
Indexing and Behaviour Modelling of Team Sports 
 

By 
 

Andrew Hume 
 

Submitted in accordance with the requirements 
for the degree of Doctor of Philosophy. 

 

 
 

The University of Leeds 
School of Computing 

 

March, 2012 
 
 

The candidate confirms that the work submitted is his/her own and that 
appropriate credit has been given where reference has been made to the work 

of others. This copy has been supplied on the understanding that it is copyright 
material and that no quotation from the thesis may be published without 

proper acknowledgement. 
  



- ii - 

Abstract 
 

With the steady reduction in the price of storage, and increasing availability of 

high quality recording devices, much effort has been invested in investigating 

methods to index large collections of high dimensional datasets. Archives of 

sporting events are well represented within this set of large datasets. Most efforts to 

index sport related data have concentrated on the indexing of collections of 

audio/video data. This thesis presents and evaluates several novel methods to index 

football matches based on the underlying trajectory of the ball and players, rather 

than the raw video. This allows for the potential of very expressive indexing 

systems. The second strand of this thesis explores the use of the underlying 

trajectory data to build behavioural models of players. A promising hierarchical 

approach is undertaken, whereby the behaviour of individual players is influenced 

by the cliques of players they associate with, as well as the team as a whole. 

Although both the indexing and behavioural modelling aspects of this thesis use data 

from football as the basis for the work, in principle the approaches taken are general 

enough to apply to any team based game. 

  



- iii - 

Acknowledgements 
 

I would like to thank the Leeds Vision Group, and particularly my supervisor 

Derek Magee for many illuminating discussions. Thanks also go to Phil Tordoff and 

Dan Mason as my contacts within ProZone for their assistance with data 

procurement. Finally thank you to my parents John and Judith Hume for their 

continued support over this time. Sleep well Dad. 

  



- iv - 

Contents 
 

1 Introduction .................................................................................................. 1 

1.1 Aims and Motivation ............................................................................. 1 

1.2 The Problem domains ............................................................................ 2 

1.2.1 Indexing ........................................................................................ 2 

1.2.2 Behaviour modelling ..................................................................... 3 

1.2.3 Wider applicability........................................................................ 3 

1.3 Thesis overview ..................................................................................... 4 

2 Background and previous work ................................................................... 6 

2.1 Prozone ................................................................................................. 6 

2.2 Indexing review ..................................................................................... 8 

2.2.1 Basics of indexing ......................................................................... 8 

2.2.2 Context indexing ..........................................................................10 

2.2.2.1 Manually entered labels .................................................12 

2.2.2.2 Attached annotations/captions ........................................12 

2.2.3 Content based indexing ................................................................14 

2.2.3.1 Images ...........................................................................17 

2.2.3.2 Local image features ......................................................18 

2.2.3.3 Music .............................................................................19 

2.2.3.4 Video .............................................................................20 

2.2.3.5 Trajectories ....................................................................22 

2.3 Behaviour modelling review .................................................................26 

2.3.1 Hand crafted behaviour models ....................................................27 

2.3.2 Behaviour models learnt from data ...............................................30 

2.3.3 Behaviour models learnt experientially ........................................32 

2.4 Summary ..............................................................................................33 

3 Indexing .......................................................................................................35 

3.1 Introduction ..........................................................................................35 

3.2 Formal problem statement ....................................................................36 

3.3 General Indexing Model .......................................................................37 

3.3.1 Multiple Indexing approaches ......................................................40 

3.4 Preliminaries ........................................................................................40 

3.5 Context indexing with player cliques ....................................................42 

3.5.1 Discovering cohesive player subgroups ........................................44 



- v - 

3.5.1.1 Standard clustering algorithms .......................................44 

3.5.1.2 Graph Partitioning .........................................................45 

3.5.1.3 Cliques ..........................................................................46 

3.6 Team mass indexing with 2D histogram ...............................................48 

3.7 Team mass indexing with multi-resolution 2D histograms ....................49 

3.8 Team mass indexing with local high entropy features ...........................50 

3.9 Team mass indexing with hierarchical high entropy features .................57 

3.10 Semantically augmented ball trajectories ..............................................60 

3.10.1 Abstract spatial coordinates .................................................62 

3.10.2 Abstract semantic possession information............................67 

3.11 Semantically augmented individual player trajectories ..........................73 

3.12 Semantically augmented context indexing with player cliques ..............76 

3.13 Summary ..............................................................................................78 

4 Combining indexing results ........................................................................80 

4.1 Introduction ..........................................................................................80 

4.2 The problem .........................................................................................80 

4.3 General model ......................................................................................84 

4.4 Implementation .....................................................................................84 

4.4.1 Supplying missing information ....................................................86 

4.4.1.1 Generating missing similarity measures .........................87 

4.4.1.2 Generating missing relaxation information .....................87 

4.4.2 Query context ..............................................................................88 

4.5 Formal evaluation .................................................................................91 

4.5.1 Database selection and data pre-processing ..................................91 

4.5.2 Indexing structure discovery ........................................................92 

4.5.2.1 Optimal clique threshold discovery ................................92 

4.5.2.2 High entropy local features discovery ............................94 

4.5.2.3 Optimal spatial prototypes discovery..............................95 

4.5.2.4 Optimal gross/fine player archetypes discovery ..............96 

4.5.3 Experimental design .....................................................................98 

4.5.3.1 Training context nets/obtaining PCA projections ...........99 

4.5.3.2 Providing bootstrapping ground truth for network 
training .............................................................................. 100 

4.5.3.3 Obtaining SOP similarity ratings from experimental 
subjects ............................................................................. 102 

4.5.4 Results ....................................................................................... 104 



- vi - 

4.6 Summary ............................................................................................ 109 

5 Behaviour modelling ................................................................................. 111 

5.1 Introduction ........................................................................................ 111 

5.2 Required features of a player behaviour model ................................... 111 

5.3 General approach for behaviour modelling of players ......................... 114 

5.4 Implementation ................................................................................... 115 

5.4.1 Team centroid ............................................................................ 117 

5.4.2 Player cliques ............................................................................. 118 

5.4.3 Player ........................................................................................ 119 

5.5 Generalisation/Feature selection ......................................................... 121 

5.5.1 Overview of OLS pruning approach ........................................... 121 

5.5.1.1 Orthogonal Least Squares for linear regression ............ 121 

5.5.1.2 Application of OLS to neural network pruning ............. 123 

5.6 Evaluation .......................................................................................... 124 

5.6.1 Data acquisition and pre-processing ........................................... 124 

5.6.2 Optimal clique threshold discovery ............................................ 125 

5.6.3 Team centroid behaviour model training .................................... 126 

5.6.4 Clique and player behaviour models........................................... 126 

5.6.4.1 Clique behaviour model training .................................. 126 

5.6.4.2 Player behaviour model training................................... 127 

5.6.5 Experiment One Evaluation Setup .............................................. 127 

5.6.6 Experiment One Results ............................................................. 130 

5.6.6.1 Team centroid model ................................................... 130 

5.6.6.2 Mean clique results ...................................................... 131 

5.6.6.3 Mean results over all players ........................................ 133 

5.6.7 Experiment Two Evaluation Setup ............................................. 134 

5.6.8 Experiment Two Results ............................................................ 135 

5.7 Discussion .......................................................................................... 139 

5.8 Summary ............................................................................................ 140 

6 Conclusions ................................................................................................ 141 

6.1 Summary of work ............................................................................... 141 

6.2 Contributions ...................................................................................... 142 

6.3 Future research ................................................................................... 142 

7 Appendices ................................................................................................. 144 

7.1 The AVQ Algorithm ........................................................................... 144 



- vii - 

7.2 Valid Football Events ......................................................................... 145 

7.3 User similarity opinions ...................................................................... 147 

7.3.1  User opinion #1 ................................................................. 147 

7.3.2  User opinion #2 ................................................................. 147 

7.3.3  User opinion #3 ................................................................. 147 

7.3.4  User opinion #4 ................................................................. 147 

7.3.5  User opinion #5 ................................................................. 147 

7.3.6  User opinion #6 ................................................................. 148 

7.3.7  User opinion #7 ................................................................. 148 

7.3.8  User opinion #8 ................................................................. 148 

7.3.9  User opinion #9 ................................................................. 148 

7.3.10 User opinion #10 ............................................................... 148 

7.3.11 User opinion #11 ............................................................... 149 

7.3.12 User opinion #12 ............................................................... 149 

7.3.13 User opinion #13 ............................................................... 149 

7.3.14 User opinion #14 ............................................................... 149 

7.3.15 User opinion #15 ............................................................... 149 

7.3.16 User opinion #16 ............................................................... 150 

7.4 Query context – low dimensional projections from PCA and NN 
compression........................................................................................ 150 

7.5 Generated local feature histograms for entropy indexing systems........ 153 

7.6 Fine player archetypes ........................................................................ 154 

7.7 Ball following algorithm ..................................................................... 156 

7.8 Database overview .............................................................................. 157 

7.9 Implementation details for Context indexing with player cliques ........ 160 

7.9.1 Implementation of indexing scheme ........................................... 160 

7.9.2 Query matching ......................................................................... 163 

7.9.3 Query relaxation ........................................................................ 163 

7.10 Implementation details for Team mass indexing with 2D histogram .... 164 

7.10.1 Implementation of indexing scheme .................................. 164 

7.10.2 Query matching ................................................................. 165 

7.10.3 Query relaxation ................................................................ 165 

7.11 Implementation details for Team mass indexing with multi-
resolution 2D histograms .................................................................... 166 

7.11.1 Implementation of indexing scheme .................................. 166 

7.11.2 Query matching ................................................................. 167 



- viii - 

7.11.3 Query relaxation ................................................................ 168 

7.12 Implementation details for Team mass indexing with local high 
entropy features .................................................................................. 168 

7.12.1 Indexing scheme................................................................ 168 

7.12.2 Query matching ................................................................. 170 

7.12.3 Query relaxation ................................................................ 170 

7.13 Implementation details for Team mass indexing with hierarchical 
high entropy features .......................................................................... 170 

7.13.1 Indexing scheme................................................................ 170 

7.13.2 Query matching ................................................................. 172 

7.13.3 Query relaxation ................................................................ 172 

7.14 Implementation details for Semantically augmented ball 
trajectories .......................................................................................... 173 

7.14.1 Indexing scheme................................................................ 173 

7.14.2 Query matching ................................................................. 174 

7.14.3 Search relaxation ............................................................... 179 

7.15 Implementation details for Semantically augmented individual 
player trajectories ............................................................................... 180 

7.15.1 Implementation of indexing scheme .................................. 180 

7.15.2 Query matching ................................................................. 181 

7.15.3 Query relaxation ................................................................ 185 

7.16 Implementation details for Semantically augmented context 
indexing with player cliques ............................................................... 186 

7.16.1 Implementation of Indexing scheme .................................. 186 

7.16.2 Query matching ................................................................. 187 

7.16.3 Query relaxation ................................................................ 190 

8 Bibliography .............................................................................................. 192 
 

  



- ix - 

Figures 
 

Figure 1.1 – Examining the trajectory of a single player over a segment of play 
using the Prozone3 software. .............................................................. 2 

Figure 1.2 – SOP depicting longball attack tactic by the white team and associated 
off the ball movement of players during the segment. ......................... 3 

Figure 2.1 – ProZone Match viewer with synchronised match video ....................... 7 

Figure 2.2 – 'crab fishing north sea' image query result from Google image search 12 

Figure 2.3 – Differing areas of motion activity captured using a motion activity map
 ......................................................................................................... 21 

Figure 2.4 – The first six Chebyshev polynomials over the interval [-1,1] ............. 23 

Figure 2.5 – minimising MBB volume coverage by using a collection of smaller 
MBBs to cover the trajectory rather than one large MBB. ................. 26 

Figure 3.1 – Indexers should find similar results whilst rejecting the majority of 
dissimilar results. .............................................................................. 36 

Figure 3.2 – Spatially context sensitive trajeories. Although trajectories A and B 
have the same shape, they have different semantic content within the 
game................................................................................................. 37 

Figure 3.3 – General Indexing Structure proposed for all indexing systems – the PI 
is used as a key to quickly select the relevant subset of SOP data, and 
points to one or more SOPREF+RM pairs. The RM is used to sort the 
resultant set of SOPREF+RM pairs if the PI points to more than one 
pair. .................................................................................................. 39 

Figure 3.4 – pitch coordinate system (normalised to ½ pitch length) ..................... 41 

Figure 3.5 – team abstraction allows teams to be anonomously differentiated by 
direction of play ............................................................................... 42 

Figure 3.6 – interpolated direction of movement from the beginning of a SOP to the 
end. .................................................................................................. 44 

Figure 3.7 – 8 vertices decomposed into 6 cliques: {A,T} {B,E} {E,X} {B,D,E} 
{B,L,S} {E,L,T}............................................................................... 46 

Figure 3.8 – labelled player density 2D histogram with 24 bins covering the entire 
rectangular playing area. ................................................................... 48 

Figure 3.9 – conversion of 2D histogram to index via selection of the six bins which 
record the highest player densities. ................................................... 49 

Figure 3.10 – Multi-resolution 2D histograms at three resolutions of 3x2, 6x4 and 
9x6 ................................................................................................... 49 



- x - 

Figure 3.11 – Conversion of 2D histogram template to integer via labelling all bins 
above the mean density as ‘1’ (otherwise ‘0’), then transforming the 
bins into a binary number. ................................................................ 50 

Figure 3.12 – Graphical joint entropy of two binary features splitting a space into 
four sections ..................................................................................... 54 

Figure 3.13 – 5 level histogram hierarchy from coarsest resolution of 3x2 to finest at 
15x10. .............................................................................................. 54 

Figure 3.14 – Selection of sub-area from a 2D histogram which becomes a new 
histogram local feature template ....................................................... 55 

Figure 3.15 – histogram local feature template with the darker regions representing 
which bins should have the highest denstity if the template is be a 
considered a match ........................................................................... 55 

Figure 3.16 – High entropy local features decision tree cleaves the search space 
further at each tree level ................................................................... 58 

Figure 3.17 – 2 possible local feature tree traversals .............................................. 58 

Figure 3.18 – labelled ball trajectory segments ...................................................... 61 

Figure 3.19 – equidistant spatial prototypes overlaid onto a football pitch ............. 63 

Figure 3.20 – Non-uniform spatial prototypes forming the basis of a Voronoi cell 
tessellation covering the football pitch .............................................. 64 

Figure 3.21 – comparing competing models under MDL ....................................... 65 

Figure 3.22 – codebook for the spatial prototypes ................................................. 66 

Figure 3.23 – asymmetric codebook representing average player positions built up 
from the motion of all available player trajectories (modified so all 
attacking to the right of diagram) ...................................................... 68 

Figure 3.24 – spatial prototypes sorted by probability of visitation ........................ 68 

Figure 3.25 – simple average player model (with ܲ3	 ≥ 	ܲ9	 ≥ 	ܲ11) ................... 70 

Figure 3.26 – (a) Two teams of individual player trajectories (b) close up of one 
trajectory from the collection ............................................................ 73 

Figure 3.27 – separation of trajectory into x and y components ............................. 74 

Figure 3.28 – basic clique properties of (a) centroid (b) player distances (c) clique 
area .................................................................................................. 76 

Figure 3.29 – mapping player IDs to gross/fine archetypes .................................... 78 

Figure 4.1 – Combining rankings from separate sources into one list..................... 81 

Figure 4.2 – Either coping with incomplete information (a) or filling in result 
similarity blanks (b) is a necessary step in merging two result lists ... 83 

Figure 4.3 – General model used to combine results involves pretraining NN with 
similarity ground truths, obtaining two results lists from the 
complementary indexing systems, filling in any missing information in 
the results lists, and then using the NN to generate estimated 



- xi - 

similarities which are used to combine the two result lists into one final 
sorted list. ......................................................................................... 85 

Figure 4.4 – General form of indexer results comprising a ranked list of (similarity 
score , relaxation level and SOPREF) 3-tuples .................................. 85 

Figure 4.5 – Composite similarity includes relaxtion level to describe how difficult 
result was to find and a query context to describe what class of query 
has been initiated. ............................................................................. 85 

Figure 4.6 – two result lists with some mismatch between the lists ........................ 86 

Figure 4.7 – result list alignment (with resultant void spaces which require filling) 86 

Figure 4.8 – neural network with context + similarity terms detailed ..................... 89 

Figure 4.9 – PCA transformation from (x,y) to (u,v) ............................................. 90 

Figure 4.10 – auto-associative neural network mapping high dimensional vector I 
onto interior hidden nodes representing a lower dimsional vector I’, 
effectively compressing I into I’ (although the compression is likely to 
be lossy). .......................................................................................... 90 

Figure 4.11 – locating ‘richest’ proximity clique threshold .................................... 93 

Figure 4.12 – locating ‘richest’ player separation clique threshold......................... 94 

Figure 4.13 – convergence of search for high entropy local feature combinations 
with team ‘-1’ ................................................................................... 94 

Figure 4.14 – convergence of search for high entropy local feature combinations 
with team ‘+1’ .................................................................................. 95 

Figure 4.15 – Locating the optimal MDL derived values for spatial prototypes ..... 96 

Figure 4.16 – Optimal spatial prototypes based on player movement ..................... 96 

Figure 4.17 – Approximate mirror symmetry evident across two orthogonal lines 
originating at the centre of the pitch .................................................. 96 

Figure 4.18- Gross player archetypes discovered by clustering .............................. 97 

Figure 4.19 – 3 fine archetypes which approximately map to (a) a goalkeeper, (b) a 
defender, (c) an attacker ................................................................... 98 

Figure 4.20  – compressed 2D context projections for cliques via NN (hidden states) 
and PCA projection ........................................................................ 100 

Figure 4.21 – filling in missing information for bootstrap similarity ratings ........ 101 

Figure 4.22 – symmetric similarity between two compared SOPs ........................ 102 

Figure 4.23 – mirroring similarity from B->A onto A->B.................................... 102 

Figure 4.24 – SOP similarity evaluation application which enables the user to view 
two SOPs and then submit a similarity rating for the two SOPs ...... 103 

Figure 5.1 – The three hierarchical levels of behaviour from the most concrete 
players (a), to the more abstract cliques (b), to the most abstract team 
centroids (c).................................................................................... 112 



- xii - 

Figure 5.2 – Team centroid dynamics exhibit an asymmetrical preference for 
movement perpendicular to the goal lines ....................................... 113 

Figure 5.3 – Two identical spatial configurations with differing histories ............ 113 

Figure 5.4 – The hierarchical player behaviour model will include movement 
influences from the more abstract player clique and team centroid 
levels .............................................................................................. 114 

Figure 5.5 – mapping quantised direction and speed onto vectors of length 16 and 10
 ....................................................................................................... 115 

Figure 5.6 – softmax probability distributions over the D and S result in ݅ = 0݅ =
݅ܦ15 ≈ 1.0	ܽ݊݀	݅ = 0݅ = 9ܵ݅ ≈ 1.0 .............................................. 116 

Figure 5.7 – neural network model for team centroid produces softmax probability 
distributions over D (movement direction) and S (movement speed)118 

Figure 5.8 – neural network model for clique produces softmax probability 
distributions over D (movement direction) and S (movement speed)119 

Figure 5.9 – neural network model for player produces softmax probability 
distributions over D (movement direction) and S (movement speed)120 

Figure 5.10 – Aggregating a neural signal in node R involves linearly summing the 
activation of each input node multiplied by the connecting weight, and 
then squashing the linear sum into a predefined range (usually either 
0, –	ݎ݋	1+ 1, +1) ............................................................................ 123 

Figure 5.11 – locating the optimal threshold values for the four types of cliques . 125 

Figure 5.12 – The random walk model randomly selects one of the sixteen possible 
directions and one of the ten possible speeds at each simulated time 
step ................................................................................................. 128 

Figure 5.13 – ܤܦ, ,ܴܦ,ܤܵ ܴܵ for team centroid model ........................................ 130 

Figure 5.14 –	݆ܤ	, ܴ݆ for j=1…16 for team centroid model ................................. 131 

Figure 5.15 – ݆ܤ	, ܴ݆ for j=17…26 for team centroid model ............................... 131 

Figure 5.16 – ܤܦ, ,ܴܦ,ܤܵ ܴܵ mean over all cliques ............................................ 132 

Figure 5.17 – ݆ܤ	, ܴ݆ for j=1…16 mean over all cliques ..................................... 132 

Figure 5.18 – ݆ܤ	, ܴ݆ for j=17…26 mean over all cliques ................................... 132 

Figure 5.19 – ܤܦ,  mean over all players ..................................... 133 ܴܵ	݀݊ܽ	ܴܦ,ܤܵ

Figure 5.20 – ݆ܤ	, ܴ݆ for j=1…16 mean over all players ..................................... 133 

Figure 5.21 – ݆ܤ	, ܴ݆ for j=17…26 mean over all players ................................... 134 

Figure 5.22 – Calculating the Euclidean distance between each corresponding set of 
points in trajectories AB and CD .................................................... 135 

Figure 5.23 – 0.05 distance threshold results over twenty-five seconds................ 136 

Figure 5.24 – 0.1 distance threshold results over twenty-five seconds ................. 136 

Figure 5.25 – 0.15 distance threshold results over twenty-five seconds................ 137 

Figure 5.26 – 0.25 distance threshold results over twenty-five seconds................ 137 



- xiii - 

Figure 5.27 – 0.5 distance threshold results over twenty-five seconds ................. 137 

Figure 5.28 – Simulated (red) Vs Real (black) player trajectories #1 ................... 138 

Figure 5.29 – Simulated (red) Vs Real (black) player trajectories #2 ................... 139 

Figure 5.30 – Simulated (red) Vs Real (black) player trajectories #3 ................... 139 

Figure 7.1  – 2D context projections for clique indexing system .......................... 150 

Figure 7.2 – 2D context projections for 2D histograms indexing system .............. 151 

Figure 7.3 – 2D context projections for multi-resolution histograms indexing system
 ....................................................................................................... 151 

Figure 7.4 – 2D context projections for local features (flat) indexing system ....... 151 

Figure 7.5 – 2D context projections for local features (tree) indexing system ...... 151 

Figure 7.6 – 2D context projections for ball trajectory indexing system ............... 152 

Figure 7.7 – 2D context projections for player trajectories indexing system......... 152 

Figure 7.8 – 2D context projections for augmented cliques indexing system ....... 152 

Figure 7.9 – Fine player archetypes set #1 (striker, left midfielder/forward, left 
fullback) ......................................................................................... 155 

Figure 7.10 – Fine player archetypes set #2 (left midfielder, centre back, right 
fullback) ......................................................................................... 155 

Figure 7.11 – Fine player archetypes set #3 (left midfielder, midfielder, striker).. 155 

Figure 7.12 – Fine player archetypes set #4 (second striker, left fullback/midfielder, 
left midfielder) ............................................................................... 155 

Figure 7.13 – Fine player archetypes set #5 (second striker, right fullback, right 
midfielder)...................................................................................... 155 

Figure 7.14 – Fine player archetypes set #6 (left fullback, left midfielder, 
midfielder)...................................................................................... 156 

Figure 7.15 – Fine player archetypes set #7 (goalkeeper, sweeper, left forward) .. 156 

Figure 7.16 – Fine player archetypes set #8 (right fullback/midfielder) ............... 156 

Figure 7.17 – Relational model used widely in modern day databases ................. 157 

Figure 7.18 – A simple example of a Select SQL query on a database table......... 157 

Figure 7.19 – Increasing search efficiency by restructing data elements .............. 158 

Figure 7.20 – B Tree (general purpose database structure)................................... 158 

Figure 7.21 – R Tree (specialised to hold geographic data) .................................. 159 

Figure 7.22 – Clique context around the beginning and end of a SOP .................. 160 

Figure 7.23 – an example clique size distribution ................................................ 161 

Figure 7.24 – Clique PI composed of the two teams clique distributions ............. 161 

Figure 7.25 – Clique RM composed of the two teams clique centroids ................ 162 

Figure 7.26 – clique size distribution indexing scheme ........................................ 163 

Figure 7.27 – clique indexing query relaxation process ....................................... 164 

Figure 7.28 – 2D histogram PI composed of the top six histograms bins for each 
team ............................................................................................... 164 



- xiv - 

Figure 7.29 – 2D histograms RM containing the team centroid of each team ....... 165 

Figure 7.30 – 2D histogram indexing scheme ...................................................... 165 

Figure 7.31 – multi-resolution histograms PI containing the three levels of 
histograms (each represented as in integer) for both team ............... 166 

Figure 7.32 – Multi-resolution histograms RM containing the team centroid of each 
team ............................................................................................... 167 

Figure 7.33 – multi-resolution histograms indexing scheme ................................ 167 

Figure 7.34 – high entropy local features PI containg bitfields for both teams 
indicating the presence/absence of a set of multi-resolution features 168 

Figure 7.35 – High entropy local features RM containing the team centroid of each 
team ............................................................................................... 169 

Figure 7.36 –high entropy local features indexing scheme ................................... 169 

Figure 7.37 – tree structured high entropy local features PI containing bitfields 
describing tree traversals for both teams ......................................... 171 

Figure 7.38 – tree structured high entropy local features RM containing the team 
centroid of each team ...................................................................... 171 

Figure 7.39 – tree structured high entropy local features indexing scheme ........... 172 

Figure 7.40 – Ball trajectory truncation to lie within a SOP ................................. 173 

Figure 7.41 – Ball trajectory segment PI containing beginning and end spatial 
prototypes and the team and type of player in possession ................ 174 

Figure 7.42 – Ball trajectory segment RM containing details of one particular line 
segment within the ball trajectory (one or more are required to desribe 
ball trajectory over entire SOP) ....................................................... 174 

Figure 7.43 – Semantically augmented ball trajectory indexing scheme............... 174 

Figure 7.44 – Generating a semantic possession list which mirrors the interpolted 
ball trajectory ................................................................................. 176 

Figure 7.45 – comparison of two ball trajectories via corresponding trajectory points
 ....................................................................................................... 177 

Figure 7.46 – spatial prototypes relaxation allows matching to prototypes 
increasingly further away from original query prototype ................. 180 

Figure 7.47 – Player trajcectory PI containg the beginning and end spatial 
prototypes of the player trajectory and the team and type of player 
indexed ........................................................................................... 180 

Figure 7.48 – Player trajectories RM containing Chebyshev coefficients describing 
the shape of the player trajectory and the exact beginning and end 
coordinates of the player over the SOP ........................................... 181 

Figure 7.49 – Player trajectories indexing scheme ............................................... 181 

Figure 7.50 – Two player trajectories whose similarity may be determined by a 
suitable similarity metric ................................................................ 183 



- xv - 

Figure 7.51 – comparison of query trajectories against all relevant indexed 
trajectories allows the best match to be selected for each query....... 185 

Figure 7.52 – Augmented cliques PI containing the number of players in the clique, 
the spatial prototype nearest to its centroid, the type of clique and the 
abstract team to which it belongs .................................................... 186 

Figure 7.53 – Augmented cliques RM containg real number attributes of the clique 
such as area, ration of maximum to minmum span and mean player 
distance, together with types of player which make up the clique .... 187 

Figure 7.54 – Augmented cliques indexing scheme ............................................. 187 

Figure 7.55 – Comparing two cliques uilising the real number clique attributes 
minimum to maximum player distance ratio, clique internal area and 
mean player distance in the clique .................................................. 188 

Figure 7.56 – comparison of query augmented cliques against all relevant indexed 
augmented cliques allows the best match to be selected for each query
 ....................................................................................................... 190 

  



- xvi - 

Tables 
 

Table 2.1 – Example inverted index associating subjects with the pages they are 
found within ......................................................................................... 9 

Table 3.1 – Clique membership count for the network shown in Figure 3.7 ........... 47 

Table 4.1 – MDL stochastic search for fine player archetypes (top ten smallest 
models + data) .................................................................................... 98 

Table 4.2 – Variability preserved in the compressed 2D context by PCA and 
convergent MSE of the auto-associative NN by indexing system ...... 100 

Table 4.3 – Four point Likert Similarity scale covering the interval [0,1] with 
associated semantic meaning............................................................. 104 

Table 4.4 – Summary of experimental data giving ratings and median similarity 
score per rater ................................................................................... 105 

Table 4.5 – Distribution of Likert ratings over entire experiment ......................... 105 

Table 4.6 – Summary of experimental rating distributions over the four interval 
Likert scale ....................................................................................... 106 

Table 4.7 – Chi square test against overall distribution of Likert values (R01 – R08). 
Chi square test not possible for rater R04 as this rater did not submit any 
very similar (LS4) ratings. ................................................................ 106 

Table 4.8 – Chi square test against overall distribution of Likert values (R09 – R16)
 ......................................................................................................... 107 

Table 4.9 – Clusters of similar raters w.r.t. their ratings distributions .................. 107 

Table 4.10 – Median ratings for underlying indexing schemes. The PCA prefix 
denotes a dual indexing system using Principal Component Analysis as 
the means to derive the query context, and the NN prefix denotes the use 
of an auto-associative neural network to derive the query context. .... 108 

Table 4.11 – Rank correlations scores for competing indexing systems ............... 109 

Table 7.1 – Event IDs as used by ProZone to describe events occurring during a 
football game .................................................................................... 146 

Table 7.2 – Top 20 generated histograms for abstract team '-1' ............................ 153 

Table 7.3 – Top 20 generated histograms for abstract team '+1' ........................... 154 
 

 

 

 

 

 



- xvii - 

Glossary 

 Autoregression : A predictive process which uses past states of a 
modelled system to predict the next state. 

 Clique : A completely connected sub-section of an undirected graph. 
 CP (Chebyshev Polynomials) : A sequence of orthogonal polynomials 

which can be used to approximate/compress arbitrary functions or data 
time series. 

 Indexing system : A system which enables navigation/searching 
within a (usually large) dataset by generating a mapping from a 
compressed representation of the data to its uncompressed form. 
Google search is one example of indexing for Internet sites, the 
indexing systems presented within this thesis are another example in 
the domain of football. 

 MAM (motion activity maps) : 2D histograms which record the 
spatial extent of motion activity over a predefined period of time. 

 MAS (Multi Agent System) : A system composed of multiple 
interacting agents, in which each agent is aware of and reactive to (a 
subset of) the other agents in the system. The degree to which each 
agent is aware of the other agents is a function of its behavioural 
sophistication : it may view them as simply non-static elements of the 
environment and attempt to learn their behaviour, it may communicate 
with other agents to negotiate behaviour or it may hold internal 
‘mental’ models of other agents and use this to anticipate behaviour. 

 MBB (minimum bounding box) : Given an ݊-dimensional space 
containing ݉ points, it is the smallest ݊-dimensional hypervolume 
which can contain all ݉ points. Reduces to a rectangular parallelepiped 
and a rectangle in 3 and 2 dimensions respectively. 

 MDL (minimum description length) : A model selection process 
which posits that the best models to select are those which are the most 
parsimonious. 

 NN (Neural Network) : Computational model inspired by biological 
neural networks. Able to learn any arbitrary function (given enough 
internal connectivity). 

 OLS (Orthogonal Least Squares) : An algorithm for performing 
linear regression on a dataset. 

 

 



- xviii - 

 OLS pruning : An algorithm for reducing the number of connections 
within a neural network with the goal of making it better generalise 
learnt functions and also remove redundant input data. Uses OLS to 
measure the variance of node activity, the idea being that more 
variance equates with useful information (and no or little variance 
equates with redundant information). 

 PCA (Principal Component Analysis) : A mathematical operation on 
an ݊-dimensional dataset to project it into an ݉-dimensional space 
(where ݉ < ݊) using an orthogonal linear transformation which aims 
to preserve as much of the variation in the original dataset as possible 
in the ݉ principal components. 

 PI (Partition Index) : The portion of the indexing system that allows 
very efficient division of the indexed data during queries via levering 
database index techniques. 

 SOP (Segment Of Play) :  A short play sequence from a football 
match which cover all players on the pitch 

 SOPREF (Segment Of Play Reference) :  A 3-tuple reference to a 
SOP consisting of an ID for the match, half, and time within the half 
during which the SOP starts. 

 RM (Ranking Metadata) : The portion of the indexing system that 
allows the results returned during the PI section of the query to be 
ranked w.r.t. similarity with the query. 

 SQL (Structured Query Language) : The standard language used to 
define and program modern day relational databases. 

 Vector quantization : a lossy data compression method which 
generates prototypical vectors (in a codebook) from an underlying 
dataset, the prototype vectors being representative of the distribution of 
data within the underlying dataset. 

 Voronoi diagram : A decomposition of a metric space containing a 
number of generator points into a collection of cells, such that each cell 
represents the volume closest to each generator point. 

  



- 1 - 

1 Introduction 

1.1 Aims and Motivation 

With the steady reduction in the price of storage, and increasing availability of 

high quality recording devices, many professional football clubs have taken to 

augmenting coaching sessions with digital video match footage coupled with 

detailed coverage of the statistical and movement characteristics of the players. The 

club itself may supply this information, but more often, an outside company supplies 

it. 

One such company is the Leeds based ProZone [1]. They supply client clubs 

with multi-angle digital match videos, and corresponding collections of player 

trajectories and events transcribed from the videos. The trajectory/events collections 

allow coaches an in-depth view of an individual player’s performance during a 

match; both from a fitness and a tactical/skill perspective (see Figure 1.1).  Currently 

this information is packaged up in the form of one or more DVDs, and then used by 

the coaching staff to identify problems from the previous game and help prepare for 

the upcoming match. Outside this time window around the current match, historical 

information concerning players, particular the trajectory and event information is 

rarely used. The information is kept by ProZone however, and they currently have 

an archive containing at least five years worth of trajectory and event information 

for premiership clubs/players. 

The aim of this thesis is to see if this archival data can be used in any 

interesting and novel fashions. Specifically two problem domains will be looked at; 

that of indexing the archival data with a view to making it easily queriable, and that 

of using the archival player data as a basis to build behavioural models of the 

players. As ProZone is a CASE research partner for this thesis, one last aim (or 

perhaps constraint) of this thesis is that any work developed should be at least in 

some sense practically realisable (by which is meant implementable with reasonable 

computing resources). 



- 2 - 

 

Figure 1.1 – Examining the trajectory of a single player over a segment of play using the Prozone3 
software. 

 

1.2 The Problem domains 

At the most abstract level, this thesis examines whether trajectory data 

obtained from tracking players involved in a team game can be used to index the 

tracked games and examines if it is possible to build player models from analysis of 

the player trajectories.  

1.2.1 Indexing 

Two problem domains are covered in this thesis. The first is that of indexing 

football matches, specifically indexing football matches via short segments of play 

(SOP). Many interesting scenarios that occur during a football game can be 

characterised by a surprisingly short SOPs (see Figure 1.2). Obvious examples are 

corners and free kicks, but there are also less obvious free moving examples such as 

signature passing moves, or a critical possession loss resulting in attack breakdowns.  

Indexing involves describing a collection of objects in a compressed form, 

then allowing similarity searches to be performed over the compressed collection. 

The ability to index archived games using the SOPs contained within them would 



- 3 - 

allow coaching staff a powerful method of consulting the past when making 

decisions about current tactical situations (i.e. how successful have team X been in 

the past when attempting a free kick using player Y?) 

 

 

Figure 1.2 – SOP depicting longball attack tactic by the white team and associated off the ball 
movement of players during the segment. 

 

1.2.2 Behaviour modelling 

The second problem domain is behavioural modelling. The overall aim is to 

attempt to discover systematic patterns of movement that will allow general models 

of player movement to be realised. There are at least two potential scenarios that 

such a collection of models could be used for. The first is simulation of hypothetical 

game situations, which would obviously be a boon for coaches. Modelling of players 

allows for clustering of players who exhibit similar behaviour together; which would 

be very useful for scouts and the transfer market (i.e. replacing an injured player 

with a player with a similar behaviour model).  

1.2.3 Wider applicability 

In principle, the techniques explored in this thesis could be applied to any 

other sport that also satisfies the following constraints: 

 



- 4 - 

 

(1) Two distinct teams of identifiably unique players. 

(2) Two-dimensional bounded playing surface1. 

(3) Playing ball (or puck or similar). 

(4) The ability to track/record player trajectories.  

 

Accordingly, games such as Rugby, American Football and Hockey could all 

be fruitful areas to reapply the research contained within this thesis.   

1.3 Thesis overview 

 Chapter 2 – Firstly provides general background information 

concerning ProZone and the nature of the data they provide and its 

procurement, then reviews previous work in the fields of indexing and 

behavioural modelling. 

 

 Chapter 3 – Presents a general framework for indexing SOPs, and then 

several novel indexing approaches are introduced; either based on the 

trajectory of players or the trajectory of the ball. 

 

 Chapter 4 – Work covering the aggregation of query results from two 

different indexing systems is presented. A formal experiment is 

undertaken to compare the proposed indexing approaches, as well as 

result aggregation, by eliciting subjective ratings for query results from 

human experimental subjects.  

 

 

 

                                                

1 A number of the indexing schemes presented in this thesis implicitly impose a 
further restriction of requiring the playing surface to be rectangular, as they 
project rectangular overlays onto the playing surface during indexing (see 
sections 3.6, 3.7, 3.8, 3.9 for details). 



- 5 - 

 Chapter 5 – A novel approach to behaviour modelling of players is 

presented, player behaviour being modelled in a hierarchical fashion, 

from individual player, to cliques of players associated by 

proximity/movement direction, to the overall team behaviour. The 

resultant models are evaluated, firstly against a random walk model 

w.r.t. predicting the next time step movement (0.1s), and then over an 

extended simulation period of 25s against a random walk model, and a 

linear predictor model. The results of the evaluations demonstrate the 

potential usefulness of the models produced. 

 
 Chapter 6 – Presents the conclusions of the thesis and highlights 

possible futures avenues of research. 

  



- 6 - 

2 Background and previous work 

This thesis covers two separate areas; that of indexing and behaviour 

modelling. To reflect this, this chapter is divided into two main sections covering 

previous research on indexing and behaviour modelling respectively. Preceding the 

two main sections are background information on ProZone, the source of the 

trajectory and event data used in this thesis, and a brief primer on databases. 

2.1 Prozone 

ProZone [1] is a Leeds based company that provides client football clubs with 

the ability to record and analyse their matches both in video form, and in the form of 

annotated player trajectories/events (see Figure 2.1). The fusion of match video with 

trajectory / event information allows a more comprehensive post match analysis to 

be performed than would be the case with video alone. Clubs are able to collect 

detailed statistics about player performance during the match and to perform 

rudimentary indexing of the video at the level of events (i.e. find all goals or corners 

in a game). Deeper analysis of player performance is also possible by collating and 

comparing player statistics over a number of matches, enabling trends in player 

performance to be studied. 

Given that this thesis will use collections of the trajectory and event data both 

in the indexing and behavioural modelling research, it is prudent to describe how the 

data is procured, its fidelity/accuracy, and how the data is structured. The video data 

is captured from a collection of eight static cameras strategically situated around the 

football pitch, such that no area of the pitch is left unobserved (as opposed to normal 

TV coverage that naturally follows the movement of the ball). Player trajectory data 

is generated by manual operators tasked with inspecting the raw video, identifying 

individual players2 and tracking their movements throughout the game by marking 

                                                
2  Each player is assigned a unique immutable player ID, which is used in any 

match they are tracked in. 



- 7 - 

their positions on the raw video. The raw video screen coordinates of players are 

transformed into ground plane positions on the pitch, and coupled with unique 

player ids form the trajectory dataset for the match. The trajectory transcription 

process has been shown to exhibit a high correlation with independent trajectory 

measurements using timing gates [2] for both long player trajectories and shorter 

sprint trajectories3. 

 

 

Figure 2.1 – ProZone Match viewer with synchronised match video 

 
Events are recorded by the manual operators as and when they occur with the 

particular player being tracked. The type of event, the player(s) involved, and the 

event location are all recorded (a complete list of valid events is available in section 

7.2).  It should be noted that the manual transcription of all trajectories/events is a 

very labour intensive task; typically, one operator is only assigned one player per 

match to track. To achieve timely processing of all captured matches, a large team of 

manual operators is required. ProZone is attempting to semi-automate some of the 

trajectory tracking by the use of vision-based player tracking techniques [3], but as 

of September 2009, this technology is still under testing/review. 

                                                
3 For 60m & 50m trajectories correlation of ProZone tracking with ground truth is: 

{r=0.999, total error=0.05, limits of agreement=0.23}, for 15m sprints 
correlation is : {r=0.970, total error=0.23, limits of agreement=0.85} 



- 8 - 

All trajectories and events are recorded to a temporal fidelity of 0.1 seconds; 

however, trajectories are not recorded continuously in a temporal sense. Gaps exist 

in the trajectory data because player positions are only recorded when the player 

being tracked exhibits significant movement on the pitch, and this position is 

updated with a frequency of approximately 0.5-1.0 seconds (depending on player 

motion). Thus in the raw state it is not guaranteed that for a particular time instant 

all the players’ positions will be immediately available, so the missing player 

positions must be interpolated if required. The trajectory of the ball is not recorded 

at all during the transcription process. If required it can be interpolated from events 

(such as ball touches) and player position. 

