC , (3.1.26)

and the opposite coproducts are

∆op(ĴA) = ĴA ⊗ U[[A]] + 1⊗ ĴA − 1
2f

A
BC JB ⊗ U[[B]] JC . (3.1.27)

The Cartan-Killing form gAD of psu(2|2)C is degenerate and thus the symbols fABC can
not be obtained directly from the structure constants fABC of the Lie algebra (3.1.2). How-
ever there is a number of ways to overcome this obstacle, for example by employing the
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exceptional superalgebra d(2, 1; ε) [128]. In such a way the explicit expressions of the
coproducts are given by

∆(R̂ b
a ) = R̂ b

a ⊗ 1 + 1⊗ R̂ b
a + 1

2 R
c
a ⊗ R b

c − 1
2 R

b
c ⊗ R c

a

− 1
2 U

+1 G γ
a ⊗Q b

γ − 1
2 U
−1 Q b

γ ⊗G γ
a

+ 1
4 δ

b
aU+1 G γ

c ⊗Q c
γ + 1

4 δ
b
aU−1 Q c

γ ⊗G γ
c ,

∆(L̂ β
α ) = L̂ β

α ⊗ 1 + 1⊗ L̂ β
α − 1

2 L
γ
α ⊗ L β

γ + 1
2 L

β
γ ⊗ L γ

α

+ 1
2 U

+1 G β
c ⊗Q c

α + 1
2 U
−1 Q c

α ⊗G β
c

− 1
4 δ

β
α U+1 G γ

c ⊗Q c
γ − 1

4 δ
β
α U−1 Q c

γ ⊗G γ
c ,

∆(Q̂ a
α ) = Q̂ a

α ⊗ 1 + U+1 ⊗ Q̂ a
α + 1

2 Q
c
α ⊗ R a

c − 1
2 U

+1 R a
c ⊗Q c

α

+ 1
2 Q

a
γ ⊗ L γ

α − 1
2 U

+1 L γ
α ⊗Q a

γ + 1
4 Q

a
α ⊗H− 1

4 U
+1 H⊗Q a

α

+ 1
2 εαγε

acCU−1 ⊗G γ
c − 1

2 εαγε
acG γ

c ⊗ C ,

∆(Ĝ α
a ) = Ĝ α

a ⊗ 1 + U−1 ⊗ Ĝ α
a − 1

2 G
α
c ⊗ R c

a + 1
2 U
−1 R c

a ⊗G α
c

− 1
2 G

γ
a ⊗ L α

γ + 1
2 U
−1 L α

γ ⊗G γ
a − 1

4 G
α
a ⊗H + 1

4 U
−1 H⊗G α

a

− 1
2 εacε

αγ C†U+1 ⊗Q c
γ + 1

2 εacε
αγ U−2 Q c

γ ⊗ C† ,

∆(Ĥ) = Ĥ⊗ 1 + 1⊗ Ĥ + U−2 C⊗ C† − U+2 C† ⊗ C ,

∆(Ĉ) = Ĉ⊗ 1 + U+2 ⊗ Ĉ− 1
2 U

+2 H⊗ C + 1
2 C⊗H ,

∆(Ĉ†) = Ĉ† ⊗ 1 + U−2 ⊗ Ĉ† + 1
2 U
−2 H⊗ C† − 1

2 C
† ⊗H . (3.1.28)

Quasi-commutativity. In order to have a quasi-commutative Hopf algebra the centre of
the algebra is required to be co-commutative. It was shown in [20] that the coproducts of
the central charges may be chosen to be co-commutative not only at the algebra level, but
also at the Yangian level. For this purpose one needs to define the following combinations
of Yangian generators,

Ĥ′ := Ĥ + α†C− αC† , Ĉ′ := Ĉ + 1
2 H (C− 2α) , Ĉ†′ := Ĉ† − 1

2 H (C† − 2α†) , (3.1.29)

which we can call the ‘deformed central charges’. These new deformed charges have
almost–trivial coproducts

∆(Ĥ′) = Ĥ′ ⊗ 1 + 1⊗ Ĥ′ , ∆(Ĉ′) = Ĉ′ ⊗ 1 + U+2⊗ Ĉ′ , ∆(Ĉ†′) = Ĉ†′ ⊗ 1 + U−2⊗ Ĉ†′ .
(3.1.30)

The coproduct of Ĥ′ is already co-commutative, while the co-commutativity of Ĉ′ and Ĉ†′
can be ensured by imposing additional constraints

Ĉ′ = β vC C , Ĉ†′ = β vC† C† , (3.1.31)

with some universal parameters vC , vC† and β. In such a way the generators Ĥ, Ĉ, Ĉ† are
also required to be co-commutative as they differ from the deformed central charges by



Worldsheet scattering 67

the central elements of the algebra only. We can also introduce a similar ansatz

Ĥ′ = β vH H, (3.1.32)

to have a complete set of expressions of the deformed central charges with vH being some
universal parameter as well. We have not introduced or assumed any relations between
the parameters vC , vC† and vH so far, we have merely required them to be universal1. We
will arrive at a set of constraints by constructing the evaluation representation. However
it is easy to see, that even at the representation level (on-shell) vH will remain uncon-
strained. This is because H and Ĥ′ are not only co-commutative but also commutative
charges.

Evaluation representation. The evaluation representation is constructed with the help
of the evaluation map ansatz

Ĵ |v〉 = γ (v + v0) J |v〉 . (3.1.33)

In such a way the deformed central charges (3.1.29) give

Ĉ′ |v〉 =
[
γ (v + v0)C + 1

2 H (C− 2α)
]
|v〉 = β vC C |v〉 ,

Ĉ†′ |v〉 =
[
γ (v + v0)C† − 1

2 H (C† − 2α†)
]
|v〉 = β vC† C† |v〉 , (3.1.34)

where at the final step we have imposed the constraints (3.1.31) and (3.1.32). Assuming
that all universal constants are equal vC = v†C = v0, these equations have a family of
solutions

v =
i g

γ
u+

β

γ
v0 − v0 , (3.1.35)

where u is the rapidity (3.1.22) of the magnon and the parameters β and γ remain uncon-
strained. A natural choice is

β = γ = i g , (3.1.36)

giving a simple, sensible solution v = u. The parameter v0 remains unconstrained, but is
conventionally set to v0 = 0.

3.1.2 S-matrix

Superspace representation. The worldsheet S-matrix is conveniently described on a
4M–dimensional graded vector space VM of monomials of degree M of two bosonic ωa
(a = 1, 2), and two fermionic variables θα (α = 3, 4) [108]. Any homogeneous supersym-
metric polynomial of degree M can be expressed as

ΦM (ω, θ) = φa1...aMωa1 · · ·ωaM + φa1...aM−1αωa1 · · ·ωaM−1θα

+ φa1...aM−2α1α2ωa1 · · ·ωaM−2θα1θα2 . (3.1.37)

1One the other hand, the universality condition is quite strong on its own.
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In such a way VM = Span(ΦM (ω, θ)).
Recall that M -magnon bound states form a supersymmetric short 4M–dimensional

representation of psu(2|2)C spanned by |m,n, k, l〉 ∈ VM (p). Set
〈
m,n, k, l

∣∣ := |m,n, k, l
〉†

and require the basis of VM (p) to be orthonormal,〈
a, b, c, d

∣∣m,n, k, l〉 = δamδbnδckδdl . (3.1.38)

Then there exists a canonical isomorphism ϕ between the vectors spaces VM (p) and VM
given by

ϕ : |m,n, k, l〉 7→ Nmnkl ω
k
1 ω

l
2 θ

m
3 θn4 , Nmnkl =

(
1

k! l!

)1/2

. (3.1.39)

Choose the hermitian conjugate operators to be

(ωa)
† =

∂

∂ωa
, (θα)† =

∂

∂θα
, (3.1.40)

and consider them to be real. Then the dual to vector space DM ' V†M is realized as the
space of polynomials of degreeM of the differential operators ∂

∂ωa
and ∂

∂θα
with a natural

pairing between DM and VM induced by the relations

∂

∂ωa
ωb = δab ,

∂

∂θα
θβ = δαβ . (3.1.41)

In such a way a superspace representation TM of psu(2|2)C can be defined via the follow-
ing differentian operators:

TM(L b
a ) = ωa

∂

∂ωb
− 1

2
δba ωc

∂

∂ωc
, TM(Q a

α ) = a θα
∂

∂ωa
+ b εabεαβ ωb

∂

∂θβ
,

TM(R β
α ) = θα

∂

∂θβ
− 1

2
δβα θγ

∂

∂θγ
, TM(G α

a ) = c εabε
αβ θβ

∂

∂ωb
+ dωa

∂

∂θα
, (3.1.42)

while the representation of the central generators is given by

TM(C) = a bN , TM(C†) = c dN , TM(H) = (a d+ b c)N , (3.1.43)

where N is a number operator

N = ωa
∂

∂ωa
+ θα

∂

∂θα
. (3.1.44)

The labels a, b, c, d are defined by (3.1.20). Finally, TM(U) = U .
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S-matrix. The S-matrix one the superspace can be viewed as an element of

SMN(p1, p2) ∈ End(VM ⊗ VN ) ≈ VM ⊗ VN ⊗DM ⊗DN , (3.1.45)

and is explicitly expressed as a differential operator

SMN(p1, p2) =
∑
i=1

ai (p1, p2) Λi , (3.1.46)

where Λi ∈ VM ⊗ VN ⊗ DM ⊗ DN span a complete basis of the differential operators
invariant under the su(2)⊕ su(2) algebra, and ai(p1, p2) are the scattering coefficients.

The fundamental S-matrix is obtained by setting M = N = 1 and is conveniently
denoted by SAA. The tensor product of two fundamental vector spaces V1 ⊗ V1 = W2 is
isomorphic to a 16-dimensional fundamental long representation of psu(2|2)C . Hence the
fundamental S-matrix is described as the second order differential operator

SAA(p1, p2) =
10∑
i=1

ai(p1, p2) Λi , (3.1.47)

where Λi are given by

Λ1 =
1

2

(
ω1
aω

2
b + ω1

bω
2
a

) ∂2

∂ω2
b∂ω

1
a

, Λ6 = ω2
aθ

1
α

∂2

∂ω2
a∂θ

1
α

,

Λ2 =
1

2

(
ω1
aω

2
b − ω1

bω
2
a

) ∂2

∂ω2
b∂ω

1
a

, Λ7 = εabω1
aω

2
b εαβ

∂2

∂θ2
β∂θ

1
α

,

Λ3 =
1

2

(
θ1
αθ

2
β + θ1

βθ
2
α

) ∂2

∂θ2
β∂θ

1
α

, Λ8 =
1

2
εαβθ1

αθ
2
βεab

∂2

∂ω2
b∂ω

1
a

,

Λ4 =
1

2

(
θ1
αθ

2
β − θ1

βθ
2
α

) ∂2

∂θ2
β∂θ

1
α

, Λ9 = ω1
aθ

2
α

∂2

∂ω2
a∂θ

1
α

,

Λ5 = ω1
aθ

2
α

∂2

∂ω1
a∂θ

2
α

, Λ10 = ω2
aθ

1
α

∂2

∂ω1
a∂θ

2
α

. (3.1.48)

The coefficients ai(p1, p2) are obtained by solving the intertwining equation(
(TM ⊗ TN)[∆op(JA)]SMN(p1, p2)− SMN(p1, p2) (TM ⊗ TN)[∆(JA)]

)
VM ⊗ VN = 0 .

(3.1.49)

with M = N = 1 for all JA ∈ psu(2|2)C . The equation above is sufficient to constrain all
coefficients ai(p1, p2) of SAA(p1, p2) up to an overall scalar factor, the so-called dressing
phase. This can be done using Wolfram Mathematica and involves a heavy usage of the
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mass-shell constraint (3.1.21) giving [18]:

a1 = 1 , a6 =
x−1 − x

−
2

x−1 − x
+
2

U2 ,

a2 = −1 + 2
x+

1 − x
+
2

x−1 − x
+
2

x−2 − 1
x+1

x−2 − 1
x−1

, a7 =

(
x−1 − x

+
1

) (
x+

1 − x
+
2

) (
x+

2 − x
−
2

)
α−1

(
x−1 − x

+
2

) (
1− x−1 x

−
2

)
U1γ1γ2

,

a3 =
x+

1 − x
−
2

x−1 − x
+
2

U2

U1
, a8 = −

α−1
(
x+

1 − x
+
2

)(
x−1 − x

+
2

) (
1− x−1 x

−
2

) γ1γ2

U2
1U2

,

a4 =

x−2 − x+
1

x−1 − x
+
2

+ 2
x+

1 − x
+
2

x−1 − x
+
2

x−1 − 1
x+2

x−1 − 1
x−2

U2

U1
, a9 =

x−1 − x
+
1

x−1 − x
+
2

γ2

γ1
,

a5 =
x+

1 − x
+
2

x−1 − x
+
2

1

U1
, a10 =

x−2 − x
+
2

x−1 − x
+
2

U2

U1

γ1

γ2
. (3.1.50)

In the same way, by solving the intertwining equation (3.1.49) for all Lie algebra gen-
erators, the bound state S-matrices SM1 and S1M for any M ≥ 2 can be obtained. This is
because the tensor space VM ⊗ V1

∼= V1 ⊗ VM = WM+1 is isomorphic to an irreducible
16M–dimensional long representation of psu(2|2)C .

However, in the case when M,N ≥ 2, the Lie algebra alone is not enough to fix all
coefficients of the bound state S-matrix SMN. This is because the tensor product of higher
order supersymmetric short representations generically yields a sum of long representa-
tions. To remedy this, one either needs to invoke the Yang-Baxter equation or use the
Yangian symmetry [108, 129].

The case M = N = 2 is exceptional. The tensor space V2 ⊗ V2 = W16 ⊕ W48 is
isomorphic to a sum of two 16– and 48–dimensional irreducible long representations
of psu(2|2)C . The corresponding S-matrix SBB has 48 scattering coefficients. Choose
a1(p1, p2) = 1. Then the Lie algebra constrains all but one of the remaining 47 coeffi-
cients. The last coefficient can be found by solving the Yang-Baxter equation [108] or by
employing the Yangian symmetry, i.e. by solving the intertwining equation (3.1.49) for all
ĴA ∈ Y(psu(2|2)C) [20, 109]. In such a way SBB serves as the simplest non-trivial test for
the Yangian symmetry.

Interestingly, there is an alternative way to obtain all 48 coefficients (up to an overall
dressing phase) of SBB. This S-matrix is specific because only 44 scattering coefficients
are non-zero. Thus by setting a1(p1, p2) = 1 and aj(p1, p2) = 0 for j = 45 . . . 48 (in terms
of the notation used in [108]) the remaining 43 coefficients are then uniquely defined by
the Lie algebra only [133]. However one needs to know that a45...48 are trivial in advance.

The non-local representation. In the last part of this section we will present a non-local
representation of psu(2|2)C . This representation has a very nice interpretation as we will
show a little bit further and will be heavily employed in Section 3.5 where we will discuss
boundary scattering for the D5-brane.
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ζ

ζeip1

ζeip1+ip2
p1

p2

−→
S(p1, p2)

−→
x−1 = x+

2

ζ

ζeip2

ζeip1+ip2p1p2

ζeip2

ζ
ζeip

p=p1+p2

Figure 3.1: Step 1. Scattering of two well-separated magnons in an LLM-type coordi-
nates [64,134]. Here the circle represents S2 ⊂ S5 of AdS5 × S5 where the string configu-
ration is extended (the standard choice being the Z56-plane) and the poly-line represents
a segment of a very long (closed) string with straight lines representing excitations. The
length of each straight line is proportional to the momentum pi of the excitation and thus
the total momentum of the excitations of string must be

∑
i pi = 2πn, n ∈ N. The direc-

tion of the string defines the increment of the phase. Here two excitations with momenta
p1 and p2 (ζ being the phase reference point) are participating in the scattering. The dia-
gram shows that the scattering of two states does not affect the rest of the string. Step 2.
Creation of a two-magnon bound state at the pole x−1 = x+

2 of the S-matrix. The resulting

bound state has momentum eip = eip1+ip2 =
x+1
x−1

x+2
x−2

=
x+1
x−2
≡ x+

x− .

The non-local representation is obtained by absorbing the non-trivial braiding of the
Hopf algebra into the definition of the representation labels a, b, c, d:

a =

√
g

2M
η, b =

√
g

2M

iζ

η

(
x+

x−
− 1

)
, c = −

√
g

2M

η

ζx+
, d = −

√
g

2M

x+

iη

(
x−

x+
− 1

)
.

(3.1.51)

These labels can be obtained from (3.1.20) by a simple map, α→ −iζ, g → g/2 and γ → η.
Here ζ = e2iξ is the magnon phase, and the unitarity constrains, η = eiξ eiϕ

√
i (x− − x+).

This representation is sometimes also called the ‘Utrecht’ basis, while the one in (3.1.20)
is called the ‘Potsdam’ basis.2

The magnon phase ζ is the non-local element in this representation and carries the
information about the total momentum of magnons standing left with respect to the
magnon under the consideration. In such a way the S-matrix in this representation has
a nice interpretation as shown in the Step 1 of figure 3.1. This representation is also very
transparent in showing the creation of bound states at the pole of the S-matrix, see Step
2 of figure 3.1.

The S-matrix on the superspace in the non-local basis is represented by

SMN : VM (p1, ζ)⊗ VN (p2, ζeip1)→ VM (p1, ζeip2)⊗ VN (p2, ζ) , (3.1.52)

2Such naming arose by the different groups working on the same topic at Utrecht and Potsdam but using
different notation. Furthermore, ‘Potsdam’ basis usually follows by Gothic scipt used to denote the algebra
elements of psu(2|2)C .
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where each vector space VM (pi, ζi) is now carrying an extra phase factor. The scattering
coefficient of SAA in this basis can be obtained from the ones in (3.1.50) by the following
prescription:

a1,2 → a1,2 , a5 → U1
η̃2

η2
a5 , a7 →

ζU1

iα

γ1γ2

η1η2
a7 , a9 →

γ1η̃2

γ2η1
a9 ,

a3,4 →
U1

U2

η̃1η̃2

η1η2
a3,4 , a6 →

1

U2

η̃1

η1
a6 , a8 →

iαU2

ζU2
1

η̃1η̃2

γ1γ2
a8 , a10 →

U1

U2

γ2η̃1

γ1η2
a10 , (3.1.53)

where

η1 = η(p1, ζ) , η̃1 = η(p1, ζeip1) , η2 = η(p2, ζeip1) , η̃2 = η(p2, ζ) . (3.1.54)

3.2 Boundary scattering

3.2.1 The spectrum of boundaries

The best known and most studied boundaries are the so-called Y = 0 and Z = 0 giant
gravitons that areD3-branes occupying the maximal S3 ⊂ S5 of theAdS5×S5 spacetime
[21,22,62,63,135–141]. In the gauge theory side of the duality these branes correspond to
determinant operators of scalar fields. We will consider the boundary Yangian symmetry
and scattering theory for these branes in detail in Section 3.3.

The second type of boundaries we will focus on is the so-called Y = 0 and Z = 0
D7-branes spanning AdS5 × S3 [23, 59, 61, 133, 142, 143]. The explicit description of these
branes in the gauge theory side of the duality is very different that of the D3-branes,
however the boundary scattering theory is almost the same: the reflection matrices for
the Y = 0 giant graviton and for the Y = 0D7-brane are equivalent, while the one for the
Z = 0 D7-brane factorizes in to two non-equivalent factors, left and right. The scattering
in the right factor is identical to that of the Z = 0 giant graviton, while the left factor does
not respect any supersymmetries and is somewhat similar to the Y = 0 case. We will
give the details on these branes in Section 3.4.

The last set of boundaries we will encounter are the ‘horizontal’ and ‘vertical’ D5-
branes wrapping a defect hypersurface AdS4 ⊂ AdS5 and a maximal S2 ⊂ S5 [59,61,133,
142–144]. These boundaries are very distinct as they are of the ‘achiral’ type and were
long thought not to be integrable [143, 145, 146]. The boundary scattering in this case
does not factorize into independent left and right factors as it does for the giant gravitons
and D7-branes, but becomes entangled. An incoming magnon living in the left factor of
theory emerges in the right factor after the reflection, and vice-versa for an incoming right
magnon [144]. Such boundary scattering has an underlying boundary Yangian symmetry
of an ‘achiral’ type which can be understood as a particular specialization of the twisted
Yangian of type I [24]. We will present this algebra and corresponding scattering theory
in Section 3.5.

The main properties characterizing the boundary scattering theory for the branes de-
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scribed above are as follows (here psu(2|2)+ is the diagonally embedded subalgebra):

Lie algebra representation

bulk magnons psu(2|2)× psu(2|2)× R3 vector × vector
Y =0 graviton su(2|1)× su(2|1) singlet× singlet
Z=0 graviton psu(2|2)× psu(2|2)× R3 vector × vector
Y =0 D7-brane su(2|1)× su(2|1) singlet× singlet
Z=0 D7-brane su(2)× su(2)× psu(2|2)× R3 singlet× vector
horizontal D5-brane psu(2|2)+× R3 singlet

vertical D5-brane psu(2|2)+× R3 vector

3.2.2 Reflected algebra

Reflection autmorphism. The braided structure of the algebra allows us to define an
automorphism κ which acts by inverting the braiding factor,

κ : psu(2|2)C → psu(2|2)C JA 7→ JA , U 7→ U = U−1 , (3.2.1)

where the under-barred generators JA ∈ psu(2|2)C . It is an involution, κ2 = id, and plays
the role of the reflection map of the algebra as we will show explicitly a bit further.

The automorphism κ is compatible with the Hopf algebra in the sense that one can
introduce a ‘reflected’ coproduct,

∆ref := (κ⊗ id) ◦∆ , ∆op.ref := (id⊗ κ) ◦∆op , (3.2.2)

giving

∆ref(JA) = JA ⊗ 1 + U−[[A]] ⊗ JA , ∆op.ref(JA) = JA ⊗ U−[[A]] + 1⊗ JA . (3.2.3)

The U[[A]]-braiding structure of the Hopf algebra implies that κ acts trivially on the
generators that are not charged under U (i.e. JA = JA if [[A]] = 0), thus

R b
a = R b

a , L β
α = L β

α , H = H , (3.2.4)

while (3.1.7) gives

C = g α (1− U−2) , C† = g α†(1− U+2) . (3.2.5)

We can further require κ to be in the outer–automorphism group, κ ∈ SL(2). Then

Q a
α

= u1 Q a
α − u2 ε

ab εαβ G β
b , C = u2

1 C + u2
2 C† + u1u2 H ,

G α
a = v1 G α

a − v2 εab ε
αβ Q b

β , C† = v2
1 C† + v2

2 C + v1v2 H ,

H = (u1v1 + u2v2)H + 2u1v2 C + 2u2v1 C† . (3.2.6)
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These relations are satisfied provided u2
1 = −U2, v2

1 = −U−2 and u2 = v2 = 0. Set λ = iU,
then κ is explicitly given by

κ :


R b
a , L

β
α , H

Q a
α , G α

a

C, C†

→


R b
a , L

β
α , H

λ−1 Q a
α , λG α

a

λ−2 C, λ2 C†

 . (3.2.7)

Reflected representation. The representation defined in section 3.1.1.1 describes mag-
nons with momentum p. The algebra automorphism κ, as can be easily deduced from
(3.2.1), acts on the representation by inverting momentum,

κ : U 7→ U−1 =⇒ κ : p 7→ −p , (3.2.8)

In such a way the map κ represents the reflection automorphism of the algebra, i.e. maps
magnons with momentum p to −p and vice versa. Let us now explicitly define the re-
flected representation.

The representation constraints are easily deduced to be

a d− b c = 1 , M a b = g α (1− U−2) , M c d = g α−1 (1− U2) . (3.2.9)

These can be solved in terms of the previously defined labels a, b, c, d. Thus (3.2.9)
together with (3.1.18) and (3.1.19) leads to

a =
γ

γ
a , b =

α2γ

γ

c d

a
, c =

γ

α2γ

a b

d
, d =

γ

γ
d , (3.2.10)

giving

a =

√
g

M
γ, b =

√
g

M

α

γ

(
1− x−

x+

)
, c = −

√
g

M

iγ

αx−
, d =

√
g

M

ix+

γ

(
x−

x+
− 1

)
.

(3.2.11)

Here we have chosen a = a γ/γ as an initial constraint. Then, by comparing (3.2.11) with
(3.1.20) we find that κ : x± 7→ −x∓ and κ : γ 7→ γ. We will give an explicit form of γ a
little bit further.

The relation between the representation labels (3.1.20) and (3.2.11) can be represented
by a compact matrix relation,(

a b

c d

)
D = T

(
a b

c d

)
T−1 where D =

(
γ/γ 0

0 γ/γ

)
, T =

(
U−2 0

0 −1

)
, (3.2.12)

Recall that κ ∈ SL(2) is in the outer–automorphism group and is given by

κ =

(
λ−1 0

0 λ

)
, where λ = iU . (3.2.13)
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Therefore (
a b

c d

)
=

(
−i U−1 0

0 i U

)(
a b

c d

)
. (3.2.14)

Then upon requiring (3.2.12) and (3.2.14) to be in consistency we find γ = −i U−1γ. Note
that the solution of (3.2.6) is λ2 = −U2, thus we could have equivalently chosen λ = −iU.
This choice leads to γ = i U−1γ. Thus we will further always retain γ and γ without going
into explicit form in order to avoid any disambiguities.

3.3 Giant gravitons

The maximal giant graviton is a D3-brane in AdS5 × S5 wrapping a topologically-trivial
cycle enclosing maximal S3 ⊂ S5, and is prevented from collapsing by coupling to the
background supergravity fields [114]. The usual parametrization of S5 is expressed in
terms of the complex coordinates X = Φ1 + iΦ2, Y = Φ3 + iΦ4, Z = Φ5 + iΦ6 respecting
|X|2 + |Y |2 + |Z|2 = 1, where the radius of S5 has been set to unity, R = 1. In this
parametrization the maximal giant graviton is obtained by setting any two Φi’s to zero.
However, any two such configurations are related to each other by an SO(6) rotation.
This symmetry can be broken by attaching an open string to the brane and giving it a
charge J corresponding to the preferred SO(2) ⊂ SO(6) rotation.

The parametrization in complex coordinates makes it easy to translate this setup to
the gauge theory side. The triplet X , Y , Z can be thought of as representing the three
complex scalar fields of the N = 4 super Yang-Mills. Then the field theory description
of the string in the large J limit carries a large number of insertions, called the Bethe
vacuum state, of the field corresponding to the preferred rotation, and a relatively small
number of other fields, called excitations (or simply magnons). The explicit description of
the string in the gauge theory depends on the choice of the particular generator J and the
relevant orientation of the giant graviton inside S5. The two relevant cases are obtained
by choosing J = J56 and the giant graviton to be the maximal three sphere given by
Y = 0 or Z = 0 with the standard Bethe vacuum on the string being Z = X5 + iX6 [135].

Let us take a closer look at the string theory description of this setup. The Y = 0 giant
graviton covers the whole disk in the Z plane and wraps an S1 inside the S3 attached to
each point of the plane. In such a way an open string attached to the Y = 0 giant graviton
in the large J limit is just a string stretched between two points on the rim. Note that there
is an additional S3 at each point of the Z-plane, thus the string does not necessary need
to be contained on the D-brane, see figure 3.2 (left).

In this picture, the Z = 0 giant graviton is simply a point at Z = 0 and wraps entire
S3 attached to the Z = 0 point. Then the open string attached to the Z = 0 giant graviton
and carrying a large charge J starts at the centre of the circle, extends to the rim, and ends
at centre again, see figure 3.2 (right). This configuration suggest that the string is carrying
boundary degrees freedom. This is indeed true as we will see explicitly at gauge theory
side of the duality.
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Figure 3.2: Left: A large J string attached to the Y = 0 giant graviton in the Z plane.
The graviton is filling the whole plane. The black dots represent the points where the
string is attached to the graviton. Straight segments of the string represent the worldsheet
excitations propagating along the string. Right: A large J string attached to the Z = 0
giant graviton in the Z plane. The graviton is the thick black dot at the centre of the
Z plane. The boundary degrees of freedom correspond to the segments of the string
connecting the centre to the rim of the circle.

The Y = 0 giant graviton in the gauge theory is described as a single trace gauge
invariant baryon-like operator det(Y ) with J = N [116]. In the large-N limit this oper-
ator has no dynamics of its own and serves as ‘an infinitely heavy boundary’. Then by
attaching an open string one obtains

OY = ε
j1j2...jN−1A
i1i2...iN−1B

Y i1
j1
Y i2
j2
. . . Y

iN−1

jN−1
(ZZ . . . ZZ)BA . (3.3.1)

Here the string is in the ‘ground state’ and thus is composed entirely of the Bethe vacuum
states Z. One can further introduce some impurities χ to propagate along the string,

OY = ε
j1j2...jN−1A
i1i2...iN−1B

Y i1
j1
Y i2
j2
. . . Y

iN−1

jN−1
(Z . . . Zχ1Z . . . Zχ2Z . . . Z)BA . (3.3.2)

We assume that the number of impurities χ is much smaller than the number of Z’s and
all impurities are separated from each other by a large number of Z’s. In such a way
the scattering of two impurities along the chain of Z’s is described by the worldsheet S-
matrix considered in Section 3.2. In a similar way, the reflection of the impurities from the
ends of the chain is described by the worldsheet reflection K-matrix. We will construct
this K-matrix in the following section.

In case of an open string attached to theZ = 0 giant graviton the corresponding gauge
invariant operator is given by

OZ = ε
j1j2...jN−1A
i1i2...iN−1B

Zi1j1Z
i2
j2
. . . Z

iN−1

jN−1
(χ′Z . . . Zχ1Z . . . Zχ2Z . . . Zχ

′′)BA , (3.3.3)

where the impurities χ′ and χ′′ are attached to the ends of the Z-chain and are called the
boundary states. In the absence of the boundary states the operator OZ would factorize
into a determinant and an independent single trace operator and thus would describe a
non-interacting system of a giant graviton and a closed string [63].
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In the large J limit the string worldsheet is a very long segment. Consequently, the
left and right boundaries are well separated and can be treated independently; thus the
boundary scattering becomes equivalent to scattering on a semi-infinite line. In AdS/CFT
this translates into the description of a magnon incoming from infinity, reflecting from the
boundary, and returning back to infinity. Hence the asymptotic states are interpolating
between the usual vacuum of BMN states [58] and the boundary. This treatment allows
us to employ the usual S-matrix technique to study the boundary scattering.

3.3.1 Y=0 giant graviton

We will further consider boundary symmetries and the scattering theory for the Y = 0
giant graviton. For complete details on the setup of this boundary we refer to [135].

3.3.1.1 Boundary symmetries

The symmetry algebra in the bulk is given by two copies, left and right, of psu(2|2)C . The
Y = 0 giant graviton preserves the subgroup which is also preserved by the field Y . This
restricts the symmetry algebra on the boundary to be two copies h = su(2|1) and has no
degrees of freedom attached to the end of the spin chain, as we have discussed above.
This allows us to consider the left and right factors of the boundary algebra indepen-
dently.

The commutation relations of su (2|1) are acquired from (3.1.2) by dropping the gener-
ators with bosonic indices a, b, c, ... = 1 (or equivalently with 2). It is straightforward to
check that the subalgebra h and the subset of ‘broken’ generators m = psu(2|2)C\h given
by

h = {L β
α , R 2

2 , Q 2
α , G α

2 , H} , m = {R 2
1 , R 1

2 , Q 1
γ , G

γ
1 , C, C†} , (3.3.4)

satisfy
[h, h] ⊂ h , [h,m] ⊂ m , [m,m] ⊂ h , (3.3.5)

thus form a symmetric pair. In such a way the theory should have an underlying Yangian
symmetry, which corresponds to a generalized twisted Yangian of type I.

Twisted Yangian. The twisted Yangian of the Y = 0 giant graviton is of type I and is
generated by the level-0 generators and the twisted level-1 Yangian generators

J̃P := ĴP + 1
4 f

P
QI

(
JQ JI + (−1)[Q][I] JI JQ

)
= ĴP − 1

4 [Th, JP ] , (3.3.6)

where JP , JQ ∈ h and JI ∈ m and (−1)[Q][I] is the fermionic grading factor; Th is the
generalized quadratic Casimir operator (3.1.25) restricted to the subalgebra h,

Th = −2HY + 2R 1
1 R 1

1 − L δ
γ L γ

δ + Q 2
γ G γ

2 −G γ
2 Q 2

γ . (3.3.7)



78 Integrable boundaries in AdS/CFT

In such a way we obtain 3

Q̃ 1
α = Q̂ 1

α − 1
4

[
Th,Q 1

α

]
, R̃ 2

1 = R̂ 2
1 − 1

4

[
Th,R 2

1 ] , C̃ = Ĉ− 1
4

[
Th,C] ,

G̃ α
1 = Ĝ α

1 − 1
4

[
Th,G α

1 ] , R̃ 1
2 = R̂ 1

2 − 1
4

[
Th,R 1

2 ] , C̃† = Ĉ† − 1
4

[
Th,C†] . (3.3.9)

These twisted Yangian generators satisfy the usual Lie algebra commutation relations;
their coproducts are given by

∆(Q̃ 1
α ) = Q̃ 2

α ⊗ 1 + U⊗ Q̃ 2
α + Q 2

α ⊗H′ − UR 2
1 ⊗Q 1

α + Q 2
γ ⊗ L γ

α − εαγ U−1 C⊗G γ
1 ,

∆(G̃ α
1 ) = G̃ α

1 ⊗ 1 + U−1⊗ G̃ α
1 −G α

1 ⊗H′ + U−1R 2
1 ⊗G α

2 −G γ
1 ⊗ L α

γ − εαγUC† ⊗Q 1
γ ,

∆(R̃ 2
1 ) = R̃ 2

1 ⊗ 1 + 1⊗ R̃ 2
1 − 2R 2

1 ⊗ R 1
1 − UG γ

1 ⊗Q 2
γ ,

∆(R̃ 1
2 ) = R̃ 1

2 ⊗ 1 + 1⊗ R̃ 1
2 + 2R 1

2 ⊗ R 1
1 − U−1 Q 1

γ ⊗G γ
2 ,

∆(C̃) = C̃⊗ 1 + U2 ⊗ C̃ + C⊗H ,

∆(C̃†) = C̃†⊗ 1 + U−2 ⊗ C̃† − C†⊗H , (3.3.10)

and thus the coideal property is satisfied. Here H′ = R 1
1 + 1

2H, and we have used the
relation R 1

1 = −R 2
2 . Note that the structure constants fPQI in (3.3.6) are obtained from

the structure of Yangian Y(psu(2|2)C), but not from the Lie algebra itself. This is because
Lie algebra has a degenerate Cartan-Killing form and thus otherwise the terms with cen-
tral charges would absent from the twist. This is a specific feature of this algebra and
we will encounter it again when constructing the twisted Yangian algebras for the other
boundaries in the following sections. Finally we note that the twisted generator R̃ 1

2 is
equivalent to the conserved charge Q̃ introduced in [21].

3.3.1.2 Boundary scattering

We will construct the boundary scattering for a single factor only. The complete reflection
matrix then follows straightforwardly.

Consider a fundamental magnon which transforms irreducibly in the fundamental
representation � of psu(2|2)C . In terms of the boundary Lie algebra, the fundamental
magnon transforms in the supersymmetric representation �� of su(2|1). Thus the bound-
ary Lie algebra defines the fundamental reflection matrix up to an overall dressing phase.
The dressing phase can obtained by considering the crossing equations. In such a way
the reflection matrix and the dressing phase found in [135].

3 The explicit form of the twisted Yangian generators is

Q̃ 1
α = Q̂ 1

α − 1
4
{Q 2

α , R 1
2 }+ 1

4
{R 1

1 , Q 1
α }+ 1

4
{Q 1

γ , L γ
α }+ 1

4
Q 1
α H + 1

2
εαγ CG γ

2 ,

G̃ α
1 = Ĝ α

1 + 1
4
{G α

2 , R 2
1 } − 1

4
{R 1

1 , G α
1 } − 1

4
{G γ

1 , L
α
γ } − 1

4
G α

1 H− 1
2
εαγ C†Q 2

γ ,

R̃ 2
1 = R̂ 2

1 − 1
2
{R 2

1 , R 1
1 }+ 1

4
[Q 2
γ , G γ

1 ] , C̃ = Ĉ + 1
2
CH ,

R̃ 1
2 = R̂ 1

2 + 1
2
{R 1

2 , R 1
1 }+ 1

4
[G γ

2 , Q
1
γ ] , C̃† = Ĉ† − 1

2
C†H . (3.3.8)
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A two-magnon bound state transforms irreducibly in the supersymmetric represen-
tation �� of psu(2|2)C , but in a reducible representation ����⊕ ��

�� of su(2|1). There-
fore one further needs either the boundary Yang-Baxter equation or boundary Yangian
symmetry to fix the ratio between the representations of su(2|1). A conserved Yangian
charge and the two-magnon bound state reflection matrix was found in [21]. The com-
plete boundary Yangian was then constructed in [22].

Consequently, the number of reducible components grows linearly with bound state
number M and the Yangian symmetry becomes crucial. The generic M -magnon bound
state reflection matrix was constructed in [139].

Our goal is to show the role of the boundary Yangian, thus we will not worry about
the overall dressing phase. We will use an orthogonal, but not orthonormal basis. This is
to avoid unpleasant numeric factors appearing in the expressions. The reflection matrix
in the orthonormal basis can be found in [139].

Reflection matrix. The boundary we are considering forms a trivial (singlet) represen-
tation of the boundary algebra, and is conveniently represented by a boundary vacuum
state |0〉B ∈ V (0) which is annihilated by generators of the boundary algebra [16]. Here
V (0) is an one-dimensional boundary vector space and will not play any role in the
boundary scattering we will be considering further in this section.

Let us define the boundary reflection matrix to be the intertwining matrix

K(p) |m,n, k, l〉 ⊗ |0〉B = K
(a,b,c,d)
(m,n,k,l)(p) |a, b, c, d〉 ⊗ |0〉B , (3.3.11)

where |m,n, k, l〉 ∈ V (p). The vector space V (p) is 4M -dimensional and can be decom-
posed into four 4M = (M + 1) + (M − 1) + M + M subspaces that have an orthogonal
basis

|k〉1 = |0, 0, k,M−k〉 , k = 0 . . .M ,

|k〉2 = |1, 1, k−1,M−k−1〉 , k = 1 . . .M − 1 ,

|k〉3 = |1, 0, k,M−k−1〉 , k = 0 . . .M − 1 ,

|k〉4 = |0, 1, k,M−k−1〉 , k = 0 . . .M − 1 . (3.3.12)

Symmetry constraints. The reflection matrix (3.3.11) is required to satisfy the following
intertwining equation(

K ∆(JA)−∆ref(JA)K
)
|m,n, k, l〉 ⊗ |0〉B = 0 , (3.3.13)

for all JA in the boundary algebra. The invariance under the bosonic generators R 1
1 and

L β
α constrain the reflection matrix up to five independent sets of reflection coefficients

K |k〉1 = Ak |k〉1 +Dk |k〉2,
K |k〉2 = Bk |k〉2 + Ek |k〉1,
K |k〉α = Ck |k〉α, (3.3.14)
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where we have dropped the boudary vacuum state, and the basis (3.3.12) was chosen is
such a way that the reflection matrix would act diagonally on the quantum number k.

For computational purposes it is convenient represent the reflection matrix on the
superspace as the following differential operator

KM(p) =
∑
i

ri(p) Λi , (3.3.15)

where Λi ∈ VM ⊗DM span a complete basis of the differential operators invariant under
the boundary algebra, and ri(p) are the reflection coefficients. Set

|k〉1 = ωk1 ω
M−k
2 , |k〉2 = ωk−1

1 ωM−k−1
2 θ3 θ4 , |k〉α = ωk1 ω

M−k−1
2 θα . (3.3.16)

Then (3.3.11) on the superspace is given by

KM =
M∑
k=0

Ak Λk1 +
M−1∑
k=1

Bk Λk2 +
M−1∑
k=0

Ck Λk3 +
M−1∑
k=0

Dk Λk4 +
M−1∑
k=0

Ek Λk5 , (3.3.17)

where

Λk1 =
ωk1 ω

M−k
2

k! (M−k)!

∂2

∂ωk1 ∂ω
M−k
2

,

Λk2 =
ωk−1

1 ωM−k−1
2 θ3θ4

(k−1)! (M−k−1)!

∂M−2

∂ωk−1
1 ∂ωM−k−1

2

∂2

∂θ4 ∂θ3
,

Λk3 =
ωk1 ω

M−k−1
1 θα

k! (M−k−1)!

∂M−1

∂ωk1 ∂ω
M−k−1
1

∂

∂θα
,

Λk4 =
ωk−1

1 ωM−k−1
2 θ3θ4

k! (M−k)!

∂2

∂ωk1 ∂ω
M−k
2

,

Λk5 =
ωk1 ω

M−k
2

(k−1)! (M−k−1)!

∂M−2

∂ωk−1
1 ∂ωM−k−1

2

∂2

∂θ4 ∂θ3
. (3.3.18)

Finally, the intertwining equation (3.3.13) on the superspace becomes(
TM( JA)KM(p)−KM(p) TM( JA)

)
VM = 0 . (3.3.19)

Let us start by determining the ‘corner’ relations - the constraints for the coefficients
A0, D0, C0 and AM , DM , CM . Consider the scattering of the ‘lowest’ state |0〉1 = ωM2 ,

KM |0〉1 = A0 |0〉1, thus D0 = 0 . (3.3.20)

The invariance equation for the generator Q 2
4(

KM TM(Q 2
4 )− TM(Q 2

4
)KM

)
|0〉1 = 0 gives C0 =

a

a
A0 =

γ

γ
A0 . (3.3.21)
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We choose the overall normalization to be A0 = 1. Then similar considerations for the
‘highest’ state |M〉1 = ωM1 give

DM = 0 and AM =
c

c
CM−1 = −U−2 γ

γ
CM−1 . (3.3.22)

The next step is to consider states |k〉α. The twisted Yangian generator R̃ 2
1 acts on

these states as a raising operator

TM(R̃ 2
1 ) |k〉α = fk(u)|k + 1〉α , TM(R̃ 2

1 ) |k〉α = fk(−u)|k + 1〉α,
where fk(u) = 1

2(M − k − 1)(2igu+M − 2k − 2) . (3.3.23)

Notice that these states scatter diagonally. Thus the interwtining equation gives

Ck+1 fk(u)− fk(−u)Ck = 0, (3.3.24)

leading to an iterative relation

Ck =
fk−1(−u)

fk−1(u)
Ck−1 =

2igu−M + 2k

−2igu−M + 2k
Ck−1 . (3.3.25)

This relation is then simply solved by

Ck = C0

k∏
n=1

2igu−M + 2n

−2igu−M + 2n
. (3.3.26)

The coefficients Ck are (anti)symmetric under the interchange k →M−k−1 forM being
(even)odd,

Ck = −CM−k−1 for M = even and k = 0, ... , M/2− 1,

Ck = CM−k−1 for M = odd and k = 0, ... , (M − 1)/2− 1. (3.3.27)

This symmetry comes by requiring the reflection to be symmetric under the renaming of
bosonic indices 1 ↔ 2 as the reflection is of a diagonal type for the states |k〉α. However
this is not the case for the states |k〉1,2, thus there is no such symmetry for the rest of the
reflection coefficients.

The remaining reflection coefficients, as we shall show, will be expressed in terms of
Ck and Ck−1. Thus by solving the intertwining equation for the generators Q 2

4 and G 4
2

and the states |k〉1,2, we obtain the following set of separable equations

Dk b− (M−k) (Ck a−Ak a) = 0 , Ck b− (M−k)Ek a−Bk b = 0 ,

Dk d+ k (Ck−1 c−Ak c) = 0 , Ck−1 d+ kEk c−Bk d = 0 , (3.3.28)

having a unique solution

Ak = (k Ck−1 b c+ (M−k)Ck a d) /N , Dk = k(M−k) (Ck a c− Ck−1 a c) /N ,

Bk = (k Ck b c+ (M−k)Ck−1 a d) /N , Ek = (Ck b − Ck−1 b d) /N , (3.3.29)
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where the normalization factor is N = M ad − k . In terms of the x± parametrization
these read as

Ak =
(
(M−k)Ck(x

+)2 − k Ck−1

) x−

x+N ′
γ

γ
, Dk =

γγ

α

k(M−k) (Ckx
+ + Ck−1x

−)

N ′(x+ − x−)
,

Bk =
(
(M−k)Ck−1(x−)2 − k Ck

) x+

x−N ′
γ

γ
, Ek =

(
Ckx

+ + Ck−1x
−) x− − x+

N ′
α

γγ
,

(3.3.30)

where N ′ = k + (M − k)x−x+.
Finally, a straightforward check shows that the unitary property holds,

KM (−p)KM (p) = 1 . (3.3.31)

Fundamental representation. The fundamental reflection matrix KA(p) is obtained by
setting M = 1. The states |k〉2 are absent in this case and the reflection matrix is of
diagonal form. In such a way KA(p) may be conveniently represented on the superspace
as

KA(p) = A1(p)ω1
∂

∂ω1
+A0(p)ω2

∂

∂ω2
+ C0(p) θα

∂

∂θα
. (3.3.32)

In this case the boundary Lie algebra is enough to constrain all of the reflection coeffi-
cients up to an overall scalar factor,

A0 =
a

a
C0 =

γ

γ
C0 , A1 =

c

c
C0 = − γ

γ

x−

x+
C0 . (3.3.33)

Then, by choosing the normalization to be A0 = 1, this is in agreement with [135].

ζ

ζeipp

−→
K(p)

ζ
ζe−ip

−p

Figure 3.3: Reflection from the right boundary of a magnon living on a semi-infinite string
with ζ being the reference point.

Non-local representation. To end up this section we want to give the non-local super-
space representation of the reflection from the Y = 0 giant graviton. The reflection matrix
in this representation is given by the following map,

KM : VM (p, ζ)⊗ 1→ VM (−p, ζ)⊗ 1 , (3.3.34)
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which can be nicely represented on a LLM-type diagram, see figure 3.3.

3.3.1.3 Mirror model

A mirror model of the Y = 0 graviton corresponds to a spin chain ending on a boundary
which has no degrees of freedom, and preserves only a h̃ = su(2|1) subalgebra of the bulk
symmetry algebra, which is obtained from the psu(2|2)C by dropping generators with
fermionic indices α, β, γ, . . . = 3 (or equivalently with 4). In such a way the boundary
algebra structure is

h̃ = {R b
a , L 3

3 , Q a
3 , G 3

a } , m̃ = {L 4
3 , L 3

4 , Q a
4 , G 4

a , C, C†} , (3.3.35)

where m̃ = psu(2|2)C\h̃, and h̃ and m̃ is a symmetric pair. Therefore this boundary has an
underlying generalized twisted Yangian algebra of type I. However the Yangian algebra
in this case is redundant from the boundary scattering point of view. We will show this
in the following paragraphs.

Twisted Yangian. The twisted Yangian for the mirror model is obtained in the same
way as for the regular model, and is generated by the level-0 generators JA ∈ h̃ and
level-1 twisted Yangian generators

Q̃ a
4 = Q̂ a

4 − 1
4

[
Th̃,Q a

4

]
, L̃ 4

3 = L̂ 4
3 − 1

4

[
Th̃,L 4

3 ] , C̃ = Ĉ− 1
4

[
Th̃,C] ,

G̃ 4
a = Ĝ 4

a − 1
4

[
Th̃,G 4

a ] , L̃ 3
4 = L̂ 3

4 − 1
4

[
Th̃,L 3

4 ] , C̃† = Ĉ† − 1
4

[
Th̃,C†] . (3.3.36)

where

Th̃ = −2HY + R b
a R a

b − 2L 3
3 L 3

3 + Q a
3 G 3

a −G 3
a Q a

3 . (3.3.37)

is the generalized quadratic Casimir operator restricted to h̃. The twisted Yangian gen-
erators satisfy the usual Lie algebra commutation relations; their coproducts are given
by

∆(Q̃ a
4 ) = Q̃ a

4 ⊗ 1 + U⊗ Q̃ a
4 + Q c

4 ⊗ R a
c + Q a

4 ⊗H′ − UL 3
4 ⊗Q a

3 − εadU−1 C⊗G 3
d ,

∆(G̃ 4
a ) = G̃ 4

a ⊗ 1 + U−1⊗ G̃ 4
a −G 4

c ⊗ R c
a −G 4

a ⊗H′ + U−1 L 4
3 ⊗G 3

a + εacUC† ⊗Q c
3 ,

∆(L̃ 4
3 ) = L̃ 4

3 ⊗ 1 + 1⊗ L̃ 4
3 + 2L 4

3 ⊗ L 3
3 + UG 4

c ⊗Q c
3 ,

∆(L̃ 3
4 ) = L̃ 3

4 ⊗ 1 + 1⊗ L̃ 3
4 + 2L 3

4 ⊗ L 4
4 + U−1 Q c

4 ⊗G 3
c ,

∆(C̃) = C̃⊗ 1 + 1⊗ C̃ + C⊗H ,

∆(C̃†) = C̃†⊗ 1 + 1⊗ C̃† − C†⊗H , (3.3.38)

where H′ = −L 3
3 + 1

2H , and we have used L 3
3 = −L 4

4 .
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Boundary scattering. The boundary scattering for the mirror model is very similar to
the Y = 0 giant graviton. The boundary is a singlet and thus the reflection matrix can be
represented on the superspace as the following differential operator

KM(p) =
∑
i

ri(p) Λi , (3.3.39)

where Λi ∈ VM ⊗DM span a complete basis of the differential operators invariant under
the boundary algebra. However, in this case, the matrixKM(p) is diagonal for any bound
state number M , and the boundary Lie algebra is enough to find all the reflection coef-
ficients up to an overall scalar factor. We will show this by considering reflection matrix
for fundamental and two-magnon bound states, and then we will generalize the obtained
results for arbitrary bound states.

