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Abstract 
Many species are responding to anthropogenic climate change by shifting their ranges to 

higher latitudes. Understanding the factors that drive species’ responses will help ecologists 

and conservationists develop strategies to avoid negative climate change impacts.  

I investigated shifts at the northern (cool) range margins of 1573 southerly-distributed 

species from 21 animal groups in Great Britain, over the past four decades. My findings 

confirm continued polewards range shifts (18 km decade-1 over 1986-2010). I then 

concentrated on 347 British species from 14 invertebrate taxa, discovering considerable 

variation in the distances moved within each taxonomic group (but not between groups). I 

used land cover data and distribution records to determine each species’ habitat 

specialism, and to quantify habitat availability. Habitat availability explained up to half of 

the range shift variation. I conclude that interactions between species’ attributes and the 

environment are important determinants of range shifts.  

Abundance data are used to study species’ responses to environmental changes but, unlike 

distribution records, are not available for many taxa. Data from 33 British butterflies 

revealed a strong correlation between mean year-to-year changes in total number of 

distribution records and mean year-to-year change in abundance, suggesting that 

distribution data can be used to identify species’ population variability, and ecologists can 

investigate the influence of climate change on species’ populations without abundance 

data. 

I conclude that rates of range shifting are highly variable among species, suggesting that 

understanding species-specific range shifts is necessary to assess species’ responses to 

climate change. The availability of habitat at the range margin strongly influence rates of 

range shifting which suggests the need for habitat management aimed at facilitating 

species’ dispersal and population establishment. Citizen science data have potential to 

assist ecologists in examining species’ responses to climate change and in identifying, 

predicting and mitigating climate change impacts in the future. 
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Chapter 1 

General Introduction 
In this thesis, I examine species responses to climate change. Redistribution of species 

under climate change has been observed globally, and has consequences for maintaining 

biodiversity and ecosystems. Climate change also has positive and negative impacts upon 

species population dynamics, which need to be examined to assess species’ vulnerability. In 

this first chapter, I introduce the key topics of my thesis. First, I provide the context for my 

thesis, anthropogenic climate change (section 1.1). I discuss species associations with the 

climate (climatic niches), and how these associations can vary over space and time (section 

1.2). I briefly discuss different evolutionary and ecological responses to climate change 

(section 1.3) and focus on range shifts, a response of interest (section 1.4). I consider the 

population changes that drive this response, before examining the impact of habitat 

availability upon species’ rates of range shift (section 1.5). I present the biological records 

data used to measure range shifts and to create proxies for abundance in this thesis 

(section 1.6). Finally, I set out the research questions I address in this thesis and I provide an 

overview of each subsequent chapter (section 1.7). 

1.1 Anthropogenic climate change  
The global climate has always been changing, as evidenced by records of oxygen isotopes, 

pollen, and fossils (Shackleton, 1987; Jackson et al., 2000; Davis & Shaw, 2001). Since the 

industrial revolution, there has been an increase in the rate of climatic warming (Karl & 

Trenberth, 2003), termed ‘anthropogenic climate change’, or climate change driven by 

human activity. This activity has been extensive, and the term ‘Anthropocene’ is used to 

describe the current epoch which has a range of proposed start dates, ranging from the 

1800’s (Steffen et al., 2011) to the mid-20th Century (Waters et al., 2016). Anthropogenic 

climate change is driven by greenhouse gases (GHGs), defined by the IPCC as “those 

gaseous constituents of the atmosphere, both natural and anthropogenic, that absorb and 

emit radiation at specific wavelengths within the spectrum of thermal infrared radiation 

emitted by the Earth's surface, the atmosphere itself, and by clouds” (IPCC, 2014). By 

absorbing radiation, GHSs act as an insulator, trapping heat and warming the earth. GHGs 

include water vapour, CO2, CH4, O3 and N2O. In 2011, CO2 concentrations in the atmosphere 

were 40% higher than they were before the industrial revolution and CO2, CH4, and N2O 
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concentrations were noted to “exceed the highest concentrations recorded in ice cores 

during the past 800,000 years” (IPCC, 2013). Human activities are contributing to GHG 

emissions through energy production, other industrial activities and land use change 

(Turner et al., 1994; Ramankutty & Foley, 1999; Christidis et al., 2013). There is a consensus 

in the literature that the global-scale warming trend since the mid 20th century has mainly 

been caused by anthropogenic emissions (Oreskes, 2005; Jenkins et al., 2008; IPCC, 2013). 

The rapid proliferation of technology and exploitation of the Earth’s resources (e.g. fossil 

fuel energy) have led to increased GHG emissions. In future, human activities are likely to 

intensify as our rising population (now estimated globally at 7,550 million people: see 

United Nations report, 2017) demands an increasing supply of resources. As concentrations 

of atmospheric GHGs continue to rise, climatic conditions will change affecting the Earth’s 

ecosystems and the species that live there.  

Atmospheric and oceanic temperature increases are a consequence of GHGs warming the 

planet by trapping radiation (Karl & Trenberth, 2003). At a worldwide scale, a globally 

averaged warming of 0.85°C has been observed from 1880 to 2012 for land and ocean 

surface temperatures combined (IPCC, 2013). Increases in the frequency of extreme events 

are predicted to occur under climate change (Easterling, 2000; Cai et al., 2014). Extreme 

record-breaking temperatures are increasingly observed (Lhotka et al., 2016), with 2017 

being the second hottest year on record for the US (NOAA National Centers for 

Environmental Information, 2017). Warmer temperatures result in higher rates of 

evaporation from the Earth’s oceans, leading to greater incidence of heavy rainfall and 

flooding (Lenderink & van Meijgaard, 2008). However, in drier areas where there are fewer 

water bodies, increased temperatures may increase the risk of drought (IPCC, 2013). These 

extreme events are predicted to have detrimental impacts for ecosystems, causing 

population collapse in sensitive species (Oliver et al., 2015) and reductions in habitat quality 

and availability (Ummenhofer & Meehl, 2017).  

In this thesis, I study the responses of species in Britain to climate change. In the UK, the 

climate has been monitored for hundreds of years by volunteers and organisations such as 

the UK Met Office. Instrumental recording of monthly temperatures began with Central 

England Temperature (CET) data in 1600s (Parker et al., 1992), and the longest 

continuously-active weather station has records since 1767 (Oxford University News, 2015). 

An analysis of UK climate changes show that all regions have experienced a trend of 

increased winter rainfall, the Central England Temperature (CET) has increased 1°C since 
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the 1970s, and severe windstorms have become more frequent (Jenkins et al., 2008). The 

UK Climate Projections science report (Murphy et al., 2009) predicts that by 2080 the UK 

will experience increased daily temperatures by 5.4°C in summer and 2.8°C in winter 

(median emissions scenario, 50% probability). The projected impact of climate change on 

precipitation is less clear, but includes increased winter rainfall by up to 33% in the west of 

the UK, decreased summer rainfall by up to 40% in southern England, and an increased risk 

of flash-flooding (Kendon et al., 2014). The potential consequences of these changes for 

biodiversity are a core area of ecological research, and in this thesis, I explore species’ 

responses to climate change, in order to understand how and why species react to changes 

in their environment. These analyses will not only aid understanding of species’ recent 

responses to climate, but also help inform conservation efforts to protect species in future. 

The results have implications beyond the UK, for example, informing on how different 

species types are likely to respond to climatic change in heavily human modified 

landscapes, as found in many countries globally. 

1.2 Species’ associations with climate 
In order to understand the impacts of anthropogenic climate change on species and 

ecosystems, it is important to understand the relationships between species and climate. 

Fundamental niches constitute the multi-dimensional array of conditions (including climate) 

within which a species can exist (Hutchinson, 1957; Holt, 2009). However, species may be 

excluded from parts of their fundamental niches, due to interspecific interactions, such as 

predation, competition and parasitism. This new subset of their fundamental niche is called 

the ‘realised’ niche (Hutchinson, 1957). The range of climatic conditions where species are 

able to survive (measured within the realised niche) can be referred to as the ‘climatic 

niche’ (Bellard et al., 2012). Extinctions can occur where climate becomes unsuitable, but 

species may colonise new areas that become habitable under climate change. These 

changes in species’ distributions or ‘range shifts’ in response to climate change are a 

primary focus for my thesis, and I discuss them further below (section 1.4).  

A suitable climate is a vital aspect of a species’ niche, and species distributions and 

population sizes are commonly determined by climatic conditions (Stephens et al., 2016). 

There are defined climatic regions across the world, and biodiversity is distributed non-

randomly, peaking in moist, tropical regions. This pattern can be explained by the species-

energy relationship (Gaston, 2000), which implies that more species will be able to persist 

where more energy (heat) and water is available (measured as temperature and/or 
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evapotranspiration). This relationship is theorised to occur because higher energy 

availability will boost primary productivity, which in turn supports more primary 

consumers, with cascading impacts through the entire ecosystem. Alternatively, extreme 

dry or cold environments present limits to productivity, and fewer species can persist in 

such conditions (Araújo et al., 2013). There are many interacting processes in biodiversity-

rich regions, and understanding the extent to which different factors create and maintain 

diversity is complex (Brown, 2014).  

Weather conditions influence populations by directly affecting fecundity and mortality 

rates, and by indirectly affecting interspecific relationships (i.e. abundance of predators or 

prey) and resources (e.g. host plant quantity and quality for herbivores). Temperature and 

rainfall are commonly examined in studies of population dynamics, because these variables 

are also metrics of climate change (WallisDeVries et al., 2011). The impacts of these 

variables on species’ biogeography have been studied for butterflies, a data-rich taxonomic 

group. Temperature is linked to fecundity in several butterfly species, because females rely 

on warm temperatures to seek out appropriate host plants (Kingsolver, 1989). Rainfall is 

beneficial for host plant growth, and some butterflies prefer moist conditions, although 

rainfall reduces dispersal (individuals’ movement through the landscape) and may prevent 

foraging (Pollard, 1988). Roy et al. (2001) found that rainfall and temperature interacted to 

influence populations: the majority of butterfly species generally had positive associations 

with warmer summer temperatures, but for some species, droughts (caused by low rainfall) 

resulted in negative associations between abundance and warm summers in previous 

years. Given the heterogeneous impacts of weather conditions upon species populations, 

climate change is likely to have positive and negative impacts on populations. If 

temperatures rise, this may increase productivity, which will support larger populations for 

some species. Extreme climatic events can cause species’ populations to severely decline 

(Oliver et al., 2013) or increase in variability (Vázquez et al., 2017). Increased variability in 

species abundances can increase risk of local extinctions (Wiens, 2016), and cause 

disappearances of species from larger areas (Parmesan, 2006; Stanton et al., 2015). To 

summarise, species have strong associations with different climatic processes that directly 

and indirectly influence their vitality, fecundity and mortality. Until such details are known, 

the complexity of these interacting effects of weather on populations make it difficult to 

predict the longer-term impacts of climate change on species (Knape & de Valpine, 2011). 

However, some short-term impacts such as the effects of sudden and extreme climatic 

events have been observed and studied.  
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Climate change, in addition to impacting the persistence of species populations, may also 

affect species’ climate associations. Under climate change, these associations may remain 

constant (niche conservatism), resulting in species shifting their ranges, or be altered (niche 

shifts) if species adapt in situ to changing climates (Holt, 2009). Under the assumption of 

conservatism, niches can be inferred from occupancy-environment relationships, whereby 

species persistence is determined by the suitability of its environment (Pearman et al., 

2008). In addition, conservatism rests on the assumption that species are in equilibrium 

with their environment, and will shift their ranges to track their climatic niche (La Sorte & 

Jetz, 2012). By contrast, niche shifts have been observed when species invade new areas 

and encounter new environmental conditions (Tingley et al., 2014). While a species’ 

realised niche can be used to predict whether that species might invade a new area, the 

niche can be inadequate for predicting future distributions (Broennimann et al., 2007). 

Whether niches are conserved or altered over time is important for understanding whether 

the species will successfully shift its range and establish in new areas or not. For example, 

Yackulic et al. (2015) concluded that temporal variation in climatic conditions and 

colonisation and extinction events can result in species’ occupancy-environment 

relationships changing over time. Most researchers consider that static occupancy-

environment relationships, and the correlative models that utilise them, are over-simplistic 

for predicting species responses to climate change (Schurr et al., 2012; Yackulic et al., 

2015). Species may not always be at equilibrium with their environment (such as at the 

edges of the range where exposure to changes in environmental conditions can make 

populations rapidly increase or decrease), and there may be delays or lags in response to 

climate change, but creating models that are reflective of the true occupancy-environment 

relationship of species is extremely challenging. In conclusion, species climate associations 

are not necessarily static; some species may contract or expand their realised and even 

fundamental niches over time, and thus adjust to climate change in different ways.  

1.3 Species’ responses to climate change 
Across continents, a wide range of species’ responses to climate change have been 

detected (Parmesan, 2006; Sutherland et al., 2010). These are genetic, evolutionary 

responses (e.g. microevolution, (Parmesan, 2006; Bellard et al., 2012; Vedder et al., 2013), 

and ecological responses. Ecological responses include phenotypic plasticity, which is the 

ability of a genotype to express different phenotypes under different conditions, 

phenological changes, changes in population dynamics and range shifts (moving to new 

locations as species track suitable conditions), and while framed as species reactions to 
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changes in the environment, these responses can have evolutionary bases (see below). In 

this section, I discuss the relationship between evolutionary and ecological responses, 

examples of genetic and phenotypical responses, and how population dynamics (e.g. 

changes in size) are used to monitor species’ sensitivity to climate, before focussing on 

range shifts in more depth in the next section (1.4). 

Understanding the mechanisms of species responses to climate change can be immensely 

difficult, as it is often unclear whether responses have a genetic underpinning, or are a 

result of phenotypic adaptations. Most studies of climate change responses do not test for 

genetic changes in species and populations (Gienapp et al., 2008). Thus, evidence of 

evolutionary responses to climate change tends to be limited and many responses are 

inconclusively theorised to be evolutionary. Some phenotypic responses such as plasticity 

could be  evolutionary responses to a changing environment (Vázquez et al., 2017); 

alternatively, adaptations which are thought to be genetic may actually be driven by 

ecological processes (Gienapp et al., 2008). Species may demonstrate both genetic and 

phenotypical adaptations under climate change. While these adaptations may enable 

species to respond to climate change, many studies do not explicitly identify climate as the 

selective driving force of the adaption (Gienapp et al., 2008). With these issues in mind, I 

will now discuss case studies of evolutionary and ecological responses to climate change. 