2.2 Indexing review 

The following section initially presents on overview of indexing, or to give it 

its more general title information retrieval [8]. There then follows two subsections 

which review indexing research carried out at two different levels of analysis; 

starting with context based indexing then moving onto content based indexing. 

2.2.1 Basics of indexing 

A centuries old example of indexing is available in the back pages of virtually 

all academic textbooks. In this index section, a list of subjects is displayed together 

with associated page numbers on which the subjects are referenced. The index is 

ordered alphabetically, thus allowing the reader very fast access to relevant subject 

pages. This is an early version of what is now technically known as an Inverted 

Index [9].  

The subjects available in the index are chosen manually by the author/editor of 

the book, and represent key concepts or features that the book addresses. During 

compilation of the index, each page of the book is analysed for occurrences of the 

predefined features, and their presence is incrementally added into the index. This is 

the first vital component of any indexing system; namely, the ability to analyse a set 

of objects (book pages in this example) and to decompose each object into a 

collection of features which represent it in a more abstract/compressed sense.  

 



- 9 - 

Subject Page 

Agent 1,4,6,9 

Emergence 2,3,9 

Entropy 4,5,6 

Indexing 7,8 

Scalability 9 

 

Table 2.1 – Example inverted index associating subjects with the pages they are found within 

 

Table 2.1 shows an example of an inverted index from a very small notional 

book, with five subjects of interest. The obvious function that this index provides is 

to quickly locate relevant pages covering subject matter of interest to the reader. In 

other words, the reader of the book is able to perform queries using the index and 

the predefined set of subjects. This is the second vital component of any indexing 

system, namely the ability for queries to be constructed from the set of index 

features and then applied to the index to return a set of matching results (in this case 

page numbers, but in general they will be references to the indexed objects). A less 

obvious function that the index provides becomes clear if the list of pages numbers 

attributed to each subject are treated as sets. Then more complex queries can be 

performed using set algebra, such as: 

 

	ݏݐ݊݁݃ܣ) ∪  ஼ (2.1)ݕݐ݈ܾ݈݅݅ܽܽܿܵ	∩	(ݕ݌݋ݎݐ݊ܧ

 

Equation (2.1) asks what set of pages reference either ݏݐ݊݁݃ܣ or ݕ݌݋ݎݐ݊ܧ, but 

do not cover ݈ܾ݈ܵܿܽܽ݅݅ݕݐ? The results of this query, which is the set {1,4,5,6}, 

attaches equal importance to each page returned. However, the terms ݏݐ݊݁݃ܣ and 

 occur simultaneously on pages 4 and 6, and only appear alone on pages 1 ݕ݌݋ݎݐ݊ܧ

and 5. Since the reader is interested in both terms, pages 4 and 6 are likely to be 

more important to the reader than pages 1 and 5. If instead of sets, the list of page 

numbers are viewed as bags, then the result of the query becomes {1,4,4,5,6,6}. 

Now pages 4 and 6 are elevated above pages 1 and 5 by virtue of their greater 

representation in the results bag. This is the third and final vital component of any 

indexing system; namely, the ability to rank results of index queries in terms of 



- 10 - 

relevance to the query itself. Therefore, in summary, the basic requirements of any 

indexing system are: 

 

(1) Given a set of features (or the ability to generate a set), be able to 

analyse a set of objects and decompose them into a compressed form 

representing the features present, and map the compressed 

representation to the original object. 

(2) The ability to pose suitably structured queries using the features, and 

then resolve the query by matching against the index. 

(3) The ability to rank results from a query in order of relevance to it. 

 

These basic principles will help frame the following discussions covering 

indexing research. 

2.2.2 Context indexing 

This review of indexing research is structured in such a way that as the review 

continues approaches will be examined which analyse indexed objects at deeper 

levels than those in previous sections. However to begin with, approaches which do 

not analyse the objects to be indexed at all will be reviewed. These approaches treat 

the objects to be indexed as atomic, and instead examine the context in which the 

objects are situated and use this as the basis for indexing.  

Perhaps the best-known example of this approach is Google image search [10]. 

Images embedded within web pages have image filenames, hypertext links and 

hypertext metadata associated with them. This contextual information associated 

with the image is used by Google as a surrogate object to be indexed in place of the 

more complex image. The surrogate object is parsed to check for occurrences of 

words in the Google lexicon (built up from previously encountered words on web 

bot cached pages), and those which are present are added into an inverted index 

which references the image instead of the surrogate object. Since the image is now 

indexed as a collection of lexicon entries, it can be queried by those same lexicon 

entries, enabling users to search for images simply by entering keywords. Ranking 

of returned image query results is performed as a combination of how many matches 



- 11 - 

the search terms made against the index and the pagerank of the page in which the 

image is embedded. The pagerank algorithm [11], promotes pages which are 

‘popular’ (pages with many links to them, or pages with links from other popular 

pages), and its general form is shown in equation (2.2). The total collection of page 

ranks for all pages indexed forms a probability distribution. 

 

(ݑ)ܲ = ෍
(ݒ)ܲ
(ݒ)ܮ

௩∈஻ೠ

 
(2.2) 

 

Where:  

  ,(expressed as a probability) ݑ is the page rank of page (ݑ)ܲ

  ,ݑ ௨ is the set of pages which link to pageܤ

  ,ݑ which links to page ݒ is the page rank of a particular page (ݒ)ܲ

 contains ݒ is the total number of links which page (ݒ)ܮ
 

Whilst this is a simple and elegant query interface, it does produce variable 

results. As an example, the search terms ‘crab fishing north sea’ returned the image 

in Figure 2.2 as the #2 search result – an image that is not visually relevant to the 

search terms used. Examination of the web page4 in which the image is embedded 

reveals that there is a hypertext link to a story entitled ‘Crab fishing in the North Sea 

is a dangerous profession’, which presumably has been included in the context 

information for the image. This highlights the major drawback of using context 

information that is not checked for consistency, namely, there is no way of knowing 

if the context that surrounds the object forms a representative description. 

                                                
4 http://planetsave.com/category/war-conflict/page/2/ image reproduced under the 

Creative Commons licence. 



- 12 - 

 

Figure 2.2 – 'crab fishing north sea' image query result from Google image search 

 

2.2.2.1 Manually entered labels 

One approach to overcoming this weakness would be to explicitly solicit 

relevant image labels from humans, and then use these labels as the basis of the 

context on which to index the images. This is the approach taken in [12], where a 

short online game is proposed that shows a series of randomly selected images to 

teams of two players. Each player is asked to enter words they think the other player 

is also entering, and since the only shared experience the users have is being shown 

the image (players cannot see each other’s entered labels), the labels will likely 

describe some aspect of it. Once players agree on a label, the next image is shown. 

Evaluation of the labels produced show that they perform well as the basis for a 

context based image index, and the labels received high subjective relevancy ratings 

from experimental participants. The conclusion that this game with a pool of 5000 

players could label all of the images indexed by Google in a matter of weeks at first 

seems to be massively overoptimistic. Interestingly however, Google made public an 

almost identical game, the Google image labeller5, from 2006 until 2011. 

2.2.2.2 Attached annotations/captions 

Within a more restricted domain however, using manual labelling of images to 

form the basis of an indexing system is a much more viable approach. In [13] 
                                                

5 http://images.google.com/imagelabeler/  



- 13 - 

annotations attached to crime scene photographs by the police are first analysed 

using parts of speech tagging [14] to assign words into lexical categories. The 

marked up annotation is then further analysed to extract relational triples 

representing additional semantic information between objects in the annotation. 

These relational triples are more discriminating than the underlying words in the 

annotation, and are used to form the index. A particularly gruesome example from 

the paper is the extracted relation triple ‘Blood Around Body’. Searching the 

annotations for occurrences of the terms blood and body will match against 

photographs containing either, as well as photographs where the blood is not 

surrounding the body, whereas searching for the triple ‘Blood Around Body’ will 

only return photographs were indeed the blood surrounds the body. The use of 

relations between objects also allows a richer description to be produced (as there 

are potentially ݊ଶ − ݊ relations between ݊ objects assuming asymmetric relations).  

Guglielmo [15] adopts a similar approach, using text captions associated with 

military photographs as the basis for indexing a collection of over 100,000 

photographs. The indexing is implemented in two phases : a coarse phase, involving 

indexing purely on the nouns and verbs in the caption (based on a domain specific 

lexicon), and then a fine phase which involves involving indexing on logical form 

records,  which capture the semantic sense of the caption in a collection of case 

grammar records [16]. Queries are also broken down into the two phases, and 

matching first occurs with the coarse phase, then results from this are matched 

against the fine phase. Evaluation of the system, using the precision and recall 

metrics (see equations (2.3) and (2.4)), showed a 30% improvement in precision and 

a 50% improvement in recall over a baseline system simply indexing on keywords. 

The major drawback of the system is that the use of a limited domain lexicon means 

that free form text queries must often be restated in the specific lexicon in order to 

generate acceptable results, implying that the system requires some 

training/experience to use successfully. 

 

ܲ =
|ܴ௘ ∩ ܴ௥|

ܴ௥
 

(2.3) 

 



- 14 - 

ܴ =
|ܴ௘ ∩ ܴ௥|

ܴ௘
 

 

(2.4) 

 

Where:  

ܲ = Precision metric,  

ܴ = Recall metric,  

ܴ௘ = Set of relevant (to query) documents which exist,  

ܴ௥ = Set of retrieved (by query) documents 
 

ANVIL [17] is another image indexing system that uses short attached 

captions in order to index the images. Again, natural language parsing techniques 

are used to analyse the caption to extract dependency structures, which are tree-like 

structures representing the relationships between words (for instance that adjectives 

depend on the nouns that they describe). Textual queries are similarly decomposed 

into dependency structures, being matched against the dependency structures of 

captions that contain at least one of the keywords in the query. The dependency 

structure matching gives a ranking to the result of the query. The advantages and 

disadvantages of ANVIL both spring from the fact that it uses very short captions 

(mean length 9 words). The main advantage is that a more comprehensive analysis 

of the text is possible in a reasonable time (i.e. dependency structures). The main 

disadvantage is that using such short captions reduces the discriminatory power of 

the indexing system. 

2.2.3 Content based indexing 

Content Based Information Retrieval systems (CBIR) go directly to the heart 

of the matter, and use the data contained in the object itself to extract indexing 

information. The most well established area in this field is CBIR as applied to text 

documents. The World Wide Web (WWW) constitutes the largest collection of 

documents that has ever existed [18]. Internet search engines such as Google, Bing, 

Yahoo, Ask etc, all attempt to index this vast collection, and the primary means by 

which this is achieved is by viewing web pages as text documents, and indexing 

them based on the textual information they contain. Google [10] analyses web pages 



- 15 - 

for occurrences of keywords from its internal lexicon (which is built up by word 

extraction from previously indexed pages), and records keyword occurrences using a  

full inverted index, which is an augmentation of the standard inverted index in that it 

permits the position of words in a document to be recorded as well as their presence.  

The use of a full inverted index allows the word order of a query to be taken 

into account, thereby enabling phrase queries and well as simple keyword queries. 

Internally the full inverted matrix is also used to partially contribute rank to results 

by examining the proximity of query keywords in the indexed documents. The final 

rank of a query result is a combination of how well the keywords were represented 

in the web page, how closely they were grouped together, and how popular the web 

page is (as denoted by the Pagerank algorithm [11]).  The full inverted index is at 

the heart of all current commercial Internet search engines, and is arguably the most 

used indexing method for text documents. 

An alternative to the (full) inverted index is the vector space model (VSM) 

[19] (also known as the bag of words model). In this model, the document is 

represented as a vector, where each component of the vector represents the presence 

(non-zero), or absence (zero) of a particular keyword (or even a phrase as in [20]). 

The length of the vector is set to the size of the lexicon, so each document is 

described in a fixed length format. At its most naïve, VSM will simply assign a 1 or 

0 to each component to denote presence/absence of keywords, but more often the 

values assigned to those keywords which do appear represent the level of 

importance the word has in the document. This is the case with the term frequency 

inverse document frequency model (TF-IDF [21]), which uses the following 

equation (2.5) to estimate component values: 

 

௧ݒ = ௧݂ . ݃݋݈ ൬
ܦ
݀௧
൰ 

(2.5) 

 

Where :  

 ݒ ௧௛component of the vectorݐ = ௧ݒ

௧݂ = Frequency of term ݐ in the current document 

 total number of documents = ܦ

݀௧ = number of documents containing the term ݐ 



- 16 - 

The TF-IDF correctly gives a weight of 0.0 to terms which do not occur in the 

current document, and modifies the raw frequency of the terms which are present in 

the document by how widespread the term is in the document set (more coverage = 

greater importance). As with all indexing systems, queries are broken down in the 

same fashion as the indexed objects, and in the case of VSM it is simpler to use a 

document as a query template, analysing this, and using the resultant VSM as the 

query. This is a query by example, and is the more usual form of querying used 

when either the underlying object is complex or as in this case the raw query form 

can be complex/cumbersome (which a long vector would be). Ranking of queries is 

given by the angle between the query vector and each of the results vectors. 

Latent Semantic Indexing (LSI) [22] is based on a similar idea to that of VSM, 

in that it uses fixed length vectors to denote the occurrence of keywords. Instead of 

treating each resultant vector as an independent entity, all vectors produced are 

gathered into matrix form (the term document), with rows representing keywords 

and columns representing documents. The matrix is decomposed into three matrices 

(term, concept and document) via a rank reducing variation of Singular Value 

Decomposition (SVD) (see equation (2.6)). The reduced rank chosen typically is 

very much smaller than that of the original matrix (reduction to 100-500 is usual).  

 

ܺ = ܶ ∗ ܥ ∗  ்ܦ

 

(2.6) 

 

Where :  

 mxn term document (m=number of keywords, n=number of documents) = ࢄ

 mxr term matrix (r=reduced rank) = ࢀ

  rxr concept matrix = ࡯

 ( is rxn ࢀࡰ the transpose) nxr document matrix = ࡰ

 

SVD decomposition highlights hidden/latent semantic concepts (stored in the 

singular value matrix) which connect keywords to documents. The index is formed 

primarily of the document matrix, with the term and concept matrix as necessary 

ancillary structures. Queries by example (a vector) are initially transformed into a 

pseudo-document ܲ via equation (2.7): 



- 17 - 

 

ܲ = ்ܳ ∗ ܶ ∗  ଵିܥ

 

(2.7) 

 

Where: 

ܲ=PseudoDocument 

்ܳ=Query vector (transposed) 

ܶ=term matrix 

 ଵ=concept matrix (inverse)ିܥ

 

Ranked results of indexing similarity are produced by applying a suitable 

similarity metric (Euclidean distance, angle between vectors etc) to the pseudo-

document and each row vector in the document matrix. 

2.2.3.1 Images 

Some approaches to the indexing of images were examined in the section on 

context indexing, but the data content of the image itself provides the richest and 

most accurate description of it. Content Based Image Retrieval (CBIMR) aims to 

use this data to provide accurate indexing information that does not require 

additional external cues. The vast majority of CBIMR uses the query by example 

model. 

Many approaches to CBIMR use global statistical properties of the image as an 

index. One popular property is colour. One of the earliest approaches by Swaine et 

al. [23] involves decomposing images into histograms of the opponent colour space. 

Query images are similarly decomposed, and a direct comparison between 

histograms is made via histogram intersection. Indexes on features-vectors produced 

from HSV colour space histograms extracted from images are utilised in [24]. 

Queries are ranked by the cosine of the angle between the query feature-vector and 

indexed feature-vectors. A similar approach is taken by [25] where a structure 

named a Correlogram distils the spatial correlation of colours within the image; 

ranking is via the L1 distance (Manhattan distance) between the query and indexed 

Correlograms. A variation on the colour histogram is presented in [26], where the 



- 18 - 

HVC colour space6 and a HVC distance metric are used to cluster the colours within 

an image together to form an effective index. 

Another useful second order global image feature is that of texture. Liu et al. 

[27] use a 2D Wold decomposition7 to extract three orthogonal measures of texture 

from images: harmonic, evanescent, and indeterministic, which form the basis of the 

index feature vector for the image. Highly structured query images (those which 

posses a high harmonic rating due to repeated patterns) are compared purely using 

harmonic peak matching as an efficiency measure. All other query images are 

compared using the evanescent / indeterministic components. Rotation and scale 

invariant Gabor filters (achieved by using collections of Gabor filters at differing 

orientations and scales) are used in [28] to extract robust texture feature vectors 

from images that are used as the index. The distance between query and index 

feature vectors is used for ranking results. 

2.2.3.2 Local image features 

An alternative approach to CBIMR uses collections of local features extracted 

from the image as a means to classify/index the image. A progression from the 

purely textual context image indexing systems [29] uses a collection of manually 

entered semantic image annotations together with a hierarchical multi-resolution 

decomposition of the image to model image categories using two-dimensional multi-

resolution Hidden Markov Models (2DMHMM). Once fitted to the training data, 

these 2DMHMMs can be used to find the best fitting collection of semantic index 

annotations for arbitrary images presented to them. This system has the potential to  

bridge the semantic gap between low level image features and high level semantic 

concepts, which will allow users to query for abstract image attributes (such as ‘blue 

sky’), rather than keywords or example images. Developing a bottom up approach to 

                                                
6 The colour space which represents colours along the human colour perceptual 

dimensions 

7 A Wold decomposition is a method of decomposing time-series data into 
uncorrelated components. 



- 19 - 

categorisation/indexing, [30] extracts Harris affine regions8 [31] from the image, 

transforms then into SIFT descriptors9 [32], assigns these descriptors to feature 

clusters via vector quantisation (forming keypoints), then constructs a feature vector 

composed of the number of features assigned to each cluster (this is known as a bag-

of-keypoints). The bag-of-keypoints can then be used to determine what 

predetermined category the image is best described/indexed by. [33] adopts a similar 

approach in that it breaks images down into low-level keypoint features; however, it 

adds hierarchical levels of structure above the lowest keypoint level, with 

probabilistic spatial relations linking higher parts of the structure to the lower level 

elements. Hierarchical structuring of spatial relations is also a key feature of [34], 

which uses quadtrees to partition the image, and form the basis of the indexing. 

Queries are made more efficient by the ability of the representation to filter out 

unsuitable matches quickly by matching at the coarsest levels of the hierarchy first.  

2.2.3.3 Music 

Music is another complex and ubiquitous data source that would benefit from 

reliable indexing. Music is often manually categorised in terms of style of music, 

and the work in [35] automatically assigns styles to collections of audio. The method 

involves extracting 6-second clips from each audio source, creating a time-invariant 

representation of it by Fourier transforms, and then allowing a self-organising-map 

(SOM) [36] to cluster the collection of time invariant representations. The clusters 

allow the music to be broadly indexed, and for new music to be categorised, 

although the categories do not have any clear semantic meaning. [37] Uses a 

polyphonic multi-pitch detector to record all the notes in a piece of music into a 

pitch-histogram, which is then transformed into a small feature vector which records 

the frequency of the most dominant folded10 pitch, the time-coverage of that 

dominant folded pitch, the most dominant raw pitch, and the histogram distance 

between the most dominant and second most dominant pitch. Manually categorised 

                                                
8 Images regions which are invariant w.r.t. translation, scaling, and rotation; are 

partially invariant to illumination changes and robust to local geometric 
distortion. 

9 Scale-Invariant Feature Transform 

10 Folded here meaning all notes are transformed to lie within one octave 



- 20 - 

music (5 categories) is similarly decomposed into feature vectors and used as cluster 

seeds, and then k-nearest-neighbour classification can assigned unseen music into its 

closest category. Musipedia [38] is a website that offers a query-by-humming 

service, music is indexed by contour strings [39], which record only the change in 

pitch in a monophonic melody, disregarding time/tempo. User queries (in the form 

of humming, or midi files) are similarly decomposed into contour strings and 

matched against music in the index by the edit distance between the two strings. 

2.2.3.4 Video 

Video offers another challenging dimension to indexing, that of time (since 

video is essentially a temporal sequence of images), and multi-modality 

(accompanying audio tracks, (tele)text, captions etc). Temporal 

segmentation/indexing of video is a well researched area, most techniques using 

some variation of scene change11 detection such as using inter frame difference 

metrics to detect abrupt scene changes and block based motion analysis to detect 

gradual fades/dissolves [40,41]. The temporal segmentation allows a video to be 

decomposed into a sequential number of segments and then representative key 

frames are selected for each segment and indexed into an image database12. 

More sophisticated approaches make use of the temporal evolution of the 

video. [42] adopts a unimodal approach, indexing based on the global motion 

present with video. It produces motion activity maps (MAM), which are basically 

2D histograms (see Figure 2.3) which capture the magnitude and spatial distribution 

of motion within a  video clip by summing then quantising the motion vector fields 

over a series of video frames. This allows video content to be indexed over the 

spatial distribution of motion, which is useful in applications such a video 

surveillance which are typically only interested in activity in specific regions (such 

as doors, windows). 

                                                
11 such as fades, dissolves, abrupt scene changes etc 

12 The author is not aware of any instance of videos being indexed on their entire 
global content, at least not from a content analysis angle. 



- 21 - 

 

Figure 2.3 – Differing areas of motion activity captured using a motion activity map 

 

The approach seems similar to that of Motion History Images (MHI) [43], 

applied to video indexing rather than visual movement classification, the main 

difference being that MAMs do not have any notion of direction of movement, 

recording only magnitude and spatial information. In the paper, the MAMs are only 

used as a means of interactive video navigation, rather than a full blown information 

retrieval model, but using the MAMs as index seems perfectly feasible, as 

demonstrated by the other CBIR models covered here which are histogram based.   

As with images, video indexing can make use of collections of local features 

as well as global characteristics. [44] indexes half-second video clips by first 

segmenting out pixel regions of consistent motion content and colour from the 3D 

pixel space produced by stacking the half-second of video images. From the 

consistent regions, 7D spatio-temporal descriptors are produced which summarise 

the motion and colour of each region. Thus, each half-second clip is decomposed 

into a variable number of these 7D descriptors, and this set is manually labelled with 

the originating video clip. Queries also take the form of half-second video clips, are 

similarly transformed into a set of 7D descriptors, and then compared to the indexed 

video clips using k-NN to find the video(s) which are most similar to the query. 

[45] adopts a multi-modal approach to the indexing of association football  

videos, taking into account video, audio and textual information. Interesting events 

to look for are predefined using fuzzy Allen Time Interval Relations [46], which is a 

propositional logic like language allowing binary temporal statements to be made 

(such as X precedes Y). This enables events to be composed of features from 

different modalities that do not occur simultaneously in time. The features 



- 22 - 

themselves are extracted from text (detection and video optical character recognition 

of closed captions), video (type of camera work, face detection, close-ups,) and 

audio (excitement level of commentator). Given the events rules and analysed video 

modalities, the video can then be indexed on successful firing of the event rules. 

This system forms the basis of the association football video search engine, Goalgle, 

which allows users to quickly search association football videos based on the 

predefined event rules (such as goal, yellow card, substitution).  

2.2.3.5 Trajectories 

Perhaps of more direct relevance to the data available to this thesis are 

approaches based on trajectory data. Chen [47] uses wavelets to smooth and 

segment trajectories into component parts (the parts being sections of the trajectory 

during which acceleration does not change quickly). Each sub-trajectory is 

transformed into a feature vector recording the acceleration, initial velocity, and the 

trajectory shape; each sub-trajectory feature vector being indexed as belonging to 

the parent trajectory. Query trajectories are similarly decomposed into parts, and the 

index is searched for sub-trajectories which match each part, the Mahalanobis metric 

being used for similarity rating. The results are consolidated and ranked by the 

number and quality of sub-part matches.  

Extracting trajectories from video of street surveillance, the work described in 

[48] normalises and splits the trajectories into their separate x and y components 

(essentially time-series). The components are decomposed using Haar wavelets, and 

the first eight coefficients of each component projection form the feature vector for 

indexing. Query trajectories are similarly decomposed, and ranking is achieved by 

the Euclidean distance between feature vectors.  [49] Presents a novel way to index 

spatio-temporal trajectories using Chebyshev Polynomials(CP) [50]13, which are a 

set of orthogonal polynomials, defined recursively as (see Equations (2.8) (2.9) 

(2.10)): 

 

 

                                                
13 Specifically Chebyshev polynomials of the first kind. 



- 23 - 

଴ܶ(ݔ) = 1 (2.8) 

ଵܶ(ݔ) =  (2.9) ݔ

௡ܶାଵ(ݔ) = ݔ2 ௡ܶ(ݔ) − ௡ܶିଵ(ݔ) (2.10) 

 

The first six Chebyshev polynomials are shown in Figure 2.4.  

 

 

Figure 2.4 – The first six Chebyshev polynomials over the interval [-1,1] 

 
One use of CPs is for function approximation [51], where an arbitrary data 

time series or function can be approximated by the summation of the first ܰ 

Chebyshev polynomials, multiplied by Chebyshev coefficients [ܽ଴, …	, ܽ௡] 

(Equation (2.11)): 

 

(ݔ)݌ = ෍ܽ௡ ௡ܶ(ݔ)
ே

௡ୀ଴

 
(2.11) 

 

Numerical methods exist which can calculate the optimal fit for the 

coefficients in order to best approximate an arbitrary time series of data (the paper 

uses the Gauss-Chebyshev quadrature). The paper uses this function approximation 

to create approximate versions of trajectories, a relatively low number of 

coefficients provides a good trajectory approximation. All trajectories are converted 

into CPs, and the coefficients form the index for the trajectories. Queries on 

trajectories take the form of a target trajectory, which itself is converted into CP 



- 24 - 

coefficient form, and then a similarity metric (see Equations (2.12), (2.13), (2.14)) is 

used to calculate the distance between pairs of CPs (one being the query CP, the 

other CP index entries). With the specific metric presented, similarity in CPs 

corresponds to similarity in the original trajectory.  

 

	ଵܥ⃗ = [ܽ଴, … , ܽ௠] (2.12) 

 

		ଶܥ⃗ = [ܾ଴, … , ܾ௠] (2.13) 

 

	ଵܥ൫⃗ܦ , 	ଶܥ⃗ ൯ = ඩ
ߨ
2෍

(ܽ௜ − ௜ܾ)ଶ
௠

௜ୀ଴

 

(2.14) 

 
Where: 

 =query-vector	ଵܥ⃗

 =index-vector		ଶܥ⃗

	ଵܥ൫⃗ܦ , 	ଶܥ⃗ ൯=distance between the query-vector and the index vector 

 

The work presented in [52] breaks down trajectories into subparts, segmenting  

based on the sharpness of the 2D curve of the trajectory, normalising and resampling 

the sub-trajectories (so that they all have the same size), and storing them in a 

matrix. PCA [53] is applied to the matrix, and the most significant components form 

a feature matrix. Two variations of indexing are presented, in the first query 

trajectories are similarly decomposed into a feature matrix, and matching/ranking is 

achieved via summing the minimum Euclidean distances between sub-trajectories 

PCA coefficients of the query and indexed trajectories. This appears to be very 

computationally expensive. The second variation uses spectral clustering [54] to 

assign categories to the indexed sub-trajectories, clusters are assigned a letter/code, 

and the trajectory is described as string. Query trajectories are also decomposed and 



- 25 - 

transformed into strings, and matching/ranking is perform via the Edit distance 

metric for strings [55].  

Whilst the previous approaches only index individual trajectories, [56] is able 

to index collections of trajectories simultaneously. Multiple trajectories are 

represented as a tensor14. A method of tensor decomposition known as parallel 

factor analysis (PARAFAC) [57] decomposes the tensor into the three loading 

vectors. The tensor is then multiplied by the two most significant vectors to produce 

a matrix of coefficients. This matrix (plus the two vectors as metadata) forms the 

index for the multiple trajectories. Multiple trajectory queries, also represented as 

tensors, are multiplied by each indexed tensors loading vectors to produce a 

coefficient matrix. Ranking of results is via the Euclidean distance between the 

matrices. 

A related field to that of pure trajectory indexing is the study of moving object 

databases (MOD), where the spatial coordinates of collections of entities (such as 

vehicles, mobile phones and other location aware devices) are continually logged to 

form extended spatio-temporal trajectories. Queries are likewise spatio-temporal in 

nature, such as “how many objects were within range R of location X at time T”. 

MODs are typically very large in terms of data volume, and as such efficient means 

of indexing their spatio-temporal content are required. Early approaches used the  R-

Tree [7] and its variants [58,59] to spatially partition the data into collections of 

MBBs, each one covering an objects complete spatial distribution over its lifetime 

(see section 7.8 for a brief overview of database use and terminology). This 

partitioning allows the database to efficiently preselect a subset of the data that is 

spatially relevant to the query, before more expensive (distance) similarity 

operations are performed on the subset of data. One problem with this early 

approach is that it does not take into account time; long lived objects may have large 

MBBs (as they have had time to move significantly) and as such considerable 

overlaps could exist between object MBBs, severely reducing the effectiveness of 

the data partitioning.  

Later approaches incorporated the time dimension explicitly into the indexing; 

the multi-version R-tree (MVR) [60] introduced a series of time-interval labelled 

                                                
14 which is a generalisation of the vector (1-tensor) and matrix(2-tensor) 



- 26 - 

MBBs which evolve over the lifetime of a tracked object, each individual MBB 

being more compact than the equivalent MBB encompassing the entire history of the 

object, thus allowing more discrimination partitioning (when a time interval is 

explicitly queried at least). [61] improves on the basic MVR approach by proposing  

a number of greedy algorithm heuristics which can break down a single MBB 

covering the entire lifetime of an object into a collection of k smaller variable time-

length MBBs which approximately minimise the volume covered (see Figure 2.5). 

 

 

Figure 2.5 – minimising MBB volume coverage by using a collection of smaller MBBs to cover the 

trajectory rather than one large MBB. 

 
Moving objects such as trains and cars do not exhibit unconstrained 

movement, rather they move within predefined spatial networks. This constraint can 

be used to further boost the efficiency of the indexing, as in [62] where the positions 

of trains and cars are indexed in a two-stage fashion. A MBB is constructed around 

the route taken by the tracked entity in the first stage, allowing an optimal MBB to 

be constructed, as the spatial layout of the network is known a priori. Since travel 

along a route is essentially movement along a line, the progress along the route can 

simply by represented by a point on the interval [0,1] (where 0=beginning of route, 

1=end of route), and can be easily indexed by a 1D R-Tree (essentially performing 

straight line segmentation). 

2.3 Behaviour modelling review 

A good dictionary definition of behaviour [63] is as follows: 

 

“The actions or reactions of a person or animal in response to external or internal stimuli.” 

 



- 27 - 

The first step in modelling behaviour is to choose a paradigm in which the 

various approaches to behaviour modelling can be viewed. The obvious paradigm to 

choose is that which views the entities that are to be modelled as agents [64]. Just as 

Object Orientation [65] was an important paradigm shift in software engineering, 

allowing modelling to be centred around clusters of data exhibiting strong cohesion 

together, so the Agent based approach is a natural fit for behaviour modelling, 

allowing modelling to be centred around entities which cluster cohesive behaviour 

[66]. As a useful modelling approach, Agent usage became popular from the 1990s 

onwards in such fields as economic theory [67,68], artificial life research [69,70] 

and network optimisation [71,72]. 

There are many dimensions in which a review of behaviour modelling from an 

agent perspective could be taken. How the behaviour is learnt (Hand crafted, 

induced from data, learnt online), how the behaviour is represented (Production Rule 

System, State Machine, Hidden Markov Model, Neural Network etc), whether the 

modelling involves a single agent or can be considered a multi-agent system. For the 

purposes of this thesis, the first approach of how the behaviour is learnt will be 

taken. 

2.3.1 Hand crafted behaviour models 

This thesis defines handcrafted behaviour models as those in which either: 

 

(1) The rules of behaviour for the system being modelled have been explicitly 

defined. 

(2) The rules of behaviour for the system being modelled have been implicitly 

defined by explicitly defining fitness functions for this behaviour (and 

allowing the actual rules to be generated to fit this ideal model). 

 

The Agent paradigm has actually been active since the late 1940s when John 

von Neumann introduced the idea of the von Neumann machine [73], which was a 

notional machine capable of reproducing itself. The idea was developed further in 

concert with Stanisław Ulam, to produce the idea of Cellular Automata, where 

agents are fixed within an n-dimensional grid only seeing and being able to affect 



- 28 - 

automata in neighbouring cells. The classic example of Cellular Automata is John 

Conway’s Game of Life [74] in which extremely simple pre-programmed cellular 

automata are nonetheless able to produce complex emergent patterns on a 2D grid. 

Rodney Brooks, an opponent of the symbolic computation direction that 

artificial intelligence took in the 1970-80’s was at the forefront of a push to 

investigate biologically inspired agent architectures [75,76] (his agents were 

physical robots). His central thesis was that true intelligence should be built from the 

ground up, emerging from the interactions of simple pre-programmed behavioural 

modules, which were modelled as Augmented Finite State Machines (AFSM). The 

separate AFSMs were accommodated within what Brooks termed a Subsumption 

Architecture [77], which is a bottom up behavioural architecture where the modules 

at the lowest level (say obstacle avoidance) can influence modules at higher levels 

of the architecture (say robot movement), but not vice-versa. The behaviour of the 

whole robot is due to the emergent behaviour caused by the interactions of the 

behaviour modules. 

Another example of complex emergent behaviour resulting from interactions 

of simple behavioural agents is the work of Reynolds [78], who uses a Multi-Agent 

System (MAS) of very simple agents in order to simulate flocking in birds (and by 

extension other creatures which also move in a mass emergent pattern such as fish). 

Each agent (a boid) has simple, predefined behaviour, captured as ranked set of 

production rules. These rules capture the boids urge to join the flock alongside its 

aversion to colliding with other members of the flock. In decreasing order of 

importance, the flock rules are: 

 

 Collision Avoidance: avoid collisions with nearby flockmates  

 Velocity Matching: attempt to match velocity with nearby flockmates  

 Flock Centring: attempt to stay close to nearby flockmates 

 

The boids are given only a limited perception of their environment, only able 

to see local neighbouring boids. However even with these simple behavioural rules 

and limited environmental knowledge, the interactions that occur between the boids 

allows complex behaviour to emerge from these interactions. A few things to note 



- 29 - 

about the boids. Firstly they are stateless, i.e. they have no memory of the past, the 

simply react to their environment. In the case of the boids the spatial environment in 

which they are embedded is empty/isotropic, so what they are really reacting to is 

the perception of other nearby agents; in effect the other agents are non-stationary 

environmental features. The degree to which a particular agent within a MAS is 

aware of the other agents is addressed in [79], which lists three levels of agent 

awareness, which are in order of increasing complexity: 

 

 Level 1 – Agents are not explicitly aware of other agents, but instead 

view them as (non-stationary) parts of the environment. This implies 

that level 1 agents respond to other agents via environmental sensing. 

 Level 2 – Agents are explicitly aware of each other and can interact 

directly together via exchange of messages. 

 Level 3 – Agents are explicitly aware of each other and possess the 

ability to generate internal models of other agents which they can use 

to predict agent behaviour. 

 

Under this classification, boids are clearly level 1 agents. Social insects are a 

rich area of research for agents at level 1, and are grouped under the general term 

Swarm Intelligence (SI) [80]. The behaviour of ants within colonies is the archetypal 

example of SI, and central to any model of ant behaviour is the concept of 

Stigmergy [81], which is the indirect communication between agents via the 

environment (in the case of ants it is via pheromones). Stigmergy allows collections 

of ants to discover surprisingly optimal routes to and from food sources, even 

though the ants themselves possess only a limited repertoire of behaviour (which can 

be easily be modelled as a Probabilistic Finite State Machine). Ant Colony 

Optimisation (ACO) is the area of research which abstracts the behaviour of ants 

and directs it to solving general optimisation problems as diverse as scheduling the 

movement of partially built cars in an assembly line [82], discovering rule based 

classifiers during data mining [83] and performing binary thresholding on images 

[84]. 

Sport is an area where behaviour modelling is of great interest, as a tool for 

analysis as well as what if scenarios and team selection. American Football is in 



- 30 - 

many ways a much simpler game than its English namesake, and this relative 

simplicity allowed [85] to identify a finite set of American football plays, which 

were hand encoded using a Temporal Structure Description (TSD). These TSD 

encodings describe the permitted temporal behaviour of the set of players involved 

in any particular play. This has the advantage that the behaviour modelled is 

explicitly multi-agent. The main disadvantage obviously is that they are hand 

encoded, which would be intractable for the domain of learning association football  

behaviour from actual data. If a method could be discovered which could 

automatically generate the TSDs, then this would be a large step forward in team 

behavioural modelling. 

Robocup is a yearly competition that pits teams of robot footballers against 

each other. As this competition involves many research areas, such as object 

tracking/identification and robotics, many of the robotic agents either utilise hand 

crafted behaviour models [86,87], or models generated via evolutionary techniques 

[88,89]. 

Dee [90] builds behaviour models based on the perceived intentions/goals of 

tracked entities traversing a known scene. Two variations of this principal are 

presented; the first produces a static behaviour model based upon psychologically 

valid models of human navigation. These high-level behaviour models have the 

advantage that they are quite robust to change because of their generality. Another 

advantage is that the goals/rules produced by the behaviour model are readily 

understandable by humans (which is often not the case with purely statistical models 

without the use of visualisation techniques). The second produces an ephemeral 

behaviour model of the tracked entity, by continuously updating the conjectured 

intentions of the entity being tracked as it moves. Being dynamic in nature this 

variation has the advantage of being able to adapt to new behaviour exhibited by 

tracked entities. This second variation is actually an example of learning behaviour 

from data, and so leads into the next review section. 

2.3.2 Behaviour models learnt from data 

This thesis defines “induced from data behaviour models” as those in which 

there is an available body of behavioural data. From analysis of this data, actual 

behaviour models can be built, and the resultant models should be a good fit to the 



- 31 - 

actual behaviour displayed within the data. In other words, the behaviour model(s) 

are used to build an accurate simulation of the system under study. 

Statistical approaches have been used successfully within the vision 

community to model behaviour. Johnson [91] uses Vector Quantisation (VQ) 

techniques coupled with a Neural Network (NN) to statistically model the typical 

trajectories of pedestrians crossing a car park. VQ is first used to generate a set of 

state prototypes, which represent the most statistically significant object locations 

and associated velocities at these locations. These state prototypes are then used in 

the training of a NN, with a specialised dissipative or ‘leaky’ layer of neurons that is 

able to encode the temporal nature of trajectory. Further VQ on the output of the NN  

generates a set of trajectory prototypes, capturing the most likely behaviour of 

pedestrians. These prototypes can then be used either in a recognition role to spot 

usual/unusual behaviour, or in a generative role to provide realistic pedestrian 

trajectories. Later Johnson describes experiments in modelling behaviour between 

objects, firstly using the statistical co-occurrence of events between objects, and 

then modelling the joint behaviour of interacting objects is explored. Both of the 

techniques as stated are limited to the binary interactions. 

Markov Models, Hidden Markov Models (HMM) and their variations are often 

used to model temporal behaviour / sequences of events from data. Galata [92] uses 

one variation on the HMM called the Variable Length Markov Model (VLMM) to 

represent sequences of atomic behaviours. The atomic behaviours are discovered 

from the data by searching for minima in the velocity of the object being modelled, 

the atomic behaviours identified as existing within the interval between two time 

adjacent velocity minima. More complex behaviour can be modelled by again using 

VLMMs to sequence together VLMMs containing only atomic behaviours. This 

hierarchical modelling approach allows richer object behaviour to be modelled. 

Magee [93] uses another variation of the Hidden Markov Model called a Multi 

Stream Cyclic Hidden Markov Model (MSCHMM) to model the movement of 

cows’ legs, primarily in order to automatically detect lameness in cattle. The 

MSCHMM is trained on cycles of archetypal cow leg movements automatically 

extracted from video of cattle walking past a static camera. Once trained, the 

MSCHMM can be used to predict cattle leg movements given a particular initial 

pose. 



- 32 - 

Brogan [94] involves analysing data archived from Robocup football matches 

[95] in order to model realistic agent behaviour over the team as a whole from logs 

of previous Robocup matches. He simplifies the data by generating Presence 

Density Maps (PDM) for each team, at each time interval. These PDMs are 2D 

Gaussian global representations of player locations at each instance. Behaviour 

modelling is achieved by predicting future PDMs from current PDMs, the future 

PDMs indicate the areas of greatest density which the agents should gravitate 

towards in order to replicate the observed behaviour in the original game. Even very 

simple agents could exhibit realistic movement behaviour given this scheme, 

assuming that the correct PDMs are predicted. 

In Kaminka et al. [96], logs of previously played Robocup matches are 

analysed using a domain-dependent logic to generalise actions, creating time series 

of atomic actions from the raw data. These time series are then further analysed to 

identify repeated sub-sequences of actions. The facility to reject sequences that are 

frequent, but due to random co-occurrence rather than deliberate action, is also 

demonstrated. 