The fundamental reflection matrix is given by

KA(p) = k1(p)ωa
∂

∂ωa
+ k2(p) θ3

∂

∂θ3
+ k3(p) θ4

∂

∂θ4
. (3.3.40)

Then solving the intertwining equation for generators Q 3
a and G a

3 leads to

k1(p) = 1 , k2(p) =
a

a
=

γ

γ
, k3(p) =

b

b
= −U2

γ

γ
, (3.3.41)

where we have chosen the overall normalization to be k1(p) = 1.
In the case of the reflection of the two-magnon bound states, the most general struc-

ture of the reflection matrix KB one may write is

KB(p) =

6∑
i=1

ki(p) Λi , (3.3.42)

where Λi with i = 1, ... , 4 are diagonal and Λ5, Λ6 are off-diagonal differential operators

Λ1 =
1

2
ωbωa

∂2

∂ωb∂ωa
, Λ2 = ωaθ3

∂2

∂ωa∂θ3
, Λ3 = ωaθ4

∂2

∂ωa∂θ4
,

Λ4 = θ3θ4
∂2

∂θ4∂θ3
, Λ5 = θ3θ4

∂2

∂ω2∂ω1
, Λ6 = ω1ω2

∂2

∂θ4∂θ3
. (3.3.43)

However, the off-diagonal reflection channels are forbidden by the boundary symmetry.
It is easy to see this by solving the intertwining equation for R 1

2 and M = 2 , giving

TM(R 1
2 )KB ω1ω1 = 2 k1 ω1ω2 , KB TM(R 1

2 )ω1ω1 = 2 k1 ω1ω2 + 2 k5 θ3θ4 , (3.3.44)

leading to k5 = 0, and similarly

TM(R 1
2 )KB θ3θ4 = k6 ω2ω2 , KB TM(R 1

2 ) θ3θ4 = 0 , (3.3.45)
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leading to k6 = 0. This is a general feature for the reflection of any M -magnon bound
states. Hence the generic M -magnon reflection matrix

KM(p) =
4∑
i=1

ki(p) Λi , (3.3.46)

is a diagonal matrix with

Λ1 =
1

M !
ωMa

∂M

∂Mωa
, Λ2 =

1

(M−1)!
ωM−1
a θ3

∂M

∂ωM−1
a ∂θ3

,

Λ3 =
1

(M−1)!
ωM−1
a θ4

∂M

∂ωM−1
a ∂θ4

, Λ4 =
1

(M−2)!
ωM−2
a θ3θ4

∂M

∂ωM−2
a ∂θ4∂θ3

. (3.3.47)

The boundary symmetry algebra constrains the reflection coefficients up to an overall
factor without need of the boundary Yangian symmetry. They are

k1(p) = 1 , k2(p) =
γ

γ
, k3(p) = −U2

γ

γ
, k4(p) = −U2

γ2

γ2
, (3.3.48)

Finally we want to give a remark noted in [139]. While giving a somewhat trivial
boundary scattering theory for the supersymmetric short representations, this model has
a non-trivial scattering theory for the anti-supersymmetric short representations. This
is the so-called mirror channel and is obtained by a double Wick rotation, i.e. by inter-
changing bosonic and fermionic indices. In such a way the role of the boundary Yangian
becomes crucial for the mirror model and leads to a reflection matrix equivalent to the
one of the Y = 0 giant graviton considered above. Consequently, the boundary scattering
for the Y = 0 giant graviton in the mirror channel becomes ‘trivial’ and is equivalent to
the one described in here.

3.3.2 Z=0 giant graviton

We will further consider boundary symmetries and the scattering theory for the Z = 0
giant graviton. Once again, for complete details on the setup of this boundary we refer
to [135].

3.3.2.1 Boundary symmetries

Boundary algebra. The Z = 0 giant graviton preserves the same supersymmetries as
the field Z. The boundary Lie algebra consists of two copies, left and right, of the non-
braided subalgebra of psu(2|2)C . We will denote this algebra as psu(2|2)CB . Furthermore,
it is a coideal subalgebra,

∆(b) ∈ psu(2|2)C ⊗ psu(2|2)CB for all b ∈ psu(2|2)CB . (3.3.49)

Let us show this explicitly.
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The central generators of the boundary algebra are required to be coreflective,

∆(H) = ∆ref(H) , ∆(C) = ∆ref(C) , ∆(C†) = ∆ref(C†) . (3.3.50)

This property is clearly satisfied for H as coproduct is not braided U (the hypercharge
is [[H]] = 0), while for C and C† this property introduces additional constraints on the
boundary algebra. Recall that

∆(C) = C⊗ 1 + U+2 ⊗ C , ∆ref(C) = C⊗ 1 + U−2 ⊗ C ,
∆(C†) = C† ⊗ 1 + U−2 ⊗ C† , ∆ref(C†) = C† ⊗ 1 + U+2 ⊗ C† . (3.3.51)

Thus (3.3.50) gives

(C− C)⊗ 1 = (U−2 − U+2)⊗ C, (C† − C†)⊗ 1 = (U+2 − U−2)⊗ C†, (3.3.52)

which together with (3.1.7) lead to the following relations

C⊗ 1 = g α
(
1− U−2

)
⊗ 1 , 1⊗ C = 1⊗ g α ,

C†⊗ 1 = g α†
(
1− U+2

)
⊗ 1 , 1⊗ C†= 1⊗ g α† . (3.3.53)

Note that the tensor space structure above is psu(2|2)C ⊗ psu(2|2)CB . In such a way the
element U never appears in the second factor, and thus is not in the boundary algebra
psu(2|2)CB .

Boundary representation. The boundary forms a vector representation of psu(2|2)CB .
The boundary representation constraints are easily deduced to be

M aB bB = g α , M cB dB = g α† , aB dB − bB cB = 1 , (3.3.54)

where the last relation is the boundary mass-shell constraint. Here we have added the
subscript B to discriminate boundary representation labels from the bulk labels a, b, c, d.
A convenient parametrization satisfying these constraints is given by [135]

aB =

√
g

M
γB , bB =

√
g

M

α

γB
, cB =

√
g

M

iγB
αxB

, dB =

√
g

M

xB
iγB

. (3.3.55)

The boundary mass-shell constraint in this parametrization becomes

xB +
1

xB
=
iM

g
. (3.3.56)

The unitarity requirement imposes an additional constraint, γB = eiϕB
√
−ixB . In such

a way this representation is just an M -particle bound state representation with different
labels. Interestingly, boundary labels can be obtained from the bulk ones in (3.1.20) by
a simple bulk-to-boundary map x± 7→ ±xB together with the rescaling of the coupling
constant g → g/2. This rescaling is introduced to cancel the factor of

√
2 appearing due

to the bulk-to-boundary map of γ, i.e. γ 7→
√

2 γB . In such a way the M -magnon bound-
ary bound state can be interpreted as a bulk 2M -magnon bound state with a maximal
momentum, p = π, i.e. it is the state at the end of the Brillouin zone.
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Twisted Yangian. The twisted Yangian of the Z = 0 giant graviton is of type II and
is generated by the level-0 generators JA of psu(2|2)C and the twisted level-2 charges˜̃JCB [23]

˜̃JCB = [ ĴC , ĴB}+ 1
2(−1)|D||B|fCDE JD[ ĴB, JE}+ 1

2(−1)|D||C|fBDE JD[ JE , ĴC} , (3.3.57)

where [ , } represents a graded commutator and (−1)|D||B| with (−1)|D||C| are grade fac-
tors. The explicit form of these twisted level-2 charges is rather bulky and not very il-
luminating, thus we do not write them all explicitly. As an example we give an explicit
form of a single twisted level-2 supercharge:

˜̃Gβ,e
a,d :=

[
Ĝ β
a , R̂ e

d

]
+ 1

2 R̃
β,e
a,d −

1
2 G̃

β,e
a,d , (3.3.58)

where

R̃β,e
a,d =

[
R c
a , R̂ e

d , G β
c

]
+
[
L β
γ , R̂ e

d , G γ
a

]
+ εacε

βρ
[
Q c
ρ , R̂ e

d

]
C† + 1

2

[
R̂ e
d , G β

a

]
H ,

G̃ δ,b
d,a =

[
R c
a , Ĝ δ

d , R b
c

]
+
{
G γ
a , Ĝ δ

d , Q b
γ

}
− 1

2 δ
b
a

{
Q c
ρ , Ĝ δ

d , G ρ
c

}
. (3.3.59)

Here [a, b, c] = abc − cba and {a, b, c} = abc + cba. Note that the term with parameter t
is not present in (3.3.57). This is because the intertwining equation gives the additional
constraint t = 0.

Finally, for finding the expressions of the reflected coproducts one has to use (3.2.2)
together with

∆ref(ĴA) = Ĵ
A
⊗ 1 + U−[[A]] ⊗ ĴA + fABC U−[[C]] JB ⊗ JC . (3.3.60)

The prescription (3.3.57) has a down side. In general, it gives a linear combination
of the level-2 and level-0 charges, and thus it is hard to identify the central elements of
the algebra. Knowing these is very important as they are required to be coreflective, and
thus commute with the reflection matrix. This allows us to obtain the evaluation map for
the boundary states. For example, the level-2 charges defined by

̂̂C ′ = εαβεab {Q̂ a
α , Q̂ b

β } ,
̂̂C†′ = εabεαβ {Ĝ α

a , Ĝ β
b } , (3.3.61)

in contrast to Ĉ, Ĉ† and C, C† are not central, but are shifted from the center by some

combination of the level-0 generators. Thus, it is not clear that the twisted charges ˜̃C ′
and ˜̃C †′ obtained using prescription (3.3.57) are coreflective. In fact, it is readily checked
that they are not. This problem can be resolved by switching to the Drinfeld second
realization of Y(psu(2|2)C) [5]. As was shown in [131], the level-2 charges4

̂̂C = {iQ̂ 1
4 − w2 , iQ̂ 2

3 − w3} ,
̂̂C† = {iĜ 4

1 − z2 , iĜ 3
2 − z3} , (3.3.62)

4We use the same notation as in [113].
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are central. Here

w2 = −1
4 {iQ

1
4 , κ2,0}+ 3i

4 Q 1
3 L 3

4 − i
4 R

1
2 Q 2

4 − i
4 Q

2
4 R 1

2 − i
4 L

3
4 Q 1

3 − i
2 G

3
2 C ,

w3 = −1
4 {iQ

2
3 , κ3,0} − i

4 Q
1

3 R 2
1 + 3i

4 R 2
1 Q 1

3 − i
4 Q

2
4 L 4

3 − i
4 L

4
3 Q 2

4 − i
2 G

4
1 C ,

z2 = −1
4 {iG

4
1 , κ2,0} − i

4 G
3

1 L 4
3 + 3i

4 L 4
3 G 3

1 − i
4 G

4
2 R 2

1 − i
4 R

2
1 G 4

2 − i
2 Q

2
3 C† ,

z3 = −1
4 {iG

3
2 , κ3,0} − i

4 G
4

2 L 3
4 − i

4 L
3

4 G 4
2 + 3i

4 G 3
1 R 1

2 − i
4 R

1
2 G 3

1 − i
2 Q

1
4 C† , (3.3.63)

and
κ2,0 = −R 1

1 + L 3
3 − 1

2 H , κ3,0 = R 1
1 − L 3

3 − 1
2 H . (3.3.64)

In such a way, applying (3.3.57) to (3.3.62) we find the twisted level-2 central charges

˜̃C =
˜̃C ′ + {w2, w3} ,

˜̃C† =
˜̃C†′ + {z2, z3} . (3.3.65)

Evaluation representation. The evaluation representation of the twisted Yangian gen-
erators is obtained by considering the coreflectivity property of the twisted central char-
ges (3.3.65). In such a way we find

∆(
˜̃C ) = ∆ref(

˜̃C ) , ∆(
˜̃C †) = ∆ref(

˜̃C †) =⇒ evw : ĴA 7→ igw JA , (3.3.66)

where w = iM
2g is the boundary spectral parameter. The same result may be obtained

heuristically by applying the bulk-to-boundary map x± 7→ ±xB to the bulk rapidity
(3.1.22) and using the boundary mass-shell constraint (3.3.56),

u = x+ +
1

x+
− iM

2g
7−→ xB +

1

xB
− iM

2g
=
iM

2g
= w . (3.3.67)

3.3.2.2 Boundary scattering

The boundary scattering for the Z = 0 giant graviton was presented in [135]. The left and
right sectors are equivalent and thus only one sector needs to be considered. Here we
shall give the description of the reflection matrix in terms of the superspace formalism,
which was introduced in [133].

The boundary forms a vector representation of the boundary algebra, thus the reflec-
tion matrix has essentially the same matrix structure as the worldsheet S-matrix. In such
a way the reflection matrix can be conveniently represented on the superspace exactly in
the same way as the corresponding S-matrix (see (3.1.45) and (3.1.46)),

KMN(p, s) =
∑
i=1

ki (p, s) Λi , (3.3.68)

where Λi ∈ VM ⊗ VN ⊗ DM ⊗ DN span a complete basis of the differential operators in-
variant under the su(2)⊕su(2) algebra, and ki(p, s) are the reflection coefficients; here p is
the momentum of the incoming magnon and s represents the parameters of the boundary
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magnon. The reflection coefficients can be obtained by solving the boundary intertwining
equation(

(TM ⊗ TB
N)[∆ref(JA)]KMN(p1, p2)−KMN(p1, p2) (TM ⊗ TB

N)[∆(JA)]
)
VM ⊗ VN = 0 .

(3.3.69)

for all JA in the boundary algebra; here TB
N is the boundary N -magnon bound state rep-

resentation given in the paragraph above.
The fundamental reflection matrix is obtained by setting M = N = 1 and is conve-

niently denoted by KAa,

KAa(p, s) =
10∑
i=1

ki(p, s) Λi . (3.3.70)

Here Λi are the same as in (3.1.48). By solving the boundary intertwining equation for
the boundary Lie algebra one finds [135]

k1 = 1 , k6 = −(x−)2 + x+xB
(xB − x−)x−

γ

γ
,

k2 = 1 + 2
(xB + x−)

(
(x−)2 − (x+)2

)
(xB − x−)x−x+

, k7 =
αxB (xB + x− − x+)

(
(x−)2 − (x+)2

)
U (xB − x−)x− γγB

,

k3 = −(xB + x+)

(xB − x−)

γ

γ
, k8 =

(xB + x− − x+) (x− + x+) γγB

αU (xB − x−)x−
,

k4 =

[
1− (2x+−x−)(xB+x−−x+)(x−+x+)

(xB − x−) (x−)2

]
γ

U2γ
, k9 =

(x+)2 − (x−)2

U (xB − x−)x−
γB
γ
,

k5 =
x−xB − (x+)

2

(xB − x−)x+
, k10 =

xB (x− + x+)

U (xB − x−)x−
γ

γB
, (3.3.71)

where the overall normalization is set to k1 = 1. This reflection matrix was first obtained
in [135] and the corresponding dressing phase was considered in [136].

The boundary Lie algebra also defines the bound state reflection matrices KM1 and
K1M for any M ≥ 2 uniquely up to an overall dressing phase. The most simple cases,
with M = 2, were reported in [133]. The generic bound state reflection matrix can be
found by employing the twisted Yangian algebra and using the same approach as it was
done for the bound state S-matrix in [109]. However, due to the highly complicated
structure of the twisted Yangian generators (see e.g. (3.3.59)) it is extremely challenging to
find reasonable and compact expressions of the generic bound state reflection coefficients.
Even the most simple case, with M = N = 2, is already of a very complicated form.
Some higher order bound state reflection matrices were calculated numerically and were
checked to satisfy the boundary Yang-Baxter equation, thus proving the validity of the
proposed Yangian [23]. The most simple and elegant bound state reflection matrices are
spelled out in Appendix B.

Non-local representation. To end up the discussion on the giant gravitons we want
to give the non-local superspace representation of the reflection from the Z = 0 giant
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ζ

ζeipp

s −→
K(p)

ζ
ζe−ip

−p

s

ζ
ζe−ip

s′

−→
xB = x−

Figure 3.4: Step 1. Reflection from the right boundary of a magnon living on a semi-
infinite string with ζ being the reference point. Here the dot in the center of the circle
corresponds to the Z = 0 giant graviton in the Z plane. The boundary degree of freedom
corresponds to the straight line connecting the rim of the circle with the dot (brane) in the
center. The boundary magnon has zero momentum but is allowed to have a continuous
parameter s which represents the energy of the state. Step 2. Construction of a two-
magnon boundary bound state appearing at the pole x− = xB of the K-matrix. The
spectral parameter of the emerging boundary bound state is x′B = xBe

ip = xB
x+

x− = x+.

graviton. The non-local boundary labels are

aB =

√
g

2
ηB, bB = −

√
g

2

iζ

ηB
, cB = −

√
g

2

ηB
ζxB

, dB =

√
g

2

xB
iηB

. (3.3.72)

These can be obtained from (3.3.55) by substituting α → −iζ, g → g/2 and γB → ηB
where ηB = eiξ

√
−ixB . The reflection matrix in this representation is given by the fol-

lowing map,

KMN : VM (p, ζ)⊗ VN (s, ζeip)→ VM (−p, ζ)⊗ VN (s, ζe−ip) . (3.3.73)

The LLM-type diagram for this boundary scattering is given step 1 of figure 3.4. The
pole 1/(xB − x−) in (3.3.71) signals the appearance of the boundary bound states. In
such a way an incoming magnon with an appropriate momentum gets adsorbed to the
boundary, as it is shown in step 2 of figure 3.4).

Finally, the reflection coefficients of KAa in this basis can be obtained from the ones
in (3.3.71) by the following prescription:

k1,2 → k1,2 , k5 →
√
U
η̃B
ηB

k5 , k7 →
ζU

iα

γ γB
η ηB

k7 , k9 → U
γ η̃B
γB η

k9 ,

k3,4 → U2γ η̃ η̃B
γ η ηB

k3,4 , k6 →
γ η̃

γ η
k6 , k8 →

iαU

ζ

η̃ η̃B
γ γB

k8 , k10 → U
γB η̃

γ ηB
k10 ,

(3.3.74)

where

η = η(p, ζ) , η̃ = η(−p, ζ) , ηB = ηB(ζeip) , η̃B = ηB(ζe−ip) . (3.3.75)
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3.4 D3-D7 brane system

The second system we will consider is the so-called ‘D3-D7-brane’ system, where the
stack of theD3-branes leads to theAdS5×S5 background, and theD7-brane is wrapping
the entireAdS5 and a maximal S3 ⊂ S5. This setup is conformal only in the strict large-N
limit where the backreaction of the D7-brane can be ignored.

The presence of theD7-brane breaks exactly half of the background supersymmetries.
In such a way the dual description is aN = 2 super-Yang Mills gauge theory with a single
chiral hypermultiplet of fundamental matter [142]. The addition of fundamental matter
provides a new way to form local gauge-invariant operators. In addition to the usual
closed chains of N = 4 fields, e.g.

Tr{Z . . . Zχ1Z . . . Zχ2Z . . . Z} (3.4.1)

constructed by taking the trace over the SU(N) colour indices, there are also operators of
the form

q̄Z . . . Zχ1Z . . . Zχ2Z . . . Zq (3.4.2)

where q, q̄ are fields in, respectively, the fundamental and anti-fundamental of SU(N).
Such operators in the planar limit N → ∞ can be thought of as open spin chains, with
the dilatation operator D playing the role of the Hamiltonian.

The boundary scattering depends crucially on the relative orientation of S3 and the
bulk Bethe vacuum field Z, and was presented in [143]. There are two important cases
of such configurations that we will consider in this section. They are the so-called Y = 0
and the Z = 0 D7-branes.

3.4.1 Z=0 D7-brane

The Z = 0 D7-brane is obtained by setting X5 = X6 = 0 in the parametrization of
S5. This choice breaks the SO(6) symmetry down to SO(4)1234 × SO(2)56. There are 16
supercharges invariant under the combination D − J56. However only half of them are
symmetries of the Z = 0 D7-brane. Thus this choice of embedding breaks half of the
residual supercharges – the left copy of psu(2|2)C . This leaves the boundary algebra to be

su(2)× su(2)× p̃su(2|2) nR3 . (3.4.3)

The field content of the N = 2 fundamental hypermultiplet consists of a doublet of
complex scalars φ and two Weyl fermions ψ+, ψ−. They are charged under the residual
symmetries as follows:

J12 J34 J56 so(1, 3) D

φ 0 1/2 0 [ 0 , 0 ] 1

ψ+ 0 0 +1/2 [0, 1/2] 3/2

ψ− 0 0 −1/2 [1/2, 0] 3/2

(3.4.4)
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Here so(1, 3) ⊂ so(2, 4) of the AdS5. The fundamental matter fields listed above form the
basis of the rightmost site of the underlying spin chain. Furthermore, they are required
to fall into the representations of the residual symmetry algebra. The leading role in the
boundary scattering theory is played by the states with the lowest value of ∆ = D− J56 ,
namely the doublet φ and ψ+, for which ∆ = 1. These states form the fundamental
representation � of p̃su(2|2), and correspond to the boundary degrees of freedom in the
scattering theory of the unexcited boundary. Similarly, the leftmost site of the spin chain
has an equivalent configurations furnished by the conjugate fields.

In such a way the fundamental matter fields transform in a (1,�) representation of
the bulk symmetry algebra psu(2|2)×p̃su(2|2). This setup leads to the factorizationK⊗K̃
of the complete reflection matrix, and thus two independent reflection processes need to
be considered, the reflection in the left and the reflection in the right factor of the brane.

The reflection in the right factor

K̃ : V (p)⊗ V (s)→ V (−p)⊗ V (s) , (3.4.5)

is equivalent to the reflection from the Z = 0 giant graviton discussed in Section 3.3.2.
The reflection in the left factor

K : V (p)⊗ 1→ V (−p)⊗ 1 , (3.4.6)

is a reflection from a non-supersymmetric singlet boundary. The fundamental reflection
matrix was found in [143], the bound state one was found in [133]; the boundary Yangian
algebra was revealed in [26]. We will next show the latter how the Yangian symmetry
was constructed.

3.4.1.1 Boundary symmetries

The boundary Lie algebra for the left factor of the Z = 0 D7-brane can be formally de-
composed as h = g/(m + c), where

h = {R a
b , L α

β , H} , m = {Q α
b , G a

β } , c = {C, C†} , (3.4.7)

and g = psu(2|2)C . This setup almost resembles the structure of a symmetric pair. In the
latter case the boundary scattering would be governed by a twisted Yangian Y(g, h) of
type I in a similar way as for the Y = 0 giant graviton. Unfortunately, in the present case
the symmetric pair structure breaks down due to the following relations

{Q a
α ,Q b

β } = εabεαβ C , {G α
a ,G

β
b } = εαβεabC† . (3.4.8)

In other words, the presence of the central charges prevents us from applying the generic
formalism discussed earlier. However, the algebra psu(2|2)C has an SL(2) outer auto-
morphism, which is realized as a mixing of the supercharges. This automorphism can
be used to rotate the central charges to a trivial point, C ≡ C† ≡ 0, in such a way the
commutation relations (3.4.8) in the rotated realization of the algebra are absent. We will
use an analogue of this automorphism on the level of the twisted charges to construct the
twisted Yangian.
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Modified twisted Yangian Y(g, h). Let us first ignore the fact that the central charges
C and C† are not symmetries of the boundary, and suppose they are in the boundary
algebra h. Then following the general twisted Yangian prescription and using the struc-
tural constants obtained from the Yangian Y(psu(2|2)C) as was explained in the previous
section, we obtain

Q̃′ aα = Q̂ a
α + tQQ

a
α + 1

4

(
Q c
α R a

c + R a
c Q c

α + Q a
γ L γ

α + L γ
α Q a

γ + HQ a
α − 2 εαγε

acCG γ
c

)
,

G̃′ αa = Ĝ α
a − tGG

α
a − 1

4

(
G α
c R c

a + R c
a G α

c + G γ
a L α

γ + L α
γ G γ

a + HG α
a − 2 εacε

αγ C†Q c
γ

)
.

(3.4.9)

The coproducts of these charges are

∆(Q̃′ aα ) = Q̃′ aα ⊗1 + U+1⊗ Q̃′ aα + Q c
α⊗ R a

c + Q a
γ ⊗ L γ

α + 1
2Q

a
α⊗H− εαγεacG γ

c U+2⊗ C,

∆(G̃′ αa ) = G̃′ αa ⊗1 + U−1⊗ G̃′ αa −G α
c ⊗ R c

a −G γ
a ⊗ L α

γ − 1
2G

α
a ⊗H + εacε

αγQ c
γ U−2⊗ C†.

(3.4.10)

As expected, we see that these charges violate the coideal property due to central charges
acting on the boundary. We can overcome this problem by adding a twist resembling the
SL(2) automorphism,

Q̃ a
α = Q̃′ aα + εαγε

ac (C− gα)G γ
c ,

G̃ α
a = G̃′ αa − εacεαγ (C† − gα−1)Q c

γ . (3.4.11)

The coproducts of the new charges are then readily found to be

∆(Q̃ a
α ) = Q̃ α

b ⊗ 1 + U+1 ⊗ Q̃ α
b + Q c

α ⊗ R a
c + Q a

γ ⊗ L γ
α + 1

2 Q
a
α ⊗H ,

∆(G̃ α
a ) = G̃ α

a ⊗ 1 + U−1⊗ G̃ α
a −G α

c ⊗ R c
a −G γ

a ⊗ L α
γ − 1

2 G
α
a ⊗H , (3.4.12)

and thus the coideal property is satisfied.
The parameters tQ and tG in the twist (3.4.9) are constrained by requiring the twisted

central charges

˜̃C = εabε
αβ{Q̃ a

α , Q̃ b
β } ,

˜̃C† = εαβε
ab{G̃ α

a , G̃
β
b } , (3.4.13)

to be coreflective. This gives a constraint tQ = tG =
√
g2 + 1/4. The square root may be

eliminated by using the fundamental mass-shell condition xB + 1/xB = i/g (3.3.56). In
such a way we obtain a very elegant expression, tQ = tG = ig/xB + 1/2.

3.4.1.2 Boundary scattering

The boundary we are considering is a singlet with respect to the boundary algebra, thus
it may be represented by the boundary vacuum state |0〉B which is annihilated by all gen-
erators of the boundary algebra [16]. We define the reflection matrix to be an intertwining
matrix

K |m,n, k, l〉 ⊗ |0〉B = K
(a,b,c,d)
(m,n,k,l) |a, b, c, d〉 ⊗ |0〉B . (3.4.14)
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The space of states |m,n, k, l〉 is 4M -dimensional and can be decomposed into four 4M =
(M + 1) + (M − 1) +M +M subspaces that have the orthogonal basis

|k〉1 = |0, 0, k,M−k〉 , k = 0 . . .M ,

|k〉2 = |1, 1, k−1,M−k−1〉 , k = 1 . . .M − 1 ,

|k〉3 = |1, 0, k,M−k−1〉 , k = 0 . . .M − 1 ,

|k〉4 = |0, 1, k,M−k−1〉 , k = 0 . . .M − 1 . (3.4.15)

The setup so far is of the same type as for the Y = 0 giant graviton considered in section
3.3.1.2, but the reflection matrix will be of a very simple form in this case.

The boundary Lie algebra in the left factor is generated by the bosonic generators R b
a

and L β
α , and the central charge H only. It constrains the reflection matrixK to be diagonal

for any k and M ,

K |k〉1 = A |k〉1 , K |k〉2 = B |k〉2 , K |k〉α = C |k〉α , (3.4.16)

where α = 3, 4 and we have dropped the boundary vacuum state. The standard normal-
ization isA = 1. This leaves the coefficientsB and C undetermined. However, due to the
simple form of the reflection matrix, these can readily be found by solving the boundary
Yang-Baxter equation. It factorizes in this case, and thus can be solved by the method of
separating variables. Consequently one finds

B =
xB + x+

xB − x−
γ

γ
, C =

(xB + x+)(1− xBx+)

(xB − x−)(1 + xBx−)

γ2

γ2
, (3.4.17)

where the parameter xB satisfies the fundamental mass-shell constraint xB +1/xB = i/g.
This constraint is obtained by considering the ‘supersymmetric’ matrix elements of the
boundary Yang-Baxter equation, e.g. 3〈ki| ⊗ 4〈kj |BYBE |km〉1 ⊗ |kn〉1 leading to(

A2 γ2 −B2 γ2

)(
B1 γ1 x

−
1 +A1 γ1 x

+
1

)
−
(
A1 γ1 −B1 γ1

)(
B2 γ2 x

−
2 +A2 γ2 x

+
2

)
= 0 ,

(3.4.18)

where Ai = A(pi) and Bi = B(pi). This equation can be solved by separating variables
and setting

Bi γi x
−
i +Ai γi x

+
i

Ai γi −Bi γi
= xB . (3.4.19)

The inspection of the rest of the matrix elements of BYBE constrains xB to satisfy the fun-
damental mass-shell constraint. The explicit expression of Ci then follows after lengthy
but quite straightforward calculations.

In the next paragraph we will show how to obtain the same results in a much easier
way, by employing the twisted Yangian generators (3.4.11).

Symmetry constraints. The complete reflection matrix K (3.4.16) follows from simple
Yangian symmetry arguments. Indeed, solving(

K Q̃ 1
3 − Q̃ 1

3 K
)
|k〉1 = 0 and

(
K Q̃ 1

3 − Q̃ 1
3 K

)
|k〉2 = 0 (3.4.20)

leads to the reflection coefficients that coincide with (3.4.17).
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3.4.2 Y=0 D7-brane

The Y = 0 D7-brane is obtained by setting X3 = X4 = 0 in the parametrization of S5.
This orientation breaks the SO(6) symmetry down to SO(4)1256 × SO(2)34. Then the
charge J56 further brakes the SO(4)1256, and the residual boundary symmetry is

su(2|1)× s̃u(2|1) . (3.4.21)

The field content at the gauge theory side of this setup is equivalent to the Z = 0 case
given in (3.4.4), but with J34 and J56 interchanged. In such a way there is a unique com-
plex scalar field at the rightmost site for which ∆ = 1/2. The same considerations apply
to the leftmost site, and thus there is a unique unexcited spin chain with an antiquark
at the left end and a quark at the right end which from the scattering point of view is
identical to the Y = 0 giant graviton, and thus the reflection matrix is the same.

3.5 D3-D5 brane system

The third system we will consider is the so-called ‘D3-D5-brane’ system, where the stack
of the D3-branes leads to the AdS5×S5 geometry, and the D5-brane spans an AdS4×S2.
In the same way as in Section 3.4, we will consider the strict large-N limit where the
backreaction of the D5-brane can be ignored.

Our goal is to build the boundary scattering theory for this system. This system, as
we will show, has an underlying Yangian algebra of the so-called ‘achiral’ type that was
not considered in Chapter 2. For this reason we will start by considering achiral bound-
ary conditions in the bosonic Principal Chiral Model. We will then build the boundary
scattering theory for the D5-brane using the non-local representation of psu(2|2)C .

3.5.1 Achiral boundary conditions in the bosonic Principal Chiral Model

Consider a 1+1-dimensional bosonic principal chiral field g(t, x) ∈ G on a half-line x ≤ 0
for a compact, simple Lie group G, with Lagrangian density

L =
1

2
Tr
(
∂+g

−1∂−g
)
. (3.5.1)

The model has Lie algebra g-valued conserved currents

jLµ = ∂µgg
−1 and jRµ = −g−1∂µg , (3.5.2)

which generate gL and gR and thereby the model’s G × G symmetry. On these currents
at x = 0, the boundary conditions are either chiral,

jL± = α(jL∓) , jR± = α(jR∓) ⇒ j0 = α(j0) , j1 = −α(j1) (bothL and R ) , (3.5.3)

or achiral,

jL± = α(jR∓) ⇒ jL0 = α(jR0 ) , jL1 = −α(jR1 ) , (3.5.4)
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where α is an involutive automorphism of g.
For the chiral conditions the residual Lie symmetry is H × H ⊂ G × G, where H is

the subgroup fixed by α. In fact (3.5.3) may be generalized by independent conjugation
of the currents, and the general boundary condition on the fields g is that

g(t, 0) ∈ kLHk−1
R , (3.5.5)

so that at x = 0

k−1
L jL+kL = α(k−1

L jL−kL) , k−1
R jR+kR = α(k−1

R jR−kR) . (3.5.6)

The constant group elements kL and kR parametrize left- and right-cosets of H in G and
may be taken to lie in the Cartan immersion, G/H = {α(k)k−1 | k ∈ G}, of G/H in G.5

Then the Yangian symmetry is two (L and R) copies of a generalization of the twisted
Yangian of type I, Y(g, h) ⊂ Y(g) [40, 41]. For different choices of h this encompasses
twisted Yangians [38] and reflection algebras [39], and the ‘soliton-preserving’ and ‘-non-
preserving’ boundary conditions of [148].

The second, achiral class of boundary condition was not fully investigated in [27].
Its Lie symmetry was under-identified there as the diagonal H ⊂ G × G, but the full
symmetry is a diagonal G ⊂ G×G, due to the conservation (where J :=

∫ 0
−∞ j0)

d

dt
(JL + α(JR)) =

∫ 0

−∞
∂0j

L
0 + ∂0α(jR0 ) = jL1 (0) + α(jR1 (0)) = 0. (3.5.7)

Again conjugation is allowed, and

g−1
L jL+gL = α(g−1

R jR−gR) (3.5.8)

at x = 0 follows from

g(t, 0) ∈ gL{α(k)k−1 | k ∈ G}g−1
R = gLG/H g−1

R . (3.5.9)

Henceforth we set gL = gR = 1 (the identity in G) for simplicity.
What is the remnant of the Yangian symmetry Y(g× g)? One might at first think that

it is simply ∆Y(g), but it is not. Rather it is again associated with a symmetric space
structure, this time G×G/G, and is the co-ideal subalgebra Y(g× g, g). This is expected
from [149], which analysed boundary conditions for symmetric-space sigma models. We
write the symmetric pair structure as gL ⊕ gR = g+ ⊕ g−, where g+ is the α-twisted
diagonal subalgebra and g− its complement (which is not a Lie algebra). Note especially
that in this case different choices of α merely give different α-twisted embeddings of g in
g× g, rather than the different proper subalgebras a of g we saw in the chiral case. Thus
by a change of basis for gR we can set α = id (the identity map), and indeed we shall
need such a change in the next section. For the moment we retain α, but the reader may
like to bear in mind that α = id captures the essence of the construction.

5Here = means ‘is locally diffeomorphic to’; there may be global ambiguities [147].
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The subalgebra g+ and its complement g− are spanned by Ja± = JaL ± α(JaR), which
have eigenvalues ±1 under the involution σ(α × α). The boundary Yangian symmetry
Y (g× g, g) = Y (gL × gR, g+) then has Lie subalgebra g+, generated by the Ja+. At level 1
its generators J̃a− are constructed from the level-1 Y (gL × gR) generators ĴaL, ĴaR as

J̃a− := Ĵa− + 1
8f

a
cb (Jc− Jb+ + Jb+ Jc−)

= Ĵa− + 1
2f

a
bc JbL α(JcR), (3.5.10)

where again Ĵa± = ĴaL±α(ĴaR). Notice the factor of two in (3.5.10) relative to (2.1.68), due to
the normalization of Ja± . It is easy to see that this is a specific case of the twisted Yangian
of type I, which we call the ‘achiral twisted Yangian’ to emphasize its achiral properties.

It is an easy calculation to check that these charges are classically conserved by the
achiral boundary condition (3.5.4). Further, the co-product of the level-1 charges is

∆(J̃a−) = ∆(Ĵa−) + 1
8f

a
cb

(
∆(Jb+) ∆(Jc−) + ∆(Jc−) ∆(Jb+)

)
= Ĵa− ⊗ 1 + 1⊗ Ĵa− + 1

8f
a
cb

(
Jb+ Jc− + Jc− Jb+

)
⊗ 1 + 1

8f
a
cb 1⊗

(
Jb+ Jc− + Jc− Jb+

)
+ 1

4f
a
bc

(
Jb− ⊗ Jc+ + Jb+ ⊗ Jc−

)
+ 1

4f
a
cb

(
Jb+ ⊗ Jc− − Jb− ⊗ Jc+

)
= J̃a− ⊗ 1 + 1⊗ J̃a− + 1

2f
a
bc Jb− ⊗ Jc+ (3.5.11)

∈ Y (gL × gR)⊗ Y (gL × gR, g+) ,

and thus satisfies the coideal property.
We commented earlier that the structure of Y(gL × gR, g+) is subtly different from a

simple diagonal embedding ∆Y(g+) ⊂ Y(gL × gR). This difference can be made precise,
and is seen in the algebra isomorphism

Y(gL × gR, g+) ∼= ∆̃Y(g). (3.5.12)

Here, for any Yangian charge J, we define ∆̃(J) := (1 ◦ (−1)lα)∆(J), where l is the level
of J, and ∆(J) acts on the tensor product of L and R components, written using a circle
◦. Thus the difference lies entirely in the twisting by 1 ◦ (−1)lα, and at its simplest, with
α =id, solely in some relative signs. At level 0 the isomorphism relates Ja± on the left of
(3.5.12) to Ja ◦ 1± 1 ◦ α(Ja) on the right, and at level 1 it relates J̃a− to Ĵa ◦ 1− 1 ◦ α(Ĵa).

At the co-algebra level this isomorphism takes the form

∆Y(gL × gR, g+) ∼= Σ ·
(
∆ ◦∆′

(
∆̃Y(g)

))
. (3.5.13)

This equation is valued in the fourfold product of Y(g) which acts on the L ◦ R compo-
nents of a bulk ⊗ boundary state; ∆ and ∆′ := σ ·∆ are the usual and flipped coproducts.
The role of the operator Σ is simply to re-arrange the order of factors, x1⊗ x2 ◦ x3⊗ x4 7→
x1 ◦ x4 ⊗ x2 ◦ x3. The relations (3.5.12, 3.5.13) then capture the ‘folding’ of a bulk into a
boundary scattering process [144] which we shall meet shortly.



98 Integrable boundaries in AdS/CFT

Let us demonstrate (3.5.13) explicitly. First,

∆ ◦∆′
(
∆̃(Ĵa)

)
= ∆ ◦∆′

(
Ĵa ◦ 1− 1 ◦ α(Ĵa) + 1

2f
a
bc Jb ◦ α(Jc)

)
=
(
Ĵa ⊗ 1 + 1⊗ Ĵa + 1

2f
a
bc Jb ⊗ Jc

)
◦ 1⊗ 1

− 1⊗ 1 ◦
(
α(Ĵa)⊗ 1 + 1⊗ α(Ĵa)− 1

2f
a
bc α(Jb)⊗ α(Jc)

)
+ 1

2f
a
bc

(
Jb ⊗ 1 + 1⊗ Jb

)
◦
(
α(Jc)⊗ 1 + 1⊗ α(Jc)

)
. (3.5.14)

Then, acting with Σ,

Σ ·
(
∆ ◦∆′

(
∆̃(Ĵa)

))
=
(
Ĵa ◦ 1− 1 ◦ α(Ĵa) + 1

2f
a
bc Jb ◦ α(Jc)

)
⊗ 1 ◦ 1

+ 1 ◦ 1⊗
(
Ĵa ◦ 1− 1 ◦ α(Ĵa) + 1

2f
a
bc Jb ◦ α(Jc)

)
+ 1

2f
a
bc

(
Jb ◦ 1− 1 ◦ α(Jb)

)
⊗
(
Jc ◦ 1 + 1 ◦ α(Jc)

)
, (3.5.15)

which, applying (3.5.10), corresponds to (3.5.11).
Now consider the implications for the scattering theory. Recall that the bulk multi-

plets in the bosonic PCM form representations V ◦ V of Y(gL × gR), where V is a funda-
mental representation of Y(g).6 The bulk multiplet carries a rapidity u, corresponding to
the application of the shift automorphism Lu ◦ Lu to Y (gL × gR). The bulk scattering of
U ◦U from V ◦ V is then constructed as a product of minimal factors SL ◦ SR (each factor
acting on U ⊗ V ), multiplied by an overall scalar factor [150].

V2 V3

V1 V4

V2 V̄3

V1
V̄4

T
−→

T−1
←−

Figure 3.5: The action of the conjugation operator T on 4-particle scattering, with solid L
and dashed R lines.

The state V ◦ V scatters off the boundary into V̄ ◦ V̄ , with u 7→ −u. Thus, on the
states, in the isomorphism (3.5.12) we write the action of Σ as conjugation by an operator
T whose effect is to re-order and conjugate multiplets,

T : V1 ⊗V2 ◦V3 ⊗V4 → V1 ◦ V̄4 ⊗V2 ◦ V̄3 . (3.5.16)

6This is typically a reducible rep of g with the corresponding fundamental g-rep as a component, although
for g = su(n) they are identical.
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2θ

θ

V V V̄

Figure 3.6: Achiral reflection process.

The meaning of the map T (T−1) is revealed, as the folding (unfolding) of a bulk to a
boundary scattering process, in figure 3.5. Similar unfolding processes relate bound-
ary unitarity and crossing-unitarity [16] to bulk unitarity and crossing relations. The
reversing of rapidity by the boundary can be seen in how the shift automorphism acts on
(3.5.12), where, crucially, Lu ◦ Lu(1 ◦ (−1)lα) = (1 ◦ (−1)lα)Lu ◦ L−u on ∆Y(g).

In the simplest case, where the boundary is in a singlet state, the boundary scattering
matrix KV ◦V (u) is conjugate to (1 ◦ α)SV V̄ (2u) (see figure 3.6). Its direct construction
via conservation of the Y(gL × gR, g+) charges is isomorphic, via (3.5.12), to that of the
bulk S-matrix (using, for example, the Tensor Product Graph method [151]), in which the
doubling of u is traced back to the extra factor of two in (3.5.10). We therefore expect a
spectrum of boundary bound states in non-trivial multiplets whose mass ratios are those
of the bulk states, inherited through the pole structure of SV V̄ (2u).

The folding construction of the boundary scattering process straightforwardly accom-
modates such non-trivial boundary multiplets, and this will play an important role in
understanding reflection from the D5-brane in the next section. The boundary scattering
matrix, the relevant solution of the boundary Yang-Baxter equation (BYBE) [13, 15], then
becomes a product of three non-trivial factors, analogous to the boundary fusion proce-
dure [91, 152]. These are a bulk S-matrix and two (what we shall call) ‘achiral reflection
matrices’, which are trivial in the case of the singlet boundary and which participate in
the reflection process as on the right of figure 3.5. This threefold process inherits, via
(3.5.12), a Yang-Baxter property: the order of the factorization does not matter, and our
apparent placing of the bulk S-matrix to the left of the boundary in figures 3.5 and 3.6 is
merely an artefact (figure 3.7).

3.5.2 The D5-brane: general considerations

The D5-brane considered in [143, 144] wraps an AdS4 ⊂ AdS5 and a maximal S2 ⊂ S5.
Such a configuration defines a 2 + 1 dimensional defect hypersurface of the 3 + 1 dimen-
sional conformal boundary of AdS5. The fundamental matter living on this hypersurface
is a 3d hypermultiplet [60]. The presence of the D5-brane breaks the so(6) symmetry of
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VB
V2 V3

V1 V4

VB
V2 V3

V1 V4

=

Figure 3.7: The unfolded BYBE as a 5-particle bulk process. The vertical line correspond-
ing to the boundary may be shifted left or right by employing the bulk YBE.

S5 down to so(3)H × so(3)V . As is the convention, we fix the bulk vacuum state to be
Z = X5 + iX6 and then consider two different orientations of the maximal S2 inside S5:

• the maximal S2 specified by X1 = X2 = X3 = 0, – this orientation in [144] was
termed ‘horizontal’ D5-brane7 and, from the scattering theory point of view, corre-
sponds to a singlet boundary;

• the maximal S2 specified by X4 = X5 = X6 = 0, – this orientation is perpendicular
to the previous and is termed the ‘vertical’ D5-brane; now the boundary carries a
field multiplet transforming in the vector representation of the boundary algebra.

The Lie algebra. The D5-brane preserves a diagonal subalgebra psu(2|2)+ n R3 of the
bulk algebra psu(2|2)L × psu(2|2)R nR3 generated by

L β̌
α̌ = L β

α + L
¯̇
β
¯̇α
, Q ǎ

α̌ = Q a
α + τ Q ȧ

¯̇α ,

R b̌
ǎ = R b

a + R ḃ
ȧ , G α̌

ǎ = G α
a + τ−1G ¯̇α

ȧ , (3.5.17)

where τ = −1 for the horizontal case and τ = −i for the vertical one.8 The notation for
the dotted and checked indices is the same as for undotted ones, ȧ, ǎ, ḃ, b̌ = 1, 2 and
α̇, α̌, β̇, β̌ = 3, 4. The generators with the undotted indices generate psu(2|2)L and the
generators with the dotted indices generate psu(2|2)R. Rather than make the involution
α explicit, it is easier to absorb it into the combination of the scale τ and a change of basis,
denoted by a bar, which acts on the dotted greek indices acts as ¯̇3 = 4̇ and ¯̇4 = 3̇. We also

7This configuration corresponds to horizontal vacuum orientation in the scattering theory.
8The supersymmetries preserved by the D5-brane were worked out in Appendix B of [143] and lead to

two scattering theories with τ2 = ±1, representing the horizontal and vertical cases.
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define the complementary charges

L β̌
α̌ = L β

α − L
¯̇
β
¯̇α
, Q ǎ

α̌ = Q a
α − τ Q ȧ

¯̇α ,

R b̌
ǎ = R b

a − R ḃ
ȧ , G α̌

ǎ = G α
a − τ−1G ¯̇α

ȧ , (3.5.18)

which do not in themselves form a Lie algebra (and are not preserved by the boundary),
but together with (3.5.17) and the central charges C, C† and H generate bulk algebra
psu(2|2)L × psu(2|2)R nR3.