Evolutionary responses to climate change can facilitate species’ successful colonisation of 

newly-suitable locations, or enable persistence of altered climate conditions in situ (Chevin 

& Hoffmann, 2016). For example, some British cricket species (Concephalus discolor and 

Metrioptera roseii) have short- and long-winged forms, and the longer-winged, more 

dispersive individuals have been observed more frequently in newly established 

populations (Thomas et al., 2001; Simmons & Thomas, 2004). Temperature influences the 

form that individuals will mature into (as demonstrated by Sänger & Helfert, 1975), and 

climate change acts as a driving force for range expansion (Hochkirch & Damerau, 2009; 

also see below). Therefore, it is likely that climate has acted as a selective pressure to 

increase the proportion of the population with longer wings, because long distance 

dispersers are more likely to establish new populations in regions that have recently 

become climatically suitable for them. Once established, a costly dispersal strategy is 

unnecessary for individuals, and the incidence of long-winged forms declines over time; this 

demonstrates how evolutionary processes can cause short-lived changes in species’ 

behaviour in response to climate change (Simmons & Thomas, 2004).  
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Another example of an evolutionary response to climate change is the changes observed in 

migration patterns of Sylvia atricapilla, the Eurasian blackcap. As temperatures increase, 

winters become warmer, changing the distribution of suitable areas where migrating birds 

can overwinter. Over the last 50 years, some German blackcap populations have evolved 

new migration patterns (Berthold et al., 1992); while British populations migrate 

southwards, some German birds migrate westwards to Britain, where there are milder 

winters and an abundance of food resources in domestic gardens. Because of the closeness 

of this location to the species native range, birds overwintering in Britain can return to 

Germany sooner, and breed 2 weeks before individuals than overwinter in Africa and 

southern Europe. Because birds that return sooner breed with other birds do the same, 

there is genetic isolation between populations with different migration strategies which has 

enabled this rapid evolutionary change (Pulido, 2007). While there is much potential for 

evolutionary responses to climate change, many observed adaptations appear to be 

variations on normal behaviour and body size, and uniquely different phenotypes are not 

often observed. A lack of existing genetic variation, gene flow or new mutations may limit 

adaptations to climate change (Thomas, 2005). 

The evidence base for adaptive responses to climate change is mostly comprised of 

phenotypic observations, which may be underpinned by genetic changes and/or by 

plasticity. Phenotypic plasticity is the phenomenon of changes in species’ behaviour, 

thermal tolerances, physiology or other aspect of their phenotype. Climate change effects 

mediated through physiology can have positive or negative effects on individual fitness. For 

example, with regards to butterflies, warmer temperatures allow females more time to 

search for hostplants and to lay their eggs. Davies et al. (2006) studied the thermally-

restricted silver spotted skipper butterfly (Hesperia comma), and found that warming 

climates had improved habitat availability, allowing the species to disperse and utilise a 

variety of hostplants beyond its traditional ones. As a result, egg-laying rates increased, 

which in turn may boost numbers of individuals. However, climate change can also lead to 

lowered fitness through heat stress (McCarty, 2001), or reduced foraging time for insects 

due to unsuitable conditions (Andrew et al., 2013).  
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Phenotypic plasticity can help species survive in extreme and variable climates, and 

therefore is of interest to ecologists and conservationists (Chevin & Hoffmann, 2016). An 

example of phenotypic plasticity is phenological change. Alterations in phenology (the 

timings of seasonal events in species’ lifecycles) are in-situ climate change responses, which 

are often prompted by temperature changes (Foden et al., 2013; Dickinson et al., 2014) and 

influenced by species’ life histories (Forrest, 2016). As different species have different 

responses to climate change, changes in phenology can lead to either trophic matches, 

improving or creating interspecific interactions, or tropic mismatch, where ecological 

interactions between species are disrupted (Thackeray et al., 2010; Schweiger et al., 2012). 

Changes in phenology may allow species to track climate change and avoid mismatches. 

Without adaptations like this, populations may decline. One of the best examples of 

phenological responses to climate change is the interaction between great tits, Parus major 

and larvae of the winter moth, Operophtera brumata (Visser et al., 2006). Great tits lay 

their eggs so that the hatching of their chicks coincides with the peak abundance of larvae 

(Noordwijk et al., 1995), which in turn hatch during the bud burst of oak trees, to feed on 

new leaves. Larval growth and oak bud burst depends on temperature, and changing 

climates might have resulted in a mismatch between when larvae are abundant, and when 

the great tit eggs are laid. However, in Wytham Woods, great tits demonstrated plasticity, 

rather than microevolution, changing their nesting behaviour to track the emergence of the 

larvae (Charmantier et al., 2008). Other phenological responses include changes in 

voltinism, the number of generations a species produces. Climate change has improved the 

prospects of Lepidoptera species in Europe, increasing the frequency of second and third 

broods in many species (Altermatt, 2010). Multiple generations per year may speed up 

evolutionary responses to climate change, and contribute to population growth.  

Here, I briefly discuss climate effects on population size. Because climate can influence 

species fecundity and mortality, population metrics are often used to determine the risks of 

climate change to species. This responsiveness of populations to climate change (often 

termed vulnerability in the literature) to climate change is determined by two factors: 

sensitivity to climate and exposure (i.e. how much the climate has changed for species, see 

Williams et al., 2008 and Huey et al., 2012). Climate sensitivity is a metric that measures 

how populations respond to climate change, characterised as a species’ ability to persist in 

changed environments or dependence on unaltered climate conditions (Dawson et al., 

2011; Foden et al., 2013; Dickinson et al., 2014). While much of the literature focuses on 

negative impacts of climate change, warm-associated species in Britain (which are the focus 
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of my thesis) are set to benefit from climate change (Burns et al., 2016). Populations may 

increase because of positive climate effects on fecundity and brood size, as stated above. 

Climate sensitivity is often assessed as the magnitude of changes in population size in 

response to climatic variables, and exposure reflects the degree of change of climate 

variables that the species is sensitive to (Foden et al., 2013). The combined effects of 

sensitivity to different climatic variables and exposure to those climatic variables will 

determine how species respond to climatic change. The responsiveness of species 

populations to climate change must be measured in a clear and rigorous way (Wade et al., 

2017) so that ecologists can predict future outcomes for species and develop appropriate 

conservation management strategies (McMahon et al., 2011). In this thesis, I explore a 

method to use distribution data to measure population variability where abundance data 

are lacking, potentially providing a key indicator of species responses to climate change 

(see section 1.6.2 below).  

1.4 Range shifting in response to climate change 
Naturalists and ecologists have observed the changing spatial distributions of species 

(Kaisila, 1962; Fuller et al., 1995; Brown et al., 1996). Range shifts are a well-studied 

response to climate change, and in this section, I discuss different patterns of range change 

and how they are measured, and the population processes that lead to range shifts. I finish 

this section by discussing the knowledge gaps that my thesis addresses.  

Species responses to climate change are observed through changes in the size, shape or 

extent of species’ ranges (Thuiller et al., 2005), and changes in position of the range by 

latitude (Parmesan & Yohe, 2003; Hickling et al., 2006; Parmesan, 2006; Walther, 2010; 

Poloczanska et al., 2013). Changes in the longitude (Gillings et al., 2015; Lenoir & Svenning, 

2015; Tayleur et al., 2015) and elevation of ranges are also observed (Sekercioglu et al., 

2008; Chen et al., 2009; Menéndez et al., 2014). Shifts have been measured for many 

different species in different biomes, at different scales, both micro- and global. Latitudinal 

changes in a species’ ranges are most often measured at the poleward (leading-edge) range 

margin, though they can also be measured by the shift of the centre point (centroid) of the 

whole distribution (Huntley et al., 2008), or by measuring ranges shifts in other directions, 

e.g. north-westwards (Gillings et al., 2015). In this thesis, I use measure latitudinal changes 

in the northern range margin of species, which is normally the leading-edge of the range in 

Britain for species which favour warmer climates.  
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1.4.1 Population and range shifts 

Range shift is a distributional change underpinned by population processes, which are 

commonly driven by climate change. Distribution and abundance are both influenced by 

climate because the two are related (Brown, 1984), as reflected in the abundance-

occupancy relationship (Gaston, 1996; Hartley, 1998; Roney et al., 2015). This relationship 

is generally positive, but negative relationships can occur in situations where large 

populations of a species are highly aggregated (Webb et al., 2012). Species ranges exist 

across geographical and climatic gradients, but none of these factors alone necessarily 

explains the spread of populations within ranges (Pironon et al., 2015). Abundance within 

ranges is also influenced by inter- and intra-specific interactions, by species’ ability to adapt 

to environmental change, and by human activity (Sagarin et al., 2006).  

As the climate warms, southern warm-adapted species in Britain experience range 

expansion. Species expand their distributions by colonisation, which involves individuals 

moving through landscapes (dispersal), and building populations in unoccupied habitats 

(establishment) at the leading-edge, (Hughes, 2000). At the leading-edge, abundance may 

limit colonisation of new areas (Mair et al., 2014), where smaller populations produce few 

dispersing individuals. Some colonisations are undertaken by a few individuals over great 

distances, which can lead to founder effects, where the new population has low genetic 

diversity (Hill et al., 2011). Reduced genetic variability, coupled with unfamiliar conditions, 

can threaten the success of the new populations by making species vulnerable to disease or 

extreme climatic conditions. The majority of population data on range shifts come from the 

leading-edge margins, and studies of periphery populations at the trailing-edge are 

relatively rare (Hampe & Petit, 2005). However, the population dynamics at this margin are 

important: this margin often contains older populations, with many genetic lineages 

(Hampe & Petit, 2005). These populations are sensitive to climate change, and retractions 

have been detected at the trailing edge margins (Franco et al., 2006). Without local 

adaptation or population stability to enable persistence at the trailing edge, these 

populations may go extinct, causing the range to shift towards the leading-edge. The rate of 

population processes at the margins are not necessarily equal, and some species’ leading-

edges have been shown to expand faster than their trailing-edges contract (Chen et al., 

2011a).  
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1.4.2 Variation in range shifts amongst and within taxa 

Species differ in their niches, thermal tolerances, and responses to climate change, and 

thus variation is expected in range shifts both within and between taxonomic groups 

(Parmesan & Yohe, 2003; Angert et al., 2011). For example, tree and shrub species in 

Sweden have tracked climate change at different rates (Kullman, 2002); different species 

across a range of taxa show different latitudinal and elevational shifts over time (Chen et 

al., 2011b); and British butterflies show heterogeneous distribution and abundance 

responses to climate change (Mair et al., 2012).  

Few studies examine variation in rates of range shifts across multiple taxonomic groups 

(Hickling et al., 2006). It is important to study variation in range shifts across a wide range 

of groups because the range shifts of well-studied species and taxa may not be 

representative of shifts experienced by the full range of biodiversity. There may be 

differences (flight ability, body size, reproductive strategies) between groups, which could 

result in variable climate change responses. Within-group variation must also be assessed 

because apparently similar species may still exhibit a variety of climate associations and life 

histories. If phylogenetically similar species respond to climate change in similar ways, then 

(for example) one butterfly’s range shift would be similar to another’s. Where this is not the 

case, specific range shift measurements must be calculated for each species of interest.  

While it is generally accepted that there is intra- and inter-taxon variation in range shifts, 

these types of variation are rarely assessed together. Detecting and understanding 

variation in range shifts across multiple taxonomic groups will help ecologists identify what 

types of species are likely to have limited colonisation abilities. By exploring which factors 

influence rates of range shift, targeted conservation strategies can be developed to help 

protect vulnerable species under climate change, and facilitate increases in other species. 

This thesis addresses the lack of multi-taxon analyses of range shifts by exploiting the rich 

data available for British taxa, collated by the UK Biological Records Centre. 

 

 

 

 



12 

1.5 Habitat factors in range shifts 
In addition to specific climatic conditions, species are often associated with specific types of 

habitat. To respond to climate change, species require suitable habitats in order to persist, 

as ‘stepping stones’ so that they can move through landscapes, and for habitat to be 

available to colonise and establish populations in new regions. The presence of semi-

natural (Papanikolaou et al., 2017), heterogeneous (Oliver et al., 2010), or intact (Eigenbrod 

et al., 2015) habitat can buffer species against negative effects of climate change by 

promoting population stability and providing refugia which faciliate range shifts. However, 

suitable habitat is not always available, as the world’s biotopes are being converted, 

polluted, and fragmented by agricultural and industrial human activities (Vitousek et al., 

1997; Foley et al., 2005). In this section, I discuss how climate and habitat factors interact to 

impact species populations and distributions (1.5.1), and then consider habitat availability 

within fragmented landscapes (1.5.2). I investigate the role of habitat availability in multi-

taxon range shifts in Chapter 3. 

1.5.1 Interactions between climate and habitat  

Habitat is an important factor to consider when studying range shifts, because species 

require suitable habitats to establish new populations and track climate change. Attributing 

ecological changes (range expansions or contractions) to climate change, habitat 

availability, or both of these drivers is a challenge, as these drivers interact and other 

factors are also involved: life history traits, intraspecific competition and diseases (Oliver & 

Morecroft, 2014). The relationship between land use and climate change has different 

forms: additive, where the impacts of each driver can simply be summed, or interactive 

(Oliver et al., 2016; Radinger et al., 2016). Interactions between habitat and climate may be 

synergistic or antagonistic, where one factor amplifies or buffers (reduces) the effects of 

the other. For example, Bradbury et al.  (2011) found that establishment of new 

populations of the Dartford Warbler in the UK was influenced by warmer climates 

improving the suitability of higher altitude, unoccupied and available habitats. This 

demonstrates a synergistic interaction between the amelioration of cold winters and 

habitat availability at higher altitudes. Because of the variety of impacts habitat change can 

have, it is important to control for habitat when studying climate change impacts (Clavero 

et al., 2011).  
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Key examples of climate and habitat interactions include the altered habitat associations of 

butterflies, e.g. the silver spotted skipper, now increasingly utilises a wider variety of micro-

habitats and northerly-facing habitat patches (Davies et al., 2006). Pateman et al. (2012) 

examined the habitat associations of two British butterfly species, the brown argus Aricia 

agestis and the speckled wood Pararge aegeria. The brown argus butterfly is associated 

with two hostplants, rockrose and dove’s-foot cranesbill. The rockrose is the favoured 

hostplant, supporting large, stable populations. In the 1980’s, only 20% of this species 

population was found in cranesbill-only areas. However, warmer summers improved 

suitability of cranesbill habitat, promoting population growth. The cranesbill is much more 

abundant than the rockrose in Southern England, allowing the large numbers of individuals 

to expand over this area, and now over 40% of populations are found in cranesbill-only 

areas (Pateman et al., 2012). The Aricia agestis case study is an example of niche 

constraints (climate) being relaxed, allowing the exploitation or less favoured hostplants. 