At first predicting the next sequence in a time series may not seem to be a 

example of behaviour modelling, but many time series do represent human 

behaviour either in abstract form such as stock indices (arrived at by the mass 

participation of human traders), or trajectories represented as one or more time 

series. [97] looks at the use of Support Vector Machines (SVM) and NNs to model 

time series in an non-linear autoregressive manner (that is using the past information 

of the time series as a means to predicting its future value), drawing the conclusion 

that both SVMs and NNs can provide robust accuracy of prediction when used in 

this manner. The use of autoregression to model the movement behaviour of a 

housefly is covered in [98], where a linear autoregressive approach is taken and was 

able to identify two distinct components of the fly behaviour, that of velocity and 

angular motion which appeared to be independently controllable. 

2.3.3 Behaviour models learnt experientially 

This thesis defines experientially learnt behaviour models as those in which the 

participants begin with no behaviour model, but learn behaviour models by 

observation/interaction with the environment and/or other agents.   



- 33 - 

Reinforcement learning is a classic online modelling method. In overview it 

involves the agent viewing its environment as being in one of a finite number of 

states, each state has one or more actions associated with it that will cause the agent 

to transition into a new state. Each state also has a scalar reward associated with it, 

so moving from one state to another can result in gaining or losing rewards. The 

ultimate aim is to learn the optimal policy for the set of states, that is the actions at 

each state that will maximise reward for the agent. The collection of states, actions 

and rewards can be represented by a Markov Decision Process (MDP). 

Back within the domain of Robocup, [99] uses a combination of 

Reinforcement Learning and Semi-Markov Decision Processes (SMDP) to enable a 

team of Robocup agents to learn to play keepaway association football, where the 

aim of the game for the team in possession of the ball to keep possession of the ball 

for as long as possible. SMDPs, which generalise MDPs, are used to enable handling 

extended actions that last longer than one state transition. 

A more general case of robotic acquisition of behaviour is given in [100], 

where a specific variant in reinforcement learning, called Q-learning, is used in 

conjunction with a NN which has the capacity to constructively grow. The main 

advantage of Q-learning is that it does not require a model of the environment; it 

couples states and actions together and maps them onto a reward value (which are 

by default stored in a table). Over the course of the online learning, providing the 

learning converges, this table becomes closer and closer to the optimal policy. The 

NN is used as a function approximator, enabling the Q-learning system to not have 

to use a table (which can get very large if there are a large number of states and/or 

actions). At the start of learning, the Q-learning table has identical rewards for all 

entries (unless biased with a priori knowledge). 

2.4 Summary 

This chapter has reviewed work in the information retrieval domain for 
indexing large datasets of varying composition and complexity. The concept of 
indexing was introduced, that is the creation of a mapping from dataset entries to 
compressed/simplified keys (the index), and then two general approaches to 
indexing were reviewed: context based indexing and content based indexing. Of the 
two, context based indexing is the simplest and uses information which is associated 
with the indexed data, or into which the indexed data is embedded, as the basis for 



- 34 - 

the index. Google image search is a good example of context indexing, with the 
hypertext into which images are embedded providing the context. The second 
approach of content based indexing is more popular, both in general use and in 
research, because it is a more powerful approach which analyses the nature of the 
data itself to generate indices. It can be categorised into approaches which utilise 
global properties of the data being analysed (such as a colour histogram of an 
image), or those which utilise a collection of local properties (such as a collection of 
SIFT descriptors for an image), with both approaches being well represented in the 
literature. Examples of content based indexing were covered spanning WWW pages, 
text corpora, images, music, video and trajectory data. With regards to this thesis, 
current sport based indexing was shown to be predominately in the video domain, 
which gives scope for this thesis to extend this research into the trajectory domain, 
which is covered in chapters 3 and 4. 

A review of behavioural modelling was also undertaken, with literature from 
the fields of manually-created, dataset induced and experientially learnt behaviour 
models being covered. Whilst all three fields are well represented, and can each 
produce effective models, it is the level of autonomy of learning which separates 
them. Manually created behaviour models are most suitable if a definite goal or set 
of behaviours can be expressed (or is desired), and may require extensive human 
intervention to create the model. Data induced behaviour modelling is most suitable 
for replication/simulation of recorded behaviour, and requires human attention to 
prepare and present the dataset to the learning process. Experientially learnt 
behaviour models are most suitable if a definite environment to operate in is known, 
but a specific set of required behaviour is unknown or mutable, and requires the 
least intervention after the initialisation of the learning process. For the purposes of 
the behaviour modelling aspect of this thesis, which is to produce accurate 
behaviour models of players from captured player trajectory data, the modelling via 
induction from data approach is the most suitable, and is this undertaken in chapter 
5. 
  



- 35 - 

3 Indexing 

This chapter presents a framework for indexing segments of football play, 

using a data partitioning indexing model which allows a two stage index query 

process to occur : the first stage efficiently partitions the total data into a smaller 

subset of relevant indexed objects; the second stage ranks indexed objects in the 

subset using additional indexing metadata. Within this general indexing model, 

multiple novel indexing representations are developed to cover player trajectories 

individually, as groups of players, and as a team mass, and to index the trajectory of 

the ball. The competing representations are then evaluated. 

3.1 Introduction 

Football is a complex game, but it can be characterised at a tactical level by 

collections of relatively short periods of play. Set pieces such as corners and free 

kicks, and free flowing moves such as wing attacks can all be viewed as segments of 

play, with at least approximate start, duration and end times (this is somewhat 

subjective in the case of free flowing moves). Once matches are decomposed into a 

series of segments of play, the possibility of comparing matches at this level 

emerges. The ability to find similar segments of play in games by presenting an 

example (either archetypal or actual) would be a powerful tool in the hands of 

football coaches. As covered in chapter 2, this type of functionality is what is 

offered by indexing systems; namely the ability to characterise a collection of 

objects, and then to allow similarity searches over this collection by presenting a 

query object of the same type. This is the problem being addressed in this chapter; 

namely can an indexing system be devised that will accurately describe segments of 

football play in a compressed manner and allow the discovery of similar segments of 

play when presented with a query Segment Of Play (SOP). 

 

 



- 36 - 

3.2 Formal problem statement 

Expanding on the introduction section, the required functionality for the 

indexing of SOPs is: 

 

(1) The indexing system should be able to index SOPs, at any point in a match, 

down to a fidelity of 0.1s, matching the fidelity of the tracking data.  

 

(2) The user query should take the form of an arbitrary initial player 

configuration and at least a general notion of how this configuration evolves 

in the near future. This could take the form of an actual example SOP, or it 

could be produced as the result of a more complex operation where the user 

individually specifies types of team movement he/she is interested in finding. 

 

(3) The indexing system should analyse the user query and use it to locate 

similar segments of play from all available indexed segments of play, whilst 

simultaneously rejecting bad configurations (Figure 3.1).  

 

 

 
Figure 3.1 – Indexers should find similar results whilst rejecting the majority of dissimilar 

results. 

 

(4) Trajectories on the pitch are spatially context sensitive. In Figure 3.2 even 

though the trajectories A and B are identical in relative movement terms, 

they are very different within the context of a football match. Any indexing 

system should be able to cope with this context sensitivity. 

 



- 37 - 

 

Figure 3.2 – Spatially context sensitive trajeories. Although trajectories A and B have the same 

shape, they have different semantic content within the game. 

 

3.3 General Indexing Model 

Two broad approaches to indexing emerge when it is viewed from the 

perspective of how queries are satisfied. The first approach applies a similarity 

metric between the query (which is firstly decomposed into a suitable index format 

if it is query by example) and each individual indexed object entry, such that given ݊ 

indexed objects a set of ݊ similarity ratings are produced. This approach is used by 

the majority of the indexing work reviewed in chapter 2 

[19,20,22,23,24,25,26,27,28,30,37,47,48,49,52,56]. It has the advantage that the 

resultant ranking produced is complete, and assuming the object indexes are 

representative of the object and the similarity metric is valid, will produce an 

accurate ordered list of the most similar objects matching the query. The 

disadvantage is that all indexed object entries must be operated upon by the 

similarity metric as there exists no means to preselect subsets of the index before 

application of the similarity metric. This could become prohibitive computationally 

if the similarity metric is very complex and/or if the volume of indexed objects 

becomes very large.  

The second approach involves partitioning the indexed data prior to any 

queries, based upon the contents of the index (or subparts thereof). Queries, which 

are themselves decomposed into an indexed form, can then be used to preselect 

subsets of data which are relevant to the query based upon which data partitions 

match with (portions of) the query index. The resultant subsets can then be ranked 

by applying the similarity metric to each member of the subset. This approach has 

the advantage that it can efficiently deal with large volumes of data and/or complex 



- 38 - 

similarity metrics by quickly selecting a smaller subset of data. For this reason it is 

the favoured approach of systems which do have large volumes of data such as 

search engines [10] which use full inverted indexes to partition (realised as B-trees), 

or moving object databases [60,61,62] which use the R-Tree and variants to 

partition. The disadvantage of this approach is that either duplicate results can exist 

if index data partitions overlap (also the efficiency of using partitioning decreases as 

overlap increases), or if partitions are exact then potential good results may be lost if 

they exist in unselected partitions. 

With respect to this thesis, each individual football match has the potential to 

generate approximately 54,000 unique index objects (football play segments are 

allowed to be indexed to a 0.1s fidelity and there are 5,400 seconds in 90 minutes). 

Given that the volume of archival football data available is already large (5+ years 

worth of tracked matches), and that it is open ended, it is the view of the author that 

the potential volume of index data is sufficiently large to justify adopting the 

indexing approach of partitioning the indexing data prior to any queries. 

To be compatible with the data partitioning approach, the proposed general 

index structure will be a composite structure (see Figure 3.3). When a given SOP is 

indexed, three structures are generated: the Partition Index (PI), the SOP Reference 

(SOPREF) and the Ranking Metadata (RM). The PI is used to partition the indexed 

SOPs into subsets. The PI should be abstract enough such that multiple indexed 

SOPs will have identical PIs15, thereby grouping together SOPs that are viewed as 

approximately similar within the indexing scheme (cf. clustering, indeed the PI 

could be as simple as a cluster ID). Each unique PI is associated with a set of 

indexed SOPs; each set member is a composite object consisting of a SOPREF and 

RM. The SOPREF is a 3-tuple which specifies which match the SOP occurred in, 

the half of the specific match, and the time within the specific half at which the SOP 

started.  

                                                
15 ideally each partition should have approximately equal numbers of members. 



- 39 - 

 

Figure 3.3 – General Indexing Structure proposed for all indexing systems – the PI is used as a key 

to quickly select the relevant subset of SOP data, and points to one or more SOPREF+RM pairs. 

The RM is used to sort the resultant set of SOPREF+RM pairs if the PI points to more than one 

pair. 

 
The RM contains additional information about the SOP not referenced in the 

PI16, and is used to order results. To understand its use, it is necessary to describe the 

general method of query satisfaction. A query by example model is taken, meaning 

an example SOP is used as a query and the indexing system must find SOPs that 

resemble it. The query SOP is broken down into a PI, and RM. The query PI is used 

to quickly locate the subset of indexed SOPs that are approximately similar to it. 

The will result in a set of SOPs which are all equally similar to the query SOP w.r.t. 

the PI. The query RM is then compared to each of the set members RM using a 

similarity metric to give a ranked list of SOPs. 

In indexing systems, which utilise data partitioning, it is sometimes necessary 

to relax an initial query in order to encompass a larger subset of the indexed objects. 

For instance, web search engines often use synonyms of keywords to relax strict 

keyword searches, and moving objects databases have the capability to expand 

search regions. The ability to relax a query will be included in the indexing schemes 

proposed. This relaxation should be an iterative process, i.e. it should gradually 

expand the number of valid partitions available, until the most relaxed search 

effectively includes all entries in the indexing scheme (i.e. it is now functionally 

                                                
16 or if referenced, then in a non-abstract form 



- 40 - 

equivalent to the first approach of applying the similarity metric to all indexed 

objects). Query results will contain not only the similarity score, but also the 

relaxation level they were discovered at. The exact details of the indexing schemes, 

PIs, RM, and search relaxations will be dependent on the indexing scheme it is 

based upon, and so will be left until specific indexing representations are explored 

(see sections 3.5 – 3.12). 

3.3.1 Multiple Indexing approaches 

With the most trivial of indexing systems, the question of similarity is almost a 

moot point, an index reference in a book either matches precisely or it does not 

match at all. When the domain being indexed becomes more complex, the question 

of similarity can become as much subjective as objective. This is most certainly the 

case for football. To the best knowledge of the author, there exists no body of data 

that provides similarity ratings between segments of play/team movements/set 

pieces at different times/in different matches. Since there is no empirical information 

available addressing similarity, a number of different approaches to indexing, each 

employing a different representation but all fitting within the general indexing 

model proposed, will be taken.  The multiple indexing approaches will be formally 

evaluated against each other via an experiment with human volunteers, who will 

provide their subjective similarity ratings. It is hoped that analysis of the similarity 

ratings will then be able to rank competing indexing systems against each other. In 

that spirit the next sections of this chapter will outline the differing indexing 

methods explored. 

3.4 Preliminaries 

 This section introduces some necessary details concerning the data, and how 

some aspects of it are transformed, which is pertinent to the indexing sections that 

follow. The pitch coordinate system origin is the centre spot of the pitch (Figure 

3.4). Pitches within the data obtained were not of identical dimensions. To normalise 

the player positional data over all matches, each player coordinate was scaled in the 

following manner: 



- 41 - 

ᇱݔ =	
ݔ
 (3.1) ݌

 

ᇱݕ =	
ݕ
 (3.2) ݌

 

Equations (3.1) & (3.2) perform the pitch coordinate normalisation; where ݔ 
and ݕ are the raw pitch coordinates of a player in the current match; ݔᇱ and ݕᇱ are the 
pitch normalised coordinates of a player in the current match; ݌ = ½ pitch length of 
current match pitch. The ݕᇱ term in Equation (3.2) is normalised with p, rather than 
the distance from the centre point to the sideline, as doing this would result in ݕ 
extending from -1.0 to +1.0 leading to deformations when measuring the Euclidean 
distance on the pitch (when using normalised coordinates). The author feels it is 
more important in this case to preserve Euclidean distances than to have an absolute 
 .location of the sideline ݕ

 

 

Figure 3.4 – pitch coordinate system (normalised to ½ pitch length) 

 

 Each player is assigned a unique player ID that persists over the entire lifetime 

of the player, even if he changes clubs. Within the data, each players ID is 

associated with a club ID in each match. This makes it easy to differentiate players 

of opposing teams, but some method of abstracting teams is required for the 

indexing process. The method chosen involves characterising each team by which 

half of the pitch the team is currently attacking. At the beginning of each half (for 

each game), it is easy to determine in which section of the pitch the two opposing 

clubs reside by calculating the mean ݔ position of each team. If the mean ݔ position 

is –  portion of the pitch and the club ݁ݒ+ then the club is attacking the goal in the ݁ݒ

is labelled the ‘+1’ club. If the mean ݔ position is +݁ݒ then the team is attacking the 



- 42 - 

goal in the –  portion of the pitch and it is labelled the ‘-1’ club. A mapping of ݁ݒ

clubs to abstract teams can be generated for each (match, half) pair. 

 

 

Figure 3.5 – team abstraction allows teams to be anonomously differentiated by direction of play 

 

3.5 Context indexing with player cliques 

The two main approaches to obtaining indexing information from objects 

covered in chapter 2 were Context indexing and Content based indexing. Whilst the 

content-based approach is certainly suitable, given the complex data that exists 

within a SOP, this section examines whether the context based approach, which uses 

information that surrounds/is attached to the object to be indexed is suitable for 

segments of football play. 

There exists global information that could be viewed as the context around a 

SOP; items such as the venue, playing home/away, half/direction of play, score and 

time. However, the author doubts there is any significant and systematic correlation 

between this information, and what is occurring during a particular SOP, and so 

using the pre-existing global context information available as the basis of context 

indexing will not be pursued. 

Manual labelling by humans viewing segments of play is a theoretical 

possibility, although it is difficult to imagine encapsulating useful information about 

a SOP in a single word (over and above what is already available via the recorded 

player events). A phrase would have more capability of capturing at least some 

aspect of what was occurring (i.e. cross from a midfielder from the top-left corner), 

but the use of phrases would make it difficult to match user entries if the model of 



- 43 - 

[12] were used (which is the most feasible validated manual labelling approach 

given the volume of data).  It would be possible to increase the likelihood of 

matching phrases by markedly restricting both the lexicon and the syntax of the 

manually entered phrases, but this would entail either training users in the 

lexicon/syntax, or a complex conversion of free text to the restricted syntax. For 

these reasons, the manual labelling approach will not be pursued. 

From within the game itself, one reasonable candidate for the context around a 

SOP could be the initial and final positions of players at the beginning and end of a 

SOP. This is a basic notion of context, but as [14,15,17] demonstrate, more 

discriminating indexing features can be discovered if there exist higher-level 

semantic relationships. This thesis posits two such higher-level semantic 

relationships, which are: 

 

(1) Proximity – Players close to each other can be considered associated 

together.   

(2) Direction of movement – Players demonstrating extended movement in 

approximately the same direction can be considered associated together. 

 

The proximity criteria are motivated by the fact that players close to each other 

(a) tend to be aware of each other and so can synchronise behaviours on an ad hoc 

basis, and (b) tend to be part of the same team formation (i.e. a defensive subgroup) 

and so are trained to move in a  synchronous manner. Likewise, the direction of 

movement criteria in which a group of players are moving in approximately the 

same direction suggests some degree of synchronisation amongst players, whether 

that be purely because they are all following the ball, or as some learned tactical 

move.  Therefore, to clarify, the subgroups of interest w.r.t. context are: 

 

(1) Subgroups of players associated by proximity at the beginning of the play 

segment. 

(2) Subgroups of players associated by similar extended direction of motion at 

the end of a play segment. 

 



- 44 - 

3.5.1 Discovering cohesive player subgroups 

Four methods of discovering subgroups of players were investigated, which 

were: k-means clustering, agglomerative clustering, graph partitioning and clique 

detection.  For the purposes of this section proximity is defined as the Euclidean 

distance between two players, and direction of movement is defined as the angular 

component of the velocity needed to move the player from his initial position at the 

start of the play segment to his final position at the end of the play segment (see 

Figure 3.6). 

 

 

Figure 3.6 – interpolated direction of movement from the beginning of a SOP to the end. 

 

3.5.1.1 Standard clustering algorithms 

The k-means clustering algorithm [101] had a fundamental mismatch for this 

particular problem, in that it requires as a constraint the number of clusters ݇ it is to 

produce. Given that the number of player subgroups during a game is variable, and 

not know at any particular instant a priori, this rules out using k-means for this 

particular task. Agglomerative clustering [102], is a deterministic, bottom up 

approach to clustering which builds up clusters from elements/sub-clusters 

according to the following logic: 

 

(1) Initially, put each element in its own cluster. 

(2) From all current clusters, pick the two clusters with the smallest distance 

between them providing it is below a given threshold. 

(3) Merge these two clusters together. 

(4) Repeat steps (2) + (3) until no more cluster merging is possible. 



- 45 - 

 

This is a suitable clustering algorithm, as it makes no assumptions on the 

numbers of clusters that will emerge at the end of the clustering process. An inter 

cluster distance metric is required by agglomerative clustering, and the average 

linkage metric was used, which defines cluster distance as the average distance 

between elements in the two clusters17. Agglomerative clustering produced stable, 

repeatable clusters of players, using both the proximity metric and the direction of 

movement metric. 

3.5.1.2 Graph Partitioning 

Graph partitioning [103] involves the division of an initial large graph into 

smaller disconnected sub graphs by removal of graph edges. The raw player data can 

easily be converted into graph form, where the vertices of the graph represent 

players (expressed as unique player IDs from the raw data) and the weighted edges 

represent the distance between players (either Euclidean or angular).  

Many standard graph partitioning algorithms (as typified by the Metis package 

[104]) although they are very efficient suffer from the same drawback as the k-

means algorithm, namely they require a target number of sub-graphs to produce 

from the initial graph. They also typically try to cleave the graph into equally sized 

sub-graphs, removing the least number of edges possible, which is not what is 

required for this problem. However, a bespoke approach to graph partitioning can be 

taken, whereby given a threshold value all edges within the graph above the 

threshold are removed, and then the graph is analysed to identify all disconnected 

sub-graphs. This is approximately the same overall computational complexity as 

agglomerative clustering.  

Comparing the results to that achieved from agglomerative clustering, it was 

noted that the graph partitioning on average produced fewer but larger subgroups. 

After further examination, the reason behind this was discovered to be the use of 

                                                
17 The alternatives are to use the maximum distance between two clusters (complete 

linkage) or the minimum distance between two clusters (single linkage). 



- 46 - 

average linking for the cluster distance metric. If single linkage18 had been used then 

the results would have been identical (in terms of sub-group membership), however 

average linking has the effect of breaking associations between players which are 

below the threshold level based on their current cluster associations.  These cases 

highlight that some players really belong in more than one subgroup at any one 

instance. There are variants of k-means that allow fuzzy cluster membership [105], 

enabling elements to belong partially to two or more clusters, however they suffer 

the same drawback of requiring the initial number of clusters parameter. 

3.5.1.3 Cliques 

An alternative approach from graph theory/social network analysis is the 

concept of the clique [106]. A clique is defined a maximally connected sub-graph, 

that is all members of the sub-graph are directly connected to each other. Figure 3.7 

shows an example of the cliques existing within a graph of 8 vertices/11 edges. 

 

 

Figure 3.7 – 8 vertices decomposed into 6 cliques: {A,T} {B,E} {E,X} {B,D,E} {B,L,S} {E,L,T} 

 

Clique discovery proceeds in an identical fashion to the graph partition 

algorithm in that it removes all edges above the threshold level. The clique 

discovery algorithm has to find the maximally connected cliques in the graph, and as 

                                                
18 The single linkage cluster distance metric is defined as the closest distance 

between any elements in the two clusters. 



- 47 - 

such is somewhat more computationally expensive than merely locating 

disconnected sub-graphs. The actual clique discovery implemented uses a brute 

force approach to enumerate through each vertex in the graph, then enumerating 

through all directly connected neighbour vertices to discover the cliques that include 

the current vertex. Whilst this algorithm was conceptually simple, for large graphs 

this would be computationally prohibitive (more complex efficient solutions are 

enumerated in [107]). However since the graphs is question will never exceed 

eleven vertices (the maximum number of players allowed on a team), this never 

actually becomes prohibitively expensive. 

As can be seen from Table 3.1, which enumerates clique membership in Figure 
3.7, using cliques allows vertices to be members of more than one group. This is 
what was missing in the clustering and graph partitioning approaches. Application of 
clique discovery to the player data confirmed that players were allowed to appear in 
more than one clique (both for proximity and for direction of movement). Thus, 
cliques provide a richer description of the team subgroups than either clustering or 
graph partitioning, and are therefore the preferred method of player subgroup 
discovery. 

 

Vertex 
# of cliques 

vertex member of 

A 1 

B 3 

D 1 

E 4 

L 2 

S 1 

T 2 

X 1 

 

Table 3.1 – Clique membership count for the network shown in Figure 3.7 

 

For the implementation details of the clique indexing system, see section 
7.9 

 



- 48 - 

3.6 Team mass indexing with 2D histogram 

The indexing scheme proposed in this section posits that when judging 

similarity between two segments of play, humans do not concentrate on the 

movement of individual players as much as they concentrate on the movement of the 

bulk of the team. It is a content based indexing approach, and is inspired by the 

MAMs model [42], where motion activity over a period of time in a video is 

recorded in a 2D histogram covering the entire spatial extent of the video.   

In this indexing scheme a 2D histogram overlaid onto the football pitch (one 

per team) records the positions of players during the SOP, resulting in a spatially 

quantised representation of player position/density over the play segment. Given that 

in the indexing context we would like some level of abstraction, recording the 

accumulated motion of players on a very fine grained 2D histogram would likely 

result in an indexing system which was far too specific. Therefore a coarse 2D 

histogram of only 24 bins was used, divided into a 6x4 configuration of labelled bins 

(see Figure 3.8), which fits precisely over the football pitch. 

 

 

Figure 3.8 – labelled player density 2D histogram with 24 bins covering the entire rectangular 

playing area. 

 

The histogram records the spatial location of players over the SOP, allowing 

both the trajectories of moving players and relatively stationary players such as 

goalkeepers to be recorded. To further increase the abstraction the histogram bins 

are sorted in order of descending magnitude and the top six bins are used as an 

indicative measure of where the bulk of the team was located during the SOP (see 

Figure 3.9). 

 



- 49 - 

 

Figure 3.9 – conversion of 2D histogram to index via selection of the six bins which record the 

highest player densities. 

 

For the implementation details of the Team mass indexing with 2D 
histogram system, see section 7.10 

 

3.7 Team mass indexing with multi-resolution 2D histograms 

Another feature of the MAMs model [42] is that there exists a hierarchy of 

motion activity maps from coarse to fine (the hierarchy is actually a tree), used to 

characterise the motion in the analysed video at multi-resolutions. A similar 

approach was adopted for the next indexing scheme, but simplifying the hierarchy 

from a tree dividing the area studied to a nesting of finer grained histograms. In this 

scheme a series of three coarser-to-finer 2D labelled histograms records the spatial 

positions of players in a manner identical to the flat 2D histogram scheme detailed 

above. The hierarchy of 2D histograms follow the size progression of 3x2 then 6x4 

and finally 9x6 (see Figure 3.10). 

 

 

Figure 3.10 – Multi-resolution 2D histograms at three resolutions of 3x2, 6x4 and 9x6 

 



- 50 - 

The 2D histogram bins are not sorted in this scheme, rather the mean bin 

density for each histogram in the hierarchy is calculated and for each histogram 

those bins which are at or above this density are labelled with a ‘1’, the bins below 

this mean density are labelled with a ‘0’ (see Figure 3.11). The histograms are 

effectively recording all areas of above normal player concentration at three levels 

of resolution. 

 

 

Figure 3.11 – Conversion of 2D histogram template to integer via labelling all bins above the mean 

density as ‘1’ (otherwise ‘0’), then transforming the bins into a binary number. 

 
To convert the histograms into a useable index, each one can be viewed as 

representing a binary number of 6, 24, and 54 bits respectively (Figure 3.11). These 

binary numbers, represented as integers, are used as the index for each team.  

 

For the implementation details of the Team mass indexing with multi-
resolution 2D histograms system, see section 7.11 

 

3.8 Team mass indexing with local high entropy features 

In pursuit of an efficient indexing scheme how well the PI vectors actually 

separate the data which is being indexed is an important consideration. In an 

extreme degenerate case, indexing may result in each SOP being mapped to the 

same index partition vector, which renders the indexing scheme useless. In the ideal 

case, assuming the number of unique index vectors is n, then the data can be split 

into n equally sized categories and index searching will be optimally efficient. 

Whilst the preceding three schemes, from manual inspection of the indexes they do 

produce, do not exhibit degenerate levels of indexing, this is not assured at the time 



- 51 - 

of index creation. The next two indexing schemes attempt to approach the optimal 

level of indexing by introducing the concept of entropy. Entropy can be a confusing 

concept, particularly because the concept appears both in thermodynamics and 

information theory. The best definition of entropy is actually the basic entropy 

equation which is: 

 

ܵ = −෍ ௜ܲ ln( ௜ܲ)
௜

 (3.3) 

 

Where: 

 ܵ=the total entropy of the system under examination 

௜ܲ= the probability that the ith state of the system has of occurring. 

 

In order to introduce the concept of entropy into indexing, if one considers a 

feature that may or may not be present within a SOP (and is checkable), given a 

collection of such segments say of size ܰ, then one can say with certainty after 

checking each configuration in the collection that the features occurs ܯ times, where 

0	 ≤ 	ܯ	 ≤ 	ܰ. If one were to take a random sample from the configuration 

collection, then the probability that this feature would be present would be ܯ ܰ⁄ , 

where 0	 ≤ ܯ	 ܰ⁄ 	≤ 	1. If a system is envisaged with only two states, that of the 

feature being present and that of the feature being absent, then the total entropy ܵ of 

this system is: 

 

ܵ = −( ௣ܲ ln ௣ܲ + ௔ܲ ln ௔ܲ) (3.4) 

 

Where: 

௣ܲ  is the probability that the feature is present in a SOP 

௔ܲ  is the probability that the feature is absent in a segment.  

 



- 52 - 

Note that since ௔ܲ = ൫1.0 − ௣ܲ൯, the equation above can be rewritten as: 

 

ܵ = −( ௣ܲ ln ௣ܲ + (1 − ௣ܲ) ln(1 − ௣ܲ) (3.5) 

 

Now consider if one discovers a feature that is in exactly half of the collection 

of match configurations. This would be a perfect binary indexing feature, as it would 

neatly cut the data into two equal halves. The probability ௣ܲ would be 0.5 (as would 

the probability ௔ܲ). It can be shown that the maximum value for ܵ in equation 3 

occurs when ௣ܲ takes the value 0.5. Therefore, the maximum entropy of the system 

occurs when the feature is the optimal data separator.  

Of course, one binary feature alone would not make a very good indexing 

system as it could best cut the data into two equal halves. If another optimal binary 

feature could be found, then this would allow the data to be separated into four equal 

parts. Three optimal binary features would allow the data to be separated into eight 

equal parts, and so on following (3.6): 

 

ܰ = 2ி (3.6) 

Where: 

 ܰ = the number of parts the data could be equally cleaved into 

 .the number of optimal binary features used = ܨ 
 

The effectiveness of the indexing system grows exponentially with the number 

of optimal binary features used. Except that it may not. The reason it may not is that 

although each binary feature is optimal in its own right, they may not be optimal 

when combined. This can be seen clearly if one considers two distinct optimal 

binary features. Each on its own splits the data into two. However, they both split 

the data in the same manner, so using both of them is as effective as using any single 

one of them. One of the features is completely redundant. Entropy can again be 

introduced to detect whether two binary features work well together, this time via 

the concept of joint entropy, which is shown in: 

 



- 53 - 

,ܺ)ܪ ܻ) = −෍ ௫ܲ,௬ ln൫ ௫ܲ,௬൯
௫,௬

 (3.7) 

Where: 

,ܺ)ܪ  ܻ) is the joint entropy of systems ܺ and ܻ 

௫ܲ,௬  is the joint probability of state ݔ of system ܺ occurring with state ݕ of 
system ܻ. 
 

Which simplifies to the following equation for two binary features: 

 

ܬ = −ܲܺ௣ ௣ܻ ln൫ܲܺ௣ ௣ܻ൯ − ܲܺ௣ ௔ܻ ln൫ܲܺ௣ ௔ܻ൯ − ܲܺ௔ ௣ܻ ln൫ܲܺ௔ ௣ܻ൯ − ܲܺ௔ ௔ܻ ln(ܲܺ௔ ௔ܻ) (3.8) 

 

Where: 

  ,joint entropy of the two binary features = ܬ

ܲܺ௣ ௣ܻ = joint probability of feature ܺ and feature ܻ being present,  

ܲܺ௣ ௔ܻ = joint probability of feature ܺ being present and feature ܻ being absent,  

ܲܺ௔ ௣ܻ = joint probability of feature ܺ being absent and feature ܻ being present,  

ܲܺ௔ ௔ܻ = joint probability of feature ܺ being absent and feature ܻ being absent 
 

The entropy will be maximised when the two binary features share as little in 

common as possible. To see why this is consider Figure 3.12 which symbolises the 

entire dataset as the complete circle. Two binary features ܺ and ܻ are represented by 

two lines bisecting the circle (separating it optimally into two equal parts). If ܺ and 

ܻ were both either horizontal or vertical then one of them would be redundant. To 

most effectively partition the circle into four equal parts, the ܺ and ܻ lines must be 

orthogonal to each other. The joint entropy of more than two binary features can be 

calculated by summing the pair-wise joint entropies of all the binary features under 

consideration. As shown, maximising the joint entropy equates to maximising the 

indexing efficiency, and this gives a good metric to select sets of binary features in 

order to create an index. 

The previous two indexing scheme used 2D histograms to reveal global 

features of the players movement/density over the SOP. This indexing scheme will 



- 54 - 

likewise use 2D histograms to record the player density over the SOP, but will select 

high entropy local features from these histograms. Five resolution levels of 

histogram (3x2, 6x4, 9x6, 12x8, 15x10) will be used to select the local features from 

(see Figure 3.13). It should be noted that on average the highest player densities will 

occur around the central line perpendicular to the goal line (as is the case will all of 

the approaches which uses regularly spaced 2D histograms), with the ‘wings’ of the 

pitch exhibiting the least average density. This may be a problem for the scheme in 

section 3.6 which indexes on the top six densest 2D bins. It may be slightly less of a 

problem for the scheme in 3.7 as this extends over multiple resolutions and indexes 

on all bins at or above the mean density. However, it should not be a problem for 

this scheme as the use of entropy should ensure that sub-areas of consistently high 

player density (or consistently low player density) are less likely to be chosen to be a 

template then sub-areas which experience variable player density. 

 

 

Figure 3.12 – Graphical joint entropy of two binary features splitting a space into four sections 

 

 

 

Figure 3.13 – 5 level histogram hierarchy from coarsest resolution of 3x2 to finest at 15x10. 



- 55 - 

The creation of random local feature detectors involves selecting one of the 

five histograms in the hierarchy, and then mapping a sub-area of that histogram 

(minimum area 2 bins, maximum area the number of bins in the histogram) onto the 

feature, as shown in Figure 3.14. The mapped bins in the feature are randomly 

assigned as either 1 or 0. The meaning of this assignment involves comparison with 

that same area of histogram once the histogram has recorded the player density over 

a SOP. For the feature to be present the bins on the feature that have been labelled as 

‘1’ must correspond to the highest levels of player density in the subarea of the 

histogram, the bins on the feature labelled as ‘0’ must correspond to the lowest 

levels of player density in the subarea. Within the ‘1’ and ‘0’ areas no order is 

imposed on bin player density. Figure 3.15 show an example feature, with dark areas 

representing the ‘1’ region where player density should be highest, and the light area 

representing where player density should be lowest. 

 

 

Figure 3.14 – Selection of sub-area from a 2D histogram which becomes a new histogram local 
feature template 

 

 

Figure 3.15 – histogram local feature template with the darker regions representing which bins 

should have the highest denstity if the template is be a considered a match  

 



- 56 - 

In order to discover an efficient collection of high entropy local features, firstly 

the individual local features themselves must be discovered. One set of features 

must be discovered per team (i.e. the ‘+’ and ‘-‘ abstract teams). The algorithm for 

their discovery is as follows: 

 

(1) Randomly sample ܰ segments of play from the pool of those available 

(2) For each of these random segments of play, generate player density 

histograms at all five levels of resolution for a particular team (‘+’ or ‘-‘) 

(3) Generate a random local feature by selecting one of the five histogram 

levels, selecting a sub-area from that histogram, and then randomly assign 

the sub-area bins ‘1’ or ‘0’ (with meaning explained above) 

(4) For each of the randomly sampled segments of play, test whether the 

feature is present or not. This will produce a probability of presence. 

(5) The probability of presence will give the entropy of the random local 

feature. Reject local features with entropy of 0 (always present or never 

present in the random samples) 

(6) Continue (3)-(5) until ܯ random local features are discovered. 

 

Once a pool of ܯ randomly discovered local features is available, the 

‘optimal’ collection of ܭ of them can be discovered (again for a particular abstract 

team) via the following algorithm: 

 

(1) Randomly select ܭ local features from the pool of ܯ features 

(2) Calculate the joint entropy of the entire collection by summing the pairwise 

joint entropies over the collection of ܭ features 

(3) Randomly select one unused local feature ܨ from the pool 

(4) For each of the current ܭ features, temporarily replace it with ܨ, and 

calculate the resultant joint entropy. 

(5) Replace the feature which produced the highest joint entropy when 

swapped out with ܨ iff the joint entropy was higher than that calculated in 

(2) 



- 57 - 

(6) Continue (2)-(5) until either a threshold joint entropy value is achieved or a 

threshold number of attempts is exceeded. 

  

A reasonable value for ܭ in the above algorithm is 20 features per team, as this 

will result in an index that can optimally partition the data into 220 sections (although 

in practice it is likely that only an approximation to the optimal will be attained) 

whilst still maintaining a compact PI. 

 

For the implementation details of the Team mass indexing with local high 
entropy features system, see section 7.12 

 

3.9 Team mass indexing with hierarchical high entropy features 

The previous indexing scheme utilised a flat collection of high entropy local 

features that approached the optimal set by maximising the joint entropy of the 

collection. An alternative approach to organising a collection of high entropy local 

features is explored in the following indexing scheme, which structures the features 

in a binary tree-like fashion.  

The flat collection of features operated on the assumption that each local 

feature was in competition with all other local features, partitioning the indexing 

space in a parallel fashion. An alternative approach is to view the partitioning as a 

serial process. If one local feature which can best partition the whole indexing space 

is chosen first (the feature with the highest individual entropy over the whole space), 

then this feature partitions the space into two (nearly) equal subsets; one in which it 

is present (+) and another in which it is not present (-). These two subsets will also 

have a corresponding local feature which best splits them (has the highest entropy 

w.r.t. the subset), although this will obviously not be the initial feature as it should 

have 0 entropy in either subset. The splitting of the two subsets into (+) and (-) 

smaller subsets will then identify four more suitable local features. Thus, the local 

features are becoming arranged in a binary tree like structure (see Figure 3.16), 

where the nodes of the tree represent local features, and the branches represent either 

the presence or absence of any particular local feature (at the immediate parent 



- 58 - 

node). This process can continue until the subsets become too small to make any 

reasonable determination about how well local features split them. 

 

 

Figure 3.16 – High entropy local features decision tree cleaves the search space further at each tree 

level 

 

The tree structure which emerges (along with the selected local features) can 

form the basis of an indexing structure. To index a SOP, one simply starts by 

looking for the root local feature of the tree. If it is present, then the next local 

feature which is checked is the (+) child, otherwise the next local feature checked is 

the (-) child, and so on down the tree. If each local feature in the tree is assigned a 

unique ID, then the tree traversal can be represented as an ordered binary vector of 

ܰ components (where ܰ is the depth of the tree). Figure 3.17 shows the initial 

section of two possible traversals of the tree defined in Figure 3.16. 

 

 

Figure 3.17 – 2 possible local feature tree traversals 

 

As with the previous scheme, the first stage is to identify a suitable collection 

of local features, which can be done as follows: 

 



- 59 - 

(1) Randomly sample ܰ segments of play from the pool of those available 

(2) For each of these random segments of play, generate player density 

histograms at all five levels of resolution for a particular team (‘+’ or ‘-‘) 

(3) Generate a random local feature by selecting one of the five histogram 

levels, selecting a sub-area from that histogram, and then randomly assign 

the sub-area bins ‘1’ or ‘0’ (with meaning explained above) 

(4) For each of the randomly sampled segments of play, test whether the 

feature is present or not. This will produce a probability of presence. 

(5) The probability of presence will give the entropy of the random local 

feature. Reject local features with entropy of 0 (always present or never 

present in the random samples) 

(6) Continue (3)-(5) until ܯ random local features are discovered. 

 

Generating the tree and discovering the most suitable local feature for each 

node proceeds as follows: 

 

(1) The root of the tree is the local feature that has the individually highest 

entropy over the entire sample set. 

(2) This feature will split the sample set into two partitions, the (+) partition in 

which the feature is present, and the (-) partition in which the feature is 

absent. As the feature has high entropy, these two sets will be approximately 

the same size. 

(3) Select the local feature which has the highest entropy w.r.t. the (+) partition 

(4) Select the local feature which has the highest entropy w.r.t. the (-) partition 

(5) The features discovered form (+) and (-) child nodes to the parent node 

defined in (2). 

(6) For each child node, if its subset size is above a sufficient threshold and the 

current tree depth is below a given threshold ܶ, then recursively apply steps 

(2)-(5), otherwise terminate tree building. 

 

The output of this algorithm is a tree structure, with references to specific local 

features at each node. Both the tree and the referenced local features should be 

recorded for future use. Actual indexing of a SOP involves first recording the player 



- 60 - 

density at the 5 resolution levels (once for each team), and then is simply a matter of 

traversing the tree from root to a leaf, recording the sequence of local features which 

were applied at each level. If the tree is T layers deep, then this will produce a 

binary vector that has T components (each component representing the unique ID of 

a local feature).  

 

For the implementation details of the Team mass indexing with 
hierarchical high entropy features system, see section 7.13 

 

3.10   Semantically augmented ball trajectories 

The previous indexing schemes have all dealt with indexing players during a 

SOP, either as the context surrounding a segment, or as global/local features of the 

two teams as a whole during the segment. One key component of any SOP that is so 

far notable by its absence is the ball trajectory. As covered in chapter 2, the 

trajectory of the ball is not recorded during the trajectory/event transcription process, 

but it can be reconstructed for any particular game/segment based on events and 

player positions (see section 7.7 for ball trajectory reconstruction algorithm). 

