White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Practical Magnetic Tomography for Lead Batteries

Harrison, Harry (2017) Practical Magnetic Tomography for Lead Batteries. PhD thesis, University of Sheffield.

[img]
Preview
Text
Revised thesis 20180731 1146 no markup.pdf
Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (18Mb) | Preview

Abstract

A variety of economic factors currently motivate the development of electrochemical energy storage. The effective use of renewable energy requires short term storage, for which electrochemical cells may be used. Electrified transport is also driving development; stored energy limits the range of electric vehicles. In hybrid vehicles, improved dynamic charge acceptance will help to optimise powertrain efficiency. A non-invasive measurement of current distribution within a cell is a useful aid to understanding its operation and optimising its design. Here, the coupling between the cell current and the resulting magnetic field is exploited by taking measurements of magnetic flux density outside the cell and inferring the current distribution within. This technique may be termed magnetic tomography or magnetotomography. In this thesis, a practical system is implemented in order to observe the current distribution within a single lead acid cell. An existing method of constraining and solving the inverse problem is adapted for use in conjunction with 3D finite element software, to make it suitable for modelling the complex geometry of a commercial electrode. Some tolerance of unknown material conductance is built into the solver method. An array of sensors is used to obtain a set of magnetic field measurements simultaneously, allowing temporally- and spatially- resolved current distribution images. Solutions from the magnetic tomography system are verified against data from an array of ferrous cores, submerged in the electrolyte. Measurements are taken while the cell is operated at a current of approximately 0.625 C. The current distribution is found to be very uniform throughout most of the testing, although fatigue of the cell plates does lead to a non- uniform distribution. The magnetic tomography system is tested on both uniform and non- uniform distributions. Mean absolute errors of approximately 5 – 7 % are achieved. The effect of model errors on solution accuracy is investigated.

Item Type: Thesis (PhD)
Keywords: Inverse problems, energy storage, batteries, magnetic sensing, magnetic tomography, lead batteries
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Electronic and Electrical Engineering (Sheffield)
Depositing User: Mr Harry Harrison
Date Deposited: 27 Sep 2018 08:31
Last Modified: 27 Sep 2018 08:31
URI: http://etheses.whiterose.ac.uk/id/eprint/21428

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)