Pararge aegeria has also been shown to vary its broad habitat use under climate change. 

Giving this butterfly its name, the speckled wood butterfly is associated with deciduous and 

coniferous woodland. However, as winters and summers have warmed, and summer 

rainfall has increased, this species has been able to create and sustain new populations in 

open unsheltered grassland where chill and desiccation would have previously had negative 

impacts upon populations. Therefore, the degree to which species are specialised on 

different habitats may vary between populations and the climatic conditions those 

individuals experience (Suggitt et al., 2012). While climate can impact species’ habitat 

associations in this way, habitat structure can also impact the climate that species 

experience. For example, changes in habitat structure (e.g. vegetation height, cover and 

type) can influence microclimate. Various aspects of microclimate such as solar irradiation 

and moisture have been found to be a driver of species’ occupancy, persistence and 

population dynamics (Suggitt et al., 2015; Wilson et al., 2015; Fourcade & Öckinger, 2017).  

The combined impacts of land conversion and climate change may create negative impacts 

for some species such as range losses and extinctions, particularly in developing nations, as 

has been shown for birds (Jetz et al., 2007), trees (García-Valdés et al., 2015) and other 

groups including mammals, reptiles, and amphibians (Jantz et al., 2015). Few studies have 

attempted to predict the extent of future negative impacts from the combined effects of 

habitat and climate on species (Titeux et al., 2016). To form effective conservation 

strategies, ecologists need to identify drivers of distribution and population changes and 

understand how those drivers interact.  
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1.5.2 Habitat availability in anthropogenic landscapes 

Species’ habitats are embedded within landscapes, and global landscapes have been 

altered by land-use change. Thus, suitable habitat patches may become too far apart for 

species to move between them, creating barriers to dispersal (Hill et al., 2001; Warren et 

al., 2001; Menéndez et al., 2006). For range expansion to occur, suitable habitat must be 

sufficient in size and quality to allow the establishment and persistence of species’ 

populations (Mortelliti et al., 2012), and species need to be able to access these habitats. 

The ability to traverse non-habitat areas is vital for species to successfully respond to 

climate change (Holyoak & Heath, 2016). Species that cannot do this may experience range 

collapses or extinction (Thomas, 2000).  

Two metrics used to assess how species move through landscapes are structural 

connectivity, which is the spatial distribution of (single or multi-species) habitat types, and 

functional connectivity, which relates to the movement of (typically) individual species 

across a landscape (Tischendorf & Fahrig, 2000). Structural connectivity is often used as a 

proxy for functional connectivity, as the structure of a landscape relates to species 

movement. However, structural connectivity has limited value because it makes a single 

generalised assessment of connectivity for a landscape, but connectivity may be specific for 

different species in the same landscape (Tischendorf & Fahrig, 2000). Some species can 

disperse through habitats they would not establish in, demonstrating disparity between 

structural and functional connectivity (Keeley et al., 2017). High functional connectivity is 

important for gene flow and diversity in species’ populations, and synchrony between 

geographically-related populations can be used as a proxy for connectivity (Powney et al., 

2012). In this thesis, I examine species range expansions under climate change, which is the 

activity of individuals dispersing and establishing in new areas. Lawson et al. (2012) 

demonstrated how this activity was assisted by functional connectivity which allowed 

individuals to navigate through landscapes, and recommended connectivity-focussed 

conservation strategies to promote colonisations for the silver-spotted skipper butterfly. 

For example, protected areas provide ‘stepping stone’ habitats that may facilitate the range 

expansions of species (Thomas et al., 2012). In my general discussion chapter, I consider 

connectivity issues further and what sorts of techniques, such as connecting habitat 

patches (‘stepping stones’ or ‘corridors’), can best help species move through the landscape 

(Hodgson et al., 2012, 2016). 
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The ability to shift across fragmented landscapes is influenced by species traits (Angert et 

al., 2011; Reif & Flousek, 2012) such as habitat specificity. Habitat generalists generally 

have a greater ability to adjust to environmental change and are therefore more likely to 

track climate change than specialists, assuming their resources are widely available (Warren 

et al., 2001; Hill et al., 2002). Specialists have a smaller pool of resources that they can 

utilise, so these species are more likely to be threatened by habitat loss, unless they 

specialise on a particularly widespread habitat, or on human-modified environments. 

Accessing suitable habitat in fragmented landscapes is a key challenge for species. In this 

thesis, I examine how species traits and their landscapes interact to influence rates of range 

shift. While there are many studies examining habitat influences on species’ persistence 

and range shifts, these studies are often restricted to a few species, and use specific 

resources (e.g. hostplants) to define habitats. In Chapter 3, I calculate detailed habitat 

associations and specialism scores for a wide range of species to explore the influence of 

habitat and species traits on rates of range shift.  

1.6 Monitoring species’ responses to climate change 
To examine species’ responses to climate change in this thesis, I use distribution data which 

are collected as species’ presence records at a given time and location. Established in 1964, 

the UK Biological Records Centre (BRC) holds distribution records for many different 

taxonomic groups. Recording schemes are primarily volunteer-run organisations that 

collect these records. Over 80 schemes share their data with the BRC, making it a valuable 

source of biogeographical data containing millions of records, in some instances dating back 

from the 16th century (Roy et al., 2014). BRC data are the foundation of this thesis, 

accompanied by two other data sources. The British Trust for Ornithology (BTO) has 

gathered distribution data for UK birds since 1933, and I include these data in Chapter 2 to 

increase the number of taxonomic groups studied. In Chapter 4, I compare patterns in 

abundance and distribution data, and use abundance records from the UK Butterfly 

Monitoring scheme (UKBMS), which runs weekly transect walks to monitor butterfly 

populations across the UK. Abundance data are important to ecological studies, but are not 

nearly as widely available (compared to distributional data) among different taxa. In this 

section, I discuss how abundance data are used to measure responses to climate change 

and how distribution data may be used in similar ways when abundance data are lacking 

(1.6.1). Then, I discuss the biases in distribution records during data collection, and how 

these biases can be addressed (section 1.6.2).   
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1.6.1 Population responses to climate change 

In order to measure responses to climate change, suitable data must be available, and here 

I consider the opportunities distribution data provide to measure population variability. I 

have previously discussed the sensitivity of species’ population abundance to climate 

change, because species rely on suitable weather conditions to sustain their fecundity, 

dispersal and resource use. Changing these conditions may have positive and/or negative 

impacts on species population growth and variability (Vázquez et al., 2017). This makes 

abundance data a valuable resource for monitoring climate change responses. Abundance 

is often monitored at fixed locations to enable comparability over time. For example, 

volunteers collect abundance data for butterflies in the UK by making counts along fixed 

transect routes, recording numbers once a week for 26 weeks in a year, when the adult 

butterflies will be flying, and when weather conditions are suitable. The UKBMS uses these 

data to produce research outputs, such as broad assessments of UK butterfly status (Fox et 

al., 2015) and statistical metrics (indicators) to demonstrate fluctuations in population 

numbers (Brereton et al., 2011). Changes in abundance give ecologists and conservationists 

an early warning that a species may expand its range, or that it may be at risk (Ehrlen & 

Morris, 2015), as populations can decline gradually over time under unsuitable conditions, 

prior to extinction. Distribution records do not do this: a species is either observed as 

present at a site, or not observed. Despite the value of abundance data, the majority of 

species in the UK (and in the world) do not have detailed abundance data. In order to 

monitor changes in species’ abundances and assess impacts of environmental change on 

populations, ecologists are examining the potential for distribution data to fill in the 

abundance data gap. 

Because abundance and distribution are related, and distribution data are readily available 

for many taxonomic groups, these data are increasingly employed to estimate metrics of 

species’ population changes. Distribution data have been used to create composite trends 

of occupancy and abundance (Pagel et al., 2014) or to assess population trends by 

measuring changes in occupancy (Maes et al., 2015). In this thesis, I describe these uses 

further in Chapter 4. Distribution records have not commonly been used to measure inter-

annual changes in species’ populations, a metric used to explore population-level responses 

to environmental change. I address this knowledge gap by investigating the potential for 

year-to-year changes in distribution records to act as a proxy for year-to-year changes in 

abundance, and discuss the applications of this proxy. This is important because 

understanding how species populations vary under climate change and over time helps 
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ecologists comprehend patterns in species’ population dynamics and to determine species 

responses to climate change.  

1.6.2 Biases in distribution records 

Distribution data in the UK are a long-term, widespread and ubiquitous source of ecological 

information, which I use in this thesis to create metrics of range shift, habitat associations 

and population variability. However, in the collection of these data, species are sampled 

unevenly due to biases in the behaviour and distribution of recorders. This phenomenon is 

sometimes referred to as the ‘recorder effort problem’ (Prendergast et al., 1993; Hill, 

2012). Four main biases have been identified in species’ records (Isaac et al., 2014) that I 

discuss below: 1) temporal biases in recording effort, 2) spatial biases in recording, 3) 

irregular recording effort per site visit, and 4) uneven detectability of the taxa being 

studied. There are a wealth of studies in the literature, which aim to address these biases, 

so that they do not adversely influence studies of distribution change. 

Temporal biases arise when the intensity of recording is inconsistent over time. Methods of 

identifying species have improved, for example, smartphones allow users to identify and/or 

submit species records quickly. More people have become involved in recording and 

distribution datasets have rapidly increased in size (Tulloch et al., 2013). For example, 

macromoths experienced a sevenfold increase in records over four decades (see Chapter 

2). As a result, comparison of species’ occupancy over time is not straightforward, and 

increased records of species over time may not be indicative of more individuals or of 

expanding ranges.  

Spatial bias is the manifestation of highly variable sampling coverage (observed in Britain 

and globally, see Boakes et al. 2010, and Amano et al. 2016). This bias is driven by 

accessibility: volunteers tend to record in short-distance, familiar areas, such as the places 

they live or close-by (Isaac & Pocock, 2015). Because of this, recording effort has been 

noted to be intensified around human infrastructure such as roads and cities, particularly 

where large numbers of casual participants are involved in schemes (Geldmann et al., 

2016). This means that while improvements in transport have helped recorders access 

different parts of the country, and GPS technologies facilitate the accurate recording of 

locations, these transport links may create intensification of recording, while less accessible 

and less urban areas remain unrecorded. Additionally, recorders can demonstrate spatial 

bias by focusing their attention on areas where rare or interesting species have been 

reported. 
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Another source of bias is irregular recording effort per site visit. The number of species 

recorded during a site visit depends on how many species are actually present, and the 

amount of effort used to find those species. Also, the number of individuals of a species 

that are present at a site depends on the interaction between population dynamics and 

resource availability, e.g., how many offspring are produced, immigration and emigration 

levels, emergence periods of species (their phenology), and how many individuals the site 

can sustain. By visiting a site, recorders collect observations of a sample of the total species 

richness at the site, rarely attempt to record all species at a site, but rather record on an ad-

hoc basis or record a specific species. Therefore, the number of species recorded at a site 

will vary between visits and between different recorders due to irregular recording effort 

and different protocols. 

Detectability is the fourth source of bias; different species are not equally easy to locate in 

situ and therefore some species require more effort to be detected. Large, colourful species 

are easier to detect than cryptic or small species. One visit to a site is unlikely to detect all 

species present: species accumulation curves demonstrate how many site visits are 

required for the species richness to plateau (Graham et al., 2015). Recording range shifts 

becomes challenging if the presence of a species can go unnoticed (Lahoz-Monfort et al., 

2014), particularly at the edges of a species’ range, where numbers of individuals are lower.  

There are also differences in recording effort and detectability between different 

taxonomic groups. Well-recorded groups can have millions of records, where others only 

have a few thousands (Isaac & Pocock, 2015). Recording schemes have different methods 

for collecting data, which will produce different patterns in numbers and locations of 

records (Geldmann et al., 2016). For example, grasshopper species can be identified by 

their calls; moth recorders use light traps to lure species to a location; aquatic molluscs are 

sampled by netting. These differences should be taken into consideration when assessing 

differences in species’ responses to environmental change. 

Statistical methods are necessary to account for temporal and spatial heterogeneity in 

sampling effort within and between taxa: without these methods, estimates of range shift 

may be under- or over-estimated (Kujala et al., 2013). Various techniques have been 

developed to deal with the bias associated with the recorder effort problem. The Hickling 

method (Hickling et al., 2005, 2006) uses thresholds to determine the extent of species’ 

ranges. This is done by comparing the number of species recorded in a location in two time 

periods and selecting those locations where a sufficient number of species was recorded, 
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i.e. where a sufficient amount of recording effort was applied, in both time periods. The 

Hickling methods have been improved upon in this thesis, to incorporate issues of spatial 

bias (Mason et al., 2017). FRESCALO (FREquency SCAling LOcal) is a recent method 

developed for dealing with detectability problems (Hill, 2012). This method estimates the 

likelihood of a species’ presence given the level of recording effort a grid cell has 

undergone. The level of recording effort is estimated from the number of locally relevant 

‘benchmark’ species recorded at the site in question. FRESCALO has widely used to develop 

occupancy patterns and trends (Fox et al., 2014; Woodcock et al., 2014; Dyer et al., 2017). 

In these methods, key issues are avoiding false negatives or positives (measuring species’ 

presence or not when the opposite is true), and to maximise the data which can be 

analysed. In this thesis, I apply a methodology that also considers local species richness to 

account for recording effort differences in distribution data in each of my data chapters, 

and I discuss the future for recording schemes in the General Discussion (Chapter 5). 

1.7 Thesis structure 
Following this introduction, (Chapter 1), this thesis is constructed around three data 

chapters:  

In Chapter 2 (Geographical range margins of a wide range of taxonomic groups continue to 

shift polewards), I quantify range margin shifts of southerly-distributed species over time. I 

calculate range shift as the change in the location of the northern range margin (in km per 

decade) for 21 taxonomic groups (1599 species), over two intervals. I expand upon the 

previous study by Hickling et al. (2006) by including more recent data, more taxonomic 

groups, and an improved method to deal with spatial and temporal variation in recorder 

effort. I explore variation in rates of range shift over time for four taxonomic groups 

(butterflies, moths, dragonflies and birds), and present evidence that Lepidoptera have 

shifted their ranges fastest over time. I conclude that range shifts vary both within and 

between taxonomic groups, and that the rates at which ranges shift may not be consistent 

over time. 