The form the reconstructed ball trajectory takes is a collection of temporally 

linked line segments. The line segments represent the linear interpolation at 0.1s 

fidelity of the ball position between the nearest two points where it was known to be 

(i.e. from events such as passes, shots and ball touches). As events are connected 

with specific players, it is possible to attach additional semantic information to each 

line segment in the reconstructed ball trajectory; specifically whether the ball is 

currently in play or not, and if it is in play which player/club is nominally in 

possession of it (i.e. which player last touched the ball). Thus, the full form of the 

ball trajectory is as shown in Figure 3.18. 

There are indexing methods that deal with individual trajectories covered in 

chapter 2. Of these [48,49] treat trajectories as a whole, and form a compressed 

representation of them (using Haar wavelets and Chebyshev polynomials 

respectively). [47,52] break down trajectories into a number of subparts (based on 

the acceleration and 2D curvature characteristics respectively), and use these 



- 61 - 

subparts as the basis of the indexing system. Although treating the trajectory as a 

whole as [48,49] would yield a fixed length format for the ball trajectory, it omits 

the semantic information of club/player possession which is attached to each line 

segment, and this would have to be separately encoded, which seems 

counterproductive as this information is already suitably connected to the relevant 

line segments.  

 

Figure 3.18 – labelled ball trajectory segments 

 
The approach of indexing on subparts of the trajectory as in [47,52] is a better 

fit for the ball trajectory, although as it is already composed of line segments, there 

is no need to break it down initially. A drawback of these methods, in this particular 

situation, is they do not address the spatial position of the trajectory/sub-trajectory 

parts, rather they describe them in spatially independent characteristics. [47] uses 

features such as initial velocity, acceleration, and trajectory shape. These features 

are not useful for the ball trajectory as it is linearly interpolated; each line segment is 

a straight line, it has no acceleration and hence it maintains its initial velocity. [52] 

Spectrally clusters sub-trajectories, and then uses the clusters to categorise sub-

trajectories, but the clustering as described in the paper does not take into account 

spatial characteristics. 

Of course the general approach of both [47,52] could be modified to take into 

account both spatial characteristics and the additional semantic ball possession 

information. Of the two general approaches the author prefers the explicit 

representation of sub-trajectories in [47] over the implicit representation via clusters 

in [52], as clustering over multiple sources of information (spatial, direction, 

semantic) would require combining metrics for each source, and at least one source, 

the semantic ball possession, has no obvious metric. Given that the indexing scheme 



- 62 - 

will be based around line segments, the following information can be usefully 

included to augment the indexing scheme:  spatial information about the 

beginning/end of line segments, ball speed across a line segment (or alternatively 

time taken as the velocity is constant over line segments), the semantic information 

detailing ball possession, and the temporal order of line segments with the whole 

ball trajectory spanning the segment. 

The PI should ideally contain information which separates quantitatively 

different line segments from one another (such as those with markedly different 

beginning or end points or different teams in possession during the line segment), in 

order to efficiently partition the data. However, it should also be abstract enough to 

allow multiple members within each partition. A reasonable candidate for this is a 

combination of the spatial beginning/end of a line segment together with the 

semantic possession information for the segment, both suitably abstracted. The RM 

will be the repository of the additional information covering the time across a line 

segment, the temporal order of the time segment within the whole trajectory, and the 

exact beginning/ends of the line segment. Since the semantic information covers 

Club ID / Player ID, an exact version of this makes no sense as it cannot be usefully 

compared and so will be limited to an abstracted version in the PI. 

3.10.1   Abstract spatial coordinates 

A component of the PI will cover spatial information detailing the 

beginning/end points of line segments. This information requires a level of 

abstraction, and so a reasonable method must be devised to achieve this abstraction. 

Spatial abstraction is covered in chapter 2 in the work on moving object 

databases, where the prevailing method of abstraction is the use of minimum 

bounding boxes (MBB) contained within R-trees (and variants), points and extended 

objects being grouped together if they occur within the same MBB. Whilst the more 

sophisticated variants of MBB usage [60,61,62] do allow efficient spatial indexes to 

be produced, these methods do not naturally admit additional non-spatial 

information (in this case the semantic information), so a bespoke R-Tree variant 

would be required, which unfortunately would not be mappable to a standard 

database R-Tree (and hence would involve creating a new database structure). 



- 63 - 

An alternative spatial abstraction scheme would be to divide the pitch into 

equally spaced points (as in Figure 3.19 with 12 points), with each point assigned a 

label, and describing beginning/end points of line segments by the nearest labelled 

point (thereby converting a purely spatial coordinate into a nominal category). This 

is a basic example of vector quantisation, and the set of labelled points form what is 

known as a codebook. The approach is used in [30] to form feature clusters from 

SIFT descriptors, and it is essentially what the 2D histograms are achieving in the 

team mass indexing schemes. 

  

 

Figure 3.19 – equidistant spatial prototypes overlaid onto a football pitch 

 
Whilst this is basically a sound approach (given an adequate density of 

prototype spatial points), it is perhaps not the most efficient method of spatially 

partitioning the pitch, as some areas of the pitch will be more heavily trafficked than 

others (for instance the midfield area will likely have more players present during a 

game than the corner regions), which will result in some spatial partitions containing 

many more members than others. In his PhD thesis Johnson [91], whilst researching 

the modelling of individual pedestrians crossing a car park used a version of vector 

quantisation he coined Altruistic Vector Quantisation (AVQ see section 7.1 for 

details of the algorithm) to generate a fixed set of prototypical spatial positions for 

the pedestrians. Crucially the location of these prototypes was dependent not only on 

the spatial positions of the pedestrians, but also influenced by the frequency of 

occurrence. 

So the use of AVQ on the trajectories on players across the pitch (remember 

all ball trajectories are interpolated from player positions), has the capability to 

produce a non-uniform distribution of spatial prototypes. An example of such a 

collection of prototypes is shown in Figure 3.20, where the spatial prototypes are 



- 64 - 

shown (black points), along with a Voronoi diagram (red regions) highlighting the 

areas which are closest to each point. The areas of each Voronoi cell is 

approximately inversely proportional to the frequency that a player may be within 

this cell, and hence will give at least an approximately equal partition membership to 

all spatial prototypes. 

 

 

Figure 3.20 – Non-uniform spatial prototypes forming the basis of a Voronoi cell tessellation 

covering the football pitch 

 

To generate a set of non-uniform spatial prototypes, AVQ requires as an initial 

condition the number of spatial prototypes it is to use. A method is required to 

generate ideally an optimal number of them. This situation is an example of model 

selection, and one well-known method of model selection is the Minimum 

Description Length (MDL) approach [108]. 

MDL posits that amongst models competing to represent a body of data, the 

best model to use is the model that achieves the best compression of the data. 

Crucially this compression must also take into account the size of the model itself, 

which stops models over fitting the data by producing fantastically complex models. 

Additionally any data which is unable to be represented by the model to a given 

fidelity19 must remain uncompressed, and as such penalises models which would 

drastically under fit the data by producing trivial representations. 

An example is shown in Figure 3.21, where three models ܪଵ, ,ଶܪ  ଷ exist. Theܪ

classic thought experiment for MDL is that a body of data ܦ must be communicated 

from a sender to a receiver. The receiver has access to all possible models which 

                                                
19 Which is an initial condition/variable of the selection process 



- 65 - 

may be used (in this case ܪଵ, ,ଶܪ  to the receiver20, the ܦ ଷ). To successfully sendܪ

sender must first indicate which model is to be used, then send the parameter 

settings for that model and finally send the data as it is represented under the model 

in use. Any data in ܦ which cannot be expressed in sufficient fidelity under the 

model is sent in its original form as residual data. The cost of sending the model 

choice ܮ(ܪ௫), the parameters of that model ܮ(ݓ௫∗|ܪ௫) and the data under the model 

,∗௫ݓ|ܦ)ܮ  in ݔ returns the length of (ݔ)ܮ ௫) are measured in bits, where the operatorܪ

bits. As shown graphically in Figure 3.21, model ܪଶ achieves the best compression 

of the message producing the shortest combined length in bits of model parameters 

and body of data (the cost of sending the model choice is constant and so can be 

ignored), and so would be the favoured model under MDL.  

 

 

Figure 3.21 – comparing competing models under MDL 

 

In the case of selecting the best set of spatial prototypes, the data to be 
transmitted ܦ is a random sample of player positions over all games of size ݊. These 
positions could be sent uncompressed, but if a codebook of prototypical positions 
exist, then it could be used to record the distribution of positions across the 
codebook. This distribution could then be sent in place of the data. However, 
positions that did not fit the codebook well would have to be sent individually to 
allow all the data to be reconstructed without loss.  

Each model will be a codebook produced by AVQ operating on ܦ. Each model 
will utilise a different number of spatial prototypes, such that if there are ݔ models, 
then the number of spatial prototypes used will range from 1  ݔ…

 

                                                
20 Who must be able to reconstruct the body of data without loss 



- 66 - 

 

Figure 3.22 – codebook for the spatial prototypes 

 

Figure 3.22 shows the format of one entry in the codebook. If there are ݔ 
entries in codebook ܥ௫ then the cost in bits of ܥ௫ is: 

 

(௫ܥ)ܮ = 2ܴ)ݔ + ⌈(logଶ  (3.9) (⌈(ݔ

 

 Where ܴ is the number of bits used to represent a real value21, and ⌈(logଶ  ⌈(ݔ

represents the minimum number of bits needed to uniquely identify each entry in the 

codebook. The cost of sending the body of data ܦ of size ݊ using codebook ܥ௫ is: 

 

(௫ܥ|ܦ)ܮ = ඃ(log2 ݊)ඇݔ+෍݂݅	ܥ)ܭ௫ (௜ܦ, ≥ 2ܴ	ℎ݁݊ݐ	݂
௡

௜ୀଵ

 
(3.10) 

 

The first term ඃ(log2 ݊)ඇݔ is the cost of sending the distribution over ܥ௫, the 

second term is the cost of sending individual positions which do not fit the model to 

fidelity ݂	(a distance threshold), and ܭ(ܥ௫݌) is a function which takes a codebook 

 ௫, andܥ in ݌ locates the nearest spatial prototype to ,݌ ௫ and a 2D coordinate pointܥ

then returns the Euclidean distance from ݌ to that prototype. Therefore if we have a 

representative body of data ܦ containing player positions, ܰ AVQ codebooks 

generated from ܦ, and a suitable fidelity threshold ݂, then we can find the optimal 

number of spatial prototypes via MDL by performing : 

 

݉݅݊௜ୀଵே ൫ܮ(ܥ௜) +  ൯ (3.11)(௜ܥ|ܦ)ܮ

 

 

                                                
21 This is another initial condition, and is often set or at least limited by the 

computing platform in practice. 



- 67 - 

3.10.2   Abstract semantic possession information 

The second part of the PI that must be abstracted is the semantic possession 

information. This comprises the player currently in possession of the ball and the 

club to which the player belongs. Abstracting the club has already been dealt with in 

section 3.3, each club is defined as either the ‘+1’ club or the ‘-1‘ club, depending 

on the direction of attack of a specific club during the SOP. 

Two approaches to abstracting players were followed. The first method 

produces a gross archetype for each player by first estimating the mean ݔ position 

(pitch normalised) of each player, players’ positions being transformed (rotated 180 

degrees) as necessary so that each play is a member of the ‘+1’ club (i.e. the club 

which is attacking the goal in the positive ݔ section of the pitch). The mean ݔ 

positions are then clustered using agglomerative clustering into 4 clusters, which 

approximately partition players into goalkeeper, defence, midfield and attack 

positions. Specific Player IDs are then mapped onto one of these four clusters to 

give an approximate gross abstract role for the player. The second approach to 

abstracting players again uses MDL, this time to find the best number of static 

player archetypes to use. Before the details of the MDL selection process are 

covered, the abstract player model used must be explained. 

Spatial prototype codebooks will be used again, but to normalise for all players 

must be made asymmetric (see Figure 3.23). This is achieved by randomly sampling 

player positions, however if a player is sampled during a match/half where it is a 

member of the ‘-1’ abstract club, then its position is rotated 180 degrees about the 

origin. This has the effect of making each player sampled a (temporary) member of 

the ‘+1’ abstract club (i.e. the club attacking to the +݁ݒ	ݔ portion of the pitch). 

Given a particular asymmetric codebook of size ݊,  ௡, if a random sample of aܣ	

particular players positions over all games is taken (again made asymmetric as 

above), and each position mapped to the nearest spatial prototype in ܣ௡, then a 

discrete probability distribution can be calculated over the codebook prototypes 

indicating which prototypes the player is most likely to be found at. This probability 

distribution will have ݊ entries for ܣ௡. This can be repeated for all ݉ players 

resulting in ݉ probability distributions of length ݊. The probability distribution for a 



- 68 - 

particular player can be transformed into an ordered list of prototypes, if the list is 

sorted by the probability of visitation for each prototype (Figure 3.24).  

 

 

Figure 3.23 – asymmetric codebook representing average player positions built up from the motion 
of all available player trajectories (modified so all attacking to the right of diagram) 

 
 

 

Figure 3.24 – spatial prototypes sorted by probability of visitation 

 

Given a sorted list ݈ of length ݊ where ݈ = ൣ൫ݏ௟,ଵ, ,௟,ଵ൯݌ … , ൫ݏ௟,௡ , ௟,௫ݏ ௟,௡൯൧ and݌  
is the prototype and ݌௟,௫ is the probability at position ݔ in the list ݈, then the 
following distance metric can be imposed between the two lists ݈	ܽ݊݀	݉ of length ݊ 
w.r.t. the codebook over which they are created ܣ௡: 

 

,݉,݈)ܦ (௡ܣ =
1
݊෍

௟,௜݌ + ௠,௜݌

2 ,௟,௜ݏ൫ܧ ௠,௜ݏ , ௡൯ܣ
௡

௜ୀଵ

 
(3.12) 

 

,ଵݏ)ܧ ,ଶݏ (௡ܣ = ඥ(ݔଵ − ଶ)ଶݔ + ଵݕ) −  ଶ)ଶ (3.13)ݕ
 



- 69 - 

Where (ݔଵ, ,ଶݔ)	݀݊ܽ	(ଵݕ  ଶ) are the coordinates of the spatial prototypesݕ
 .௡ܣ ଶ in the codebookݏ	݀݊ܽ	ଵݏ

What the metric ܦ(݈, ݉,  ௡) is measuring is the mean spatial similarity of theܣ

two lists ݈	ܽ݊݀	݉, modulated by the mean probability of visitation. The distance 

metric allows the ordered lists to be clustered. If there exists a cluster of ݉ lists of 

length ݊, then to create a truncated list ܶ of length ݊ܿ, where ݊ܿ ≤ ݊,	which 

averages the cluster of lists the following algorithm can be used: 

 

(1) Create a map ܺ that associates each prototype in ܣ௡ with a probability. 

Initially each probability will be 0. 

(2) Iterate over all ݉ lists in cluster 

(3) Iterate over all ݊ positions in list ݈௠  

(4) At position ݊ in list ݈௠ the spatial prototype ݏ௟೘,௡ has a probability of ݌௟೘ ,௡ 

(5) Add ଵ
௠
௟೘݌ ,௡ to the map entry for ݏ௟೘,௡ in ܺ 

(6) Continue (2)-(5) until all ݉ lists are examined 

(7) Extract the ݊ܿ highest probabilities from ܺ in order, along with their 

associated spatial prototypes and place in list ܶ 

 

The list ܶ covers the ݊ܿ	spatial prototypes with the highest mean probability of 

being visited by the players represented in the cluster. In a sense, it is a model of the 

average player that the cluster implicitly represents. The notion of an average player 

allows the details of the MDL selection process to be introduced. The data ܦ to be 

sent is a collection of ݊ player histories, such that ܦ௜ is the ith player history in ܦ. A 

player history is defined as a randomly sampled collection of points from the player 

trajectories over all games (made asymmetric). Each player history is of equal length 

݉. As with the section 3.10.1, data must be sent with predefined fidelity ݂.	The cost 

of sending D as real coordinates is given by equation (3.14). If a spatial prototype 

codebook of size ܣ ,ݔ௫, is generated via AVQ from ܦ, then the cost of transmitting 

the data as spatial prototypes, ignoring for the moment the required fidelity 

threshold, is given by equation (3.15). 

 



- 70 - 

(ܦ)ܮ = ݊݉2ܴ (3.16) 

 

(௫ܣ|ܦ)ܮ = ݊݉ logଶ  (3.17) ݔ

 

If ݕ average player models of length ݖ are generated using the player histories over 

 ௫, then each player will be associated with one average player model (dependingܣ

on which cluster it was a member of). Figure 3.25 shows an average player model 

 ௫. As the length of the playerܣ of size 3, which is defined over a codebookܸܣ

histories is known to be ݉,  ܶ can be used to generate an estimate of the number of 

the ݖ most significant spatial prototypes in the player history of any player which is 

assigned this average player model (see equations (3.18), (3.19), (3.20)) 

 

 

Figure 3.25 – simple average player model (with ࡼ૜ 	 ≥ ૢࡼ	 	 ≥  (૚૚ࡼ	

 

|ଷݏ| 	≈ ݉.  ଷ (3.21)݌

 
|ଽݏ| ≈ ݉.  ଽ (3.22)݌

 

|ଵଵݏ| ≈ ݉.  ଵଵ (3.23)݌

 

Thus, the average player model can be sent in place of the estimated number of 

spatial prototypes. This estimate may be larger or smaller than the real number in 

any particular player history, so under and over-estimate corrections will have to be 

included after the average player model. The process of transmitting one player 

history using the above model (codebook + average player models) is: 

 



- 71 - 

(1) The player history is mapped onto codebook ܣ௫ to form a bag of spatial 

prototypes. Any points which cannot be mapped to fidelity ݂ must be sent 

as real coordinates. 

(2) The player history belongs to a player, and that player is associated with 

one of ݕ average player models of length ݖ. 

(3) The average player model estimates the number of most significant spatial 

prototypes in the player history. These prototypes are removed from the 

player history bag, but additional under and over-estimate information may 

need to be sent. 

(4) The spatial prototypes in the player history bag not covered by the average 

player model are sent. 

 

Formally the cost of sending one player history ܲ using model ܯ௫,௬,௭ 	where ݔ 

is the number of prototypes in ܣ௫, and ݕ is the number of average player models of 

length ݖ is : 

 

௫,௬,௭൯ܯ|൫ܲܮ = (ܶ)ܮ + (ܱ)ܮ + (ܰ)ܮ +  (3.24) (ܨ)ܮ

 

(ܶ)ܮ = ⌈(logଶ  (3.25) ⌈(ݕ

 

(ܱ)ܮ = logଶ)⌉݋  (3.26) ⌈(ݔ

 

(ܰ)ܮ = ݊⌈(logଶ  (3.27) ⌈(ݔ

 

(ܨ)ܮ = ݂2ܴ (3.28) 

 

Here ܮ(ܶ) represents the cost of indicating which of the ݕ	average player 

models will be used to compress a portion of the player history. ܮ(ܱ) represents the 

cost of sending ݋	overestimation corrections as spatial prototypes. ܮ(ܰ) represents 

the cost of sending the ݊ spatial prototypes not covered by the average model. (ܨ)ܮ 



- 72 - 

represents the cost of sending ݂	real coordinates which could not be mapped to the 

codebook because of the fidelity threshold. The total cost sending all player histories 

is therefore: 

 

௫,௬,௭൯ܯหܦ൫ܮ = ෍ܮ(ܦ௜)
௡

௜ୀଵ

 
(3.29) 

 

The cost of the model ܯ௫,௬,௭, comprising a codebook ܣ௫ of size ݔ, and ݕ 

average player models of length ܩ ,ݖ௬,௭ 	is: 

 

௫,௬,௭൯ܯ൫ܮ = (௫ܣ)ܮ +  (3.30) (௬,௭ܩ)ܮ

 

(௫ܣ)ܮ = ൫(2ܴݔ) + logଶ)⌉ݔ)  ൯ (3.31)(⌈(ݔ

 

௬,௭൯ܩ൫ܮ = logଶ)⌉)ݖݕ ⌈(ݔ + ܴ) (3.32) 

 

Here the term ⌈(logଶ ⌈(ݔ + ܴ in ܮ൫ܩ௬,௭൯ represents the cost of an individual 

spatial prototype and associated probability (as a real of size ܴ). Therefore the best 

model ܯ௫,௬,௭ to use given data ܦ	(at fidelity ݂) is : 

 

݉݅݊௫ୀଵ,௬ୀଵ,௭ୀଵ
௑,௒,௓ ቀܮ൫ܯ௫,௬,௭൯ +  ௫,௬,௭൯ቁ (3.33)ܯ|ܦ൫ܮ

 

The best model will include ݕ average player models, hereafter known as the 

fine player archetypes. As with the gross player archetypes, Player IDs can be 

mapped onto the fine player archetypes to produce an abstract player type. 

 

For the implementation details of the Semantically augmented ball 
trajectories system, see section 7.14 



- 73 - 

3.11   Semantically augmented individual player trajectories 

The previous approaches to indexing SOP using the players and their 

trajectories has focussed on either treating each team as a mass, or using the players’ 

initial position and coordinated movement to form an abstract clique-based context 

around the SOP. In this indexing scheme, individual player trajectories will be used 

as the basis for indexing. 

Figure 3.26(a) shows actual individual trajectories of two teams of players 

over a short period of time equivalent to that of a SOP (approximately 10s). One 

approach to indexing these trajectories is offered in [56], which proposes a system 

that deals with collections of trajectories simultaneously. The trajectories are 

packaged into a tensor, which is then projected into a lower dimensional space via 

PARAFAC [57] to form a compressed matrix representation of the trajectories (and 

this is what is indexed). Multiple trajectory queries are likewise compressed, and 

similarity is based on the matrix distance between the query and each indexed 

object. Whilst this approach is at first appealing as there are two distinct collections 

of trajectories for each SOP (i.e. each team), it does not take into account the extra 

information that is available from the players; their individual spatial position and 

player type(s). This extra information allows for better discrimination between SOPs 

than using just the trajectory of players. For this reason, [56] was not pursued. 

 

Figure 3.26 – (a) Two teams of individual player trajectories (b) close up of one trajectory from the 
collection 

 
As discussed in section 3.10, there are trajectory-indexing approaches that 

operate on the level of individual trajectories, namely [47,48,49,52]. They either 

produce a compressed version of the whole trajectory [48,49], or they segment the 

trajectory and use the sub-parts as the indexing basis [47,52]. It was beneficial in the 



- 74 - 

case of the ball trajectory to take the sub-part approach, as the ball was composed of 

line segments to begin with, and there was a semantic theme through their temporal 

progression (i.e. changes of possession). In the case of individual player trajectories 

(Figure 3.26(b)), the trajectory exists as an ordered collection of points that does not 

have any additional semantic information attached to over and above the identity of 

the player it belongs to and its spatial position. For this reason, the extra effort 

involved in segmenting a player’s trajectory would not produce any additional value 

over treating the trajectory as a whole, so [47,52] were not pursued. 

Of the two remaining approaches, [48,49] are quite similar in many respects. 

The both separate the trajectory into x and y components (Figure 3.27) and compress 

each component individually (using Haar wavelets and Chebyshev polynomials 

respectively). The compressed x and y components then form the basis of the 

indexing system. Both are multi-resolution; Haar wavelets explicitly and Chebyshev 

polynomials implicitly (as the wavelengths of the polynomials decrease as their 

order increases). As they are similar, the author used Occam’s Razor to select, and 

as the Chebyshev polynomials approach is somewhat simpler (in the author’s view) 

this was the approach taken to represent compressed trajectories. 

 

 

Figure 3.27 – separation of trajectory into x and y components 

 

In detail, the Chebyshev method first separates the trajectory into ݔ and ݕ 
components (Figure 3.27) varying with time. For each of these components the 
following approximation process is performed on it. The Chebyshev polynomials (of 
the first kind) are given by the recursive definition: 

 



- 75 - 

଴ܶ(ݔ) = 1 (3.34) 

 

ଵܶ(ݔ) =  (3.35) ݔ

 

௡ܶାଵ(ݔ) = ݔ2 ௡ܶ(ݔ) − ௡ܶିଵ(ݔ) (3.36) 

 

The process of Chebyshev function approximation states that for any function 
 an approximation of it ,(lies in the interval [-1,1]	ݔ suitably scaled such that) (ݔ)݂
using ܰ Chebyshev polynomials can be made such that : 

 

(ݔ)݂ ≈ ෍ ܿ௞ ௞ܶ(ݔ) −
1
2 ܿ଴

ேିଵ

௞ୀ଴

 
(3.37) 

 

The necessary coefficients ܿ଴ …	ܿேିଵ can be calculated as follows : 

 

௝ܿ =
2
ܰ෍݂ቌcosቌ

ߨ ቀ݇ − 1
2ቁ

ܰ
ቍቍcosቌ

݆ߨ ቀ݇ − 1
2ቁ

ܰ
ቍ

ே

௞ୀଵ

 
(3.38) 

 

It is these coefficients that form the basis of the compressed representation of 
the trajectory. The higher the value of ܰ, the more precise the fit to the function will 
be. It is recommended for approximations to ܰ coefficients that a higher number are 
initially fitted and then only the first ܰ coefficients used. As it stands this 
approximation method deals with continuous functions, but it can be adapted to 
work with discrete functions (such as the trajectories) by using linear interpolation 
between the discrete trajectory points in order to simulate a continuous function. 

The other attributes of an individual player’s trajectory (Figure 3.26(b)) which 
are useful for indexing purposes, namely its start and end positions and the type of 
player undertaking the trajectory can easily be extracted from the SOP. These 
attributes can be abstracted using the spatial and player abstractions developed in 
3.10. 

 

For the implementation details of the Semantically augmented individual 
player trajectories system, see section 7.15 



- 76 - 

3.12   Semantically augmented context indexing with player cliques 

The final indexing scheme revisits the first indexing scheme that was a context 

based scheme which use player cliques to form the index. This variation uses the 

spatial and player abstractions developed in 3.10 to augment the clique descriptions. 

In the previous clique based indexing approach, only the clique sizes (as a 

distribution), the type of clique (implicitly by using different distributions for 

differing clique types), the abstract team the clique belongs to (again implicitly) and 

the clique centroid (averaged in the metadata) were used to describe the cliques. 

These features will be kept in this scheme, but now will be used explicitly to index 

on the collection of individual cliques within the SOP. With the addition of spatial 

prototypes the centroid of a clique (‘C’ in Figure 3.28(a) ) can be expressed in a dual 

sense, both as an exact coordinate and as the nearest spatial prototype. 

The abstract team, and the type of clique are initial parameters for the clique 

search algorithm, so they are trivially available for each clique. The clique size is the 

number of players in the clique, and this again is trivially available as the size of the 

set describing the clique (composed of player IDs). 

 

 
Figure 3.28 – basic clique properties of (a) centroid (b) player distances (c) clique area 

 

The clique centroid is easily calculated, given that the clique has a membership 

of ݊ players  ( ଴ܲ	, . . . , ௡ܲ), and that each player has an associated ݔ and ݕ coordinate 

( ௫ܲ , ௬ܲ) then the clique centroid (ܥ௫ ,  :௬) isܥ

 



- 77 - 

௫തതതܥ =
1
݊෍ ௫ܲ೟

௡

௧ୀଵ

 
(3.39) 

 

௬തതതܥ =
1
݊෍ ௬ܲ೟

௡

௧ୀଵ

 
(3.40) 

 

Since individual cliques are being indexed in this scheme, it is now possible to 

also include some additional information about the composition of each clique. 

Three additional features will be included, which abstractly describe the 

shape/extent of the clique. Figure 3.28(b) shows the distances between players in a 

3-clique. The mean distance between players in the clique of n players, ܦഥ is defined 

as: 

 

ഥܦ =
1

݊ଶ − ݊ ෍ ට( ௫ܲ೔ − ௫ܲೕ)ଶ + ( ௬ܲ೔ − ௬ܲೕ)ଶ
௡ିଵ.௡ିଵ

௜ୀ଴,௝ୀ଴,௜ஷ௝

 
(3.41) 

 

 

The minimum (ܰ)	and maximum (ܯ) player distance in the clique can be 
calculated, and from this the ratio of minimum to maximum distance, ܴ, can be 
defined :  

 

ܯ = maxቌ ෍ 	ට( ௫ܲ೔ − ௫ܲೕ)ଶ + ( ௬ܲ೔ − ௬ܲೕ)ଶ
௡ିଵ,௡ିଵ

௜ୀ଴,௝ୀ଴,௜ஷ௝

ቍ 
(3.42) 

 

ܰ = minቌ ෍ ට( ௫ܲ೔ − ௫ܲೕ)ଶ + ( ௬ܲ೔ − ௬ܲೕ)ଶ
௡ିଵ,௡ିଵ

௜ୀ଴,௝ୀ଴,௜ஷ௝

ቍ 
(3.43) 

 

ܴ =
ܰ
 (3.44) ܯ

 



- 78 - 

The final shape/extent feature extracted is the interior area of the clique 
(Figure 3.28(c)) which can be calculated for a clique of n players as follows: 

 

஼ܣ =
1
2෍

൫ ௫ܲ೔ ௬ܲ೔శభ൯ − ( ௫ܲ೔శభ ௬ܲ೔)
௡ିଵ

௜ୀ଴

 
(3.45) 

 

In addition to the basic properties of the clique, and the abstract properties 
covering shape/extent, the gross and fine player archetypes can be used to enumerate 
the clique membership in an abstract sense (remember the previous clique scheme 
could not use the raw Player IDs as they are semantically meaningless). Assuming 
that the gross/fine player archetypes have been discovered for each available player 
(which is a vital prerequisite to indexing with schemes 3.10-3.12), then it is simply a 
matter of iterating through the clique set of player IDs and generating associated 
multi-sets22 which contain the corresponding gross/fine player archetypes (Figure 
3.29) 

 

 
Figure 3.29 – mapping player IDs to gross/fine archetypes 

 

For the implementation details of the Semantically augmented context 
indexing with player cliques system, see section 7.16 

 

3.13   Summary 

This chapter introduced eight SOP indexing schemes. Of these one was based 

on a semantically augmented ball trajectory, describing the ball trajectory as a 

temporally linked series of line segments to which were attached semantic 

information describing possession. This indexing scheme required the development 
                                                

22 Multi-sets are required as the use of player archetypes will generate duplicate 
entries which must be preserved. 



- 79 - 

of abstract prototypes both for spatial coordinates and for types of players. MDL 

was used in both cases to select the best model. Two of the player based indexing 

schemes also made use of the spatial and player abstractions: the player trajectories 

and augmented cliques approach. Of the remaining five approaches, four used some 

variation of measuring player density (two used global player density, two used high 

entropy local patches of player density). The final approach used a very abstract 

clique based approach to describe the context around a SOP. 

  



- 80 - 

4 Combining indexing results 

This chapter presents a framework for combining indexing search results from 

two sources, that of ball indexing and of player indexing (the two being viewed as 

complementary approaches), to produce a composite ranking of results. The concept 

of the context of a query is introduced in the hope that it may serve as useful 

additional information in producing accurate ranking of results. Finally, a formal 

experiment involving multiple experimental subjects is undertaken to ascertain the 

usefulness of this approach, as well as that of the underlying indexing schemes 

introduced in chapter 3. 

4.1 Introduction 

In chapter 3 multiple approaches were taken to indexing segments of play. At 

the broadest level, these can be categorised into player-centric indexing and ball-

centric indexing approaches. In reality during a SOP, both the players and the ball 

are active components simultaneously. It is the central claim of this chapter that 

whilst there is a causal connection between the movement of players and the 

movement of the ball, the two are not mutually redundant views of a SOP. If this 

premise is accepted, then the next reasonable step is to investigate methods by 

which, using the same SOP query, the results from a player-centric indexing system 

and a ball-centric indexing system modulate each other to produce a more accurate 

combined ranking. 

4.2 The problem 

The general form of the problem is shown in Figure 4.1. Two indexing systems 

exist (source1 and source2), both of which have indexed the same collection of 

ܰ	objects using different approaches. An identical query is posed to both indexing 

systems. Each system produces a list of	݊	 results, (where ݊ ≪ ܰ) , which is ranked 

by a similarity measure unique to that indexing system. 



- 81 - 

The trivial case occurs when each list holds the same results in the same 

ranking order; the lists are effectively identical (although the similarities internal to 

each list may differ) and so either can be returned as the combined result. If this is 

not the case then the following problems exist if these two lists are to be combined 

into a single, ranked results list: 

 

(1) The two lists may contain the same results, but in a different ranking order.  

(2) The two lists may contain different results, resulting in a combined unique 

number of results of between ݊ + 1 and 2݊ depending on the mismatch 

between results lists. The mismatched result items will not have 

ranking/similarity information from both sources (Figure 4.2(a)). 

(3) The two sources may not be identically proficient at producing accurate 

results. A simple scenario could involve one source being always better at 

finding similar results than the other. In this case, the merging can be 

weighted in favour of the more accurate source. In addition, the 

proficiencies of the sources may depend on the nature of the query; which 

would then require some indication of the type/class of the query and a 

record of how the sources performed for that query class before a merge 

could be accurately made. 

 

 

Figure 4.1 – Combining rankings from separate sources into one list 

 



- 82 - 

The general solution to this problem is to use some form of rank aggregation, 

which can be classified in two main categories. The first category examines only the 

order of the rank associated with each result, not the similarity. Several simple 

methods exist such as the Borda count [109,110], in which a ranked list of ݊ items 

are assigned scores based on the distance from the top of the rank (top rank assigned 

݊, bottom rank assigned 1). Under Borda count, aggregation simply involves 

totalling the score for each result in each list, the new ranking being given by the 

combined Borda count. This approach is degraded in the context of (2), in the worst 

case of no results overlap defaulting to interleaving the results (#1 from list1,#1 

from list 2,#2 from list1 etc). Median rank aggregation [111] assumes ݀ lists to be 

aggregated, thereby giving every result item ݀ ranks, from which the combined rank 

of the item is the median value in rankings. This is not suitable in the case of only 

two lists as a median cannot be defined. Markov chains are used in [112], where 

members of the result lists are modelled as states, the transition probabilities are 

heuristically assigned depending on the current state (four variations of moving to 

‘better’ higher ranking states are offered)  and the aggregate ranking emerges as the 

Markov chain ordering. This method has the advantage that it can explicitly work 

with partial lists (i.e. result lists that do not share all members). 

The second category of rank aggregation examines the similarity scores 

present in the ranked lists. Several simple methods of score fusion are presented in 

[113], where the unweighted minimum, maximum or sum of each result items 

normalised score is used to perform the rank aggregating. [114] utilises a weighted 

linear combination of similarity scores to rank results, the weights being determined 

via linear regression on training data. This is based on the assumption that similarity 

scores will always be available, which may not be the case if (2) holds of course. 

[115] models the score/similarity distributions of search engine results as 

normal/exponential distributions for relevant/non-relevant results respectively, then 

uses these distributions to map result scores onto a probability of being relevant/non-

relevant to the query, allowing result lists from different search engines to be 

combined using the probabilistic relevance score. 

In the case of this thesis, both rank and similarity scores are available in the 

individual result lists. Since the score implicitly defines the rank, and it also gives 

more information about the relative quality of results within a list (real vs ordinal), it 

is the preferred aggregating attribute. It is highly likely that the result lists will not 



- 83 - 

contain exactly the same results, so some result items will be missing similarity 

measures from one indexer (Figure 4.2(a)). The aggregator should either be able to 

cope with this missing information, or employ a method to reconstitute it (Figure 

4.2(b)). The latter approach is preferred; as the aggregator will be part of the same 

system as the indexers, it should be possible to achieve this relatively efficiently.  

 

 

Figure 4.2 – Either coping with incomplete information (a) or filling in result similarity blanks (b) 
is a necessary step in merging two result lists 

 
Comparison/combination of scores from different result lists requires some 

form of normalisation as they are produced by different similarity metrics. Actual 

normalisation is used by [113], whereas ground truth is used by [114,115] to 

produce suitable weightings/distributions respectively in order to combine scores. 

For the SOPs there is no pre-existing function which can objectively and accurately 

compare SOPs to produce a similarity ground truth (if there were then this function 

would be the obvious choice to use in the indexing system(s)). Nor do any pre-

existing datasets contain previously compared and vetted SOP similarities. However 

a subjective ground truth can be supplied by the author, by manually comparing 

SOPs and assigning similarities to each compared pair. This is the preferred 

approach, with the caveat that the author can produce reasonably consistent 

similarity comparisons. A NN will be used as a general, trainable non-linear means 

of mapping from sets of similarity scores to estimated ground truths, which can then 

be used to rank the aggregated list. Training using ground truth will implicitly rate 

the indexers’ global proficiency (i.e. the ground truth may indicate that the ball 

indexer produces more accurate results on average than the player indexer), however 

the author suspects that the type/context of the query may have some impact on the 

proficiency of the indexers on a per query basis, so a means of representing the 

context of a query should be included as additional information to be used during 

aggregation. 



- 84 - 

4.3 General model 

Figure 4.3 shows the general model that will be used to combine the results 
output from a ball-trajectory based indexer ܤ and a player-based indexer ܲ. The 
process of results aggregation is as follows (also see Figure 4.3): 

 

(a) Prior to any results aggregation, ground truth is located for ܲ and ܤ. A NN 
is trained with the available ground truth. 

(b) An identical query is sent to both the indexing systems (the player and ball 
indexers respectively). Each indexing system decomposes the example into 
the specific query format used by that indexing system, and then performs 
the query. This process generates two result lists sorted internally by 
similarity to the query. 

(c) The result lists are matched up w.r.t. the result items (SOPREFs) to 
produce a unique list of results. Missing similarity information is generated 
for the mismatched results. 

(d) For each unique result, the two similarity scores, along with a 
characterisation of the query context are fed into the trained NN to produce 
an estimated ground truth-value for the result. 

(e) Once all results have generated estimated ground truths, they are placed 
into a results list and ranked on their assigned estimated ground truth. 
 

4.4 Implementation 

The general form of results produced by the SOP indexing systems is shown in 
Figure 4.4 (covering five results). ݏଵ  ,ହ represents the query similarity measureݏ…
ଵ݋ ଵݎ ହ represents the SOPREFs associated with each result and݋…  ହ representݎ…
the search relaxation level at which the result was discovered. The ranking is 
produced by sorting on the similarity column. A combination of the relaxation level 
and the similarity score will be used as a composite similarity for use with the NN 
ground truth estimation, as it supplies additional information about the how difficult 
each result was to find in the index. 

 

 



- 85 - 

 
Figure 4.3 – General model used to combine results involves pretraining NN with similarity ground 

truths, obtaining two results lists from the complementary indexing systems, filling in any missing 
information in the results lists, and then using the NN to generate estimated similarities which are used to 

combine the two result lists into one final sorted list. 

 

 

Figure 4.4 – General form of indexer results comprising a ranked list of (similarity score , 

relaxation level and SOPREF) 3-tuples 

 

 
Figure 4.5 – Composite similarity includes relaxtion level to describe how difficult result was to 

find and a query context to describe what class of query has been initiated. 

 



- 86 - 

4.4.1 Supplying missing information 

Consider the example in Figure 4.6 that represents the top five results 

generated by the same SOP query to the ball-centric indexing system and a player-

centric indexing system.  

 

 

Figure 4.6 – two result lists with some mismatch between the lists 

 
If the result sets are aligned to match up identical SOPREFs (see Figure 4.7), it 

can be seen that in some cases the similarity/relaxation information is available from 

both indexing sources {݋ଶ, ,ଵ݋} ସ}, in other cases it is not݋ ,ଷ݋ ,ହ݋ ,଺݋ ,଻݋  In the .{଼݋

cases where similarity/relaxation information is not available from both indexers, it 

must be generated. 

 

 

Figure 4.7 – result list alignment (with resultant void spaces which require filling) 

 

Consider an example in which two indexing systems, ܲ and ܤ, are given the 

same query (by example). ܲ generates query ܳ௣, ܤ generate query ܳ௕. Both queries 

are performed on their respective indexes and generate two result lists. There exist 

mismatches between the result lists, and one such mismatched result ܱ has 

relaxation/similarity information from indexer ܲ but does not have 



- 87 - 

relaxation/similarity information from indexer ܤ (the missing information ܴ௠ and 

ܵ௠). Assuming both indexing systems have indexed identical collections of SOPs23 

(of course from different perspectives), the SOPREF associated with ܱ can be used 

to locate the indexing information for the SOP in the indexing data of 24ܤ. This 

indexing information consists of a set of PIs ௕ܲ and a set of (SOPREF, RM) pairs25 

ܴ௕. Once located these two sets ( ௕ܲ and ܴ௕) can be used to generate the missing 

relaxation/similarity information ܴ௠ and ܵ௠ as detailed in the next two subsections. 

4.4.1.1 Generating missing similarity measures 

The query object ܳ௕ has an associated set of PIs, ௤ܲ , and an associated set of 

RM ܴ௤, which are generated from the example SOP given as a query. Given ௤ܲ  , ܴ௤ 

, ௕ܲ and ܴ௕, then if: 

 

(1)  The indexing system ܤ has a query similarity metric, ܯ஻,  which only uses 

the RM, then ܵ௠ = ܯ஻(ܴ௤ , ܴ௕) 

(2) The indexing system ܤ has a query similarity metric, ܯ஻, which uses both 

the PIs and the RM then ܵ௠  = ܯ஻ ( ௤ܲ  , ܴ௤, ௕ܲ , ܴ௕). 