The representation. We will consider the fundamental representation � of psu(2|2)C
only. Let us denote the basis of this representation as

|φ1〉 := |0, 0, 1, 0〉 , |ψ3〉 := |1, 0, 0, 0〉 ,
|φ2〉 := |0, 0, 0, 1〉 , |ψ4〉 := |0, 1, 0, 0〉 , (3.5.19)

and the same for the dotted indices. The bulk magnon transforms in the �(a,b,c,d) of the
left and the �̃(a,b,c,d) of the right representation of the bulk symmetry algebra and they
both carry the same set (a, b, c, d) of representation labels. Our goal is to build the canon-
ical representation of bulk states with respect to the boundary algebra (3.5.17). It is easy
to see that the left representation transforms canonically with respect to the boundary
algebra. However, the right representation does not, and one thus has to choose a differ-
ent basis for it in order to obtain the algebra action in the canonical form. It was shown
in [144] that by choosing the basis

(φ̃1̌, φ̃2̌|ψ̃3̌, ψ̃4̌) := (φ̃1̇, φ̃2̇|λψ̃4̇, λψ̃3̇) (3.5.20)

to be the new basis of �̃, with some arbitrary constant λ representing the rescaling of the
new base with the respect to the old, one acquires the canonical action of the boundary
algebra (3.5.17) on the right rep:

Q ǎ
α̌ |φ̃b̌〉 = ã δǎ

b̌
|ψ̃α̌〉, G α̌

ǎ |φ̃b̌〉 = c̃ εα̌β̌ εǎb̌ |ψ̃β̌〉,

Q ǎ
α̌ |ψ̃β̌〉 = b̃ εα̌β̌ ε

ǎb̌ |φ̃b̌〉, G α̌
ǎ |λψ̃β̌〉 = d̃ δα̌

β̌
|φ̃ǎ〉, (3.5.21)

where (ã, b̃, c̃, d̃) are the representation labels in the new basis. They are related to the old
basis by

ã =
τ

λ
a, b̃ = −τλ b, c̃ = − 1

τλ
c, d̃ =

λ

τ
d, (3.5.22)

where the minus sign comes from the relation ε ¯̇α
¯̇
β = εα̇β̇ = εα̌β̌ = −εα̌β̌ and similarly for

ε ¯̇α
¯̇
β

. By choosing ã = a one fixes the rescaling constant to be λ = τ and arrives at the
relation between new and old representation labels

(ã, b̃, c̃, d̃) = (a,−τ2b,−τ−2c, d). (3.5.23)
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Thus the canonical representation of the bulk magnon with respect to the boundary alge-
bra and the corresponding labels are

�(a,b,c,d) ◦ �̃(a,−τ2b,−τ−2c,d). (3.5.24)

As in the previous section, we use ◦ to denote the tensor product of L and R represen-
tations of bulk magnon, reserving the usual ⊗ for the tensor product of the bulk and
boundary reps. The action of the complementary charges (3.5.18) on the right represen-
tation is almost of canonical form, except for an extra minus sign

Q ǎ
α̌ |φ̃b̌〉 = −ã δǎ

b̌
|ψ̃α̌〉, G α̌

ǎ |φ̃b̌〉 = −c̃ εα̌β̌ εǎb̌ |ψ̃β̌〉,

Q ǎ
α̌ |ψ̃β̌〉 = −b̃ εα̌β̌ ε

ǎb̌ |φ̃b̌〉, G α̌
ǎ |λψ̃β̌〉 = −d̃ δα̌

β̌
|φ̃ǎ〉. (3.5.25)

The total eigenvalues of the central charges on the bulk representations (3.5.24) in the
new basis become

C := C ◦ 1 + 1 ◦ C ≡ ab+ ãb̃ = (1− τ2)ab ,

C† := C† ◦ 1 + 1 ◦ C† ≡ cd+ c̃d̃ = (1− τ−2)ab ,

H := H ◦ 1 + 1 ◦H ≡ ad+ bc+ ãd̃+ b̃c̃ = 2(ad+ bc) , (3.5.26)

hence the bulk magnon lives in the following tensor product of fundamental representa-
tions:

〈0, 0;H,C,C†〉 ◦ 〈0, 0;H,−τ2C,−τ−2C†〉 = {0, 0, 2H, (1−τ2)C, (1−τ−2)C†} , (3.5.27)

which depends on the value of τ . Let us explain this result in more detail.
The symmetry algebra in the bulk is gL ⊕ gR ⊕ m, where m is the central extension,

which is invariant under α; thus the central charges’ eigenvalues should not depend on
τ either. What has happened is that, by using a different basis for gR, which allowed us
to write the action of the g+ charges in untwisted diagonal form, we have introduced
τ -dependence into the L◦R basis of the central charges. That is, the price we have to pay
for simplifying the action of α is that the central charges C and C† become dependent on
τ . We resolve this by introducing complementary central charges

C := C ◦ 1− 1 ◦ C ≡ ab− ãb̃ = (1 + τ2)ab,

C† := C† ◦ 1− 1 ◦ C† ≡ cd− c̃d̃ = (1 + τ−2)ab,

H := H ◦ 1− 1 ◦H ≡ ad+ bc− ãd̃− b̃c̃ = 0. (3.5.28)

This formal enlargement of the algebra does not – cannot – add any new constraints
to the system. The charge H has zero eigenvalues on the bulk and boundary represen-
tations independently of τ and we have introduced it merely to enable us to write the
Yangian charges in a nicely symmetric form. The new charges C and C† will have non-
zero eigenvalues on the bulk representations when τ2 = +1, while the charges C and C†
then vanish; and vice versa for the τ2 = −1 case. Thus there are always exactly three
non-trivial central charges in the system.
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The Yangian algebra. We now have enough ingredients to write down the general form
of the boundary Yangian. Following the discussion in Section 3.5.1 we define the achiral
twisted boundary Yangian Y(gL × gR, g+) to be generated by the Lie algebra generators
(3.5.17) and (3.5.18), central charges and the twisted Yangian generators (3.5.29).

R̃ b̂
â = R̂

b̂

â − 1
4 R

č
ǎ R b̌

č + 1
4 R

b̌
č R č

ǎ + 1
4 G

γ̌
ǎ Q b̌

γ̌ + 1
4 Q

b̌
γ̌ G γ̌

ǎ

− 1
8 δ

b̌
ǎG

γ̌
č Q č

γ̌ − 1
8 δ

b̌
ǎQ č

γ̌ G γ̌
č ,

L̃ β̂
α̂ = L̂

β̂

α̂ + 1
4 L

γ̌
α̌ L β̌

γ̌ − 1
4 L

β̌
γ̌ L γ̌

α̌ − 1
4 G

β̌
č Q č

α̌ − 1
4Q

č
α̌ G β̌

č

+ 1
8 δ

β̌
α̌G

γ̌
č Q č

γ̌ + 1
8 δ

β̌
α̌Q

č
γ̌ G γ̌

č ,

Q̃ â
α̂ = Q̂

â

α̂ − 1
4 Q

č
α̌ R ǎ

č + 1
4 R

ǎ
č Q č

α̌ − 1
4 Q

ǎ
γ̌ L γ̌

α̌ + 1
4 L

γ̌
α̌ Q ǎ

γ̌

+ 1
8 Q

ǎ
α̌ H + 1

8 HQ ǎ
α̌ − 1

4 εα̌γ̌ ε
ǎďCG γ̌

ď + 1
4 εα̌γ̌ ε

ǎďG γ̌

ď
C ,

G̃ α̂
â = Ĝ

α̂

â + 1
4 G

α̌
č R č

ǎ − 1
4 R

č
ǎ G α̌

č + 1
4 G

γ̌
ǎ L α̌

γ̌ − 1
4 L

α̌
γ̌ G γ̌

ǎ

+ 1
8 G

α̌
ǎ H− 1

8 HG α̌
ǎ + 1

4 εǎč ε
α̌γ̌ C†Q č

γ̌ − 1
4 εǎč ε

α̌γ̌ Q č
γ̌ C† ,

C̃ = Ĉ + 1
4 HC− 1

4 CH ,

C̃† = Ĉ
†
− 1

4 HC† + 1
4 C
†H . (3.5.29)

Here the hat-bar operators Ĵ are the grade-1 partners of the complementary charges
(3.5.18) and (3.5.28). This is the general form of the twisted boundary Yangian for the
reflection from the D5-brane and represents the explicit realization of (3.5.10). The co-
products of the twisted charges (3.5.29) have the canonical form

∆
(
R̃ b̌
ǎ

)
= R̃ b̌

ǎ ⊗ 1 + 1⊗ R̃ b̌
ǎ + 1

2R
č
ǎ ⊗ R b̌

č − 1
2R

b̌
č ⊗ R č

ǎ + 1
2G

γ̌
ǎ ⊗Q b̌

γ̌ + 1
4Q

b̌
γ̌ ⊗G γ̌

ǎ

− 1
4δ
b̌
ǎG

γ̌
č ⊗Q č

γ̌ − 1
4δ
b̌
ǎQ

č
γ̌ ⊗G γ̌

č ,

∆
(
L̃ β̌
α̌

)
= L̃ β̌

α̌ ⊗ 1 + 1⊗ L̃ β̌
α̌ + 1

2L
γ̌
α̌ ⊗ L β̌

γ̌ − 1
2L

β̌
γ̌ ⊗ L γ̌

α̌ − 1
2G

β̌
č ⊗Q č

α̌ − 1
2Q

č
α̌ ⊗G β̌

č

+ 1
4δ
β̌
α̌G

γ̌
č ⊗Q č

γ̌ + 1
4δ
β̌
α̌Q

č
γ̌ ⊗G γ̌

č ,

∆
(
Q̃ ǎ
α̌

)
= Q̃ ǎ

α̌ ⊗ 1 + 1⊗ Q̃ ǎ
α̌ − 1

2Q
č
α̌ ⊗ R ǎ

č + 1
2R

ǎ
č ⊗Q č

α̌ − 1
2Q

ǎ
γ̌ ⊗ L γ̌

α̌ + 1
2L

γ̌
α̌ ⊗Q ǎ

γ̌

+ 1
4H⊗Q ǎ

α̌ − 1
4Q

ǎ
α̌ ⊗H− 1

2εα̌γ̌ ε
ǎďC⊗G γ̌

ď
+ 1

2εα̌γ̌ ε
ǎďG γ̌

ď ⊗ C ,

∆
(
G̃ α̌
ǎ

)
= G̃ α̌

ǎ ⊗ 1 + 1⊗ G̃ α̌
ǎ + 1

2G
α̌
č ⊗ R č

ǎ − 1
2R

č
ǎ ⊗G α̌

č + 1
2G

γ̌
ǎ ⊗ L α̌

γ̌ − 1
2L

α̌
γ̌ ⊗G γ̌

ǎ

− 1
4H⊗G α̌

ǎ + 1
4G

α̌
ǎ ⊗H + 1

2εǎč ε
α̌γ̌ C† ⊗Q č

γ̌ − 1
2εǎč ε

α̌γ̌ Q č
γ̌ ⊗ C† ,

∆
(
C̃
)

= C̃⊗ 1 + 1⊗ C̃ + 1
2C⊗H− 1

2H⊗ C ,

∆
(
C̃†
)

= C̃† ⊗ 1 + 1⊗ C̃† − 1
2C
† ⊗H + 1

2H⊗ C†, (3.5.30)

as expected from (3.5.11). Note that the terms of the form 1 ⊗ J̃ annihilate the boundary
and give no contribution to the explicit calculations. Also note that the expressions above
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may be reduced to a more compact and transparent form using the Lie algebra relations
(3.1.2). We will do this by considering the reflection from the vertical and horizontal
D5-branes separately.

3.5.3 The horizontal D5-brane

The boundary algebra of the horizontal D5-brane is acquired from (3.5.17) by setting
τ = −1. As was shown in [143], the boundary carries no degrees of freedom in the
scattering theory, and thus is a singlet of psl(2|2)+. The total central charges C and C†
vanish with respect to the boundary symmetry,

〈0, 0;H,C,C†〉 ◦ 〈0, 0;H,−C,−C†〉 = {0, 0, 2H, 0, 0} , (3.5.31)

and the bulk magnon transforms in the tensor representation

�(a,b,c,d) ◦ �̃(a,−b,−c,d), (3.5.32)

with respect to the boundary algebra. The reflection matrix is simply a map

Kh : � ◦ �̃⊗ 1→ � ◦ �̃⊗ 1, (3.5.33)

and may be neatly represented on superspace as an operator

Kh : V (p, ζ) ◦ V(−p, ζeip)→ V(−p, ζ) ◦ V(p, ζe−ip), (3.5.34)

where V(p, ζ) is the corresponding vector space. Thus Kh differs from the bulk S-matrix
S(p,−p) by an overall phase at most.

Boundary scattering. The boundary is achiral in the sense that the incoming L state
becomes a R state after the reflection and vice versa. This feature of the achiral boundary
may be neatly displayed graphically (see figure 3.8, left side). The picture of the reflection
nicely accommodates the fact that Kh is equivalent to S as discussed above and suggests
that it should be related as

Kh = κ · S(p,−p) ·κ , (3.5.35)

with κ here9 being the achiral map κ : 1 ◦ �̃⊗ 1→ � ◦ 1⊗ 1 for an incoming right state
and κ : � ◦ 1 ⊗ 1 → 1 ◦ �̃ ⊗ 1 for an incoming left state. This relation implies that the
structure of the boundary Yangian for the horizontal D5-brane should be related to the
bulk Yangian by (3.5.12). Let us show this explicitly.

The boundary is a singlet; thus the only surviving terms in (3.5.30) are of the form
J̃⊗ 1, since all non-local two-site operators of the form J⊗ J annihilate the boundary and
give no contribution.10 Then using (3.5.29, 3.5.17, 3.5.18, 3.5.28) and performing some Lie

9This enlargedκ denoting the achiral map should not be confused with the reflection map κ.
10See e.g. [16] for the formulation of the scattering theory on the half-line.
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κ

κ
S(p,−p)

(u, p, ζ) (u,−p, ζeip)

(−u,−p, ζ) (−u, p, ζe−ip)

κ

κ
' S(p,−p)

(u, p, ζ) (−u,−p, ζeip)

(−u,−p, ζ) (u, p, ζe−ip)

Figure 3.8: Unfolding of the reflection from the horizontal D5-brane. Solid lines corre-
spond to the left representations while the dotted lines correspond to right reps. The
vertical gray lines correspond to the singlet boundary which acts merely as an achiral
map κ mapping right (left) representations into left (right) representations (and conju-
gates multiplets by maping u 7→ −u in the unfolded picture). The left and right sides of
the figure are related through the conjugation map T.

algebra manipulations, (3.5.30) becomes

∆
(
R̃ b̌
ǎ

)
=
(
R̂ b̌
ǎ ◦ 1− 1 ◦ R̂ b̌

ǎ + 1
2 R

č
ǎ ◦ R b̌

č − 1
2 R

b̌
č ◦ R č

ǎ − 1
2 G

γ̌
ǎ ◦Q

b̌
γ̌ − 1

2 Q
b̌
γ̌ ◦G

γ̌
ǎ

+ 1
4 δ

b̌
ǎG

γ̌
č ◦Q

č
γ̌ + 1

4 δ
b
ǎQ č

γ̌ ◦G
γ̌
č

)
⊗ 1 ,

∆
(
L̃ β̌
α̌

)
=
(
L̂ β̌
α̌ ◦ 1− 1 ◦ L̂ β̌

α̌ − 1
2 L

γ̌
α̌ ◦ L

β̌
γ̌ + 1

2 L
β̌
γ̌ ◦ L

γ̌
α̌ + 1

2 G
β̌
č ◦Q

č
α̌ + 1

2 Q
č
α̌ ◦G

β̌
č

− 1
4 δ

β̌
α̌G

γ̌
č ◦Q

č
γ̌ − 1

4 δ
β̌
α̌Q

č
γ̌ ◦G

γ̌
č

)
⊗ 1 ,

∆
(
Q̃ ǎ
α̌

)
=
(
Q̂ ǎ
α̌ ◦ 1− 1 ◦ Q̂ ǎ

α̌ + 1
2 Q

č
α̌ ◦ R ǎ

č − 1
2 R

ǎ
č ◦Q č

α̌ + 1
2 Q

ǎ
γ̌ ◦ L

γ̌
α̌ − 1

2 L
γ̌
α̌ ◦Q

ǎ
γ̌

+ 1
4 Q

ǎ
α̌ ◦H− 1

4 H ◦Q
ǎ
α̌ + 1

2εα̌γ̌ ε
adC ◦G γ̌

d −
1
2εα̌γ̌ ε

adG γ̌

ď
◦ C
)
⊗ 1 ,

∆
(
G̃ α̌
ǎ

)
=
(
Ĝ α̌
ǎ ◦ 1− 1 ◦ Ĝ α̌

ǎ − 1
2 G

α̌
č ◦ R č

ǎ + 1
2 R

č
ǎ ◦G α̌

č − 1
2 G

γ̌
ǎ ◦ L

α̌
γ̌ + 1

2 L
α̌
γ̌ ◦G

γ̌
ǎ

− 1
4 G

α̌
ǎ ◦H + 1

4 H ◦G
α̌
ǎ − 1

2εǎč ε
α̌γ̌ C† ◦Q č

γ̌ + 1
2εǎč ε

α̌γ̌ Q č
γ̌ ◦ C†

)
⊗ 1 ,

∆
(
C̃
)

=
(
Ĉ ◦ 1− 1 ◦ Ĉ− 1

2 H ◦ C + 1
2 C ◦H

)
⊗ 1 ,

∆
(
C̃†
)

=
(
Ĉ† ◦ 1− 1 ◦ Ĉ† + 1

2 H ◦ C
† − 1

2 C
† ◦H

)
⊗ 1 . (3.5.36)

We have checked that these co-products commute with the reflection matrix Kh calcu-
lated in [144] and also with the two-magnon bound state reflection matrix which is con-
structed from SBB(p1, p2) by setting p2 := −p1.

It is easy to observe that these co-products have almost the same form as (3.1.28), as
we expected. The crucial difference is the negative sign of terms of the form 1 ◦ Ĵ in
(3.5.36), in contrast to (3.1.28). This is the outcome of the graded map 1 ◦ (−1)l relating
∆̃ to the usual ∆ in (3.5.12). In this particular case it has a lucid physical interpretation.
Consider the scattering in the bulk of two magnons with momenta p and−p. The residual
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symmetry of such scattering is described by (3.1.28). The rapidities of the states in the
bulk are u and −u and are facing the same direction as their momenta. But in the case
of a single bulk magnon reflecting from the horizontal D5-brane the rapidity of the right
rep, which has the effective momentum−pwith respect to the boundary algebra, is u and
faces the physical direction, but not the effective one i.e. is not −u). Thus this minus sign
difference is explicitly seen in the co-products (3.5.36).

Interestingly, in the unfolded picture of the reflection (the right side of figure 3.8),
which is related to the left side by the map T (3.5.16), the rapidity of the right represen-
tation is facing the same direction as the momentum. This is because the map T not only
re-orders the states, but also sends VR 7→ V̄R, u 7→ −u. Thus the reflection from the
boundary in the unfolded picture,

Kh : �⊗ 1⊗ �̃→ �⊗ 1⊗ �̃ , (3.5.37)

may be regarded as a ‘scattering through the boundary’ and is governed by the Yangian

∆
(
J̃A
)

= ĴA ⊗ 1⊗ 1 + 1⊗ 1⊗ ĴA + 1
2f

A
BC JB ⊗ 1⊗ JC , (3.5.38)

which is equivalent to (3.1.28) (by removing the middle singlet in (3.5.37) and (3.5.38) as
it effectively plays no role).

Boundary Yang-Baxter equation. In order to check that the boundary is integrable one
has to consider the boundary Yang-Baxter equation (BYBE), which computes the dif-
ference between the two possible ways of factorizing the scattering of two incoming
magnons off a boundary.

The BYBE represents two incoming bulk magnons reflecting from the boundary:

BYBE : VL(p1, ζ)⊗ VR(−p1, ζe
ip1)⊗ VL(p2, ζe

ip1)⊗ VR(−p2, ζe
i(p1+p2))→

VL(−p1, ζ)⊗ VR(p1, ζe
−ip1)⊗ VL(−p2, ζe

−ip1)⊗ VR(p2, ζe
−i(p1+p2)). (3.5.39)

Here VL (VR) are representations of the boundary algebra originating as left (respectively,
right) factors of bulk magnons. We must not lose track of this information, because it
affects how the representations scatter, as follows.

For the bulk scattering, left (right) states scatter with left (respectively, right) states
only. When scattering two left representations we use the standard S-matrix, but when
scattering two right representations we must allow for the change of basis, (3.5.23), which
produces additional signs in the ζ-dependent components:

〈ψ3̌ψ4̌| S |φ1̌φ2̌〉 = −〈ψ3̇ψ4̇| S |φ1̇φ2̇〉 = −a7 ,

〈φ1̌φ2̌| S |ψ3̌ψ4̌〉 = −〈φ1̇φ2̇| S |ψ3̇ψ4̇〉 = −a8 . (3.5.40)

Given that a7 and a8 depend linearly on the phase, this sign change is just ζ 7→ −ζ. Next,
to exchange a left state with a right state in the tensor product one must use a graded
permutation, which also produces certain minus signs.11

11This graded permutation was overlooked in the calculations of [143] thus obscuring the integrability of
the D5-brane boundary conditions.
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−p2

−p2

p2p2

p1

−p1

−p1
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SR(−p1,−p2)

SR(−p2, p1)

SL(p1, p2)

SL(p2,−p1) Kh(p1,−p1)
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P
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−p2

p2

p2

−p2

−p1

p1

p1

−p1

Kh(p2,−p2)

Kh(p1,−p1)

P

P

P

P

SR(−p1, p2)

SR(p2, p1)

SL(p1,−p2)

SL(−p2,−p1)

=

Figure 3.9: BYBE for the reflection in the horizontal case. Solid lines correspond to the
left representations while the dotted lines correspond to right reps.

The pictorial version of the BYBE is presented in figure 3.9 and the equation itself is

K34(p2, ζe
−ip1 ;−p2, ζe

−i(p1−p2))P23 S34(−p2,−ζeip2 ; p1,−ζei(p2−p1))

× S12(p2, ζ;−p1, ζe
ip2)P23K34(p1, ζe

ip2 ;−p1, ζe
i(p1+p2))

× P23 S12(p1, ζ; p2, ζe
ip1)S34(−p1,−ζeip1 ;−p2,−ζei(p1+p2))P23

− P23 S34(p2,−ζe−ip2 ; p1,−ζe−i(p2+p1))S12(−p2, ζ;−p1, ζe
−ip2)P23

×K34(p1, ζe
−p2 ;−p1, ζe

−i(p2−p1))P23 S12(p1, ζ;−p2, ζe
ip1)

× S34(−p1,−ζeip1 ; p2,−ζei(p1−p2))P23K34(p2, ζe
ip1 ;−p2, ζe

i(p1+p2)) = 0,
(3.5.41)

where the subscripts 12, 23, 34 indicate the tensor factors on which the operators act, Pij
is the graded permutation operator permuting left-right states, SLij and SRij are the left
and right bulk S-matrices12 and K34 is the reflection matrix. We have checked directly
that this boundary YBE is satisfied.

Another way to verify that the boundary YBE is satisfied is to note that it may be
mapped to a standard bulk YBE, as follows. One can verify that whenever a phase-
dependent component appears, the extra sign in the right S-matrix is canceled with a

12Here Sij = PijSij , thus S : V (p1)⊗ V (p2)→ V (p2)⊗ V (p1).
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minus sign from a graded permutation. Then, using also the relation between K and the
bulk S-matrix, the above equation is equivalent to

S23(p2, ζe
−ip1 ;−p2, ζe

ip2−ip1)S34(p1, ζe
ip2−ip1 ;−p2, ζe

ip2)S12(p2, ζ;−p1, ζe
ip2)

× S23(p1, ζe
ip2 ;−p1, ζe

ip1+ip2)S34(−p2, ζe
ip1+ip2 ;−p1, ζe

ip1)S12(p1, ζ; p2, ζe
ip1)

− S34(p1, ζ
−ip1−ip2 ; p2, ζe

−ip2)S12(−p2, ζ;−p1, ζe
−ip2)S23(p1, ζe

−ip2 ;−p1, ζe
ip1−ip2)

× S34(p2, ζe
ip1−ip2 ;−p1, ζe

ip1)S12(p1, ζ;−p2, ζe
ip1)S23(p2, ζe

ip1 ;−p2, ζe
ip1+ip2) = 0.

(3.5.42)

In this way we have ‘unfolded’ the BYBE into a succession of bulk scattering processes.
Consequently, the boundary YBE follows from a particular case of the bulk YBE. The
meaning of (3.5.42) is represented in figure 3.10.

p2

p2−p2

−p2

p1

p1−p1

−p1

S(p1, p2) S(−p2,−p1)

S(p1,−p1)

S(p2,−p2)

S(p2,−p1) S(p1,−p2)

−p2

−p2p2

p2

−p1

−p1p1

p1

S(p1,−p2) S(p2,−p1)

S(p1,−p1)

S(p2,−p2)

S(−p2,−p1) S(p1, p2)

=

Figure 3.10: The unfolded BYBE as a 4-particle scattering in the bulk. The vertical line
plays no role in the unfolded picture, but is drawn as a reminder that S(p,−p) represents
boundary reflections.

From this second, ‘unfolded’, point of view, the boundary is seen to be ‘achiral’, meaning
that an incoming left state becomes a right one after the reflection and a right one becomes
a left.

3.5.4 The vertical D5-brane

The boundary algebra of the verticalD5-brane is acquired from (3.5.17) by setting τ = −i.
We will consider reflection from the right boundary, which carries a �̌ spanned by the
fields φa and ψα̌1̇ [143, 144]. The scattering problem under consideration is described by
the triple tensor product

�(a,b,c,d) ◦ �̃(a,b,c,d) ⊗ �̌(aB ,bB ,cB ,dB), (3.5.43)
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where once again ◦ describes L◦R representations of the bulk magnon while⊗ describes
the usual tensor product of bulk ⊗ boundary reps.

The eigenvalues of the total central charges of the bulk magnon with the respect to
the boundary algebra are

C ≡ 2C, C† ≡ 2C†, H ≡ 2H, (3.5.44)

and satisfy the multiplet shortening constraint according to which

{0, 0; 2H, 2C, 2C†} = 〈1, 0; 2H, 2C, 2C†〉 ⊕ 〈0, 1; 2H, 2C, 2C†〉 = ��⊕ �� . (3.5.45)

The representation labels specifying the boundary are13

aB =
√
gηB, bB = −√g iζ

ηB
, cB = −√g ηB

ζxB
, dB =

√
g
xB
iηB

. (3.5.46)

This representation is related to a radial line segment in the LLM-disc picture [64, 134,
135]. The unitarity and mass-shell conditions give

|ηB|2 = −ixB , xB ≡
i(1 +

√
1 + 4g2)

2g
. (3.5.47)

Thus, the exact energy of the boundary excitation is

Ȟ = D − J56 = 1
2

√
1 + 4g2 . (3.5.48)

For the boundary degree of freedom, the representation labels (3.5.46) and the mass-shell
condition (3.5.47) are those of the boundary fundamental degree of freedom in the Z = 0
giant graviton case (3.3.72), but with a coupling constant g twice bigger. This doubling
of the coupling constant is crucial for integrability to hold and for the exact boundary
energy (3.5.48) to consistently reproduce 1-loop anomalous dimensions.

As we saw, the elementary bulk magnons transform, under the boundary symmetry
algebra, in direct sum of two M = 2 bound state representations (symmetric and anti-
symmetric). Therefore we have the following two scattering processes:

KBa : ��⊗ �̌→ ��⊗ �̌, (3.5.49)

KBa : �� ⊗ �̌→ �� ⊗ �̌, (3.5.50)

As in [133, 143], following [108], the reflection matrices in the symmetric and antisym-
metric channels (3.5.49) are

KBa =
19∑
i=1

k(S)
i Λi, KBa =

19∑
i=1

k(A)
i Λ̄i, (3.5.51)

13Note that here we use a different parametrization from the one used in [143].
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where Λi are certain differential operators (see appendix C for details), Λ̄i are obtained
from Λi by exchanging indices 1̌ ↔ 3̌ and 2̌ ↔ 4̌, and where k(S,A)

i are the reflection coef-
ficients. In both cases, the symmetry algebra alone fixes all reflection coefficients up to
an overall phase. Interestingly, the two channels are related by k(A)

i (p, xB) = k(S)
i (−p, xB)

[143]. Note that the reflection coefficients do not explicitly depend on g, thus they coin-
cide with the ones for Z = 0 giant graviton found in [133].

It is easy to check that symmetric and antisymmetric reflection matricesKBa andKBa
do satisfy BYBE on their own. The BYBE invariance of KBa was checked in [133], while
for checking the BYBE invariance of KBa we had to construct an antisymmetric bound
state S-matrix SBB which is the mirror-model partner of the ordinary bound state S-
matrix SBB .

For the vertical vacuum case the complete reflection matrix must be some linear com-
bination:

Kv = k0KBa + KBa, (3.5.52)

with k0 being a function of bulk and boundary representation parameters. The impor-
tant question is whether there exists any choice of this function, such that the system is
integrable, i.e. such that the complete reflection matrix obeys the boundary Yang-Baxter
equation. For this purpose one needs to consider the complete bulk 16×16-dim. S-matrix
SAȦAȦ which may be constructed as a tensor product of two fundamental S-matrices
SAA and SȦȦ. It is convenient to compute SAȦAȦ in the basis of (graded) symmetric and
antisymmetric states i.e. on the superspace and the mirror-superspace. The complete
S-matrix is not block-diagonal in this basis; rather it mixes symmetric and antisymmet-
ric states during the scattering. But it is important to note that it is invariant under the
symmetries preserved by the boundary (this is natural as the boundary algebra is a sub-
algebra of the bulk algebra).

The BYBE for the reflection in this vertical case reads as

BYBE : VL(p1, ζ)⊗ VR(p1, ζ)⊗ VL(p2, ζe
ip1)⊗ VR(p2, ζe

ip1)⊗ VB(xB, ζe
i(p1+p2))→

VL(−p1, ζ)⊗ VR(−p1, ζ)⊗ VL(−p2, ζe
−ip1)⊗ VR(−p2, ζe

−ip1)⊗ VB(xB, ζe
−i(p1+p2)),

(3.5.53)

where once again the scattering in the bulk is between left-left and right-right states only,
while the permutation of left-right and right-left states produces a graded minus sign. In
the contrast to the horizontal case, the right S-matrix is equivalent to the left S-matrix,
i.e. it does not acquire an extra minus sign in the ζ-dependent components, since now
−τ2 = +1. Also, all phases in (3.5.53) are increasing from left to right. The graphical
interpretation of BYBE is almost the same as for the horizontal case. The difference is that
the boundary in this case does not act diagonally but mixes bulk and boundary flavours.

A general matrix element of the BYBE (3.5.53) has a complicated structure. We found
the particular matrix element〈

φ
{3̌4̌}
1 ⊗ φ{1̌1̌}

2 ⊗ φ1̌
B

∣∣BYBE
∣∣ψ{1̌3̌}

1 ⊗ φ{1̌1̌}
2 ⊗ ψ4̌

B

〉
(3.5.54)
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to be quite tractable and by treating minus signs coming from permuting left and right
representations carefully (i.e. SA1Ȧ2A3Ȧ4 = (−1)[Ȧ2][A3]SA1A3 ⊗ SȦ2Ȧ4) we find the required
ratio has to be

k0 = −x
−(xB − x−)2

x+(xB + x+)2

η2ηB
η̃2η̃B

. (3.5.55)

for (3.5.54) to vanish. We have then checked that, using this ratio, the reflection matrixKv

(3.5.52) satisfies all matrix elements of BYBE (3.5.53). Thus we conclude that the reflection
in the vertical case is indeed integrable. We also claim that it is an achiral boundary
in the same sense as in the horizontal case: at this stage the ‘unfolded” picture of the
reflection is not obvious, but becomes very transparent when we considering the nested
Bethe ansatz [144].

Factorized approach. As was shown using the Bethe ansatz technique in [144], reflec-
tion from the vertical D5-brane is achiral. Hence it may be represented by a diagram (fig-
ure 3.11) very similar to the one describing the reflection from the horizontal D5-brane
(figure 3.8).

S(p,−p)
κ(p, xB)

κ(p, xB)

(u, p, ζ) (u, p, ζ) (xB, ζe
ip)

(−u,−p, ζ) (−u,−p, ζ) (xB, ζe
−ip)

' S(p,−p)
κ(p, xB)

κ(p, xB)

(u, p, ζ) (−u, p, ζ)(xB, ζe
ip)

(−u,−p, ζ) (u,−p, ζ)(xB, ζe
−ip)

Figure 3.11: Unfolding of the reflection from the verticalD5-brane. Solid lines correspond
to the left representations while the dotted lines correspond to right reps. The vertical
gray lines correspond to the boundary rep. In the contrast to the horizontal case, the
achiral reflection not only maps left (right) representations to right (left) representations
but is also an intertwining matrix mapping momentum p 7→ −p.

Thus, as one can see from figure 3.11, the reflection factorizes as a composition of a
bulk S-matrix and two achiral reflection matrices κ, with

Kv(p, xB) = κ(p, xB)S(p,−p)κ(p, xB). (3.5.56)

The achiral reflection matrix κ in the folded picture maps incoming right states into out-
going left states as

κ : 1 ◦ �̃⊗ �̌ 7→ � ◦ 1⊗ �̌, (3.5.57)
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and incoming left states into outgoing right ones as

κ : � ◦ 1⊗ �̌ 7→ 1 ◦ �̃⊗ �̌. (3.5.58)

These two expressions may be combined into one using vector space notation

κ : VL(R)(p, ζ)⊗ VB(xB, ζe
ip) 7→ VR(L)(−p, ζeip)⊗ VB(xB, ζ), (3.5.59)

and thereby may be defined on superspace in the usual way

κ(p, xB) =

10∑
i=1

ki(p, xB) Λi, (3.5.60)

where Λi are the su(2)× su(2) invariant differential operators (see [108, 144]). Invariance
under the boundary algebra (3.5.17) fixes ki up to an overall phase to be [24]

k1 = −xB − x
−

xB + x+

ηηB
η̃η̃B

, k2 =
5(x+ − xB)x− − 3((x−)2 − xBx+)

(xB + x+)(x− + x+)

ηηB
η̃η̃B

,

k3 = 1, k4 =
5(x− + xB)x+ − 3((x+)2 + xBx

−)

(xB + x+)(x− + x+)
,

k5 = −xB − x
+

xB + x+

η

η̃
, k6 =

xB + x−

xB + x+

ηB
η̃B
,

k7 =
i
√

2 ζ xB(xB − x+)(x− − x+)

(xB + x+)(1 + xBx−)η̃η̃B
, k8 =

i
√

2(xB + x−)ηηB
ζ(xB + x+)(1− xBx−)

,

k9 =
√

2
x− − x+

xB + x+

ηB
η̃
, k10 = −

√
2

xB
xB + x+

η

η̃B
. (3.5.61)

We have checked explicitly that the factorization (3.5.56) is correct. It obeys the Yang-
Baxter relation and the reflection coefficients coincide with the ones found in [144]. For
example, the reflection of the bulk state φ1◦ φ̃1 from the boundary state φ̌1 gives a relation

k0 k
(S)
1 (p1, ζ;xB) = k1(p, ζe−ip;xB) a1(p,−p, ζ) k1(p, ζ;xB), (3.5.62)

where a1 and k(S)
1 are the coefficients of the fundamental S-matrix and reflection matrix

KBa respectively; all of them are spelled out in the appendices of [144].14

The achiral reflection in the unfolded picture can be interpreted as a scattering through
the achiral boundary and the choice of phases in (3.5.59) can then be easily read from the
LLM-type diagram (figure 3.12). The maps (3.5.57) and (3.5.58) in the unfolded picture
become

κunf : 1⊗ �̌⊗ �̃ 7→ �⊗ �̌⊗ 1, (3.5.63)

and
κunf : �⊗ �̌⊗ 1 7→ 1⊗ �̌⊗ �̃, (3.5.64)

14The achiral reflection matrix is equivalent to the S-matrix by identifying x± = ±xB up to a graded
permutation and an extra factor of −i in k3,4,6,8,10 due to the change of the basis (3.5.20) for the right rep.
This map identifies the boundary magnon with a bulk magnon of momentum p = π.
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ζ

ζeip

ζp p ζ

ζeip

ζp −p

ζe−ip

ζ ζ−p p

ζe−ip

ζ ζ−p −p
→ → →

a) b) c)

Figure 3.12: LLM-type diagram for the scattering through the right boundary in the un-
folded picture. The vertical D5-brane corresponds to the dot in the center of the circle.
The line adjoining the center and the circle corresponds to the boundary rep. The line
segments to the left from the boundary line correspond to the left reps, while the line
segments to the right from the boundary correspond to the right reps. The phase is in-
creasing towards the boundary for left and right reps. Here a) is the scattering of the
right representation through the boundary, b) is the scattering of two left states in the
bulk and c) is is the scattering of the left representation through the boundary. The gray
line segments do not participate in the scattering.

respectively; thus folded and unfolded achiral reflection matrices are related to each other
as κ = T · κunf, where T is the specialization of the folding map (3.5.16) in which the
boundary carries an irreducible g+ representation (as opposed, more generally, to a g+-
reducible gL × gR rep). Note that the reflection coefficients k3, k4 and k8 acquire an extra
minus sign in the unfolded picture (because of graded permutation of two fermionic
states).

Yangian approach. Now we are ready to consider the explicit realization of the Yangian
(3.5.30) for the vertical D5-brane. The boundary �̌ in this case is an evaluation irrep of
the achiral twisted Yangian with rapidity zero. We consider the folded picture first. All
complementary central charges (3.5.28) have zero eigenvalues on all (bulk and boundary)
reps, hence are trivial in this case and do not need to be considered. Thus only the co-
products of non-central charges in (3.5.30) contribute. Writing their action on the tensor
product � ◦ �̃⊗ �̌, we have, for example,

∆
(
R̃ b̌
ǎ

)
= Ř č

ǎ ◦ 1⊗ 1− 1 ◦ Ř č
ǎ ⊗ 1

+ 1
2 R

č
ǎ ◦ R b̌

č ⊗ 1− 1
2R

b̌
č ◦ R č

ǎ ⊗ 1− 1
2G

γ̌
ǎ ◦Q

b̌
γ̌ ⊗ 1− 1

2Q
b̌
γ̌ ◦G

γ̌
ǎ ⊗ 1

+ 1
4δ
b̌
ǎG

γ̌
č ◦Q

č
γ̌ ⊗ 1 + 1

4δ
b̌
ǎQ č

γ̌ ◦G
γ̌
č ⊗ 1

+ 1
2 R

č
ǎ ◦ 1⊗ R b̌

č − 1
2R

b̌
č ◦ 1⊗ R č

ǎ + 1
2G

γ̌
ǎ ◦ 1⊗Q b̌

γ̌ + 1
4Q

b̌
γ̌ ◦ 1⊗G γ̌

ǎ

− 1
4δ
b̌
ǎG

γ̌
č ◦ 1⊗Q č

γ̌ − 1
4δ
b̌
ǎQ č

γ̌ ◦ 1⊗G γ̌
č

− 1
2 1 ◦ R č

ǎ ⊗ R b̌
č + 1

2 1 ◦ R b̌
č ⊗ R č

ǎ − 1
2 1 ◦G γ̌

ǎ ⊗Q b̌
γ̌ − 1

4 1 ◦Q b̌
γ̌ ⊗G γ̌

ǎ

+ 1
4δ
b̌
ǎ 1 ◦G γ̌

č ⊗Q č
γ̌ + 1

4δ
b̌
ǎ 1 ◦Q č

γ̌ ⊗G γ̌
č , (3.5.65)
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and similarly for other charges. Thus the co-products in (3.5.30) may be cast in the form

∆
(
J̃Ǎ
)

=
(
ĴǍ ◦ 1− 1 ◦ ĴǍ + 1

2f
Ǎ
B̌Č

(JB̌ ◦ JČ)
)
⊗ 1 + 1

2f
Ǎ
B̌Č

(
JB̌ ◦ 1− 1 ◦ JB̌

)
⊗ JČ ,

(3.5.66)

revealing the factorization (3.5.56) explicitly. Here the first line corresponds to the Yan-
gian of the S-matrix in (3.5.56)

∆( J̃Ǎ)
∣∣∣
S

=
(
ĴǍ ◦ 1− 1 ◦ ĴǍ + 1

2f
Ǎ
B̌Č

(JB̌ ◦ JČ)
)
⊗ 1 , (3.5.67)

and was explicitly spelled out in (3.5.36), while the terms in the second line originate
from the achiral reflection matrices. Therefore the part of the Yangian charges governing
the achiral κ-matrices is

∆( J̃Ǎ)
∣∣∣
κ

=
(
ĴǍ ◦ 1− 1 ◦ ĴǍ

)
⊗ 1 + 1

2f
Ǎ
B̌Č

(
JB̌ ◦ 1− 1 ◦ JB̌

)
⊗ JČ . (3.5.68)

Once again we meet minus signs that need to be understood. The origin of the minus
sign in front of the level-1 charge in (3.5.67) was discussed in section 4.1, and its physical
interpretation is almost the same as for the horizontal reflection. The difference is that
now both momenta and rapidities of left and right representations are facing in the same
direction (towards the boundary) in the initial configuration i.e. for the incoming state;
see left side of figure 3.11) but the scattering always follows after the reflection as seen
from (3.5.56). Thus the S-matrix in (3.5.56) acts on the state with momentum and rapidity
reversed with respect to the initial configuration.

In order to understand the origin of the minus sign in front of the level-1 charge in
(3.5.68) it is better to consider the unfolded picture of the achiral reflection (the right side
of figure 3.11) first. As for the horizontal case, the reflection in the unfolded picture may
be thought of as achiral scattering through the boundary state; this was nicely shown in
figure 3.12. The Yangian charges (3.5.68) in the unfolded picture become

∆( J̃Ǎ)
∣∣∣unf

κ
= ĴǍ ⊗ 1⊗ 1 + 1⊗ 1⊗ ĴǍ + 1

2f
Ǎ
B̌Č

(
JB̌ ⊗ JČ ⊗ 1 + 1⊗ JB̌ ⊗ JČ

)
. (3.5.69)

The minus sign in front of level-1 charge was absorbed by the unfolding map T−1, while
the minus sign in front of the two-site term was absorbed into f Ǎ

B̌Č
using the antisym-

metry under exchange of B̌ and Č. Thus the achiral scattering through the boundary is
governed by a Yangian symmetry equivalent to the bulk Yangian (3.1.28) up to the dif-
ferent underlying tensor space structures. But here lies the most important feature of
the achiral scattering. In contrast to the horizontal case, the right representation in the
unfolded picture has momentum and rapidity pointing in opposite directions, as may be
seen in the right side of figure 3.11. Thus the minus sign in front of the level-1 charge in
(3.5.68) effectively reverses the rapidity of the right representation in the folded picture,
where it is pointing the same direction as the momentum.

We have checked that the Yangian charges (3.5.66) commute with the reflection matrix
Kv found in [144]. Hence reflection from the vertical D5-brane may be viewed in two
ways: as a single reflection matrix Kv which is governed by the Yangian charges (3.5.66),
or as a factorized reflection (3.5.56) which is governed by the Yangian charges (3.5.67) and
(3.5.68). Either way the result is the same, as required.
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B Reflection matrices

This appendix contains selected bound state reflection matrices for vector boundary and
are relevant to Z = 0 giant graviton and D7-branes and to ‘vertical’ D5-brane. The re-
flection matrices are given in the non-local representation. The local one can be obtained
by the following substitution

η → γ , η̃ → γ , ηB → UγB , η̃B → U−1γB , ζ → iα . (B.1)

Reflection matrices KBa and KBa. The supersymmetric reflection K-matrix KBa de-
scribing the reflection of the two-magnon bound states in the bulk from the fundamental
states on the boundary may be defined as a differential operator

KBa(p, xB) =
∑
i

k(S)
i (p, xB) Λi , (B.2)

acting on the superspace, where Λi are

Λ1 =
1

6
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b∂ω
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,
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. (B.3)
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The coefficients of the symmetric reflection matrix KBa are:

k(S)
1 = 1

k(S)
2 =

3xB(x−)2 − xB(x+)2(2 + 3(x+)2) + x−x+(xB − 4x+ + xB(x+)2)

2(xB + (−1 + x2
B)x− − xB(x−)2)(x+)2

,

k(S)
3 = −((x−)2 + xBx

+)

(xB − x−)x−
η̃

η
,

k(S)
4 = − (xB + x+)(x− + xB(x+)2)
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B)x− − xB(x−)2)x+
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η
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k(S)
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The anti-supersymmetric reflectionK-matrixKBa describing the reflection of the two-
magnon bound states in the mirror bulk theory from the fundamental states on the
boundary may be defined as a differential operator

KBa(p, xB) =
∑
i

k(A)
i (p, xB) Λi , (B.5)

acting on the mirror superspace, where Λi are the differential operators acting on the mir-
ror superspace. They may be acquired from (B.3) by interchange of bosonic and fermionic
indices, (a, b) ↔ (α, β). The reflection coefficients k(A)

i may be obtained from B.4 using
the relation k(A)

i (p, xB) = k(S)
i (−p, xB).

Reflection matrix KAb. The supersymmetric reflection K-matrix KAb describing the re-
flection of the fundamental states in the bulk from the two-magnon bound states on the
boundary may be defined as a differential operator

KAb(p, xB) =
∑
i

ki(p, xB) Λi , (B.6)

acting on the superspace, where Λi are
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The reflection coefficients ki are as follows:

k1 = 1 ,

k2 = 1− 3

2

(x− + x+)((x−)2 + x2
B(x+)2)

(xB − x−)x−x+(−1 + xBx+)
,
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η
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B(x−)2x+− x−(x+)2− 2xB(x−)2(x+)2+ (x+)3)η̃2
B

2(xB − x−)(x−)3(−1 + xBx+)η2
B

,

k7 = −x
+(xB + x+)
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2(xB − x−)(x−)2(−1 + xBx+)η2
B

,
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Chapter 4

q-deformed scattering in AdS/CFT

The quantum deformed (q-deformed) scattering in AdS/CFT is also known as a de-
formed Hubbard chain, or, more precisely, the one-dimensional double-deformed Hub-
bard chain. These two systems are equivalent as they have the same underlying symme-
try, the quantum affine algebra Q̂ [30]. The physical interpretation of the q-deformations
is not known at the present time, nevertheless the existence of such symmetries is very
welcome. Quantum affine algebras generally are of more symmetric and elegant form
than their Yangian avatars. This is particularly important for the boundary scattering
in AdS/CFT. In the previous chapter we have encountered a wide variety of twisted
Yangians that look very different from each other. Here we will show that q-deformed
approach leads to a very elegant and uniform boundary scattering theory. But first of all
let us briefly recall some details about the Hubbard model.

The Hubbard model, which was named after John Hubbard, is the simplest model of
interacting particles on a lattice. It has only two terms in the Hamiltonian: the hopping
term (kinetic energy) and the Coulomb potential [153]. The model describes an ensem-
ble of particles in a periodic potential at sufficiently low temperatures such that all the
particles may be considered to be in the lowest Bloch band. Moreover, any long-range in-
teractions between the particles are considered to be weak enough and are consequently
ignored. It is based on the tight-binding approximation of superconducting systems and
the motion of electrons between the atoms of a crystalline solid. Despite its apparent
simplicity, there are different applications and generalizations describing a plethora of
interesting phenomena. In the case when interactions between particles on different sites
of the lattice can not be neglected and are taken into account, the model is often referred
to as the Extended Hubbard model. The particles can either be fermions, as in Hubbard’s
original work, or bosons, and the model is then referred as either the Bose-Hubbard
model or the boson Hubbard model. The latter can be used to study systems such as
bosonic atoms on an optical lattice (for a decent overview of various generalizations see
reprint volumes [154–156] and also a more recent book [157]).

A very specific class of models that share features with the one-dimensional Hub-
bard model and the supersymmetric t-J model [158] is the so-called Alcaraz and Bariev
model [159]. It contains an extra spin-spin interaction term in the Hamiltonian and it
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shows some characteristics of superconductivity. This model can be viewed as a quan-
tum deformation of the Hubbard model in much the same way as the Heisenberg XXZ
model is a quantum deformation of the XXX model. This model has a specific R-matrix
which can not be written as a function of the difference of two associated spectral param-
eters. This paradigm is related to the very interesting but at the same time complicated
algebraic properties of the model.

The exact integrability of the one-dimensional Hubbard model was established by
B. Shastry [160]. It was also shown that the model exhibits Y(su(2)) ⊕ Y(su(2)) Yangian
symmetry [161]. However this symmetry is insufficient to constrain Shastry’s S-matrix
completely. Similarly, the worldsheet S-matrix for the AdS5 × S5 superstring also turns
out to have Yangian symmetry [20]. However the Yangian in this model is based on a
larger Lie algebra, the centrally extended su(2|2) Lie superalgebra, which has been con-
sidered in Chapter 3.

An interesting approach to the Hubbard model was put forward in [28]. Here the
model was based on the quantum deformation Q of the centrally extended psu(2|2)C
algebra. This q-deformed algebra has a number of interesting features such as a rather
symmetric realization of the different central elements. This model describes spectrum of
deformed supersymmetric one-dimensional Hubbard models [28,162]. The undeformed
Hubbard model is revealed by taking a specific limit of deformed model [163]. Moreover,
by sending the quantum deformation parameter q → 1, the S-matrix of this model spe-
cializes to the AdS/CFT worldsheet S-matrix which we have discussed in the previous
chapter. As such, this matrix encompasses both different varieties of Hubbard models
as well as the AdS/CFT worldsheet S-matrix and seems to provide a unifying algebraic
framework for describing this class of models.

The fundamental q-deformed S-matrix is constrained up to an overall phase by re-
quiring invariance under Q itself. However, in the light that both the AdS/CFT and the
Hubbard model S-matrices are actually invariant under an infinite dimensional symme-
try algebra, it should not be surprising that such a structure is also present here. Indeed,
the larger algebraic structure underlying this S-matrix is the quantum affine algebra
Q̂ [30]. This infinite dimensional algebra is obtained by adding an additional fermionic
node to the Dynkin diagram of Q. In the q → 1 limit one can retrieve the Yangian gener-
ators of psu(2|2)C by considering the appropriate combinations of generators of Q̂. This
fuels the idea that Q̂ plays a similar role as the Yangian in the undeformed case. More
specifically, it is expected that the S-matrix in the higher representations is uniquely de-
fined up to an overall phase by the underlying quantum affine algebra Q̂. This indeed
turns out to be the case as we will show in this chapter.

