White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

The Application of Mixed Reality Within Civil Nuclear Manufacturing and Operational Environments

Reddish, S (2018) The Application of Mixed Reality Within Civil Nuclear Manufacturing and Operational Environments. EngD thesis, University of Sheffield.

[img] Text (Thesis in PDF form)
2019-SReddish-Final.pdf
Restricted until 7 July 2020.

Request a copy

Abstract

This thesis documents the design and application of Mixed Reality (MR) within a nuclear manufacturing cell through the creation of a Digitally Assisted Assembly Cell (DAAC). The DAAC is a proof of concept system, combining full body tracking within a room sized environment and bi-directional feedback mechanism to allow communication between users within the Virtual Environment (VE) and a manufacturing cell. This allows for training, remote assistance, delivery of work instructions, and data capture within a manufacturing cell. The research underpinning the DAAC encompasses four main areas; the nuclear industry, Virtual Reality (VR) and MR technology, MR within manufacturing, and finally the 4 th Industrial Revolution (IR4.0). Using an array of Kinect sensors, the DAAC was designed to capture user movements within a real manufacturing cell, which can be transferred in real time to a VE, creating a digital twin of the real cell. Users can interact with each other via digital assets and laser pointers projected into the cell, accompanied by a built-in Voice over Internet Protocol (VoIP) system. This allows for the capture of implicit knowledge from operators within the real manufacturing cell, as well as transfer of that knowledge to future operators. Additionally, users can connect to the VE from anywhere in the world. In this way, experts are able to communicate with the users in the real manufacturing cell and assist with their training. The human tracking data fills an identified gap in the IR4.0 network of Cyber Physical System (CPS), and could allow for future optimisations within manufacturing systems, Material Resource Planning (MRP) and Enterprise Resource Planning (ERP). This project is a demonstration of how MR could prove valuable within nuclear manufacture. The DAAC is designed to be low cost. It is hoped this will allow for its use by groups who have traditionally been priced out of MR technology. This could help Small to Medium Enterprises (SMEs) close the double digital divide between themselves and larger global corporations. For larger corporations it offers the benefit of being low cost, and, is consequently, easier to roll out across the value chain. Skills developed in one area can also be transferred to others across the internet, as users from one manufacturing cell can watch and communicate with those in another. However, as a proof of concept, the DAAC is at Technology Readiness Level (TRL) five or six and, prior to its wider application, further testing is required to asses and improve the technology. The work was patented in both the UK (S. R EDDISH et al., 2017a), the US (S. R EDDISH et al., 2017b) and China (S. R EDDISH et al., 2017c). The patents are owned by Rolls-Royce and cover the methods of bi-directional feedback from which users can interact from the digital to the real and vice versa. Stephen Reddish Mixed Mode Realities in Nuclear Manufacturing Key words: Mixed Mode Reality, Virtual Reality, Augmented Reality, Nuclear, Manufacture, Digital Twin, Cyber Physical System

Item Type: Thesis (EngD)
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Materials Science and Engineering (Sheffield)
Depositing User: Dr S Reddish
Date Deposited: 11 Mar 2019 14:31
Last Modified: 11 Mar 2019 14:31
URI: http://etheses.whiterose.ac.uk/id/eprint/23091

Please use the 'Request a copy' link(s) above to request this thesis. This will be sent directly to someone who may authorise access.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)