4.4.1.2 Generating missing relaxation information 

The query object ܳ௕ has an associated set of PIs ௤ܲ , which are generated from 
the example SOP given as a query. The following algorithm can be used with ௤ܲ  and 

௕ܲ to generate the missing relaxation information ܴ௠: 

 

 
                                                

23 Which the author would recommend as the default approach to indexing 

24 note this is not a query, rather a very specific index lookup using a SOP reference 

25 For the indexing schemes proposed in sections 3.5,3.6,3.7,3.8 and 3.9 these sets 
will only contain one member, but in the case of the indexing schemes proposed 
in sections 3.10, 3.11 and 3.12 the sets will contain multiple members (as they 
deal with multiple ball trajectory segments, player trajectories and augmented 
cliques respectively), but they are all associated with the same SOP reference. 
This fact does not affect the relaxation/similarity generation, it is only for 
additional clarification. 



- 88 - 

(1) Initial relaxation level 0 = ݎ 
(2) Using the PI matching logic of ܤ at relaxation level ݎ, if any members of 

௤ܲ  match any members of ௕ܲ, then ܴ௠ = ݎ 
(3) If no matches are found between ௤ܲ  and ௕ܲ, if ݎ + 1 does not exceed the 

maximum relaxation of ܤ, then ݎ	 = 	ݎ	 + 	1 and return to (2) 
(4) If ݎ	 + 	1 exceeds the maximum relaxation of ܤ, then ܴ௠ 	=  ݎ	

 

The purpose of the algorithm is to determine what relaxation level under ܤ the 
original query would have been discovered at. The fourth clause is the base case of 
this recursive algorithm; ensuring that it always terminates at the maximum 
relaxation (which essentially means that the PIs match every potential search result). 

4.4.2 Query context 

It is another claim of this chapter that the type of query being performed may 

influence the quality of results returned from an indexing system. To test this claim, 

some form of categorisation of the type of query will be required in order to be 

coupled with the similarity information as input for the NN ground truth estimator.  

The available information associated with a query is the PI, RM and the 

SOPREF. Of the three, the SOPREF does not hold any information about the actual 

content of a SOP, only when it begins, so is not a good candidate for categorisation 

of the query. Of the remaining two, the PI seems the logical choice as a source of 

categorisation information, as its function is already to approximately categorise an 

indexed collections of SOPs into subsets of similar SOPs. 

Depending on the indexing scheme in question the PI is either a fixed length 

vector (for sections 3.5, 3.6, 3.7, 3.8, 3.9) or a variable number26 of fixed length 

vectors (for sections 3.10,3.11,3.12). The ground truth estimating NN  accepts two 

compound similarities (four values in total) and then a categorisation of the query 

context from the perspective of both indexing systems. If the context section of the 

input is larger, in terms of input nodes, than the compound similarity section then 

there exists a danger that the NN will be preferentially sensitive to the query context 

over the similarity input (particularly if the input values in the context section are 

                                                
26 in which case the resultant vector length is assumed to be the longest possible 

length with vector padding applied if necessary for smaller resultant vectors 



- 89 - 

highly uncorrelated). As the purpose of the context information is to allow the NN to 

process the simililarity in a more nuanced manner, its domination of the input is 

undersirable. Therefore in order for the NN not to overfit on the query context 

section, it’s size in terms of input nodes should be equal to the size of the similarity 

input section, namely four inputs (two nodes per PI context) as in Figure 4.8. Now 

even if the context inputs are highly uncorrelated, they should not dominate. There 

now exists the problem of how to select what constitutes the two inputs per PI 

context, as this can represent a drastic reduction in input size. It is important that 

when reducing the dimensionality to two, as much significant information is 

preserved as possible. 

  

 

Figure 4.8 – neural network with context + similarity terms detailed 

 
Two alternative methods of reducing the dimensionality of the PIs down into a 

compact 2D space were used. The first method used was the linear transformation 

provided by Principal Component Analysis (PCA) [116]. PCA is used to transform 

(possibly correlated) ܰ-dimensional data into a new coordinate system of equal 

dimension ܰ, but where the new orthogonal dimensions of the transformed space are 

ranked by how much variation they capture from the original data. The transformed 

data can then be projected into a lower dimension of ݊ (where ݊	 < 	ܰ), by only 

selecting the ݊ most significant dimensions of the data in the transformed space. As 

an example consider Figure 4.9, which shows a collection of 2D values plotted on 

the (ݔ, ,ݑ) coordinate system. Under PCA a new coordinate system emerges (ݕ  ;(ݒ

the ݑ dimension being the principal dimension of the data, that is the dimension 

which exhibits the greatest variation in the data, and is the single most 

discriminating feature of the data. Hence the data can be transformed can be 



- 90 - 

projected into 1-dimension by only recording the value of the data on the ݑ 

dimension.  

 

 

Figure 4.9 – PCA transformation from (x,y) to (u,v) 

 

 
Figure 4.10 – auto-associative neural network mapping high dimensional vector I onto interior 

hidden nodes representing a lower dimsional vector I’, effectively compressing I into I’ (although the 
compression is likely to be lossy). 

 

The second method of obtaining a compact 2D representation of the query 
context used was an auto-associative NN. These type of networks are essentially 
trained to perform an identity function over a data set, the central layer hidden nodes 
(‘bottle neck’ nodes) forming a compressed representation of the input vector. 
Figure 4.10 gives an example, where a network has been trained to perform the 
identity function on vectors of length 8 (vector ܫ). However the two hidden nodes 
within the network form a compressed representation of ܫ,  which has only two ’ܫ
dimensions. This form of neural compression has been used previously in research 
into the lossy compression of images [117], and has the potential advantage over 
PCA of being a non-linear process (as opposed to the linear PCA). 

 

 

 

 



- 91 - 

4.5 Formal evaluation 

In order to properly evaluate the eight competing indexing schemes, as well as 

evaluate the efficacy of index results combination27, an experiment was required. 

Human experimental volunteers were asked to rate the similarity between pairs of 

SOPs; these pairs either being generated as the result of a query, or randomly 

generated as a control. Competing indexing schemes were then evaluated, both in a 

relative and in an absolute sense, by the combined ratings supplied by the human 

volunteers for the index query results they produced. 

4.5.1 Database selection and data pre-processing 

Before the evaluation of the indexing schemes could be carried out, a suitable 

database system had to be selected and the data had to be conditioned to assure that 

it was consistent and complete. The database chosen for use was MySql 5.0 

[118,119], which has the dual advantages of being free and being well optimised 

(for the purposes of this thesis only the MyISAM storage engine was used as 

transactional DB features available in innoDB were not required and they consume a 

lot of disk/memory resources). 

 Sixty-three matches of trajectory and event data were obtained from ProZone 

for the purposes of indexing/evaluation. This constitutes approximately 5,700 

minutes of play, of which 55% is active play (the other 45% being stoppages such as 

ball out of play, fouls etc). The original ProZone trajectory data records player 

positions down to a time resolution of 0.1 seconds, however players are not recorded 

consistently in a temporal sense, rather they are recorded whenever they exhibit 

significant movement on the pitch, and this position is updated with a frequency of 

approximately 0.5-1.0 seconds (depending on player motion). Thus in the raw state 

it is not guaranteed that for a particular time instant all the players positions will be 

immediately available, so the missing player positions must be interpolated. All 

player positions were interpolated during pre-processing rather than being 

performed ad-hoc. During interpolation, the trajectories were also smoothed with a 

                                                
27 Of which there are 21 variants in total, (a) 7 variants of player indexer with ball 

indexer but with no query context, then (b) with a query context supplied via 
neural net compression, then (c) with a query context supplied via PCA. 



- 92 - 

time window of +/- 0.5 seconds. This smoothing is consistent with the standard 

ProZone data pre-processing performed before shipment of data to client clubs (as 

communicated during an early data format/integrity meeting with ProZone staff). 

A series of annotated events for each match is supplied with the trajectory 

dataset. They record event type, player(s) involved in the event, and the position of 

the event (if this cannot be inferred from the player(s) involved). These are discrete 

temporal events and as such require no interpolation. The trajectory of the ball is not 

recorded in the raw data at all, rather it may be interpolated (as line segments) from 

a combination of player positions and associated events. Again, the interpolation 

was performed in the pre-processing stage rather than ad-hoc as an efficiency 

measure.  Added to the ball position at any given instant was which player/club (if 

any) is currently in possession of the ball, and if the ball is currently in play or out of 

play.  When the ball is out of play it remains static at the last position it was in play 

at until it is put back into play. 

4.5.2 Indexing structure discovery 

Several of the indexing methods require optimal parameters / local features / 

abstractions to be extracted from the data (or a representative sample thereof).  The 

following sections briefly outline this process. Each of the indexing schemes were 

mapped onto a MySQL table, with the PI structured using a B-Tree, and (database) 

indexes placed on the columns constituting the PI in the table. 

4.5.2.1 Optimal clique threshold discovery 

Both the clique (section 3.5) and augmented clique (section 3.12) indexing 

schemes require threshold values for proximity and angular distance in order to 

produce the cliques from the players’ positions/direction of movement. The best 

value for these thresholds is considered by the author to be those that produce, on 

average, the highest number of cliques – as this will result in the richest description. 

Since there is only one variable to take into account in each case, this reduces into a 

line-search over the range of permitted threshold values.  

Five thousand segments of play were randomly sampled from the available 

data, and a line-search was performed over a predefined interval of threshold values 



- 93 - 

for the Euclidean proximity metric to determine the mean number of cliques 

produced. Figure 4.11 shows the results for the proximity cliques, where the 

threshold value represents player separation in normalised pitch units (see section 

3.4). From the line search between the values of 0.0 and 2.0, the maximal cliques 

value occurs when the threshold is 0.51. Note that when the threshold is 0.0, no 

cliques are discovered (as no players are exactly coincident on the pitch), and values 

approaching and at 2.0 the number of cliques become 1.0 (i.e. there is exactly one 

clique and it encompasses the whole team). 

 

 

Figure 4.11 – locating ‘richest’ proximity clique threshold 

 
The same procedure was undertaken for cliques produced by direction 

separation, here the threshold is expressed as a separation of direction measured in 

radians, and the line was searched between the values 0.0 and π. Once again, a 

definitive answer is available as shown in Figure 4.12, producing the maximum 

mean number of cliques at a threshold value of 0.3 radians (approximately 17 

degrees separation). In this case, it is possible, if improbable, that two or more 

players are moving in exactly the same direction, so the mean cliques discovered for 

a threshold of 0.0 is a non-zero value. Values at π and above produced exactly one 

clique, as this covers the full range of rotational separation. 

 



- 94 - 

 

Figure 4.12 – locating ‘richest’ player separation clique threshold 

 

4.5.2.2 High entropy local features discovery 

Five thousand randomly selected segments of play were used in conjunction 

with the individual local feature discovery and local feature set discovery algorithms 

described in section 3.8 (see Figure 4.13 and Figure 4.14). This resulted in a 

collection of 20 local features per abstract team. Details of the local features 

discovered are available in section 7.5 

 

 

Figure 4.13 – convergence of search for high entropy local feature combinations with team ‘-1’ 

 



- 95 - 

 
Figure 4.14 – convergence of search for high entropy local feature combinations with team ‘+1’ 

 

Five thousand randomly selected segments of play were used in conjunction 

with the individual local feature discovery and local feature tree generation 

algorithms described in section 3.9. This resulted in one local feature tree per team, 

each tree being 10 levels deep with 311 unique features in the ‘-1’ team tree, 327 

unique features in the ‘+1’ tree. 

4.5.2.3 Optimal spatial prototypes discovery 

A random sample of five thousand player positions together with a fidelity 

threshold of 0.07 (pitch normalised, approximately 4m) was used with the MDL 

model selection algorithm for the optimal number of spatial prototypes between 1 

and 255 (as described in section 3.10.1). The optimal number of spatial prototypes 

was 112 (Figure 4.15), and the resultant spatial distribution of prototypes along with 

an overlaid Voronoi diagram is shown in Figure 4.16. The prototypes are roughly 

mirror symmetrical (see Figure 4.17) about two orthogonal lines with their origins at 

the centre of the pitch. The symmetry across the vertical red line is due to the 

presence of the two opposing teams, averaged across the permitted team formations 

(such as 4-4-2, 5-3-2 etc). 

 

 



- 96 - 

 

Figure 4.15 – Locating the optimal MDL derived values for spatial prototypes 

 

 

 
Figure 4.16 – Optimal spatial prototypes based on player movement 

 

 

Figure 4.17 – Approximate mirror symmetry evident across two orthogonal lines originating at the 
centre of the pitch 

 

4.5.2.4 Optimal gross/fine player archetypes discovery 

The mean ݔ position of each available player was agglomeratively clustered, 
the players clustering into the four gross archetypes shown in Figure 4.18, with (a) 
being the goalkeepers, (b) being the defenders, (c) were the midfielders and (d) were 
the attackers. A random sample of five thousand positions was taken from the 



- 97 - 

trajectories of each available player. Together with a fidelity threshold of 0.07 (pitch 
normalised, approximately 4m) this data was used with the MDL model selection 
algorithm (as described in section 3.10.2) for the optimal number of player 
prototypes. Agglomerative clustering was used to generate the average player 
models throughout the modelling process, as this produced predictable, deterministic 
clusters. A parameter space of spatial prototypes ranging from 100 to 200, number 
of player models ranging from 22 to 44, and player model length ranging from 1 to 
50 was used. This space was searched using the stochastic search method Simulated 
Annealing (SA) [120] (as it was computationally prohibitive to brute force search 
the whole space). A total of five runs of SA, each starting at a random point in the 
space, were run with a maximum number of 1000 steps for each run. In an addition 
to the standard SA algorithm, each point in the space visited during the five runs was 
recorded in a set alongside its energy level (which in this case is the cost in bits), this 
record also functioned as a cache if a point was revisited, but otherwise did not 
influence the SA search. At the end of the five runs, the resultant set members were 
sorted by their energy level, the top ten lowest energy levels being recorded, and the 
lowest energy point being selected as the optimal solution. 

 

 
Figure 4.18- Gross player archetypes discovered by clustering 

 

The optimal number of player models emerged as 22 with a model length of 
30, on a backdrop of 117 spatial prototypes. Figure 4.19 shows three such 
discovered fine player archetypes (with only the most significant 16 positions in the 
model shown). A graphical depiction of all fine player archetypes found is available 
in section 7.6. The top ten results from the stochastic search are shown in Table 4.1. 



- 98 - 

 
Figure 4.19 – 3 fine archetypes which approximately map to (a) a goalkeeper, (b) a defender, (c) an 

attacker 

 

Spatial prototypes Player models Model length Cost in bits 
117 22 30 691274 
113 22 31 697066 
122 22 28 697994 
104 23 32 699503 
111 24 31 699796 
104 22 31 700298 
121 24 28 700628 
116 22 29 700842 
113 22 28 700906 
110 22 32 701482 

 

Table 4.1 – MDL stochastic search for fine player archetypes (top ten smallest models + data) 

 

4.5.3 Experimental design 

Sixty-three matches of trajectory and event data were obtained from ProZone 

and pre-processed (see section 4.5.2 for details). Each of the sixty three pre-

processed matches were indexed at intervals of 5 seconds, with a default SOP length 

of 10s, starting from the beginning of each half, using each of the competing index 

schemes (resulting in eight versions of SOP indexes). The choice of a default SOP 

length of 10s is justified as follows. Firstly it ensures that the indexing process for 

the experiment is uniform and unbiased, both in the generation of the indices and in 

the eventual rating of the SOPs by the experimental subjects (for instance it is 

conceivable that subjects may be better at judging similarity over shorter rather than 

longer SOPs). Secondly, although the general indexing model as introduced in 

sections 3.2 and 3.3 has no intrinsic notion of time/duration of player movement, 

and most of the proposed indexing systems likewise have no intrinsic time/duration 

constraints, the semantically augmented ball trajectory indexing system (see sections 



- 99 - 

3.10 and 7.14 for details) does have a notion of duration in its RM and this is used to 

compare semantically augmented trajectories in a pair-wise fashion. The use of a 

standard SOP length therefore ensures no bias during the experiment for or against 

the ball indexing system. Thirdly, for the purposes of the experiment, the SOP 

length was chosen specifically to be 10s because the author perceived this to be 

roughly the amount of time most set plays such as corners, throw-ins, free kicks take 

either to terminate or to transform into free play. 

4.5.3.1 Training context nets/obtaining PCA projections 

For each of the eight individual indexing systems, ten thousand indexed SOPs 
were randomly sampled, and their PIs collected. These were used to train an auto-
associative NN and to fit a PCA projection in order to produce compressed context 
representation in the 2D plane. Table 4.2 shows the extent of variability preserved 
(or information lost) from the original PIs by using PCA to create the 2D contexts28. 
The PIs which were the most successfully compressed where those that are 
essentially bit-fields (HTI and HTTI), the least successful was the clique indexing PI 
(CI) which is an integer vector based on the distribution of clique sizes within a 
team. Table 4.2 also shows the final convergent mean squared error (MSE) for each 
of the trained auto-associative NNs used to generate the alternative 2D 
compressions. Although the MSE is a more opaque metric than the PCA variability 
value to illuminate information loss due to compression, a lower bound of an MSE 
of 0.0 would indicate a perfect lossless compression, and increasing values above 
0.0 indicate increasing information loss due to incomplete auto-associative 
modelling of the input vector. Interestingly even though the PI of the CI context 
exhibits the most information loss, the 2D projections of both the PCA and NN 
compressions as show in Figure 4.20 would seem to indicate that the resultant two 
variables have very little correlation with each other (a positive or negative 
correlation would show evidence of a line grouping of the variables). The low 
correlation will ensure that the 2D representation is making effective use of both of 
the NN input nodes allocated to it, albeit with the associated information loss. 
Section 7.4 shows the remainder of the 2D NN and PCA projections, with most of 
them showing little or no correlation between the compressed variables. 

                                                
28 Where ACI=Augmented cliques, AFI=player trajectories, BI=ball trajectories, 

CI=cliques, HPI=team mass multi-resolution 2D histograms, HTI=flat 
collection of high entropy features, HTTI=tree collection of high entropy local 
features, PI=team mass 2D histogram 



- 100 - 

 

PI Type 2D variability preserved Converged MSE 

CI 18.61% 0.874 

PI 21.38% 0.819 

HPI 25.09% 0.785 

HTI 50.82% 0.449 

HTTI 87.13% 0.282 

BI 70.45% 0.343 

AFI 36.83% 0.576 

ACI 62.39% 0.327 

 

Table 4.2 – Variability preserved in the compressed 2D context by PCA and convergent MSE of 
the auto-associative NN by indexing system  

 

 

Figure 4.20  – compressed 2D context projections for cliques via NN (hidden states) and PCA 

projection 

 

4.5.3.2 Providing bootstrapping ground truth for network training 

As previously stated in section 3.3.1, to the best knowledge of the author, there 
exists no body of data that provides similarity ratings between segments of 
play/team movements/set pieces within football matches (and specifically within the 
ProZone data). There also isn’t a pre-existing objective SOP similarity function to 
compare SOP pairs (if there were then this would be the obvious choice for an 
indexing system). Subsequently any similarity ratings which are required to initially 
train the respective indexing systems have to be generated in a bespoke manner by 



- 101 - 

an ‘expert’ in the field. As the author has spent some considerable time immersed in 
the study of SOP indexing and similarities, it did not seem an unreasonable step for 
the author to generate this initial body of bootstrap similarity ground truth. Since all 
the indexing systems will be trained using the same supplied similarity data (albeit 
from their own internal indexing perspective/representation), any potential biases 
within the training data  will be equally shared between indexing systems. There will 
be no commonality between the set of SOPs used to generate the bootstrap 
similarities, and the set of SOPs the experimental subjects rate, so only generalised 
knowledge learnt from the bootstrap training data will be tested, not the recall of 
specific SOP similarity ratings. It is hoped that if the indexing work is pursued 
beyond this thesis, then an iterative process can be put it place where the 
experimental ratings data is folded back into retraining the indexing systems, which 
can then be further tested, generating even more ratings data and hence 
incrementally improving indexing performance. This being said, prior to beginning 
the experiment, the author rated 1425 pairs of SOPs, using the subjective Likert 
rating scale defined in Table 4.3.  These pairs were divided approximately into the 
four cases covered by each subjective similarity category of very unsimilar / quite 
unsimilar / quite similar / very similar (in the subjective view of the author).   

As the SOPs subjectively rated by the author were not the result of a direct 

query, the relaxation/similarity information was initially missing. This information 

(along with the compressed context) is required for training the NN ground truth 

estimators.  However, it can be generated, as per section 4.4.1 (as can the PIs for the 

compressed context) as both SOPREFs are available. 

 

 

Figure 4.21 – filling in missing information for bootstrap similarity ratings 

 

Consider two such SOPs, A and B as shown in Figure 4.22. Since similarity is 
a symmetric operation, any similarity attributed from A to B can be mirrored and 
applied from B to A. In this way the number of training cases was double by using 
the symmetric nature of similarity (see Figure 4.23) 

 



- 102 - 

 

Figure 4.22 – symmetric similarity between two compared SOPs 

 

 
Figure 4.23 – mirroring similarity from B->A onto A->B 

 
These initial ratings (2850 with similarity mirroring) were used to train the 

estimated ground truth NNs within each of the twenty one variants of the combined 

indexing systems (seven player indexer + ball indexer; seven player indexer + ball 

indexer with neural compressed context; seven player indexer + ball indexer with 

PCA compressed context). 

4.5.3.3 Obtaining SOP similarity ratings from experimental subjects 

Twenty seed segments of play were selected from the available matches, 

which broadly covered the different aspects of football play (corner, kick-off, goal 

kick, throw-in, direct free kick, indirect free kick, and segments from moving play). 

These seed segments were used as queries by example for each of the eight 

underlying indexing schemes, and the top ten results from each index query were 

recorded. Ten segments were selected at random for each seed to act as a control. 

Thus ninety results were associated with each seed, and in total eighteen hundred 

results were recorded. The twenty-one variants of the index combining system were 

used to combine the query results from their associated underlying indexing 

systems; resulting in twenty-one ranked result lists (whose length varied from ten to 

twenty depending on result list overlap, however only the top ten results from each 

system were evaluated). 

An experimental application was created (see Figure 4.24) which was able to 

display two segments of play simultaneously in two adjoining display panes. The 



- 103 - 

segments of play were shown graphically from an overhead perspective, with 

opposing teams clearly delineated by colour (red and green teams). The segments of 

play were synchronised temporally, and could be played/stopped and fast-

forwarded/reversed by use of on screen controls. The eighteen hundred results and 

their associated seeds were randomly sorted, and then sequentially displayed to the 

human subject in a blind fashion (i.e. no indication was given as to whether a 

particular pane contained a seed or a result, and the seed/result was randomly 

assigned to the left or right segment pane for each rating). 

 

 

Figure 4.24 – SOP similarity evaluation application which enables the user to view two SOPs and 

then submit a similarity rating for the two SOPs 

 

After viewing the two segments, the subject was invited to rate the similarity 
of the two segments. The similarity rating was a forced 4-point Likert scale29, whose 
available options are enumerated in Table 4.3. This is a forced Likert scale because 
it removes the central non-committal answer of don’t know/unsure and forces the 
rater to give a definite opinion on the similarity. Likert scales fall within the ordinal 
level of measurement; the response categories have a rank order, but the intervals 
between categories cannot be assumed to be equal. Common descriptive statistics 
such as the mean and standard deviation are inappropriate because of the discrete, 
ordinal nature of the data, as are common parametric analysis methods such as t-test, 
ANOVA and numerical regression. In their place, the median may be used instead 
of the mean to give a measure of the central tendency, and non-parametric analysis 

                                                
29 Likert scales are frequently used in questionnaires to elicit responses which cover 

a subjective qualitative scale. 



- 104 - 

methods such as Chi-Squared, and Spearman's rho (amongst others) may be used to 
further compare/analyse the data. 

 

Score Meaning 

0.0 Very unsimilar 

0.33 Quite unsimilar 

0.67 Quite similar 

1.0 Very similar 

 

Table 4.3 – Four point Likert Similarity scale covering the interval [0,1] with associated semantic 

meaning 

 

After rating one pair of segments, the rating score is associated with the pair 

and recorded, and the next randomly selected pair is shown to the subject. After all 

SOP pairs have been displayed and rated at least once, the ‘to be rated’ list is 

repopulated and randomised, and then rating continues as normal.  

4.5.4 Results 

A total of sixteen volunteers each submitted ratings for approximately one 
hour, in total generating 2593 ratings. This covered all of the test cases once30, with 
an overflow of 631 ratings (uniformly randomised across all test cases). After each 
rating session, the volunteer was asked to attempt to write in English what 
constituted ‘similarity’ with respect to segments of play. The replies are reproduced 
in section 7.3. 

A summary of the experimental ratings appears in Table 4.4. The sixteen raters 
can be clustered into three groups via their median rating given, with the rating of 
quite unsimilar (0.33) giving the largest cluster. There exists a surprising range in 
the number of ratings given during the experimental sessions, all of which extended 
for approximately one hour. The overall distribution of ratings submitted during all 
the experimental sessions is given in Table 4.5 (where LS1=very unsimilar(0.0), 
LS2=quite unsimilar(0.33), LS3=quite similar(0.66), LS4=very similar(1.0)). The 

                                                
30 with duplicates results from differing indexing schemes factored in 



- 105 - 

most common rating given is quite unsimilar, matching with the largest cluster of 
individual rater median ratings.     

 

Rater Ratings Median 
1 238 0.33 
2 177 0.33 
3 183 0.67 
4 119 0 
5 109 0 
6 283 0.33 
7 73 0.33 
8 80 0.33 
9 123 0.33 

10 154 0.33 
11 266 0 
12 100 0.33 
13 129 0.33 
14 84 0.33 
15 133 0.33 
16 342 0.33 

 

Table 4.4 – Summary of experimental data giving ratings and median similarity score per rater 

 

 

LS1 LS2 LS3 LS4 
0.345 0.38 0.209 0.066 

 

Table 4.5 – Distribution of Likert ratings over entire experiment 

 

In order to determine if the overall distribution of ratings has captured any 
general feature of raters, a series of Chi-Square Tests was performed to test whether 
the distribution of ratings for each rater (summarised in Table 4.6) was independent 
of the overall distribution of ratings (Table 4.7). 

 

 

 

 

 



- 106 - 

Rater Ratings LS1 LS2 LS3 LS4 
1 238 0.303 0.294 0.29 0.113 
2 177 0.169 0.373 0.345 0.113 
3 183 0.169 0.301 0.372 0.158 
4 119 0.63 0.319 0.05 0 
5 109 0.615 0.303 0.073 0.009 
6 283 0.244 0.597 0.141 0.018 
7 73 0.342 0.233 0.247 0.178 
8 80 0.437 0.375 0.15 0.038 
9 123 0.244 0.276 0.26 0.22 

10 154 0.325 0.37 0.286 0.019 
11 266 0.647 0.32 0.023 0.011 
12 100 0.19 0.46 0.21 0.14 
13 129 0.426 0.209 0.341 0.023 
14 84 0.298 0.238 0.274 0.19 
15 133 0.414 0.248 0.308 0.03 
16 342 0.249 0.602 0.14 0.009 

 

Table 4.6 – Summary of experimental rating distributions over the four interval Likert scale 

 

The results of the Chi Square tests are summarised in Table 4.7 and Table 4.8. 
They show that all raters apart from rater number eight and rater number four are 
statistically independent of the overall ratings distribution. A series of 256 Chi 
Square tests were performed between the individual rater distributions in an attempt 
to discover any similar clusters of raters. The full results table is too cumbersome to 
include within this thesis, but the raters which could not be shown to be significantly 
independent of each other (and therefore possibly having a shared subjective view of 
football similarity) are shown in Table 4.9. 

 

 R01 R02 R03 R05 R06 R07 R08 
Chi-Square 21.438 37.329 66.251 39.612 59.738 18.547 4.306 

df 3 3 3 3 3 3 3 
Asymp. Sig. .000 .000 .000 .000 .000 .000 .230 

 

Table 4.7 – Chi square test against overall distribution of Likert values (R01 – R08). Chi square 
test not possible for rater R04 as this rater did not submit any very similar (LS4) ratings. 

 

 

 

 



- 107 - 

 R09 R10 R11 R12 R13 R14 R15 R16 
Chi-Square 52.575 9.610 129.009 16.945 26.706 26.406 16.770 78.398 

Df 3 3 3 3 3 3 3 3 
Asymp. Sig. .000 .022 .000 .001 .000 .000 .001 .000 

 

Table 4.8 – Chi square test against overall distribution of Likert values (R09 – R16) 

 

Cluster Raters 
1 1,7,9,14 
2 2,3 
3 6,16 
4 13,15 

 

Table 4.9 – Clusters of similar raters w.r.t. their ratings distributions 

 

Table 4.10 gives the median ratings assign to the top ten results supplied by the 
competing dual-indexing systems. Unfortunately, apart from demonstrating that all 
of the competing indexing systems are more effective than the random control, the 
results do not allow any additional comparisons to be made between the competing 
indexing systems. 

Rank correlation is a more sophisticated class of non-parametric analysis 
methods that can be used to compare the ranking order of two identically sized 
ordered lists with a one-to-one mapping between elements of each list. The output of 
the dual indexing systems has a ranking score (the estimated similarity) with each 
search result, and as such when coupled with the associated user supplied similarity 
rating (which can also be used to rank) the resultant dataset is suitable for analysis 
by rank correlation methods. Two rank correlation methods were used31, Kendall 
Tau –b and Spearman's rho. Both methods produce results in the range -1.0 to +1.0, 
where +1.0 indicates perfect correlation between the ordered lists, -1.0 indicates 
perfect inverse correlation and 0.0 indicates no correlation whatsoever. Each method 
produces an associated significance value with the correlation score, giving an 
indication of the probability that the correlation measured is a random effect.   

Table 4.1132 contains the both the Kendall Tau-b and the Spearman’s Rho 
correlation scores for the competing indexing systems (and the random control) 
together with their associated significance levels. By convention, a significance level 

                                                
31 Testing was accomplished via SPSS as both methods were easily accessible. 

32 Where KTB=Kendall Tau-b correlation, KSIG=Kendall Tau-b significance level, 
SMR=Spearman’s Rho correlation, SSIG=Spearman’s Rho significance level 



- 108 - 

of at least 0.05 is usually required before a result can be viewed as significant. 
Correspondingly, two indexing systems can be said to have exhibited a weak, but 
significant correlation with the user similarity ratings.  

 

Type MEDIAN 
PI_BI 0.33 

AFI_BI 0.33 
PCA_AFI_BI 0.33 

CI_BI 0.33 
NN_CI_BI 0.33 
PCA_CI_BI 0.33 
NN_PI_BI 0.33 
PCA_PI_BI 0.33 

HPI_BI 0.33 
PCA_HPI_BI 0.33 
NN_HTI_BI 0.33 

HTI_BI 0.33 
NN_HTTI_BI 0.33 

HTTI_BI 0.33 
NN_HPI_BI 0.33 
PCA_HTI_BI 0.33 
NN_AFI_BI 0.33 

ACI_BI 0.33 
NN_ACI_BI 0.33 
PCA_ACI_BI 0.33 

PCA_HTTI_BI 0.33 
RND 0 

 

Table 4.10 – Median ratings for underlying indexing schemes. The PCA prefix denotes a dual 
indexing system using Principal Component Analysis as the means to derive the query context, and the 

NN prefix denotes the use of an auto-associative neural network to derive the query context. 

 

Overall, even though two indexing systems do provide a weakly significant 
correlation, the results are somewhat disappointing. In hindsight, there were a 
number of problems with the experiment that lead to the limited results achieved, 
and which should be rectified if the experiment is repeated. The first problem, and 
probably the most serious, is the use of a Likert scale, particularly one with such a 
limited number of responses. The ordinal nature of the Likert scale requires the use 
of non-parametric analysis methods, but with the number of responses limited to 
four, the median and rank-correlation methods have difficulty producing clear 
results. A repeat of the experiment should ideally opt for a continuous interval value 
for similarity (say between 0.0 and 1.0). The second problem with the experiment is 



- 109 - 

that it would have benefitted from a larger pool of raters. Table 4.6 demonstrates the 
considerable variability attached to the subjective similarity ratings, even over only 
sixteen volunteers using a coarse four-point Likert scale. Working with a larger pool 
of ratings should help lessen the overall subjective nature of the ratings (especially if 
the experiment opts to use a continuous interval value for similarity). 

 

TYPE KTB KSIG SMR SSIG 
PCA_HTI_BI 0.115 0.013 0.158 0.01 
NN_HPI_BI 0.092 0.053 0.125 0.047 

ACI_BI 0.085 0.07 0.108 0.083 
PCA_ACI_BI 0.076 0.105 0.098 0.112 

HPI_BI 0.071 0.129 0.095 0.127 
NN_ACI_BI 0.071 0.13 0.093 0.133 
PCA_PI_BI 0.067 0.152 0.086 0.168 
NN_CI_BI 0.052 0.265 0.072 0.247 

PCA_HPI_BI 0.052 0.265 0.068 0.272 
AFI_BI 0.042 0.366 0.058 0.35 

NN_HTI_BI 0.035 0.45 0.045 0.467 
PCA_HTTI_BI 0.033 0.484 0.044 0.48 

PCA_CI_BI 0.03 0.519 0.04 0.52 
CI_BI 0.024 0.615 0.032 0.612 

 NN_HTTI_BI 0.021 0.647 0.03 0.626 
NN_PI_BI 0.014 0.769 0.017 0.786 

RND 0.011 0.801 0.018 0.743 
PI_BI 0.006 0.896 0.007 0.913 

PCA_AFI_BI -0.005 0.913 -0.007 0.906 
HTI_BI -0.019 0.679 -0.026 0.673 

NN_AFI_BI -0.019 0.683 -0.024 0.701 
HTTI_BI -0.062 0.185 -0.083 0.181 

 

Table 4.11 – Rank correlations scores for competing indexing systems  

 

4.6 Summary 

This chapter dealt with aggregating results from a combined system of a ball 

indexer and a player indexer. The general problems encountered when fusing two 

results lists together were covered, and a score based aggregation approach was 

decided upon (rather than a rank based approach). This chapter also detailed the 

evaluation experiment for both the individual indexing systems, and the composite 



- 110 - 

combined indexing system. The best performing combined indexing systems were 

identified, and enhancements to the experiment were recommended should it be 

required to be repeated in the future. 



- 111 - 

5 Behaviour modelling 

This chapter presents a novel hierarchical behaviour model for football 

players, combining behaviour models at three levels of team, cliques of players 

associated via proximity/velocity direction, and individual players themselves. The 

modelling process is evaluated by comparison of generated models with real player 

behaviour and that of simple experimental control models. 

5.1 Introduction 

The behaviour exhibited by players within a football match is both rich and 

complex. Players do not operate in a vacuum, but make decisions based on the 

disposition of their team mates, the disposition of the players of the opposing team, 

and taking into account the global state of the game (location of ball, current score, 

time remaining etc).  

The second strand of this PhD involves research into how to capture and model 

the behaviour of real football players working within a team and against an opposing 

team. The raw behaviour is represented by a large amount of data representing 

player positions, ball location (interpolated) and player events (such as touching the 

ball, passing, shooting etc), all indexed by time. Successful behaviour modelling 

should result in realistic movement and actions, both at the level of the individual 

player and at the team level, and produce at least a good approximation of actual 

team play. 

5.2 Required features of a player behaviour model 

As stated in the introduction, football players operate cooperatively as a 

member of a team, competing against another set of players. Any behaviour model 

of players should be able to capture this notion of a player being influenced by 

groups of other players (be they team mates or opponents). 



- 112 - 

The notion of behaviour of players in groups suggests that there exists a higher 

level of behavioural organisation than merely the player level. A behavioural 

modelling approach which utilises such higher level structures is known as 

hierarchical behaviour modelling. [92] utilises a hierarchical model to model human 

body movements; initially modelling small atomic movements, before modelling 

more complex movements via combinations of the previously modelled atomic 

movements. 

 

 

Figure 5.1 – The three hierarchical levels of behaviour from the most concrete players (a), to the 

more abstract cliques (b), to the most abstract team centroids (c). 

 
To utilise a hierarchical behaviour model within a football context, distinct 

levels of behaviour must be identified with a team. The obvious level of behaviour is 

located at the player level (Figure 5.1 (a)). A second level of behaviour is that 

displayed by groups of players (Figure 5.1 (b)). As demonstrated in Chapter 3, the 

use of cliques is a good way of extracting groups of associated players from the raw 

data, allowing players to be members of multiple cliques simultaneously. In the case 

of behaviour modelling, we not only want intrateam cliques, but also interteam 

cliques as player behaviour is certainly influenced by the opposing team players as 

well as teammates. A third level of behaviour is exhibited by the team as a whole 

(Figure 5.1 (c) as represented by the team centroid).   

The team centroid is defined as the mean position of the team. As such, its 

behaviour is driven by the mean movement of the team. Team formations are 

generally mirror symmetrical across the pitch (grey line in Figure 5.2), and tend to 

fill the entire width of the pitch, so centroid movement in this direction is limited. In 

contrast, in the orthogonal direction they are asymmetrically arranged into 

defence/midfield/attack (red line in Figure 5.2), and depending on the flow of the 

game (attacking or defending), the team formation can move backwards or forward 



- 113 - 

in a coordinated fashion. Hence, the centroid captures the general 

attacking/defending flow of the game, but will be less sensitive to movement in the 

orthogonal direction. The team centroid will also be less sensitive to some 

movement of team formations that give greater importance to few or even a single 

player. As an example the off the ball movement of the single forward in the 5-4-1 

will have little effect on the team centroid.  

 

 

Figure 5.2 – Team centroid dynamics exhibit an asymmetrical preference for movement 
perpendicular to the goal lines 

 

Models may either have some form of memory of previous states, or possess 
no memory of previous states. Which approach is most useful for the hierarchical 
player models had to be decided. Figure 5.3 shows the clique ABC in two different 
contexts of approaching players. If the players within the clique exhibit some form 
of shared behaviour, and this behaviour model is has no memory, then the players in 
scenarios (a) and (b) will exhibit the same behaviour (or exhibit the same behaviour 
probabilities if the model is non-deterministic). 

 

 

Figure 5.3 – Two identical spatial configurations with differing histories 

 

It is the view of the author that this is not the case in real football, and as such, 
some portion of the history of interacting players/cliques/centroids must be admitted 



- 114 - 

into the modelling scheme. Auto-regression [98] is a modelling technique whereby 
the past states of a system can be used to predict future states. In order to include 
past states of other entities, the auto-regression model can be widened to the 
Nonlinear AutoRegressive eXogenous model (NARX), which is often implemented 
using either SVMs or NNs. 

5.3 General approach for behaviour modelling of players 

A hierarchical modelling approach was taken, where the behaviour of a player 

is represented at three levels (Figure 5.4). The history of players, as represented by 

their recent trajectory is used as context for the behaviour model. The highest level 

is that of the behaviour of the entire team. The behaviour of the team (as represented 

by its centroid) is influenced by its own recent movement, the recent movement of 

the opposing team centroid and the ball, as well as the general context of the match 

at the current time (such as which team is in possession, which team is winning, how 

much time is left to play etc). The behaviour of the team exerts an influence on the 

behaviour models below it in the hierarchy (i.e. the clique and player models). 

The intermediate level of behaviour model for a player is a collection of clique 

behaviour models. These models simulate how a player operates within each clique 

of a given type and size. The behaviour of each clique model is influenced by the 

recent movement history of the player, the recent movement history and team 

affiliation of the other clique members, the recent movement history of the ball and 

which team is currently in possession of it. The behaviour of cliques is also 

influenced by how the entire team will likely move in the next time interval (i.e. it is 

influenced by the team centroid model at the higher model level).  

 

 

Figure 5.4 – The hierarchical player behaviour model will include movement influences from the 

more abstract player clique and team centroid levels 



- 115 - 

The lowest level of behaviour is that which is exhibited by the player himself. 

This is influenced by the player’s recent movement history, the recent movement 

history of the ball and which team is currently in possession of it. The player model 

is also influenced by the likely next move of the team as a whole, and by the likely 

next moves of each clique in which the player is a member of at the current time. 

5.4 Implementation 

The behaviour models will attempt to predict the next move of the player (or 

team centroid) for the next time instance (0.1s into the future). Movement from the 

current position in the behaviour models will be represented as relative polar 

coordinates from the current position rather than as the more traditional Cartesian 

displacement vector.  