The type of representations we will be considering in here are the supersymmetric
short representations. In order to construct these representations, we employ the formal-
ism of quantum oscillators. It is a quantum version of the well-known harmonic oscillator
algebra and is defined by

[N, a] = −a , [N, a†] = a† , a a† − q a†a = q−N .

The use of quantum oscillators in the context of quantum groups was investigated ear-
lier in [164–166]. By employing Fock space type modules, q-oscillators naturally give
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rise to the bound state representations of quantum groups. This approach was first for-
mulated for the quantum deformed algebra Uq(sl(2)) and later extended to simple Lie
(super)algebras of a more general type, see e.g. [167]. Since then quantum oscillators
have become an important part of the theory of quantum deformed algebras.

The q-oscillator approach to bound states is not only an interesting mathematical
playground for studying the quantum affine algebra Q̂ and its S-matrix; there is also
a more elaborate motivation for considering these representations and the correspond-
ing S-matrix. Firstly, there might be some possible applications in the context of the
deformed Hubbard model. Secondly, the study of bound states is necessary to under-
stand some fundamental properties of the q-deformed AdS/CFT. For example, bound
states usually play a crucial role in the thermodynamics of the model. In the case of
the non-deformed AdS/CFT, the thermodynamic Bethe ansatz (TBA) formalism is key
in describing the complete spectrum of the theory [168–171]. The bound state S-matrix
then governs the large volume solutions of both the TBA equations and the Y-system.
Thus this is one of the first steps towards the TBA and Y-system formalism for the q-
deformed model. And, consequently, it might give some useful insights for the general
structures of the AdS/CFT superstring. For example, there might be an interesting link
to the recently constructed q-deformed Pohlmeyer reduced version of the superstrings in
the AdS5×S5 background [135,172] which seems to be closely related to the q-deformed
model constructed in [28].

Open boundary conditions for the deformed Hubbard model have received less at-
tention than their closed chain counterpart, nevertheless they exhibit a rich variety of
structures (see e.g. [173–175]). Reflection matrices for open boundary conditions for the
deformed Hubbard model of [28] have been first studied in [29]. Here the q-deformed
models of the giant gravitons were considered and the corresponding fundamental reflec-
tion matrices were obtained. In the light of the algebra Q̂ these models have been further
developed to incorporate the underlying affine symmetries. Three types of coideal subal-
gebras of Q̂ and reflection matrices were formulated in [25,26] that govern the boundary
scattering for the Y = 0 and Z = 0 giant gravitons and the left factor of the Z = 0
D7-brane. These boundary algebras follow the pattern of the quantum affine coideal
subalgebras discussed in Chapter 2.

This Chapter is organized as follows. In Section 4.1 we introduce the quantum affine
algebra Q̂ of the deformed Hubbard chain, and its bound state representations. In Section
4.2 we construct the bound state q-deformed S-matrix. Section 4.3 gives the necessary
preliminaries for the q-deformed boundary scattering theory. Then in Sections 4.4, 4.4
and 4.5 we construct the q-deformed models of the Y = 0 and Z = 0 giant gravitons and
the left factor of the Z = 0 D7-brane, which we have previously considered in Chapter
3. We then construct the corresponding boundary algebras and build the the q-deformed
boundary scattering theory. The majority of the q-deformed S-matrix coefficients and
results of the intermediate steps of calculations are spelled out in Appendices C, D and E.
Appendix F contains selected bound state reflection matrices for the q-deformed Z = 0
giant graviton.
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4.1 Quantum affine algebra Q̂

In this section we review the quantum deformation of the centrally extended psu(2|2)C
algebra [28], its affine extension [30] and the bound state representation [176].

4.1.1 Quantum deformation of psu(2|2)C
The quantum deformed psu(2|2)C algebra Q was introduced in [28]. This algebra is gen-
erated by the three sets of Chevalley-Serre generators {Ej ,Kj , Fj} (j = 1, 2, 3) where Ej
and Fj are raising and lowering generators respectively andKj = qHj are the Cartan gen-
erators. We will consider the case when E2 and F2 are fermionic generators and the rest
are bosonic. This corresponds to the su(2|2) Dynkin diagram in Figure 4.1. In addition,
this algebra has two central charges U and V = qC and two parameters: the deformation
parameter q and the coupling constant g. There is also a third parameter α, which de-
scribes the relative scaling of E2 and F2. Even though it is possible absorb this parameter
into these generators by a suitable redefinition, we will keep it unspecified.

1 2 3
c© 2010 Niklas Beisert~

Figure 4.1: Dynkin diagram for the su(2|2) algebra.

Algebra. The commutation relations which include the mixed Chevalley-Serre genera-
tors are (j, k = 1, 2, 3)

KjEk = q+DAjkEkKj , KjFk = q−DAjkFkKj , [Ej , Fk} = Djjδjk
Kj −K−1

j

q − q−1
,

(4.1.1)

where the associated Cartan matrix A and normalization matrix D are given by

DA =

 +2 −1 0

−1 0 +1

0 +1 −2

 , D = diag(+1,−1,−1) . (4.1.2)

There are also the unmixed commutation relations, called the Serre relations (j = 1, 3),

[E1, E3] = {E2, E2} =
[
Ej , [Ej , E2]

]
− (q − 2 + q−1)EjE2Ej = 0,

[F1, F3] = {F2, F2} =
[
Fj , [Fj , F2]

]
− (q − 2 + q−1)FjF2Fj = 0. (4.1.3)

In addition, this algebra satisfies the extended Serre relations that give rise to two central
elements U and V as follows,

gα(1− U2V 2) =
{

[E2, E1], [E2, E3]
}
− (q − 2 + q−1)E2E1E3E2,

gα−1(V −2 − U−2) =
{

[F2, F1], [F2, F3]
}
− (q − 2 + q−1)F2F1F3F2. (4.1.4)
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1

2

3

4

c© 2010 Niklas Beisert~

Figure 4.2: Dynkin diagram for the affine ŝu(2|2) algebra.

The central element V is also related to the Cartan generators through

V −2 = K1K
2
2K3 . (4.1.5)

The conventional Uq(su(2|2)) algebra is obtained in the limit g → 0.

Coalgebra. The defining relations of Q are compatible with the following coalgebra
structure. The coproduct of the group like elements X ∈ {U, V,K} is ∆(X) = X ⊗
X and the coproducts of the Chevalley-Serre generators Ej and Fj (j = 1, 3) take the
standard forms. However the coproducts of the fermionic generators E2 and F2 involve
an additional braiding factor U , which is one of the central charges of the algebra alluded
to in the previous paragraph,

∆(Ej) = Ej ⊗ 1 +K−1
j U+δj,2 ⊗ Ej , ∆(Fj) = Fj ⊗Kj + U−δj,2 ⊗ Fj . (4.1.6)

The coalgebra can be extended to a Hopf algebra. We will give the relevant definitions of
the antipode and counit later on.

4.1.2 Affine Extension

The infinite dimensional quantum affine algebra Q̂ is the affine extension ofQ introduced
in [30]. The affine extension is obtained by adding an additional node to the Dynkin
diagram as depicted in Figure 4.2. The remarkable property of this diagram is that the
additional fermionic node is a copy of the second node. Therefore, we introduce the
affine Chevalley-Serre generators {E4, F4,K4} as copies of {E2, F2,K2} and assume that
they satisfy the same commutation relations as are given in (4.1.1), (4.1.3) and (4.1.4) and
also have the same coalgebra structure (4.1.6). Thus, we introduce an additional set of
the parameters g, α and central charges U, V . We distinguish these two sets by adhering
subscripts to them arising from the generators to which they are associated,

g → gk, α→ αk, U → Uk, V → Vk, with k = 2, 4. (4.1.7)

Next, we need to determine the commutation relations {E2, F4} and {E4, F2} in such way
that they would be compatible with the coalgebra structure,

∆({E2, F4}) = {∆(E2),∆(F4)} and ∆({E4, F2}) = {∆(E4),∆(F2)} . (4.1.8)
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Algebra. As a result, we obtain the quantum affine algebra Q̂ [30]. The mixed commu-
tation relations of it are given by (i, j = 1, 3)

KiEj = q+DAijEjKi, KiFj = q−DAijFjKi,

{E2, F4} = −g̃α̃−1(K4 − U2U
−1
4 K−1

2 ), {E4, F2} = g̃α̃(K2 − U4U
−1
2 K−1

4 ),

[Ej , Fj} = Djj

Kj −K−1
j

q − q−1
[Ei, Fj} = 0, for i 6= j, i+ j 6= 6 . (4.1.9)

with the two new constants g̃ and α̃ and the associated supersymmetric Cartan matrix A
and normalization matrix D given by

DA =


+2 −1 0 −1

−1 0 +1 0

0 +1 −2 +1

−1 0 +1 0

 , D = diag(1,−1,−1,−1). (4.1.10)

These are supplemented by the following Serre relations (j = 1, 3 and k = 2, 4)

[E1, E3] = E2E2 = E4E4 = {E2, E4} = 0 ,

[F1, F3] = F2F2 = F4F4 = {F2, F4} = 0 ,

[Ej , [Ej , Ek]]− (q − 2 + q−1)EjEkEj = 0 ,

[Fj , [Fj , Fk]]− (q − 2 + q−1)FjFkFj = 0 . (4.1.11)

The central elements are related to the quartic Serre relations as (k = 2, 4)

gkαk(1− U2
kV

2
k ) =

{
[Ek, E1], [Ek, E3]

}
− (q − 2 + q−1)EkE1E3Ek ,

gkα
−1
k (V −2

k − U−2
k ) =

{
[Fk, F1], [Fk, F3]

}
− (q − 2 + q−1)FkF1F3Fk . (4.1.12)

In such a way this algebra has three regular central charges,

C1 = K1K
2
2K3 , C2 = g2α2(1− U2

2V
2

2 ) , C3 = g2α
−1
2 (V −2

2 − U−2
2 ) , (4.1.13)

and three affine ones,

Ĉ1 = K1K
2
4K3 , Ĉ2 = g4α4(1− U2

4V
2

4 ) , Ĉ3 = g4α
−1
4 (V −2

4 − U−2
4 ) . (4.1.14)

The central elements Vk are constrained by the relation K−1
1 K−2

k K−1
3 = V 2

k .

Coalgebra. The group-like elementsX ∈ {1,Kj , Uk, Vk} (j = 1, 2, 3, 4 and k = 2, 4) have
the coproduct ∆, the antipode S and the counit ε defined in the usual way,

∆(X) = X ⊗X, S(X) = X−1, ε(X) = 1, (4.1.15)
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while the coproducts of the Chevalley-Serre generators are deformed by the central ele-
ments Uk as follows (j = 1, 2, 3, 4),

∆(Ej) = Ej ⊗ 1 +K−1
j U

+δj,2
2 U

+δj,4
4 ⊗ Ej , S(Ej) = −U−δj,22 U

−δj,4
4 KjEj , ε(Ej) = 0,

∆(Fj) = Fj ⊗Kj + U
−δj,2
2 U

−δj,4
4 ⊗ Fj , S(Fj) = −U+δj,2

2 U
+δj,4
4 FjK

−1
j , ε(Fj) = 0.

(4.1.16)

It is important to note that the above coproducts are compatible with all the defining
relations, including the commutators {E2, F4} and {E4, F2} in (4.1.9). The opposite co-
product is defined as ∆op = P ◦∆ ◦ P with P being the graded permutation operator.

Parameter constraints. In general, the quantum affine algebra Q̂ has seven parameters
gk, αk, α̃, g̃, q (k = 2, 4). A suitable choice of them which lead to an interesting fundamen-
tal representation was performed in [30]:

g2 = g4 = g, α2 = α4 α̃
−2 = α, g̃2 =

g2

1− g2(q − q−1)2
. (4.1.17)

This choice of parameters is also compatible with the bound state representations. Thus
in this paper we only consider the quantum affine algebra Q̂, parametrized by four inde-
pendent parameters g, α, α̃, q given in the relations above.

4.1.3 Quantum oscillators and representations

In this section we will provide all the necessary background for constructing the bound
state S-matrix for the q-deformed Hubbard model. We will build the bound state repre-
sentation by introducing q-oscillator formalism linking it to the aforementioned quantum
affine algebra.

4.1.3.1 q-Oscillators

We first introduce the notion of q-oscillators and discuss how to obtain the representa-
tions of the quantum deformed algebras using q-oscillators. A concise overview of the
q-oscillators and their relation to such representations may be found in [167, 177].

Definitions. The q-oscillator (q-Heisenberg-Weyl algebra) Uq(h4) is the associative uni-
tal algebra consisting of the generators {a†, a, w, w−1} that satisfy the following relations,

w a† = q a†w, qw a = aw, (4.1.18)

ww−1 = w−1w = 1, a a† − q a†a = w−1.

From the defining relations one can see that the element w−1(a†a− w−w−1

q−q−1 ) is central. As
such, we will set it to zero in the remainder. Then one easily obtains

a†a =
w − w−1

q − q−1
, a a† =

qw − q−1w−1

q − q−1
. (4.1.19)
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We will also need to consider the fermionic version of the q-oscillator. The above no-
tion is extended to include fermionic operators by adjusting the defining relations in the
following way (we keep the same notation for bosonic and fermionic a, a† for now)

w a† = q a†w, qw a = aw, (4.1.20)

ww−1 = w−1w = 1, a a† + q a†a = w.

In this case, the central element is w(a†a − w−w−1

q−q−1 ). Again we set this element to zero,
resulting in the following identities

a†a =
w − w−1

q − q−1
, a a† =

qw−1 − q−1w

q − q−1
. (4.1.21)

Of course in the fermionic case the operators a, a† square to zero. Equation (4.1.21) implies
that this only is consistent if w2 = 1, q2. Below we will identify w ≡ qN , where N = 0, 1
is the number of fermions making it indeed compatible.

Fock space. The q-oscillator algebra can be used to define representations of Uq(sl(2)) in
a very simple way. Let us first build the Fock representation of Uq(h4). For this purpose
consider a vacuum state |0〉 such that

a|0〉 = 0, (4.1.22)

then the Fock vector space F generated by the states of the form

|n〉 = (a†)n|0〉 , (4.1.23)

is an irreducible module of Uq(h4). Let us first consider the bosonic q-oscillators. With the
help of the defining relations (4.1.18) and (4.1.19) one finds that the action of the oscillator
algebra generators on this module is

a†|n〉 = |n+ 1〉, a|n〉 = [n]q|n− 1〉, w|n〉 = qn|n〉. (4.1.24)

This makes it natural to identify w ≡ qN , where N is understood as a number operator.
Analogously, fermionic generators are found to act as

a†|n〉 = |n+ 1〉, a|n〉 = [2− n]q|n− 1〉, w|n〉 = qn|n〉. (4.1.25)

However, due to the fermionic nature, n can only take the values 0 and 1 and thus the
identity [2− n]q = [n]q holds.

Next consider two copies of bosonic q-oscillators ai, a
†
i , wi = qNi which mutually com-

mute. Then the Fock space is naturally spanned by vectors of the form

|m,n〉 = (a†1)m(a†2)n|0〉. (4.1.26)

It is easy to see that under the identification

E = a†2a1, F = a†1a2, H = N2 −N1, (4.1.27)
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the Fock space forms an infinite dimensional Uq(sl(2))-representation. Moreover, the sub-
space FM = span{ |m,M −m〉 | m = 0, . . . ,M } is an irreducible Uq(sl(2))-representation
of dimension M + 1. This can be straightforwardly generalized to sl(n) and more gen-
erally, by including fermionic oscillators, this space is extended to the representations of
sl(n|m) [167].

Representations of Uq(psu(2|2)C). We will now construct the bound state representa-
tion of Uq(psu(2|2)C) in the q-oscillator language. We need to consider two copies of sl(2),
a bosonic and a fermionic one. Thus we need four sets of q-oscillators ai, a

†
i , wi = qNi ,

where the index i = 1, 2 denotes bosonic oscillators and i = 3, 4 – fermionic ones. Using
these we write

E1 = a†2a1, F1 = a†1a2, H1 = N2 −N1, (4.1.28)

E2 = a a†4a2 + b a†1a3 F2 = c a†3a1 + d a†2a4, H2 = −C +
N1 +N3 −N2 −N4

2
, (4.1.29)

E3 = a†3a4, F3 = a†4a3, H3 = N4 −N3, (4.1.30)

where C is central. It is then straightforward to check that this set of generators forms a
representation of Uq(su(2|2)) on the Fock space when restricting to the subspace of total
particle number M upon setting

ad =
[C + M

2 ]q

[M ]q
, bc =

[C − M
2 ]q

[M ]q
, ab =

P

[M ]q
, cd =

K

[M ]q
. (4.1.31)

In the above K,P correspond to the right hand side of the Serre relations (4.1.12) follow-
ing [28]. As a consequence, the central charges satisfy the shortening condition

[C]2q −PK =
[
M
2

]2
q
. (4.1.32)

Here the q-numbers are defined as

[k]q =
qk − q−k

q − q−1
. (4.1.33)

This way of constructing representations of the centrally extended algebra reminds us of
the procedure used in, e.g. [113], where long representations were be obtained by twisting
sl(n|m) in a similar way.

In the q → 1 limit the q-oscillators get reduced to regular oscillators and their repre-
sentations coincide with the superspace formalism introduced in [108]. The identification
is as follows

a1,2 ↔
∂

∂w1,2
, a†1,2 ↔ w1,2, a3,4 ↔

∂

∂θ3,4
, a†3,4 ↔ θ3,4. (4.1.34)
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Parametrization and central elements. Introducing V = qC and U as in [30], we rewrite
(4.1.31) as

ad =
q
M
2 V − q−

M
2 V −1

qM − q−M
, bc =

q−
M
2 V − q

M
2 V −1

qM − q−M
,

ab =
gα

[M ]q
(1− U2V 2), cd =

gα−1

[M ]q
(V −2 − U−2). (4.1.35)

which altogether leads to a constraint for U and V ,

g2

[M ]2q
(V −2 − U−2)(1− U2V 2) =

(V − qMV −1)(V − q−MV −1)

(qM − q−M )2
. (4.1.36)

This constraint agrees with the one in [30] by identifying q → qM , g → g/[M ]q. The
explicit parametrization of the labels a, b, c, d shall be given a bit further.

4.1.3.2 Affine extension

Next we want to consider the affine extension introduced in [30]. Here we will show that
our representation allows an affine extension. Analogously to [30] we make the ansatz
that the affine charges act as copies of E2, F2, H2. In other words, we set

E4 = a4 a†4a2 + b4 a†1a3, F4 = c4 a†3a1 + d4 a†2a4, H4 = −C4 +
N1 +N3 −N2 −N4

2
.

(4.1.37)

Checking all of the commutation relations is straightforward. Also, due to the defining
relations (4.1.35), the equivalent expressions for the affine representation parameters are
obtained

a4d4 =
q
M
2 V4 − q−

M
2 V −1

4

qM − q−M
, b4c4 =

q−
M
2 V4 − q

M
2 V −1

4

qM − q−M
,

a4b4 =
g4α4

[M ]q
(1− U2

4V
2

4 ), c4d4 =
g4α

−1
4

[M ]q
(V −2

4 − U−2
4 ). (4.1.38)

However the commutators between the generators E2 and E4 and also between F2 and
F4 induce relations between a2, a4, etc. These are found to be

a2d4 =
g̃α̃−1

[M ]q
(q

M
2 U2U

−1
4 V2 − q−

M
2 V −1

4 ), b2c4 =
g̃α̃−1

[M ]q
(q−

M
2 U2U

−1
4 V2 − q

M
2 V −1

4 ),

c2b4 =
g̃α̃

[M ]q
(q

M
2 V −1

2 − q−
M
2 U−1

2 U4V2), d2a4 =
g̃α̃

[M ]q
(q−

M
2 V −1

2 − q
M
2 U−1

2 U4V2),

(4.1.39)

and agree with [30] upon sending q → qM , g̃ → g̃
[M ]q

, as in the non-affine case. The tilded
g̃, α̃ are not independent but constrained parameters; thus there are 12 constraints for 12
parameters {ak, bk, ck, dk, Uk, Vk}.
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Hopf algebra and variables. The Hopf algebra structure is just as previously discussed
in Chapter 3. Here we will introduce Zhukowksy variables that will parameterize the
representation labels {ak, bk, ck, dk} and central elements Uk, Vk for the bound state rep-
resentation. Following [30] we choose

g2 = g4 = g, α2 = α4 α̃
−2 = α, g̃2 =

g2

1− g2(q − q−1)2
. (4.1.40)

Note that the powers of q in the expressions above are 1 and not M because g2(q − q−1)2

is invariant under the bound state map (g, q) 7→ (g/[M ]q, q
M ), thus these equations are

identical to the ones for the fundamental representation.
Also, there is a relation between the central elements of the algebra,

U4 = ±U−1
2 , V4 = ±V −1

2 , (4.1.41)

that are called the two-parameter family of the representation [30]. We shall be using the
plus relation in our calculations.

The mass-shell constraint (multiplet shortening condition) obtained from the expres-
sions (4.1.35) and (4.1.38) reads as

(akdk − qMbkck)(akdk − q−Mbkck) = 1, (4.1.42)

and holds independently for k = 2, 4. In terms of the conventional x± parametrization it
becomes

1

qM
(
x+ +

1

x+

)
− qM

(
x− +

1

x−
)

=
(
qM − 1

qM
)(
ξ +

1

ξ

)
, (4.1.43)

where ξ = −ig̃(q − q−1). One can further introduce a function ζ(x)

ζ(x) = −x+ 1/x+ ξ + 1/ξ

ξ − 1/ξ
, (4.1.44)

in terms of which (4.1.43) becomes q−Mζ(x+) = qMζ(x−). This parametrization leads to
the following expressions of the labels ak, bk, ck, dk of a ‘canonical form’:

ak =

√
g

[M ]q
γk, bk =

√
g

[M ]q

αk
γk

x−k − x
+
k

x−k
,

ck =

√
g

[M ]q

γk
Vk αk

i q
M
2 g̃

g(x+
k + ξ)

, dk =

√
g

[M ]q

Vk g̃ q
M
2

i g γk

x+
k − x

−
k

ξx+
k + 1

, (4.1.45)

where the representation of the central elements is

U2
k =

1

qM
x+
k + ξ

x−k + ξ
= qM

x+
k

x−k

ξx−k + 1

ξx+
k + 1

, V 2
k =

1

qM
ξx+

k + 1

ξx−k + 1
= qM

x+
k

x−k

x−k + ξ

x+
k + ξ

, (4.1.46)

and the relations between x±2 , γ2 and x±4 , γ4 are constrained by (4.1.39) to be

x±2 = x±, x±4 =
1

x±
, γ2 = γ, γ4 =

iα̃γ

x+
. (4.1.47)
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The relation between normalization coefficients α2 and α4 was given in (4.1.40). Finally,
the convenient multiplicative evaluation parameter z for the bound state representation
is

z =
1− U2V 2

V 2 − U2
= q−Mζ(x+) = qM ζ(x−) . (4.1.48)

4.1.3.3 Summary

For the convenience of the reader we want to summarize all expressions that will be used
in the subsequent calculations of the bound state S-matrix. We will slightly change the
notation for parameters related to the fermionic nodes. We rename the representation
parameters and the central elements of the algebra as

(a2, b2, c2, d2, U2, V2)→ (a, b, c, d, U, V ),

(a4, b4, c4, d4, U4, V4)→ (ã, b̃, c̃, d̃, Ũ , Ṽ ), (4.1.49)

in order to reserve the subscript position for discriminating states living in different ten-
sor spaces. We will also give some relations that we found to be very useful.

Explicit representation. The bound state representation is defined as

|m,n, k, l〉 = (a†3)m(a†4)n(a†1)k(a†2)l |0〉. (4.1.50)

The total number of excitations is k + l + m + n = M . The triple corresponding to the
bosonic sl(2) is given by

H1|m,n, k, l〉 = (l − k)|m,n, k, l〉,
E1|m,n, k, l〉 = [k]q |m,n, k − 1, l + 1〉, F1|m,n, k, l〉 = [l]q |m,n, k + 1, l − 1〉. (4.1.51)

The fermionic part is

H3|m,n, k, l〉 = (n−m)|m,n, k, l〉,
E3|m,n, k, l〉 = |m+ 1, n− 1, k, l〉, F3|m,n, k, l〉 = |m− 1, n+ 1, k, l〉. (4.1.52)

The action of the supercharges is given by

H2|m,n, k, l〉 = − {C − 1
2(k − l +m− n)}|m,n, k, l〉,

E2|m,n, k, l〉 = a (−1)m[l]q |m,n+ 1, k, l − 1〉+ b |m− 1, n, k + 1, l〉,
F2|m,n, k, l〉 = c [k]q |m+ 1, n, k − 1, l〉+ d (−1)m |m,n− 1, k, l + 1〉. (4.1.53)

The parameters a, b, c, d are related to the central charges via (4.1.31). The affine charges
are defined exactly in the same way,

H4|m,n, k, l〉 = − {C̃ − 1
2(k − l +m− n)}|m,n, k, l〉,

E4|m,n, k, l〉 = ã (−1)m[l]q|m,n+ 1, k, l − 1〉+ b̃ |m− 1, n, k + 1, l〉,
F4|m,n, k, l〉 = c̃ [k]q |m+ 1, n, k − 1, l〉+ d̃ (−1)m |m,n− 1, k, l + 1〉. (4.1.54)
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The representation labels a, b, c, d are given by

a =

√
g

[M ]q
γ, b =

√
g

[M ]q

α

γ

x− − x+

x−
,

c =

√
g

[M ]q

γ

αV

i q
M
2 g̃

g(x+ + ξ)
, d =

√
g

[M ]q

g̃ q
M
2 V

i g γ

x+ − x−

ξx+ + 1
, (4.1.55)

and the affine parameters ã, b̃, c̃, d̃ are acquired by replacing V → Ṽ = V −1, γ → iα̃γ
x+

,
α → α α̃2 and x± → 1

x± ; the corresponding central elements are given by V = qC ,

Ṽ = qC̃ .

Useful relations. The evaluation parameter z may be expressed explicitly in terms of
x± parametrization as

z (q − q−1)(ξ − ξ−1) = − 1

[M ]q

(
x+ − x− +

1

x+
− 1

x−

)
. (4.1.56)

Then using the identity

ξ − ξ−1 =
g̃

i(q − q−1)g2
, (4.1.57)

one can further show that it is related to the representation labels (4.1.55) and their affine
partners in a very nice way,

z =
g

g̃ α α̃
(ab̃− bã),

1

z
=
g α α̃

g̃
(cd̃− dc̃), (4.1.58)

while the consistency conditions (4.1.39) give

z =
1− U2V 2

V 2 − U2
=

1− Ũ2Ṽ 2

Ṽ 2 − Ũ2
. (4.1.59)

Rational limit. The rational limit is usually obtained by substituting q = 1 +h and then
finding the h → 0 limit. Thus by defining the evaluation parameter (4.1.48) as z = q−2u

we can expand it in series of h as [30]

z = 1− 2hu+O(h2), where u =
ig

2
(x+ + x−)(1 + 1/x+x−). (4.1.60)

It is noted that the x± parameters in (4.1.60) satisfies the leading order of the following
relation which is stemming from the mass-shell constraint (4.1.43) in the h→ 0 limit,

x+ +
1

x+
− x− − 1

x−
=
iM

g
+ 2hMu+O(h2). (4.1.61)

In fact, this is consistent with the rational constraint for x± parameters [109]. Finally, it
would be important to see how the representation parameters reduce in the rational limit.
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The representation labels (4.1.55) in the q → 1 limit reduce to the usual (undeformed)
labels (a, b, c, d) of [109]. On the other hand, the affine parameters are related to the non-
affine ones (ã, b̃, c̃, d̃) through [30]

MT̃ =

(
z−1 0

0 1

)
T

(
w−1 0

0 wz

)
with M =

(
0 αα̃

−α−1α̃−1 0

)
, T =

(
a −b
−c d

)
(4.1.62)

where z is the evaluation parameter given in (4.1.48), (4.1.59) and w is defined by

w =
g̃V

gq1/2

qU2 − 1

V 2U2 − 1
=
gq1/2

g̃V

U2 − V 2

U2 − q
. (4.1.63)

Since the central elements specialize to (U, V )→ (
√

x+

x− , 1) in the limit q → 1, it is easy to
see that the matrix relation (4.1.62) reduces the following simple form,

MT̃ = T. (4.1.64)

4.2 q-deformed S-matrix

In this section we will construct the bound state S-matrix which is an intertwining matrix
of the tensor space furnished by the vectors

|m1, n1, k1, l1〉 ⊗ |m2, n2, k2, l2〉 ∈ VM1 ⊗ VM2 . (4.2.1)

Here 0 ≤ m1, n1,m2, n2 ≤ 1 and k1, l1, k2, l2 ≥ 0 denote the numbers of fermionic and
bosonic excitations respectively with the bound state number Mi being the total number
of excitations, Mi = mi + ni + ki + li. Thus the S-matrix is the automorphism of the
quantum deformed tensor space and is required to intertwine the coproduct and the
opposite coproduct of the affine algebra Q̂,[

S∆(J)−∆op(J)S
]
VM1 ⊗ VM2 , for all J ∈ Q̂ . (4.2.2)

We normalize the S-matrix in such a way that the state |0, 0, 0,M1〉⊗|0, 0, 0,M2〉 is invari-
ant under the scattering. Therefore we will denote the state

|0〉 = |0, 0, 0,M1〉 ⊗ |0, 0, 0,M2〉, (4.2.3)

as the vacuum state.
The invariance under bosonic symmetries ∆(H1) and ∆(H3) requires the total num-

ber of fermions and the total number of fermions of one type1

Nf = m1 +m2 + n1 + n2 + 2l1 + 2l2,

Nf3 = m1 +m2 + l1 + l2. (4.2.4)

to be conserved. This conservation divides the space (4.2.1) into five types of invariant
subspaces of the S-matrix:

1Note that a bosonic excitation may be interpreted as a combined excitation of two fermions of different
type.
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Space III

Space II

Space I

Space IIb

Space Ib
(¢E3)

2(¢E3)
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2(¢F3)
2

¢F3¢F3

¢E3¢E3

¢E2¢E2
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¢F4¢F4
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Figure 4.3: The invariant subspaces of the S-matrix and the algebraic relations between
them.

I |0, 1, k1, l1〉 ⊗ |0, 1, k2, l2〉,

Ib |1, 0, k1, l1〉 ⊗ |1, 0, k2, l2〉,

II {|0, 0, k1, l1〉 ⊗ |0, 1, k2, l2〉, |1, 1, k1, l1〉 ⊗ |0, 1, k2, l2〉,
|0, 1, k1, l1〉 ⊗ |0, 0, k2, l2〉, |0, 1, k1, l1〉 ⊗ |1, 1, k2, l2〉},

IIb {|0, 0, k1, l1〉 ⊗ |1, 0, k2, l2〉, |1, 1, k1, l1〉 ⊗ |1, 0, k2, l2〉,
|1, 0, k1, l1〉 ⊗ |0, 0, k2, l2〉, |1, 0, k1, l1〉 ⊗ |1, 1, k2, l2〉},

III {|0, 0, k1, l1〉 ⊗ |0, 0, k2, l2〉, |0, 0, k1, l1〉 ⊗ |1, 1, k2, l2〉, |1, 1, k1, l1〉 ⊗ |0, 0, k2, l2〉,
|1, 1, k1, l1〉 ⊗ |1, 1, k2, l2〉, |0, 1, k1, l1〉 ⊗ |1, 0, k2, l2〉, |1, 0, k1, l1〉 ⊗ |0, 1, k2, l2〉}.

Subspaces I, Ib and II, IIb are isomorphic, hence we need to find the S-matrix for one of
the isomorphic subspaces only. In the following we will consider the scattering in the
subspaces I, II and III only.

The invariant subspaces differ by the numbers Nf,f3 . By considering the action of the
algebra charges it is easy to see that the different subspaces are related to each other in
the way shown in figure 4.3.

Finally we want to give a remark on our choice of the basis. The q-oscillator basis we
are considering is orthogonal, but not orthonormal,

〈m′, n′, k′, l′|m,n, k, l〉 =
1

[k]! [l]!
δm,m′δn,n′δk,k′δl,l′ , (4.2.5)

where [n]! = [n]q[n − 1]q · · · [1]q is the quantum factorial. We shall choose the normaliza-
tion for the bra vectors to be

〈m,n, k, l| := 1

[k]! [l]!
|m,n, k, l〉†. (4.2.6)
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which helps us to normalize the scalar product to unity and avoid the appearance of
unpleasant numerical factors of the form

(
[k]![l]!

)−1/2 in the derivations. The price we
have to pay for this choice of the basis is that, for real q, the inverse of the S-matrix is
related to the Hermitian conjugate only up to a basis transformation. For complex q this
property is not valid even for the fundamental representation [28].
For further convenience we introduce these shorthands

M = M1 +M2, δM = M1 −M2, K = k1 + k2, δK = k1 − k2,

k̄i = Mi − ki − 1, δki = k̄i − ki = Mi − 2ki − 1, z12 = z1/z2, δu = u1 − u2. (4.2.7)

4.2.1 Scattering in subspace I

The conserved fermionic numbers (4.2.4) for the subspace I are Nf = 2K + 2 and Nf3 =
K + 2. Thus for the fixed K (0 ≤ K ≤M1 +M2 − 2) the dimension of the space is K + 1
and the states in this space are defined as

|k1, k2〉I = |0, 1, k1,M1 − k1 − 1〉 ⊗ |0, 1, k2,M2 − k2 − 1〉. (4.2.8)

We start by considering the highest weight state (the state with k1 = k2 = 0). The invari-
ance under ∆(H1 and ∆(H3 requires it to be an eigenstate of the S-matrix,

S |0, 0〉I = D |0, 0〉I. (4.2.9)

Let us compute D . First, we construct the highest weight state by acting with the combi-
nation ∆(E2)∆(E4) on the vacuum state (4.2.3) (we use the notation ai ≡ a(pi) etc.)

∆(E2)∆(E4) |0〉 = q
M1
2 [M1]q[M2]q (a1ã2 Ũ1Ṽ1 − a2ã1 U1V1) |0, 0〉I. (4.2.10)

This construction let us to rewrite (4.2.9) as

S |0, 0〉I =
S∆(E2)∆(E4)

q
M1
2 [M1]q[M2]q (a1ã2 Ũ1Ṽ1 − a2ã1 V1U1)

|0〉

=
∆op(E2)∆op(E4)S

q
M1
2 [M1]q[M2]q (a1ã2 Ũ1Ṽ1 − a2ã1 V1U1)

|0〉

= −q
M2−M1

2
a2ã1 Ũ2Ṽ2 − a1ã2 V2U2

a1ã2 Ũ1Ṽ1 − a2ã1 V1U1

|0, 0〉I, (4.2.11)

where we have used the invariance condition (4.2.2) when going from the first to the
second line. Comparing (4.2.11) with (4.2.9) we find D to be

D = −q
M2−M1

2
a2ã1 Ũ2Ṽ2 − a1ã2 V2U2

a1ã2 Ũ1Ṽ1 − a2ã1 V1U1

= q−δM/2U2V2

U1V1

x+
1 − x

−
2

x−1 − x
+
2

. (4.2.12)

In the q → 1 limit this is the inverse of the result found in [109] due to the interchange of
∆ and ∆op with respect to the ones in [109].
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Next we define the action of the S-matrix on the subspace I to be

S |k1, k2〉I =
K∑
n=0

X k1,k2
n |n,K − n〉I. (4.2.13)

The strategy for finding coefficients X k1,k2
n will be based on building the generic state

|k1, k2〉I by starting from the highest weight state |0, 0〉I. This allows us to relate X k1,k2
n

with any k1, k2 and n to the already known coefficient D . Thus we need to construct
k1- and k2-raising operators. We start from inspecting the action of the coproduct of the
bosonic charge F1 giving

∆(F 1)|k1, k2〉I = [k̄1]q q
δk2 |k1 + 1, k2〉I + [k̄2]q |k1, k2 + 1〉I, (4.2.14)

and

∆op(F 1)|k1, k2〉I = [k̄1]q |k1 + 1, k2〉I + [k̄2]q q
δk1 |k1, k2 + 1〉I. (4.2.15)

These coproducts do not have the desired properties we want, but are very close. How-
ever, with the help of E2, E3 and E4 we can construct a new charge with a similar action,

F̂1 =
g

g̃ α α̃
{E2, [E4, E3]}. (4.2.16)

We call this new charge ‘the affine partner’ of the raising charge F1. The action of F̂1 on
the state of the form |0, 1, k, l〉 is

F̂1 |0, 1, k, l〉 = z [l]q |0, 1, k + 1, l − 1〉, (4.2.17)

where we have used (4.1.56) implicitly2. Then it is straightforward to see that the new
affine raising charge acts on generic states in subspace I as

∆(F̂ 1) |k1, k2〉I = z1 [k̄1]q |k1 + 1, k2〉I + z2 q
δk1 [k̄2]q |k1, k2 + 1〉I. (4.2.19)

And the action of ∆op(F̂1) is

∆op(F̂1) |k1, k2〉I = z1 q
δk2 [k̄1]q |k1 + 1, k2〉I + z2 [k̄2]q |k1, k2 + 1〉I. (4.2.20)

By combining ∆(F̂ 1) with ∆(F 1) we obtain composite operators having the action of the
desired form – raising k1 and k2 separately:

|k1 + 1, k2〉I =
1

[k̄1]q

∆(F̂ 1)− z2 q
δk1∆(F 1)

z1 − z2 qδk1+δk2
|k1, k2〉I, (4.2.21)

|k1, k2 + 1〉I =
1

[k̄2]q

z1 ∆(F 1)− qδk2∆(F̂ 1)

z1 − z2 qδk1+δk2
|k1, k2〉I. (4.2.22)

2For the consistency of the algebra we also give a definition of the ‘affine lowering charge’ Ê1:

Ê1 =
g α α̃

g̃
{F2, [F4, F3]}, Ê1|0, 1, k, l〉 =

[k]q
z
|0, 1, k − 1, l + 1〉. (4.2.18)
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Then by induction we find that the generic state |k1, k2〉I may be constructed as

|k1, k2〉I =

∏k2−1
j2=0 (z1 ∆(F 1)− qδj2∆(F̂ 1))

∏k1−1
i1=0 (∆(F̂ 1)− z2 q

δi1∆(F 1))∏k1
i=1[M1 − i]q

∏k2
j=1[M2 − j]q

∏k1+k2
j=1 (z1 − z2qM−2j)

|0, 0〉I. (4.2.23)

Finding X k1,k2
n is then straightforward. We only need to act with the S-matrix on the

expression above and sandwich with a bra-vector as

X k1,k2
n = I〈n,K − n| S |k1, k2〉I. (4.2.24)

Performing similar steps as we did in (4.2.11) and employing the relations

(∆op(F̂1)− z2 q
δk1∆op(F 1)) |n1, n2〉I

= [n̄2]q z2 (1− qδk1+δn1) |n1, n2 + 1〉I + [n̄1]q (z1 q
δn2 − z2 q

δk1) |n1 + 1, n2〉I, (4.2.25)

(z1 ∆op(F 1)− qδk2∆op(F̂1)) |n1, n2〉I

= [n̄1]q z1 (1− qδn2+δk2) |n1 + 1, n2〉I + [n̄2]q (z1q
δn1 − z2q

δk2)|n1, n2 + 1〉I, (4.2.26)

we find the coefficients of the S-matrix in the subspace I to be

X k1,k2
n = D

∏n
i=1[M1 − i]q

∏K−n
j=1 [M2 − j]q∏k1

i=1[M1 − i]q
∏k2
j=1[M2 − j]q

1∏K
l=1(z12 − qM−2l)

×
k1∑
m=0

zn−m12 qk2(n−m)−k1m−k22

 k1

m


q

 k2

n−m


q

×
m−1∏
p=0

(z12 q
M2+2p − qM1)

k1∏
p=1+m

(1− q2(M1−p))

×
n−m∏
p=1

(1− q2(M2−K+n−p))

k2−n−1∏
p=−m

(z12 q
M1+2p − qM2)

 , (4.2.27)

where z12 = z1
z2

and the q-binomials are defined as

 a
b


q

≡ [a]q!

[b]q![a− b]q!
. (4.2.28)

Apart from the prefactor D , this expression only depends on the quotient z12 and on
simple q-factors. The expression above has exactly the form that one would expect to
obtain by an educated guess relying on the one given in [109].

Quantum 6j-Symbol. The coefficients X k1,k2
n of the bound state S-matrix may be re-

garded as the coefficients which arise in the fusion rule of the irreducible representations
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of Uq(su(2)), thus it is expected that the expression (4.2.27) is related to the quantum
6j-symbol, which is the q-deformation of 6j-symbol and was first introduced in [178].

In order to see the relation with the quantum 6j-symbol, we first rewrite (4.2.27) in
terms of quantum factorials. This can be done by introducing the notation z12 = q−2δu

and using the following identity several times,

qA − qB

q − q−1
= q

A+B
2

[
A−B

2

]
q

. (4.2.29)

Secondary, we shift the index of summation m to M1 − 2 −m. After some computation,
we obtain the following form,

X k1,k2
n = D q(k1−n)(k2−n+δu+ δM

2
) [M2 − k2 − 1]!

[M1 − n− 1]!

[δu+ M
2 − 1−K]!

[δu+ M
2 − 1]!

× [k1]![k2]![δu+ δM
2 ]![δu− δM

2 − k2 + n+ 1]!

×
∑
m≥0

[m+ 1]! ([m−M1 + 2 + k1]! [m−M1 + 2 + n]! [k2 − n+M1 − 2−m]!

× [m+ δu− M
2 + 2]! [δu+ M

2 − 1−m]! [M1 − 2−m]! [M −K − 3−m]!
)−1

.
(4.2.30)

where the summation index m runs over the non-negative integers such that all argu-
ments of the quantum factorials, which do not include δu, are non-negative. Finally,
replacing the six variables (M1,M2, k1, k2, n, δu) by the appropriate combinations of the
set (j1, j2, j3, j4, j5, j6) as (see also [109]),

j1 = 1
2(K − n+ δM

2 + δu), j4 = 1
2( δM2 − 1 + k2 − δu),

j2 = 1
2(M2 − 2− k2 − δu), j5 = 1

2(M2 − 1−K + n+ δu),

j3 = 1
2(M1 − 2− k1 − n), j6 = 1

2(M2 − 1), (4.2.31)

we have found that the expression (4.2.27) obtains a quite elegant form

X k1,k2
n = D (−1)j1−j3−j4+2j5+j6q(j1−j2+j3)(j1+j2−j4−j5) [j1 + j2 − j3]!

[1 + j1 + j2 + j3]!

[j1 + j5 − j6]!

[j1 + j5 + j6]!

× [j3 − j4 + j5]! [j3 + j4 − j5]! [j2 − j4 + j6]! [−j2 + j4 + j6]!

∣∣∣∣∣∣∣∣∣
j1 j2 j3

j4 j5 j6

∣∣∣∣∣∣∣∣∣,
(4.2.32)

where we have defined the rescaled quantum 6j-symbol by
∣∣∣∣∣∣∣∣∣
j1 j2 j3

j4 j5 j6

∣∣∣∣∣∣∣∣∣ =
∑
m≥0

(−1)m[m+ 1]!
(
[j1245 −m]! [j1346 −m]! [j2356 −m]!

× [m− j123]! [m− j345]! [m− j246]! [m− j156]!
)−1

. (4.2.33)



138 q-deformed scattering in AdS/CFT

Here we have used bookkeeping notations jabc = ja + jb + jc and jabcd = ja + jb + jc + jd.
The above expression is related with the quantum 6j-symbol introduced in [178] as

j1 j2 j3

j4 j5 j6

 =
√

2j3 − 1
√

2j6 − 1 (−1)−j1−j2+2j3+j4+j5

×∆(j1, j2, j3)∆(j1, j5, j6)∆(j2, j4, j6)∆(j3, j4, j5)

∣∣∣∣∣∣∣∣∣
j1 j2 j3

j4 j5 j6

∣∣∣∣∣∣∣∣∣, (4.2.34)

where the triangle coefficient ∆(a, b, c) is defined to be

∆(a, b, c) =

[
[a+ b− c]! [b+ c− a]! [c+ a− b]!

[1 + a+ b+ c]!

]1/2

. (4.2.35)

Rational Limit. In order to find the rational limit of the matrix X (4.2.27) we first use
the expansion (4.1.60) for the spectral parameter z. This leads to

X k1,k2
n = D

∏n
i=1[M1 − i]q

∏K−n
j=1 [M2 − j]q∏k1

i=1[M1 − i]q
∏k2
j=1[M2 − j]q

1∏K
l=1(z

1/2
12 [δu]q + qM/2−l[M2 − l]q)

×
k1∑
m=0

zn−m12 qk2(n−m)−k1m−k22

 k1

m


q

 k2

n−m


q

×
m−1∏
p=0

(
z

1/2
12 qM2/2+p

[
δu− M2

2
− p
]
q

+ qM1/2

[
M1

2

]
q

)

×
k2−n−1∏
p=−m

(
z

1/2
12 qM1/2+p

[
δu− M1

2
− p
]
q

+ qM2/2

[
M2

2

]
q

)

×
k1∏

p=1+m

qM1−p[M1 − p]q
n−m∏
p=1

qM2−K+n−p[M2 −K + n− p]q

 ,

(4.2.36)

where δu = u1 − u2. Now we are ready to find q → 1 limit. The q-numbers [x]q coalesce
to x, thus (4.2.36) becomes

X k1,k2
n = D

∏n
i=1(M1 − i)

∏K−n
j=1 (M2 − j)∏k1

i=1(M1 − i)
∏k2
j=1(M2 − j)

1∏K
l=1(δu+ M

2 − l)

×
k1∑
m=0

( k1

m


 k2

n−m


m−1∏
p=0

(
δu+

δM

2
− p
) k2−n−1∏

p=−m

(
δu− δM

2
− p
)

×
k1∏

p=1+m

(M1 − p)
n−m∏
p=1

(M2 −K + n− p)

 . (4.2.37)
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This result coincides exactly with the expression obtained in [109]3

Classical Limit. It is also important to find the classical limit g → ∞ of (4.2.27). This
limit corresponds to the case ‘T(h)’ in the analysis of the classical algebra [163], where the
deformation parameter q is expanded as

q = 1 +
h

2g
+O(g−2), (4.2.38)

and the x± parameters become

x± = x

[
1± hM

2g

(x+ h̃)(1 + 1/xh̃)

x− x−1
+O(g−2)

]
, where h̃ = − ih√

1− h2
. (4.2.39)

The above expressions are compatible with the constraint (4.1.43) up to a given order.
Since ξ → h̃ and x± → x in the classical limit, it is easy to see that the evaluation param-
eter z reduces to4

z = −(x+ h̃)(1 + 1/xh̃)

h̃− h̃−1
= −C +D

C −D
, (4.2.40)

where elements C and D are the classical limits of U = qD and V = qC respectively, and
are given by

D = 1
2(z + 1) q̃ , C = 1

2(z − 1) q̃ , where q̃ = −M h̃− h̃−1

x− x−1
. (4.2.41)

With these preliminaries, we find the classical limit of (4.2.27) to be

X k1,k2
n ∼ (1 + Dcl)

∏n
i=1(M1 − i)

∏K−n
j=1 (M2 − j)∏k1

i=1(M1 − i)
∏k2
j=1(M2 − j)

(
1 +

h

g

k1+k2∑
l=1

M
2 − l
z12 − 1

)

×
k1∑
m=0

[(
−h
g

1

z12 − 1

)k1+n−2m

zn−m12

 k1

m


 k2

n−m



×

(
1 +

h

g

m−1∑
p=0

z12

(
M2
2 + p

)
− M1

2

z12 − 1
+
h

g

k2−n−1∑
p=−m

z12

(
M1
2 + p

)
− M2

2

z12 − 1

+
h

2g

(
k2(n−m)− k1m− k2

2

)) k1∏
p=1+m

(M1 − p)
n−m∏
p=1

(M2 −K + n− p)

,
(4.2.42)

where Dcl is O(g−1) term of D in (4.2.27). Since the binomial coefficients force the index
m to be m ≤ min{k1, n}, we will discuss the two possible cases separately. They are the

3The normalization of the evaluation parameter is slightly different in here, uhere = −2u [109].
4The classical evaluation parameter given in [163] is related with ours as zcl[34] = (zclhere)

−1 and the classical
parameter is x[34] = −ihh̃−1(xhere + h̃).
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n 6= k1 case (off-diagonal sector) and the n = k1 case (diagonal sector).