In Chapter 3 (The importance of habitat for climate-driven range shifts across multiple 

taxa), I examine the role of specialism and habitat availability on rate of range shift for 

multiple taxonomic groups. Range shifts, specialism scores and a metric of habitat 

availability are calculated for species from 14 taxonomic groups. I quantify intra and inter-

taxon variation within and between groups, and use mixed models to test the relationships 
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between range shifts, specialism and habitat availability. I show that habitat availability is 

more strongly linked to variation in range shifts (explaining up to 36% of the variation) than 

is specialism. Habitat availability (an interaction with specialism and the landscape) is an 

important part of determining rate of range shift, and is likely to play an important role in 

predicting species’ responses to future climate scenarios. 

Chapter 4 (Population variability of species can be deduced from opportunistic citizen 

science records: a case study using British butterflies), assesses the potential for distribution 

data to be used as a proxy for abundance data, by quantifying relationships between year-

to-year changes in distribution and abundance. I focus on butterflies as a study taxon, and I 

explore the importance of biogeographical attributes derived from distribution datasets 

(frequency of records, spatial aggregation of species, mean inter-annual changes in 

numbers of records, and spatial scale) on the strength of distribution-abundance 

relationships. I conclude that distribution data can provide information on year-to-year 

changes in abundance, for some species, but most importantly that mean year-to-year 

changes in distribution records are comparable to mean year-to-year changes in abundance 

for all butterfly species. Thus, distribution records do show potential to be used as proxies 

for metrics of abundance in some circumstances, for example in calculating population 

stability, which could be important to assessments of species’ extinction risk. 

Chapter 5 discusses the findings of Chapters 2-4 in the context of the wider scientific 

literature and the implications of my results for conservation ecology. I also consider 

limitations of the data, and suggest future avenues of research. I conclude that 1) there is 

substantial variation in range shifts both within and between high level taxa, but the 

majority of variation in range shifts is found within taxonomic groups (rather than between 

groups); 2) a significant portion of this variation is explained by species’ habitat specificity 

within a landscape context; and 3) distribution records have potential to act as proxies for 

abundance metrics, where abundance data are lacking.  
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2.1 Abstract  
Many species are extending their leading-edge (cool) range margins polewards in response 

to recent climate change. Here, we investigated range margin changes at the northern 

(cool) range margins of 1599 southerly-distributed species from 21 animal groups in Britain 

over the past four decades of climate change, updating previous work. Depending on data 

availability, range margin changes were examined over two time intervals during the past 

four decades. For four groups (birds, butterflies, macromoths, and dragonflies and 

damselflies), there were sufficient data to examine range margin changes over both time 

intervals. We found that most taxa shifted their northern range margins polewards and this 

finding was not greatly influenced by changes in recorder effort. The mean northwards 

range margin change in the first time interval was 24 km decade-1 (n=13 taxonomic groups), 

and in the second interval was 18 km decade-1 (n=16 taxonomic groups), during periods 

when the British climate warmed by 0.21C and 0.28C per decade, respectively. For the 

four taxa examined over both intervals, there was evidence for higher rate of range margin 

change in the more recent time interval in the two Lepidoptera groups. Our analyses 

confirm continued range margin shift polewards in a wide range of taxonomic groups.  
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2.2 Introduction 
In recent years, ecological responses to climate change have been observed in global fauna 

and flora as species have responded and adapted to new environmental conditions 

(Parmesan 2006; IPCC 2014a). Species responses encompass genetic, physiological, 

phenological and biogeographical changes, and these responses by species may have 

implications for ecosystem functioning and structure (Bellard et al. 2012). One commonly 

observed response to climate change in a wide range of terrestrial and aquatic ecosystems 

is the polewards extension of species’ distributions (Parmesan & Yohe 2003; Poloczanska et 

al. 2013).  

Climate influences the distribution of species, often acting as a limiting factor on the extent 

and location of species’ range margins (Hill & Preston 2015). Historical data have 

demonstrated how species’ distributions have changed over time (Hill et al. 2002), 

extending their ranges at leading-edge ‘cool’ margins when climates become more 

favourable for these species (Chen et al. 2011a). Some species have shifted their ranges at 

rates reflecting local rates of climate warming (Parmesan et al. 1999; Chen et al. 2011a), 

whereas other species have lagged behind climate changes (Menéndez et al. 2006; Devictor 

et al. 2008; Valladares et al. 2014). Considering the wide variety of habitats, pre-warming 

ranges, life histories, resource requirements, dispersal behaviours and opportunities 

available to different taxonomic groups, the expectation has been for responses to climate 

change to vary between taxonomic groups (Angert et al. 2011). Indeed, studies have 

reported large inter- and intra-specific variation in the responses of taxonomic groups to 

climate change (Thomas et al. 2004; Hickling et al. 2006; Rapacciuolo et al. 2014). For 

example, butterflies have demonstrated idiosyncratic responses to climate change (Mair et 

al. 2012), with inter-specific variation partly explained by trends in abundance and habitat 

availability (Mair et al. 2014). The availability of large data sets for a wide range of 

taxonomic groups in Britain held by the UK National Biodiversity Network and other 

organisations, provides an excellent opportunity to explore the responses of different 

taxonomic groups to recent climate change.  

Many species reach their leading-edge ‘cool’ range margins in Britain, and hence might be 

expected to shift their range northwards under recent climate warming. There are some 

single-taxon studies that have examined range changes in Britain (Hill et al. 2002; Hickling 

et al. 2005), but not all taxonomic groups may respond in the same way to climate 

warming. Hickling et al. (2006) studied range margin changes in 16 taxa that reach a 
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leading-edge range margin in Britain, and here we update and build upon this earlier study 

by analysing 21 taxonomic groups, containing 1599 species monitored over four decades of 

climate warming. We also examine range margin changes over two time intervals, thereby 

investigating changes in response rates over time, as well as being able to compare range 

margin changes across more taxonomic groups than previously examined.  

2.3 Materials and methods 

2.3.1 Species data sets  

We analysed British data gathered mainly by volunteer naturalists through recording 

schemes (see acknowledgements) overseen by the UK Biological Records Centre 

(www.brc.ac.uk), British Trust for Ornithology (BTO, www.bto.org) and Butterfly 

Conservation (www.butterfly-conservation.org). We categorised each observation 

(recorded presence) of individual species according to its location (Ordnance Survey 10km x 

10km grid square; hereafter termed ‘hectad’) and the time period it was recorded in (see 

below). Most observations were for a specific day, but some recording schemes collate 

observations into date ranges spanning several years. In this study, we excluded 

observations with date ranges that fell outside our time periods (see below). Species were 

grouped into taxonomic groups, determined primarily by the recording schemes that 

collated records for that group. A total of 21 taxonomic groups had sufficient data for range 

margin changes to be calculated for at least one interval (the groups accepted or rejected 

for study are listed in Table A2.1). Four taxonomic groups (birds, butterflies, macromoths, 

and dragonflies and damselflies) had sufficient data for range margin changes to be 

calculated for both intervals. 

Our analysis focussed on southerly-distributed species that reach a northern (leading-edge) 

range margin in GB. The study area was the British mainland, including islands connected to 

the mainland according to the contiguous distribution of hectads (2566 hectads in total). 

Hence, near-shore islands were included, but off-shore islands were not. Montane species 

(defined as species with a mean elevation ≥200m across their British range) were excluded 

from the analyses because latitudinal range changes by these species would be confounded 

by elevational shifts. We also excluded ubiquitous species (defined as those occurring in 

more than 90% of the study area), as well as species with a northern range margin in the 

first time period less than 100km from the north coast of mainland GB, because these 

species would have little opportunity for polewards range shifts. Species were also 

excluded if they were listed in the GB Non-native Species Information Portal (Roy et al. 
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2014b), because range changes by introduced species are likely to involve human-assisted 

dispersal and range filling unrelated to climate change. We also excluded observations 

where the identification of the species was uncertain (e.g. record listed as several possible 

species). Species listed with a sub-species trinomial were grouped to the species level (e.g. 

for the Dingy skipper butterfly, Erynnis tages subsp. tages was grouped with Erynnis tages), 

and different subspecies of the same species were grouped together. 

2.3.2 Time periods of analysis 

With the exception of birds, data were collated into three time periods (1966-1975; 1986-

1995; 2001-2010), defining the northern range margin of each species in a given period. 

Range margin changes were analysed over two time intervals corresponding to range 

margin changes between the first and second periods (interval 1, 1966-1975 to 1986-1995) 

and between the second and third periods (interval 2, 1986-1995 to 2001-2010). We 

imposed gaps between time periods to provide opportunities over which range margin 

changes could occur. Bird data were analysed over slightly different time periods and 

intervals (interval 1, 1968-72 to 1988-1991; interval 2, 1988-1991 to 2008-2011) 

corresponding to bird atlas recording periods (Sharrock 1976; Gibbons, Reid & Chapman 

1993; Balmer et al. 2014). We standardised the time periods as far as possible across the 

different taxonomic groups to ensure all species were studied over similar periods, and 

hence experienced similar climatic changes. A preliminary analysis using the slightly 

different time periods analysed by Hickling et al. (2006) produced qualitatively similar 

results to the standardised dates used in this study.  

2.3.3 Controlling for variation in recorder effort 

The intensity of recorder effort in GB has varied over time and space, as well as within and 

between taxonomic groups. Thus for each time interval and taxonomic group we controlled 

for variation in recording effort by selecting hectads with a minimum threshold of recording 

effort based on observed local species richness relative to the regional species richness 

pool. First, for each focal hectad, We identified the nearest 100 hectads (sufficient for the 

regional pool size of species to asymptote) where at least one species from that taxonomic 

group was recorded in both time periods (i.e. 1966-1975 and 1986-1995 for analyses of 

interval 1, or 1986-1995 and 2001-2010 for analyses of interval 2; or equivalents for birds). 

Second, the species richness of these neighbouring hectads was calculated from the total 

number of unique species recorded in both time periods. Focal hectads were included in 

analyses according to the level of recording effort they experienced, and hectads were 
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termed ‘recorded’, ‘well-recorded’ and ‘heavily-recorded’ as follows. ‘Recorded’ hectads 

contained at least one species in both time periods, ‘well-recorded’ hectads contained at 

least 10% of the species richness of the surrounding hectads in both time periods, and 

‘heavily-recorded’ hectads contained at least 25% of the species richness of the 

surrounding hectads in both time periods. This method for accounting for recorder effort 

was broadly similar to that used by Hickling et al. (2006) except that we used local species 

richness rather than the richness of all species in Britain when selecting hectads for 

inclusion. This new method is likely to be more sensitive in accounting for recorder effort, 

because it takes better account of underlying spatial variation in species richness across 

Britain.  

 

 

Figure 2.1. Locations of northern range margins calculated for different thresholds of 

recording effort control in each of three time periods of study (1966-75, 1986-95 and 2001-

10) for the small skipper butterfly (Thymelicus sylvestris). This exemplar species was 

selected for illustration because it has extended its range northwards in recent years. Maps 

show species presence in well-recorded and heavily-recorded grid squares (10 km x 10 km), 

and (apparent) absence (hollow squares) where butterflies were observed, but not 

Thymelicus sylvestris. Labelled lines indicate range margin locations from analyses of well- 

and heavily-recorded hectads in each time period.  
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Our analyses of range margin changes were repeated for each of the three levels of 

recorder effort control. For the four taxonomic groups (birds, butterflies, macromoths, and 

dragonflies and damselflies) studied over both time intervals, northern range margins were 

calculated in a second analysis (see methods below) that used a subset of well-recorded 

and heavily-recorded hectads from both intervals that were common to all three time 

periods. Figure 2.1 shows how analysing well-recorded or heavily-recorded squares 

affected the calculation of the range margin location for an exemplar butterfly species, 

Thymelicus sylvestris. Compared with the other taxa studied, recorder effort variation is far 

less in birds than other taxonomic groups. For example, macromoths experienced a more 

than sixfold increase in the number of observations over the study period (294,951 and 

1,474,592 unique year-location observations of species in GB hectads during time periods 1 

and 3 respectively), such that hectads were more likely to have been intensively surveyed in 

the later time periods. By contrast, bird data are collated systematically for each atlas and 

so there is less change in the number of records of birds over time. Figure 2.2 shows the 

locations of well-recorded and heavily-recorded hectads for birds, butterflies, dragonflies 

and damselflies, and macromoths.  

  



 

 

Figure 2.2. 

Distribution of well-recorded and heavily-recorded hectads across both time intervals, for the four taxonomic groups analysed in Figure 2.4. Sample 

sizes for well-recorded hectads are 2561, 1729, 477 and 414 for birds, butterflies, macromoths and dragonflies and damselflies respectively. Sample 

sizes for heavily-recorded hectads are 2500, 1218, 205 and 119 for the respective group 

 

2
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2.3.4 Minimum data requirements for taxonomic groups and 
species 

Each taxonomic group was selected for study if it occupied at least 20 well-recorded 

hectads during interval 1 or interval 2, and contained more than one species for which 

range margin changes could be calculated. Taxonomic groups without their own formal 

recording scheme (which apply various quality control measures, e.g. to avoid 

misidentifications) were rejected. Those taxonomic groups which had data from multiple 

sources (and hence no uniform quality control measures) were also rejected. Criteria for 

selecting taxonomic groups analysed over both intervals were stricter, given the more 

statistically challenging task of trying to identify not only range margin changes but also 

whether rates had changed over time. Thus taxonomic groups needed at least 20 heavily-

recorded hectads which were common to all three time periods to qualify for inclusion, and 

also had to contain five or more species for which a range margin could be calculated (see 

below) based on heavily-recorded hectads. These criteria resulted in four taxonomic groups 

being studied (birds, butterflies, macromoths, and dragonflies and damselflies).  

For each time period, the range margin of each species was calculated for each level of 

recording effort control. We excluded species from a time period if they were observed in 

fewer than 20 hectads, for a given level of recording effort control, because estimates for 

the locations of range margins would be subject to high recording error. Once northern 

range margins were calculated (see methods below), species which had fewer than 10 

hectads of the necessary level of recording effort within 100km to the north and to the 

south of their range margin in the first time period were excluded. This excluded species 

whose estimates of potential range margin changes northwards or southwards would be 

biased by poor recording effort. 