The polar coordinates of the move are quantised. The angular component of 

the polar coordinate ߠ, is quantised into sixteen equidistant angular increments (each 

separated by 22.5 degrees).  The polar distance r is quantised into ten increments, 

each quantisation representing 0.1 metres distance (meaning the highest distance 

quantisation will correspond to sprinting at approx 9m/s or above). The choice of 

sixteen angular components and ten distance components is a compromise by the 

author between player movement fidelity and model complexity; allowing the player 

a reasonably realistic fidelity of movement. The two quantised polar components are 

mapped onto a twenty-six component vector (Figure 5.5), the first sixteen 

components representing the quantised angular direction (D), and the last ten 

components representing the quantised distance covered (S). This twenty-six 

component vector represents the movement that the model is attempting to predict. 

 

 

Figure 5.5 – mapping quantised direction and speed onto vectors of length 16 and 10 

 
Each behavioural model will use a NN to map its input vector (see later 

sections for details) to the predicted movement output vector. The NN will 



- 116 - 

effectively try to learn to classify each move as a combination of one chosen 

direction (from ܦ) and one chosen distance (from ܵ). To enable this classification to 

be done in a probabilistic manner, each NN will use two softmax output functions 

[121], covering the first sixteen components representing the direction (ܦ), and then 

last ten components representing the distance moved (ܵ). The use of softmax 

activation functions over these two sub-sections of the output vector means that each 

subsection will become a separate probability distribution (each subsection will sum 

to 1.0).  

 

Figure 5.6 – softmax probability distributions over the D and S result in 

∑ ࢏ࡰ ≈ ૚. ૙	ࢊ࢔ࢇ	∑ ࢏ࡿ ≈ ૚. ૙࢏ୀૢ
ୀ૙࢏

ୀ૚૞࢏
ୀ૙࢏  

 

Where trajectory histories of players/ball at time current time ݐ, extending ݊ 

instances into the past33 are used as the input to NNs, the original trajectory ܶ	(5.1) 

will be transformed into ܶ௣ via (5.2). The transformed trajectory ܶ௣ maintains  ܶ‘ݏ 

current position, but all of ܶ	‘ݏ previous positions are relative to its current position. 

 

ܶ = [(ܺ௧, ௧ܻ), (ܺ௧ିଵ, ௧ܻିଵ), … , (ܺ௧ି௡ , ௧ܻି௡)] (5.3) 

 

ܶ௣ = [(ܺ௧, ௧ܻ), (ܺ௧ିଵ − ܺ௧ , ௧ܻିଵ − ௧ܻ), … , (ܺ௧ି௡ − ܺ௧ , ௧ܻି௡ − ௧ܻ)] (5.4) 

 

Player cliques come in four main types: 

 

 

                                                
33 So ܶ will have ݊ + 1 members in total (1 current position + ݊ historical positions) 



- 117 - 

 Intrateam proximity cliques – players of the same team, grouped 

together by spatial proximity 

 Intrateam direction of movement cliques – players of the same team, 

group together by the similarity of the direction of motion component 

of their instantaneous velocity. Note this is different from the direction 

of motion cliques in chapter 3, which used the future positions of 

players to work out the mean direction of motion into the future. In this 

case, the future is inaccessible, so either the instantaneous velocity or 

the mean recent historical velocity may be used. Since the behaviour 

model is autoregressive in nature, the influence of past states should 

already have an influence on future behaviour, so the simpler option of 

instantaneous velocity was chosen 

 Interteam proximity cliques – players of either team, grouped 

together by spatial proximity 

 Interteam direction of movement cliques – players of either team 

grouped together by the similarity of the direction of motion 

component of their instantaneous velocity. 

 

In addition to these four main types, cliques are also described by how many 

members are within them. Thus in total there are sixty-two possible clique types (ten 

for intrateam proximity/direction and twenty-one for interteam proximity/direction). 

Details of the NN for each level of the model follow in the next sections. 

5.4.1 Team centroid 

The team centroid behaviour model is shared by each member of the team it is 

modelling. In general, the input into the model covers the past movement of the 

team centroid, the past movement of the opposing team centroid, the past movement 

of the ball, and a collection of inputs that together represents the current match 

context. All input values are of a similar magnitude (+/-1.0 to +/- 10.0). The pruning 

method used in the training of the model will ensure that any irrelevant sections of 

the input vector will be discarded. The input/output vectors are: 

 

 



- 118 - 

INPUT 

 Abstract mapping of team (ܣ) (‘+1’ or ‘-1’) 

 Team Trajectory over past n time instances (ܶ) 

 Opposing team trajectory over past n time instances (ܱ) 

 Ball trajectory over past n time instances, and current team in 

possession (‘+1’ or ‘-1’)  (ܤ) 

 Game Context (ܥ) composed of 

o score difference w.r.t. team (+/- value) 

o time from half (expressed at ௖௨௥௥௘௡௧	௧௜௠௘	௜௡	௛௔௟௙	௔௦	଴.ଵ௦	௜௡௖௥௘௠௘௡௧௦
ଶ଻,଴଴଴

) 

o half (either 1 or 2) 

 

OUTPUT 

 Quantised future direction of team centroid (ܦ) 

 Quantised future speed of team centroid (ܵ) 

 

 

Figure 5.7 – neural network model for team centroid produces softmax probability distributions 

over D (movement direction) and S (movement speed) 

 

5.4.2 Player cliques 

Each player owns a collection of clique behaviour models, representing the 

types of cliques that the player is likely to be a member of. Each clique is described 

a combination of its type and it membership size. All input entries are of the same 

order of magnitude (+/- 1.0). The input/output vectors are: 

 

 



- 119 - 

INPUT 

 Abstract mapping of team (ܣ) (‘+1’ or ‘-1’) 

 Team centroid predicted movement (ܥ) – This is the twenty-six 

component predicted movement vector output from the team centroid 

behaviour model. 

 Clique centroid trajectory over past n time instances (ܲ) 

 Ball trajectory over past n time instances, and current team in 

possession (‘+1’ or ‘-1’)  (ܤ) 

 Clique members (ܯଵ  ௡)  coveringܯ…

o Team affiliation (‘+1’ or ‘-1’) 

o Member trajectory over past n time instances 

 

OUTPUT 

 Quantised future direction of player ܲ (ܦ) 

 Quantised future speed of player ܲ (ܵ) 

 

 

Figure 5.8 – neural network model for clique produces softmax probability distributions over D 

(movement direction) and S (movement speed) 

 

5.4.3 Player 

Each player has his own player level behaviour model. This model is 

influenced by the team centroid model and all clique models that the player is a 

member of at the time the player movement is predicted. Details of the input/output 

vectors are: 

 



- 120 - 

INPUT 

 Team centroid predicted movement (ܥ) – This is the twenty-six 

component predicted movement vector output from the team centroid 

behaviour model. 

 Average cliques predicted movement (ܣ) – This is a combination of all 

the twenty-six component predicted movement vector outputs from all 

the cliques models that the player is currently a member of at the time 

of the prediction. Each of the twenty-six components is summed across 

all clique outputs and divided by the number of active clique 

components. If the relative accuracy of the cliques models was known 

for each particular player configuration, then a more sophisticated 

weighted mean could be taken, However as this information is not 

currently available the uniform mean is the only justifiable approach. 

 Player trajectory over past n time instances (ܲ) 

 Ball trajectory over past n time instances, and current team in 

possession (‘+1’ or ‘-1’)  (ܤ) 

 

OUTPUT 

 Quantised future direction of player ܲ (ܦ) 

 Quantised future speed of player ܲ (ܵ) 

 

 

Figure 5.9 – neural network model for player produces softmax probability distributions over D 

(movement direction) and S (movement speed) 

 

 

 



- 121 - 

5.5 Generalisation/Feature selection 

Selecting the correct topology for a NN is not a trivial task. Large networks 

will tend to overfit the available data, and small networks may not adequately 

capture the underlying relationships within the data. One approach to automatically 

selecting a good network topology is to initially train a deliberately large network, 

and then progressively prune irrelevant weights/nodes from it. A second advantage 

to pruning NNs, is that irrelevant input variables can be identified (by becoming 

disconnected from the network), and hence pruning becomes a method of 

automatically selecting a relevant subset of features from an initial larger set, 

possibly containing irrelevant or redundant information. 

A method of network pruning based on orthogonal least squares [122] was 

located. This method compares favourably with other well known pruning methods 

such as Optimal Brain Damage [123] and Optimal Brain Surgeon [124], not only in 

parsimonious pruning, but in computational resources, as it works more efficiently 

on larger networks than either  OBD or OBS. The OLS pruning approach was used 

in the training of the NN to produce network with better generalisation and reduced 

input vectors. An overview of the approach in [122] is given in the following 

section. 

5.5.1 Overview of OLS pruning approach 

5.5.1.1 Orthogonal Least Squares for linear regression  

This section gives an overview of the Orthogonal Least Squares algorithm, and 
specifically how it is used by the pruning algorithm to assign importance to network 
weights. The standard form of a series of linear equations (over determined if ݊ >
݉) is: 

 

(ݐ)ݖ = ෍ ௜ܲ(ݐ)ߠ௜ ݐ)		 = 1, … , ݊)
௠

௜ୀଵ

 
(5.5) 

 

 

 



- 122 - 

(5.5)  can be written more succinctly in matrix form: 

 

ܼ =  (5.6) ߠܲ

 

Given values for ܼ and ܲ, to find the optimum values in the parameter matrix 

 ෠ that gives the best fit (i.e. the lowest sum of squared residuals) the normalߠ

equation (5.7) is used. 

 

෠ߠ = (்ܲܲ)ିଵ்ܼܲ (5.8) 

 

 Solving (5.8) directly on computers can pose problems due to limitations of 

accuracy of number representation, but it can be solved indirectly. One method is 

the Cholesky decomposition (5.9). 

 

்ܲܲ =  (5.10) ܣܦ்ܣ

 
Using the decomposition given in (5.10) as a substitution in (5.8) allows the 

optimum parameter matrix ߠ෠ to be numerically calculated (5.11). 

 

෠ߠ =  ଵ்ܼܲ (5.11)ି(ܣܦ்ܣ)

 

The pruning algorithm builds on this approach to the Orthogonal Least Squares 

algorithm. Using matrix ܣ from (5.10), (5.6) can be rewritten as (5.12). 

 

ܼ =  (5.12) ݃ܤ

 

Where ܤ = ݃ ଵ andିܣܲ =  ߠܣ

 



- 123 - 

(5.12) can be rewritten, after a lengthy transformation (see [122] page 5459) as 

(5.13): 

 

1
݊ ܼ

்ܼ = ෍൤݃௜ଶ
1
݊ ௜ܾ

்
௜ܾ൨ + ఌଶߪ

௠

௜ୀଵ

 
(5.13) 

 

Here ଵ
௡
்ܼܼ is the variance in the matrix ܼ, and thus the variance of the matrix 

ܼ is equal to the sum of the variances of the ݉ terms of the linear equations set (plus 

the modelling error variance). This variance information is used by the pruning 

algorithm to determine the relative importance of weights during the pruning 

process (weights which transmit more variance are more important to the network). 

5.5.1.2 Application of OLS to neural network pruning 

Now consider either a hidden or an output node in a NN (R in Figure 5.10). 

The receiving node R aggregates the signals of the connected nodes ݊ଵ …݊ସ  (and 

then non-linearly ‘squashes’ it). The aggregation process (݊ଵݓଵ + ݊ଶݓଶ + ݊ଷݓଷ +

݊ସݓସ)	is a set of linear equations (see (5.5)). So given a set of ݊ patterns, a NN can 

be trained on those ݊ patterns. Once trained for each hidden/output node in the 

network, the equation ܼ =  represents the signals of each node (i.e. ܼ is the ߠܲ

matrix of aggregated totals before non-linear squashing) over all input patterns ܲ 

(values of ݊ଵ …݊ସ in Figure 5.10) given the weight matrix ݓ) ߠଵ  ସ in Figureݓ…

5.10).  

 

 

Figure 5.10 – Aggregating a neural signal in node R involves linearly summing the activation of 

each input node multiplied by the connecting weight, and then squashing the linear sum into a predefined 

range (usually either [૙, +૚]	࢘࢕	ൣ–૚, +૚൧) 

 



- 124 - 

Transforming (5.6) into (5.12) allows the variances associated with each 

weight in ߠ to be calculated via a further transformation into (5.13). For each layer 

in the network (ignoring the input layer), the total variance can be calculated via the 

summation of ଵ
௡
்ܼܼ for each node in the layer. Then the relative importance of each 

weight (w.r.t. the variance it carries) arriving into the layer can be calculated.  

The network is pruned by keeping only the weights which account for ܺ% of 

the total variability exhibited by the each layer in the network34. Completely 

disconnected nodes can be removed from the network (so input nodes can be 

deleted). The training/pruning cycle continues until either no more pruning is 

possible, or the network has reached an acceptable level of generalisation. Not only 

does the resultant network exhibit better generalisation properties, but irrelevant 

input nodes are also removed (by elimination of all weights leading from them). 

5.6 Evaluation 

Two experiments were devised to test the efficacy of the behaviour modelling 

approach. The first experiment dealt with testing the next step (0.1 seconds into the 

future) predictions of each component of the behaviour model (centroid, cliques, 

player) against a random control. The second experiment examined how well 

simulated player trajectories compare to real player trajectories (given an identical 

starting configuration). A random walk simulation and a first-order linear predictor 

are included in the second experiment as controls. 

5.6.1 Data acquisition and pre-processing 

Twenty-seven matches of trajectory and event data were obtained from 

ProZone for the purposes of behavioural modelling. One team35 (say team ܧ) was 

present in each of the matches (the opposing team varied between matches). This 

constitutes approximately two thousand four hundred minutes of play, of which 

approximately 58% is active play (the other 42% being stoppages such as ball out of 
                                                

34 The paper recommends a high value for ܺ such as 99.99%, thereby only 
eliminating the most irrelevant network weights in each round of pruning 

35 The identity of this premiership club cannot be divulged because of ProZone 
privacy concerns 



- 125 - 

play, fouls etc). The 42% of play which represented stoppages was rejected (as out 

of play behaviour is not being modelled), and the remaining 58% was segmented 

into uninterrupted sequences of play (i.e. the temporal boundaries of each sequence 

were recorded). Player positions and the ball trajectory were interpolated down to 

fidelity of 0.1s prior to any behaviour modelling (as described in section 4.5.1). The 

centroid of each team was also interpolated down to a temporal fidelity of 0.1s. for 

each relevant section of all  twenty seven matches. 

5.6.2 Optimal clique threshold discovery 

In a similar fashion to section 4.5.2.1, the optimal threshold values for four 

types of cliques (intrateam proximity, intrateam direction, interteam proximity, and 

interteam direction) must be discovered before cliques can be extracted from the raw 

player data. A line-search was performed over the interval [0,2] for the proximity 

cases (normalised pitch units) and [0, 3.2] for the direction cases (radians). Figure 

5.11 shows the results of the line search for the optimal threshold value in each case. 

Specifically: Interteam proximity = 0.51, Interteam direction= 0.48, Intrateam 

proximity=0.5, Intrateam direction=0.45. 

 

 

Figure 5.11 – locating the optimal threshold values for the four types of cliques 

 

 



- 126 - 

5.6.3 Team centroid behaviour model training 

Twenty-one games were randomly chosen to provide training data for the 

NNs. The remaining six games were used as a source of testing data. Five thousand 

random temporal locations within the active sequences of the twenty-one games 

were chosen. At each of these temporal locations, training data was generated for the 

team centroid, the exact nature of the training data is given in section 5.4.1. 

The initial topology of the NN trained was two fully connected hidden layers, 

each containing two hundred nodes. In informal tests, this size was found to be large 

enough to exhibit overfitting in data of the magnitude used in the experiment 

(thousands of examples), via training then validation. The initial overfitting is an 

important precondition of employing the training/pruning processes (if the network 

underfits the data, there is no scope to identify irrelevant weights, but no means to 

add extra weights/nodes).  The NN was initially trained using this collected training 

set, and then pruned/retrained as per the algorithm in section 5.4. Two thousand 

random samples were taken from the remaining six games, and used to create testing 

data for the team centroid behaviour model. The format of the data was identical to 

the training data described above. 

5.6.4 Clique and player behaviour models 

Five players were preselected from team ܧ, having good coverage over the 

whole twenty seven games. These players ଵܲ, ଶܲ, ଷܲ, ସܲ, ହܲ mapped to the 

approximate roles of {attacker, defender, goalkeeper, defender, midfielder} 

respectively. The same twenty-one games selected in section 5.6.3 were used to 

provide training data for the NNs. The remaining six games were used as a source of 

testing data. 

5.6.4.1 Clique behaviour model training 

For each player { ଵܲ, ଶܲ, ଷܲ, ସܲ, ହܲ } five thousand random temporal locations 

within the active sequences of the twenty-one games were chosen. At each of these 

temporal locations, the four distinct clique sets for the player in question were 

generated, resulting in a distribution over the five thousand samples of the most 

encountered clique types for the player in question. The most represented fifteen 



- 127 - 

clique types for each player were recorded (at maximum, it is possible that there will 

be less than fifteen in total). 

For each of the represented cliques for each player { ଵܲ, ଶܲ, ଷܲ, ସܲ, ହܲ }, it was 

calculated where in the matches temporally it occurred, and then five thousand 

random samples were taken from this distribution and used to provide training data 

for the clique. The exact nature of the training data is given in section 5.6.1. A large 

NN36 for each clique was initially trained using this collected training set, and then 

pruned/retrained as per the algorithm in section 5.5.1. Two thousand random 

samples were taken from the remaining six games, and used to create testing data for 

the each of the clique behaviour models (for each of the players). The format of the 

data was identical to the training data described above. 

5.6.4.2 Player behaviour model training 

For each player { ଵܲ, ଶܲ, ଷܲ, ସܲ, ହܲ } five thousand random temporal locations 

within the active sequences of the twenty-one games were chosen. At each of these 

temporal locations the cliques which the player was a member of was recorded. 

Those cliques not in the top fifteen for the player were rejected. The exact nature of 

the training data is detailed in section 5.6.1. As before a large NN for each player 

was initially trained using this collected training set, and then pruned/retrained as 

per the algorithm in section 5.5.1 Two thousand random samples were taken from 

the remaining six games, and used to create testing data for the each of the player 

behaviour models. The format of the data was identical to the training data described 

above. 

5.6.5 Experiment One Evaluation Setup 

Once all NN behaviour models are trained (team centroid, cliques and player 

models), the models can be evaluated as follows. A random walk model (Figure 

5.12) is available for each level of the behavioural model. The behaviour of the 

random walk model is very simple, for its next ‘predicted’ move it simply: 

 

                                                
36 Two hidden layers, 200 nodes per layer 



- 128 - 

 Randomly chooses one of the sixteen quantised movement directions, 

and assigns it 1.0 (the rest are 0.0) 

 Randomly chooses one of the ten quantised speed increments and 

assigns it 1.0 (the rest are 0.0) 

 

 

Figure 5.12 – The random walk model randomly selects one of the sixteen possible directions and 

one of the ten possible speeds at each simulated time step 

 
For each of the components of the behavioural model, testing data exists which 

was extracted from the six games which were not used as a source of training data. 

Each block of testing data holds two thousand instances of correct input, output 

pairings as observed in the real data. The input from the test data can be fed through 

the relevant NN behaviour model to produce its predicted movement output, and the 

random walk model can produce its ‘predicted’ output. Thus for each of the two 

thousand test cases, there exist three movement ‘predictions’: 

 

 The actual movement exhibited by the centroid/clique/player (ܣ) 

 The behaviour model prediction, from behaviour model ܤ, for the 

movement of the centroid/clique/player (ܲ) 

 The random walk model ‘prediction’ for the movement of the 

centroid/clique/player (ܴ) 

 

The mean accuracy of prediction of the direction of movement,	ܦ஻തതതത given by 

behaviour model ܤ, and the mean accuracy of the prediction of movement ܦோതതതത given 

by the random walk model ܴ are defined by equations (5.14) and (5.15) 



- 129 - 

respectively. The mean accuracy of prediction of the speed ܵ஻തതത,  given by behaviour 

model ܤ and the mean accuracy of prediction of the speed ܵோതതത, given by the random 

walk model ܴ are defined by the equations (5.16) and (5.17) respectively. Finally, 

the accuracy of ݆௧௛  component of the movement/speed prediction ܤఫഥ , of behaviour 

model ܤ, and the mean accuracy of ݆௧௛  component of the movement/speed 

prediction ఫܴഥ , of random walk model ܴ are defined by the equations (5.18) and 

(5.19) respectively. 

 

஻തതതതܦ =
1

2000 ෍
1

16

ଶ଴଴଴

௜ୀଵ

෍ܣ௜,௝ ௜ܲ,௝

ଵ଺

௝ୀଵ

 
(5.14) 

 

ܵ஻തതത =
1

2000 ෍
1

16

ଶ଴଴଴

௜ୀଵ

෍ ௜,௝ܣ ௜ܲ,௝

ଶ଺

௝ୀଵ଻

 
(5.15) 

 

ோതതതതܦ =
1

2000 ෍
1

16

ଶ଴଴଴

௜ୀଵ

෍ܣ௜,௝ܴ௜,௝

ଵ଺

௝ୀଵ

 
(5.16) 

  

ܵோതതത =
1

2000 ෍
1

10

ଶ଴଴଴

௜ୀଵ

෍ ௜,௝ܴ௜,௝ܣ

ଶ଺

௝ୀଵ଻

 
(5.17) 

 

ఫഥܤ =
1

2000 ෍ ௜,௝ܣ ௜ܲ,௝

ଶ଴଴଴

௜ୀଵ

 
(5.18) 

 

ఫܴഥ =
1

2000 ෍ ௜,௝ܴ௜,௝ܣ

ଶ଴଴଴

௜ୀଵ

 
(5.19) 

 

 



- 130 - 

5.6.6 Experiment One Results 

5.6.6.1 Team centroid model 

For the single team centroid behavioural model of team ܦ ,ܧ஻തതതത, ܵ஻തതത,  ܵோതതത	ܽ݊݀	ோതതതതܦ

are shown in Figure 5.13, ܤఫഥ 	ܽ݊݀	 ఫܴഥ  covering the quantised direction (1…16) are 

shown in Figure 5.14 and  ܤఫഥ 	ܽ݊݀	 ఫܴഥ  covering the quantised speed (17…26) are 

shown in Figure 5.15. In the three result sets, the behaviour model easily 

outperforms the random control, which gives predictably poor results in all 

circumstances. The behavioural model does well over the entire range of quantised 

directions, demonstrating that there are not directions in which the centroid is less 

predictable than others (at least not covering projections 0.1s into the future). Across 

the range of quantised speeds the model performs well on all but the slowest 

quantised speed. The most likely explanation for the increased unpredictability at 

low speed is that it occurs when a team is essentially static (rather than expanding in 

an isotropic manner), and as such one team member changing speed can unduly 

influence the centroid speed (but they do not have a preferred direction in which to 

accelerate to). 

 

 

Figure 5.13 – ࡮ࡰതതതത,࡮ࡿതതതത,ࡾࡰതതതത,  തതതത for team centroid modelࡾࡿ

 



- 131 - 

 

Figure 5.14 –	࡮ଚതതത	,  ଚതതത for j=1…16 for team centroid modelࡾ

 

 

Figure 5.15 – ࢐࡮ഥ 	, ഥ࢐ࡾ  for j=17…26 for team centroid model 

 

5.6.6.2 Mean clique results 

The number of clique models is large compared to the number of other models 

(60 for each player maximally). Therefore, only the mean performance of the clique 

models over all players is recorded. For all clique behavioural models of team ܧ, 

,஻തതതതܦ ܵ஻തതത, ఫഥܤ  ,ܵோതതത are shown in Figure 5.16	ܽ݊݀	ோതതതതܦ 	ܽ݊݀	 ఫܴഥ  covering the quantised 

direction (1…16) is shown in Figure 5.17 and ܤఫഥ 	ܽ݊݀	 ఫܴഥ  covering the quantised 

speed (17…26) are shown in Figure 5.18. 

As with the centroid behaviour model, the mean clique behaviour is much 

better than the random control, and the behaviour model appears to perform better at 

predicting the direction of movement rather than the associated speed. There is a 

significant drop in speed predictability from the lowest speed (except for the fastest 

sprinting speed). The most likely explanation is that the faster speeds are maintained 

for less time (and ended more abruptly) than the lower speeds. The anomalous rise 



- 132 - 

in predictability for the highest speed could be because situations in which the 

clique-associated player must break into a sprint are distinct from those in which the 

speed is more modest. 

 

 

Figure 5.16 – ࡮ࡰതതതത,࡮ࡿതതതത,ࡾࡰതതതത,  തതതത mean over all cliquesࡾࡿ

 

 
Figure 5.17 – ࢐࡮ഥ 	, ഥ࢐ࡾ  for j=1…16 mean over all cliques 

 

 

Figure 5.18 – ࢐࡮	തതത, ഥ࢐ࡾ  for j=17…26 mean over all cliques 

 

 



- 133 - 

5.6.6.3 Mean results over all players 

Over all player models for { ଵܲ, ଶܲ, ଷܲ, ସܲ, ହܲ }, the mean results for  

,஻തതതതܦ ܵ஻തതത, ఫഥܤ ,ܵோതതത  are shown in Figure 5.19	ܽ݊݀	ோതതതതܦ 	ܽ݊݀	 ఫܴഥ  covering the quantised 

direction (1…16) are shown in Figure 5.20 and ܤఫഥ 	ܽ݊݀	 ఫܴഥ  covering the quantised 

speed (17…26) are shown in Figure 5.21. As with both the centroid and the clique 

models, the performance over the quantised direction is higher and more uniform 

than the performance covering the quantised speed. The shape of the model 

performances in Figure 5.18 and Figure 5.21 are quite similar, and the author 

suggests that the reasons for this specific performance profile are the same as for the 

clique models; namely that higher speeds are maintained for less time and ended 

more abruptly, apart from the very fastest speeds which are initiated in more 

predictable circumstances. 

 

 

Figure 5.19 – ࡮ࡰതതതത,  തതതത mean over all playersࡾࡿ	ࢊ࢔ࢇ	തതതതࡾࡰ,തതതത࡮ࡿ

 

 

Figure 5.20 – ࢐࡮	തതത, ഥ࢐ࡾ  for j=1…16 mean over all players 

 



- 134 - 

 

Figure 5.21 – ࢐࡮ഥ 	, ഥ࢐ࡾ  for j=17…26 mean over all players 

 

5.6.7 Experiment Two Evaluation Setup 

The purpose of the second experiment was to examine how well simulated 

players match trajectories with the real players they model. For each of the five 

players modelled, twenty-five starting configurations each (total 125) were 

identified in the testing data in which the player had at least twenty-five seconds of 

uninterrupted movement. The real player trajectory was then ground truth. For each 

player configuration, the appropriate player model was used to generate twenty-five 

seconds of simulated player movement. During the simulation, the ball and the other 

players on the pitch moved exactly as they did during the real player’s movement. 

Acting as a control comparison, the random walk model of section 5.6.5 was used to 

generate a twenty-five second random walk trajectory. As an additional control, a 

first-order linear predictor model was used to extrapolate the initial instantaneous 

velocity of the real player twenty-five seconds into the future, essentially predicting 

the straight line the player would take if his initial velocity were constant. In order to 

compare how well the models performed against the ground truth and each other, the 

follow procedure was followed: 

 

(1) All ground truth trajectories are collected for the 125 distinct test 

configurations. 

(2) Random walk, first order extrapolation and neural behaviour model 

trajectories are generated for each of the 125 test configurations. 

 



- 135 - 

(3) Each trajectory consists of 25 seconds worth of movement at 0.1 seconds 

fidelity – 250 points in total. To compare trajectories, the Euclidean 

distance between corresponding points is measured (see Figure 5.22), 

resulting in 250 difference readings. 

 

 

Figure 5.22 – Calculating the Euclidean distance between each corresponding set of points in 
trajectories AB and CD 

 
(4) All 125 trajectories generated by each model type (neural behavioural, 

random walk, and first order extrapolation) are compared to the 

corresponding ground truth trajectories resulting in 125x250 difference 

readings for each method. 

(5) For each model type, over a set of thresholds distances 

(0.05,0.1,0.15,0.25,0.5 in pitch normalised dimensions), the proportion of 

difference readings which are at or below a specific threshold are 

calculated. This results in 250 proportion figures for each model 

type/threshold value. 

5.6.8 Experiment Two Results 

Figure 5.23 shows the three competing models performance under the tightest 

threshold of 0.05. In the this and subsequent figures the labelling is RW=random 

walk, FD=first-order predictor and NN=Neural Behavioural model. Overall the 

neural behaviour model matches closest to the real trajectories, but the accuracy of 

all three fall off quickly, with the neural model only being within the threshold 50% 

of the time after approximately two seconds. All models become indistinguishable 

after approximately eight seconds. 

At a threshold of 0.1 (Figure 5.24), a clear separation is becoming apparent 
between the neural behaviour model and the other control methods, with the first-
order linear predictor model being marginally worse than the random walk model. 



- 136 - 

The next three threshold values of 0.15 (Figure 5.25), 0.25 (Figure 5.26), and 0.5 
(Figure 5.27) show the widening separation between the models with the first-order 
linear predictor being shown to be the most inaccurate model, and the neural mode 
the most accurate of the three. 

 

 

Figure 5.23 – 0.05 distance threshold results over twenty-five seconds  

 

 
Figure 5.24 – 0.1 distance threshold results over twenty-five seconds  

 



- 137 - 

 
Figure 5.25 – 0.15 distance threshold results over twenty-five seconds  

 

 
Figure 5.26 – 0.25 distance threshold results over twenty-five seconds  

 

 
Figure 5.27 – 0.5 distance threshold results over twenty-five seconds  

 



- 138 - 

The fact that the first-order linear predictor performs so poorly suggest that 
football players do not tend to travel in straight lines over more than a few seconds. 
Random walking37 will probabilistically hover around the origin point, so the fact 
that this model is more accurate than the first-order linear predictor suggests that 
players tend to stay in the same location more often than they travel in straight lines. 

Three examples of actual simulated trajectories generated by the neural 
behaviour model show its strong and weak points. The author would characterise the 
generated trajectory in Figure 5.28 as quite successful, especially in the earlier 
sections of the trajectory. The generated trajectory has the ability to turn (although 
perhaps a little too ‘loopy’) whilst still maintaining definite direction. One problem 
appears to be a tendency to favour slow speeds (resulting in shorter trajectories and 
tying in with the speed inaccuracies noted in experiment one).  The general 
modelling pitfall of errors feeding back into the model and amplifying over time is 
also apparent. This may suggest an over-sensitivity in the model to the simulated 
player as opposed to surrounding players and the ball. 

 

 
Figure 5.28 – Simulated (red) Vs Real (black) player trajectories #1 

 

Figure 5.29 demonstrates that the model can generate larger area turns (which 
seem to be a common feature in real player trajectories), but once again the model 
does not do well to match the initial higher speed trajectory section, and eventually 
becomes disconnected from the real trajectory. Figure 5.30 demonstrates a poor 
simulated trajectory, which diverges almost immediately from the real trajectory, is 
slow in comparison, and eventually backtracks on itself. 

 

                                                
37 At least in two dimensions 



- 139 - 

 
Figure 5.29 – Simulated (red) Vs Real (black) player trajectories #2 

 

 

 
Figure 5.30 – Simulated (red) Vs Real (black) player trajectories #3 

 

5.7 Discussion 

Whilst this is at the moment a limited approach to behaviour modelling, 

covering only the motion of the players not their actions, the preliminary results do 

seem promising. The models at all levels seem to be able to predict the direction of 

motion for the next time instance with reasonable accuracy over all quantised 

directions. Experiment two, which involved an extended simulation for 25s, 

demonstrated that the models can produce reasonable accuracy for approximately 

the first 3s of the simulation, but after this accuracy drops off (in part due to building 

errors because of the autoregressive nature of the models). 

The predictions for the quantised speed are somewhat more problematic, there 

seem to be two accurate outliers for most of the results, which cover both extremes 



- 140 - 

of quantised speed. This problem modelling speed became more evident in the time 

extended experiment two. The simulated trajectories have difficulty replicating real 

trajectories which exhibit higher speeds. More sophisticated evaluation of the 

models, which ideally could separate the feedback errors associated with 

autoregression from any intrinsic modelling errors, may shed more light on these 

problems.  

5.8 Summary 

The chapter explored developing behaviour models of players using a 

hierarchical approach, where groups of players were associated together in cliques 

depending on their relative proximity or similar direction of movement, as well as 

the mean motion of the entire team. The generated models performed quite well 

when asked to predict the next move of modelled players, and performed very well 

in comparison to a random walk player model used as a control. Analysis of the 

performance of the models over extended time periods again demonstrated that they 

can outperform random and linear extrapolation trajectory models, and have the 

capability to generate varied (and sometimes quite accurate) trajectories over a short 

time window (less than ten seconds).  



- 141 - 

6 Conclusions 

The aim of the work in this thesis is to investigate the possibility of indexing 

an archive of games (described as collections of player trajectories and events) by 

using short segments of play, and also to investigate the possibility of building 

player behaviour models which can capture the systematic behaviour of players as 

evidenced by their trajectories. To this end the following work was undertaken: 

6.1 Summary of work 

Chapter 3 introduced eight SOP indexing schemes. Of these one was based on 

a semantically augmented ball trajectory, describing the ball trajectory as a 

temporally linked series of line segments to which were attached semantic 

information describing possession. This indexing scheme required the development 

of abstract prototypes both for spatial coordinates and for types of players. MDL 

was used in both cases to select the best model. Two of the player based indexing 

schemes also made use the spatial and player abstractions: the player trajectories and 

augmented cliques approach. Of the remaining five approaches, four used some 

variation of measuring player density (two used global player density, two used high 

entropy local patches of player density). The final approach used a very abstract 

clique based approach to describe the context around a SOP. 

Chapter 4 dealt with aggregating results from a combined system of a ball 

indexer and a player indexer. The general problems encountered when fusing two 

results lists together were covered, and a score based aggregation approach was 

decided upon (rather than a rank based approach). This chapter also detailed the 

evaluation experiment for both the individual indexing systems, and there composite 

combined indexing system. 

Chapter 5 covered the work undertaken in behaviour modelling using the 

player trajectory data available. A hierarchical based modelling approach was taken, 

whereby the behaviour of a player is influenced by the players associated with him 

(by proximity or a similar direction of movement), as well as the mean motion of the 



- 142 - 

entire team. The generated models performed quite well when asked to predict the 

next move of modelled players, and performed very well in comparison to a random 

walk player model used as a control. Testing involving extended trajectories of 25s 

in duration revealed that the model tends to reasonably accurate over the short term 

(<3s), but becomes progressively more inaccurate as the simulation duration 

increases, almost certainly in part because the autoregressive nature of the model 

amplifies earlier errors in later simulation steps. The extended duration experiment 

also highlighted some problems with correctly predicting medium player speeds 

(which were also evident to a lesser degree in the first experiment). 

6.2 Contributions 

The main contributions of this thesis are: 

 A successful SOP indexing scheme using the semantically augmented 
ball trajectory. 

 Several successful SOP indexing schemes based on player movements. 
 The development of useful spatial and player prototypes which could 

be incorporated into other work. 
 A query results aggregation system, with the ability to learn to map 

similarities to estimated ground truth values. 
 A hierarchical behaviour model for player motion, which demonstrated 

reasonable agreement with reality. 

6.3 Future research 

With regard to indexing, one area of future research could be to attempt to 

combine the player and ball trajectory approaches within the same indexing scheme. 

From the results of the experiment in chapter 4, it is apparent that they are not 

completely mutually redundant descriptions of a SOP as the aggregation of player 

trajectory and ball trajectory results achieved a higher mean rating than either the 

ball trajectory or player trajectory mean ratings individually.  

The combined aggregators used only one variant of player indexing with the 

ball indexer, future research could look into the effect of having two or more player 

indexing systems in concert with the ball indexer.  



- 143 - 

The concept of the context of a query was introduced to see if could improve 

the performance of results aggregation, by providing additional information to the 

ground truth which would allow the NN to bias the score combination on a per 

query type basis (provided a systematic effect was evident in the data). Although the 

top performing combined indexer system did use the PCA variant of the query 

context, overall the results were inconclusive as to whether this was a useful feature 

or not. The author suspects the compression performed to achieve a 2D context was 

too severe, and perhaps a less compressed version of the context could show 

superior performance. Alternatively, the RM could be combined with the PI in order 

to provide a richer description to compress.  

A larger similarity gathering experiment would be useful to allow a more 

significant judgement to be made amongst the competing indexing systems. The 

current experiment using only sixteen raters with a four point Likert scale resulted in 

noisy data. The experiment could be usefully rerun with either a more nuanced 

rating scale (perhaps even a continuous variable for similarity), a panel of ‘expert’ 

raters (so that the subjective variation in similarities is reduced), or a much larger 

pool of normal raters (so the subjective variations can be averaged out over a large 

number of ratings).  

There is much scope to research further into behaviour modelling of players. 

Constructing a player model which does not rely on the players’ own trajectory, but 

only of surrounding players and the ball would make useful comparison as it would 

not be subject to feedback error amplification. Clustering is a possible approach for 

players with associated behaviour models, by observing and comparing their 

behaviour in exactly the same situations. Clusters of behaviour models leads to the 

concept of an average behaviour model. The current models only address the 

movement of the player; they do not address actions undertaken by the player at all, 

so this is one avenue of research, including questions such as can an action model 

coexist with a movement model, and could they use the same clique based data? 

Finally, can the behaviour models of players be used as the beginnings of a semantic 

approach to context indexing segments of play? The behaviour models having 

probabilistic outputs can potentially describe everything that could occur from a 

certain starting configuration of players and ball, so it might be possible to describe 

(and attach a probability to) all possible futures in a SOP, and then perhaps index the 

segment on a number if the  most likely outcomes.  



- 144 - 

7 Appendices 

7.1 The AVQ Algorithm 

 Randomly place the k prototypes mi (i=1…k) in the feature space 

 Let x(t) be the feature vector for epoch t 

 Define: 

(ݐ)ߙ = 1 −
ݐ
ܶ (7.1) 

 

 

 a monotonically decreasing gain coefficient 

 To ensure the prototypes are representatively distributed, each node mi 

has an associated sensitivity Si which is initially zero 

 Set a value for ࢼ, the node sensitivity adjustment parameter. This must 

be small in comparison to the feature space. 

 Train for T epochs, at each epoch t : 

o Find the prototype mc(t) which is nearest to this input: 

ܿ = arg݉݅݊௜(|(ݐ)ݔ − ݉௜(ݐ)| − ௜ܵ(ݐ)) (7.2) 

 

o For each i update the prototypes and sensitivities: 

 If ݅ = ܿ 

݉௖(ݐ + 1) = ݉௖(ݐ) + (ݐ)ݔ|(ݐ)ߙ − ݉௖(ݐ)| (7.3) 

 

ܵ௖(t + 1) = Sୡ(t) − β (7.4) 

 
 

 If ݅ ≠ ܿ 

݉௖(t + 1) = mୡ(t) (7.5) 



- 145 - 

ܵ௖(t + 1) = Sୡ(t) +
β

k − 1 

 

 

(7.6) 

7.2 Valid Football Events 

EventID Event Type 

1 Touch (of ball) 

2 Dribble (of ball) 

3 Header 

4 Tackle 

5 Cross 

6 Clearance 

7 Post Deflection 

8 Crossbar Deflection 

9 Shot 

10 Header Shot 

11 Goal 

12 Own Goal 

13 Start Of Half 

14 End Of Half 

15 Kick Off 

16 Drop Ball 

17 Stoppage 

18 Ball Out Of Play 

19 Goal Kick 

20 Throw In 

21 Foul Throw 

22 Corner Pass 



- 146 - 

23 Corner Cross 

24 Goalkeeper Save 

25 Goalkeeper Punch 

26 Goalkeeper Catch 

27 Goalkeeper Throw 

28 Goalkeeper Fumble 

29 Goalkeeper Save Catch 

30 Goalkeeper Pick Up 

32 Goalkeeper Kick 

33 Goalkeeper Drop Catch 

34 Foul 

35 Handball 

36 Direct Free Kick Pass 

37 Direct Free Kick Shot 

38 Direct Free Kick Cross 

39 Penalty Shot 

40 Offside 

41 Indirect Free Kick Pass 

42 Indirect Free Kick Cross 

43 Yellow Card 

44 Red Card   

45 Substitution 

46 Block 

47 Goalkeeper Foul 

48 Pass 

49 Deflection 

 
Table 7.1 – Event IDs as used by ProZone to describe events occurring during a football game 

 



- 147 - 

7.3 User similarity opinions 

7.3.1 User opinion #1 

 By looking at any patterns, i.e. number of passes, directions etc to see if there 

are any similarities. 

7.3.2 User opinion #2 

 Patterns of trajectory 

 Position of goalkeepers 

 Location of ball 

 Direction of play 

 # of players in each half 

 Which half of pitch the ball is in 

7.3.3 User opinion #3 

 Has a team ‘scored psychological points’ against the other? 

 Has the ball changed hands? 

 Was the play in the same third of the pitch? 

 How much passing? 