Off-diagonal sector. In the case when n is different from k1, it is further classified by two
more cases – if n is bigger or smaller than k1. Firstly, in the n > k1 case, the leading order
of (4.2.42) is O(g−(n−k1)) with m = k1. Therefore the O(g−1) term, which contributes to
the classical r-matrix, is obtained by setting n = k1 +1. In this situation, the classical limit
of (4.2.42) turns out to be of a simple form,

X k1,k2
k1+1 ∼ −

h

g

z1

z1 − z2
k2(M1 − k1 − 1) . (4.2.43)

Secondary, in the n < k1 case, the leading order is O(g−(k1−n)) with m = n. Therefore,
the O(g−1) contribution is given by n = k1 − 1. In this case the amplitude becomes

X k1,k2
k1−1 ∼ −

h

g

z2

z1 − z2
k1(M2 − k2 − 1) . (4.2.44)

The other matrix elements do not contribute to the classical r-matrix.

Diagonal sector. This is the n = k1 case and it needs a more elaborate treatment in com-
parison with the off-diagonal sector. In this case the leading order in (4.2.42) isO(1) with
m = k1 = n. Thus the classical limit turns out to be

X k1,k2
k1

∼ 1 + Dcl −
h

2g
(k2

1 + k2
2) +

h

g

1

z1 − z2

[
k1+k2∑
l=1

z2

(
M

2
− l
)

+

k1−1∑
p=0

(
z1M2 − z2M1

2
+ z1p

)
+

k2−k1−1∑
p=−k1

(
z1M1 − z2M2

2
+ z1p

) . (4.2.45)

Full Rational Limit. It is noted that the classical limit still depends on the deformation
parameter h. This allows us to take h → 0 limit further, which corresponds to the case
“R(full)” in the analysis of [163]. In this limit, the classical evaluation parameter (4.2.40)
reads,

z ∼ 1− h

g
u+O(h2), with u = x+

1

x
. (4.2.46)

Then the off-diagonal elements of the classical r-matrix (4.2.43) and (4.2.44) turns out to
be

X k1,k2
k1+1 ∼

1

δu
k2(M1 − k1 − 1) , X k1,k2

k1−1 ∼
1

δu
k1(M2 − k2 − 1) . (4.2.47)

On the other hand, the diagonal elements (4.2.45) reduce to

X k1,k2
k1

∼ 1 + Dcl −
1

δu

k1+k2∑
l=1

(
M
2 − l

)
+

k1−1∑
p=0

(
− δM

2 + p
)

+

k2−k1−1∑
p=−k1

(
δM
2 + p

) . (4.2.48)

The above expressions (4.2.47) and (4.2.48) agree with the classical limits of rational case
[109].
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4.2.2 Scattering in subspace II

The S-matrix in the subspace II is defined to be

S |k1, k2〉IIi =
K∑
n=0

4∑
j=1

|n,K− n〉IIj
(
Y k1,k2
n

)j
i
, (4.2.49)

and the standard 4N + 2–dimensional basis is

|k1, k2〉II1 = |0, 1, k1,M1 − k1 − 1〉 ⊗ |0, 0, k2,M2 − k2〉,
|k1, k2〉II2 = |0, 0, k1,M1 − k1〉 ⊗ |0, 1, k2,M2 − k2 − 1〉,
|k1, k2〉II3 = |0, 1, k1,M1 − k1 − 1〉 ⊗ |1, 1, k2 − 1,M2 − k2 − 1〉,
|k1, k2〉II4 = |1, 1, k1 − 1,M1 − k1 − 1〉 ⊗ |0, 1, k2,M2 − k2 − 1〉. (4.2.50)

We shall express the coefficients (Y k1,k2
n )ji in terms of already known X k1,k2

n with the
help of the charges ∆(E2) and ∆(E4) that relate the states in the subspace II to the states
in subspace I:

∆(E2) |k1, k2〉IIj = Qj(k1, k2) |k1, k2〉I, ∆(E4) |k1, k2〉IIj = Q̃j(k1, k2) |k1, k2〉I. (4.2.51)

The coefficients Qj(k1, k2), Q̃j(k1, k2) and their partners for ∆op(E2) and ∆op(E4) are
spelled out in the Appendix C.

The strategy of finding X k1,k2
n is the following. We start by considering the matrix

element

I〈n,K− n|∆op(E2)S |k1, k2〉IIi =
4∑
j=1

K∑
m=0

I〈n,K− n|∆op(E2) |m,K−m〉IIj
(
Y k1,k2
m

)j
i

=

4∑
j=1

K∑
m=0

I〈n,K− n|m,K−m〉I Qopj (m,K−m)
(
Y k1,k2
m

)j
i

=
4∑
j=1

Qopj (n,K− n)
(
Y k1,k2
n

)j
i
. (4.2.52)

Next, using the invariance of the S-matrix ∆op(E2)S = S∆(E2), we rewrite (4.2.52) as

I〈n,K− n|S∆(E2) |k1, k2〉IIi =I 〈n,K− n|S |k1, k2〉IQi(k1, k2)

=
N∑
m=0

I〈n,K− n|m,K−m〉I X k1,k2
m Qi(k1, k2)

= X k1,k2
n Qi(k1, k2). (4.2.53)
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Likewise we get a similar set of relations by considering the charge E4. These relations
can be conveniently summarized in terms of a matrix equation(

Qop1 (n,K− n) Qop2 (n,K− n) Qop3 (n,K− n) Qop4 (n,K− n)

Q̃op1 (n,K− n) Q̃op2 (n,K− n) Q̃op3 (n,K− n) Q̃op4 (n,K− n)

)
Y k1,k2
n =

= X k1,k2
n

(
Q1(k1, k2) Q2(k1, k2) Q3(k1, k2) Q4(k1, k2)

Q̃1(k1, k2) Q̃2(k1, k2) Q̃3(k1, k2) Q̃4(k1, k2)

)
,

(4.2.54)

giving a total number of 8 constraints. However, there is a further need of 8 more con-
straints. These can be obtained by considering a composite operator

Ě2 = e0

(
e1 F̂1F3F2 + e2 F1F3F2 + e3 F3F2F1

)
, (4.2.55)

where

e0 = q1+K+
M1
2 (qMz1 − q2K+2z2)−1, e1 = (q − q−1),

e2 = qM2+2n(q−2−2Kz1 − q2−Mz2), e3 = −qM2+2n(q−1−2Kz1 − q1−Mz2), (4.2.56)

and its affine partner Ě4. These operators act on the states in the subspace II as

∆(Ě2)|k1, k2〉IIi =Zi(k1, k2)|k1, k2〉I + Z+
i (k1, k2)|k1 + 1, k2 − 1〉I

+ Z−i (k1, k2)|k1 − 1, k2 + 1〉I, (4.2.57)

giving

I〈n,K− n|∆op(Ě2) S |k1, k2〉IIi =
4∑
j=1

K∑
m=0

I〈n,K− n| ∆op(Ě2) |m,K −m〉IIj
(
Y k1,k2
m

)j
i

=

4∑
j=1

(
Zopj (n,K− n)

(
Y k1,k2
n

)j
i

+ Z+,op
j (n− 1,K− n+ 1)

(
Y k1,k2
n−1

)j
i

+ Z−,opj (n+ 1,K− n− 1)
(
Y k1,k2
n+1

)j
i

)
. (4.2.58)

The coefficients (4.2.56) are chosen in a such way that the ‘non-diagonal’ part of this
relation is vanishing, Z+,op

j (n− 1,K−n+ 1) = Z−,opj (n+ 1,K−n− 1) = 0. Therefore the
only surviving part of (4.2.58) is

I〈n,K− n| ∆op(Ě2) S |k1, k2〉IIi =
4∑
j=1

Zopj (n,K− n)
(
Y k1,k2
n

)j
i
. (4.2.59)
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This results in the following matrix equation for Zopj (n,K− n):(
Zop1 (n,K− n) Zop2 (n,K− n) Zop3 (n,K− n) Zop4 (n,K− n)

)
Y k1,k2
n

=
(
Z1(k1, k2) Z2(k1, k2) Z3(k1, k2) Z4(k1, k2)

)
X k1,k2
n

+
(
Z+

1 (k1, k2) 0 Z−3 (k1, k2) 0
)

X k1+1,k2−1
n

+
(

0 Z−2 (k1, k2) 0 Z−4 (k1, k2)
)

X k1−1,k2+1
n , (4.2.60)

plus a similar set of equations arising from the affine charge Ě4. Both sets can further be
united into a compact matrix form

AY k1,k2
n = BX k1,k2

n +B+X k1+1,k2−1
n +B−X k1−1,k2+1

n , (4.2.61)

which multiplied from the left byA−1 defines all coefficients of Y k1,k2
n in terms of already

known X k1,k2
n , X k1±1,k2∓1

n . The explicit expressions of matrices A, A−1, B, B±, their
q → 1 limit and the coefficients Zi(k1, k2), Zopj (n,K− n) and their affine partners are
spelled out the Appendix C.1.

To finalize we want to note that not all of the constraints in (4.2.60) are linearly inde-
pendent. The set of independent constraints is chosen in such way that the inverse matrix
A−1 would exist.

4.2.3 Scattering in subspace III

We will compute the S-matrix components in the subspace III in a very similar way as
we did in the previous section for the scattering in subspace II. We start by defining the
S-matrix for the subspace III as

S |k1, k2〉IIIi =
K∑
n=0

6∑
j=1

|n,K − n〉IIIj
(
Z k1,k2
n

)j
i
, (4.2.62)

where the standard basis for the 6N -dimensional vector space is

|k1, k2〉III1 = |0, 0, k1,M1 − k1〉 ⊗ |0, 0, k2,M2 − k2〉,
|k1, k2〉III2 = |0, 0, k1,M1 − k1〉 ⊗ |1, 1, k2 − 1,M2 − k2 − 1〉,
|k1, k2〉III3 = |1, 1, k1 − 1,M1 − k1 − 1〉 ⊗ |0, 0, k2,M2 − k2〉,
|k1, k2〉III4 = |1, 1, k1 − 1,M1 − k1 − 1〉 ⊗ |1, 1, k2 − 1,M2 − k2 − 1〉,
|k1, k2〉III5 = |1, 0, k1 − 1,M1 − k1〉 ⊗ |0, 1, k2,M2 − k2 − 1〉,
|k1, k2〉III6 = |0, 1, k1,M1 − k1 − 1〉 ⊗ |1, 0, k2 − 1,M2 − k2〉. (4.2.63)

Next we shall employ the same strategy as before. We perform the same steps as in
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(4.2.52) and (4.2.53) only with ∆op(E2), giving

II
i 〈n,K− n|∆op(E2)S |k1, k2〉IIIj =

6∑
l=1

(
Gop(n,K − n)

)i
l

(
Z k1,k2
n

)l
j
,

II
i 〈n,K− n|S∆(E2) |k1, k2〉IIIj =

4∑
m=1

(
Y k1,k2
n

)i
m

(
G(k1, k2)

)m
j
, (4.2.64)

whereG(op) are the matrix representations of the charges ∆(op)E2. Once again these equa-
tions (together with the affine ones coming fromE4) do not provide enough constraints to
define the matrix Z k1,k2

n uniquely, and we need additional constraints. They are obtained
with the help of ∆(op)(F3F2), namely

II
i 〈n− θi,K− n+ θi − 1|∆op(F3F2)S |k1, k2〉IIIj =

6∑
l=1

(
Hop(n, n−K)

)i
l

(
Z k1,k2
n

)l
j
,

II
i 〈n− θi,K− n+ θi − 1|S∆(F3F2) |k1, k2〉IIIj =

4∑
m=1

(
Y
k1,k2
n

)i
m

(
H(k1, k2)

)m
j
, (4.2.65)

where θi is defined by θi = (1 − (−1)i)/2 and H(op) is the matrix representation of
∆(op)(F3F2). Here we have also introduced Y

k1,k2
n as(

Y
k1,k2
n

)i
j

=
(
Y
k1−θj ,k2+θj−1
n−θi

)i
j
. (4.2.66)

These equations may be written in a compact way using matrix notation

Gop(n,K− n) Z k1,k2
n = Y k1,k2

n G(k1, k2),

Hop(n,K − n) Z k1,k2
n = Y

k1,k2
n H(k1, k2). (4.2.67)

The explicit realization of the matrices in the expressions above are spelled out in the
Appendix C.2.

Similarly as in the previous case, not all rows and columns of G(op) and H(op) are
linearly independent, thus we have to select the independent ones only. Therefore by
taking the following linear combinations,

G
(op)

= qK−n−
M2
2
(
ã2G

(op) − a2G̃
(op)
)

and H
(op)

= c̃2V1H
(op) − c2V

−1
1 H̃(op) ,

(4.2.68)

where the tilded matrices are the affine counterparts and selecting the first three rows of
each, we are able to combine them into the non-singular quadratic matrix A (6 × 6) and
the rectangular matrix B (8× 6) as follows (j = 1, · · · , 6),

(A)ij =

{
(G

op
)ij , i = 1, 2, 3 ,

(H
op

)i−3
j , i = 4, 5, 6 ,

and (B)ij =

{
(G)ij , i = 1, 2, 3, 4 ,

(H)i−4
j , i = 5, 6, 7, 8 .

(4.2.69)
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This approach let us to rewrite the constraints (4.2.67) in terms of a single matrix relation

AZ k1,k2
n = Y̌ k1,k2

n B giving Z k1,k2
n = A−1 Y̌ k1,k2

n B . (4.2.70)

This relation let us to obtain any matrix element (Z k1,k2
n )ij of the scattering in the subspace

III. Here we have also introduced the block diagonal matrix Y̌ k,l
n (6× 8) as

(
Y̌ k,l
n

)i
j
,=


(
Y k,l
n

)i
j
, i = 1, 2, 3 , and j = 1, 2, 3, 4 ,(

Y
k,l
n

)i−3

j−4
, i = 4, 5, 6 , and j = 5, 6, 7, 8 ,

0 , the rest .

(4.2.71)

The explicit form of matrices A, A−1, B and their q → 1 limit are given in Appendix C.2.

4.2.4 Special cases of the S-matrix

In this section we consider the reduction of the S-matrix in the case when one or both
factors of the tensor space (4.2.1) are transforming in the fundamental representation.

4.2.4.1 Fundamental S-matrix

As a most simple case of the derivations presented in section 4.2, we want to compute
the fundamental S-matrix found in [28]. The fundamental representation is defined by
setting M1 = M2 = 1 and the corresponding S-matrix is 16× 16 – dimensional. In order
to make the comparison with [28] more explicit, let us denote

a†1,2 = φ1,2, and a†3,4 = ψ1,2. (4.2.72)

Then, starting with the subspaces I and Ib, we find

S |ψαψα〉 = D |ψαψα〉, (4.2.73)

where D is given by (4.2.12). Further, due to our normalization

S |φaφa〉 = |φaφa〉. (4.2.74)

Here we would like to remark that our normalization differs from [28] where the S-matrix
is normalized such that S |ψαψα〉 = −|ψαψα〉. In other words, the quantities given here
need to be divided by an additional factor of D .

Next we proceed to the subspaces II and IIb. For the subspace II (and analogously
for IIb) the parameters k1, k2, n indexing the matrix Y can take the values 0 and 1, but
fortunately, we find that Y is the same for both of these values. Next it is easy to observe
that the matrices A (C.4) and B (C.5) get reduced to the upper left 2× 2 blocks

A =

(
−a2 q1/2U2V2a1

−ã2 q1/2Ũ2Ṽ2ã1

)
, B =

(
−a2
√
qU1V1 a1

−ã2
√
qŨ1Ṽ1 ã1

)
, (4.2.75)
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while the matrices B+ and B− do not contribute at all. This gives the following solution
of (4.2.61)

Y 0,0
0 = D

 √
q(a2ã1U2

1V
2
1 −a1ã2U2

2V
2
2 )

U1V1(a2ã1−a1ã2U2
2V

2
2 )

a1ã1(1−U2
2V

2
2 )

a1ã2U2
2V

2
2 −a2ã1

a2ã2U2(U2
1V

2
1 −1)V2

U1V1(a2ã1−a1ã2U2
2V

2
2 )

(a2ã1−a1ã2)U2V2√
q(a2ã1−a1ã2U2

2V
2
2 )


=

 q1/2U2V2
x−2 −x

−
1

x+2 −x
−
1

γ1
γ2
U2V2
U1V1

x+2 −x
−
2

x+2 −x
−
1

γ2
γ1

x+1 −x
−
1

x+2 −x
−
1

1
q1/2U1V1

x+2 −x
+
1

x+2 −x
−
1

 . (4.2.76)

Then the corresponding explicit form of the fundamental S-matrix acting on the inequiv-
alent states is

S|ψαφb〉 = q1/2U2V2
x−2 − x

−
1

x+
2 − x

−
1

|ψαφb〉+
γ2

γ1

x+
1 − x

−
1

x+
2 − x

−
1

|φbψα〉 ,

S|φaψβ〉 =
γ1

γ2

U2V2

U1V1

x+
2 − x

−
2

x+
2 − x

−
1

|ψβφa〉+
1

q1/2U1V1

x+
2 − x

+
1

x+
2 − x

−
1

|φaψβ〉 . (4.2.77)

Finally we turn to the subspace III which is four dimensional in this case. Analo-
gously to our strategy presented section 4.2.2, we inspect the action of ∆(E2) and ∆(E4)
obtaining

∆(E2)|1, 0〉III1 =
U1V1√
q
a2|1, 0〉II2 , ∆(E2)|1, 0〉III5 = b1|1, 0〉II2 ,

∆(E2)|0, 1〉III1 = a1|0, 0〉II1 , ∆(E2)|0, 1〉III6 = −U1V1
√
q b2|0, 0〉II1 , (4.2.78)

plus similar expressions for E4. For completeness, let us spell out the opposite coproduct
as well

∆op(E2)|1, 0〉III1 = a2|1, 0〉II2 , ∆op(E2)|1, 0〉III5 = b1U2V2
√
q|1, 0〉II2 ,

∆op(E2)|0, 1〉III1 = a1
U2V2√
q
|0, 0〉II1 , ∆op(E2)|0, 1〉III6 = −b2|0, 0〉II1 . (4.2.79)

The equation (4.2.70) in this case becomes(
a2 b1

√
qU2V2

ã2 b̃1
√
qŨ2Ṽ2

)(
(Z 1,0

1 )1
1 (Z 1,0

1 )5
1

(Z 1,0
1 )5

1 (Z 1,0
1 )5

5

)
=

U1V1√
q a2 b1

Ũ1Ṽ1√
q ã2 b̃1

 (Y 1,0
1 )2

2 , (4.2.80)

the explicit solution of which is(
(Z 1,0

1 )1
1 (Z 1,0

1 )5
1

(Z 1,0
1 )5

1 (Z 1,0
1 )5

5

)
=

 (1−x−2 x
+
1 )(x+1 −x

+
2 )

(1−x−1 x
−
2 )(x−1 −x

+
2 )

x−1
qx+1

α(x−1 −x
+
1 )(x−2 −x

+
2 )(x+1 −x

+
2 )

√
qU1V1γ1γ2(x−1 x

−
2 −1)(x−1 −x

+
2 )

γ1γ2(x+1 −x
+
2 )

U2V2α(1−x−1 x
−
2 )(x+2 −x

−
1 )

x−1
q3/2x+1

(1−x−1 x
+
2 )(x+1 −x

+
2 )

(1−x−1 x
−
2 )(x−1 −x

+
2 )

U2V2
U1V1

x−2
qx+2

 .

(4.2.81)

The remaining matrix elements are then easily deduced from similar derivations. These
results are in agreement with [28]. For a complete list of all the scattering elements we
refer to the Appendix D.1.
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4.2.4.2 The S-matrix SQ1

In this section we will derive the S-matrix describing the scattering of an arbitrary bound
state with a fundamental one, SQ1. Once again, we will follow the derivations performed
in section 4.2 step by step. First, by setting M2 = 1, we find that the states in subspaces I
and Ib scatter almost trivially

S |k, 0〉I = D |k, 0〉I. (4.2.82)

However the scattering in the subspace II does not get simplified that much. Neverthe-
less, for fixed k1 + k2, the corresponding vector space gets restricted to

{|k1, 0〉II1 , |k1 − 1, 1〉II1 , |k1, 0〉II2 , |k1, 0〉II4 }. (4.2.83)

This is because the states |k1, k2〉II3 haveM2 ≥ 2 and thus they are not present. By reducing
our general expressions to accommodate these 4 states, we are lead to 16 inequivalent
scattering elements, however we found 2 of them to be vanishing. The rest may be casted
in quite compact form as

S |k, 0〉II1 = (Y k,0
0 )1

1|k, 0〉II1 + (Y k,0
1 )1

1|k−1, 1〉II1 + (Y k,0
0 )2

1|k, 0〉II2 + (Y k,0
0 )4

1|k, 0〉II4 ,

S |k−1, 1〉II1 = (Y k−1,1
0 )1

1|k, 0〉II1 + (Y k−1,1
1 )1

1|k−1, 1〉II1 + (Y k−1,1
0 )2

1|k, 0〉II2 + (Y k−1,1
0 )4

1|k, 0〉II4 ,

S |k, 0〉II2 = (Y k,0
0 )1

2|k, 0〉II1 + (Y k,0
1 )1

2|k−1, 1〉II1 + (Y k,0
0 )2

2|k, 0〉II2 ,

S |k, 0〉II4 = (Y k,0
0 )1

4|k, 0〉II1 + (Y k,0
1 )1

4|k−1, 1〉II1 + (Y k,0
0 )4

4|k, 0〉II4 . (4.2.84)

The explicit expressions of the coefficients above are given in Appendix D.2. Upon setting
M1 = 1 the coefficients with indices 1 and 2 reduce to the ones of the fundamental S-
matrix (4.2.77) derived previously.

The scattering in the subspace III simplifies considerably. It is easy to see, that the
states |k1, k2〉III2,4 need not to be considered. Thus we are led to the reduced case of our
general expressions for subspace III that involve the states (4.2.83) and

{|k, 0〉III1 , |k, 0〉III3 , |k, 0〉III5 , |k − 1, 1〉III1 , |k − 1, 1〉III3 , |k − 1, 1〉III6 } (4.2.85)

only. However, there is a more straightforward way to obtain the S-matrix in this partic-
ular case.

There are 36 scattering coefficients in subspace III that need to be determined, but not
all of them are independent. Firstly we can relate the half of them to the other half by
considering the identity

∆(E3)|k − 1, 0〉I = |k, 0〉III5 + q−1|k − 1, 1〉III6 , (4.2.86)

giving

S |k − 1, 1〉III6 = D
(
|k, 0〉III5 + q |k − 1, 1〉III6

)
− q S |k, 0〉III5 . (4.2.87)
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Subsequently we can express the states |k − 1, 1〉III1 , |k − 1, 1〉III3 as follows

∆(F1E1)− q[k]q[M − k + 1]q
[k]q

|k, 0〉III1 = |k − 1, 1〉III1 ,

∆(F1E1)− q[k − 1]q[M − k]q
[k − 1]q

|k, 0〉III3 = |k − 1, 1〉III3 . (4.2.88)

The explicit constraints that follow from these identities are listed in the Appendix D.2.
Then instead of reducing the general expression of the matrix Z , we follow its deriva-

tion path. By considering the action of the charges F2 and F4 on the subspace II states we
are able to find simple expressions that relate subspaces III to subspace II as

|k, 0〉III1 =
c̃1V2∆(F 2)− c1Ṽ2∆(F 4)

c̃1d2Ũ1V2 − c1d̃2U1Ṽ2

|k, 0〉II2 ,

|k, 0〉III3 =
d̃1V2∆(F 2)− d1Ṽ2∆(F 4)

d̃1d2Ũ1V2 − d̃2d1U1Ṽ2

|k, 0〉II4 ,

|k, 0〉III5 =

√
q

[k]q

d̃2U1∆(F 2)− d2Ũ1∆(F 4)

c1d̃2U1Ṽ2 − c̃1d2Ũ1V2

|k, 0〉II2 . (4.2.89)

This approach let us to find the expressions of the matrix elements of Z in terms of the
matrix elements of Y for this particular case in quite an easy way. The explicit expres-
sions are once again given in the Appendix D.2.

4.3 q-deformed boundary scattering

In the following sections we will consider the q-deformed models of the boundary scat-
tering for the Z = 0 and Y = 0 giant gravitons and the left factor of the Z = 0 D7-brane
considered in Chapter 3. We will start by briefly recalling the construction of the quantum
affine coideal subalgebras [179] presented in Chapter 2, and the necessary preliminaries
for the boundary scattering theory. Then in the subsequent sections we will construct the
corresponding boundary algebras using the same approach as we did in Chapter 2.

4.3.1 Quantum affine coideal subalgebras

Let the quantum deformed universal enveloping algebra Uq(g) of a semisimple complex
Lie algebra g of rank n be generated by the elements Ei, Fi, K±1

i (Ki = qHi , i = 1, . . . , n),
that correspond to the standard Drinfeld-Jimbo realization. The Hopf algebra structure
of Uq(g) is given by

∆(Ki) = Ki ⊗Ki , S(K−1
i ) = Ki , ε(Ki) = 1 ,

∆(Ei) = Ei ⊗ 1 +K−1
i ⊗ Ei , S(Ei) = −KiEi , ε(Ei) = 0 ,

∆(Fi) = Fi ⊗Ki + 1⊗ Fi , S(Fi) = −FiK−1
i , ε(Fi) = 0 . (4.3.1)
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Being a Hopf algebra, Uq(g) admits a right adjoint actions that makes Uq(g) into a right
module. The right adjoint action (in Sweedler notation (adr b)a =

∑
i S
(
b
(i)
(1)

)
a b

(i)
(2) ) is

given by

(adr Ei)A = (−1)[A][Ei]KiAEi −KiEiA ,

(adr Fi)A = (−1)[A][Fi]AFi − FiK−1
i AKi ,

(
adrK

−1
i

)
A = KiAK

−1
i , (4.3.2)

where (−1)[A][Ei] and (−1)[A][Fi] are the fermionic grade factors. We shall also be using a
short–hand notation

(
adr Ei · · ·Ej

)
A =

(
adr Ei · · · adr Ej

)
A and similarly for Fi.

Let Uq(ĝ) be the universal enveloping algebra of the Kac–Moody algebra ĝ, the affine
extension of g. Let π = {α1, α2, . . . , αn} be the set of simple positive roots of g, and let
π̂ = α0 ∪ π, where α0 denotes the affine root. Let E0, F0, K

±1
0 be the affine generators of

Uq(ĝ), and let T denote the abelian subgroup T ⊂ Uq(ĝ) generated by all K±1
i and K±1

0 .
Consider an involution θ of ĝ such that the associated root space automorphism Θ

can be represented by

Θ(α0) ∈ −αp(0) − Z(π\αp(0)) and Θ(αi) = αi for all αi ∈ πΘ = π\αp(0) , (4.3.3)

where p(0) ∈ {0, 1, . . . , n}, and satisfying

α0 −Θ(α0) = kδ , where

{
k = 1 for p(0) 6= 0 ,

k = 2 for p(0) = 0 ,
(4.3.4)

where δ is the imaginary root. Then Θ induces a subalgebra M ⊂ Uq(ĝ) generated by
Ei, Fi and K±i for all αi ∈ πΘ and a Θ–fixed subgroup TΘ. Furthermore, there exists a
sequence {αi1 , . . . , αir}, αik ∈ πΘ, and a set of positive integers {m1, . . . ,mr} such that
the algebra elements defined by

Ẽ0 = F0K
−1
0 − dy θ̃(F0)K−1

0 , θ̃(F0) =
(
adr Ei1

(m1)· · ·Eir (mr)
)
E′p(0) ,

F̃0 = E′0K
−1
0 − dx θ̃(E′0)K−1

0 , θ̃(E′0) =
(
adr Fi1

(m1)· · ·Fir (mr)
)
Fp(0) , (4.3.5)

whereE′i = EiKi, together with TΘ,M and suitable dx, dy ∈ C generate a quantum affine
coideal subalgebra B̂ ⊂ Uq(ĝ) which is compatible with the reflection equation. Note that
quite often boundary algebra includes all of the Cartan subgroup T . In such cases the
factor of K−1

0 in (4.3.5) can be omitted. The boundary algebras we will be considering in
the next sections will be exactly of this type. We will show that the q-deformed model of
the Z = 0 giant graviton is described by a coideal subalgebra which corresponds to the
p(0) = 0 case, while the q-deformed models of the Y = 0 giant graviton and the left factor
of the Z = 0 D7-brane will be described by coideal subalgebras which correspond to the
p(0) 6= 0 case.

4.3.2 Reflected algebra

Reflection autmorphism. The representation defined in section 4.1.3 describes incom-
ing states carrying momentum p. The representation corresponding to the reflected states
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with momentum −p will have the deformation parameter equal to e−ip = U−2. The con-
servation of the total number of bosons and fermions together with the energy conser-
vation constrains central element V and Cartan generators Ki to be invariant under the
reflection. These arguments imply that there exists a reflection map κ : Q̂ → Q̂ref defined
by

κ : (V,U) 7→ (V ,U) and κ : (Ej , Fj ,Kj) 7→ (Ej , F j ,Kj) , (4.3.6)

where the underlined elements generate the reflected algebra Q̂ref . Furthermore, the
constraints

U = U−1 , V = V , Ki = Ki , (4.3.7)

define the representation of the reflected algebra. Let us show the explicit form of the
reflection map. The U -braiding structure of the Hopf algebra implies that κ acts trivially
on the generators that are not braided, thus

E1 = E1 , E3 = E3 , F 1 = F1 , F 3 = F3 , (4.3.8)

while (4.1.13) and (4.1.14) give

C2 = gα(1− U−2V 2) = λ−2C2 , C3 = gα−1(V −2 − U2) = λ2C3 ,

Ĉ2 = gαα̃2(1− U2V −2) = λ̂−2 Ĉ2 , Ĉ3 = gα−1α̃−2(V 2 − U−2) = λ̂2 Ĉ2 , (4.3.9)

where λ2 = −z U2, λ̂2 = −z U−2. Then the quartic Serre relations (4.1.12) for reflected
algebra Q̂ref give the remaining constraints,

E2 = λ−1E2 , F 2 = λF2 , E4 = λ̂ E4 , F 4 = λ̂ F4 . (4.3.10)

In such a way the map κ becomes an automorphism of Q̂ given by

κ :


E1, F1, E3, F3,

E2, F2, E4, F4,

Ki, V, U

→


E1, F1, E3, F3,

λ−1E2, λF2, λ̂
−1E4, λ̂F4,

Ki, V, U
−1

 . (4.3.11)

Finally, we introduce the reflected coproducts of Ei and Fi ,

∆ref(Ej) = Ej⊗1+K−1
j U−δj,2+δj,4⊗Ej , ∆ref(Fj) = F j⊗Kj+U+δj,2−δj,4⊗Fj , (4.3.12)

where ∆ref := (κ ⊗ id) ◦ ∆ and we have used (4.3.7) implicitly. These shall play an
important role in finding the explicit form of the reflection matrix.

Reflected representation. The representation labels a, b , c, d associated to the genera-
tors Ej , F j can be obtained by replacing U 7→ U−1 in (4.1.45) and similarly for the affine
ones. Then the labels of the reflected charges are related to the initial ones as

a =
γ

γ
a, b =

γα2

γ

cd

a
V 2, c =

γ

γα2

ab

d
V −2, d =

γ

γ
d, (4.3.13)
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giving

a =

√
g

[M ]q
γ, b =

√
g

[M ]q

α

γ

g̃2(x+− x−)

g2(1 + ξx−)(ξ + x+)
,

c =

√
g

[M ]q

γ

αV

gq
M
2 (ξx−+ 1)

ig̃ x−
, d =

√
g

[M ]q

g̃ q
M
2 V

i g γ

x+− x−

ξx++ 1
, (4.3.14)

The extension to the affine case is straightforward. Here we have chosen a =
γ

γ a as an
initial constraint with γ being the reflected version of γ, i.e. κ(γ) = γ. The reflection map
for the x± parametrization is found by comparing (4.3.14) with (4.1.55), giving

κ : x± 7→ − x∓ + ξ

ξx∓ + 1
. (4.3.15)

It is involutive, κ2 = id, and is in agreement with the one conjectured in [29]5. In the q → 1
limit this maps specializes to the usual reflection map, κ : x± 7→ −x∓, as required. Finally,
the spectral parameter z is required to transform as κ : z 7→ z−1 under the reflection map.
This is indeed true and follows straightforwardly when applying map κ to (4.1.48).

The expressions in (4.3.13) may be casted in a matrix form(
a b

c d

)
D = T

(
a b

c d

)
T−1 with D =

(
γ/γ 0

0 γ/γ

)
, T =

(
U−2 0

0 −z

)
, (4.3.16)

revealing the explicit relation between two isomorphic representations of Q̂. Here γ and
γ are unconstrained parameters defining the representations of incoming and reflected
states. In the q → 1 limit (4.3.16) specializes to (3.2.12) as required.

Finally, by requiring (4.3.11) and (4.3.16) to be in consistency we find γ2 = −z−1U−2γ2.
This relation is in agreement with the one obtained in Section 3.3.2.

4.4 q-deformed Y=0 giant graviton

Having all the required algebraic structures presented we are ready to construct the quan-
tum affine coideal subalgebra and the boundary scattering theory for the q-deformed
model of the Y = 0 giant graviton considered in Section 3.3.1. We will denote the coideal
subalgebra for this boundary by B̂Y .

Let us start from inspecting the charges of Q̂. It has eight regular supercharges,
namely

F2, F21, F32, F321 and E2, E21, E32, E321 , (4.4.1)

where we have used a shorthand notation Fijk = [Fi, [Fj , Fk]] and the same for Eijk. By
replacing F2 → F4 and E2 → E4 eight affine supercharges are obtained,

F4, F41, F34, F341 and E4, E41, E34, E341 . (4.4.2)
5The authors of [29] are using the x± parametrization of [28], while we use the one of [30]. The map

between these two is x±[28] = gg̃−1(x±[30] + ξ).



152 q-deformed scattering in AdS/CFT

The replacement of the same type applied to (4.1.13) produces affine partners of the cen-
tral charges, Ĉ1, Ĉ2 and Ĉ3 (4.1.14). And finally, the affine partners of F1, E1 and F3, E3

are
F̂1 = E432, Ê1 = F432 and F̂3 = E421, Ê3 = F421 . (4.4.3)

The boundary we are considering does not respect bosonic symmetriesE1, F1, central
charges C2, C3 and affine charges E4, F4 (let us name these charges as the broken, while
the rest will be named as preserved), thus it breakes exactly half of the supercharges (4.4.1)
and (4.4.2) with the broken regular supercharges are

E21, E321 and F21, F321 . (4.4.4)

The construction presented in section 4.3.1 and the relation to the algebraic structures
of the Y = 0 giant graviton implies that for each broken regular charge, the algebra B̂Y
must possess a corresponding twisted affine charge satisfying coideal property. We shall
denote these charges by

B = {F̃1, F̃21, F̃321, Ẽ1, Ẽ21, Ẽ321, C̃2, C̃3} . (4.4.5)

4.4.1 Coideal subalgebra

The set of positive simple roots of Q̂ is π = {α1, α2, α3, α4}. The boundary conditions
imply that the corresponding root space automorphism ΘY (4.3.3) acts on the simple
roots as

ΘY (α2) = α2 , ΘY (α1) = −α2 − α3 − α4 ,

ΘY (α3) = α3 , ΘY (α4) = −α1 − α2 − α3 . (4.4.6)

Thus πΘ = {α2, α3} and it gives rise to a subalgebraMY of Q̂. Note that α4 = δ− θ̄ is the
affine root where θ̄ = α1 + α2 + α3 is the highest root of the non-affine algebra Q. How-
ever we are interested in the finite dimensional representations which are constructed by
dropping all imaginary roots; thus giving the constraint K1K2K3K4 = 1 [30, 176].

We shall build B̂Y based on the affine extension. Thus by composing (4.3.5) with
(4.4.6) we obtain the following twisted affine generators, 6

Ẽ321 = F4 + dy θ̃(F4) , θ̃(F4) = (adrE3E2)E′1 , (4.4.7)

F̃321 = E′4 + dx θ̃(E
′
4) , θ̃(E′4) = (adrF3F2)F1 , (4.4.8)

with suitable dx and dy. Then with the help of the right adjoint action adrMwe construct
the rest of the twisted affine generators,

Ẽ21 = (adrF3) Ẽ321 , F̃21 = (adrE3) F̃321 , (4.4.9)

Ẽ1 = (adrF2F3) Ẽ321 , F̃1 = (adrE2E3) F̃321 , (4.4.10)

C̃2 = (adrE2) Ẽ321 , C̃3 = (adrF2) F̃321 . (4.4.11)

6Alternitavely, one could choose the root α1 as the starting point giving Ẽ1 = E′1K
−1
1 +dx θ̃(E

′
1)K−1

1 and
F̃1 = F1K

−1
1 + dy θ̃(F1)K−1

1 where θ̃(E′1) = (adrF2 adrF3)F4 and θ̃(F1) = (adrE2 adrE3)E′4. However,
these generators are completely equivalent to the ones given above.
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Let us show the coideal property for the these charges explicitly. However it is enough
to show this property for the charges (4.4.7) and (4.4.8) only,

∆(Ẽ321) = F4 ⊗K4 + U ⊗ Ẽ321 + dy θ̃(F4)⊗K123

+ dy(q − q−1)
(
(adrE2)E′1 ⊗K12E

′
3 − UE′1 ⊗K1(adrE3)E′2

)
∈ Q̂ ⊗ B̂Y , (4.4.12)

and

∆(F̃321) = E′4 ⊗K4 + U−1⊗ F̃321 + dx θ̃(E
′
4)⊗K123

− dx(q − q−1)
(
(adrF2)F1 ⊗ F3K12 − U−1F1 ⊗ [(adrF3)F2]K1

)
∈ Q̂ ⊗ B̂Y . (4.4.13)

Here K12 = K1K2 and K123 = K1K2K3. The coideal property for the rest of the charges,
(4.4.9), (4.4.10) and (4.4.11), is obvious since B̂Y is invariant under the adrMY action.

Finally, we want to perform some checks of our constructions. The twisted affine
central charges C̃2 and C̃3 (4.6.9) must be conserved under the reflection. Thus requiring
C̃2 = C̃2 and C̃3 = C̃3 we find

dy =
g̃

gαα̃
and dx = −αα̃ g̃

g
. (4.4.14)

Then, requiring g̃/g to be real, we find (αα̃)2 = −1 having a solution α̃ = 1 and α = i
which corresponds to the usual setting of the unitary representations.

Yangian limit. The algebra Q̂ in the q → 1 limit has no singular elements and the naive
q → 1 limit leads to the undeformed universal enveloping algebra. The relation to the
associated Yangian algebra was explicitly shown in [30] by considering the the specific
combinations of charges of Q̂ that are singular in the q → 1 limit. The construction
presented in [30] is very closely related to the so-called Drinfeldian [180]. However the
twisted affine generators (4.6.2 - 4.6.9) are already of the required form. Thus the algebra
B̂Y in the rational q → 1 limit is isomorphic to the associated twisted Yangian considered
in Section 3.3.1 proposed by [21, 22]. The explicit relations between the quantum affine
and Yangian charges are

lim
q→1

αα̃Ẽ321

2(q − 1)
= −Q̃ 1

3 − gαG 4
2 , lim

q→1

F̃321

2αα̃(q − 1)
= −G̃ 3

1 −
g

α
Q 2

4 , ,

lim
q→1

αα̃Ẽ21

2(q − 1)
= Q̃ 1

4 + gαG 3
2 , lim

q→1

F̃21

2αα̃(q − 1)
= −G̃ 4

1 +
g

α
Q 2

3 ,

lim
q→1

αα̃Ẽ1

2(q − 1)
= R̃ 1

2 , lim
q→1

F̃1

2αα̃(q − 1)
= −R̃ 2

1 ,

lim
q→1

αα̃C̃2

2(q − 1)
= −C̃−gα(R 1

1 − L 3
3 − 1

2H), lim
q→1

C̃3

2αα̃(q − 1)
= −C̃†+ g

α
(R 1

1 − L 3
3 − 1

2H).

(4.4.15)
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We have checked that these relations for bound state representations at both algebra and
coalgebra level.

4.4.2 Boundary scattering

In this section we consider the boundary scattering theory for the q-deformed Y = 0
giant graviton and find the explicit form of the bound state reflection matrix. Moreover,
we explicitly solve the reflection equation and show that the reflection matrixK is indeed
invariant under the coideal subalgebra B̂Y .

Reflection matrix. The boundary we are considering is a singlet with respect to the
boundary algebra B̂Y , thus it may be represented via the boundary vacuum state |0〉B . It
is annihilated by all charges of it, with the exception of the generators Ki, which keep the
boundary invariant,

Ki |0〉B = qHi |0〉B = |0〉B . (4.4.16)

We define the reflection matrix to be the intertwining matrix

K |m,n, k, l〉 ⊗ |0〉B = K
(a,b,c,d)
(m,n,k,l) |a, b, c, d〉 ⊗ |0〉B . (4.4.17)

The space of states |m,n, k, l〉 is 4M -dimensional and can be decomposed into four 4M =
(M + 1) + (M − 1) +M +M subspaces that have the orthogonal basis

|k〉1 = |0, 0, k,M−k〉, k = 0 . . .M,

|k〉2 = |1, 1, k−1,M−k−1〉, k = 1 . . .M − 1,

|k〉3 = |1, 0, k,M−k−1〉, k = 0 . . .M − 1,

|k〉4 = |0, 1, k,M−k−1〉, k = 0 . . .M − 1. (4.4.18)

Symmetry constraints. The reflection matrix (4.4.17) is required to intertwine the co-
products of the boundary algebra,(

K ∆(J)−∆ref(J)K
)
|k〉i ⊗ |0〉B = 0 , for all J ∈ B̂ and i = 1 . . . 4. (4.4.19)

The form of reflection matrix is constrained by the bosonic generators E3 and F3 into five
independent sets of coefficients

K |k〉1 = Ak |k〉1 +Dk |k〉2,
K |k〉2 = Bk |k〉2 + Ek |k〉1,
K |k〉α = Ck |k〉α, (4.4.20)

where α = 3, 4 and we have dropped the boundary vacuum state. We note that the
basis (4.4.18) was chosen is such a way that the reflection matrix would act diagonally
on the quantum number k. Also we are working in an orthogonal, but not orthonormal
basis in order to avoid having normalization factors appearing in explicit expressions.
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However switching to the orthonormal basis is rather easy and requires only extra factors
of ([k]![M − k]!)

1
2 and ([k]![M − k]!)−

1
2 to be added to Dk and Ek respectively.

We start by determining the corner relations - the constraints for reflection coefficients
A0,D0, C0 andAM ,DM , CM . This can be achieved by considering reflection of the lowest
state |0〉1:

K |0〉1 = A0 |0〉1, thus D0 = 0. (4.4.21)

Then the invariance condition (4.4.19) for the charge E2,

(KE2 − E2K) |0〉1 = 0, gives C0 =
a

a
A0 =

γ

γ
A0. (4.4.22)

We choose the overall normalization to be A0 = 1. The same constraint may be found by
considering the reflection of states |0〉α and the charge F2. Similar considerations for the
highest state |M〉1 give

DM = 0 and AM =
c

c
CM−1 = − γ

z U2 γ
CM−1. (4.4.23)

Next we turn to the states |k〉α as they scatter from the boundary diagonally. The
twisted affine generator F̃1 acts on these states as a raising operator

F̃1|k〉α = fk(z)|k + 1〉α, F̃ 1|k〉α = fk(1/z)|k + 1〉α,

with fk(z) ≡ dx[M − k − 1]qq
−M/2−k−1

(
qM − q2k+2z

)
V −1 . (4.4.24)

The invariance condition then straightforwardly gives

Ck+1 fk(z)− fk(1/z)Ck = 0, (4.4.25)

leading to an iterative relation

Ck =
fk−1(1/z)

fk−1(z)
Ck−1 =

qM − q2k/z

qM − q2kz
Ck−1. (4.4.26)

This relation is then simply solved by

Ck = C0

k∏
n=1

qM − q2n/z

qM − q2nz
. (4.4.27)

The coefficients Ck are (anti)symmetric up to a factor of z under the interchange k →
M − k − 1 for M being (even)odd,

zkCk = −zM−k−1CM−k−1 for M = even and k = 0, ... , M/2− 1,

zkCk = zM−k−1CM−k−1 for M = odd and k = 0, ... , (M − 1)/2− 1. (4.4.28)

This symmetry comes from the requirement that the reflection is covariant under the
renaming of bosonic indices 1 ↔ 2 as the reflection is of a diagonal type for the states
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|k〉α. However this is not the case for the states |k〉1,2, thus there is no such symmetry
for the rest of the reflection coefficients. The factors of z in (4.4.28) arise due to the non-
commutative nature of the model. In the q → 1 limit this (anti)covariance specializes to
(anti)symmetry for M being (even)odd, as observed in [139].

The remaining reflection coefficients, as we shall show, will be expressed in terms of
Ck and Ck−1. Requiring the reflection matrix to be invariant under the generators E2 and
F2 on the bosonic states |k〉1,2, we obtain the following set of separable equations

Dk b− [M−k]q (Ck a−Ak a) = 0, Ck b− [M−k]qEk a−Bk b = 0,

Dk d+ [k]q (Ck−1 c−Ak c) = 0, Ck−1 d+ [k]qEk c−Bk d = 0, (4.4.29)

with an unique solution

Ak = (Ck−1[k]qbc + Ck[M−k]qad) /N, Dk = [k]q[M−k]q (Ckac − Ck−1ac) /N,

Bk = (Ck[k]qbc+ Ck−1[M−k]qad) /N, Ek = (Ckbd − Ck−1bd) /N, (4.4.30)

where the normalization factor N is

N = [k]q b c + [M−k]q a d =
V qM/2−k − V −1q−M/2+k

q − q−1
. (4.4.31)

Writing the coefficients explicitly in terms of the x± parametrization we finally obtain

Ak =
γ g̃ q

M
2 (x− − x+)

(
g̃2qM [k]qCk−1 − g2[M−k]qCk (ξ + x+)

2
)
V

iγg2[M ]q (ξ + x+)2 (1 + ξx+)N
,

Bk =
iγ q−

M
2 (x− − x+)

(
g̃2[M−k]qCk−1 (x−)

2 − g2qM [k]qCk (1 + ξx−)
2
)

γg̃[M ]q (x−)2 (1 + ξx−)V N
,

Dk =
γγ q

M
2 [k]q[M−k]q

(
g̃2Ck−1x

− + g2Ck (1 + ξx−) (ξ + x+)
)

iαg̃[M ]q x− (ξ + x+)V N
,

Ek =
iα g̃ q

M
2 (x− − x+)

2 (
g̃2Ck−1x

− + g2Ck (1 + ξx−) (ξ + x+)
)
V

γγ g2[M ]q x− (1 + ξx−) (ξ + x+) (1 + ξx+)N
. (4.4.32)

Finally, it is easy to check that the reflection matrix satisfies the unitarity constraint

K(p)K(−p) = 1 . (4.4.33)

Rational limit. In the q → 1 limit the reflection coefficients specialize to

Ak =
γ

γ

x−

x+N

(
(M−k)Ck(x

+)2 − kCk−1

)
, Bk =

γ

γ

x+

x−N

(
(M−k)Ck−1(x−)2 − kCk

)
,

Dk =
γγ

α

k(M−k) (Ckx
+ + Ck−1x

−)

N(x+ − x−)
, Ek =

α

γγ

x− − x+

N

(
Ckx

+ + Ck−1x
−) ,

(4.4.34)
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and the coefficients Ck and the normalization N are given by 7

Ck =
2igu−M + 2k

−2igu−M + 2k
Ck−1, N = k + (M−k)x−x+. (4.4.35)

These exactly reproduce the ones found in Section 3.3.1 and are in agreement with the
ones found in [139].8

Fundamental representation. In this case M = 1 and the state |k〉2 is absent, thus the
reflection matrix is purely diagonal. The charges E2 and F2 constrain the reflection coef-
ficients to be

A0 =
a

a
C0 =

γ

γ
C0, (4.4.36)

A1 =
c

c
C0 = −γ

γ

C0

z U2
−→
q→1

− γ
γ

x−

x+
C0. (4.4.37)

Again, choosing the normalization to be A0 = 1 this is in agreement with [29] and with
[135] in the rational limit.

Reflection Equation. In order to show the integrability of the model, we have to show
that the reflection matrix is a solution of the reflection equation (boundary Yang-Baxter
equation). In fact, we shall explicitly derive the coefficient Ck by solving the reflection
equation. The unique solution we find agrees perfectly with the coefficients that are de-
rived from the symmetry considerations. This explicitly proves that the reflection matrix
respects the boundary algebra B̂Y .

Consider two states with bound state numbers M1, M2 and spectral parameters
z1, z2. Let us denote Ki = KMi(zi) and Sij = SMiMj (zi, zj) and also let the under-
scored index indicate that the corresponding representation is reflected. Then the reflec-
tion equation is then given by

K2S21K1S12 = S21K1S12K2, (4.4.38)

which explicitly written out in components reads as

Kδ
γ(z2)Sγ,dβ,c (z2, z

−1
1 )Kc

b (z1)Sb,βa,α(z1, z2) = Sδ,dγ,c(z
−1
2 , z−1

1 )Kc
b (z1)Sb,γa,β(z1, z

−1
2 )Kβ

α(z2),
(4.4.39)

where we have used Roman and Greek letter to distinguish indices of the fist and second
states respectively.