2.3.5 Calculating northern range margin changes  

The locations of northern range margins were calculated in each of the three time periods. 

For each species that was included, the location of its northern range margin was computed 

as the mean northing (in km north, from the Ordnance Survey GB grid) of the species’ 10 

most northerly occupied hectads in that time period. For each taxonomic group and time 

interval, mean rate of change (plus 95% confidence intervals) in northern range margin was 

then calculated as the distance moved in km decade-1 (based on the number of years 

between the mid-points of each time period), with positive rate values indicating 

northward shifts, and negative values indicating southward shifts. These analyses were 
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carried out for each of the three levels of recording effort. We used ANOVA and one-

sample t-tests to examine differences in rates of range margin change among the 

taxonomic groups in each time interval, and whether rates of range margin change were 

significantly different from zero. 

We examined if rates of range margin change differed between time intervals 1 and 2 in the 

four selected taxonomic groups (birds, butterflies, macromoths and dragonflies and 

damselflies). We generated linear mixed models using lme4 package in R (Bates et al. 2013) 

with rate of range margin change (km decade-1) as the response variable, time interval and 

taxonomic group as explanatory variables and species identity as a random effect. We fitted 

models with all possible combinations of explanatory variables and their interaction term 

and examined the goodness of fit of each model using Akaike information criterion (AIC) 

values, and models where ΔAIC was < 2 were assumed to be equally good at explaining the 

data (Burnham & Anderson 2002). Additionally, rates of range margin change in the two 

time intervals in each taxon were compared using paired t-tests, and one-sample t tests 

were used to examine if rates of range margin change in each interval were significantly 

different from zero. All statistical analyses were performed in R, v3.0.2 (R Core Team 2013). 

2.3.6 Temperature variation across the study period 

Mean seasonal temperature data from the Hadley Centre Central England Temperature 

(HadCET) series were downloaded from the UK Met Office (www.metoffice.gov.uk/hadobs). 

Over the study period (1966-2010), annual mean temperature was computed from the 

mean value of each of the four seasons (i.e. annual temperature was measured from 

December through to the following November). Descriptive analyses were undertaken to 

describe changes in temperature over the years included in interval 1 (1966-95) and 

interval 2 (1986-2010), and between these two intervals. We used regression analysis to 

examine changes in mean seasonal and annual temperatures within each time interval, and 

ANCOVA to determine if there was a difference in the rate of temperature change between 

the two time intervals. 

 

http://www.metoffice.gov.uk/hadobs
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2.4 Results 

2.4.1 Northern range margin changes  

Here, we focus primarily on describing the results for well-recorded hectads because we 

consider this level of recorder effort control to be the best compromise between 

robustness of data analysis and retaining large numbers of species and taxonomic groups in 

our analyses; although we also report full statistical results for the other two levels of 

recording effort control in appendices (Tables A2.2, A2.3). The locations of the northern 

range margins of all species during each time period are provided in Tables A2.4 (interval 1) 

and A2.5 (interval 2). Generally, most taxonomic groups shifted northwards for all levels of 

recording effort for which they could be analysed (Figure 2.3). The mean overall rate of 

range margin change, calculated from each taxonomic groups’ mean rate of range margin 

change, was 24.1 km decade-1 (standard error [SE] = 5.5; n = 13 taxa) in time interval 1 and 

18.0 km decade-1 in interval 2 (SE = 4.0; n = 16 taxa).  

Eight of the 13 groups in interval 1 (butterflies, centipedes, dragonflies and damselflies, 

hoverflies, macromoths, millipedes, spiders, woodlice) and seven of the 16 groups in 

interval 2 (aquatic bugs, bees, butterflies, dragonflies and damselflies, hoverflies, 

macromoths, wasps) significantly extended their range margins northwards, for well-

recorded hectads (Figure 2.3, Table A2.3). Qualitatively similar results were obtained for 

the other levels of recording (Figure 2.3); ten of the 13 groups analysed in interval 1, and 

eight out of 16 taxa in interval 2, showed significant northwards shifts for one or more 

levels of recording effort (Figure 2.3; Table A2.3). Despite most taxa shifting their range 

margins northwards in both time intervals, three taxa (ground beetles, hoverflies, 

solderflies and allies) demonstrated significant southwards retractions in interval 2, 

although the significance of the change depended on levels of recorder effort control 

(Figure 2.3, Table A2.2, A2.3). For taxonomic groups which occurred in both time periods 

(i.e. panels B and D in Figure 2.3), their rates of range margin change are not directly 

comparable between the two intervals because different sets of hectads and species were 

used to calculate rate of range margin change in each interval. Taxonomic groups differed 

in their rates of range margin change, and this was evident in both time intervals (ANOVA, 

interval 1, F 12, 560 = 4.41, p < 0.001; interval 2, F 15, 868 = 9.64, p < 0.001), and this finding was 

insensitive to the level of recorder effort control (Table A2.2). Mean annual temperature 

generally increased in Britain during the study period (on average by 0.21°C decade-1 during 

interval 1 and 0.28°C decade-1 during interval 2), with mean spring (March-May) 
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temperature increasing significantly during interval 1, and mean autumn (September - 

November) temperatures increasing significantly in interval 2 (Table A2.6). 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Mean rates of northern range margin changes of species in 21 taxonomic groups 

over interval 1 (upper panels) and interval 2 (lower panels); for each level of recording 

effort control. Panels A and C show range margin changes for taxonomic groups studied 

over one time interval only (13 taxa) and panels B and D show taxa studied in both intervals 

(8 taxa). Error bars represent 95% confidence intervals of the mean. Asterisks above bars 

indicate range changes that were significantly different from zero (one-sample t-test). In 

panels A-C, the bars are ordered along the x-axis by magnitude of range margin changes 

according to analyses of well-recorded hectads; panel D is ordered according to panel B’s 

order. The number of species per taxonomic group varied among groups, recording effort 

control levels and intervals (see Table A2.3). Heavily-recorded bars are absent for some 

taxa because this level of analysis was not possible. For taxonomic groups studied in both 
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intervals, there were different species compositions in each interval and different sets of 

recorded, well-recorded and heavily-recorded grid squares. Thus differences in rates of 

range change between time intervals may be a result of differences in the species included 

and locations recorded, and so comparisons should be made with caution. Taxonomic 

group names accompanied by a dagger symbol indicate that the group contains allied 

species (See Table A2.1). 

2.4.2 Changes in rates of range margin change over time 

We examined if rates of range margin change were similar in the two time intervals for four 

taxonomic groups (birds, butterflies, macromoths, and dragonflies and damselflies) with 

sufficient data to analyse the same hectads across all three time periods. The estimates of 

rates of range margin change from this subset of hectads generated comparable estimates 

to those from the larger set of hectads used to calculate rates of change separately for 

intervals 1 and 2 (Figure A2.1). All four taxonomic groups shifted northwards in both 

intervals (Figure 2.4), and macromoths and butterflies showed significantly faster rates of 

range margin change in interval 2 compared with interval 1 (Table A2.7; macromoths paired 

t-test, t131 = -5.77, p = <0.001; butterflies t34 =-2.26, p = 0.03).The locations of the northern 

range margins of all species during all three time periods are provided in Table A2.8. 

The most parsimonious statistical model of rate of range margin change for these four 

groups included the interaction term between taxonomic group and interval (Table 2.1). 

The interaction occurred primarily because macromoths tripled their rates of polewards 

range margin change between intervals 1 and 2 (interval 1 = 11.4km decade-1, interval 2 = 

31.2km decade-1) and rates for butterflies nearly doubled (interval 1 = 18.3km decade-1, 

interval 2 = 30.3km decade-1). However, rates of rates of range margin change of birds and 

dragonflies and damselflies did not significantly differ over time (Table A2.7). This 

conclusion was not dependent on the inclusion of any single taxonomic group, and serial 

omission of each group (and of all Lepidoptera, i.e. butterflies and macromoths) 

consistently found that a mixed model with the interaction term between taxon and 

interval had the lowest AIC value (i.e. was the best model; Table A2.9). This apparently 

faster rate of range margin change in Lepidoptera in interval 2 was evident despite the fact 

that the rate of temperature warming was similar between interval 1 (1966 to 1995) and 

interval 2 (1986 to 2010; Table A2.10) for most measures of temperature. However, mean 

autumn temperature increased significantly between interval 1 and 2 (Table A2.10). 
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Figure 2.4. Comparison of rates of northern range margin change for four taxonomic groups 

across two time intervals (see main text for time interval dates). Taxonomic groups are as 

follows: birds (31 species), butterflies (35 species), dragonflies and damselflies (7 species) 

and macromoths (132 species). These estimates of rate of range margin change differ 

slightly from those in Figure 2.3, because only those hectads that were well-recorded in all 

three time periods were included. Asterisks indicate groups where range margin changes 

differed over time (two-tailed paired t-test, P≤0.05, see Table A2.7). ‘Dragonflies’ 

represents all Odonata, including damselflies.  
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Table 2.1. Linear mixed effects models for rate of northern range margin change (response 

variable, in km decade-1) in well-recorded hectads, between two time intervals (spanning 

1966-2010), for the four most heavily-recorded taxonomic groups (N = 205 species in total). 

All models included species identity as a random factor. For fixed effects, the most complex 

model included time interval and species group as predictor variables, as well as the 

interaction term. Shown for each model is the difference in AIC (ΔAIC) from the most 

parsimonious model (model 5). The four right hand columns provide information on the 

individual coefficients expressed as the difference relative to the intercept term.  

 

 

 

 

 

Model Fixed effects ΔAIC Fixed effects (breakdown) Coefficient  SE t 

1 1 74.3 Intercept 20.2 1.8 11.09 

2 Group 43 Intercept (Birds) 7 5 1.413 

   Group (Butterflies)   17.3 6.8 2.525 

   Group (Dragonflies*) 30.6 11.6 2.642 

   Group (Macromoths) 14.3 5.5 2.586 

3 Interval 41.2 Intercept (Interval 1) -2.2 5.1 -0.431 

   Interval (2) 15 3.2 4.722 

4 Interval + Group 19.6 Intercept (Interval 1, Birds) -15.4 6.9 -2.24 

   Interval (2)    15 3.2 4.722 

   Group (Butterflies)   17.3 6.8 2.526 

   Group (Dragonflies*) 30.6 11.6 2.643 

   Group (Macromoths) 14.3 5.5 2.586 

5 Interval + Group 
+ Interval : Group 

0 Intercept (Interval 1, Birds) 9.2 13.1 0.698 

  Interval (2)          -1.4 8.1 -0.176 

  Group (Butterflies)   -3 18 -0.165 

  Group (Dragonflies*) 11.5 30.6 0.376 

  Group (Macromoths) -17.5 14.6 -1.2 

  Interval: Group (Butterflies)  13.5 11.1 1.214 

  Interval: Group (Dragonflies*)  12.8 18.9 0.676 

  Interval: Group (Macromoths)   21.2 9 2.357 
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2.5 Discussion 
We analysed rates of range margin change in 1599 southerly-distributed species from 21 

animal groups in two time intervals. Overall, the majority of taxonomic groups in our study 

shifted their range margins northwards in both time intervals (23.2km decade-1 in interval 

1, 18.0km decade-1 in interval 2), supporting the findings of Hickling et al. (2006). Rates of 

range margin change varied between taxonomic groups and, for some groups, over time. 

For the four groups with sufficient data to undertake robust analyses of whether these 

rates have changed over time, there was evidence that recent rates of range margin change 

have been faster for macromoths and butterflies. These findings were relatively insensitive 

to recorder effort control, although increasingly strict recorder effort control reduced the 

number of hectads that could be analysed. 

2.5.1 Controlling for variation in recorder effort  

Variation in levels of recording effort across spatial and temporal scales can present 

problems to ecologists wishing to quantify range shifts (Tingley & Beissinger 2009; Isaac et 

al. 2014). Our results showed that the majority of taxa studied have shifted their range 

margins northwards for all levels of recording effort that we considered. However, there 

were some taxonomic groups where the shift in the northern range margin was 

qualitatively different according to the level of recorder effort control. For example, 

northern range margins of hoverflies apparently retracted southwards in interval 2 if 

recorded and well-recorded grid squares were analysed, but extended northwards 

according to analysis of heavily-recorded squares (Figure 2.3D). As the control for recorder 

effort became stricter, the number of hectads included was reduced, and so the number of 

species included was also reduced. Hence 137 and 131 species of hoverfly were included in 

analyses of ‘recorded’ and ‘well-recorded’ hectads respectively, but only 21 species for 

heavily-recorded hectads. If recorded and well-recorded hectads were assessed for just 

these 21 species, the recorded range margin shift (9km decade-1 southwards) was smaller 

than when all available species were analysed, and the well-recorded range margin shift 

changed to a northwards direction (8km decade-1 northwards). Thus, the reported range 

margin changes are a function of both the hectads included in the analyses as well as the 

identity of species included. Using the most thoroughly surveyed (heavily-recorded) subset 

of data, the observed trend was for 13 out of 14 measured changes (taxon by interval 

combinations) to show a northwards margin shift (Figure 2.3), and the overall data showed 

significant northwards trends across all taxa in both periods for all three levels of recording 
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effort (Table A2.2). Thus, our qualitative findings appear robust to variation in recorder 

effort (at least for the three control methods assessed), although the quantified rate of 

change depends on the level of recorder effort control.  

Our approach to filtering data for analysis represents an assessment of the sensitivity of our 

conclusions to variation in recording effort, rather than a true measure of ‘control’ for 

recording effort, given that the true recorder effort is unknown. We adopted the same 

general approach as Hill (2012), and assumed that any species that might potentially be 

recorded in a particular location (hectad) would be drawn from the pool of species found in 

the surrounding region (which we defined here as the nearest 100 hectads with any records 

for the taxon). The distribution of species richness in Britain does not change greatly from 

one hectad to the next (Fox et al. 2011; Balmer et al. 2014), and so the percentage of the 

regional species pool recorded as present in a hectad represents a first approximation for 

the relative level of recording effort. However, the percentage of species actually recorded 

in a hectad depends on the actual number of species present (which itself depends on local 

environmental conditions), as well as on the level of recording that has taken place. Hence 

we adopted an approach whereby we used thresholds (>0%, 10%, 25% of the regional 

species pool) rather than a continuous metric of species recorded.  