7.3.4 User opinion #4 

 Main play, i.e. cross, short-passing 
 If both attacking/defending 
 Successful phase of play or not in both? 
 Loosing/Keeping possession. 

7.3.5 User opinion #5 

 I compared which team had possession, what area of the pitch they were in. 
whether the passes were long or short and the eventual outcome of the 
move (shot, loss of possession, free kick, etc). 



- 148 - 

7.3.6 User opinion #6 

 Motion of the players, whether attacking or defending 
 Speed at which ball was played 
 Number of players involved in an action 
 Position of ball at that time 
 The passes played, whether they were played long or short. 

7.3.7 User opinion #7 

 (mostly) ignored player types 
 Ignored side of pitch and often if majority of play was in back half or front 

half of pitch. Didn’t ignore this if I rated this ‘v.similar’ 
 Possession seemed to influence my decision significantly 
 Generally it had to do be the same kind of play to get a v.similar (i.e. 

corner kick, shot on goal, etc). 
 Speed of play had a very slight influence 
 Range of play (amount of pitch covered) had a slight influence  

7.3.8 User opinion #8 

 I tried to look at the movement of the ball, what I thought were the 
intended passess, which players passed it to who, and the movement of the 
players. 

 When seeing two that looked similar, I would perhaps consider the 
formations and positions of the different players (attackers, defenders etc); 

7.3.9 User opinion #9 

 Ball as main reference point and possession 

7.3.10  User opinion #10 

 Goalkeeper activity/inactivity 
 Ball going out of play 
 Ball trajectory 
 Defensive/attacking manoeuvre 
 Change of possession 



- 149 - 

 Involvement of different categories of player  

7.3.11  User opinion #11 

 I tried to describe what was going on similar to that of a commentator, then 
compared the descriptions 

7.3.12  User opinion #12 

 Position of ball and it’s play 
 Position of players 

7.3.13  User opinion #13 

 The general direction of play 
 Ball position 
 Teams being defensive/attacking 

7.3.14  User opinion #14 

 Positions of players + player type 
 Position of ball in play i.e. corner/goal shot/cross 
 Direction of movement of players 
 Team in possession + attacking/defending 
 Thinking about what’s happening and what might happen  (attack / tackle / 

defend / goal etc), eg attack _+ goal can be very similar to attack + no goal. 

7.3.15  User opinion #15 

 If the same team is in possession at approx. the same time, the plays were 
more likely to be regarded as similar. 

 If the outcome is similar, i.e. goal, defend with possession, goal kick then 
the plays were more likely to be regarded as similar. 

 The player’s positions were also used. The closer the player positions are 
to matching each other, the more likely to be regarded as similar the plays 
were. 

 Roughly: 
o If all 3 apply, then very similar 



- 150 - 

o If 2 apply, quite similar  
o If 1 applies then quite unsimilar 
o If 0 applies then very unsimilar 

7.3.16  User opinion #16 

 Movement of ball w.r.t. movement of the players; that is the general 
direction of the ball in relation to the players movement around it. So, if in 
both cases the ball is being passed diagonally with surrounding players 
running after it then this would classify as being rather similar. Moreover, 
this must be consistent throughout the clip. 

 The above coupled with a bijection between the timing of both events leads 
to a higher degree of similarity between clips. 

 The grouping of players throughout the duration of the clip is also 
paramount. For there to be a high degree of similarity there should be a 
correlation (approximate at least) between the disposition of the players 
around the pitch. The players should also correspond in their respective 
positions (i.e. defenders are situated in similar positions in both clips). 

 A minor method for selection of similarity is also the speed (or change 
thereof – acceleration) of the ball. Large differences in the speed or change 
of speed lead to less similarity between clips.  

7.4 Query context – low dimensional projections from PCA and 

NN compression 

 

Figure 7.1  – 2D context projections for clique indexing system 

 



- 151 - 

 

Figure 7.2 – 2D context projections for 2D histograms indexing system 

 

 

Figure 7.3 – 2D context projections for multi-resolution histograms indexing system 

 

 

Figure 7.4 – 2D context projections for local features (flat) indexing system 

 

 

Figure 7.5 – 2D context projections for local features (tree) indexing system 



- 152 - 

 

Figure 7.6 – 2D context projections for ball trajectory indexing system 

 

 

Figure 7.7 – 2D context projections for player trajectories indexing system 

 

 

Figure 7.8 – 2D context projections for augmented cliques indexing system 

 

 

 

 

 

 

 

 



- 153 - 

7.5 Generated local feature histograms for entropy indexing 

systems 

id posx posy extentx extenty level entropy rank 
981 2 0 1 3 2 0.693147 0 

4340 5 4 1 2 2 0.693123 1 
185 0 1 3 1 1 0.693114 2 

1655 0 2 3 1 1 0.693043 3 
4093 4 4 2 1 2 0.692999 4 
2610 2 1 1 2 1 0.692914 5 
771 2 0 3 2 1 0.692772 6 
859 5 3 1 2 2 0.692528 7 

3961 0 1 1 3 1 0.692425 8 
2710 5 0 1 3 2 0.692387 9 
4343 3 1 1 3 1 0.692347 10 
4096 4 0 1 2 1 0.692265 11 
254 0 0 3 1 1 0.692214 12 

1566 2 6 1 3 5 0.691763 13 
1899 3 3 2 1 2 0.691499 14 
3048 1 2 2 1 2 0.691346 15 
4153 5 1 4 1 2 0.690164 16 
992 4 2 3 1 2 0.689912 17 

2535 5 4 1 2 3 0.689715 18 
2537 1 2 3 1 1 0.689564 19 

 

Table 7.2 – Top 20 generated histograms for abstract team '-1' 

 

 

 

 

 

 

 

 

 

 

 



- 154 - 

 
Id posx posy extentx extenty level entropy rank 
512 3 4 2 1 2 0.693147 0 

2892 5 2 1 2 2 0.693022 1 
2535 5 4 1 2 3 0.692927 2 
178 5 2 2 1 3 0.69291 3 

1655 0 2 3 1 1 0.692825 4 
4153 5 1 4 1 2 0.692788 5 
378 3 2 3 1 1 0.692744 6 

2442 5 4 4 2 2 0.692679 7 
1204 7 1 1 4 2 0.692528 8 
3054 6 0 1 3 2 0.69244 9 
382 5 1 1 3 1 0.692231 10 

2265 3 0 1 3 1 0.692033 11 
4404 2 1 1 2 1 0.690347 12 
2196 2 4 2 1 2 0.688798 13 
3320 8 4 2 1 4 0.688038 14 
2111 0 0 5 2 2 0.687936 15 
2497 9 1 1 3 3 0.686929 16 
3249 2 3 2 1 2 0.686098 17 
4033 7 3 2 2 2 0.684115 18 
533 6 6 2 1 4 0.683898 19 

 

Table 7.3 – Top 20 generated histograms for abstract team '+1'  

 

7.6 Fine player archetypes 

For all archetype figures displayed in this section, the home team goal is on the 
left hand side of the figure, and the away team goal is on the right hand side of the 
figure. In general terms, the more an archetype is placed towards the right the more 
attacking it is, and vica versa. The archetypes can also be generally classed as either 
left-wing, central or right-wing depending on where the archetype occupies on the 
axis parallel to the goal line. The author has attempted to assign a known football 
position to each of the archetypes within the brackets in each figure caption. 

 



- 155 - 

 
Figure 7.9 – Fine player archetypes set #1 (striker, left midfielder/forward, left fullback) 

 

 
Figure 7.10 – Fine player archetypes set #2 (left midfielder, centre back, right fullback) 

 

 
Figure 7.11 – Fine player archetypes set #3 (left midfielder, midfielder, striker) 

 

 
Figure 7.12 – Fine player archetypes set #4 (second striker, left fullback/midfielder, left midfielder) 

 

 
Figure 7.13 – Fine player archetypes set #5 (second striker, right fullback, right midfielder) 

 



- 156 - 

 

Figure 7.14 – Fine player archetypes set #6 (left fullback, left midfielder, midfielder) 

 

 
Figure 7.15 – Fine player archetypes set #7 (goalkeeper, sweeper, left forward) 

 

 
Figure 7.16 – Fine player archetypes set #8 (right fullback/midfielder) 

 

7.7 Ball following algorithm 

(1) Given a game ID ܯ, for each half in the game the initial ball position is 
located at the centre point.  

(2) Move through the current match events for game ܯ in the relevant half 
until a ball-encounter class event is reached. From the playerID associated with the 
event, calculate the current position of the ball. 

(3) Knowing the current position of the ball, the current time, the last known 
position of the ball and the time it was there, interpolate a straight-line trajectory 
between the two points giving the ball a constant velocity. 

(4) Go back to (2) until the events from both halves of game ܯ are exhausted. 

 

 



- 157 - 

7.8 Database overview 

The volume of trajectory and event data available (approximately 7GB in all) 

for use in this thesis requires the use of a database in order to efficiently store and 

analyse it, and also to store the football play segment indexing structures. As that is 

the case, an overview of their basic functionality of databases is prudent. 

 The vast majority of database systems currently available are based on the 

relational model [4], whereby data is structured in terms of tables, rows and columns 

(see Figure 7.17). 

 

Figure 7.17 – Relational model used widely in modern day databases 

 

 SQL (Structured Query Language) [5], is the de facto language used with 

relational databases to perform data creation, manipulation and query. Its syntax is 

predicate logic based, and results of SQL queries are represented as sets of column 

values. Figure 7.18 shows an example SQL query performed on the table defined in 

Figure 7.17. 

 

 

Figure 7.18 – A simple example of a Select SQL query on a database table 

 
 At the most basic level, performing queries on one or more database tables 

involves examining each row in the table(s), and selecting only those that satisfy the 



- 158 - 

conditions of the query. The computational cost of performing the queries grow in 

direct proportion to the size of the tables using the basic query method. For a large 

table this can be an extremely costly operation.  

Database indexes offer a way to ameliorate the performance of queries 

performed on large datasets. The approach is analogous to that taken when a simple 

binary tree is used to increase the efficiency of searching a linear list (see Figure 

7.19). By partitioning the data, the binary tree requires less steps (on average) to 

locate any value than the equivalent linear list. A perfectly balanced binary tree will 

reduce the search complexity of a linear list of ܱ(݊) to that of ܱ(݈݃݋ଶ	݊). 

 

 

Figure 7.19 – Increasing search efficiency by restructing data elements 

 

The index data structure most commonly used in database systems is that of 

the B-Tree [6] (see Figure 7.20), a more complex version of the binary tree which 

allows multiple scalar values to be stored within the tree nodes, thereby enabling 

each node to have more than 2 children. When used in database indexing, the 

interior nodes of the B-Tree hold values of the indexed entity, allowing a rapid 

traversal of the tree to the leaves, which hold the actual references to rows in the 

database that match the index key of the immediate parent node. 

 

 

Figure 7.20 – B Tree (general purpose database structure) 

 



- 159 - 

Another common database indexing structure is the R-Tree [7] (see Figure 

7.21), which is specialised to efficiently handle spatial information (it is frequently 

used in Geographic Information Systems). Indexes are based on a n-dimensional 

space model (where n is arbitrary and at the users discretion) , and each interior node 

of the tree holds one or more minimum bounding boxes (MBB), which effectively 

partition the n-dimensional space into discrete cuboid n-dimensional volumes (or 

rectangular areas if n=2). The collection of MBBs within an R-Tree will be such that 

the tree is as balanced as possible. Spatial queries fall into one or more MBBs at 

each level38 of the tree (MBBs may overlap), the MBBs getting progressively 

smaller as the tree is traversed. The leaves of the tree hold references to database 

rows whose spatial index exists within the immediate parents MBB. 

 

 

Figure 7.21 – R Tree (specialised to hold geographic data) 

 

Indexes are based on the column values of tables (the key of the index), so in 

the case of the table defined in Figure 7.17 an index could be constructed from the 

ID column, the Class column, or a combination of the two. The index associates 

values of the key of the index with that of a set of rows in the database that share the 

same values for the key, allowing much quicker access to relevant rows of data. 

Given that the purpose of a database index is to speed up queries, knowledge of 

                                                
38 Or at least are closest to one MBR 



- 160 - 

which queries are most probable, and specifically which table columns will be 

referenced in those queries, is essential in order to construct a useful index. If the 

query in Figure 7.18 were the most probable query to be performed on the table in 

Figure 7.17, then the most efficient column to construct an index on would be the 

Class column. 

 

7.9 Implementation details for Context indexing with player 

cliques 

7.9.1 Implementation of indexing scheme 

Clique discovery is applied to the initial player positions, and to the players’ 

overall direction of movement for each SOP considered, to produce two sets of 

cliques per team (Figure 7.22), that is four sets of cliques in total. The contents of 

the cliques are raw player IDs, and as such are semantically meaningless in 

themselves. However, the distribution of the sizes of the cliques is potentially 

semantically meaningful. In a similar fashion to the bag of words model [19], a 

count is kept of clique size distribution resulting from each of the four set of cliques 

(for an example distribution see Figure 7.23). Each distribution has ten values, 

representing the valid range of sizes of cliques within a team of eleven players 

maximum. 

 

 

Figure 7.22 – Clique context around the beginning and end of a SOP 

 



- 161 - 

 

Figure 7.23 – an example clique size distribution 

 

This transforms the four sets of cliques into four integer vectors (each with ten 

components). These four vectors form the basis of the PI, which is composed of the 

concatenation of the vectors as shown in Figure 7.24, where: ܣ = Team ‘+1’s 

proximity distribution, ܤ = Team ‘+1’s movement distribution, ܥ = Team ‘-1’s 

proximity distribution, ܦ = Team ‘-1’s movement distribution. 

 

 

Figure 7.24 – Clique PI composed of the two teams clique distributions 

 
Each clique has a spatial centroid associated with it, which is dependent on the 

player positions within the cliques. For a proximity clique of size n, this centroid 

ܥ) ௫ܲതതതതത,	ܥ ௬ܲതതതതത) is given by:  

 

ܥ ௫ܲതതതതത =
1
݊෍ܲݔ௧					ܥ ௬ܲതതതതത =

1
݊෍ܲݕ௧

௡

௧ୀଵ

௡

௧ୀଵ

 
(7.7) 

 

 Where ܲݔ௧	 and ܲݕ௧ are the pitch normalised initial ݔ and ݕ coordinates of the 
 player in the clique. The spatial centroid for a direction of movement clique of	௧௛ݐ
size n,  (ܦܥ௫തതതതത,	ܦܥ௬തതതതത) is given by: 

 



- 162 - 

௫തതതതതܦܥ =
1
݊෍ܲݔ௧ +

(௧ݔܨ) − (௧ݔܲ)
2

௡

௧ୀଵ

		 
(7.8) 

 

௬തതതതതܦܥ =
1
݊෍ܲݕ௧ +

(௧ݕܨ) − (௧ݕܲ)
2

௡

௧ୀଵ

		 
(7.9) 

 

Where ܲݔ௧	 and ܲݕ௧ are the pitch normalised initial ݔ and ݕ coordinates of the 
 ݕ and ݔ ௧ are the pitch normalised finalݕܨ ௧ andݔܨ .player in the clique	௧௛ݐ
coordinates of the ݐ௧௛ player in the clique. Since the number of cliques (both 
proximity and distance) is variable, the RM will be composed of the mean centroid 
of each of the four sets of cliques. The mean centroid (ܥ௫തതത,	ܥ௬തതത) of a set of cliques of 
size m is given by: 

 

௫തതതܥ =
1
݉෍ݔܥ௧

௠

௧ୀଵ

 
(7.10) 

 

௬തതതܥ =
1
݉෍ݕܥ௧

௠

௧ୀଵ

 
(7.11) 

 

 Where ݔܥ௧ and ݕܥ௧ are the pitch normalised centroid ݔ and ݕ coordinates of 
the ݐ௧௛	clique in the clique set. These four sets of clique centroids are concatenated 
into an eight dimensional vector that forms the RM component of the indexing 
scheme. Its form is shown in Figure 7.25, where ܧ = Team ‘+1’s proximity cliques 
centroid, ܨ = Team ‘+1’s movement cliques centroid, ܩ = Team ‘-1’s proximity 
cliques centroid, ܪ = Team ‘-1’s movement cliques centroid. 

 

 

Figure 7.25 – Clique RM composed of the two teams clique centroids 

 



- 163 - 

The RM is associated with the 3-tuple SOPREF, and both are associated with 

the PI (see Figure 7.26).  

 

 

Figure 7.26 – clique size distribution indexing scheme 

 

7.9.2 Query matching 

Queries by example (i.e. a SOP) are broken down into a clique set PI and RM 

as detailed in the previous section. Query matching is done in two stages. In the first 

stage all (3-tuple, metadata) pairs which are associated with a PI identical to the 

query PI are collated. The second stage ranks the results of the first stage by the 

Euclidean distance between the query metadata feature vector and the metadata 

feature vector of each of the first stage results.  

7.9.3 Query relaxation 

Queries initially have no relaxation associated with them and proceed as 

described in the previous section.  However queries may be relaxed gradually, and 

the relaxation scheme proceeds as follows: 

 

(1) Initial relaxation ݎ = 0,  each subsequent relaxation level is +1 (i.e. 

0	 → 	1	 → 	2	… 	→ 	݊)  

(2) At relaxation level ݎ each component of the PI (i.e. each distribution value) 

is allowed to vary by +/−	ݎ and still match the corresponding component 

of the query PI (Figure 7.27) 

 



- 164 - 

 

Figure 7.27 – clique indexing query relaxation process 

 

7.10 Implementation details for Team mass indexing with 2D 

histogram 

7.10.1 Implementation of indexing scheme 

One histogram is used per team, so in total 12 integers describe the position of 

the bulk of players in both teams. These integers form the basis of the PI (see Figure 

7.30), and are arranged as shown in Figure 7.28, where ܣ = team ‘+1’s top 6 densest 

histogram bins ܤ = team ‘-1’s top 6 densest histogram bins. 

 

Figure 7.28 – 2D histogram PI composed of the top six histograms bins for each team 

 

The RM consists of the mean centroid for each team over the whole SOP. Each 

team centroid (ܥ௫തതത,	ܥ௬തതത) is defined as follows:  

 

௫തതതܥ =
1
݊݉෍෍ܲݔ௜,௧

௠

௜ୀଵ

௡

௧ୀଵ

 
(7.12) 

 

௬തതതܥ =
1
݊݉෍෍ܲݕ௜,௧

௠

௜ୀଵ

௡

௧ୀଵ

 
(7.13) 

 



- 165 - 

 Where ܲݔ௜,௧ and ܲݕ௜,௧ are the pitch normalised ݔ and ݕ coordinates of the ݅௧௛ 
player in the team of ݉ players, at time position ݐ in the play segment, which has a 
total number of time positions ݊. The RM is arranged to form a 4D feature vector as 
in Figure 7.29, Where ܥ = team ‘+1’s mean centroid over the SOP, ܦ = team ‘-1’s 
mean centroid over the SOP 

 

 

Figure 7.29 – 2D histograms RM containing the team centroid of each team 

 

The RM is coupled with the object reference composed of a 3-tuple {MatchID, 

HalfID, Matchtime}, and both are associated with the PI (Figure 7.30). 

 

 

Figure 7.30 – 2D histogram indexing scheme 

 

7.10.2 Query matching 

Queries by example are broken down into a PI and RM as detailed in the 

previous section. Query matching is done in two stages. In the first stage all (3-tuple, 

metadata) pairs which are associated with a PI identical to the query PI are collated. 

The second stage ranks the results of the first stage by the Euclidean distance 

between the query metadata feature vector and the metadata feature vector of each 

of the first stage results.  

7.10.3 Query relaxation 

Queries initially have no relaxation associated with them and proceed as 

described in the previous section.  However queries may be relaxed gradually, and 

the relaxation scheme proceeds as follows: 



- 166 - 

 

(1) Initial relaxation ݎ = 0, each subsequent relaxation level is +1, up to a 

maximum of 6. 

(2) At relaxation level ݎ, only the top (6 −  bins for each team are compared (ݎ

against the query PI. The maximum relaxation that can be reached is 6, at 

which time all indexed objects trivially match the query PI. 

 

7.11 Implementation details for Team mass indexing with multi-

resolution 2D histograms 

7.11.1 Implementation of indexing scheme 

In total the integer vector component of the PI comprises 6 integers (3 for each 

team) represent coarse-to-fine measures of player density, and is arranged as in 

Figure 7.31, where ܣ = team ‘+1’s 3x2 histogram represented as an integer, ܤ = 

team ‘+1’s 6x4 histogram represented as an integer, ܥ = team ‘+1’s 9x6 histogram 

represented as an integer, ܦ = team ‘-1’s 3x2 histogram represented as an integer, ܧ 

= team ‘-1’s 6x4 histogram represented as an integer, ܨ = team ‘-1’s 9x6 histogram 

represented as an integer. 

 

 

Figure 7.31 – multi-resolution histograms PI containing the three levels of histograms (each 
represented as in integer) for both team 

 
The RM consists of the mean centroid for each team over the whole SOP. Each 

team centroid (ܥ௫തതത,	ܥ௬തതത) is defined as follows:  

 

௫തതതܥ =
1
݊݉෍෍ܲݔ௜,௧

௠

௜ୀଵ

௡

௧ୀଵ

 
(7.14) 

 



- 167 - 

௬തതതܥ =
1
݊݉෍෍ܲݕ௜,௧ 				

௠

௜ୀଵ

௡

௧ୀଵ

 
(7.15) 

 

Where ܲݔ௜,௧ and ܲݕ௜,௧ 	are the pitch normalised ݔ and ݕ coordinates of the ݅௧௛ 
player in the team of ݉ players, at time position ݐ in the play segment, which has a 
total number of time positions ݊. The RM is arranged to form a 4D feature vector as 
in Figure 7.32, Where ܩ = team ‘+1’s mean centroid over the SOP, ܪ = team ‘-1’s 
mean centroid over the SOP. 

 

 

Figure 7.32 – Multi-resolution histograms RM containing the team centroid of each team 

 

The RM is coupled with the object reference composed of a 3-tuple {MatchID, 

HalfID, Matchtime}, and both are associated with the PI (Figure 7.33). 

 

 

Figure 7.33 – multi-resolution histograms indexing scheme 

 

7.11.2 Query matching 

Queries by example are broken down into a PI and RM as detailed in the 

previous section. Query matching is done in two stages. In the first stage all (3-tuple, 

metadata) pairs which are associated with a PI identical to the query PI are collated. 

The second stage ranks the results of the first stage by the Euclidean distance 

between the query metadata feature vector and the metadata feature vector of each 

of the first stage results.  

 



- 168 - 

7.11.3 Query relaxation 

Queries initially have no relaxation associated with them and proceed as 

described in the previous section.  However queries may be relaxed gradually, and 

the relaxation scheme proceeds as follows: 

 

(1) Initial relaxation ݎ = 0, each subsequent relaxation level is +1, up to a 

maximum of 3.  

(2) At relaxation level 1 , only the 3x2 and 6x4 histograms for each abstract 

team are matched against the query PI 

(3) At relaxation level 2 , only the 3x2 histogram for each abstract team is 

matched against the query PI 

(4) At relaxation level 3 , all indexed objects match against the query partition 

object. 

7.12  Implementation details for Team mass indexing with local 

high entropy features 

7.12.1  Indexing scheme 

The 40 best features discovered (20 per team) are assigned unique ids and 

recorded for future use. Each feature has its own entropy value attached to it, to 

allow them to be ordered within each collection (in order of highest individual 

entropy first). The indexing partition structure is thus two sets of 20 features, each of 

which can be either present(1) or absent(0) for any particular SOP, giving a vector 

of twenty integers per team. The two vectors are concatenated into the PI as shown 

in Figure 7.34, Where ܣ	= team ‘+1’s local features, ܤ = team ‘-1’s local features 

 

 

Figure 7.34 – high entropy local features PI containg bitfields for both teams indicating the 
presence/absence of a set of multi-resolution features 

 



- 169 - 

The RM consists of the mean centroid for each team over the whole SOP. Each 

team centroid (ܥ௫തതത,	ܥ௬തതത) is defined as follows:  

 

௫തതതܥ =
1
݊݉෍෍ܲݔ௜,௧

௠

௜ୀଵ

௡

௧ୀଵ

 
(7.16) 

 

௬തതതܥ =
1
݊݉෍෍ܲݕ௜,௧

௠

௜ୀଵ

௡

௧ୀଵ

 
(7.17) 

 

Where ܲݔ௜,௧ and ܲݕ௜,௧ are the normalised ݔ and ݕ coordinates of the ݅௧௛ player 
in the team of ݉ players, at time position ݐ in the play segment, which has a total 
number of time positions ݊. The RM is arranged to form a 4D feature vector as in 
Figure 7.35, where ܥ = team ‘+1’s mean centroid over the SOP, ܦ = team ‘-1’s 
mean centroid over the SOP. 

 

 

Figure 7.35 – High entropy local features RM containing the team centroid of each team  

 
The RM is coupled with the object reference composed of a 3-tuple {MatchID, 

HalfID, Matchtime}, and both are associated with the PI (Figure 7.36). 

 

 

Figure 7.36 –high entropy local features indexing scheme 

 

 

 



- 170 - 

7.12.2  Query matching 

Queries by example are broken down into a PI and RM as detailed in the 

previous section. Query matching is done in two stages. In the first stage all (3-tuple, 

metadata) pairs which are associated with a PI identical to the query PI are collated. 

The second stage ranks the results of the first stage by the Euclidean distance 

between the query metadata feature vector and the metadata feature vector of each 

of the first stage results.  

7.12.3  Query relaxation 

Queries initially have no relaxation associated with them and proceed as 

described in the previous section.  However queries may be relaxed gradually, and 

the relaxation scheme proceeds as follows: 

 

(1) Initial relaxation ݎ = 0, each subsequent relaxation level is +1, up to a 

maximum of 20. 

(2) At relaxation level ݎ, only the (20 −  highest individual entropy features (ݎ

for each abstract team are compared against the query PI. The maximum 

relaxation that can be reached is 20, at which time all indexed objects 

trivially match the query PI. 

7.13  Implementation details for Team mass indexing with 

hierarchical high entropy features 

7.13.1  Indexing scheme 

The PI structure is shown in Figure 7.37, Where ܣ = team ‘+1’s tree traversal 

vector, ܤ = team ‘-1’s tree traversal vector. 

 



- 171 - 

 

Figure 7.37 – tree structured high entropy local features PI containing bitfields describing tree 
traversals for both teams 

 
The RM consists of the mean centroid for each team over the whole SOP. Each 

team centroid (ܥ௫തതത,	ܥ௬തതത) is defined as follows:  

 

௫തതതܥ =
1
݊݉෍෍ܲݔ௜,௧

௠

௜ୀଵ

௡

௧ୀଵ

 
(7.18) 

 

௬തതതܥ =
1
݊݉෍෍ܲݕ௜,௧

௠

௜ୀଵ

௡

௧ୀଵ

 
(7.19) 

 

Where ܲݔ௜,௧ and ܲݕ௜,௧ are the normalised ݔ and ݕ coordinates of the ݅௧௛ player 
in the team of ݉ players, at time position ݐ in the play segment, which has a total 
number of time positions ݊. The RM is arranged to form a 4D feature vector as in 
Figure 7.38, where ܥ = team ‘+1’s mean centroid over the SOP, ܦ = team ‘-1’s 
mean centroid over the SOP. 

 

 

Figure 7.38 – tree structured high entropy local features RM containing the team centroid of each 
team  

 

The RM is coupled with the object reference composed of a 3-tuple {MatchID, 

HalfID, Matchtime}, and both are associated with the PI (Figure 7.39). 

 



- 172 - 

 

Figure 7.39 – tree structured high entropy local features indexing scheme 

 

7.13.2  Query matching 

Queries by example are broken down into a PI and RM as detailed in the 

previous section. Query matching is done in two stages. In the first stage all (3-tuple, 

metadata) pairs which are associated with a PI identical to the query PI are collated. 

The second stage ranks the results of the first stage by the Euclidean distance 

between the query metadata feature vector and the metadata feature vector of each 

of the first stage results.  

7.13.3  Query relaxation 

Queries initially have no relaxation associated with them and proceed as 

described in the previous section.  However queries may be relaxed gradually, and 

the relaxation scheme proceeds as follows: 

 

(1) Initial relaxation ݎ = 0, each subsequent relaxation level is +1, up to a 

maximum of ܰ, where ܰ is the depth of the tree. 

(2) At relaxation level ݎ, only the first (ܰ −  tree traversal features for each (ݎ

abstract team are compared against the query PI. The maximum relaxation 

that can be reached is ܰ, at which time all indexed objects trivially match 

the query PI. 

 

 

 



- 173 - 

7.14  Implementation details for Semantically augmented ball 

trajectories 

7.14.1  Indexing scheme 

Given a SOP, the ball trajectory within it is reconstructed from the player 

positions and events as a series of line segments. Line segments which cross the 

boundaries of the SOP are truncated as shown in Figure 7.40. 

 

 

Figure 7.40 – Ball trajectory truncation to lie within a SOP 

 
The beginning and end of each line segment is mapped to the nearest spatial 

prototype in the codebook. Each line segment is associated with a club ID and a 

player ID. The club ID is mapped onto the abstract club ‘+1’/’-1’. The player ID is 

mapped onto the corresponding gross player archetype and fine player archetype. A 

line segment is represented in the PI as shown in Figure 7.41, where ܤ = Nearest 

spatial prototype to exact beginning of line segment, ܧ = Nearest spatial prototype to 

exact end of line segment, ܣ = Abstract team in possession during line segment 

(either +1 or -1), ܩ = Gross player archetype corresponding to player in possession 

during line segment, ܨ = Fine player archetype corresponding to player in 

possession during line segment. 

 



- 174 - 

 

Figure 7.41 – Ball trajectory segment PI containing beginning and end spatial prototypes and the 
team and type of player in possession 

 

The RM for each line segment in the ball trajectory is structured as shown in 

Figure 7.42, where: ܶ = temporal order of line segment in ball trajectory (1…n) of n 

segments, ܦ = time duration of line segment in multiples of 0.1s, ܲ = exact 

beginning coordinates of line segment (pitch normalised), ܳ = exact ending 

coordinates of line segment (pitch normalised). 

 

 

Figure 7.42 – Ball trajectory segment RM containing details of one particular line segment within 
the ball trajectory (one or more are required to desribe ball trajectory over entire SOP) 

 

The RM is coupled with the SOPREF composed of a 3-tuple {Matchid, Halfid, 

Matchtime}, and both are associated  with the PI (see Figure 7.43).  

 

 

Figure 7.43 – Semantically augmented ball trajectory indexing scheme 

 

7.14.2  Query matching 

Queries by example are broken down into ܰ PIs and ܰ RM collections 

representing the query ball trajectory of ܰ segments, as described in the previous 

section. The aim is to find all ball trajectories that share at least something in 

common with the query ball trajectory. To accomplish this, each line segment within 

the query ball trajectory is viewed as a separate sub-query.  



- 175 - 

Each individual line segment from the query is posed as a sub-query and 

matches those indexed line segments which exactly share it’s PI (at level 0 

relaxation). The result of the sub-query is a set of SOPREF/RM pairs. For the 

purposes of the sub-queries, only the unique SOPREFs in each set are kept. After 

each line segment has been sub-queried, there exists a collection of sets containing 

SOPREFs. These sets are merged, and the result is a set of unique SOPREFs.  

As each SOPREF is associated with a set of line segments representing the ball 

trajectory over the SOP, the set of unique SOPREFs which result from the sub-

queries represent all indexed ball trajectories which share at least some part in 

common with the query ball trajectory. However, there is no ranking associated with 

the set of SOPREFs at this stage, they are all equally similar to the query. A simple 

approach to similarity ranking could be to count how many line segments each 

SOPREF has in common with the query, however this will only allow a broad 

ranking of the results as there will be at most ܰ ranking positions available for the 

results (from 1	. . ܰ segments in common with the query). A more complex approach 

would be to compare the entire trajectory of the query with that of the trajectory 

associated with each SOPREF. 

For any given line segment, either in the query or in the indexed line segments, 

there exists information relating to its exact beginning and end coordinates, and its 

duration (in multiples of 0.1s). This information is sufficient to interpolate 

coordinates between the beginning and end points of the line segments at a fidelity 

of 0.1s. Each line segment also has an indication of its order within the trajectory. 

Therefore using interpolation of individual line segments together with the order in 

which they occur in the ball trajectory, the entire trajectory of the ball over a SOP 

can be interpolated (to a fidelity of 0.1s). As semantic information is attached to 

each line segment (abstract team, gross and fine player archetypes), it is also 

possible to associate this information to the coordinates resulting from line segment 

interpolation, and by extension to the entire interpolated trajectory. Thus, the 

collection of line segments in the query, or those associated with any given SOPREF 

can be expanded into an ordered list of coordinates, associated with a list of equal 

length detailing the abstract possession information for that coordinate, as in Figure 

7.44, where (݊ݔ,  the ݊௧௛ interpolated coordinate in the expanded trajectory, Tn = (݊ݕ

= the abstract team possession for the nth coordinate, ܩ௡ = the gross archetype for 

the ݊௧௛ coordinate, ܨ௡ = the fine archetype for the ݊௧௛ coordinate. 



- 176 - 

 

 

Figure 7.44 – Generating a semantic possession list which mirrors the interpolted ball trajectory  

 

With the capability to expand a collection of line segments into an interpolated 

list of coordinates (together with associated possession information), it is now 

possible to consider exactly how to compare trajectories. The proposed similarity 

metric will rely on the Euclidean distance between temporally matching interpolated 

coordinates of each trajectory (modified by the associated semantic information). Its 

form is as follows. Consider the two portions of trajectories; trajectory ܤܣ and 

trajectory ܦܥ shown in Figure 7.45. Each trajectory portion consists of ݊ coordinate 

points (six shown): 

 

ܤܣ = ,଴ݔ)} (଴ݕ … ௡ݔ) ,  ௡)} (7.20)ݕ

 

ܦܥ = ,଴݌)} (଴ݍ … ௡݌) ,  ௡)} (7.21)ݕݍ

 
Each set of coordinate points has a corresponding set of semantic 

associations: 

 

௦௘௠ܤܣ = {( ଴ܶ
஺஻ , ଴஺஻ܩ , (଴஺஻ܨ … ( ௡ܶ

஺஻ , ௡஺஻ܩ ,  {(௡஺஻ܨ

 

(7.22) 

௦௘௠ܦܥ = {( ଴ܶ
஼஽, ଴஼஽ܩ , (଴஼஽ܨ … ( ௡ܶ

஼஽, ,௡஼஽ܩ  {(௡஼஽ܨ

 

(7.23) 



- 177 - 

Where ௡ܶ
்ோ௃is the abstract team, ܩ௡

்ோ௃is the gross player archetype and 

௡ܨ
்ோ௃ is the fine player archetype associated with the ݊௧௛ point in the 

interpolated coordinates of trajectory ܴܶܬ. 

 

 

Figure 7.45 – comparison of two ball trajectories via corresponding trajectory points 

 

The Euclidean distance between the ݅௧௛ coordinate of AB and the 

corresponding ith coordinate of CD is: 

 

௜ܧ = ඥ(ݔ௜ − ௜)ଶ݌ + ௜ݕ) −  ௜)ଶ (7.24)ݍ

 

The mean Euclidean distance over the two trajectory portions is: 

 

തܧ = 	
1
݊෍ܧ௜

௡

௜ୀଵ

 
(7.25) 

 

The associated semantic possession information associated with each 
coordinate have no distance metrics associated with them; they either match or they 
do not. A fixed penalty term for mismatches between the elements of the semantic 
information could be used, but this would have to be carefully weighted so as not 
either dominate or be dominated by the Euclidean distance. A method of variably 
weighting the mismatches could be to apply a multiplier penalty term to the ܧ௜ term 
as follows: 

 



- 178 - 

(1) Initial multiplier penalty ܯ	 = 	1.0 
(2) For the ݅௧௛ components of the associated semantic information 
(3) If  ௜ܶ

஺஻ ≠ ௜ܶ
஼஽  then increase ܯ by ்ܲ 

(4) If ܩ௜஺஻ ≠ ீܲ by ܯ ௜஼஽ then increaseܩ  
(5) If ܨ௜஺஻ ≠  by ிܲ ܯ ௜஼஽ then increaseܨ
௜௠௢ௗܧ (6) = ௜ܧ ∗  ܯ

 

 The values assigned to ்ܲ, ܲீ  and ிܲ should be chosen to reflect how 
important mismatches in the team, the gross archetype and the fine archetype are 
when retrieving results39. The modified mean Euclidean distance, taking into 
account the semantic information is : 

 

௠௢ௗതതതതതതതܧ = 	
1
݊෍ܧ௜௠௢ௗ

௡

௜ୀଵ

 
(7.26) 

 

This measure will be used to compare the interpolated trajectories of the query 
with that of indexed SOPs found during the sub-queries. 

 

So to summarise the query process: 

 

(1) The query by example is broken down into line segments 
(2) Each line segment in the query is used to perform a sub-query, returning all 

indexed SOPs that have a similar line segment in them. 
(3) The results of all sub-queries are consolidated, generating a set of 

SOPREFs that contain at least one similar line segment to the query. 
(4) The trajectory of the query is interpolated into a semantically annotated list 

of coordinates 
(5) For each SOPREF returned in (3), the corresponding set of line segments 

that belong to it are interpolated into a semantically annotated list of 
coordinates. 

                                                
39 For the purposes of the implementation the author chose ்ܲ,=1, ܲீ  =	ଶ

ଷ
 , and ிܲ  

=	ଵ
ଷ
, reflecting the ordinal ranking of mismatching teams is worse than 

mismatching gross player prototypes which is worse than mismatching fine 
player prototypes. 



- 179 - 

(6) The list of annotated coordinates from (4) and (5) are operated on by the 
similarity metric ܧ௠௢ௗതതതതതതത to produce a similarity rating 

(7) Repeat (5)-(6) until all SOPREFs have been dealt with 
(8) Rank the similarity of the set of SOPREFs by their associated ܧ௠௢ௗതതതതതതത 

 

7.14.3  Search relaxation 

Queries initially have no relaxation associated with them and proceed as 

described in the previous section.  However queries may be relaxed gradually, and 

the relaxation scheme proceeds as follows: 

 

(1) Initial relaxation ݎ = 0, each subsequent relaxation level is +1, up to a 

maximum of ܰ − 1, where ܰ is the number of spatial prototypes in the 

codebook. 

(2) At relaxation level 1 and higher, the constraint that both the gross player 

archetype and the fine player archetype need match the gross player 

archetype and fine player archetype of the query are relaxed to a constraint 

that the query can match either the gross player archetype or the fine player 

archetype (or both, it is not exclusive-or). 

(3) At relaxation level ݎ, where ݎ > 0, the constraint that the abstract spatial 

beginning/end points of the indexed line segments must match precisely 

with  the beginning/end points of the query line segment is relaxed to the 

beginning/end points of the indexed line segments must be a member of 

the set of beginning/end points formed by locating the closest ݎ spatial 

prototypes to the original spatial prototype. See Figure 7.46 which shows 

the levels of relaxation against a prototype ‘111’ which represents the 

abstract beginning of a line segment in a notional codebook. Since there 

are ܰ spatial prototypes in the codebook, the maximum relaxation level 

possible is ܰ − 1. 



- 180 - 

 

Figure 7.46 – spatial prototypes relaxation allows matching to prototypes increasingly further 
away from original query prototype 

 

It should be noted that as this indexing scheme decomposes the SOP into 

multiple PIs (to represent individual ball trajectory line segments), each PI in the 

query is relaxed to the same level simultaneously. 

7.15  Implementation details for Semantically augmented 

individual player trajectories 

7.15.1  Implementation of indexing scheme 

Given a SOP, each individual player trajectory can be extracted. For each 

trajectory the player ID can be mapped onto the corresponding gross and fine 

archetypes, the club ID can be mapped onto the corresponding abstract team, and the 

beginning and end points can be mapped onto the close spatial prototypes in the 

codebook. This information forms the PI (see Figure 7.47), where ܤ = spatial 

prototype closest to the beginning position of the trajectory, ܧ = spatial prototype 

closest to the end position of the trajectory, ܩ = gross archetype of the player, ܨ = 

fine archetype of the player, ܣ = abstract team to which the player belongs to. 

 

 
Figure 7.47 – Player trajcectory PI containg the beginning and end spatial prototypes of the player 

trajectory and the team and type of player indexed 

 



- 181 - 

The trajectory is split into ݔ and ݕ components, and each component is 

approximated using Chebyshev approximation (to a required accuracy of 

ே	ܥ 	coefficients40). The exact beginning and end points of the trajectory are 

recorded.  This information forms the RM for the player trajectory (see Figure 7.48), 

where ܺ = Chebyshev coefficients for ݔ dimension of player trajectory, ܻ = 

Chebyshev coefficients for ݕ dimension of player trajectory, ܲ = Exact beginning 

coordinates of player, ܳ = Exact end coordinates of player. The RM is coupled with 

the SOPREF composed of a 3-tuple {Matchid, Halfid, Matchtime}, and both are 

associated  with the PI (see Figure 7.49). 