Let us first consider states of the form |k1〉α ⊗ |k2〉α, because the reflection matrix acts
diagonally on these states. This corresponds to the subspace I case in terms of the analysis

7Here we have rescaled the normalization factor as N(4.4.31) → N(4.4.35)/(x
+x− − 1) in q → 1 limit.

8Up to some factors due to different choice of the basis (4.4.18) with respect to the one in [139].
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performed in Section 4.2.1. The reflection equation in this subspace becomes

k1+k2∑
n=0

Cm(z1)X K−n,n
m (z2, z

−1
1 )Cn(z2)X k1,k2

n (z1, z2) =

k1+k2∑
n=0

X n,K−n
m (z−1

2 , z−1
1 )Cn(z1)X k1,k2

n (z1, z
−1
2 )Ck2(z2). (4.4.40)

We will now proceed with the derivation of Ck. For k1 = k2 = 0 we easily find that the
reflection equation is satisfied. Next we consider the state where k1 = 1, k2 = 0. In this
case the reflection equation is satisfied provided that C1 satisfies the following relation

C1(z1) = C0(z1)

1− z2
1 − 1

z1

(
qM1−M2(z22C1(z2)−C0(z2))

z2(C1(z2)−C0(z2)) + z1

)
 . (4.4.41)

The right hand side is allowed to depend solely on z1 thus there are two solutions, a
trivial one C1 = C0 and

C1 =
z−1 −AqM

z −AqM
C0. (4.4.42)

The latter solution has an undetermined constant A. This coefficient may be determined
by either considering the rational limit, or by studying the reflection equation involving
states from the subspace II (see Section 4.2). Both arguments lead to A = q−2. Finally, by
studying a state with k1 = 2, k2 = 0 we can solve for C2 and so on. This leads to the
following solution

Ck = C0

k∏
i=1

qM − q2i/z

qM − q2iz
, (4.4.43)

which perfectly agrees with (4.4.27). As expected, the trivial solution does not solve the
reflection equation in general case.

Subsequently we have numerically checked the reflection equation for generic values
of k1, k2, n,M1,M2 for all different states from subspace II and subspace III and found it to
be satisfied.
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4.5 q-deformed Z=0 giant graviton

The Z = 0 giant graviton and the boundary algebra associated to it was considered in
Section 3.3.2. Here we will construct a quantum affine coideal subalgebra governing the
boundary scattering from the q-deformed model of the Z = 0 giant graviton.

The Z = 0 giant graviton preserves all of the bulk Lie algebra. Therefore the cor-
responding q-deformed model of this boundary preserves all regular charges and all of
the Cartan subalgebra T of Q̂. The affine generators E4 and F4 are not preserved by
the boundary itself, but give rise to the twisted affine generators of the quantum affine
coideal subalgebra B̂Z ⊂ Q̂ .

We will essentially follow the same way as we did for the q-deformed model of Y = 0
giant graviton in the section above. A new element in this case will be the construction
of boundary representation of B̂Z .

4.5.1 Coideal subalgebra

The boundary conditions define the root space automorphism ΘZ associated to this bound-
ary to act on the simple roots as

ΘZ(αi) = αi for i = 1, 2, 3, and ΘZ(α4) = −α4 − 2α3 − 2α2 − 2α1 . (4.5.1)

Thus πΘZ = {α1, α2, α3} and it gives rise to the subalgebraMZ of Q̂ . The affine part of
the boundary algebra B̂Z is generated by the twisted affine generators

Ẽ312 = F4 − dy θ̃(F4) , θ̃(F4) = (adrE1E3E2E3E2E1)E′4 , (4.5.2)

F̃312 = E′4 − dx θ̃(E′4) , θ̃(E′4) = (adrF1F3F2F3F2F1)F4 , (4.5.3)

with suitable dx and dy; the action of θ̃ is induced by (4.5.1). Any other non-trivial or-
dering of the generators in the adjoint action above is equivalent up to a sign. Here by
non-trivial we assume the obtained operator is non-zero. The rest of B̂Z can be furnished
with the help of the right adjoint action of adrMZ ,

Ẽ12 = (adrF3) Ẽ312 , F̃12 = (adrE3) F̃312 , (4.5.4)

Ẽ32 = (adrF1) Ẽ312 , F̃32 = (adrE1) F̃312 , (4.5.5)

Ẽ2 = (adrF1 adrF3) Ẽ312 , F̃2 = (adrE1 adrE3) F̃312 , (4.5.6)

C̃2 = (adrE2) Ẽ312 , C̃3 = (adrF2) F̃312 . (4.5.7)

Let us show the coideal property for the these generators explicitly. It is enough to
show the coideal property for a pair of twisted affine generators only. For simplicity
reasons we choose (4.5.6),
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∆(Ẽ2) = (adr F1F3)F4K
−1
4 ⊗K13 − dy(adr E2E3E2E1)E′4K

−1
4 ⊗K2321 + UK−1

4 ⊗ Ẽ2

+ (q − q−1)
[
q−1F4K

−1
4 ⊗K4 [F1, F3]q2

− q(adr F1)F4 ⊗K14F3 + q−1(adr F3)F4 ⊗K34F1

]
− dy(q − q−1)(U ⊗ 1)

[
q−2UE′4 ⊗K4

{
E′2,

[
E′3,

[
E′1, E

′
2

]
q

]
q3

}
− U(adr E1)E′4 ⊗K14(adr E2E3)E′2 − U(adr E3)E′4 ⊗K34(adr E2E1)E′2

+ (adr E2E3)E′4 ⊗K234(adr E2)E′1 + (adr E2E1)E′4 ⊗K214(adr E2)E′3

+ (adr E2E1E3)E′4 ⊗K2134E
′
2

]
∈ Q̂ ⊗ B̂Z , (4.5.8)

and

∆(F̃2) = (adr E1E3)E′4 ⊗K134 − dx(adr F2F3F2F1)F4 ⊗K23214 + U−1⊗ F̃2

+ (q − q−1)
[
q−1E′4 ⊗K4 [E1, E3]q2

+ (adr E1)E′4 ⊗K14E
′
3 − (adr E3)E′4 ⊗K34E

′
1

]
− dx(q − q−1)(U−1⊗ 1)

[
− q2 U−1F4 ⊗K4

{
F2,
[
F3, [F1, F2]q−1

]
q−3

}
+ q−1U−1(adr F1)F4 ⊗K14(adr F2F3)F2 + q U−1(adr F3)F4 ⊗K34(adr F2F1)F2

− q−1(adr F2F3)F4 ⊗K234(adr F2)F1 − q(adr F2F1)F4 ⊗K214(adr F2)F3

− (adr F2F1F3)F4 ⊗K2134F2

]
∈ Q̂ ⊗ B̂Z , (4.5.9)

where {a, b} = ab + ba denotes the anti-commutator, [a, b]x = ab − qx ba is a q-deformed
commutator, and the short-hand notation Ki...j = Ki · · ·Kj has been employed. The
coideal property for the rest of the twisted affine generators follows straightforwardly
from the adrMZ-invariance of B̂Z .

Boundary representation. The next step is to construct the boundary bound state rep-
resentation of the coideal subalgebra B̂Z . The constraints defining the representation are
the commutation relations in the third line of (4.1.9), and the coreflectivity of the regular
central chargesC2,C3 (4.1.13) and the twisted affine central charges C̃2, C̃3 (4.5.7). We will
start by constructing the boundary representation of the regular supercharges E2 and F2

and the central element V . We will denote the latter as VB in order to distinguish it from
the bulk one, V . Note that the deformation parameter U is not in the boundary algebra
and thus does not have a boundary representation. In such a way the algebra constraints
(4.1.13) get modified for the boundary algebra.



q-deformed Z=0 giant graviton 161

The algebra constraints for C2 and C3 for incoming and reflected states in the bulk are
given by

C2 ⊗ 1 = gα(1− U2V 2)⊗ 1 , C3 ⊗ 1 = gα−1(V −2 − U−2)⊗ 1 ,

C2 ⊗ 1 = gα(1− U−2V 2)⊗ 1 , C3 ⊗ 1 = gα−1(V −2 − U2)⊗ 1 . (4.5.10)

Here we have used (4.3.7) implicitly and the tensor space structure is bulk ⊗ boundary.
Then requiring their coproducts

∆(C2) = C2 ⊗ 1 + V 2U2 ⊗ C2 , ∆(C3) = C3 ⊗ V −2
B + U−2 ⊗ C3 ,

∆ref (C2) = C2 ⊗ 1 + V 2U−2 ⊗ C2 , ∆ref (C3) = C3 ⊗ V −2
B + U2 ⊗ C3 , (4.5.11)

to be coreflective, ∆(Ci) = ∆ref (Ci), we find the boundary algebra constraints for the
regular central charges to be

1⊗ C2 = 1⊗ gα , 1⊗ C3 = 1⊗ gα−1V −2
B . (4.5.12)

Therefore the representation constraints for the boundary algebra are

aBdB =
q
M
2 VB − q−

M
2 V −1

B

qM − q−M
, bBcB =

q−
M
2 VB − q

M
2 V −1

B

qM − q−M
,

aBbB =
gα

[M ]q
, cBdB =

gα−1

[M ]q
V −2
B . (4.5.13)

These relations force the boundary labels to be

aB =
√

g
[M ]q

γB , bB =
√

g
[M ]q

α

γB
,

cB =
√

g
[M ]q

γB
α

ig̃

gξ

qM/2
(
1− q−MV 2

B

)
VB

, dB =
√

g
[M ]q

g̃

γB

qM/2
(
V 2
B − q−M

)
igξ VB

, (4.5.14)

where VB is required to satisfy

(
V 2
B − q−M

) (
V 2
B − qM

)
=

ξ2

ξ2 − 1
. (4.5.15)

A convenient parametrization satisfying this constraint is

V 2
B = qM

xB
xB + ξ

= q−M
1 + ξxB
1− ξ2

. (4.5.16)

In this way the boundary labels become

aB =
√

g
[M ]q

γB , bB =
√

g
[M ]q

α

γB
,

cB =
√

g
[M ]q

γB
α

ig̃

g

qM/2

VB(xB + ξ)
, dB =

√
g

[M ]q

g̃

igγB

VBq
M/2 (xB + ξ)

ξxB + 1
. (4.5.17)
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Consequently, the mass-shell constraint(
aBdB − qMbBcB

) (
aBdB − q−MbBcB

)
= 1 , (4.5.18)

in this parametrization becomes

q−2Mg2
(
1 + x2

B + 2xBξ
)2

[M ]2q (ξ2 − 1)x2
B

= 1 . (4.5.19)

In the q → 1 limit it gives the usual (non-deformed) mass-shell constraint (3.3.56)

− g2

M2

(
xB +

1

xB

)2

= 1 =⇒ xB +
1

xB
=
iM

g
. (4.5.20)

Furthermore, the q → 1 limit gives VB → 1, and labels (4.5.17) reproduce the usual non-
deformed boundary labels (3.3.55), as required.

Let us turn now to the construction of the boundary representation labels of the affine
generators E4 and F4. We will construct the affine representation in a similar way as
we did for the regular ones above, except we will not give the explicit details of the
coreflectivity of the twisted affine central charges as we did for the regular ones. This is
because the explicit form of the coproducts of C̃2 and C̃3 is very large and thus we will
only state the final constraints we have obtained.

The representation constraints that follow from the commutation relations (4.1.9) are

ãB d̃B =
q
M
2 ṼB − q−

M
2 Ṽ −1

B

qM − q−M
, b̃B c̃B =

q−
M
2 ṼB − q

M
2 Ṽ −1

B

qM − q−M
. (4.5.21)

Bearing on the analogy to the affine bulk labels we choose the following ansatz for the
affine boundary labels,

ãB =
√

g
[M ]q

γBα̃

AB
, b̃B =

√
g

[M ]q

αα̃

γB
BB ,

c̃B =
q−

M
2 ṼB − q

M
2 Ṽ −1

B

(qM − q−M ) b̃B
, d̃B =

q
M
2 ṼB − q−

M
2 Ṽ −1

B

(qM − q−M ) ãB
, (4.5.22)

where AB and BB are undetermined parameters. Then using this ansatz and requiring
C̃2 and C̃3 to be coreflective we find additional constraints that solve this requirement,

AB = −i xB , BB = −i(xB + 2ξ) , V 2
B Ṽ

2
B = 1 +

ξ2

ξ2 − 1
. (4.5.23)

These define the affine boundary labels to be

ãB =
√

g
[M ]q

iγBα̃

xB
, b̃B =

√
g

[M ]q

αα̃

iγB
(xB + 2ξ) ,

c̃B = −
√

g
[M ]q

g̃ q
M
2 γB

gαα̃(1 + ξxB)ṼB
, d̃B =

√
g

[M ]q

g̃ q−
M
2

gα̃γBṼB

1− ξ(xB + 2ξ)

ξ2 − 1
. (4.5.24)
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The coreflectivity property also constrains the parameters dy and dx to be

dy = (αα̃)−2 , dx = −(αα̃)2 , (4.5.25)

thus revealing the last undetermined elements of B̂Z . The reflection map acts trivially on
the boundary spectral parameter, κ : xB 7→ xB and the boundary labels, both regular and
affine, are invariant under the reflection as required.

Finally we want to give two useful relations of the boundary representation that are
closely linked to those of the bulk representation. Recall that the evaluation parameter z
may be expressed in terms of the bulk representation labels as (4.1.58)

z =
g

g̃ α α̃
(ab̃− bã) , z−1 =

g α α̃

g̃
(cd̃− dc̃) . (4.5.26)

In a similar way, for the boundary representation, we obtain

qM =
g

g̃ α α̃
(aB b̃B − bB ãB) , q−M = VBṼB

g α α̃

g̃
(cB d̃B − dB c̃B) . (4.5.27)

4.5.2 Boundary scattering

The boundary algebra B̂Z allows us to find any bound state reflection matrix up to the
overall dressing phase. This can be done in a similar way as in [176], where the bound
state S-matrix for the algebra Q̂ was found. However these calculations are rather com-
plicated and thus we will reduce our goal to finding the analytic expressions of the re-
flection matrices with the total bound state number M ≤ 3. These are the fundamental
reflection matrixKAa

q and the bound state reflection matricesKBa
q andKAb

q . Here indices
A and B denote the fundamental and M = 2 bound states in the bulk, and in the same
way a and b denote the boundary states. These matrices are given in the Appendix F.
We have checked that they are unitary and satisfy the reflection equation. Also we have
calculated some higher order bound state reflection matrices numerically, and checked
that they satisfy the reflection equation.

4.6 q-deformed Z=0 D7-brane

The Z = 0 D7-brane was considered in Section 3.3.2. This boundary from the scattering
theory point of view factorizes into two inequivalent factors, left and right.

The right factor respects all of the bulk Lie algebra and thus the boundary algebra is
equivalent to that of the Z = 0 giant graviton. The same story follows for the q-deformed
approach, and thus the corresponding boundary algebra was presented in the section
above. The reflection matrices are also the same.

The left factor of the Z = 0D7-brane does not respect any of the Lie supercharges Q α
a ,

G a
α or central charges C, C†. Hence the corresponding q-deformed model of this bound-

ary in addition to the affine superchargesE4 andF4 does not respect regular supercharges
F2 and E2 (and central elements C2, C3). These generators combined together will give
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rise to the twisted affine generators of the quantum affine coideal subalgebra B̂X ⊂ Q̂ .
The boundary is a singlet with respect to the boundary algebra, thus the boundary alge-
bra, as will be shown in this section, is of the same type as for the q-deformed model of
the Y = 0 giant graviton considered in Section 4.4.

4.6.1 Coideal subalgebra

The boundary conditions define the root space automorphism ΘX associated to the left
factor of the D7-brane to act on the simple roots as

ΘX(α1) = α1, ΘX(α2) = −α4 − α1 − α3,

ΘX(α3) = α3, ΘX(α4) = −α2 − α1 − α3. (4.6.1)

Thus πΘX = {α1, α3} and it gives rise to the subalgebraMX of Q̂ .
As in the previous cases, we build B̂X based on the affine extension. This setup fixes

the twisted affine generators to be

Ẽ312 = F4 − dy Θ̃(F4) , Θ̃(F4) = (adrE3E1)E′2 , (4.6.2)

F̃312 = E′4 − dx Θ̃(E′4) , Θ̃(E′4) = (adrF3F1)F2 , (4.6.3)

with suitable dx and dy. Let us show the coideal property for the these twisted generators
explicitly,

∆(Ẽ312) = F4 ⊗K4 − dy(adr E3E1)E′2 ⊗K312 − U ⊗ Ẽ312

− dy(q − q−1)
(

(adr E1)E′2 ⊗K12E
′
3

− (adr E3)E′2 ⊗K32E
′
1 + q−1E′2 ⊗K2

[
E′1, E

′
3

]
q2

)
∈ Q̂ ⊗ B̂X , (4.6.4)

and

∆(F̃312) = E4 ⊗K4 − dx(adr F3F1)F2 ⊗K312 − U−1⊗ F̃312

− dx q−1(q − q−1)
(

(adr F3)F2 ⊗K32F1

− q2(adr F1)F2 ⊗K12F3 + F2 ⊗K2 [F1, F3]q2
)

∈ Q̂ ⊗ B̂X . (4.6.5)

The rest of B̂X can be furnished with the help of the right adjoint action, adrMX ,

Ẽ12 = (adrF3) Ẽ312, F̃12 = (adrE3) F̃312, (4.6.6)

Ẽ32 = (adrF1) Ẽ312, F̃32 = (adrE1) F̃312, (4.6.7)

Ẽ2 = (adrF1F3) Ẽ312, F̃2 = (adrE1E3) F̃312. (4.6.8)
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The coideal property for these charges follows identically since B̂X is invariant under the
adjoint action ofMX .

The final ingredients of B̂X are the twisted affine central charges ˜̃C2 and ˜̃C3 that can
be obtained by anticommuting two twisted affine generators, e.g.

˜̃
C2 = {Ẽ12 , Ẽ32} ,

˜̃
C3 = {F̃12 , F̃32}. (4.6.9)

These twisted affine central charges must be coreflective. And because the boundary is

a singlet we require ˜̃C2 =
˜̃
C2 and ˜̃

C3 =
˜̃
C3. This requirement gives us the following

constraints,

1 + dxχ(q + q−1)− d2
xχ

2

ξ2 − 1
= 0 ,

1

ξ2 − 1
+
dy
χ

(q + q−1)−
d2
y

χ2
= 0 , (4.6.10)

where χ =
g̃

gαα̃
. These constraints can be solved by introducing a simple ansatz,

dy =
g̃

g αα̃
V ′B and dx = −g αα̃

g̃
V ′B(1− ξ2) , (4.6.11)

where

V ′B = q
1− ξx′B
1− ξ2

= q−1 x′B
x′B − ξ

. (4.6.12)

Note that V ′B is related to VB in (4.5.16) by setting M = 1 and inverting the deforma-
tion parameter, q → q−1, giving ξ → −ξ. Thus x′B may be understood as the spectral
parameter of the oppositely deformed fundamental boundary.9

4.6.2 Boundary scattering

The structure of the q-deformed reflection matrix is equivalent to the non-deformed case
(3.4.14) and the corresponding vector space is the same (3.4.15). The bosonic generators
E1, F1 and E3, F3 constrain the reflection matrix to be diagonal,

K |k〉1 = Aq |k〉1, K |k〉2 = Bq |k〉2, K |k〉α = Cq |k〉α, (4.6.13)

and we have added the subscript q to distinguish the q-deformed reflection coefficients
from the ones in (3.4.16). Next we choose the normalization for the reflection of the state
|k〉1 to be Aq = 1. Then the intertwining equation for Ẽ2 gives

(
K Ẽ2 − Ẽ2K

)
|k〉1 = 0 =⇒ Bq =

x′B + x+

x′B + κ(x+)

γ

γ
. (4.6.14)

9It is possible to choose a parametrization of dx and dy that it would agree with the one used for theZ = 0
giant graviton, i.e. in terms of xB , not x′B . However this would make expressions of the reflection matrices
much more complicated and the pole structure would not be transparent.
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Equivalently, the same constraint may be found by considering the reflection of states
|0〉α and employing the generator F̃2. Next we consider the reflection of the |k〉2 state.
The intertwining equation in this case leads to

(
K Ẽ2 − Ẽ2K

)
|k〉2 = 0 =⇒ Cq =

(1 + ξx−)(1 + ξx+)

1− ξ2

(1 + x′Bκ(x−))(x′B + x+)

(1 + x′Bx
−)(x′B + κ(x+))

γ2

γ2
.

(4.6.15)

Let us perform some consistency checks. It is straightforward to check that this re-
flection matrix satisfies the unitarity condition K(p)K(−p) = 1. In the q → 1 limit the
q-deformed reflection coefficients Aq, Bq and Cq specialize to the non-deformed ones
given in (3.4.17) as required. Finally we have verified that it satisfies the reflection equa-
tion when the total bound state number M ≤ 5. This is sufficient to claim that reflection
equation should be satisfiend for any bound state numbers.

C Elements of the S-matrix

In this Appendix we have spelled out various coefficients and matrices that have been
heavily used in the intermediate steps in deriving the final expressions of the S-matrix
for the subspaces II and III.

C.1 Subspace II

The coefficients for the charge ∆(E2) in (4.2.51) are

Q1(k1, k2) = −qM1/2−k1 a2 U1V1 [k̄2 + 1]q, Q2(k1, k2) = a1 [k̄1 + 1]q,

Q3(k1, k2) = −qM1/2−k1 b2 U1V1, Q4(k1, k2) = b1. (C.1)

Similarly, the coefficients for the charge ∆op(E2) are

Qop1 (k1, k2) = −a2 [k̄2 + 1]q, Qop2 (k1, k2) = qM2/2−k2 a1 U2V2 [k̄1 + 1]q,

Qop3 (k1, k2) = −b2, Qop4 (k1, k2) = qM2/2−k2 b1 U2V2. (C.2)

By replacing a, b → ã, b̃ and U, V → Ũ , Ṽ , one obtains Q̃i(k1, k2) and Q̃opi (k1, k2) related
to the affine charge E4.

The coefficients in (4.2.60) are

Zop1 (n,K− n) = c2 Ṽ1 [M2 −K + n]q, Zop2 (n,K− n) = c1 Ũ2 [n−M1]q q
n−K−M1

2 ,

Zop3 (n,K− n) = d2 Ṽ1 q
−M2 , Zop4 (n,K− n) = −d1 Ũ2 q

n−K+
M1
2 . (C.3)
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and

Z1(k1, k2) =
c2Ũ1 [k̄2 + 1]q

qMz12 − q2(K+1)
qM1/2−k1+M2

(
q2nz12 − qδM

(
q2(n−k̄1) − 1

)
− q2k2+δM

)
,

Z2(k1, k2) =
z12 c1Ṽ2 [k̄1 + 1]q

qMz12 − q2(K+1)
q−δM/2+2

(
q2nz21 − qδM

(
q2(n+k̄2) − q2K

)
− q2k2+δM

)
,

Z3(k1, k2) =
d2Ũ1

qMz12 − q2(K+1)
qM1/2−k1

(
q2nz12 − qM

(
q2(n−k̄1) − 1

)
− q2k2+δM

)
,

Z4(k1, k2) =
z12 d1Ṽ2

qMz12 − q2(K+1)
qM/2+2

(
q2nz21 − q−M

(
q2(n+k̄2) − q2K

)
− q2k2+δM

)
.

The matrices in (4.2.61) are defined as

A =


Qop1 (n,K− n) Qop2 (n,K− n) Qop3 (n,K− n) Qop4 (n,K− n)

Q̃op1 (n,K− n) Q̃op2 (n,K− n) Q̃op3 (n,K− n) Q̃op4 (n,K− n)

Zop1 (n,K− n) Zop2 (n,K− n) Zop3 (n,K− n) Zop4 (n,K− n)

Z̃op1 (n,K− n) Z̃op2 (n,K− n) Z̃op3 (n,K− n) Z̃op4 (n,K− n)

 , (C.4)

B =


Q1(k1, k2) Q2(k1, k2) Q3(k1, k2) Q4(k1, k2)

Q̃1(k1, k2) Q̃2(k1, k2) Q̃3(k1, k2) Q̃4(k1, k2)

Z1(k1, k2) Z2(k1, k2) Z3(k1, k2) Z4(k1, k2)

Z̃1(k1, k2) Z̃2(k1, k2) Z̃3(k1, k2) Z̃4(k1, k2)

 , (C.5)

and

B+ =


0 0 0 0

0 0 0 0

Z+
1 (k1, k2) 0 Z+

3 (k1, k2) 0

Z̃+
1 (k1, k2) 0 Z̃+

3 (k1, k2) 0

 , B− =


0 0 0 0

0 0 0 0

0 Z−2 (k1, k2) 0 Z−4 (k1, k2)

0 Z̃−2 (k1, k2) 0 Z̃−4 (k1, k2)

 .

(C.6)

The latter two have a quite compact explicit form

B+ = [k̄1]q
q1+k1−k2−M1

2

(q − q−1)−1

qM1+2k2z12 − qM2+2(n+1)

qMz12 − q2(K+1)


0 0 0 0

0 0 0 0

−c2Ũ1[k2]q 0 d2Ũ1 0

−c̃2U1[k2]q 0 d̃2U1 0

 , (C.7)

B− = [k̄2]q
q1−k1+ δM

2

(q − q−1)−1

qM2+2nz12 − qM1+2(k2+1)

qMz12 − q2(K+1)


0 0 0 0

0 0 0 0

0 −c1Ṽ2[k1]q 0 d1Ṽ2

0 −c̃1V2[k1]q 0 d̃1V2

 , (C.8)
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The inverse of A has a very complex form, however it can be decomposed intro three
quite compact matrices as A−1 = CV D, where

C =



z12b̃2
[M2−K+n]q

0 z12α̃b2
[M2−K+n]q

0

0 qK−
M2
2 −nα̃b1U2V2
[n−M1]q

0 qK−
M2
2 −nb̃1

[M1−n]qU2V2

−z12ã2 0 −z12α̃a2 0

0 qK−
M2
2
−nα̃a1U2V2 0 − qK−

M2
2 −nã1

U2V2

 , (C.9)

D = diag

(
igξ

g̃αα̃z2
,

igξ

g̃αα̃2z2
,
q
M2
2

Ṽ1Ṽ2α̃
,
q
M2
2

V1V2

)
, (C.10)

V =
1

W


1
iξ

[
Uzξ2−Vz+

ṼzVz−ŨzUzξ2
z12

]
Vz − Uz iξUz −Vz

Ũz − Ṽz i
ξ

(
Ṽz − Ũzξ2

)
Ṽz iŨzξ

Ṽz − Ũz i
ξ

[
Ũzξ2−Ṽz+

ṼzVz−ŨzUzξ2
z12

]
−Ṽz −iŨzξ

i
ξ

(
Vz − Uzξ2

)
Vz − Uz iUzξ −Vz

 , (C.11)

here

W = ṼzVz − ŨzUzξ2, Uz = z12 − U2
1U

2
2 , Ũz = z12 − Ũ2

1 Ũ
2
2 , (C.12)

plus similar expressions for Vz .

Rational limit. The matrices B+ (C.7) and B− (C.8) in the q → 1 + h (h → 0) limit
become

B+ = 2h k̄1
δu− δM

2 − k2 + n+ 1

δu− M
2 +K + 1


0 0 0 0

0 0 0 0

−k2c2/U1 0 d2/U1 0

k2a2U1/αα̃ 0 −b2U1/αα̃ 0

 , (C.13)

B− = 2h k̄2
δu+ δM

2 + k2 − n+ 1

δu− M
2 +K + 1


0 0 0 0

0 0 0 0

0 −k1c1 0 d1

0 k1a1/αα̃ 0 −b1/αα̃

 . (C.14)
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The matrices A (C.4) and B (C.5) in the q → 1 limit become

A =



−(M2−K+n)g2γ2 (M1−n)g1U2γ1 −αg2(x−2 −x
+
2 )

γ2x
−
2

αg1U2(x−1 −x
+
1 )

γ1x
−
1

− i(M2−K+n)α̃g2γ2
x+2

i(M1−n)α̃g1γ1
U2x

+
1

− iαα̃g2(x−2 −x
+
2 )

γ2

iαα̃g1(x−1 −x
+
1 )

U2γ1

i(M2−K+n)g2γ2
αx+2

− i(M1−n)g1γ1
αU2x

+
1

ig2(x−2 −x
+
2 )

γ2
− ig1(x−1 −x

+
1 )

U2γ1

− (M2−K+n)g2γ2
αα̃

(M1−n)g1U2γ1
αα̃ −g2(x−2 −x

+
2 )

α̃γ2x
−
2

g1U2(x−1 −x
+
1 )

α̃γ1x
−
1


, (C.15)

B =



−(M2−k2)g2U1γ2 (M1−k1)g1γ1 −αg2U1(x−2 −x
+
2 )

γ2x
−
2

αg1(x−1 −x
+
1 )

γ1x
−
1

− i(M2−k2)α̃g2γ2
U1x

+
2

i(M1−k1)α̃g1γ1
x+1

− iαα̃g2(x−2 −x
+
2 )

U1γ2

iαα̃g1(x−1 −x
+
1 )

γ1

i(M2−k2)g2γ2
αU1x

+
2

− i(M1−k1)g1γ1
αx+1

ig2(x−2 −x
+
2 )

U1γ2
− ig1(x−1 −x

+
1 )

γ1

− (M2−k2)g2U1γ2
αα̃

(M1−k1)g1γ1
αα̃ −g2U1(x−2 −x

+
2 )

α̃γ2x
−
2

g1(x−1 −x
+
1 )

α̃γ1x
−
1


. (C.16)

The notation used in here is gi =
√

g
Mi

and Ui =

√
x+i
x−i

.

It might seem that the matrices B+ and B− do not contribute in the q → 1 limit as
they are of order O(h), however the combinations A−1B+ and A−1B− in (4.2.61) are of
order O(1), thus are defined correctly. We do not spell out the explicit expression of A−1

in the q → 1 limit as it is quite sizy and also not much illuminative.

C.2 Subspace III

The coefficients’ matrices in the expressions (4.2.67)

Gop(n,K− n) Z k1,k2
n = Y k1,k2

n G(k1, k2),

Hop(n,K − n) Z k1,k2
n = Y

k1,k2
n H(k1, k2),

are

Gop =



q
M2
2

−K+n[M1−n]q a1
Ũ2Ṽ2

0 q
M2
2

−K+nb1
Ũ2Ṽ2

0 0 −b2

[M2−K+n]qa2 b2 0 0 q
M2
2

−K+nb1
Ũ2Ṽ2

0

0
q
M2
2

−K+n[M1−n]qa1
Ũ2Ṽ2

0 q
M2
2

−K+nb1
Ũ2Ṽ2

0 [M2−K+n]qa2

0 0 [M2−K+n]qa2 b2
q
M2
2

−K+n[M1−n]qa1
−Ũ2Ṽ2

0


,

(C.17)

G =



[M1−k1]qa1 0 b1 0 0 q
M1
2

−k1b2
−Ũ1Ṽ1

q
M1
2

−k1 [M2−k2]qa2
Ũ1Ṽ1

q
M1
2

−k1b2
Ũ1Ṽ1

0 0 b1 0

0 [M1−k1]qa1 0 b1 0 q
M1
2

−k1 [M2−k2]a2
Ũ1Ṽ1

0 0
q
M1
2

−k1 [M2−k2]qa2
Ũ1Ṽ1

q
M1
2

−k1b2
Ũ1Ṽ1

−[M1−k1]qa1 0


,

(C.18)
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and

Hop =



[n]qc1
U2

0 − d1
U2

0 − q
n−M1

2 d2
V1

0

qn−M1
2 [K−n]qc2
V1

qn−M1
2 d2

−V1
0 0 0 d1

U2

0
[n]qc1
U2

0 − d1
U2

− q
n−M1

2 [K−n]qc2
V1

0

0 0
qn−M1

2 [K−n]qc2
V1

qn−M1
2 d2

−V1
0

[n]qc1
U2


,

(C.19)

H =



qk2−M2
2 [k1]qc1
V2

0 qk2−M2
2 d1

−V2
0 −d2Ũ1 0

[k2]qc2Ũ1 −d2Ũ1 0 0 0 qk2−M2
2 d1

V2

0
qk2−M2

2 [k1]qc1
V2

0 qk2−M2
2 d1

−V2
−[k2]qc2Ũ1 0

0 0 [k2]qc2Ũ1 −d2Ũ1 0
qk2−M2

2 [k1]qc1
V2


.

(C.20)

Their affine counterparts G̃, G̃op and H̃ , H̃op are obtained by the replacing non-affine (or
affine) parameter to affine (or non-affine) ones. The matrix Y

k1,k2
n is a slightly modified

version of Y k1,k2
n ,

Y
k1,k2
n ≡


(Y k1−1,k2

n−1 )1
1 (Y k1,k2−1

n−1 )1
2 (Y k1−1,k2

n−1 )1
3 (Y k1,k2−1

n−1 )1
4

(Y k1−1,k2
n )2

1 (Y k1,k2−1
n )2

2 (Y k1−1,k2
n )2

3 (Y k1,k2−1
n )2

4

(Y k1−1,k2
n−1 )3

1 (Y k1,k2−1
n−1 )3

2 (Y k1−1,k2
n−1 )3

3 (Y k1,k2−1
n−1 )3

4

(Y k1−1,k2
n )4

1 (Y k1,k2−1
n )4

2 (Y k1−1,k2
n )4

3 (Y k1,k2−1
n )4

4

 . (C.21)

The coefficient matrices in (4.2.70), AZ k1,k2
n = Y̌ k,l

n B, are

A =



− [M1−n]A3

U2V2
0 A1

U2V2
0 0 q2z̃2

0 −q2z̃2 0 0 A1

U2V2
0

0 − [M1−n]A3

U2V2
0 A1

U2V2
0 0

− [n]qA2

U2V1
0 − A4

U2V1
0 g̃2q1

g2z̃2
0

0 g̃2q1
g2z̃2

0 0 0 A4

U2V1

0 − [n]qA2

U2V1
0 − A4

U2V1
0 0


, (C.22)

A−1 =



− U2V2

A0A−1
4

g̃2q1U
2
2V1V2

g2A0z̃2
0 − U2V1

A0A−1
1

q2U
2
2V1V2z̃2
A0

0

0 0 − U2V2

A0A−1
4

0 0 − U2V1

A0A−1
1

[n]qU2V2

A0A−1
2

g̃2[M1−n]q1U2
2V1V2

g2A0A1A−1
3 z̃2

g̃2q1q2U
3
2V1V

2
2

−g2A0A1

[M1−n]U2V1

−A0A−1
3

[n]qq2U
2
2V1V2z̃2

−A0A−1
2 A4

g̃2q1q2U
3
2V

2
1 V2

−g2A0A4

0 0
[n]qU2V2

A0A−1
2

0 0 − [M1−n]U2V1

A0A−1
3

0 U2V2

A1
− q2U

2
2V

2
2 z̃2

A0A1A−1
4

0 0 − q2U
2
2V1V2z̃2
A0

0 0
g̃2q1U

2
2V1V2

g2A0z̃2
0 U2V1

A4

g̃2q1U
2
2V

2
1

g2A0A−1
1 A4z̃2



,

(C.23)
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here we have defined z̃i = g̃αα̃
g zi and A0 = [n]qA1A2 + [M1 − n]qA3A4 where

A1 = b1ã2U
2
2V

2
2 − a2b̃1, A2 = c2c̃1U

2
2 − c1V

2
1 c̃2,

A3 = a2ã1 − a1ã2U
2
2V

2
2 , A4 = d1c̃2V

2
1 − c2d̃1U

2
2 . (C.24)

B =



−[M1−k1]qq2B3 0 q2B2 0 0 − q3B1
q1U1V1

− [M2−k2]qq3B7
q1U1V1

q3B1
q1U1V1

0 0 q2B2 0

0 −[M1−k1]qq2B3 0 q2B2 0 − [M2−k2]qq3B7
q1U1V1

0 0 − [M2−k2]qq3B7
q1U1V1

q3B1
q1U1V1

[M1−k1]qq2B3 0

− [k1]qq3B4
V1V2

0 − q3B5
V1V2

0 − B6
U1V1

0

− [k2]qB8
U1V1

− B6
U1V1

0 0 0 q3B5
V1V2

0 − [k1]qq3B4
V1V2

0 − q3B5
V1V2

[k2]qB8
U1V1

0

0 0 − [k2]qB8
U1V1

− B6
U1V1

0 − [k1]qq3B4
V1V2


,

(C.25)

and we are using the shorthand notation q1 = qn−
M1
2 , q2 = qK−n−

M2
2 , q3 = qk2−

M2
2 and

B1 = b2ã2U
2
1V

2
1 − a2b̃2, B2 = b1ã2 − a2b̃1,

B3 = a2ã1 − a1ã2, B4 = c2c̃1V
2

2 − c1c̃2V
2

1 ,

B5 = d1c̃2V
2

1 − c2d̃1V
2

2 , B6 = d2c̃2V
2

1 − c2d̃2U
2
1 ,

B7 = a2ã2(1− U2
1V

2
1 ), B8 = c2c̃2(U2

1 − V 2
1 ). (C.26)

The matrix Y̌ k1,k2
n is defined as

Y̌ k1,k2
n =

(
Y k1,k2
n 0

0 Y
k1,k2
n

)
, (C.27)

where only first three rows of both Y k1,k2
n and Y

k1,k2
n are taken.

Rational limit. In the rational limit q → 1 the coefficients (C.24) and (C.26) acquire quite
compact expressions

A1

α α̃
= α α̃A4 = i

√
g

M1

√
g

M2

(
x−1 − x

+
1

) (
1− x−1 x

−
2

)
γ2

x−1 x
−
2 γ1

,

A3

α̃
= α̃A2 = i

√
g

M1

√
g

M2

(
x−2 − x

+
1

)
γ1γ2

x−2 x
+
1

, (C.28)

giving

A0 = − g2

αM2

(
1− x−1 x

−
2

) (
x−1 − x

+
1

) (
x−2 − x

+
1

)
γ2

2

x−1 (x−2 )2x+
1

, (C.29)
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and also

B1

α α̃
= α α̃B6 = i

g

M2

(
x−2 − x

+
2

) (
x+

1 − x
−
1 x
−
2 x

+
2

)
x−1 x

−
2 x

+
2

,

B2

α α̃
= α α̃B5 = i

√
g

M1

√
g

M2

(
x−1 − x

+
1

) (
1− x−1 x

+
2

)
γ2

x−1 x
+
2 γ1

,

B3

α̃
= α2α̃B4 = −i

√
g

M1

√
g

M2

(
x+

1 − x
+
2

)
γ1γ2

x+
1 x

+
2

,

B7

α̃
= α2α̃B8 = i

g

M2

(
x−1 − x

+
1

)
γ2

2

x−1 x
+
2

. (C.30)

D Elements of the special cases of the S-matrix

D.1 Elements of the fundamental S-matrix

The fundamental S-matrix for the space III acquires the following form,

S |φ1φ2〉 = (Z 1,0
1 )1

1|φ1φ2〉+ (Z 1,0
0 )1

1|φ2φ1〉+ (Z 1,0
1 )5

1|ψ1ψ2〉+ (Z 1,0
0 )6

1|ψ2ψ1〉,
S |φ2φ1〉 = (Z 0,1

1 )1
1|φ1φ2〉+ (Z 0,1

0 )1
1|φ2φ1〉+ (Z 0,1

1 )5
1|ψ1ψ2〉+ (Z 0,1

0 )6
1|ψ2ψ1〉,

S |ψ1ψ2〉 = (Z 1,0
1 )1

5|φ1φ2〉+ (Z 1,0
0 )1

5|φ2φ1〉+ (Z 1,0
1 )5

5|ψ1ψ2〉+ (Z 1,0
0 )6

5|ψ2ψ1〉,
S |ψ2ψ1〉 = (Z 0,1

1 )1
6|φ1φ2〉+ (Z 0,1

0 )1
6|φ2φ1〉+ (Z 0,1

1 )5
6|ψ1ψ2〉+ (Z 0,1

0 )6
6|ψ2ψ1〉. (D.1)

In order to find these coefficients Z it is sufficient to consider the first relation of (4.2.67)
and its affine counterpart only. In fact, the constraints read as follows,

(
(Gop)2

1 (Gop)2
5

(G̃op)2
1 (G̃op)2

5

)
(1, 0)

(
(Z 1,0

1 )1
1 (Z 1,0

1 )1
5

(Z 1,0
1 )5

1 (Z 1,0
1 )5

5

)
= (Y 1,0

1 )2
2

(
(G)2

1 (G)2
5

(G̃)2
1 (G̃)2

5

)
(1, 0) ,(

(Gop)2
1 (Gop)2

5

(G̃op)2
1 (G̃op)2

5

)
(1, 0)

(
(Z 0,1

1 )1
1 (Z 0,1

1 )1
6

(Z 0,1
1 )5

1 (Z 0,1
1 )5

6

)
= (Y 0,1

1 )2
1

(
(G)1

1 (G)1
6

(G̃)1
1 (G̃)1

6

)
(0, 1) ,(

(Gop)1
1 (Gop)1

6

(G̃op)1
1 (G̃op)1

6

)
(0, 1)

(
(Z 1,0

0 )1
1 (Z 1,0

0 )1
5

(Z 1,0
0 )6

1 (Z 1,0
0 )6

5

)
= (Y 1,0

0 )1
2

(
(G)2

1 (G)2
5

(G̃)2
1 (G̃)2

5

)
(1, 0) ,(

(Gop)1
1 (Gop)1

6

(G̃op)1
1 (G̃op)1

6

)
(0, 1)

(
(Z 0,1

0 )1
1 (Z 0,1

0 )1
6

(Z 0,1
0 )6

1 (Z 0,1
0 )6

6

)
= itself(Y 0,1

0 )1
1

(
(G)1

1 (G)1
6

(G̃)1
1 (G̃)1

6

)
(0, 1) . (D.2)
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It is easy to solve these relations for Z and we find them to agree with [28]. For the
completeness, we have listed the relations of our elements Z to those of [28]10

(
(Z 1,0

1 )1
1 (Z 1,0

1 )1
5

(Z 1,0
1 )5

1 (Z 1,0
1 )5

5

)
=

(
(Z 0,1

0 )1
1 (Z 0,1

0 )1
6

(Z 0,1
0 )6

1 (Z 0,1
0 )6

6

)
=

1

A12

(
A12−B12
q+q−1 − F12

q+q−1

C12
q+q−1 −D12−E12

q+q−1

)
,(

(Z 0,1
1 )1

1 (Z 0,1
1 )1

6

(Z 0,1
1 )5

1 (Z 0,1
1 )5

6

)
=

1

A12

(
q−1A12+qB12

q+q−1
qF12

q+q−1

− qC12

q+q−1 − q−1D12+qE12

q+q−1

)
,(

(Z 0,1
0 )1

1 (Z 0,1
0 )1

6

(Z 0,1
0 )6

1 (Z 0,1
0 )6

6

)
=

1

A12

(
qA12+q−1B12

q+q−1
q−1F12

q+q−1

− q−1C12

q+q−1 − qD12+q−1E12

q+q−1

)
.

(D.3)

D.2 Elements of the S-matrix SQ1

Here we list the explicit forms of the coefficients of the matrix SQ1.

Subspace II. First we give the coefficients of the matrix Y in the case of a bound state
scattering with a fundamental particle. There are four different combinations of the pa-
rameters k1, k2, n that contribute. Thus we have to consider the case where k2 = 0 and
k1 = n = k leading to

(Y k,0
k )1

1 = q
1
2

+kU2V2
x−1 − x

−
2

x−1 − x
+
2

z12 − qQ−2k−1

z12 − qQ−1
, (Y k,0

k )2
2 =

1

q
Q
2 U1V1

x+
1 − x

+
2

x−1 − x
+
2

,

(Y k,0
k )1

2 = q
1−Q
2

[Q− k]q√
[Q]q

x−2 − x
+
2

x−1 − x
+
2

U2V2

U1V1

γ1

γ2
, (Y k,0

k )2
1 =

1√
[Q]q

x−1 − x
+
1

x−1 − x
+
2

γ2

γ1
,

(Y k,0
k )1

4 =
q

1−Q
2 α√
[Q]q

U2V2

U1V1

[x−1 − x
+
1 ][x−2 − x

+
2 ][x−2 − x

+
1 ]

(x−1 − x
+
2 )(x−1 x

−
2 − 1)γ1γ2

, (Y k,0
k )4

2 = (Y k,0
k−1)2

4 = 0, (D.4)

(Y k,0
k )4

1 =
q−Q[k]q√

[Q]q

x+
1 − x

−
2

(x−1 − x
+
2 )(1− x−1 x

−
2 )

x−1
x+

1

γ1γ2

α
, (Y k,0

k )4
4 =

q−
Q
2

U1V1

x+
1 − x

−
1

x−1 − x
+
2

1− x−1 x
+
2

1− x−1 x
−
2

.