Recorder effort has changed over time and the number of records of species in Britain has 

increased rapidly. However, if increased recording effort through time is primarily 

responsible for generating the erroneous impression of range margin changes, we would 

expect the recorded rate of range margin changes of common species to be less rapid than 

the rate of range margin changes of all species taken together, because rare species are 

more likely to go unnoticed during lower intensity surveys (Bates et al. 2014). In fact, we 

found few differences when we repeated our analyses to include only common species 

(defined as the top 50% of species ranked by number of presences in heavily recorded 

hectads). Analysing only common species, the estimated rate of range margin change 

decreased for common birds (despite little or no increase in recording effort), was largely 

unaffected for macromoths (which showed the greatest increase in recording effort), and 

increased for butterflies (Figure A2.2). If sampling effort was having an important influence, 

we would also expect higher levels of recording effort to generate markedly reduced 

estimates of range margin change, which we did not observe. Poor recorder effort may be 

an issue in interval 1, but analysis of well-recorded and heavily-recorded hectads in interval 

2 produced higher estimates of northwards range margin change than data from recorded 
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hectads, suggesting that northwards range margin changes are not primarily artefacts of 

recorder effort changes, at least since 1986-95. Examination of the rate of range margin 

changes of individual species (e.g. Figure 2.1) and differences in the distribution changes of 

northern and southern species also indicate that the polewards range margin shifts we 

report here are real (Warren et al. 2001; Hickling et al. 2005; Fox et al. 2013, 2014; Cham et 

al. 2014).  

2.5.2 Variation over time and between taxonomic groups  

Our results suggest that some taxa differed in their rates of range margin change over time, 

and that Lepidoptera apparently spread northwards more rapidly in the more recent time 

period, during a period when autumn temperatures significantly increased. The faster rate 

of range margin change more recently in Lepidoptera does not obviously align with any 

major morphological, habitat-use or other features of this group, and trait-based analyses 

have rarely explained very much of the variation in rates of range shift among species 

within taxonomic groups (Angert et al. 2011). Species may vary in their sensitivity to 

different aspects of climate, and responses of species may also reflect the amount of 

warming as well as habitat availability (Hill et al. 2001), which may contribute to these 

differences among taxa. We only compared four taxonomic groups, two of which were 

Lepidoptera, which is too few to draw any firm conclusions. In addition, the considerable 

variation that is exhibited between species within individual taxonomic groups (Chen et al. 

2011a) and over time (Mair et al. 2012) suggests that there may be no simple explanation 

for variation among taxa in their responses to climate change. 

Climate change is driving many species to extend their ranges northwards (Chen et al. 

2011a) and the majority of taxonomic groups studied here supported that finding. However 

we found variation in rates of range margin change amongst the animal taxa studied. Taxa 

may vary in their response to temperature at different time of the year, and to different 

aspects of climate (Araújo, Thuiller & Pearson, 2006; Jiguet, Brotons & Devictor, 2011; 

Schweiger et al., 2012). Taxa may also vary in the extent to which they occupy their climate 

niche (Sunday, Bates & Dulvy, 2012), and hence non-climatic constraints could account for 

differences in the rate of range margin changes we observe between groups. For example, 

Fox et al. (2013) suggested that the range extension of footman moths in Britain could be 

related to increased availability of larval hosts (algae and lichens), which in turn could be 

benefitting from changes in air quality and nutrient availability, as well as climate change 

(Morecroft et al. 2009; Pescott et al. 2015). In addition, evolutionary changes in dispersal 
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ability and ecological changes in habitat associations may contribute to variation in rates of 

range change (Thomas et al., 2001; Hill, Griffiths & Thomas, 2011; Pateman et al., 2012). 

However, whilst resource and habitat availability are important for individual species, it is 

not clear whether they and many other range-determining factors (e.g. natural enemies, 

competing species) are important causes of the differences that we have observed 

between broader taxonomic groups. 

2.5.3 Conclusion 

Our study provides further support that the majority of taxonomic groups have shifted their 

leading-edge margins northwards. We also have evidence that rates of range margin 

change vary over time and between taxonomic groups, just as they vary between species 

within each taxonomic group. Hence conservation planning and habitat management 

strategies should be aware that rates of species’ range changes in response to 

environmental change are highly variable. Our analyses have benefitted from the extensive 

data sets that exist for a large number of taxa in Britain, recording changes in distributions 

over the past four decades. Such recording schemes are vital for understanding biodiversity 

changes in human-dominated landscapes. Establishing robust monitoring systems that 

build on those that already exist will increase our capacity to detect, understand, and 

manage these changes (Pescott 2015). 
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3.1 Abstract 
It is not understood why individual species vary so greatly in the rates at which their ranges 

are shifting in response to climate warming. Using 40 years of distribution data, for 347 

species from 14 invertebrate taxa in Britain, we show that habitat availability explains up to 

half of the variation in range boundary shifts. Habitat availability depends on habitat 

specificity of species, whether species are specialised on rare or widespread habitats, and 

the mixture of habitats in any given landscape. Hence, interactions between species’ 

attributes and the environment are important determinants of variation in range shifts. 

Understanding this variation across multiple taxa leads us to conclude that better-

connected landscapes could facilitate polewards shifts for the subset of species that are 

habitat constrained, whereas other species will successfully track the climate without 

intervention, or face barriers that cannot be circumvented.  
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3.2 Introduction and Methods 
On average, species are shifting polewards and to higher elevations in response to climate 

warming, but there is extremely large variation in the rates at which the range boundaries 

of individual species are moving (Parmesan & Yohe, 2003; Lenoir et al., 2010; Crimmins et 

al., 2011). This variation could arise from species-specific climatic or habitat requirements, 

population growth rates, dispersal or biotic interactions (Hill et al., 2001; Warren et al., 

2001; Mair et al., 2014; Carroll et al., 2015; Liang et al., 2017). Yet, none of these factors 

has been shown to explain a large proportion of the between-species variation across 

multiple taxonomic groups (Angert et al., 2011; MacLean & Beissinger, 2017). Here, we 

evaluate the degree to which species-specific habitat associations underlie the observed 

variation in range shifts. Our results help explain why responses to climate change appear 

individualistic, and provide insight into how we might facilitate species’ responses to 

climate change. 

We examined 347 non-migratory, native invertebrate species in mainland Britain, drawn 

from 14 taxonomic groups: aquatic bugs, bees, butterflies, dragonflies and damselflies, 

grasshoppers and allies, ground beetles, hoverflies, macromoths, non-marine molluscs, 

shieldbugs and allies, soldierflies and allies, spiders, wasps, and woodlice (Table A3.1). Each 

species reaches its northern (poleward) range margin in Britain and might, therefore, be 

expected to shift northwards during a period of sustained regional warming. We measured 

range shifts (latitudinal changes in the ten-northernmost occupied 10-km squares) between 

1976-1990 and 2001-2015. The median observed range shift was 33 km (1.3 km y-1, mean = 

1.8 km y-1) indicating significant poleward expansions (Wilcoxon signed rank, P < 10-30, N = 

347) in response to 0.8 °C of regional warming over the same time period (Hollis & 

McCarthy, 2017). There was considerable variation among species (Figure 3.1); one in five 

species retracted its range margin southward, and the interquartile range spanned twice 

the median shift (Table A3.2). Nearly all (91%) of this variation between species occurred 

within, rather than among, taxonomic groups (R2 = 0.09 in a linear model of range shift vs. 

taxonomic group). The lack of a strong ‘group effect’ suggests that major trait differences 

among groups cannot be responsible for the variation in range shifts. In contrast, 

individualistic attributes of species and/or location-specific constraints, such as habitat 

factors, could still make strong contributions. 
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Figure 3.1. Variation in latitudinal range shifts over 25 years, habitat specialisation, and 

habitat availability at geographic range margins for 347 invertebrate species in Britain. (A-C) 

Four taxonomic groups with high levels of recording (butterflies, dragonflies and 

damselflies, grasshoppers and allies, and hoverflies; N = 58). (D-F) Macromoths (different 

recording method, N = 132 species). (G-I) Nine groups with lower levels of recording (N = 

157; Table A3.1). In A, D and G: black lines show zero shift and red lines show median 

observed shift. 
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Hence, we quantified habitat associations, habitat specialisation and habitat availability (in 

range-margin landscapes) for the 347 species. We developed logistic regression models to 

quantify habitat associations, using 100-m resolution presence-absence records of study 

species in 18 satellite-derived habitat classes (Morton et al., 2011). Species’ specialisation 

indices (SSIs) were defined as the coefficient of variation (SD/mean) in the probability of 

occurrence across the 18 habitat classes (Julliard et al., 2006), and ranged from SSI = 0.36 

for the Gatekeeper butterfly Pyronia tithonus, a generalist present at varying densities in 17 

of the 18 habitat classes, to SSI = 3.22 for the woodlouse Ligidium hypnorum, a 

broadleaved-woodland specialist. We estimated habitat availability by projecting 

probabilities of occurrence on to the land cover map at 25-m resolution, and averaging over 

the range-margin landscape (50-km buffer around the northernmost 10-km squares 

occupied by the species in 1976-1990). Habitat availability ranged from 0.4% for the 

heathland-associated Small Grass Emerald moth Chlorissa viridata, to over half of the 

landscape (56%) for P. tithonus butterfly. Again, this variation was mainly a feature of 

differences between individual species (93% for specialisation, 85% for habitat availability), 

rather than between taxonomic groups (tables A3.3- A3.4). Habitat specialisation and 

availability are inevitably related to one another, but they are not interchangeable (Figure 

3.2): availability depends on whether a species is specialised on common or rare habitats, 

and on the absolute (rather than relative) probabilities of occurrence within those habitat 

classes. For more methods details, please refer to the Supplementary Methods on page 51. 

3.3 Results and Discussion 
Generalist species expanded northwards faster than specialists (Pearson correlation 

coefficient [r] of range shift vs. SSI = -0.22, P < 10-4, N = 347). In a linear mixed-effects 

model, with taxonomic group as the grouping variable, the marginal R2 (fixed SSI effect, R2
m) 

was 0.04 and the conditional R2 (fixed and group effects, R2
c) was 0.13. The explanatory 

power of SSI was weak compared to the random effect of taxonomic group (Table A3.6). 

This echoes previous studies in which generalists (and species with traits potentially linked 

to generalism) have been found to track climate significantly better than specialists but 

where effect sizes are small, inconsistent in time and/or space, or not consistent between 

taxonomic groups (Angert et al., 2011; MacLean & Beissinger, 2017). In contrast, we found 

that log10-habitat availability was more strongly correlated with range shifts (r = 0.38, P < 

10-12) and, in a mixed model, explained four times more variation (R2
m = 0.17, R2

c = 0.21). 

Habitat availability rather than specialism per se provides a stronger explanation for the 

observed variation in range shifts (cf. SSI model: ΔAIC = 35, ΔcAIC = 35; Table A3.6). 
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Figure 3.2. Relationship between habitat availability at the range margin and the degree of 

habitat specialisation, for 347 invertebrate species in 14 taxonomic groups. Plotted on 

untransformed axes (A) and with log-linear scaling (B). Lines in (B) show the effect of 

taxonomic group in a linear mixed-effects model, with intercepts and slopes conditional on 

taxonomic group. In the colour key, groups are listed in descending order of geographic 

coverage of citizen-science recording: solid symbols show five groups with the highest 

levels of recording, open symbols show nine groups with lower levels of recording. 
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Individual species also differ in the threshold amount of habitat required for 

metapopulations to persist or expand at the range margin (Hanski, 1999); on average, 

species have less habitat available in range-margin landscapes than in their distribution 

cores (Figure 3.3, D, H and L; species with less vs. more habitat at the margin, χ2 = 10.03, 1 

df, P < 0.002, N = 347). We discovered that species with below-average habitat availability 

at the range margin (relative to availability in the entire range) have failed to expand 

northwards (dashed lines in Figure 3.3, C, G and K), most likely because those landscapes 

fall below their species-specific habitat requirements (dashed lines in Figure 3.3, D, H and 

L). Habitat availability (as a main effect) and our metric of relative range-margin habitat 

availability (as an interaction) provided the most parsimonious explanation of species’ 

range shifts (cf. habitat model with random slopes for each group separately: ΔAIC = 8, 

ΔcAIC = 4; Table A3.6). The explanatory power of this model is likely to be driven by the 

combined effects of increased breeding success in landscapes with greater habitat 

availability, and more successful dispersal in landscapes where the distances between 

habitats patches are reduced (Wilson et al., 2009; Hodgson et al., 2012). 

The distribution data for our study species come from citizen-science schemes, and so 

recorder effort varies among taxa (e.g., 20 million macromoth records were available, 

compared with 30 thousand records for shieldbugs and allies). Therefore, we tested the 

sensitivity of our findings to recording effort (we also analysed macromoths separately 

because light trapping may attract individuals from adjacent habitat types).  
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Figure 3.3. Models of species’ range-margin shift as a function of habitat specialisation and 

log10-habitat availability at the range margin, for 14 taxonomic groups (indicated by 

different coloured points). (A-D) Butterflies, dragonflies and damselflies, grasshoppers and 

allies, and hoverflies. (E-H) Macromoths. (I-L) Nine taxonomic groups with lower levels of 

recording (Table A3.1). In the first two columns, different coloured lines show the random 

effect of taxonomic group (Table A3.6). In the third column, group-specific slopes are not 

shown but rather the effect of habitat is varied (as an interaction term) by the relative 

habitat availability at the range margin as compared to the whole range (calculated as a 

percentage of the range-wide average). Dashed and solid black lines illustrate the 

interaction term using two exemplars: below-average habitat in range-margin landscapes 

(dashed, 80% of a species’ range-wide average) and above-average habitat in range-margin 

landscapes (solid, 120%). In the fourth column (D, H and L), the frequencies of different 

range-margin habitat availability are displayed in histograms for each set of taxonomic 

groups, with the same dashed and solid lines used as in the previous column.  