 

 
Figure 7.48 – Player trajectories RM containing Chebyshev coefficients describing the shape of the 
player trajectory and the exact beginning and end coordinates of the player over the SOP  

 

 

Figure 7.49 – Player trajectories indexing scheme 

 

 

7.15.2  Query matching 

In overview, the query should match indexed SOPs that have at least one 

player exhibiting a similar trajectory. The ranking of results should be contingent on 

both the similarity of individual player trajectory similarities between query and 

indexed SOPs, and on the number of such similar player trajectories. Initially 

queries by example are broken down into ܰ PIs and ܰ RM collections representing 

the ܰ player trajectories present within the query SOP, as described in the previous 

section.  
                                                

40 Where CN can be chosen by the index implementer to balance accuracy and index 
size. 



- 182 - 

The first stage of the query proceeds in a similar fashion to that of ball 

trajectory query. Each individual player trajectory from the query is posed as a sub-

query and matches those indexed player trajectories that exactly share its PI (at level 

0 relaxation). The result of the sub-query is a set of SOPREFs. After each player 

trajectory has been sub-queried, there exists a collection of sets containing 

SOPREFs. These sets are merged, and the result is a set of unique SOPREFs. The 

set of SOPREFs represents those SOPs that have at least one similar player 

trajectory within them. No ranking is associated with the set of SOPREFs at this 

stage; they are all equally similar to the query.  

Consider the two player trajectories belonging to player A and B in Figure 

7.50. They both have definite exact start and end points (As, Ae and Bs, Be 

respectively) available in the RM. A suitable similarity metric for comparing the 

beginning/end points of two trajectories is the mean Euclidean distance function 

,ܣ)ܧ  :തതതതതതതതതത defined as(ܤ

 

௦ܣ	݂݅ = ,ݔ) ௦ܤ	݀݊ܽ	(ݕ = ,݌)   (ݍ

 

,௦ܣ)݀ (௦ܤ = ඥ(ݔ − ଶ(݌ + ݕ) −  ଶ (7.27)(ݍ

 

,ܣ)ܧ തതതതതതതതതത(ܤ =
,௦ܣ)݀ (௦ܤ + ,௘ܣ)݀ (௘ܤ

2  
(7.28) 

 

 



- 183 - 

 

Figure 7.50 – Two player trajectories whose similarity may be determined by a suitable similarity 
metric 

 
The two trajectories both have a characteristic trajectory shape, which is 

represented as two sets of Chebyshev coefficients per trajectory, also available in the 

RM.  Each set of corresponding Chebyshev coefficients can be operated on by the ܦ 

similarity metric defined in [49], which is: 

 

ଵܥ = [ܽ଴, … , ܽ௠]	ܽ݊݀	ܥଶ = [ܾ଴, … , ܾ௠]  

 

,ଵܥ)ܦ (ଶܥ = ඩ
ߨ
2 	෍(ܽ௜ − ௜ܾ)ଶ

௠

௜ୀ଴

 

(7.29) 

 

For two trajectories A and B, the two sets of Chebyshev coefficients for each 

are ܣ௫ , ௫ܤ	݀݊ܽ	௬ܣ ,  :Thus, the mean distance between them is given by	௬.ܤ

 

.ܣ)ܦ തതതതതതതതതത(ܤ =
௫ܣ)ܦ , (௫ܤ + ,௬ܣ)ܦ (௬ܤ

2  
(7.30) 

 

Finally, the players themselves each are assigned an abstract team, and a gross 

and fine archetype which are all available in the PI. There exists no similarity metric 

to smoothly differentiate between player archetypes or abstract teams, so a mismatch 

penalty is applied as follows. If ܣ௚, ,௚ܤ	݀݊ܽ	௙ܣ  are the gross and fine player	௙ܤ



- 184 - 

archetypes for players ܣ and ܤ respectively, and ܣ௧	ܽ݊݀	ܤ௧ are the abstract teams 

for ܣ and ܤ then the mismatch penalty ܣ)ܯ,  :is (ܤ

 

ܯ	ݕݐ݈ܽ݊݁݌	ℎܿݐܽ݉ݏ݅݉	݈ܽ݅ݐ݅݊݅ = 1 (7.31) 

 

௚ܣ	݂ܫ ≠ ܯ	ℎ݁݊ݐ	௚ܤ + ܲீ  (7.32) 

 

௙ܣ	݂ܫ ≠ ܯ	ℎ݁݊ݐ	௙ܤ + ிܲ (7.33) 

 

௧ܣ	݂ܫ ≠ ܯ	ℎ݁݊ݐ	௧ܤ + ்ܲ (7.34) 

 

The constants	ܲீ , ிܲ, and ்ܲ should be chosen to reflect the relative 
seriousness of mismatching in gross player prototypes, fine player prototypes and 
teams respectively41. Combining all three measure into a single scalar value 
 :is defined as (ܤ,ܣ)݉݅ݏ

 

(ܤ.ܣ)݉݅ܵ =
തതതതതതതതതത(ܤ,ܣ)ܧ + തതതതതതതതതത(ܤ,ܣ)ܦ

2 ∗ ,ܣ)ܯ  (7.35) (ܤ

 

It should be noted that if a large number of Chebyshev coefficients are used to 
approximate the trajectory, then the (ܤ,ܣ)ܦതതതതതതതതതത term will dominate in (7.35) (as the 
Euclidean distance measured by ܣ)ܧ,  is limited to 2D space, whereas the 	(ܤ
,ܣ)ܦ  ே is the number ofܥ ே-dimensional space (whereܥ തതതതതതതതതത term operates in a(ܤ
Chebyshev polynomials used). Weighting could be employed if this is undesirable 
behaviour. Consider the comparison of ݉ player trajectories in a query (collectively 
ܳ) with that of ݊ indexed player trajectories associated with a SOP (collectively ܫ) 
as shown in Figure 7.51. In this situation, ݉ and ݊ need not be equal (but both are 
between 1 and 22). The mean similarity of the query trajectories to the indexed 

                                                
41 For the purposes of the implementation, the author chose ܲீ =1, ிܲ = 0.5, and 

்ܲ = 2 to reflect that view that mismatches in teams is worse than mismatches 
in gross player prototypes which is worse than mismatches in fine player 
prototypes.  



- 185 - 

trajectories is given by (7.36). This captures the idea that each query trajectory must 
match at least one indexed trajectory, but the best match for each individual 
trajectory is preferred. ܵଓ݉(ܳ,   തതതതതതതതതതതത is applied between the query and every retried(ܫ
index set of trajectories to produce a ranked results list. 

. 

ܵଓ݉(ܳ, തതതതതതതതതതതത(ܫ = 	
1
݉෍min	(෍ܵ݅݉(ܳ௜ , ((௝ܫ

௡

௝ୀଵ

௠

௜ୀଵ

 
(7.37) 

 

 
Figure 7.51 – comparison of query trajectories against all relevant indexed trajectories allows the 

best match to be selected for each query 

 

7.15.3 Query relaxation 

Queries initially have no relaxation associated with them and proceed as 

described in the previous section.  However queries may be relaxed gradually, and 

the relaxation scheme proceeds as follows: 

 

(1) Initial relaxation ݎ = 0, each subsequent relaxation level is +1, up to a 

maximum of ܰ − 1, where ܰ is the number of spatial prototypes in the 

codebook. 

(2) At relaxation level 1 and higher, the constraint that both the gross player 

archetype and the fine player archetype need match the gross player 

archetype and fine player archetype of the query are relaxed to a constraint 

that the query can match either the gross player archetype or the fine player 

archetype (or both, it is not exclusive-or). 



- 186 - 

(3) At relaxation level ݎ, where ݎ > 0, the constraint that the abstract spatial 

beginning/end points of the indexed player trajectory must match precisely 

with  the beginning/end points of the query player trajectory is relaxed to 

the beginning/end points of the indexed player trajectory must be a 

member of the set of beginning/end points formed by locating the closest ݎ 

spatial prototypes to the original spatial prototype (See Figure 7.46). Since 

there are ܰ spatial prototypes in the codebook, the maximum relaxation 

level possible is	ܰ − 1. 

 

It should be noted that as this indexing scheme decomposes the SOP into 

multiple PIs (to represent each player trajectory), each PI in the query is relaxed to 

the same level simultaneously. 

7.16  Implementation details for Semantically augmented context 

indexing with player cliques 

7.16.1  Implementation of Indexing scheme 

As with the original clique indexing method, the first stage of indexing is to 

use clique discovery on the initial player positions, and the player’s overall direction 

of movement for each SOP considered, producing two sets of cliques per abstract 

team, four sets of cliques in total.  

For each clique it is already known which abstract team it belongs to (ܣ), and 

what type of clique it is (ܶ – either proximity=1 or velocity=2). The number of 

players in the clique is extracted (ܰ), and the centroid of the clique (ܥ) is calculated. 

The nearest spatial prototype in the codebook (ܵ) is found. These four features form 

the PI for the clique (Figure 7.52). 

 

 

Figure 7.52 – Augmented cliques PI containing the number of players in the clique, the spatial 
prototype nearest to its centroid, the type of clique and the abstract team to which it belongs 

 



- 187 - 

The clique shape/extent properties ܦഥ, ஼ܣ	݀݊ܽ	ܴ  are extracted from the clique, 

along with two length n multi-sets containing the gross and fine archetypes 

corresponding to the players in the clique. This collection forms the RM (Figure 

7.53) 

 

 

Figure 7.53 – Augmented cliques RM containg real number attributes of the clique such as area, 
ration of maximum to minmum span and mean player distance, together with types of player which make 

up the clique 

 
The RM is coupled with the SOPREF composed of a 3-tuple {Matchid, Halfid, 

Matchtime}, and both are associated  with the PI (see Figure 7.54).  

 

 

Figure 7.54 – Augmented cliques indexing scheme 

 

7.16.2  Query matching 

A valid augmented clique query should match indexed SOPs which have at 

least one similar clique within them (as defined by the information in the PI). The 

ranking of results should be contingent on both the similarity of cliques between 

query and indexed SOPs, and on the number of such similar cliques. Initially queries 

by example are broken down into ܰ PIs and ܰ RM collections representing the ܰ 

augmented cliques present within the query SOP, as described in the previous 

section.  

The first stage of the query locates all indexed SOPs that contain at least one 

similar augmented cliques to that of the query. Each individual augmented clique 

from the query is posed as a sub-query and matches those indexed augmented 



- 188 - 

cliques which exactly share it’s PI (at level 0 relaxation). The result of the sub-query 

is a set of SOPREFs. The results of all sub-queries are consolidated into a single set 

of SOPREFs. No ranking is associated with the set of SOPREFs at this stage; they 

are all equally similar to the query.  

To assert a ranking onto the results, similarity metric(s) must be applied 

between the query and each result. Consider the comparison of two cliques (ܥ and 

 as in Figure 7.55. The information describing them, which is readily available in ,(ܦ

the metadata/PI, covers the size of each clique and its abstract membership, the type 

of clique42, the abstract team the clique belongs to, the exact centroid of the clique, 

and various statistics covering the shape of the clique43. All of this information will 

be used. 

 

Figure 7.55 – Comparing two cliques uilising the real number clique attributes minimum to 
maximum player distance ratio, clique internal area and mean player distance in the clique 

 

The minimum to maximum player distance ratio (ܥ௥ 	,  ௥) the clique internalܦ

area (ܥ௔	, ,	ௗܥ) ௔) and the mean player distance in the cliqueܦ  ௗ) are all comparedܦ

with the similarity metric ܵ(ܦ,ܥ) which is defined as : 

 

,ܥ)ܵ (ܦ = 1 −
min	(C, D)
max(ܥ, (ܦ 				݂݅ max(ܦ,ܥ) >  1	݁ݏ݈݁					0

(7.38) 

 

The scalar similarity produced by ܵ(ܥ,  is guaranteed to be in the interval (ܦ

[0,1]. The centroid coordinates use the Euclidean distance as the preferred similarity 

metric, with centroids ܥ௖ 	,  :ܦ and ܥ ௖ as centroids ofܦ

                                                
42 Proximity or movement clique 

43 Ratio of minimum to maximum player distance, clique internal area, average 
distance between players 



- 189 - 

 

௖ܥ = ,ݔ)  (7.39) (ݕ

௖ܦ = ,݌)  (7.40) (ݍ

 

௖ܥ)݀ , (௖ܦ = ඥ(ݔ − ଶ(݌ + ݕ) −  ଶ (7.41)(ݍ

 

The remaining attributes of clique size, abstract team and clique type are 

aggregated together to form a mismatch penalty ܯ. If ܥ௧ 	,  ,௧ are the abstract teamsܦ

,	௦ܥ ,	௣௠ܥ ,௦ are the clique sizesܦ ,	௚ܥ ,௣௠ are the clique typesܦ  ௚ are the grossܦ

player archetypes (represented as multi-sets/bags) and ܥ௙	, ௙ܦ  are fine player 

archetypes (again as multi-sets) of ܥ and ܦ respectively then ܥ)ܯ,  :is defined as (ܦ

 

ܯ	ݕݐ݈ܽ݊݁݌	ℎܿݐܽ݉ݏ݅݉	݈ܽ݅ݐ݅݊݅ = 1 (7.42) 

 

௧ܥ	݂ܫ ≠ ௧ܦ ܯ	ℎ݁݊ݐ	 + ்ܲ (7.43) 

 

=+ܯ ௦ܥ| −  ௦| (7.44)ܦ

 

=+ܯ
௚ܦ⋃௚ܥ| | − ௚ܦ⋂௚ܥ| |

௚ܦ⋃௚ܥ| |  
(7.45) 

 

=+ܯ
௙ܥ| ௙ܦ⋃ | − ௙ܥ| ௙ܦ⋂ |

௙ܦ⋃௙ܥ|2 |  
(7.46) 

 

The constants ்ܲ and ௣ܲ௠ should be chosen to reflect the seriousness of mismatches 

in the clique team and clique type respectively. The full similarity metric between 

two cliques ܥ)݉݅ݏ,  :combines all these terms (ܦ

 



- 190 - 

,ܥ)݉݅ݏ (ܦ =
௥ܥ)ܵ , (௥ܦ + ௔ܥ)ܵ , (௔ܦ + ௗܥ)ܵ , (ௗܦ + ௖ܥ)݀ , (௖ܦ

4
∗ ,ܥ)ܯ  (7.47) (ܦ

 

As with the player trajectory case, consider the comparison of ݉ augmented 
cliques in a query (collectively ܳ) with that of ݊ indexed augmented cliques 
associated with a SOP (collectively	ܫ) as shown in Figure 7.56. 

 

 

Figure 7.56 – comparison of query augmented cliques against all relevant indexed augmented 
cliques allows the best match to be selected for each query 

 

The mean similarity of the query augmented cliques to the indexed augmented 
cliques is given by: 

 

ܵଓ݉(ܳ, തതതതതതതതതതതത(ܫ = 	
1
݉෍min	(෍݉݅ݏ(ܳ௜ , ((௝ܫ

௡

௝ୀଵ

௠

௜ୀଵ

 
(7.48) 

 

ܵଓ݉(ܳ,  തതതതതതതതതതതത is applied between the query and every retrieved index set of(ܫ
augmented cliques to produce a ranked results list. 

7.16.3  Query relaxation 

Queries initially have no relaxation associated with them and proceed as 

described in the previous section.  However queries may be relaxed gradually, and 

the relaxation scheme proceeds as follows: 

 



- 191 - 

(1) Initial relaxation ݎ = 0,  each subsequent relaxation level is +1, up to a 

maximum of ܰ − 1, where ܰ is the number of spatial prototypes in the 

codebook. 

(2) At relaxation level ݎ, where ݎ > 0, the constraint that the abstract spatial 

centroid of the indexed player clique must match precisely with  the 

centroid of the query player clique is relaxed to the centroid of the indexed 

player clique must be a member of the set of clique centroids formed by 

locating the closest ݎ spatial prototypes to the original spatial prototype 

(See Figure 7.46). Since there are ܰ spatial prototypes in the codebook, the 

maximum relaxation level possible is ܰ − 1. 

 

It should be noted that as this indexing scheme decomposes the SOP into 

multiple PIs (to represent each clique), each PI in the query is relaxed to the same 

level simultaneously. 

 



- 192 - 

8 Bibliography 

[1]. ProZone Home Page: [Accessed 10th February 2012] 
http://www.prozonesports.com/index.html  

[2]. V. Salvo, A. Collins, B. McNeill and M. Cardinale. Validation of 
ProZone ®: A new video-based performance analysis system, International Journal 
of Performance Analysis in Sport, Volume 6, Number 1, pages 108-119, University 
of Wales 2006. 

[3]. D. Hart, C. Needham and D. Magee. Following your team to new 
extremes. University of Leeds newsletter Issue 508, 2005. [Accessed 10th February 
2012] http://reporter.leeds.ac.uk/508/s8.htm  

[4]. E. F. Codd. A relational model of data for large shared data banks, 
Communications of the ACM, Volume 26, Number 1, pages 64-69, 1983. 

[5]. J. Groff and P. Weinberg. SQL: The Complete Reference, Second 
Edition, McGraw-Hill Osborne Media 2002. 

[6]. R. Bayer and E. McCreight. Organization and maintenance of large 
ordered indexes, Acta Informatica, Volume 1, Number 3, pages 173-189, Springer 
1972. 

[7]. A. Guttman. R-Trees: A dynamic index structure for spatial searching, In 
Proc. International Conference on Management of Data, pages 47-57, ACM 1984. 

[8]. K. Järvelin. Frameworks, Models and Theories in Lab IR, In Proc. ACM 
SIGIR 2005 Workshop on Information Retrieval in Context, pages 10-13, 2005. 

[9]. J. Zobel and A. Moffat. Inverted files for text search engines, ACM 
Computing Surveys, Volume 38, Number 2, pages 6-es, 2006. 

[10]. S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web 
Search Engine. Computer Networks and ISDN Systems, Volume 30, Number 1, 
pages 107-117, Elsevier 1998. 

[11]. L. Page, S. Brin, R. Motwani and T. Winograd. The PageRank 
Citation Ranking: Bringing Order to the Web. Technical Report 422, Stanford 
University InfoLab, 1999. 

 



- 193 - 

[12]. L. Ahn and L. Dabbish. Labeling images with a computer game. In 
Proc. SIGCHI conference on Human factors in computing systems, pages 319-326, 
2004. 

[13]. K. Pastra, H. Saggion and Y. Wilks. Extracting relational facts for 
indexing and retrieval of crime-scene photographs. Applications and Innovations in 
Intelligent Systems, Volume 16, Number 5, pages 121-134, Springer 2002. 

[14]. M. Hepagesle. Independence and commitment: assumptions for rapid 
training and execution of rule-based POS taggers. In Proc. 38th Annual Meeting of 
the Association for Computational Linguistics, pages 278-281, 2000. 

[15]. E.J. Guglielmo and N.C. Rowe. Natural-language retrieval of images 
based on descriptive captions. ACM Transactions on Information Systems, Volume 
14, Number 3, pages 237-267, 1996. 

[16]. S. Haas. A feasibility study of the case hierarchy model for the 
construction and porting of natural language interfaces. Information Processing & 
Management, Volume 26, Number 5, pages 615–628,  Elsevier 1990. 

[17]. T. Rose, D. Elworthy, A. Kotcheff and A. Clare. ANVIL: a system for 
the retrieval of captioned images using NLP techniques. In Proc. CIR2000, 3rd UK 
Conference in Image Retrieval, BCS 2000. 

[18]. A. Gulli and A. Signorini. The indexable web is more than 11.5 billion 
pages. In Proc. WWW '05: Special interest tracks and posters of the 14th 
international conference on World Wide Web, pages 902-903, ACM 2005. 

[19]. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval,  
Addison Wesley 1999. 

[20]. W Mao and W Chu. Free-text medical document retrieval via phrase-
based vector space model. In Proc. AMIA Symposium, pages 489-493, 2002. 

[21]. A. Aizawa. An information-theoretic perspective of tf—idf measures. 
Information Processing and Management, Volume 39, Number 1, pages 45-65, 
Elsevier 2003. 

[22]. C. Kumar, A. Gupta, M. Batool and S. Trehan. Latent semantic 
indexing-based intelligent information retrieval system for digital libraries. Journal 
of Computing and Information Technology, Volume 13, Number 3, pages 191-196, 
University of Zagreb 2006. 

[23]. M. Swain and D. Ballard. Color indexing. International Journal of 
Computer Vision, Volume 7, Number 1, pages 11-32, 1991. 

 



- 194 - 

[24]. S. Sural, G. Qian and S. Pramanik. A histogram with perceptually 
smooth color transition for image retrieval. In Proc. Fourth Int. Conf. on Computer 
Vision, Pattern Recognition and Image Processing, pages 664-667, 2002. 

[25]. J. Huang, S.R. Kumar, M. Mitra, W. Zhu and R. Zabih. Image 
Indexing Using Color Correlograms. In Proc. IEEE Computer Society Conference 
on Computer Vision and Pattern Recognition, pages 762-768 , 1997. 

[26]. Y. Gong, G. Proietti and C. Faloutsos. Image Indexing and Retrieval 
Based on Human Perceptual Color Clustering. In Proc. IEEE Computer Society 
Conference on Computer Vision and Pattern Recognition, pages 578-583, 1998. 

[27]. F. Liu and R. Picard. Periodicity, directionality and randomness: Wold 
features for image modelling and retrieval. IEEE Transactions on Pattern Analysis 
and Machine Intelligence, Volume 18, Number 7, pages 722-733, 1996. 

[28]. J. Han and K. Ma. Rotation-invariant and scale-invariant Gabor features 
for texture image retrieval. Image and Vision Computing, Volume 25, Number 9, 
pages 1474–1481, Elsevier 2007. 

[29]. J. Li and J.Z. Wang. Automatic linguistic indexing of pictures by a 
statistical modeling approach. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Volume 25, Number 9, pages 1075-1088, 2003. 

[30]. G. Csurka, C.R. Dance , L. Fan , J. Willamowski and C. Bray. Visual 
categorization with bags of keypoints. ECCV Workshop on Statistical Learning in 
Computer Vision, pages 1-22, 2004. 

[31]. K. Schmid and C. Mikolajczyk. An Affine Invariant Interest Point 
Detector. In Proc. 7th European Conference on Computer Vision, pages 1-7, 2002. 

[32]. D.G. Lowe. Object recognition from local scale-invariant features.. In 
Proc. International Conference on Computer Vision, pages 1150–1157, 1999. 

[33]. G. Bouchard and B. Triggs. Hierarchical part-based visual object 
categorization. In Proc. IEEE Computer Vision and Pattern Recognition, pages 710-
715, 2005. 

[34]. I. Ahmad and W.I. Grosky. Indexing and retrieval of images by spatial 
constraints. Journal of Visual Communication and Image Representation, Volume 
14, Number 3, pages 291–320, Elsevier 2003. 

[35]. A. Rauber, E. Pampalk and D. Merkl. Content-based music indexing 
and organization. In Proc. 25th annual international ACM SIGIR conference on 
Research and development in information retrieval, pages 409-410, 2002. 

 



- 195 - 

[36]. T. Kohonen. The self-organizing map, Proceedings of the IEEE, Volume 
78, Number 9, pages 1464-1480, 1990. 

[37]. G. Tzanetakis, A. Ermolinskyi and P. Cook. Pitch Histograms in 
Audio and Symbolic Music Information Retrieval. In Proc. Third International 
Conference on Music Information Retrieval: ISMIR, pages 31-38, 2002. 

[38]. R. Typke, R. C. Veltkamp and F. Wiering:. Searching notated 
polyphonic music using transportation distances, In Proc. ACM Multimedia 
Conference, pages 128-135, 2004. 

[39]. L. Prechelt and R. Typke. An interface for melody input. ACM 
Transactions on Computer-Human Interaction, Volume 8, Number 2, pages 133-
149, 2001. 

[40]. S. Porter, M. Mirmehdi and B. Thomas. Detection and classification of 
shot transitions. In Proc. 12th British Machine Vision Conference, pages 73–82, 
2001. 

[41]. J. Meng, Y. Juan and S. Chang. Scene Change Detection in a MPEG 
Compressed Video Sequence. In Proc. IS&T/SPIE ’95 Digital Video Compression: 
Algorithms and Technologies, pages 14-25, 1995. 

[42]. W. Zeng, W. Gao and D. Zhao. Video indexing by motion activity 
maps. In Proc. IEEE International Conference on Image Processing, pages 912-915, 
2002. 

[43]. J. Davis. Recognizing movement using motion histograms. Technial 
Report 487, MIT Media Lab, 1999. 

[44]. D. DeMenthon and D. Doermann. Video Retrieval using Spatio-
Temporal Descriptors. In Proc. of the eleventh ACM international conference on 
Multimedia, pages 508-517, 2003. 

[45]. C. Snoek and M. Worring. Multimedia Event-Based Video Indexing 
using Time Intervals. IEEE Transactions on Multimedia, Volume 7, Number 4, 
pages 638-647, 2005. 

[46]. J.F. Allen, Maintaining knowledge about temporal intervals. 
Communications of the ACM, Volume 26, Number 11, pages 832–843, 1983. 

[47]. W. Chen and S.F. Chang. Motion Trajectory Matching of Video 
Objects. In Proc. SPIE Storage and Retrieval for Media Databases, pages 544-553, 
2000. 

 

 



- 196 - 

[48]. E. Sahouria and A. Zakhor. A Trajectory Based Video Indexing 
System For Street Surveillance. In Proc. IEEE International. Conference on Image 
Processing, pages 24-28, 1999. 

[49]. Y. Cai and R. Ng. Indexing Spatio-Temporal Trajectories with 
Chebyshev Polynomials. In Proc. 2004 ACM SIGMOD international conference on 
Management of data, pages 599-610, 2004. 

[50]. E.W. Weisstein. Chebyshev Polynomial of the First Kind. From 
MathWorld: A Wolfram Web Resource. [Accessed 10th February 2012] 
http://mathworld.wolfram.com/ChebyshevPolynomialoftheFirstKind.html. 

[51]. E.W. Weisstein.. Chebyshev Approximation Formula. From 
MathWorld: A Wolfram Web Resource. [Accessed 10th February 2012] 
http://mathworld.wolfram.com/ChebyshevApagesroximationFormula.html . 

[52]. F.I. Bashir. A.A. Khokhar and D. Schonfeld. Real-Time Motion 
Trajectory-Based Indexing and Retrieval of Video Sequences. IEEE Transactions on 
Multimedia, Volume 9, Number 1, pages 58-65, 2007. 

[53]. I.T. Jolliffe, Principal Component Analysis Second Edition, Springer 
2002. 

[54]. A.Y. Ng, M.I. Jordan and Y. Weiss. On Spectral Clustering: Analysis 
and an algorithm, Advances in Neural Information Processing Systems, pages 849-
856, MIT Press 2001. 

[55]. G. Navarro. A guided tour to approximate string matching, ACM 
Computing Surveys, Volume 33, Number 1, pages 31-88, 2001. 

[56]. X. Ma, F. Bashir, A. Khokhar and D. Schonfeld. Tensor-Based 
Multiple Object Trajectory Indexing and Retrieval, In Proc. IEEE International 
Conference on Multimedia, pages 341-344 , 2006. 

[57]. R.A. Harshman and M.E. Lundy. PARAFAC: Parallel factor analysis, 
Computational Statistics & Data Analysis, Volume 18, Number 1, pages 39-72, 
Elsevier 1994. 

[58]. N. Beckmann, H. Kriegel, R. Schneider and B. Seeger. The R*-Tree: 
An effecient and robust access method for points and rectangles. In Proc. ACM 
Management of Data (SIGMOD), pages 220-231, 1990. 

[59]. T.K. Sellis, N. Roussopoulos and C. Faloutsos. The R+-Tree: A 
dynamic index for multi-dimensional objects. In Proc. IEEE International 
Conference on Very Large Data Bases, pages 507-518, 1987. 

 



- 197 - 

[60]. Y. Tao and D. Papadias. MV3R-Tree: A spatio-temporal access method 
for timestamp and interval queries. In Proc. IEEE International Conference on Very 
Large Data Bases, pages 431-440, 2001. 

[61]. M. Hadjieleftheriou, G. Kollios, V. Tsotras and D. Gunopulos. 
Indexing Spatio Temporal Archives. The VLDB Journal, volume 15, Number 2, 
pages 143-164, Springer 2006. 

[62]. V. Almeida and R. Güting. Indexing the Trajectories of Moving Objects 
in Networks. Geoinformatica, Volume 9, Number 1, pages 33-60, Springer 2005. 

[63]. Defn: Behavior, Answers.com. The American Heritage® Dictionary of 
the English Language, Fourth Edition, Houghton Mifflin Company 2004 [Accessed 
10th February 2012]. http://www.answers.com/topic/behavior. 

[64]. M. Wooldridge and N.R. Jennings. Intelligent Agents: Theory and 
Practice. Knowledge Engineering Review, Volume 10, Number 2, pages 115-152, 
Cambridge University Press 1995. 

[65]. M. Kifer, G. Lausen and G. . Wu. Logical Foundations of Object-
Oriented and Frame-Based Languages. Journal of the ACM, Volume 42, Number 4, 
pages 741-843, 1995. 

[66]. N.R. Jennings. On agent-based software engineering. Artificial 
Intelligence, Volume 117, Number 2, pages 277-296, Elsevier 2000. 

[67]. J. H. Holland and J.H. Miller. Artificial Adaptive Agents in Economic 
Theory. The American Economic Review, Volume 81, Number 2, pages 365-371, 
AEA 1991. 

[68]. W.B. Arthur. On designing economic agents that behave like human 
agents. Journal of Evolutionary Economics, Volume 3, Number 1, pages 353-359, 
Springer 1993. 

[69]. P. Maes. Artificial life meets entertainment: lifelike autonomous agents. 
Communications of the ACM, Volume 38, Number 11, pages 108-114., 1995. 

[70]. R. Moller, D. Lambrinos, R. Pfeifer, T. Labhart and R. Wehner. 
Modeling Ant Navigation with an Autonomous Agent. In Proc. 5th Int. Conf. 
Simulation of Adaptive Behavior, pages 185-194, 1998. 

[71]. R. Schoonderwoerd, O. Holland and J. Bruten. Ant-like agents for 
load balancing in telecommunications networks. In Proc. first international 
conference on Autonomous agents, pages 209-216, 1997. 

 

 



- 198 - 

[72]. E. Bonabeau, F. Henaux, S. Guérin, D. Snyers, P. Kuntz and G. 
Theraulaz. Routing in telecommunications networks with ant-like agents. In Proc. 
second international workshop on Intelligent agents for telecommunication 
applications, pages 60-71, 1999. 

[73]. J. Neumann. Theory of Self-Reproducing Automata, University of 
Illinois Press 1966. 

[74]. M. Gardner. Mathematical Games: The fantastic combinations of John 
Conway's new solitaire game "life", Scientific American, Issue 223, pages 120-123, 
1970. 

[75]. R. Brooks. Intelligence Without Reason. Computers and Thoughts – 
IJCAI ’91, pages 569-595, Morgan Kaufmann 1991. 

[76]. R. Brooks. Intelligence without representation. Artificial Intelligence, 
Volume 47, Number 1, pages 139-159, Elsevier 1991. 

[77]. R. Brooks. New approaches to robotics, Science, Volume 253, Number 
5025, pages 1227-1232, AAAS 1991. 

[78]. C.W. Reynolds. Flocks, herds, and schools: a distributed behavioral 
model. ACM SIGGRAPH Computer Graphics, Volume 21, Number 4, pages 25-34, 
1987. 

[79]. H.Guerra and S. Fallah-Seghrouchni. Learning in BDI Multi-agent 
Systems. In Proc. CLIMA IV – Computational Logic in Multi-Agent Systems, pages 
39-44, 2004. 

[80]. M. Dorigo, E. Bonabeau and G. Theraulaz. Swarm intelligence: from 
natural to artificial systems, Oxford University Press 1999. 

[81]. M. Dorigo, E. Bonabeau and G. Theraulaz. Ant algorithms and 
stigmergy. Future Generation Computer Systems, Volume 16, Number 9, pages 851-
871, Elsevier 2000. 

[82]. C. Gagne, M. Gravel and W. Price. Solving real car sequencing 
problems with ant colony optimization. European Journal of Operational Research, 
Volume 174, Number 3, pages 1427-1448, Elsevier 2006. 

[83]. D. Martens, M. Haesen, R. Vanthienen, J. Snoeck and M. Baesens. 
Classification With Ant Colony Optimization. IEEE Transactions on Evolutionary 
Computation, Volume 11, Number 5, pages 651-665, 2007. 

[84]. A.R. Malisia and H.R. Tizhoosh. Applying Ant Colony Optimization to 
Binary Thresholding. In Proc. IEEE International Conference on Image Processing, 
pages 2409-2412, 2006 



- 199 - 

[85]. S.S. Intille and A.F. Bobick. A framework for recognizing multi-agent 
action from visual evidence. In Proc. AAAI '99 national conference on Artificial 
Intelligence, pages 518-525, 1999. 

[86]. R. Nakanishi, J. Bruce, K. Murakami, T. Naruse and M. Veloso. 
Cooperative 3-Robot Passing and Shooting in the RoboCup Small Size League. 
Lecture Notes In Artificial Intelligence, Volume 4434, pages 418-425, Springer 
2006. 

[87]. M.Lotzsch, J. Bach, H. Burkhard and M. Jungel. Designing Agent 
Behavior with the Extensible Agent Behavior Specification Language XABSL. In 
Proc. RoboCup-2002 Symposium, pages 114-124, 2002. 

[88]. A. Pietro, L. While and L. Barone. Learning In RoboCup Keepaway 
Using Evolutionary Algorithms. In Proc. Genetic and Evolutionary Computation 
Conference, pages 1065-1072, 2002. 

[89]. T. Nakashima, M. Takatani. M. Udo and H. Ishibuchi. An 
evolutionary apagesroach for strategy learning in RoboCup soccer. In Proc. IEEE 
International Conference on Systems, Man and Cybernetics, pages 2023–2028, 
2004. 

[90]. H. Dee. Explaining Visible Behaviour. PhD thesis, University of Leeds 
2005. 

[91]. N. Johnson. Learning Object Behaviour Models. PhD thesis, University 
of Leeds 1998. 

[92]. A. Galata, N. Johnson and D. Hogg. Learning Variable Length Markov 
Models of Behaviour. Computer Vision and Image Understanding, Volume 81, 
Number 3, pages 398–413, Elsevier 2001. 

[93]. D.R. Magee. Machine Vision Techniques for the Evaluation of Animal 
Behaviour, PhD thesis, University of Leeds 2000. 

[94]. D.C. Brogan and Y. Loiti`ere. Data-Driven Generation of Simulated 
Soccer Behaviors. In Proc. AAMAS '02 first international joint conference on 
Autonomous agents and multiagent systems, pages 1391-1392, 2002. 

[95]. H. Kitano, M. Tambe, P. Stone, M. Veloso, S. Coradeschi, E. Osawa, 
H. Matsubara, I. Noda and M. Asada The RoboCup Synthetic Agent Challenge. 
Lecture Notes in Computer Science, Volume 1395, pages 62-73, Springer 1998. 

[96]. G. Kaminka, M. Fidanboylu, A. Chang and M. Veloso. Learning the 
sequential coordinated behavior of teams from observations. In Proc. RoboCup-
2002 Symposium, pages 111-125, 2002. 



- 200 - 

[97]. S. Crone, J.Guajardo and R. Weber. A study on the ability of Support 
Vector Regression and Neural Networks to Forecast Basic Time Series Patterns, 
Artificial Intelligence in Theory and Practice, Volume 217, pages 149-158, Springer 
2006. 

[98]. H.Takahashi, N. Horibe,M. Shimada and T.Ikegami. Analyzing the 
House Fly’s Exploratory Behavior with Autoregression Methods. Journal of the 
Physical Society of Japan, Volume 77, Number 8, pages 084802.1-084802.6, The 
Physical Society of Japan 2008. 

[99]. P. Sutton and R.S. Stone. Scaling reinforcement learning toward 
RoboCup. In Proc. 18th International Conf. on Machine Learning, pages 537-544, 
2001. 

[100]. J. Li A. Lilienthal, T. Martinez-Marin and T. Duckett. Q-RAN: A 
Constructive Reinforcement Learning Apagesroach for Robot Behavior Learning. In 
Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 
2656-2662, 2006. 

[101]. K. Alsabti. An efficient k-means clustering algorithm. In Proc. 
IPPS/SPDP Workshop on High Performance Data Mining, pages 881-892, 1998. 

[102]. T. Kurita. An Efficient Agglomerative Clustering Algorithm for 
Region Growing, In Proc. IAPR Workshop on Machine Vision Applications, pages 
210-213, 1991. 

[103]. P. Fjallstrom. Algorithms for graph partitioning: A survey. Articles in 
Computer and Information Science, Volume 3, Number 10, Linköping University 
Electronic Press 1998. 

[104]. G. Karypis and V. Kumar. A Parallel Algorithm for Multilevel Graph 
Partitioning and Sparse Matrix Ordering. In Proc. 10th Intl. Parallel Processing 
Symposium, pages 314-319, 1996. 

[105]. M. Hung and D. Yang. An efficient Fuzzy C-Means clustering 
algorithm. In Proc. 2001 IEEE International Conference on Data Mining, pages  
225-232 , 2001. 

[106]. S. Wasserman, K. Faust, D. Iacobucci and M. Granovetter. Social 
Network Analysis: Methods and Applications.Cambridge University Press 1994. 

[107]. D. Du and P. Pardalos. Handbook of Combinatorial Optimization, 
Springer 1999. 

 

 



- 201 - 

[108]. M. Hansen and B. Yu. Model Selection and the Principle of Minimum 
Description Length. Journal of the American Statistical Association, Volume 96, 
Number 454, pages 746-774, 2001. 

[109]. M. Erp and L. Schomaker. Variants of the Borda Count Method for 
Combining Ranked Classifier Hypotheses. In Proc. 7th International Workshop on 
Frontiers in Handwriting Recognition, pages 443-452, 2000. 

[110]. X. Olivares, M. Ciaramita and R. Zwol. Boosting image retrieval 
through aggregating search results based on visual annotations. In Proc. 16th ACM 
international conference on Multimedia, pages 189-198, 2008. 

[111]. R. Fagin, R. Kumar and D. Sivakumar. Efficient Similarity Search 
and Classification via Rank Aggregation. In Proc. 2003 ACM SIGMOD 
International Conference on Management of Data, pages 301-312, 2003. 

[112]. C. Dwork, Ravi Kumar, M. Naor and D. Sivakumar. Rank 
aggregation methods for the Web. In Proc. 10th international conference on World 
Wide Web, pages 613-622, 2001. 

[113]. J. Lee. Analysis of multiple evidence combination. In Proc. 20th 
annual international ACM SIGIR conference on Research and development in 
information retrieval, pages 267-276, 1997. 

[114]. C. Vogt and G. Cottrel. Fusion via a Linear Combination of Scores. 
Information Retrieval, Volume 1, Number 3, pages 151-173, Springer 1999. 

[115]. R. Manmatha, T. Rath and  F. Feng. Modeling Score Distributions 
for Combining the Outputs of Search Engines. In Proc. 24th Annual International 
ACM SIGIR Conference on Research and Development in information, pages 267-
275, 2001. 

[116]. L. Smith. A tutorial on Principal Components Analysis. Systems 
Neurobiology Laboratory, Salk Institute for Biological Studies, 2005. 

[117]. D. Tzovaras and M. Strintzis. Use of nonlinear principal component 
analysis and vector quantization for image coding. IEEE Transactions on Image 
Processing,. Volume 7, Number 8, pages 1218–1223, 1998. 

[118]. Various. MySQL 5.0 Reference Manual. [Accessed 10th February 
2012] http://dev.mysql.com/doc/refman/5.0/en/. 

[119]. M. Giacomo. MySQL: Lessons Learned on a Digital Library. IEEE 
Software Volume 22 , Number 3, pages 10–13, 2005. 

 

 



- 202 - 

[120]. S. Kirkpatrick, C.D. Gelatt and M.P.Vecchi. Optimization by 
Simulated Annealing, Science, Volume 220, Number 4598, pages 671-680, AAAS 
1983 

[121]. R. Dunne and N. Campbell. On the pairing of the softmax activation 
and cross-entropy penalty functions and the derivation of the softmax activation 
function. In Proc. 8th Australian conference on neural networks, pages 181-185, 
1997. 

[122]. H. Henrique, E. Lima and D. Seborg. Model structure determination 
in neural network models. Chemical Engineering Science, Volume 55, Number 22, 
Pages 5457-5469, Elsevier 2000. 

[123]. Y. Cun, J. Denker and S. Solla. Optimal brain damage. Advances in 
neural information processing systems, Volume 2, pages 598-605, Morgan 
Kaufmann 1990. 

[124]. B. Hassibi, D. Stork and G. Wol. Optimal brain surgeon and general 
network pruning. Technical Report 9235, RICOH California Research Center, 
Menlo Park, CA, 1992. 

 
 

 
 

 