Next we have three elements corresponding to k2 = 1 and k1 + 1 = n = k giving

(Y k−1,1
k )1

1 = q
1
2
−QU2V2

x−1 − x
−
2

x−1 − x
+
2

(q2(k+1) − q2Q)z12

z12 − qQ−1
, (Y k−1,1

k )2
1 =

q1+k−Q√
[Q]q

x−1 − x
+
1

x−1 − x
+
2

γ2

γ1
,

(Y k−1,1
k )4

1 =
[Q− k − 1]q

qQ−k−1
√

[Q]q

x−2 − x
+
1

(x−1 − x
+
2 )(1− x−1 x

−
2 )

x−1
x+

1

γ1γ2

α
. (D.5)

10We remind that our x± parameterization is based on the one of [30] which are related to those of [28] by
x±[35] = gg̃−1(x±[10] + ξ). This point must be taken into account when performing the concrete comparison.
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Then we have another three scattering entries for k2 = 0 and k1 = n+ 1 = k contributing

(Y k,0
k−1)1

1 = q
1
2

+QU2V2
x−1 − x

−
2

x−1 − x
+
2

1− q−2k

qQ − qz12
, (Y k,0

k−1)1
2 = q

1+Q−2k
2

[k]q√
[Q]q

x−2 − x
+
2

x−1 − x
+
2

U2V2

U1V1

γ1

γ2
,

(Y k,0
k−1)1

4 = −q−k(Y k,0
k )1

4. (D.6)

Finally, there is one element with k2 = 1 and k1 = n = k − 1 providing the last element

(Y k−1,1
k−1 )1

1 = q
1
2
−kU2V2

x−1 − x
−
2

x−1 − x
+
2

q2k − q1+Qz12

qQ − qz12
. (D.7)

Subspace III. There are 36 elements of the matrix Z that need be determined. As men-
tioned in Section 4.2.4, it follows that (4.2.87) becomes

S |k − 1, 1〉III6 = D
(
|k, 0〉III5 + q |k − 1, 1〉III6

)
− q S |k, 0〉III5 . (D.8)

Acting with the S-matrix on both sides of the equations (4.2.88) and using its invariance
property allows us to express the elements of the S-matrix of the left hand side to the
ones on the right hand side. Explicitly we find

(Z k−1,1
k )1

1 =(Z k,0
k )1

1[Q− k + 1]q(q
2k−Q−2 − q) + (Z k,0

k−1)1
1

[Q− k + 1]q
[k]q

,

(Z k−1,1
k−1 )1

1 =(Z k,0
k )1

1 +
[k − 1]q[Q− k + 2]q(q

2k−Q−4 − q)− [Q− 2k + 1]q
[k]q

(Z k,0
k−1)1

1 ,

(Z k−1,1
k )3

1 =(Z k,0
k )3

1

[k − 1]q[Q− k]qq
2k−Q−2 − q[k]q[Q− k + 1]q

[k]q
+ (Z k,0

k−1)3
1

[Q− k]q
[k]q

,

(Z k−1,1
k−1 )3

1 =(Z k,0
k−1)3

1

[k − 2]q[Q− k + 1]qq
2k−Q−4 + q[k − 1]q[k −Q− 2]q + [2k −Q− 1]q

[k]q

+ (Z k,0
k )3

1

[k − 1]q)

[k]q
,

(Z k−1,1
k )5

1 =(Z k,0
k )5

1

([k − 1]qq
2k−3−Q − q[k]q)[Q− k + 1]q

[k]q
,

(Z k−1,1
k−1 )6

1 =(Z k,0
k−1)6

1

([k − 1]qq
2k−3−Q − q[k]q)[Q− k + 1]q

[k]q
,

(Z k−1,1
k )1

3 =(Z k,0
k )1

3

[
[k]q[Q− k + 1]qq

2k−Q−2

[k − 1]q
− q[Q− k]q

]
+ (Z k,0

k−1)1
3

[Q− k + 1]q
[k − 1]q

,

(Z k−1,1
k−1 )1

3 =(Z k,0
k−1)1

3

[
[Q− k + 2]q
qQ+4−2k

+ [k −Q+ 1]q −
[k − 2]qq

Q−k+1

[k − 1]q

]
+ (Z k,0

k )1
3

[k]q
[k − 1]q

,

(Z k−1,1
k )3

3 =(Z k,0
k )3

3[Q− k]q(q
2k−Q−2 − q) + (Z k,0

k−1)3
3

[Q− k]q
[k − 1]q

,
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(Z k−1,1
k−1 )3

3 =(Z k,0
k−1)3

3

[
[k − 2]q[Q− k + 1]q
qQ−2k+4[k − 1]q

+
q[k]q[k −Q+ 1]q− q2[2k −Q− 1]q

[k − 1]q

]
+ (Z k,0

k )3
3 ,

(Z k−1,1
k )5

3 =(Z k,0
k )5

1([Q− k + 1]qq
2k−Q−3 − q[Q− k]) ,

(Z k−1,1
k−1 )6

3 =(Z k,0
k−1)6

1([Q− k + 1]qq
2k−Q−3 − q[Q− k]) . (D.9)

Finally, the remaining elements are

(Z k,0
k )1

5 =
α

U1V1

(x−1 − x
+
1 )(x−2 − x

+
2 )
[

(ξx+1 +1)[Q−k]q(q(ξ+x
−
2 )−x+2 −ξ)

(ξ2−1)qQ
− [k]q(x

+
1 − x

+
2 )
]

γ1γ2[k]q
√

[Q](1− x−1 x
−
2 )(x−1 − x

+
2 )q

Q
2

,

(Z k,0
k−1)1

5 =
α

U1V1

(x−1 − x
+
1 )(x−2 − x

+
2 )[q(ξ + x−2 )(ξx+

1 + 1)− (ξ + x+
1 )(ξx+

2 + 1)]

γ1γ2(ξ2 − 1)
√

[Q](1− x−1 x
−
2 )(x−1 − x

+
2 )qk+Q

2

,

(Z k,0
k )3

5 =
γ1

γ2q
Q
2

[Q− k]q√
[Q]q

(x−2 − x
+
2 )[q(ξ + x−1 )(ξ + x−2 )− (ξx−1 + 1)(ξx+

2 + 1)]

(ξ2 − 1)(1− x−1 x
−
2 )U1V1(x−1 − x

+
2 )

,

(Z k,0
k−1)3

5 =
γ1

γ2

[k − 1]q√
[Q]q

(x−2 − x
+
2 )[q(ξ + x−1 )(ξ + x−2 )− (ξx−1 + 1)(ξx+

2 + 1)]

(ξ2 − 1)(1− x−1 x
−
2 )U1V1(x−1 − x

+
2 )qk−

Q
2

,

(Z k,0
k )5

5 =
(x+

1 − x
+
2 )[(ξx−1 + 1)(ξx+

2 + 1)− q(ξ + x−1 )(ξ + x−2 )]

(ξ2 − 1)(x−1 x
−
2 − 1)(x−1 − x

+
2 )U1V1U2V2q

Q+1
2

,

(Z k,0
k−1)6

5 =
z12(x−2 − x

+
2 )(x+

1 (ξx−2 + 1)(ξx+
2 + 1)− V 4

1 x
−
1 (ξ + x−2 )(ξ + x+

2 ))

(ξ2 − 1)V 2
1 x

+
2 (x−1 x

−
2 − 1)(x−1 − x

+
2 )q

1+Q
2

U2V2

U1V1
,

(Z k,0
k )1

1 =
x−2 (x−1 − x

+
1 )[Q− k]Q[(ξx−1 + 1)(ξx+

1 + 1)− V 2
2 (ξ + x−1 )(ξ + x+

1 )]

(ξ2 − 1)x+
1 z12[Q]q(x

−
1 x
−
2 − 1)(x−1 − x

+
2 )qQ

+

+
x−1 (x−2 x

+
1 − 1)(x+

1 − x
+
2 )qk−2Q

x+
1 (x−1 x

−
2 − 1)(x−1 − x

+
2 )

,

(Z k,0
k−1)1

1 =
x−2 [k]qq

−k(x−1 − x
+
1 )[(ξx−1 + 1)(ξx+

1 + 1)− V 2
2 (ξ + x−1 )(ξ + x+

1 )]

(1− ξ2)x+
1 z12[Q]q(1− x−1 x

−
2 )(x−1 − x

+
2 )

,

(Z k,0
k )3

1 =
γ2

1x
−
1 [k]qq

−Q−1(ξx+
2 + 1)[Q− k]q[qx

+
2 (ξ + x−2 )− x−2 (ξ + x+

2 )]

α(ξ2 − 1)x+
1 x

+
2 [Q]q(1− x−1 x

−
2 )(x−1 − x

+
2 )

,

(Z k,0
k−1)3

1 =
γ2

1x
−
1 [k − 1]q[k]q−k−1(ξx+

2 + 1)[qx+
2 (ξ + x−2 )− x−2 (ξ + x+

2 )]

α(ξ2 − 1)x+
1 x

+
2 [Q]q(1− x−1 x

−
2 )(x−1 − x

+
2 )

,

(Z k,0
k )5

1 =
γ1γ2(V 2

2 − 1)x−1 x
−
2 [k]qq

−Q− 3
2 (x+

1 − x
+
2 )(ξ + x+

2 )(ξx+
2 + 1)

α(ξ2 − 1)x+
1 x

+
2

√
[Q]q(1− x−1 x

−
2 )(x−1 − x

+
2 )(x−2 − x

+
2 )U2V2

,

(Z k,0
k−1)6

1 =
γ1γ2x

−
1 [k]qq

−Q− 3
2 (x+

1 − x
+
2 )

αx+
1

√
[Q]q(x

−
1 x
−
2 − 1)(x−1 − x

+
2 )U2V2

,

(Z k,0
k )1

3 =
αq(1− V 2

2 )(x−1 − x
+
1 )2(ξ + x−2 )(ξx−2 + 1)

γ2
1(ξ2 − 1)[Q]q(x

−
1 x
−
2 − 1)(x−1 − x

+
2 )

,
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(Z k,0
k−1)1

3 =
α(1− V 2

2 )qk−3(x−1 − x
+
1 )2(ξ + x−2 )(ξx−2 + 1)

γ2
1(ξ2 − 1)[Q]q(1− x−1 x

−
2 )(x−1 − x

+
2 )

,

(Z k,0
k )3

3 =
qk(x−1 − x

−
2 )(x−1 x

+
2 − 1)

(x−1 x
−
2 − 1)(x−1 − x

+
2 )

+

− x−2 [k]q(x
−
1 − x

+
1 )[V 2

2 (ξx−1 + 1)(ξx+
1 + 1)− (ξ + x−1 )(ξ + x+

1 )]

(ξ2 − 1)x+
1 z12[Q]q(x

−
1 x
−
2 − 1)(x−1 − x

+
2 )

,

(Z k,0
k−1)3

3 =
x−2 [k − 1]qq

−k(x−1 − x
+
1 )[V 2

2 (ξx−1 + 1)(ξx+
1 + 1)− (ξ + x−1 )(ξ + x+

1 )]

(ξ2 − 1)x+
1 z12[Q]q(x

−
1 x
−
2 − 1)(x−1 − x

+
2 )

,

(Z k,0
k )5

3 =

√
q

[Q]q

(V 2
2 − 1)(x−1 − x

+
1 )(1− x−1 x

+
2 )(ξ + x−2 )(ξx−2 + 1)

(ξ2 − 1)(x−1 x
−
2 − 1)(x−1 − x

+
2 )(x−2 − x

+
2 )

,

(Z k,0
k−1)6

3 =
γ2q
−Q− 1

2 (x−1 − x
+
1 )(x−1 x

+
2 − 1)

γ1

√
[Q]q(x

−
1 x
−
2 − 1)(x−1 − x

+
2 )U2V2

. (D.10)

E Yang-Baxter equation

In this section we briefly summarize some details on the checks of the Yang-Baxter equa-
tion (YBE) that we have preformed for the bound state S-matrix.

Let us first focus on subspace I. The block X governing the scattering in this subspace
is required to satisfy YBE on its own right. Thus we need to consider the following
scattering sequences,

|0, 1, k1, k̄1〉⊗|0, 1, k2, k̄2〉⊗|0, 1, k3, k̄3〉
YBE−−→ |0, 1,m1, m̄1〉⊗|0, 1,m2, m̄2〉⊗|0, 1,m3, m̄3〉

(E.1)

which give the explicit form of the YBE in subspace I,

k1+k2∑
n=0

X k1,k2
n (z1, z2)X n,k3

m2
(z1, z3)X k1+k2−n,k3+n−m2

m1−m2
(z2, z3) =

k2+k3∑
n=0

X m1−n,n
m2

(z1, z2)X k1,k2+k3−n
m1−n (z1, z3)X k2,k3

n (z2, z3) . (E.2)

We did not attempt to prove this identity in full generality, but we did check it for a large
set of different values of the parameters ki,mi and bound state numbers and found it to
be perfectly satisfied.

In a similar way, this approach for checking YBE may be extended to include the
subspaces II and III. For example, acting with S12S13S23 − S23S13S12 on the states of the
following form,

|0, 0, k1, l1〉 ⊗ |0, 0, k2, l2〉 ⊗ |0, 1, k3, k̄3〉, (E.3)

will result in a plethora of different types of states and the coefficients will depend on all
three scattering blocks X , Y , Z . Due to the large size of these expressions we have not
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spelled them out explicitly here. Nevertheless we have explicitly computed, for different
values of the parameters, various matrix elements of the YBE that include states from all
three subspaces that in general may be written as

〈 out-state | YBE | in-state 〉 . (E.4)

We have performed the checks for a wide range of numerical values of the representation
parameters and in each case it proved to be compatible with the YBE.

F q-deformed reflection matrices

In this Appendix we present the explicit forms of the q-deformed reflection matrices for
the Z = 0 giant graviton. We enumerate the basis for fundamental particles as

e1 = |0, 0, 1, 0〉 , e2 = |0, 0, 0, 1〉, e3 = |1, 0, 0, 0〉, e4 = |0, 1, 0, 0〉 . (F.1)

and two-particle bound states as

ê1 = |0, 0, 2, 0〉 , ê2 = |0, 0, 1, 1〉 , ê3 = |0, 0, 0, 2〉 ê4 = |1, 0, 1, 0〉
ê5 = |1, 0, 0, 1〉 , ê6 = |0, 1, 1, 0〉 , ê7 = |0, 1, 0, 1〉 ê8 = |1, 1, 0, 0〉 . (F.2)

We will use the symbol “ ◦ ” to denote the tensor product of states to keep the expressions
as compact as possible. Our normalization is such that K e1◦e1 = e1◦e1 and equivalently
for the bound states. We have checked that these reflection matrices satisfy the reflection
equation and unitarity requirement, K(−p)K(p) = 1.

Reflection matrix KAa
q

K ea◦ea = ea◦ea ,
K ea◦eα = k3 eα◦ea + k2 ea◦eα ,
K eα◦ea = k8 eα◦ea + k4 ea◦eα ,
K eα◦eα = k9 eα◦eα ,
K e1◦e2 = k1 e2◦e1 + (1− q−1k1) e1◦e2 − q−1k6 e4◦e3 + q−2k6 e3◦e4 ,

K e2◦e1 = (1− qk1) e2◦e1 + k1 e1◦e2 + k6 e4◦e3 − q−1k6 e3◦e4 ,

K e3◦e4 = −qk5 e2◦e1 + k5 e1◦e2 + k7 e4◦e3 + (−q−1k7 + k9) e3◦e4 ,

K e4◦e3 = q2k5 e2◦e1 − qk5 e1◦e2 + (−qk7 + k9) e4◦e3 + k7 e3◦e4 , (F.3)

here a = 1, 2 and α = 3, 4 .
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The coefficients ki above are given by

k1 =

[
U2(ξ + x+)− q(ξ + x−)

xB − x−
− U2(1− U2V 2)

xB + ξ

xB − x−
x− − κ(x−)

ξ + x+

]
V 2

U2
,

k2 =
q(ξ + xB)− U2(ξ + x+)

qU2(xB − x−)
,

k3 = q
1
2 (1− U2V 2)

x− − κ(x−)

x− − xB
V

U

γB
γ
,

k4 = zq−
1
2

(x− − κ(x−))(xB + ξ)

(xB − x−)(ξ + x−)

V

U

γ

γB
,

k5 =
q−

3
2

α

[
q (ξ + x−)− U2 (ξ + x+)

(xB − x−)
+
z (x+ − κ (x+)) (xB + ξ)

q2 (xB − x−) (ξ + x−)

]
V

U
γγB ,

k6 = αq
1
2
U4 − 1

U2

[
qV 2 ξ + x+

xB − x−
+

(1− U2V 2)(xB + ξ)

x− − xB

]
V

U

1

γγB
,

k7 =

[
zV 2

q

U4 − 1

U2

xB + ξ

xB − x−
+

(1− U2V 2)(x+ − κ(x+))

xB − x−

]
γ

γ
,

k8 =
zU2(xB + ξ) + ξ + x−

x− − xB
γ

γ
,

k9 = z
xB − κ(x−)

x− − xB
γ

γ
. (F.4)
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Reflection matrix KBa
q

K ê1◦e1 = ê1◦e1 ,
K ê1◦e2 = qk3 ê2◦e1 − k5

q ê8◦e1 +
(
1− k3 − k3

q2

)
ê1◦e2 − k4

q ê6◦e3 + k4
q2 ê4◦e4 ,

K ê1◦e3 = k1 ê4◦e1 + k2 ê1◦e3 ,
K ê1◦e4 = k1 ê6◦e1 + k2 ê1◦e4 ,
K ê2◦e1 = (1− q2k3) ê2◦e1 + k5 ê8◦e1 +

(
1
q + q

)
k3 ê1◦e2 + k4 ê6◦e3 − k4

q ê4◦e4 ,

K ê2◦e2 =
(
1 + 1

q2

)
k3 ê3◦e1 +

(
1− k3

q2

)
ê2◦e2 − k5

q2 ê8◦e2 −
k4
q2 ê7◦e3 + k4

q3 ê5◦e4 ,

K ê2◦e3 = k1
q ê5◦e1 + k1 ê4◦e2 + k2 ê2◦e3 ,

K ê2◦e4 = k1
q ê7◦e1 + k1 ê6◦e2 + k2 ê2◦e4 ,

K ê3◦e1 = (1− (1 + q2)k3) ê3◦e1 + k3 ê2◦e2 + k5 ê8◦e2 + k4 ê7◦e3 − k4
q ê5◦e4 ,

K ê3◦e2 = ê3◦e2 ,
K ê3◦e3 = k1 ê5◦e2 + k2 ê3◦e3 ,
K ê3◦e4 = k1 ê7◦e2 + k2 ê3◦e4 ,
K ê4◦e1 = k6 ê4◦e1 +

(
1
q + q

)
k11 ê1◦e3 ,

K ê4◦e2 = k12 ê5◦e1 +
(
k6 − k12

q

)
ê4◦e2 + qk11 ê2◦e3 − k13

q ê8◦e3 ,

K ê4◦e3 = k7 ê4◦e3 ,

K ê4◦e4 = k8 ê2◦e1 + k10 ê8◦e1 − 1+q2

q3 k8 ê1◦e2 + k9 ê6◦e3 +
(
k7 − k9

q

)
ê4◦e4 ,

K ê5◦e1 = (k6 − qk12) ê5◦e1 + k12 ê4◦e2 + k11 ê2◦e3 + k13 ê8◦e3 ,
K ê5◦e2 = k6 ê5◦e2 +

(
1
q + q

)
k11 ê3◦e3 ,

K ê5◦e3 = k7 ê5◦e3 ,
K ê5◦e4 =

(
1 + 1

q2

)
k8 ê3◦e1 − k8

q2 ê2◦e2 + k10 ê8◦e2 + k9 ê7◦e3 +
(
k7 − k9

q

)
ê5◦e4 ,

K ê6◦e1 = k6 ê6◦e1 +
(
1
q + q

)
k11 ê1◦e4 ,

K ê6◦e2 = k12 ê7◦e1 +
(
k6 − k12

q

)
ê6◦e2 + qk11 ê2◦e4 − k13

q ê8◦e4 ,

K ê6◦e3 = −qk8 ê2◦e1 − qk10 ê8◦e1 +
(
1 + 1

q2

)
k8 ê1◦e2 + (k7 − qk9) ê6◦e3 + k9 ê4◦e4 ,

K ê6◦e4 = k7 ê6◦e4 ,
K ê7◦e1 = (k6 − qk12) ê7◦e1 + k12 ê6◦e2 + k11 ê2◦e4 + k13 ê8◦e4 ,
K ê7◦e2 = k6 ê7◦e2 +

(
1
q + q

)
k11 ê3◦e4 ,

K ê7◦e3 = −( 1
q + q)k8 ê3◦e1 + k8

q ê2◦e2 − qk10 ê8◦e2 + (k7 − qk9) ê7◦e3 + k9 ê5◦e4 ,

K ê7◦e4 = k7 ê7◦e4 ,

K ê8◦e1 = k14 ê2◦e1 + k16 ê8◦e1 − 1+q2

q3 k14 ê1◦e2 + k15 ê6◦e3 − k15
q ê4◦e4 ,

K ê8◦e2 =
(
1 + 1

q2

)
k14 ê3◦e1 − k14

q2 ê2◦e2 + k16 ê8◦e2 + k15 ê7◦e3 − k15
q ê5◦e4 ,

K ê8◦e3 = −qk17 ê5◦e1 + k17 ê4◦e2 + k18 ê8◦e3 ,
K ê8◦e4 = −qk17 ê7◦e1 + k17 ê6◦e2 + k18 ê8◦e4 . (F.5)
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The reflection coefficients of KBa are

k1 =
√

q
1+q2

q(U4 − 1)(ξ + x−)

xB − x−
V

U

γB
γ
,

k2 =
q2(xB + ξ)− U2(ξ + x+)

q2U2 (xB − x−)
,

k3 =
U4 − 1

1 + q2
ξ + x−

xB − x−

[
q2 +

1

U2z

xB + ξ − U2(ξ + x+)

(xB + ξ)x+
1 + ξx+

χ+ x−

]
,

k4 =
k13

1 + χx+

[[
1

xB
+ ξ − ξ

U2z

]
x+ − 1

U2z

]
γ

γ
,

k5 = α
U4 − 1

1 + q−2
x+ − κ(x+)− z−1(q2 − 1)(ξ + x−)

χ+ x−
ξ + x−

xB − x−
V 2 − U−2

γ2
,

k6 =

[
z U2 xB + ξ

x− − xB
+

ξ + x−

x− − xB

]
γ

γ
,

k7 =
U2(ξ + x−) + (xB + ξ)z

x− − xB
γ

γ
,

k8 =
√

q
1+q2

V

zU

xB + ξ − U2(ξ + x+)

κ(x−)− xB
U2(ξ + x−) + z(xB + ξ)

x− − xB
1 + ξx+

xB + ξ

κ(x−)− x−

x+ (χ+ x−)

γγB

qα
,

k9 = qz
x+

x−
x− − κ(x−)

xB − x−


(

1
xB

+ ξ
)
x+ − 1+ξx+

U2z

q2U2(1 + χx+)

U2(ξ + x−) + z(xB + ξ)

χ+ x−
− 1

 γ

γ
,

k10 = −
k1(ξ + x+)

(
q2U2 (1 + ξx+)− (xB + ξ)V 2x−

)
γ

q4 (1 + xBξ + (xB + ξ)x−)x+γ
,

k11 =
√

q
1+q2

U

qξV

xB + ξ

x− − xB

[
z

κ(x−)
+
V 2

x+

]
γ

γB
,

k12 =
√

q
1+q2

1

UV

[
qk11(x− − x+)γB

x−γ
+
k13γγB
qα

]
,

k13 =
√

q
1+q2

α(x− − x+) (x+ − κ(x+))

q UV (χ+ x−)x−
U2(ξ + x−) + (xB + ξ)z

x− − xB
γ

γ2γB
,

k14 =
q2 (x+ + ξ)− (κ(x+) + ξ)

(1 + q2)(xB − κ(x−))

U2(ξ + x−) + (xB + ξ)z

V 2(χ+ x−)(x− − xB)

[
1

x−
− 1

κ(x−)

]
γ2

α
,

k15 = −
√

q
1+q2

U

qξV

xB + ξ

x− − xB

[
z

κ(x−)
+
V 2

x+

] [
ξ + x−

χ+ x−
− U2z

xB

1 + xBξ

χ+ x−

]
γ2

γγB
,

k16 = αk14V
2 (ξ + x+)(x+ − x−)

(1 + ξx+) γ2
+ k15

√
1+q2

q3
V

U

ξ + x+

xB + ξ

γB
γ

+ k6
ξ + x+

ξ + κ(x+)

γ

γ
,

k17 =
√

q
1+q2

q−2(ξ + x+) + (xB + ξ)z

UV x−(x− − xB)

1 + ξx+

xB + ξ

κ(x−)− x−

χ+ x−
γBγ

2

qαγ
,

k18 =
q−2(ξ + x+) + (xB + ξ)z

x− − xB

[
ξ + x−

χ+ x−
− U2z

q2xB

1 + xBξ

χ+ x−

]
γ2

γ2
, (F.6)

here χ = 1+ξxB
xB+ξ .
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Reflection matrix KAb
q

K e1◦ê1 = e1◦ê1 ,
K e1◦ê2 =

(
1 + 1

q2

)
k5 e2◦ê1 +

(
1− k5

q2

)
e1◦ê2 − k7

q2 e4◦ê4 + k7
q3 e3◦ê6 −

k6
q2 e1◦ê8 ,

K e1◦ê3 = qk5 e2◦ê2 +
(
1− k5 + k5

q2

)
e1◦ê3 − k7

q e4◦ê5 + k7
q2 e3◦ê7 −

k6
q e2◦ê8 ,

K e1◦ê4 =
(
1
q + q

)
k9 e3◦ê1 + k1 e1◦ê4 ,

K e1◦ê5 = qk9 e3◦ê2 + k8 e2◦ê4 +
(
k1 − k8

q

)
e1◦ê5 − k10

q e3◦ê8 ,

K e1◦ê6 =
(
1
q + q

)
k9 e4◦ê1 + k1 e1◦ê6 ,

K e1◦ê7 = qk9 e4◦ê2 + k8 e2◦ê6 +
(
k1 − k8

q

)
e1◦ê7 − k10

q e4◦ê8 ,

K e1◦ê8 = −(1 + q2)k2 e2◦ê1 + k2 e1◦ê2 + k4 e4◦ê4 − k4
q e3◦ê6 + k3 e1◦ê8 ,

K e2◦ê1 = (1− (1 + q2)k5) e2◦ê1 + k5 e1◦ê2 + k7 e4◦ê4 − k7
q e3◦ê6 + k6 e1◦ê8 ,

K e2◦ê2 = (1− q2k5) e2◦ê2 +
(
1
q + q

)
k5 e1◦ê3 + k7 e4◦ê5 − k7

q e3◦ê7 + k6 e2◦ê8 ,

K e2◦ê3 = e2◦ê3 ,
K e2◦ê4 = k9 e3◦ê2 + (k1 − qk8) e2◦ê4 + k8 e1◦ê5 + k10 e3◦ê8 ,
K e2◦ê5 =

(
1
q + q

)
k9 e3◦ê3 + k1 e2◦ê5 ,

K e2◦ê6 = k9 e4◦ê2 + (k1 − qk8) e2◦ê6 + k8 e1◦ê7 + k10 e4◦ê8 ,
K e2◦ê7 =

(
1
q + q

)
k9 e4◦ê3 + k1 e2◦ê7 ,

K e2◦ê8 = −q2k2 e2◦ê2 +
(
1
q + q

)
k2 e1◦ê3 + k4 e4◦ê5 − k4

q e3◦ê7 + k3 e2◦ê8 ,

K e3◦ê1 = k12 e3◦ê1 + k11 e1◦ê4 ,
K e3◦ê2 = k12 e3◦ê2 + k11

q e2◦ê4 + k11 e1◦ê5 ,

K e3◦ê3 = k12 e3◦ê3 + k11 e2◦ê5 ,
K e3◦ê4 = k13 e3◦ê4 ,
K e3◦ê5 = k13 e3◦ê5 ,
K e3◦ê6 = −(1 + q2)k14 e2◦ê1 + k14 e1◦ê2 + k16 e4◦ê4 +

(
k13 − k16

q

)
e3◦ê6 + k15 e1◦ê8 ,

K e3◦ê7 = −q2k14 e2◦ê2 +
(
1
q + q

)
k14 e1◦ê3 + k16 e4◦ê5 +

(
k13 − k16

q

)
e3◦ê7 + k15 e2◦ê8 ,

K e3◦ê8 = −qk17 e2◦ê4 + k17 e1◦ê5 + k18 e3◦ê8 ,
K e4◦ê1 = k12 e4◦ê1 + k11 e1◦ê6 ,
K e4◦ê2 = k12 e4◦ê2 + k11

q e2◦ê6 + k11 e1◦ê7 ,

K e4◦ê3 = k12 e4◦ê3 + k11 e2◦ê7 ,
K e4◦ê4 = (q + q3)k14 e2◦ê1 − qk14 e1◦ê2 + (k13 − qk16) e4◦ê4 + k16 e3◦ê6 − qk15 e1◦ê8 ,
K e4◦ê5 = q3k14 e2◦ê2 − (1 + q2)k14 e1◦ê3 + (k13 − qk16) e4◦ê5 + k16 e3◦ê7 − qk15 e2◦ê8 ,
K e4◦ê6 = k13 e4◦ê6 ,
K e4◦ê7 = k13 e4◦ê7 ,
K e4◦ê8 = −qk17 e2◦ê6 + k17 e1◦ê7 + k18 e4◦ê8 . (F.7)
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The reflection coefficients of KAb are

k1 =
(xB + ξ)− U4(ξ + x−)

U2(xB − x−)
,

k2 =
q−1k4 + qU−2k9

α
√

1 + q2
UV γγB
U2V 2 − 1

,

k3 =
k10 − αU2k4

αq
√

1 + q2 (1− U2V 2)

V

U
− k18

γ

zU2
,

k4 =
αq2k17
γγ

κ(x+)x−

(U2 − V 2)−1
− k16

q2UV

z
√

1 + q2
x− + ξ

xB + ξ

γB
γ
,

k5 =
U2 − U−2

1 + q2

[
V 2U2

ξq2
1 + xBξ

xB − x−
q2 − 1

1− xBx+

[
1 + ξx+

U2
− x+(xB + ξ)

U2 − V 2

]
+ q

ξ + x+

xB − x−

[
1− V 2 − U2

qκ(x−)x+
+

qV 2(ξ2 − 1)

(xB + ξ)(ξ + x+)

] ]
,

k7 = −qα
√

1 + q2k5
1− U2V 2

UV γγB
+

q3α√
1 + q2

1− U2V 2

UV γγB
− q3αk12√

1 + q2
1− U−2V 2

UV γγB
,

k6 = 1√
1+q2

UV

U2 − V 2

xB + ξ

ξ + x+
γ

γB
(k10U

2 − k7) ,

k8 =
q

q2 + 1

(1 + x2B + 2xBξ)x
+

(xB − x−)(1− xBx+)

U4 − 1

V 2 − U2

V 2

U2
,

k9 =
U2 − U−2√

1 + q2
V

U

ξ + x+

xB − x−
,

k10 = α
U2 − U−2√

q2 + 1

V

U

ξ + x+

xB − x−

[
1 +

(1− q4)xB(1 + ξx+)

ξ(1− xBx+)

]
,

k11 =
√

1
1+q2

U4 − 1

U2 − V 2

V

U

xB + ξ

xB − x−
,

k12 = −
[
ξ + x−

xB − x−
+ zU2 xB + ξ

xB − x−

]
,

k13 = − ξ + x+

q(xB − x−)
− z xB + ξ

xB − x−
,

k14 =
U2 − U−2

αq4
√

1 + q2
V

U

1 + xBξ

xB − x−

[
U2V 2

U2 − V 2

[
(q2 − 1)(1 + ξx+)

ξ(1− xBx+)
− 1

xB

]
− z

q2xB

xB + ξ

ξ + x−

]
,

k15 =
q−1

U2V 2 − 1

[
k16

UV√
1 + q2

+ α−1k10

]
,

k16 =
U4 − 1

xB − x−
V 2

U2

[
z(xB + ξ)

q2(x+ + ξ)− (1 + xBξ)x
+

q3ξ(1− xBx+)
− (x+ + ξ)

]
,

k17 =
1

αq
√

1 + q2
V

U

qz(xB + ξ) + (ξ + x+)

κ(x+)(1− xBx+)

x+ − κ(x+)

xB − x−
,

k18 =
(xB + ξ)x− + (ξ + x+) 1

κ(x+)

xB − x−
qz(xB + ξ) + (ξ + x+)

1− xBx+
V 2

q
. (F.8)



Chapter 5

Secret symmetries of the AdS/CFT
scattering matrices

The Hopf superalgebra relevant to AdS/CFT, which we have considered in Chapter 3, is
quite unconventional, and, as of today, its properties are only partially understood. It is
infinite dimensional, with a structure similar to Yangians [17,37,181–183]. It admits a level
zero given by the centrally extended psu(2|2)C Lie superalgebra, and level one generators
giving rise to an infinite dimensional tower. Nevertheless, the actual algebra sits rather
outside the standard theory of Yangians, in that it displays an additional symmetry at
level one, which is absent at level zero. Were this symmetry present at level zero, it
would extend the Yangian to that of gl(2|2). However, this is not compatible with the
central extension. Moreover, if one starts commuting the new generator with the old
ones, one obtains a growth in the algebra which is not completely clear how to control.

At the time it was discovered [130], it was unclear whether the secret symmetry was
an accidental feature of the choice of vacuum for the spin-chain, or the choice of gauge
for the string sigma model. This is because the centrally extended psu(2|2)C algebra is
intimately linked to those specific choices. More recently, however, there have been ob-
servations of the very same mechanism in several sectors of AdS/CFT. For instance, the
secret symmetry reveals itself as symmetries of the boundary scattering matrices [184]
and also appear as a so-called ‘bonus’ Yangian symmetry in [185, 186]. Thus, the secret
symmetry should perhaps be regarded as an integral part of the symmetries of the model.

The need for such an extension seems to respond to a consistency issue of the un-
derlying quantum group description of the integrable structure, following a general pre-
scription by Khoroshkin and Tolstoy [187]. According to this argument, in the case of
superalgebras with a degenerate Cartan matrix (as the present one is), one may adopt
the S-matrix of the smallest non-degenerate algebra containing the original one. The S-
matrix found in such a way intertwines a fortiori the coproducts of the original algebra.
This leads to the natural question of whether a similar symmetry is also hidden in the
S-matrices of the deformed Hubbard model.

A first hint that this is the case is found in the so-called classical limit. For the ra-
tional case the secret symmetry plays there a crucial role, where it is needed to achieve

183
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factorization of the classical r-matrix in the form of a quantum-double [129, 188–190].
Similarly, the secret symmetry generator is also appearing in the factorized expression of
the q-deformed classical r-matrix [163].

Another natural limit to investigate is the ‘conventional’ affine limit of the algebra Q̂
considered in the previous chapter. This limit is obtained by sending one of the (com-
plex) parameters of the relevant representation (namely, the coupling constant g) to zero,
followed by a suitable transformation that removes the twist factors of [126, 191]. In this
limit, two of the three central charges of Q̂ vanish; thus, the algebra becomes isomor-
phic to the conventional quantum affine superalgebra Uq(ŝl(2|2)). By adjoining the non-
supertraceless Cartan generators h4,0 and h4,±1, one may extend Uq(ŝl(2|2)) to Uq(ĝl(2|2)).
The representations of Uq(ĝl(2|2)) can be obtained from [70]. In such a way the secret
symmetry of Q̂ can be revealed by the intuition inspired by the corresponding Uq(ĝl(2|2))
generator.

The full Q̂ S-matrix in this conventional limit is naturally found to have Uq(ĝl(2|2))
symmetry. In other words, we automatically find an extended symmetry in this limit,
corresponding to the operators h4,i. However, at non-zero g, we see the appearance of
the same phenomenon as in the rational case: the level one non-supertraceless genera-
tor is once again a symmetry, while the level zero is not. We find two secret symme-
tries which we call BE and BF , and which extends to all the bound state Q̂ S-matrices.
More precisely, while these symmetries are an analog of the Cartan generators h4,±1 of
Uq(ĝl(2|2)), they get promoted to full Q̂ symmetries only in specific linear combinations.
In the rational q → 1 limit they exactly reproduce the secret symmetry of the worldsheet
S-matrix [130].

The facts listed above show that we are not dealing with an accidental problem. On
the other hand, even in the light of these new observations, the fundamental nature of
the secret symmetry remains unclear, and it is still not known how to consistently embed
it into a satisfactory mathematical framework. After all, we might simply have in front
of us a new type of quantum group1.

This chapter is organized as follows. In Section 5.1 we review the secret symmetry
of the worldsheet S-matrix and some of its properties. In Section 5.2 we present secret
symmetries of the reflection matrices for the Y = 0 giant graviton and D5-branes. In
Section 5.2 we investigate the quantum affine origins of the secret symmetry.

5.1 Secret symmetries of the S-matrix

The su(2|2) algebra has a u(1) outer automorphism extending the algebra to u(2|2). How-
ever, the additional u(1) charge, which acts as a boson–fermion discriminator,

B |φa〉 = +I |φa〉 , B |ψα〉 = −I |ψα〉 , (5.1.1)

1P. Etingof, A. Torrielli, private communication.
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is not a symmetry of the S-matrix and the eigenvalue I is not constrained to any partic-
ular value.2 Strikingly, this charge has a Yangian partner B̂ which is known as a ‘secret
symmetry’ of the S-matrix and is the same for left and right factors. It was shown in [130]
and confirmed in [190] that the additional charge

∆(B̂) = B̂⊗ 1 + 1⊗ B̂− 1
2(U−1Q a

α ⊗G α
a + UG α

a ⊗Q a
α ) , (5.1.2)

where B̂ is the level-1 partner of (5.1.1) with the eigenvalue

Î =
ig

8

(
x+ − 1

x+
+ x− − 1

x−
)
, (5.1.3)

is a symmetry of the S-matrix. Interestingly, the non-trivial part of the co-product of B̂
appears to be the same as the ε-correction of ∆(Ĥ) in the limit ε → 0 of the exceptional
superalgebra d(2, 1; ε) [128]. Furthermore, this novel symmetry generates several new
symmetries of the S-matrix that do not have a Lie algebra analog. They were originally
found by computing the commutators [∆(B̂),∆(Q α

a )] and [∆(B̂),∆(G a
α )] and taking lin-

ear combinations with the Yangian charges ∆(Q̂ α
a ) and ∆(Ĝ a

α ) (see [130] for the details).
These new symmetries generated by (5.1.2) are

∆(Q a
α,+1) = Q a

α,+1 ⊗ 1 + U⊗Q α
a,+1 − 1

2 UL γ
α ⊗Q a

γ + 1
2 Q

a
γ ⊗ L γ

α

− 1
2 UR a

c ⊗Q c
α + 1

2 Q
c
α ⊗ R a

c − 1
4 UH⊗Q a

α + 1
4Q

a
α ⊗H ,

∆(Q a
α,−1) = Q a

α,−1 ⊗ 1 + U⊗Q α
a,−1 − 1

2εαγ ε
acU2 G γ

c ⊗ C + 1
2εαγ ε

acU−1 C⊗G γ
c ,

∆(G α
a,+1) = G α

a,+1 ⊗ 1 + U−1⊗G α
a,+1 + 1

2 U
−1 L α

γ ⊗G γ
a − 1

2 G
γ
a ⊗ L α

γ

+ 1
2 U
−1 R c

a ⊗G α
c − 1

2 G
α
c ⊗ R c

a + 1
4 U
−1 H⊗G α

a − 1
4G

α
a ⊗H ,

∆(G α
a,−1) = G α

a,−1 ⊗ 1 + U−1⊗G α
a,−1 + 1

2εac ε
αγ U−2 Q c

γ ⊗ C† − 1
2εac ε

αγ UC† ⊗Q c
γ ,

(5.1.4)

where the eigenvalues of the new charges Q a
α,±1 and G α

a,±1 are given by

Q a
α,+1 = i

g

2
Q a
α (uΠb + vΠf ), Q a

α,−1 = i
g

2
Q a
α (vΠb + uΠf ) ,

G α
a,+1 = i

g

2
G α
a (vΠb + uΠf ), G α

a,−1 = i
g

2
G α
a (uΠb + vΠf ), (5.1.5)

with Πb and Πf being the projectors onto bosons and fermions respectively and

u =
1

2
(x+ + x−), v =

1

2

(
1

x+
+

1

x−

)
. (5.1.6)

The charges of such form were first considered in constructing the classical S-matrix
of AdS/CFT [189]. It is easy to convince ourselves that these charges do not have Lie
algebra analog, because the naive Lie algebra limit (i.e. u → 1, v → 1) leads to the usual
Lie algebra supercharges Q a

α and G α
a .

2The charge B can be related to psu(2|2)C by rather specific non-linear commutation relations, see [192].
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5.2 Secret symmetries of the K-matrices

An very natural question is if secret symmetries (5.1.2) and (5.1.4) manifest themselves
in the twisted Yangians associated to the integrable boundaries considered in Chapter 3.
This question was raised in [184] and a positive answer was found. It was shown that the
Y = 0 giant graviton and D5-branes inherit additional symmetries that originate from
the secret symmetry of the S-matrix.

An open question is the secret symmetry of the reflection matrix for the Z = 0 giant
graviton. The search for such symmetry would require the knowledge of the level-2
partner of B̂ which is not know at the present time.

We will not present the explicit calculations of the invariance conditions for the secret
symmetries we will construct as they are quite straightforward and not very illuminat-
ing, but at the same time involve very large computer algebra calculations that we have
performed with Mathematica.3

5.2.1 Y = 0 giant graviton

The Y = 0 giant graviton preserves a h = su(2|1)L = {L β
α , R 1

1 , R 2
2 , Q 1

α , G α
1 , H}

subalgebra of the bulk psu(2|2)C algebra. The boundary Yangian symmetry is generated
by the twisted charges

J̃p := Ĵp + 1
4f

p
qi (Jq Ji + Ji Jq) , (5.2.1)

the co-products of which are of the form

∆(J̃p) = J̃p ⊗ 1 + 1⊗ J̃p + fpqi J
q ⊗ Ji , (5.2.2)

where Ji ∈ h and Jp (q) ∈ m = {R 2
1 , R 1

2 , Q 2
γ , G

γ
2 , C, C†} are the generators of the subset

m = g\h. The boundary is a singlet in the scattering theory, thus only terms of the form
J̃p⊗ 1 in (5.2.2) need to be considered. See Section 3.3.1 for complete details on the setup.

The fundamental reflection matrix, describing the scattering of fundamental magnons
from the boundary, is diagonal and the generator B (5.1.1) is a symmetry of it, but the
twisted (5.2.1) partner of the secret Yangian charge (5.1.2) is not. Higher order reflection
matrices are of non-diagonal form and do not respect either additional symmetry B, or
the twisted partner of B̂. To be more precise, due to the form of the tail in (5.1.2) the
twist (5.2.1) does not ensure coideal property, and we do not see any other way to ensure
coideal property for this charge.

The next step is to check if the twisted (5.2.1) partners of the additional secret charges
(5.1.4) are symmetries of the reflection matrix. By performing the twist (5.2.1) we found

3For the explicit calculations we are using the superspace formalism, in which the secret charge (5.1.2) is
defined as TM (B̂) = Î

(
wa

∂
∂wa
− θα ∂

∂θα

)
and is equivalent (up to a prefactor) to the charge Σ introduced

in [129].
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the new additional twisted secret charges to be

Q̃ 2
α,+1 := Q 2

α,+1 + 1
2Q

2
α R 2

2 − 1
2R

2
1 Q 1

α + 1
2Q

2
γ L γ

α + 1
4Q

2
α H ,

Q̃ 2
α,−1 := Q 2

α,−1 − 1
2εαγ CG γ

1 ,

G̃ α
2,+1 := G α

2,+1 − 1
2G

α
2 R 2

2 + 1
2R

1
2 G α

1 − 1
2G

γ
2 L α

γ − 1
4G

α
2 H ,

G̃ α
2,−1 := G α

2,−1 + 1
2ε
αγ C†Q 1

γ , (5.2.3)

and checked that they intertwine both fundamental and bound-state reflection matrices.
Hence they are the symmetries of the reflection matrix.

The mirror model of the Y = 0 maximal giant graviton preserves the subalgebra
h = su(2|1)R = {R b

a , L 3
3 , L 4

4 , Q a
3 , G 3

a , H} and the complementary subset is m =
{L 4

3 , L 3
4 , Q a

4 , G 4
a , C, C†}. The boundary is a singlet and the reflection matrices are

diagonal at all orders of the bound-state number (see Section 3.3.1.3 for details); thus B
(5.1.1) is a symmetry at all orders. Similarly to the previous case we have checked that
the twisted partners

Q̃ a
4,+1 := Q a

4,+1 + 1
2Q

c
4 R a

c + 1
2Q

a
4 L 4

4 − 1
2L

3
4 Q a

3 + 1
4Q

a
4 H ,

Q̃ a
4,−1 := Q a

4,−1 − 1
2ε
adCG 3

d ,

G̃ 4
a,+1 := G 4

a,+1 − 1
2G

4
c R c

a − 1
2G

4
a L 4

4 + 1
2L

4
3 G 3

a − 1
4G

4
a ,H ,

G̃ 4
a,−1 := G 4

a,−1 + 1
2εacC

†Q c
3 , (5.2.4)

of the secret charges (5.1.4) are symmetries of the reflection matrix.

5.2.2 D5-brane

The D5-brane preserves a diagonal subalgebra psu(2|2)+ nR3 of the complete bulk alge-
bra psu(2|2)× p̃su(2|2) nR3 generated by [143, 144]

L β̌
α̌ = L β

α + L
¯̇
β
¯̇α
, Q ǎ

α̌ = Q a
α + κQ ȧ

¯̇α ,

R b̌
ǎ = R b

a + R ḃ
ȧ , G α̌

ǎ = G α
a + κ−1G ¯̇α

ȧ . (5.2.5)

where κ2 = ±1; the notation for the dotted and checked indices is the same as for undot-
ted ones, ȧ, ǎ, ḃ, b̌ = 1̇, 2̇ and α̇, α̌, β̇, β̌ = 3̇, 4̇; the bar above the dotted indices acts as
¯̇3 = 4̇ and ¯̇4 = 3̇. The generators with the undotted indices generate ‘left’ psu(2|2) and the
generators with the dotted indices generate ‘right’ p̃su(2|2). The complementary charges
are defined as

L β̌
α̌ = L β

α − L
¯̇
β
¯̇α
, Q ǎ

α̌ = Q a
α − κQ ȧ

¯̇α ,

R b̌
ǎ = R b

a − R ḃ
ȧ , G α̌

ǎ = G α
a − κ−1G ¯̇α

ȧ , (5.2.6)

and in the contrast to (5.2.5) annihilate the boundary by definition. See Section 3.5.2 for
complete details on the setup.
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The Yangian symmetry of the D5-brane is generated by the twisted charges

J̃Ǎ := ĴǍ + 1
8f

Ǎ
B̌Č

(
JB̌ JČ + JČ JB̌

)
, (5.2.7)

where the indices Ǎ, B̌, Č, run through all possible charges. The co-products of (5.2.7)
acquire the form

∆(J̃A) = J̃Ǎ ⊗ 1 + 1⊗ J̃Ǎ + 1
2f

A
BC JB̌ ⊗ JČ . (5.2.8)

Based on this construction it is easy to see that the twisted (5.2.7) partner for theD5-brane
of the secret charge (5.1.2) is

∆(B̃) = B̃⊗ 1− 1⊗ B̃− 1
2

(
Q ǎ
α̌ ⊗G α̌

ǎ + G α̌
ǎ ⊗Q ǎ

α̌

)
, (5.2.9)

while the twisted partners of (5.1.4) are

∆(Q̃ ǎ
α̌,+1) = Q̃ ǎ

α̌,+1 ⊗ 1 + 1⊗ Q̃ ǎ
α̌,+1 − 1

2 Q
č
α̌ ⊗ R b̌

č + 1
2 R

ǎ
č ⊗Q č

α̌

− 1
2 Q

ǎ
γ̌ ⊗ L γ̌

α̌ + 1
2 L

γ̌
α̌ ⊗Q ǎ

γ̌ + 1
4 H⊗Q ǎ

α̌ − 1
4 Q

ǎ
α̌ ⊗H ,

∆(Q̃ ǎ
α̌,−1) = Q̃ ǎ

α̌,−1 ⊗ 1 +⊗Q̃ ǎ
α̌,−1 − 1

2 εα̌γ̌ ε
ǎď −1 C⊗G γ̌

ď
+ 1

2 εα̌γ̌ ε
ǎďG γ̌

ď ⊗ C ,

∆(G̃ α̌
ǎ,+1) = G̃ α̌

ǎ,+1 ⊗ 1 + 1⊗ G̃ α̌
ǎ,+1 + 1

2 G
α̌
č ⊗ R č

ǎ − 1
2 R

č
ǎ ⊗G α̌

č

+ 1
2 G

γ̌
ǎ ⊗ L α̌

γ̌ − 1
2 L

α̌
γ̌ ⊗G γ̌

ǎ − 1
4 H⊗G α̌

ǎ + 1
4 G

α̌
ǎ ⊗H ,

∆(G̃ α̌
ǎ,−1) = G̃ α̌

ǎ,−1 ⊗ 1 + 1⊗ G̃ α̌
ǎ,−1 + 1

2 εǎč ε
α̌γ̌ C† ⊗Q č

γ̌ − 1
2 εǎč ε

α̌γ̌ Q č
γ̌ ⊗ C†. (5.2.10)

Note that were considering the algebra in its non-local realization to be in consistency
with Section 3.5. This is the general structure of the secret symmetries for the reflection
from D5-brane. The definitions of C, C† and H need to be developed a little further
(see Section 3.5.2 for complete details). Two inequivalent orientations of the D5-brane,
horizontal and vertical, that look rather different in the scattering theory are known. Thus
we will consider the explicit realization of the secret symmetries (5.2.9) and (5.2.10) for
both orientations separately.

Horizontal D5-brane. In the case of reflection from the horizontal D5-brane (κ = −1),
the boundary is a singlet; thus neglecting the irrelevant terms in (5.2.9) and (5.2.10) and
with the help of the Lie algebra the remaining parts may be simplified to

∆(B̃) =
(
B̂ ◦ 1− 1 ◦ B̂− 1

2

(
Q a
α ◦G α

a + G α
a ◦Q a

α

) )
⊗ 1 , (5.2.11)

and

∆(Q̃ a
α,+1) =

(
Q a
α,+1 ◦ 1− 1 ◦Q α

a,+1 − 1
2L

γ
α ◦Q a

γ + 1
2Q

a
γ ◦ L γ

α

− 1
2R

a
c ◦Q c

α + 1
2Q

c
α ◦ R a

c − 1
4H ◦Q

a
α + 1

4Q
a
α ◦H

)
⊗ 1 ,

∆(Q̃ a
α,−1) =

(
Q a
α,−1 ◦ 1− 1 ◦Q α

a,−1 − 1
2εαγ ε

acG γ
c ◦ C + 1

2εαγ ε
acC ◦G γ

c

)
⊗ 1 ,

∆(G̃ α
a,+1) =

(
G α
a,+1 ◦ 1− 1 ◦G α

a,+1 + 1
2L

α
γ ◦G γ

a − 1
2G

γ
a ◦ L α

γ

+ 1
2R

c
a ◦G α

c − 1
2G

α
c ◦ R c

a + 1
4H ◦G

α
a − 1

4G
α
a ◦H

)
⊗ 1,

∆(G̃ α
a,−1) =

(
G α
a,−1 ◦ 1− 1 ◦G α

a,−1 + 1
2εac ε

αγ Q c
γ ◦ C† − 1

2εac ε
αγ C† ◦Q c

γ

)
⊗ 1, (5.2.12)
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here ‘◦’ describes the tensor product of ‘left’ and ‘right’ representations (hereafter ‘reps’)
of the bulk magnon and the usual tensor product ‘⊗’ separates the bulk and boundary
reps. The central charges in this picture act on the bulk states as C := C ◦ 1 + 1 ◦ C,
C := C ◦ 1 − 1 ◦ C and analogously for C†, H. Note that the secret charges (5.2.11) and
(5.2.12) effectively differ from (5.1.2) and (5.1.4) by a minus sign only (we refer to Section
3.5.3 for the details on this similarity). We have checked that these charges commute with
the reflection matrix Kh (3.5.35) [144], and thus are secret symmetries of the horizontal
D5-brane.