The habitat interaction model explained over a third of the variation in range shifts for the 

best-recorded groups (R2
m = 0.36, Figure 3.3C), 19% of the variation for macromoths (R2 = 

0.19, Figure 3.3G), and 9% for nine groups with reduced levels of recording (R2
m = 0.09, 

Figure 3.3K). More generally, we found that the greater the level of biological recording 

(i.e., ranking groups by geographic coverage of recording across both time periods), the 

more variation in range shifts could be explained by habitat factors (r = 0.97, P < 10-6, N = 

10). Extrapolating to assume universal geographic recording for all study taxa implies that 

habitat availability could explain up to half of the variation in species’ range shifts (Figure 

3.4). This is extremely high, given that there are additional sources of variation in the data: 

satellite-derived habitat classes do not provide a full species-eye view of ‘habitat’, land 

cover may change over time (although minimal for our study region/period), species’ 

habitat associations may vary geographically, and evolutionary changes in resource use can 

take place during range expansion (Thomas et al., 2001; Oliver et al., 2009, 2012; Hanski & 

Mononen, 2011; Pateman et al., 2012, 2016; Weiss-Lehman et al., 2017). The remaining 

variation between species may be explained by species-specific sensitivities to different 

elements of the climate, and hence their exposure to climate change (Palmer et al., 2017), 

other phylogenetic variation which has not yet been tested, and perhaps also by the 

accidental or deliberate transportation of individuals to otherwise unreachable locations 

(Auffret et al., 2014). 
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Figure 3.4. Variation explained by habitat in range-shift models, as a function of the 

geographic coverage of citizen-science biological recording. Recording level is the number 

of 10-km squares where at least 25% of the regional species richness was recorded in both 

time periods (up to a maximum of 2566 in Britain). Vertical lines extend from marginal R2 

(grey circles, fixed effects of habitat) to conditional R2 (black dots, random intercept 

conditional on taxonomic group). The fixed effects are log10-habitat availability at the 

range margin, interacting with margin habitat as a percentage of the range-wide average. 

Each pair of points was generated over 10,000 randomised draws of 30 species from any 

three qualifying groups, with the pool of groups decreasing from left to right as fewer met 

the required level of recording. The higher the recording level, the greater the explanatory 

power of habitat, up to a possible 49% (dashed lines, assuming complete geographic 

recording for all study taxa). 
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3.4 Conclusions 
We conclude that range boundary dynamics vary greatly among species, and that up to half 

of this variation depends on the interplay between species’ habitat associations and the 

landscapes they encounter during range expansion. This has important consequences for 

facilitating species’ responses to climate change: (i) a subset of species will successfully 

track climate polewards without intervention, because their species-specific habitat 

requirements are already exceeded in range-margin landscapes; (ii) some species may be 

assisted by the provision of better-connected landscapes that contain high quality habitats 

for these species; whereas (iii) location-specific natural or human-related barriers may 

make it impractical to achieve sufficient connectivity for others (Hoegh-Guldberg et al., 

2008; Robillard et al., 2015). Landscape management and restoration strategies need to 

target habitats required by species in the second category, because these are the 

interventions that can increase the rates at which species’ distributions are able to spread 

polewards. 
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3.5 Supplementary Methods 
We conducted all statistical analyses and created figures using R version 3.3.3 (R Core 

Team, 2017). In additional to base R functions, we used several contributed packages, 

detailed in Table A3.7. 

3.5.1 Study region and observed warming 

The study region encompassed 2566 Ordnance Survey 10 km × 10 km grid squares 

(hectads) covering the British mainland plus any near-shore islands connected to the 

mainland by the contiguous spread of hectads. We calculated annual mean temperatures 

for the study region using gridded data from the UK Meteorological Office (Hollis & 

McCarthy, 2017). During the first recording period (1976-1990), the mean temperature was 

8.5 °C, increasing to 9.3 °C during the second recording period (2001-2015). The level of 

warming was therefore 0.8 °C (0.03 °C y-1) across the 25-year interval between the 

midpoints of the two recording periods. 

3.5.2 Species occurrence records 

Great Britain has one of the highest concentrations of volunteer naturalist biological 

recorders (citizen scientists) in the world (Sutherland et al., 2015), supported by various 

recording schemes and societies, whose data are housed by the UK Biological Records 

Centre (BRC, http://www.brc.ac.uk). 

We considered all animal groups held in the BRC database, and included any group that 

contained at least five species meeting our inclusion criteria, and for which range-margin 

shifts and habitat associations could be calculated (see sections below). We identified 14 

taxonomic groups with sufficient data for inclusion: aquatic bugs, bees, butterflies, 

dragonflies and damselflies, grasshoppers and allies, ground beetles, hoverflies, 

macromoths, non-marine molluscs, shieldbugs and allies, soldierflies and allies, spiders, 

wasps, and woodlice. These are all invertebrate groups, and therefore share some 

commonality, but they are also diverse in many respects. They include carnivores, 

herbivores and omnivores, aquatic and terrestrial taxa, groups that disperse in the soil, by 

walking, by ballooning and by active flight, and span orders of magnitude in body mass. 

Each of these groups was covered by a formal recording scheme (Table A3.1). The data 

were mainly collected by citizen scientist recorders, before being collated and cleaned by 

experts in the group/region to filter out possible errors. We retained the taxonomic 
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distinctions and groupings used by these recording schemes (e.g. butterflies and 

macromoths were treated as separate groups, whereas dragonflies and damselflies were 

aggregated). It should be noted that any ‘group effect’ may reflect differences in the 

recording schemes as well as the effects of taxonomic group per se. 

Each biological record represents a unique location × date observation of species presence. 

We removed records with ambiguous taxonomy (sensu lato, sensu auct, naming multiple 

species or identified only to genus). Species listed with a sub-species trinomial, with the 

label sensu stricto, with variants or different morphs were aggregated at the species level. 

When analysing range shifts, we used all records with at least hectad-level spatial accuracy 

that could be unambiguously assigned to one of the two recording periods (1976-1990 and 

2001-2015). For habitat associations, we used day-specific records accurate to 100-m 

resolution (for the 347 species included in the final analysis, 74% of records had this level of 

precision). 

3.5.3 Criteria for species inclusion 

We selected non-migratory species that reach their northern (cool) range boundaries in 

southern/lowland Britain. We defined these species as having 90% of their 1976-1990 

distribution in the warmest 50% of the study region (using gridded temperature data from 

the UK Meteorological Office (Hollis & McCarthy, 2017), averaged over the same time 

window). Since these species have historically been concentrated in the warmer half of 

Britain, it is reasonable to postulate that they might be favoured by climate warming. As 

non-migrants, any expansion should represent the establishment of new, persistent 

populations, which ought to be evident in the distribution record from the second 

recording period (2001-2015). 

We excluded species classified as non-native, alien-native hybrid, unknown origin, and 

those that are dependent on non-native species, as defined by the BRC and the GB Non-

native Species Information Portal (Roy et al., 2014). We also excluded vagrants and species 

thought to be extinct from the study region, including species that have been reintroduced 

following extinction (e.g. Large Blue butterfly Maculinea arion). Many such species are not 

at equilibrium with the climate (e.g. following (re)introduction), and so recent changes in 

their distributions cannot be reliably linked with changes in temperature. Other exclusions 

were made only if species’ distribution data were insufficient for range-shift or habitat 

calculations. 
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3.5.4 Range-shift calculations 

To calculate range shifts, we first controlled for changes in recorder effort over time (1976-

1990 to 2001-2015). We restricted distribution data to hectads for which at least 10% of 

the regional species pool for a group was recorded present in both recording periods 

(Hickling et al., 2006). For each group × hectad, we defined the regional species pool as the 

total number of species recorded in the nearest 100 hectads (Mason et al., 2015), using all 

species in the database for a given taxonomic group (i.e. regardless of the above inclusion 

criteria). 

For all species occupying at least 20 such hectads in both recording periods, we calculated 

northern (cool) range margins as the mean latitude of the ten-northernmost occupied 

hectads. We checked that species had sufficient area to expand or retreat from their 1976-

1990 range margins: we excluded any species with fewer than ten hectads reaching the 

10% criterion within 100 km to the north, and ten such hectads within 100 km to the south 

of the range margin (Mason et al., 2015). For the remaining species, we defined range shifts 

as the latitudinal change (km) in range margins between 1976-1990 and 2001-2015. We 

converted latitudinal changes to annual rates (km y-1) by dividing by the interval between 

the midpoints of the two recording periods (25 years). Results are summarised by group in 

Table A3.2, and are reported for individual species in Table A3.8. 

3.5.5 Habitat classes 

To identify habitat classes, we used a 25-m land cover map for Great Britain (LCM2007). 

This map was created by the NERC Centre for Ecology and Hydrology (Morton et al., 2011), 

using combined summer and winter satellite data (Landsat-TM5, IRS-LISS3, SPOT-4 and 

SPOT-5 sensors, pixel size of 20-30 m), enhanced with extensive cartographical information 

(e.g. Ordnance Survey data, soil types, agricultural census boundaries and urban extents). 

The classification was trained and validated using a large network of habitat surveys and 

ground reference points, producing an overall accuracy of 83%. Out of 23 habitat classes 

identified in LCM2007, we discarded one (saltwater), retained 14 as originally mapped, and 

created four aggregate classes from the remaining eight: ‘heather’ and ‘heather grassland’ 

became ‘dwarf shrub heath’; ‘supra-littoral rock’ and ‘littoral rock’ became ‘coastal rock’; 

‘supra-littoral sediment’ and ‘littoral sediment’ became ‘coastal sediment’; ‘suburban’ and 

‘urban’ became ‘built-up and gardens’. This resulted in a total of 18 habitat classes (Table 

A3.9). 
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Habitat, as we use the term here (we could alternatively have referred to ecotype or 

biotype), reflects a combination of the physiognomy of the vegetation and land 

management, and does not imply any particular mechanism of association; i.e. we take a 

resource-based view of habitat (Dennis, 2010), recognising that a species occupies 

particular habitat classes because certain resources (e.g., host plants, prey, mutualists), 

structural elements (e.g., that enable spider webs to be built), or micro-environments (e.g., 

sheltered microclimates) are present somewhere within that class, and/or because 

negative influences (e.g., natural enemies, disruptive land management) are absent. For 

example, hedgerow species can be positively associated with arable and improved 

grassland (albeit at low frequencies), which is a true reflection of where many of these 

species live, given that field boundaries are demarcated by hedgerows, and that such linear 

features are nested within the grain size of satellite imagery. 

3.5.6 Habitat associations 

We identified habitat associations using logistic regression of species presence or absence 

(binary response) overlaid on the 18 habitat classes (categorical predictor). The regression 

equation for each species was used to estimate its probability of occurrence in each habitat 

class, under the assumption of equal availability of all habitat classes (i.e., as close as is 

possible to a ‘species characteristic’). We defined levels of habitat specialisation to be the 

coefficient of variation across these 18 probabilities (13), producing a species’ specialisation 

index (SSI) which, for our dataset, ranged from SSI = 0.36 (generalist) to SSI = 3.22 (highly 

specialised). Results are summarised by group in Table A3.3, and are reported for individual 

species in Table A3.8. 

Given the finer grain of the land-cover map (25 m), compared with species records (100 m), 

individual species records could potentially be associated with up to 16 different habitat 

classes. To reduce the number of false positive associations, we removed mixed pixels at 

100-m resolution (so that each species record was associated with exactly one habitat 

class). We further restricted the spatial extent for analysis to a 50-km buffer around 

presence records for the target species, excluding landscapes that were occupied during 

only one recording period. We did this to reduce the number of absences that might be 

caused by unsuitable climate or dispersal limitation (i.e., a pixel contains suitable habitat for 

a species, but lies outside its climate niche or dispersal radius in one or both recording 

periods). 
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We took all recorded presences to be ‘true’ for the purposes of modelling, and included in 

the final analysis all species with at least 50 such records (mean = 787, median = 197, 

maximum = 44 580). Inferring absence data from presence-only datasets is inherently more 

difficult. Further to the spatial filters described above, we applied the following criteria to 

minimise the number of false absences in the models. First, we only included as potential 

absences those pixels that had been visited by recorders of the same recording scheme (as 

deduced from records of other species within the same recording scheme). Second, we 

filtered absences according to time of year, for example to avoid treating late summer data 

as absences if the target species’ flight period is in spring. We did this by fitting a smooth 

phenology curve to the frequency of records for the target species, as a function of the 

Julian day of observation. Any potential absences with record dates in the tails of this 

distribution (lower or upper 10% area under the curve) were excluded. 

The remaining absences were from pixels visited under the same recording scheme as the 

target species, in landscapes where (or near where) the target species occurred and within 

the appropriate phenological time window(s). The absences still varied in reliability, 

however, because some qualifying pixels had only been visited once, whereas others had 

been visited multiple times. Third, therefore, we weighted absence data by the probability 

of recording the target species if it was present, given the number times (t) the absence 

pixel was visited: 

1

𝑛
∑ 1 − (1 − 𝑝𝑠)𝑡

𝑠=1..𝑛

 

That is, one minus the probability of failing to detect the species on every occasion, where 

the ps are probabilities of detection across n known presence sites for the target species 

(these were calculated as the number of times the species was recorded in pixel s divided 

by the number of times s was visited). 

3.5.7 Habitat availability 

We obtained spatial estimates of habitat availability by projecting each species’ regression 

model back on the land cover map at 25-m resolution (so that all pixels, including mixed 

pixels at the 1-ha scale, were included), using the same 50-km buffer as we used for model 

calibration. Range-wide habitat availability for each study species was calculated as the 

mean value across all of these pixels, indicative of the amount of habitat typically accessible 

to a species across its British distribution. 
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Habitat availability at the range margin was defined as the mean value across all land cover 

pixels in a 50-km buffer around the ten (or more) northernmost hectads that were used to 

define the range margin in the first recording period (1976-1990); i.e. landscapes across 

which the species had potential to expand (or retract) over time. Habitat availability for 

individual species at the range margin ranged from 0.4% (very little of the landscape could 

be colonised) to 56% of the landscape (ample opportunity for expansion, given suitable 

climate; Table A3.4 and Table A3.8).  

To assess the relative suitability of the range-margin landscape, compared to what a species 

experiences on average across its range, we divided the mean habitat availability in range-

margin landscapes by the range-wide average. Significantly more species had reduced 

habitat availability in their range-margin landscapes (χ2 = 10.03, 1 df, P < 0.002, N = 347). 

The size of the effect was small on average, but correlated positively with higher levels of 

recording (r = 0.54, P < 0.05; reduction in margin habitat vs. number of hectads where at 

least 25% of the regional species richness was recorded in both time periods). 

