White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Examining Species' Responses To Climate Change Across Multiple Taxonomic Groups

Mason, Suzanna (2017) Examining Species' Responses To Climate Change Across Multiple Taxonomic Groups. PhD thesis, University of York.

Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (5Mb) | Preview


Many species are responding to anthropogenic climate change by shifting their ranges to higher latitudes. Understanding the factors that drive species’ responses will help ecologists and conservationists develop strategies to avoid negative climate change impacts. I investigated shifts at the northern (cool) range margins of 1573 southerly-distributed species from 21 animal groups in Great Britain, over the past four decades. My findings confirm continued polewards range shifts (18 km decade-1 over 1986-2010). I then concentrated on 347 British species from 14 invertebrate taxa, discovering considerable variation in the distances moved within each taxonomic group (but not between groups). I used land cover data and distribution records to determine each species’ habitat specialism, and to quantify habitat availability. Habitat availability explained up to half of the range shift variation. I conclude that interactions between species’ attributes and the environment are important determinants of range shifts. Abundance data are used to study species’ responses to environmental changes but, unlike distribution records, are not available for many taxa. Data from 33 British butterflies revealed a strong correlation between mean year-to-year changes in total number of distribution records and mean year-to-year change in abundance, suggesting that distribution data can be used to identify species’ population variability, and ecologists can investigate the influence of climate change on species’ populations without abundance data. I conclude that rates of range shifting are highly variable among species, suggesting that understanding species-specific range shifts is necessary to assess species’ responses to climate change. The availability of habitat at the range margin strongly influence rates of range shifting which suggests the need for habitat management aimed at facilitating species’ dispersal and population establishment. Citizen science data have potential to assist ecologists in examining species’ responses to climate change and in identifying, predicting and mitigating climate change impacts in the future.

Item Type: Thesis (PhD)
Academic Units: The University of York > Biology (York)
Depositing User: Miss Suzanna Mason
Date Deposited: 04 May 2018 16:26
Last Modified: 18 Apr 2019 00:18
URI: http://etheses.whiterose.ac.uk/id/eprint/19677

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)