Vertical D5-brane. In the case of reflection from the vertical D5-brane (κ = −i), the
boundary carries a field multiplet transforming in the vector representation of the bound-
ary algebra thus the non-local terms in (5.2.9) and (5.2.10) may no longer be neglected.
Nevertheless the general expressions may be casted in a quite transparent form, as

∆(B̃) =
(
B̂ ◦ 1− 1 ◦ B̂− 1

2

(
Q a
α ◦G α

a + G α
a ◦Q a

α

))
⊗ 1

− 1
2(Q a

α ◦ 1− 1 ◦Q a
α )⊗G α

a − 1
2(G α

a ◦ 1− 1 ◦G α
a )⊗Q a

α , (5.2.13)

and

∆(Q̃ a
α,+1) =

(
Q a
α,+1 ◦ 1− 1 ◦Q α

a,+1 − 1
2L

γ
α ◦Q a

γ + 1
2Q

a
γ ◦ L γ

α

− 1
2R

a
c ◦Q c

α + 1
2Q

c
α ◦ R a

c − 1
4H ◦Q

a
α + 1

4Q
a
α ◦H

)
⊗ 1 ,

− 1
2(L γ

α ◦ 1− 1 ◦ L γ
α )⊗Q a

γ + 1
2(Q a

γ ◦ 1− 1 ◦Q a
γ )⊗ L γ

α

− 1
2(R a

c ◦ 1− 1 ◦ R a
c )⊗Q c

α + 1
2(Q c

α ◦ 1− 1 ◦Q c
α)⊗ R a

c

− 1
4(H ◦ 1− 1 ◦H)⊗Q a

α + 1
4(Q a

α ◦ 1− 1 ◦Q a
α )⊗H ,

∆(Q̃ a
α,−1) =

(
Q a
α,−1 ◦ 1− 1 ◦Q α

a,−1 − 1
2εαγ ε

acG γ
c ◦ C + 1

2εαγ ε
acC ◦G γ

c

)
⊗ 1

− 1
2εαγ ε

ac(G γ
c ◦ 1− 1 ◦G γ

c )⊗ C + 1
2εαγ ε

ac(C ◦ 1− 1 ◦ C)⊗G γ
c ,

∆(G̃ α
a,+1) =

(
G α
a,+1 ◦ 1− 1 ◦G α

a,+1 + 1
2L

α
γ ◦G γ

a − 1
2G

γ
a ◦ L α

γ

+ 1
2R

c
a ◦G α

c − 1
2G

α
c ◦ R c

a + 1
4H ◦G

α
a − 1

4G
α
a ◦H

)
⊗ 1

+ 1
2(L α

γ ◦ 1− 1 ◦ L α
γ )⊗G γ

a − 1
2(G γ

a ◦ 1− 1 ◦G γ
a )⊗ L α

γ

+ 1
2(R c

a ◦ 1− 1 ◦ R c
a )⊗G α

c − 1
2(G α

c ◦ 1− 1 ◦G α
c )⊗ R c

a

+ 1
4(H ◦ 1− 1 ◦H)⊗G α

a − 1
4(G α

a ◦ 1− 1 ◦G α
a )⊗H ,

∆(G̃ α
a,−1) =

(
G α
a,−1 ◦ 1− 1 ◦G α

a,−1 + 1
2εac ε

αγ Q c
γ ◦ C† − 1

2εac ε
αγ C† ◦Q c

γ

)
⊗ 1

+ 1
2εac ε

αγ(Q c
γ ◦ 1− 1 ◦Q c

γ )⊗ C† − 1
2εac ε

αγ(C† ◦ 1− 1 ◦ C†)⊗Q c
γ .

(5.2.14)

Once again we have checked that these new secret charges commute with the complete
reflection matrix Kv (3.5.52) [144] and the achiral reflection matrix (3.5.59) [24], thus are
the secret symmetries of the reflection from the vertical D5-brane.
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5.3 Secret symmetries of the q-deformed S-matrix

In this final section we will show the quantum affine origin of the secret symmetry (5.1.2).
We start by recalling the Chevalley-Serre and Drinfeld’s second realization of the quan-
tum affine superalgebra Uq(ĝl(1|1)). We consider its fundamental representation and give
the explicit realization of the corresponding S-matrix and the non-supertraceless charges
h2,0 and h2,±1. Thus Section 5.3.1 can be considered both as a warm-up exercise, and
as a treatment relevant to a wealth of subsectors of the full algebra and corresponding
S-matrix, later discussed in Section 5.3.3. In Section 5.3.2 we review the superalgebra
Uq(ĝl(2|2)) and its fundamental representation, and give the necessary background for
building the secret symmetry of Q̂. In Section 5.3.3, bearing on the construction pre-
sented in Section 5.3.2, we build the secret symmetry of the bound state S-matrices of Q̂
in both the conventional limit (g → 0) and the full case of Q̂ .

5.3.1 The quantum affine superalgebra Uq(ĝl(1|1))

In this section we provide both the Chevalley-Serre realization and the so called Drin-
feld’s second realization [5] of the quantum affine superalgebra Uq(ĝl(1|1)), in the con-
ventions of [193] (see also [194–199]). We choose a complex number q 6= 0 and not a root
of unity, and define

[y]q =
qy − q−y

q − q−1
. (5.3.1)

We will also set the central charge c of the quantum affine algebra to zero for the rest
of this section, and generically indicate with [ , ] the graded (or super-)commutator. We
instead reserve the symbol { , } for the anti-commutator.

5.3.1.1 Chevalley-Serre realization

In the Chevalley-Serre realization, the Lie superalgebra Uq(ĝl(1|1)) is generated by fermi-
onic Chevalley generators ξ±1 , Cartan generators h1, h2, with h2 the non-supertraceless
element completing the superalgebra sl(1|1) to gl(1|1), and the affine fermionic Chevalley
generators ξ±0 and corresponding Cartan generator h0 .

The generalized symmetric Cartan matrix is given by

(aij)05i,j52 =

 0 0 −2

0 0 2

−2 2 0

 . (5.3.2)

Notice that this matrix is degenerate, but the Lie superalgebra block 1 5 i, j 5 2 is not.
The defining relations are as follows, for 0 5 i, j 5 2 (Chevalley generators correspond-
ing to the Cartan generator h2 are absent):

[hi, hj ] = 0 , [hi, ξ
±
j ] = ±aijx±j , {ξ+

i , ξ
−
j } = δij

qhi − q−hi
q − q−1

, (5.3.3)
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supplemented by a suitable set of Serre relations. We refer to [70] for the explicit form of
the Serre relations, as we will instead spell out the complete set of relations in Drinfeld’s
second realization, see (5.3.6).

One can define a Hopf algebra structure with the following coproduct, antipode and
counit:

∆(hi) = hi ⊗ 1 + 1⊗ hi , S(hi) = −hi ,
∆(ξ+

i ) = ξ+
i ⊗ 1 + qhi ⊗ ξ+

i , S(ξ±i ) = −q∓hiξ±i ,
∆(ξ−i ) = ξ−i ⊗ q

−hi + 1⊗ ξ−i , ε(hi) = ε(ξ±i ) = 0 . (5.3.4)

5.3.1.2 Drinfeld’s second realization

The same algebra is also generated by an infinite set of Drinfeld’s generators, which in
some sense make explicit the infinite set of ‘levels’ of the quantum affine algebra ob-
tained, in the Chevalley-Serre realization, by subsequent commutations with the affine
generators ξ±0 . Drinfeld’s generators are

ξ±1,m , hi,n , with i = 1, 2 , m, n ∈ Z . (5.3.5)

The defining relations are as follows:

[hi,m , hj,n] = 0 , {ξ+
1,n , ξ

−
1,m} =

1

q − q−1

(
ψ+

1,n+m − ψ
−
1,n+m

)
,

[hi,0 , ξ
±
1,m] = ±ai1 ξ±1,m , {ξ±1,n , ξ

±
1,m} = 0 ,

[hi,n , ξ
±
1,m] = ± [ai1n]q

n
ξ±1,n+m , for n 6= 0 . (5.3.6)

We have used the definition

ψ±1 (z) = q±h1,0 exp

(
±(q − q−1)

∑
m>0

h1,±mz
∓m

)
=
∑
n∈Z

ψ±1,nz
−n . (5.3.7)

The above expression (5.3.7) should be understood as defining a generating function for
the individual ψ±1,n’s, which in turn can be obtained by Laurent expanding both sides of
the equation and matching the powers of the parameter z.

We call ‘level’ the index n of Drinfeld’s generators. One typically introduces a ‘deriva-
tion’ operator d that counts the level, in the following way:

[d, τn] = n τn , (5.3.8)

for any generator τn at level n.
The map between the Chevalley-Serre and Drinfeld’s second realization, which con-

stitutes a Hopf algebra isomorphism, is given by the following assignment, for i = 1, 2:

hi = hi,0 , ξ±1 = ξ±1,0 ,

h0 = −h1,0 , ξ±0 = ±ξ∓1,±1 q
∓h1,0 , (5.3.9)
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where we have used the fact that a11 = 0. As one can see, the Chevalley generator associ-
ated to the positive (respectively, negative) affine root generates the positive (respectively,
negative) tower of levels in Drinfeld’s second realization.

The coalgebra structure in Drinfeld’s second realization satisfies the following trian-
gular decomposition, for n ∈ Z, n 6= 0 (for n = 0 the coproduct can be obtained directly
from (5.3.9), (5.3.4)):

∆(h1,n) = h1,n ⊗ 1 + 1⊗ h1,n mod N− ⊗N+,

∆(ξ+
1,n) = ξ+

1,n ⊗ 1 + qsign(n)h1,0 ⊗ ξ+
1,n

+

|n|−1∑
k= 1

2
(1−sign(n))

ψ
sign(n)
1,sign(n)(|n|−k) ⊗ ξ

+
1,sign(n)k mod N− ⊗N

2
+,

∆(ξ−1,n) = ξ−1,n ⊗ q
sign(n)h1,0 + 1⊗ ξ−1,n

+

|n|−1∑
k= 1

2
(1+sign(n))

ξ−1,sign(n)k ⊗ ψ
sign(n)
1,sign(n)(|n|−k) mod N

2
− ⊗N+, (5.3.10)

with N± (respectively, N2
±) the left ideals generated by ξ±1,m (respectively, ξ±1,mξ

±
1,m′), with

m,m′ ∈ Z.
The coproduct for the generators h2,n is obtained by imposing that ∆ is an algebra

homomorphism, namely, that it respects the defining relations (5.3.6). Making use of
(5.3.10), we obtain for instance

∆(h2,+1) = h2,+1 ⊗ 1 + 1⊗ h2,+1 + (q−2 − q2)ξ−1,+1 ⊗ ξ
+
1,0 ,

∆(h2,−1) = h2,−1 ⊗ 1 + 1⊗ h2,−1 − (q−2 − q2)ξ−1,0 ⊗ ξ
+
1,−1 . (5.3.11)

5.3.1.3 Fundamental representation

We provide here what we will call the ‘fundamental evaluation’ representation in Drin-
feld’s second realization, as obtained from [70] by specializing to a particular case. By the
terminology ‘fundamental evaluation’ representation we mean a representation which
coincides with the fundamental representation at level zero, while the level one genera-
tors of the quantum affine algebra are obtained by multiplying the entries of the level zero
generators by appropriate linear polynomials in a certain (sometimes called ‘evaluation’
or ‘spectral’) parameter z. To obtain the corresponding representation in the Chevalley-
Serre realization, one can make use of Drinfeld’s map (5.3.9). For v1 and v2 a bosonic and
fermionic state, respectively, ηij the matrix with 1 in position (i, j) and zero elsewhere,
and z a spectral parameter counting the level, we have for instance

ξ+
1,0 = η12 , ξ−1,0 = η21 , h1,0 = η11 + η22 ,

h2,0 = η11 − η22 , h2,±1 = 1
2(z q)±1[2]q (η11 − η22) ,

ξ+
1,±1 = (z q)±1 η12 , ξ−1,±1 = (z q)±1 η21 . (5.3.12)
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The derivation (5.3.8) in this representation is given by d = z d
dz . The S-matrix R is

defined by the requirement that it satisfies the intertwining property

∆op(τ)R = R∆(τ) , (5.3.13)

with ∆op(τ) defined as ∆(τ) followed by a graded permutation, and τ any generator of
the algebra. In this specific instance, such an S-matrix is given (up to an overall factor)
by (see also [200])

R = η11 ⊗ η11 +
z
w − 1

q zw − q−1
(η11 ⊗ η22 + η22 ⊗ η11)

+
z
w (q − q−1)

q zw − q−1
(η21 ⊗ η12 −

w

z
η12 ⊗ η21) +

q−1 z
w − q

q zw − q−1
η22 ⊗ η22 , (5.3.14)

where z, w are the spectral parameters corresponding to the first and second copy of the
algebra respectively.

Finally, we want to translate the expressions (5.3.11) into the Chevalley-Serre realiza-
tion, as this shall be important to us later on. This can be done with the help of (5.3.9).
However, the charges h2,±1 have no canonical image under Drinfeld’s map. For this rea-
son, let us introduce new charges

B± =
(z q)±1

q−1 − q
h2,0 . (5.3.15)

In the Chevalley-Serre realization, (5.3.11) then reads as

∆(B+) = B+ ⊗ 1 + 1⊗ B+ + 2 ξ+
0 k1 ⊗ ξ+

1 ,

∆(B−) = B− ⊗ 1 + 1⊗ B− + 2 ξ−1 ⊗ k
−1
1 ξ−0 . (5.3.16)

5.3.2 The quantum affine superalgebra Uq(ĝl(2|2))

We will now specialize the presentation of [70] to the case of Uq(ĝl(2|2)). While the pre-
vious section is strictly related to certain subsectors of the q-deformed AdS/CFT algebra
(which we will treat in the second part of the paper), this section is related to the full alge-
bra and corresponding S-matrix. We will directly focus on Drinfeld’s second realization
for simplicity, referring to [70] for further details (see also [201]).

5.3.2.1 Drinfeld’s second realization

The algebra Uq(ĝl(2|2)) (for an all-fermionic Dynkin diagram) is generated by an infinite
set of Drinfeld’s generators

ξ±i,m , hj,n , with i = 1, 2, 3, j = 1, 2, 3, 4, m, n ∈ Z. (5.3.17)
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The defining relations are as follows:

[hj,m , hj′,n] = 0 ,

[hj,0 , ξ
±
i,m] = ±aji ξ±i,m ,

[hj,n , ξ
±
i,m] = ± [aji n]q

n
ξ±i,n+m , n 6= 0 ,

{ξ+
i,n , ξ

−
i′,m} =

δi,i′

q − q−1

(
ψ+
i,n+m − ψ

−
i,n+m

)
, (5.3.18)

combined with a suitable set of Serre relations [70] which read

{ξ±i,m , ξ
±
i′,n} = 0, if aii′ = 0 ,

{ξ±i,m+1 , ξ
±
i′,n}q±aii′ = {ξ±i′,n+1, ξ

±
i,m}q±aii′ , (5.3.19)

[{ξ±2,m , ξ
±
1,n}q, {ξ

±
2,p , ξ

±
3,r}q−1 ] = [{ξ±2,p , ξ

±
1,n}q, {ξ

±
2,m , ξ

±
3,r}q−1 ] .

The symmetric Cartan matrix reads

(aij)15i,j54 =


0 1 0 2

1 0 −1 −2

0 −1 0 2

2 −2 2 0

 . (5.3.20)

We have once again used the definition

ψ±i (z) = q±hi,0 exp

(
±(q − q−1)

∑
m>0

hi,±mz
∓m

)
=
∑
n∈Z

ψ±i,nz
−n . (5.3.21)

The ‘derivation’ operator d counting the level is once again introduced in the following
way:

[d, τn] = n τn, (5.3.22)

for any generator τn at level n.
Let us comment on the Serre relations (5.3.19). The first line expresses the fermionic

nature of the generators associated to the simple roots, while the second one ensures that
a good filtration is preserved. This means that one is free to combine levels in different
ways to obtain one and the same ‘sum’ level as a result. The third line, taken at level 0
(namely, for m = n = p = r = 0), tells us that there are only three generators associated
to the non-simple roots, two obtained as {ξ±2,0, ξ

±
1,0}q and {ξ±2,0, ξ

±
3,0}q−1 , and one obtained

by commuting, for instance, the very first of these generators with ξ±3,0. In fact, the third
Serre relation implies that commuting the two generators associated to the non-simple
roots with each other returns zero, which truncates any further growth in the number of
generators.
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The coproduct has the natural structure (we define sign(0) ≡ +1)

∆(hi,n) = hi,n ⊗ 1 + 1⊗ hi,n mod N− ⊗N+ ,

∆(ξ+
i,n) = ξ+

i,n ⊗ 1 + qsign(n)hi,0 ⊗ ξ+
i,n

+

|n|−1∑
k= 1

2
(1−sign(n))

ψ
sign(n)
i,sign(n)(|n|−k) ⊗ ξ

+
i,sign(n)k mod N− ⊗N

2
+ ,

∆(ξ−i,n) = ξ−i,n ⊗ q
sign(n)hi,0 + 1⊗ ξ−i,n

+

|n|−1∑
k= 1

2
(1+sign(n))

ξ−i,sign(n)k ⊗ ψ
sign(n)
i,sign(n)(|n|−k) mod N

2
− ⊗N+ , (5.3.23)

with N± (respectively, N2
±) the left ideals generated by ξ±i,m (respectively, ξ±i,mξ

±
i,m′), with

m,m′ ∈ Z and i = 1, 2, 3.

The coproduct for the generators h4,n is obtained by imposing that ∆ respects the
defining relations (5.3.18). With respect to the case of Uq(ĝl(1|1)), the ‘tail’ of the co-
product (i.e., the quadratic part that comes after the trivial comultiplication rule for the
generator itself) now contains generators associated to non-simple roots (which before
where simply absent). By carefully taking into account (5.3.23), we find

∆(h4,+1) = h4,+1 ⊗ 1 + 1⊗ h4,+1

+ (q−1 − q)
3∑
i=1

[a4i]q ξ
−
i,+1 ⊗ ξ

+
i,0 + non-simple roots ,

∆(h4,−1) = h4,−1 ⊗ 1 + 1⊗ h4,−1

− (q−1 − q)
3∑
i=1

[a4i]q ξ
−
i,0 ⊗ ξ

+
i,−1 + non-simple roots . (5.3.24)

We will specify the non-simple part of the tail of the coproduct in the fundamental repre-
sentation in the following section.

5.3.2.2 Fundamental representation

The fundamental evaluation representation in Drinfeld’s second realization can be ob-
tained from [70] in a particular case. For v1, v2 and v3, v4 two bosonic and two fermionic
states, respectively, ηij the matrix with 1 in position (i, j) and zero elsewhere, and z a
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spectral parameter counting the level, we have this time

ξ+
1,0 = η13 , ξ+

2,0 = η32 , ξ+
3,0 = η24 ,

ξ−1,0 = η31 , ξ−2,0 = −η23 , ξ−3,0 = η42 ,

h1,0 = (η11 + η33), h2,0 = −(η33 + η22), h3,0 = (η22 + η44)

h4,0 =

4∑
k=1

(−)[k]ηkk ,

ξ+
1,±1 = (z q)±1 η13 , ξ+

2,±1 = z±1 η32 , ξ+
3,±1 = (z q)±1 η24 ,

ξ−1,±1 = (z q)±1 η31 , ξ−2,±1 = −z±1 η23 , ξ−3,±1 = (z q)±1 η42 ,

h1,±1 = z±1(η11 + η33) , h2,±1 = −(z q)±1(η22 + η33) , h3,±1 = z±1(η22 + η44) ,

h4,±1 = z±1 [2]q

(
y±η11 + (y± + 1− q±1)η22 + (y± − q±1)η33 + (y± + 1− 2q±1)η44

)
,

(5.3.25)

with [k] the grading of the state vk. The derivation (5.3.22) in the fundamental evalua-
tion representation (5.3.25) is given by d = z d

dz . The algebra gl(n|n) is non-semisimple
(sl(n|n) being a non-trivial ideal strictly contained in it). Hence, one can always add a
constant times the identity to the non-supertraceless generator who lives outside the ideal
(and, therefore, never appears on the right-hand-side of any commutation relations). The
generator h4,1 of the quantum-affine version also does not appear on the r.h.s. of any
commutation relations, and one can use the freedom we just mentioned to redefine this
generator by adding a multiple of the identity. This is reflected in the choice of y± (which
we tacitly fixed to a convenient value in the previous section). The term multiplying y±

is a multiple of the identity matrix, and its coproduct is trivial hence it drops out of the
defining relation for the S-matrix (5.3.13).

Let us spell out the coproduct (5.3.24) in this representation (z and w once again refer
to the first and, respectively, the second factor in the tensor product):

∆(h4,+1) = h4,+1 ⊗ 1 + 1⊗ h4,+1 + (q−2 − q2) z
(
qη31 ⊗ η13 + (q − 1)η21 ⊗ η12

+ (2q − 1)η41 ⊗ η14 + η23 ⊗ η32 + (1− q)η43 ⊗ η34 + qη42 ⊗ η24

)
.

∆(h4,−1) = h4,−1 ⊗ 1 + 1⊗ h4,−1 − (q−2 − q2)w−1
(
q−1η31 ⊗ η13 + (q−1 − 1)η21 ⊗ η12

+ (2q−1 − 1)η41 ⊗ η14 + η23 ⊗ η32 + (1− q−1)η43 ⊗ η34 + q−1η42 ⊗ η24

)
.

(5.3.26)

Notice that the bosonic part of the tail is higher order in the q → 1 limit, and therefore
it disappears in the Yangian limit. The parameter y does not appear in the coefficients
of the tail, according to the above discussion. We can once again fix the constant y to a
convenient value, for instance

y± = q±1 − 1
2 , (5.3.27)
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which produces the following representation:

h4,±1 = z±1 [2]q

(
(q±1 − 1

2)η11 + 1
2η22 − 1

2η33 − (q±1 − 1
2)η44

)
, (5.3.28)

The S-matrix satisfying the interwining property (5.3.13) is given (up to an overall factor)
by (see also [202])

R = η11 ⊗ η11 + η22 ⊗ η22 +
q2 − z

w

1− q2 z
w

(η33 ⊗ η33 + η44 ⊗ η44)

+
q
(
1− z

w

)
1− q2 z

w

∑
i 6=j

ηii ⊗ ηjj −
q2 − 1

q2 z
w − 1

 ∑
(i,j)∈A

ηij ⊗ ηji − η12 ⊗ η21 − η32 ⊗ η23


+
q2 − 1

q2 − w
z

 ∑
(i,j)∈B

ηij ⊗ ηji − η23 ⊗ η32 − η43 ⊗ η34

 , (5.3.29)

As a consistency check, one can notice that in the scaling limit q = eh and z/w = e2 δu h

with h→ 0, the above S-matrix reduces to the Yangian S-matrix

RY =
δu

δu+ 1

(
1 +

P

δu

)
, (5.3.30)

with P being the graded permutation operator P =
∑4

i,j=1(−)j ηij ⊗ ηji .

One can show that the combination

B± =
q±1

q−1 − q

(
2

q±1[2]q
h4,±1 + (q∓1 − 1)(h1,±1 − h3,±1)

)
, (5.3.31)

is such that, in the representation (5.3.25), one obtains an analog of (5.3.15),

B± =
(z q)±1

q−1 − q

4∑
i=1

(−)[i] ηii . (5.3.32)

Then, using (5.3.26) and

∆(h1,+1) = h1,+1 ⊗ 1 + 1⊗ h1,+1 + (q−1 − q) z (η ⊗ η)h ,

∆(h1,−1) = h1,−1 ⊗ 1 + 1⊗ h1,−1 − (q−1 − q)w−1 (η ⊗ η)h ,

∆(h3,+1) = h3,+1 ⊗ 1 + 1⊗ h3,+1 − (q−1 − q) z (η ⊗ η)h ,

∆(h3,−1) = h3,−1 ⊗ 1 + 1⊗ h3,−1 + (q−1 − q)w−1 (η ⊗ η)h , (5.3.33)

where
(η ⊗ η)h = η21 ⊗ η12 − η23 ⊗ η32 + η41 ⊗ η14 + η43 ⊗ η34 , (5.3.34)
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we find

∆(B+) = B+ ⊗ 1 + 1⊗ B+ + 2 z q (η31 ⊗ η13 + η23 ⊗ η32 + η41 ⊗ η14 + η42 ⊗ η24) ,

∆(B−) = B− ⊗ 1 + 1⊗ B− + 2 (w q)−1 (η31 ⊗ η13 + η23 ⊗ η32 + η41 ⊗ η14 + η42 ⊗ η24) .
(5.3.35)

As in the previous section, we translate these expressions into the Chevalley-Serre
realization. The map between the Chevalley-Serre and Drinfeld’s second realization, in
the fundamental representation which is relevant to the present discussion, is given by
the following assignment:

hi = hi,0 , ξ±i = ξ±i,0 ,

h0 = −h1,0 − h2,0 − h3,0 , ξ±0 = ±(q z)±1[[ξ∓1,0, ξ
∓
2,0], ξ∓3,0] q∓(h1,0+h2,0+h3,0) .

(5.3.36)

Thus with the help of (5.3.25) we find

∆(B+) = B+ ⊗ 1 + 1⊗ B+ + 2
(
ξ+

0 k123 ⊗ ξ+
123 + ξ+

012k3 ⊗ ξ+
3

− q2ξ+
013k2 ⊗ ξ+

2 + ξ+
230k1 ⊗ ξ+

1

)
,

∆(B−) = B− ⊗ 1 + 1⊗ B− + 2
(
ξ−123 ⊗ k

−1
123ξ

−
0 + ξ−3 ⊗ k

−1
3 ξ−012

− q−2ξ−2 ⊗ k
−1
2 ξ−013 + ξ−1 ⊗ k

−1
1 ξ−230

)
, (5.3.37)

where we have used the short-hand notation kijk = kikjkk and ξijk = [[ξi, ξj ], ξk]. One
can observe that these expressions can formally be written as

∆(B+) = B+ ⊗ 1 + 1⊗ B+ + 2
∑
α∈Φ0

cα ξδ−αkα ⊗ ξα ,

∆(B−) = B− ⊗ 1 + 1⊗ B− + 2
∑
α∈Φ0

cα ξ−α ⊗ k−1
α ξα−δ , (5.3.38)

where Φ0 is the set of all positive non-affine roots, δ is the affine root and cα’s are complex
parameters.

Let us make a final remark concerning the symmetry we have just obtained. We de-
rived the coproduct (5.3.35) starting from an all-fermionic Dynkin diagram, and the pat-
tern of simple and non-simple roots which appear in the tail of the coproduct respects the
original choice of Dynkin diagram. For later purposes, it will turn out to be convenient
to work with a so-called distinguished Dynkin diagram. This is associated to a basis with
only one fermionic root. The assignment of simple roots will be different and this will
reflect on the appearence of the generators associated to non-simple roots in the tail. In
order to be able to match with the expressions we will later find, it is useful to perform a
twist of the coalgebra structure (and of the corresponding S-matrix) in the spirit of [203]
(see also [70]), where it is explained that such twists may involve factors of the universal
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S-matrix itself. One can check that the following transformation

Ψ = Id− (q − q−1)(η23 ⊗ η32 + η32 ⊗ η23)− w

z
η22 ⊗ η33 −

z

w
η33 ⊗ η22

− η34 ⊗ η43 − η43 ⊗ η34 − η33 ⊗ η44 − η44 ⊗ η33 , (5.3.39)

is such that
∆′ = Ψ ∆ Ψ−1 and R′ = ΨopRΨ−1. (5.3.40)

gives

∆′(B+) = B+ ⊗ 1 + 1⊗ B+ + 2 z q (η31 ⊗ η13 + η32 ⊗ η23 + η41 ⊗ η14 + η42 ⊗ η24) ,

∆′(B−) = B− ⊗ 1 + 1⊗ B− +
2

w q
(η31 ⊗ η13 + η32 ⊗ η23 + η41 ⊗ η14 + η42 ⊗ η24) ,

(5.3.41)

which is an analog of (5.3.35) for the case of the distinguished Dynkin diagram. The
inverse of (5.3.39) can be explicitly calculated, and it reads

Ψ−1 = Id + τ1 η22 ⊗ η33 + τ2 η33 ⊗ η22 + τ3 η23 ⊗ η32 + τ4 η32 ⊗ η23 , (5.3.42)

with

τ1 = −
(
(1− w/z) + (q−1 − q)2

)
ω−1 , τ3 = τ4 = (q − q−1)ω−1 ,

τ2 = −
(
(1− z/w) + (q−1 − q)2

)
ω−1 , (5.3.43)

and
ω = (1− z/w)(1− w/z) + (q−1 − q)2 . (5.3.44)

The non-supertraceless generator we have been focusing our attention on is what will
be promoted to the secret symmetry of the full q-deformed AdS/CFT model in the next
section. While, in the conventional case we have just been treating, this generator lit-
erally extends the superalgebra su(2|2) to gl(2|2), it will instead only appear at the first
quantum-affine level in the subsequent treatment, in parallel to the rational case. The
need for such an extension is however the same as in the conventional situation. Its pres-
ence corresponds to a consistency issue of the underlying quantum group description of
the integrable structure, according to the prescription of Khoroshkin and Tolstoy [187].
In their analysis, an additional Cartan generator is needed to invert the otherwise degen-
erate Cartan matrix. In turn, the invertibility of the Cartan matrix allows one to write
down the universal S-matrix, which appears to be in exponential form with precisely the
inverse Cartan matrix appearing at the exponent (see also [204]).

5.3.3 Deformed quantum affine algebra Q̂

Having explored the fundamental evaluation representations of the algebras Uq(ĝl(1|1))

and Uq(ĝl(2|2)), we are now ready to turn to the quantum affine algebra Q̂ constructed
in [30] and presented in Section 4.1. Thus bearing on the construction presented in the
previous sections, we will build the secret symmetry of the bound state S-matrix of Sec-
tion 4.2. Finally we show that this new symmetry is a quantum analog of the secret
symmetry discovered in [130].
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5.3.3.1 Conventional affine limit

Before moving to the analysis of the secret symmetry of Q̂we would like to first consider
the conventional affine limit obtained by setting g → 0 [30]. It is going to be a warm-
up exercise and also shall serve as a bridge between the secret symmetry of Q̂ and the
symmetries of Uq(ĝl(2|2)) considered in the previous section. In fact, we will prepare all
formulas in such a way that it will be easy for the reader to appreciate the cross-over to
the full q-deformed case. Note that the ‘braiding’ by the element U is preserved in the
g → 0 limit, while the Serre relations (4.1.12) are restored to their usual form. A suitable
twist could remove the U -deformation, however we choose to keep it to facilitate once
again the transition to the AdS/CFT case later on. Thus we obtain what we will call a
‘U -deformed’ Uq(ŝl(2|2)).

Parametrization. To find the explicit relation with Uq(ĝl(2|2)) we need to parametrize
the conventional affine limit of Q̂ in terms of the spectral parameter z. This may be
achieved by expanding parameters x± in series of g,

x± =
i

g

q±Mz − 1

(q − q−1)
+O(g). (5.3.45)

Upon rescaling γ → γ̄ (g/[M ]q)
−1/2, we find the representation labels to be

a = γ̄ , b = 0 , c = 0 , d =
1

γ̄
,

ã = 0 , b̃ =
αα̃z

γ̄
, c̃ = − γ̄

αα̃z
, d̃ = 0 . (5.3.46)

The central elements of the algebra become

U2 = U2
2 = U−2

4 =
1− qMz
qM − 1

, V 2 = V 2
2 = V −2

4 = qM . (5.3.47)

Fundamental representation. The algebra Uq(ĝl(2|2)) is larger than the one obtained
from Q̂ in the conventional limit due to the presence of the non-supertraceless operators.
Let us denote these additional generators originating from Uq(ĝl(2|2)) as

BF =
z−1 q

q−1 − q
B0 , BE =

z q−1

q−1 − q
B0 and B0 = diag(1, 1,−1,−1) . (5.3.48)

They are equivalent to (5.3.32) up to the redefinition z 7→ z−1. The charge B0 has a trivial
coproduct, while the coproducts of the charges BE/F are defined to have the following
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form:

∆(BF ) = BF ⊗ 1 + 1⊗BF − 2αα̃
(
U−1F4 ⊗K4F123 + U−1F43 ⊗K43F21

+ U−1F14 ⊗K14F32 + U−1F341 ⊗K143F2

)
,

∆(BE) = BE ⊗ 1 + 1⊗BE −
2

αα̃

(
U−1E2K

−1
341 ⊗ E143 + U−1E23K

−1
41 ⊗ E41

+ U−1E12K
−1
34 ⊗ E34 + U−1E321K

−1
4 ⊗ E4

)
. (5.3.49)

Here Kij = KiKj , Kijk = KiKjKk, Eij = [Ei, Ej ], Eijk = [[Ei, Ej ], Ek] and similar
expressions hold for the F ’s. The explicit matrix representation is

E1 = η21 , E2 = γ̄ η42 , E3 = η34 , E4 = αα̃ z η13 ,

F1 = η12 , F2 = γ̄−1 η24 , F3 = η43 , F4 = −(αα̃ z)−1 η31 , (5.3.50)

and

K1 = diag(q−1, q, 1, 1) , K2 = diag(1, q−1, 1, q−1) ,

K3 = diag(1, 1, q−1, q) , K4 = diag(q, 1, q, 1) . (5.3.51)

All three charges B0, BE/F are symmetries of the (g → 0) fundamental S-matrix of Q̂.
This is because in this limit the central charges C2, C3 vanish and the S-matrix becomes
equivalent to (5.3.29) up to the U -deformation and similarity transformation (5.3.39).

The coproducts in (5.3.49) are of the generic form (5.3.38) and are equivalent to (5.3.37).
Let us be more precise on this equivalence. By removing the U -deformation, setting the
representation parameters to α = α̃ = 1 and mapping the spectral parameter as z 7→ z−1,
the above expressions (5.3.49) exactly coincide with (5.3.41).

The algebra Q̂ has an outer automorphism which flips the nodes 2 and 4 of its Dynkin
diagram [30]. This automorphism leads to the ‘doubling’ of the charges (5.3.48),4

BF → B±F =
z−1q±1

q−1 − q
B0 and BE → B±E =

z q±1

q−1 − q
B0 . (5.3.52)

The coproducts of B−E and B+
F are given by (5.3.49), while the coproducts of B+

E and B−F
are obtained by interchanging indices 2 ↔ 4 and inverting the U -deformation U−1 →
U . These new charges shall be important in obtaining a correct Yangian limit. In the
following sections we shall concentrate on the charges B+

F and B+
E , or in a shorthand

notation B+
E/F .

Bound state representation. Let us lift the definitions presented in the previous para-
graph to the case of generic bound state representations. For this purpose we redefine
the charges in (5.3.52) as

B±F =
z−1q±M

q−1 − q
B0 , B±E =

z q±M

q−1 − q
B0 and B0 = N1 +N2−N3−N4 , (5.3.53)

4In terms of (5.3.38) this automorphism corresponds to the shifting of the affine root δ from the left to the
right factor of the tensor product, and vice versa.
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whereM is the bound state number andNi are the number operators (see Section 4.1.3 for
their realization in terms of quantum oscillators). The charge B0 has a trivial coproduct.
In order to define the explicit realization of the coproducts of B±E/F for arbitrary bound
states we need to introduce the notion of right adjoint action,

(adr Ei)A = (−1)[i][A]KiAEi −KiEiA ,

(adr Fi)A = (−1)[i][A]AFi − FiK−1
i AKi ,

(adrKi)A = KiAK
−1
i , (5.3.54)

for any A ∈ Q̂. Here (−1)[i][A] represents the grading factor of the supercharges. We shall
also be using the shorthand notation adr Ai1 · · ·Ail = adr Ai1 · · · adr Ail and E′i = KiEi.
The right adjoint action is used to define the bound state representation of generators
corresponding to non-simple roots in the coproducts of the charges (5.3.53). In such a
way we obtain expressions of the generic form (5.3.38),

∆(B+
F ) = B+

F ⊗ 1 + 1⊗B+
F

− 2αα̃
(
U−1F4 ⊗ ((adrF3F2)F1)K4 + U−1(adrF1F4)F3 ⊗ F2K

−1
2

+ U−1(adrF1)F4 ⊗ ((adrF3)F2)K14 + U−1(adrF4)F3 ⊗K43(adrF2)F1

+ F3 ⊗ ((adrF2F1)F4)K3 + (adrF2F1)F4 ⊗ F3K
−1
3

)
,

∆(B+
E ) = B+

E ⊗ 1 + 1⊗B+
E

− 2

αα̃

(
UE′4 ⊗K4(adrE3E2)E′1 + U(adrE1E4)E′3 ⊗ E2

+ U(adrE1)E′4 ⊗K14(adrE3)E′2 + U(adrE4)E′3 ⊗K43(adrE2)E′1

+ E′3 ⊗K3(adrE2E1)E′4 + (adrE2E1)E′4 ⊗ E3

)
. (5.3.55)

The coproducts of B−E/F are obtained from the ones of B+
E/F above in the same fashion

as for the fundamental representation, i.e. by interchanging indices 2↔ 4 and U ↔ U−1.
Notice the extra two ‘bosonic’ terms in (5.3.55) in contrast to (5.3.49). These terms ensure
that ∆(B±E/F ) are symmetries of the bound state S-matrix5.

We would like to point out that the extra terms in the tail display a quite surprising
discrepancy between the two Uq(sl(2)) subalgebras generated by E1, F1 and E3, F3. We
do not fully understand the algebraic reason for this fact. The natural explanation would
be that the bound state representations manifestly break the symmetry between bosons
and fermions and hence between the two Uq(sl(2))’s. This means that in the case of the
S-matrix of the anti-bound states (for anti-supersymmetric representations) we might
expect the tail to be modified by interchanging indices 1 ↔ 3 for the last two terms.
For the case of a generic S-matrix all four extra terms (the ones in (5.3.55) plus the ones

5Notice that, in the case of the fundamental representation, these symmetries differ from (5.3.35) for
the addition of precisely the above mentioned bosonic terms. However, these terms are by themselves a
symmetry of the S-matrix in the fundamental representation, and can therefore always be added to the
coproduct.



Secret symmetries of the q-deformed S-matrix 203

with indices 1 ↔ 3 interchanged) would then possibly be included, and the different
representations would only see a part of them survive. Alternatively, we would also like
to point the reader to the asymmetry between the indices 1, 2 (corresponding to bosons)
and 3, 4 (corresponding to fermions) in (5.3.39), meaning that these bosonic terms could
also be an artifact of the choice of Dynkin diagram. It would be interesting to gain a better
understanding of the origin of this discrepancy.

Finally we note that ∆(B±F ) is related to ∆(B±E ) by renamingE′i 7→ Fi and transposing
the ordering KiA 7→ AKi, where A represents any adr-type operator, thus Ei 7→ FiK

−1
i .

Restriction to the Uq(ĝl(1|1)) subsectors. The bound state representations of Q̂ fur-
nished by the vectors

|m,n, k, l〉 = (a†3)m(a†4)n(a†1)k(a†2)l |0〉 , (5.3.56)

have four Uq(ĝl(1|1))-invariant subsectors. These subsectors are spanned by the vectors

|m, 0, k, 0〉I, |0, n, 0, l〉II, |0, n, k, 0〉III, |m, 0, 0, l〉IV, (5.3.57)

where Roman subscripts enumerate the different subsectors. Each of these subsectors is
isomorphic to the bound state representations of the superalgebra Uq(ĝl(1|1)) considered
in section 5.3.1. They lead to four independent copies of the corresponding bound state
S1|1-matrix embedded into the (complete) bound state S-matrix. Thus one can introduce
a formal restriction of the coproducts (5.3.55) onto the Uq(ĝl(1|1))-invariant subsectors,

∆(B+
F )
∣∣∣

A
= B+

F ⊗ 1 + 1⊗B+
F

− 2αα̃
(
δA,I U

−1F4 ⊗ (adrF3F2)F1K4 + δA,II U
−1(adrF1F4)F3 ⊗ F2K

−1
2

+ δA,III U
−1(adrF1)F4 ⊗ (adrF3)F2K14 + δA,IV U

−1(adrF4)F3 ⊗K43(adrF2)F1

)
,

∆(B+
E )
∣∣∣

A
= B+

E ⊗ 1 + 1⊗B+
E

− 2

αα̃

(
δA,I UE

′
4 ⊗K4(adrE3E2)E′1 + δA,II U(adrE1E4)E′3 ⊗ E2

+ δA,III U(adrE1)E′4 ⊗K14(adrE3)E′2 + δA,IV U(adrE4)E′3 ⊗K43(adrE2)E′1

)
.

(5.3.58)

In this fashion, for each subsector we obtain charges equivalent to (5.3.16). The last two
terms in the tails of (5.3.55) do not play any role in this case, as they vanish on these
subsectors.

5.3.3.2 q-deformed AdS/CFT: the Secret symmetry

Having prepared all the suitable formulas, we can now come back to the full q-deformed
AdS/CFT case. In the previous section we have explored the symmetries of the conven-
tional affine limit of Q̂whose S-matrix is effectively isomorphic to the one of Uq(ĝl(2|2)),
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thus the charges B0 and B±E/F are proper symmetries. The question we want to answer

is whether any of these charges are symmetries of the bound state representations of Q̂.
Naturally, B0 is not a symmetry. However we find that the charges B±E/F are symmetries

of Q̂, upon a redefinition

B+
F =

g̃g−1[M ]q
U2 − V −2

B0 , B+
E =

g̃g−1[M ]q
U−2 − V −2

B0 ,

B−F =
g̃g−1[M ]q
V 2 − U−2

B0 , B−E =
g̃g−1[M ]q
V 2 − U2

B0 , (5.3.59)

while keeping the form of coproducts as in (5.3.55). We have checked numerically the
intertwining property for these new symmetries for the bound states representations with
the total bound state number up to M1 + M2 ≤ 5. It is important to notice that in the
conventional limit these charges exactly reduce to (5.3.53), and so they correspond to the
natural lift of the conventional affine limit case to the generic representations of Q̂.

This striking similarity between B±E/F is not accidental. The charges B+
E and B+

F (and
equivalently B−E and B−F ) are related to each other by the map U 7→ U−1 and E′i 7→ Fi (as
described above) as this is the automorphism of the coalgebra which interchanges lower-
ing and raising Chevalley generators. The relation betweenB+

E andB−E (and equivalently
B+
F and B−F ) corresponds to the algebra automorphism of flipping the nodes 2 and 4 of

the Dynkin diagram and represents the symmetry between states (particles) and anti-
states (anti-particles), i.e. the corresponding representations are self-adjoint. Thus B+

E/F

and B−E/F are not independent, rather two isomorphic representations of charges BE/F .

An important difference between Q̂ and its conventional affine limit is that the previ-
ously mentioned extra two ‘bosonic’ terms in (5.3.55) are not a symmetry of the funda-
mental S-matrix by themselves anymore and thus (5.3.55) is unique for all bound state
representations. Another important difference is that the Uq(ĝl(1|1))-invariant subsectors
I and II and subsectors III and IV become entangled from the algebra point of view. This
is because the generators E2/4 and F2/4 act non-trivially on two subsectors simultane-
ously, while in the conventional affine limit this was not the case (as it can easily be seen
from (4.1.53), (4.1.54) and (5.3.46)). Therefore, the formal restriction in (5.3.58) needs to
be modified by identifying the delta functions with indices I and II, and with indices III
and IV.

Yangian limit. Finally, we can consider the rational limit of the symmetry we have just
found. Accordingly, we write q ∼ 1 + h with h → 0. In this limit the secret charges we
have constructed become6

B+
F = −B−E =

M x−

x+ − x−
B0 +O(h) , B+

E = −B−F =
M x+

x− − x+
B0 +O(h) . (5.3.60)

6The rational factor (q−1−q)−1 is already included in the definition of the charges, as one can easily trace
back using (5.3.53) and (5.3.59).
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Thus
lim
q→1

1
4(B+

E −B
+
F ) = lim

q→1

1
4(B−E −B

−
F ) = ig usB0 , (5.3.61)

where us = 1
4(x+ − 1

x+
+ x− − 1

x− ) is the rapidity found for the secret symmetry [130].
Subsequently, at the coalgebra level we find

lim
q→1

1
4

(
∆(B+

E )−∆(B+
F )
)

= lim
q→1

1
4

(
∆(B−E )−∆(B−F )

)
= ∆(B̂) , (5.3.62)

where precisely coincides with the secret symmetry (5.1.2). We note that all the checks
are done for the bound state representations only.

We remark that the outer-automorphism flipping roots 2 and 4, which leads to the
doubling of the charges BE/F → B±E/F , turns out to be crucial in obtaining the secret

Yangian charge B̂. This is because the rational limit of the linear combinations B±E −
B∓F corresponds instead to a bilinear combination of Lie algebra charges plus a central
element.
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Conclusions and Outlook

This manuscript has presented the research performed during the authors PhD studies,
which were devoted to the exploration of quantum groups and integrable boundaries in
AdS/CFT. The results obtained are threefold. First, there has been a solid contribution
to the theory of quantum groups, in particular to the theory of reflection algebras. A
new type of (generalized) twisted Yangians for boundaries preserving all of the bulk Lie
algebra were constructed, and a new ‘achiral’ form of the (generalized) twisted Yangian
was uncovered. The author has also generalized the theory of quantum symmetric pairs
for quantum affine algebras which led to coideal subalgebras that can be thought of as
quantum affine analogues of the aforementioned twisted Yangians.

Secondly, all of the above mentioned algebras were shown to play an important role
in the worldsheet scattering in the AdS/CFT duality, which was shown to be very rich
in integrable boundaries. The best known ones are the D3-, D5- and D7-branes. The
corresponding boundary conditions depend crucially on the type of embedding of the
D-brane into the AdS5 × S5 background and the relative orientation of the brane and
the open string attached to it. This leads to five different boundary conditions from the
boundary scattering theory point of view. Each of these boundaries were shown to be
integrable and the corresponding twisted Yangian algebras that govern (bound state)
boundary scattering were constructed. A particularly important results are related to the
D5-brane which was long thought not to be integrable [143, 145, 146]. Here it was shown
that this boundary is of a specific ‘achiral’ type, and is indeed integrable. These results
were later shown to play an important role in calculating the quark-antiquark potential
(generalized cusp anomalous dimension) in AdS/CFT [205, 206].

Thirdly, a quantum deformed approach to the AdS/CFT worldsheet scattering has
been developed. A generic bound state representation of the quantum affine algebra of
the Deformed Hubbard Chain [30] was constructed and the corresponding S-matrix was
obtained. This S-matrix was shown to be a quantum deformed analogue of the AdS/CFT
worldsheet S-matrix. Furthermore, the quantum deformed models of the D3- and D7-
branes were considered and the corresponding boundary scattering theories were con-
structed. These were shown to obey coideal quantum affine subalgebras of the afore
mentioned type. These coideal subalgebras, in contrast to their Yangian avatars, are of a
very elegant and compact form.

The quantum deformed approach was also employed in search of the origins of the
so-called ‘secret’ symmetry of the AdS/CFT, which appears as a level-one (Yangian) gen-
erator in the symmetry algebra without the level-zero (Lie algebra) analogue. It was

207
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shown that this symmetry in the quantum deformed model has two relatives, level-one
and level-minus-one symmetries. This is in agreement with what was expected from
the theory of quantum groups. However there are still quite a few mysteries related to
this peculiar symmetry, – for example, if there are higher-level relatives of this symme-
try. These higher-level symmetries are expected to play a role in the boundary scatter-
ing [184].

An important aspect of the quantum deformations is that they offer a quite different
understanding of the system than the conventional approach. For example, the spectrum
of bound states is limited from above when the deformation parameter q is a (higher-
order) root of unity [207]. This leads to a finite number of mirror TBA equations [208].
Hence the quantum deformed approach offers a new and elegant approach to complex
integrable systems.

To finalize we want to note that there are still quite a lot of open questions in the
gauge/gravity dualities that are closely related to the results presented in this manu-
script. It would be very interesting to explore boundary TBA and Y -systems for various
boundary conditions along the lines of [141]. There has been very little work done in ex-
ploring boundary scattering in other backgrounds and dualities, e.g. in the AdS3/CFT2

and the ABJM models. Here a question of particular importance is the spectrum of the
d(2, 1;α) spin-chain. This algebra, in contrast to the psu(2|2)C , has a non-degenerate
Cartan-Killing form and thus is better behaved. However the corresponding spin-chain
has a much more complex structure [209], and the boundary scattering in this context has
not been explored at all. As we have mentioned earlier, boundary scattering is a necessary
component in calculating the quark-antiquark potential, which is currently emerging as
a new mainstream topic in the exploration of dualities, and thus will require a good un-
derstanding of the boundary scattering. The methods presented in this manuscript offer
a solid background for enhancing the exploration of the boundary effects in other back-
grounds and gauge/gravity dualities.
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