White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Indexing and behaviour modelling of team sports

Hume, Andrew (2012) Indexing and behaviour modelling of team sports. PhD thesis, University of Leeds.

[img]
Preview
Text
Hume_A_Computing_PhD_2012.pdf
Available under License Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales.

Download (4Mb)

Abstract

With the steady reduction in the price of storage, and increasing availability of high quality recording devices, much effort has been invested in investigating methods to index large collections of high dimensional datasets. Archives of sporting events are well represented within this set of large datasets. Most efforts to index sport related data have concentrated on the indexing of collections of audio/video data. This thesis presents and evaluates several novel methods to index football matches based on the underlying trajectory of the ball and players, rather than the raw video. This allows for the potential of very expressive indexing systems. The second strand of this thesis explores the use of the underlying trajectory data to build behavioural models of players. A promising hierarchical approach is undertaken, whereby the behaviour of individual players is influenced by the cliques of players they associate with, as well as the team as a whole. Although both the indexing and behavioural modelling aspects of this thesis use data from football as the basis for the work, in principle the approaches taken are general enough to apply to any team based game.

Item Type: Thesis (PhD)
Academic Units: The University of Leeds > Faculty of Engineering (Leeds) > School of Computing (Leeds)
Depositing User: Repository Administrator
Date Deposited: 27 Apr 2012 11:20
Last Modified: 07 Mar 2014 11:24
URI: http://etheses.whiterose.ac.uk/id/eprint/2302

Actions (repository staff only: login required)