3.5.8 Models of range shift 

We modelled range shifts (km y-1) as linear functions of habitat specialisation, and log10-

transformed habitat availability at the range margin. Habitat specialisation and log10-habitat 

availability are highly correlated (r = -0.70; see Figure 3.1B), and so we did not include both 

predictors in the same model. Rather, we tested the hypothesis that habitat availability 

provides a stronger explanation for the observed variation in species’ range shifts, 

compared to specialisation. 

To account for phylogenetic relatedness and methodological differences in recording 

between taxonomic groups (i.e. across recording schemes), we used linear mixed-effects 

models fitted via maximum likelihood (Bates et al., 2014), with taxonomic group specified 

as a random intercept term. We included random slopes of the predictor variable, with 

respect to taxonomic group identity, if this lowered the conditional AIC (Greven & Kneib, 

2010) when all 347 species were included in the model, considering both a correlated or 

uncorrelated random slope and intercept for the random effect grouping variable. 

For all random effects structures, habitat availability was a stronger predictor of range 

shifts than was specialisation (Table A3.6). For range shifts modelled against specialisation, 

the top model included a random intercept term but not random slopes (model 1); for 

range shifts against habitat availability, the top model included (uncorrelated) random 
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intercept and random slope terms (model 2). Next, we extended model 2 by including an 

interaction between log10-habitat availability, and margin habitat as a percentage of the 

range-wide average. This model had lower AIC and cAIC, compared with single-predictor 

models. The top model included the interaction term plus random intercept with respect to 

group (model 3). 

3.5.9 Sensitivity to recording level 

We ranked the 14 taxonomic groups by descending geographic coverage of citizen-science 

recording, defined by the number of hectads where there has been sufficient recording for 

at least 25% of the regional species richness (considering the nearest 100 hectads) to have 

been sampled in both time periods (Table A3.1). In Figure 3.3 of the main text, we plotted 

models 1-3 separately for: (i) four groups with the highest levels of recording, minus 

macromoths; (ii) macromoths; and (iii) nine groups with lower levels of recording. We 

plotted macromoths separately because, unlike other groups, moth recording used 

attractant methods (light traps at night) so that the areas sampled – and thus habitat 

associations – were more uncertain. 

The proportion of variation in range shift that could be explained was higher for taxonomic 

groups with higher recording coverage. The slopes of the relationships were, however, 

similar (Figure 3.3 and Table A3.6), demonstrating that the patterns we report are 

qualitatively robust to recorder effort. In Figure 3.4, we systematically varied the threshold 

of recording coverage, above which species are included in the model. For example, when 

the recording threshold is very low, all groups are eligible for inclusion; when the threshold 

is very high, only the best-recorded groups are included. For consistency across different 

levels of group inclusion, each pair of points (R2
m and R2

c) in Figure 3.4 was generated by 

averaging over 10,000 randomised draws of 30 species from three qualifying groups. This 

analysis revealed a log-linear relationship between the geographic coverage of citizen-

science recording, and the proportion of variation in range shifts that could be explained. 

Extrapolating the fitted line to assume complete geographic coverage (2566 hectads) for all 

groups in the study, we infer that approximately half (49%) of the variation in range shift 

could be explained by habitat availability. 
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Abstract  
Abundance data are the foundation for many ecological and conservation projects, but are 

only available for a few taxonomic groups. In contrast, distribution records (georeferenced 

presence records) are more widely available. Here we examine whether year-to-year 

changes in numbers of distribution records, collated over a large spatial scale, can provide a 

measure of species’ population variability, and hence act as a metric of abundance changes. 

We used 33 British butterfly species to test this possibility, using distribution and 

abundance data (transect counts) from 1976-2012. Comparing across species, we found a 

strong correlation between mean year-to-year changes in total number of distribution 

records and mean year-to-year change in abundance (N = 33 species; R2 = 0.66). This 

suggests that annual distribution data can be used to identify species with low versus high 

population variability. For individual species, there was considerable variation in the 

strength of relationships between year-to-year changes in total number of distribution 

records and abundance. Between-year changes in abundance can be identified from 

distribution records most accurately for species whose populations are most variable (i.e. 

have high annual variation in numbers of records). We conclude that year-to-year changes 

in distribution records can indicate overall population variability within a taxon, and are a 

reasonable proxy for year-to-year changes in abundance for some types of species. This 

finding opens up more opportunities to inform ecological and conservation studies about 

population variability, based on the wealth of citizen science distribution records that are 

available for other taxa. 

  



60 

4.2 Introduction 
The long term monitoring of population dynamics is an important aspect of ecology, and 

allows examination of factors driving species’ abundance trends, such as the effects of 

weather (Roy et al. 2001), habitat availability and land use (Lemoine et al. 2007), disease 

(Daszak, Cunningham & Hyatt 2003), and human impacts (Lewis & Vandewoude 2015). 

Monitoring abundance trends of species thus helps to identify species at risk, develop 

conservation strategies to halt population declines (Brown, Mehlman & Stevens 1995), and 

identify increasing populations of pests to implement control strategies (Petrovskii, 

Petrovskaya & Bearup 2014). Measuring population variability is essential to explore the 

influence of environmental factors, such as climatic cycles or food availability, on 

population dynamics (van Schaik & van Noordwijk 1985; Lynam, Hay & Brierley 2004). In 

addition, population variability may be an important determinant of the likelihood that 

populations will survive in habitat fragments, and variability may indicate the sensitivity of 

populations to climatic fluctuations (Pimm, Jones & Diamond 1998; Vucetich et al. 2000; 

Oliver et al. 2012). However, collecting abundance data may be time-consuming and 

expensive, and thus many taxonomic groups lack information on abundance trends and 

population dynamics. By contrast, many more species have large datasets of distribution 

records (i.e. unique records of the presence of species at a given location and date). Such 

data are available for a wide range of taxonomic groups, tend to cover wide areas, span 

many years, and are often collected as part of ‘citizen science’ projects (Devictor, Whittaker 

& Beltrame 2010; Pocock et al. 2015).  

It is well known that there is a positive relationship between species’ abundances and 

distributions (Brown 1984; Gaston et al. 2000) and very abundant species tend to have 

larger ranges (Holt et al. 1997). Abundance-distribution relationships are general patterns 

in ecology, but there are many forms of the relationship (Gaston 1996), and these 

relationships are not necessarily linear (Hartley 1998). In spite of this complexity, strong 

relationships have been found between distribution and abundance, which are evident 

over time, large spatial scales and different taxonomic groups (Zuckerberg, Porter & Corwin 

2009; Roney, Kuparinen & Hutchings 2015). These relationships allow occupancy changes 

(changes in the likelihood of a species’ presence) to be used to estimate population trends 

(Tempel & Gutiérrez 2013), broad biodiversity changes to be assessed across multiple 

taxonomic groups (Oliver et al. 2015a), and long-term trends in the frequency of species’ 

occurrences to be modelled (Pearce & Boyce 2006). These long-term occurrence trends 

have been shown to be reasonable proxies for abundance trends for both birds (Kamp et al. 
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2016) and butterflies (Warren et al. 2001; Oliver et al. 2015a). However, there is little 

information on the capacity of distribution data to describe other aspects of population 

dynamics, such as population variability, which is an important factor affecting extinction 

risk (Inchausti & Halley 2003; Mace et al. 2008). 

A challenge for ecologists is deriving an accurate measure of population variability when 

standardised abundance estimates are lacking. The positive associations between 

distribution size and abundance suggest that distribution records could potentially be used 

in analyses inferring species’ population dynamics, by acting as proxies for abundance data. 

If there are strong and predictable relationships between year-to-year changes in 

abundance and year-to-year changes in distribution records, then distribution records could 

provide a useful metric for ecologists to study the factors affecting population variability in 

a much wider range of taxa than is currently possible.  

In this study, we examine the relationships between abundance and distribution to assess 

whether year-to-year changes in the number of distribution records are strongly related to 

year-to-year changes in abundance. We study British butterflies because there are long-

term and fine-scale data on both distribution and abundance, allowing robust testing of 

these relationships. We predict that year-to-year changes in abundance will be strongly 

positively related to year-to-year changes in distribution records, because increasing 

numbers of individuals would be expected to result in an increased likelihood of a species 

being recorded. In addition, as a population increases in size, density-dependent dispersal 

would be expected to result in individuals moving away from areas of high population 

density, thereby increasing the number of sites where species can be observed (Gaston et 

al. 2000).  

Within this broad topic, we examine three issues. The first is whether it is possible to 

identify species with higher or lower population variability using distribution data – a 

between-species comparison. We do this by calculating average between-year changes in 

the numbers of distribution records over time, and comparing these estimates with 

measures of variability that are based on fixed-transect population count data. Secondly, 

we assess whether distribution records can be used as proxies for inter-annual changes in 

abundance in each species separately – a within-species analysis. Finally, we identify the 

characteristics of species for which distribution data provide a proxy for abundance, 

concentrating on three attributes that can be deduced from the distribution records 

themselves (i.e. not requiring additional ecological or population dynamic data, which are 
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lacking for many taxa). We selected these metrics because they are likely to be linked to 

our statistical capacity to detect year-to-year variation in abundance from distribution 

records: (1) the total number of distribution records for a species, (2) how aggregated these 

records are in space (using a metric of ‘fractal dimension’ of distribution records), and (3) 

the average size of the year-to-year changes in distribution records (i.e. how much annual 

variation there is in distribution records for a species). We refer to these metrics as 

‘biogeographical attributes’, but recognise that they are also influenced by variation in 

recording intensity across species and over time. We also examine the effect of the spatial 

scale of the study area on the relationship between year-to-year changes in distribution 

records and year-to-year changes in abundance, by comparing data analysed at national 

(UK study area, 302,800 km2) and regional (county study area, 440 km2) levels, given that 

population fluctuations may be synchronous in their dynamics at one spatial scale but not 

others (Sutcliffe, Thomas & Moss 1996).  

4.3 Materials and methods 

4.3.1 Study species 

We studied 33 species of British butterfly (See Table 4.1), including northern and southern 

species, and resident and migrant species, over the period 1976 to 2012. This study period 

was selected to maximise the geographic coverage of data, the length of the time-series of 

data analysed, and the number of species analysed. We excluded species without 37 years 

of abundance and distribution data. Species that were subject to targeted, intensive 

surveying effort during certain years of the study period were also excluded (Hesperia 

comma; Thomas & Jones, 1993, Boloria euphrosyne; Brereton, 1998, and Satyrium w-

album; Thomas, 2010), because large differences in the level of recording effort between 

years could bias results.  

4.3.2 Distribution records 

We computed year-to-year changes in distribution records based on data collected by 

volunteers for the Butterflies for the New Millennium (BNM) recording scheme, surveying 

sites in the study area (see below) on an opportunistic basis using unstructured sampling 

(Fox et al. 2015). A distribution record is an observation (recorded presence) of an 

individual species at a location on a particular date. Recording efforts are generally 

unstructured (there are no fixed or assigned times, places or methods for recording) and 

opportunistic, with little to no guidance given to recorders as to how, when and where to 
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record, meaning that recording is influenced heavily by recorder behaviour (Boakes et al., 

2010; Isaac & Pocock, 2015). Recorder behaviour can vary due to encouragement to record 

in under-represented regions for the purposes of atlas creation or other targeted survey 

efforts. Despite these attempts to encourage, spatial and temporal variation in 

opportunistic recording effort remains high. Due to increased recruitment of recorders over 

time numbers of distribution records have increased (see Figure A4.2), which is why we de-

trended the data prior to analysis. The spatial and temporal resolution of BNM distribution 

records varies; we excluded records with spatial resolution coarser than a 10 km x 10 km 

grid square or with date ranges which fell outside the study period. The study area was the 

UK, Isle of Man and Channel Islands (3028 hectads in total). We analysed a total of 

5,873,182 distribution records from 1976 to 2012, after all filtering processes (see below). 

The majority of distribution records are independent of abundance data (UK Butterfly 

Monitoring Scheme (UKBMS) transect), but the distribution dataset did contain some 

records sourced from transects. Therefore, distribution records were excluded if they 

occurred within the 1 km grid cell that contained a UKBMS transect (based on the centroid 

of the digitised transect route). This led to 1604 1km cells being excluded; approximately 

5.3% of the UK land area and 26.2% (2,089,886) of records. Year-to-year changes in log10 

distribution records were calculated for each study species over the 37-year study period 

by subtracting the number of distribution records (log10-transformed) in year t-1 from the 

number of records in year t. 

4.3.3 Abundance data  

We analysed abundance data from the UKBMS national collated index (www.ukbms.org). 

The UKBMS calculates their index from counts from weekly transect walks along fixed 

routes undertaken during the recording period (April-September) every year since 1976 

(see  http://www.ukbms.org/Methods.aspx for full details). Counts are taken from sites in 

Great Britain and Northern Ireland (1854 transect sites in total). Counts for missing weeks 

are estimated by the UKBMS by considering the area of a GAM curve fitted to observed 

weekly count data throughout the year (Rothery & Roy 2001). The UKBMS national collated 

index from 1976-2012 is created using a log-linear model, with a transect site and year 

effect (Brereton et al. 2011), as shown below:  

log10(𝑐𝑖𝑗)  = 𝑥𝑖 +  𝑦𝑗 
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Where c is the expected count for site i in year j, and where xi and yj give the means for the 

ith site and the jth year. The index is then scaled to a mean of 2, for the purposes of 

comparing abundance trends across species. This produces a log10-transformed abundance 

index, which we used in our calculation of population variability. We computed year-to-

year changes in log10 abundance by subtracting the abundance index value (log10-

transformed) for year t-1 from the value for year t. 

4.3.4 Accounting for phylogeny 

The butterfly species studied here are phylogenetically related, and this must be taken into 

account when analysing species together in models. All multi-species analyses conducted in 

this study accounted for the non-independence of species using phylogenetically-informed 

linear models with estimated Pagel’s λ, using the pgls function of the caper package in R 

(Pagel, 1999; Orme et al., 2013), and a recently-published butterfly phylogeny (please see 

Brooks et al. 2016 for full details of how the phylogeny was constructed). These models are 

interpreted by lambda P values (distinct from the P values produced by the model 

estimates) indicating the difference between the phylogenetic correlation λ value 

(estimated using maximum likelihood) and the upper and lower bounds: 1 (indicating 

phylogenetic dependence) and 0 (indicating phylogenetic independence). In all our 

analyses, the phylogenetic correlation was not significantly different from the lower bound, 

indicating that there was little evidence of phylogenetic signal in our models. 

4.3.5 Examining relationships between abundance and 
distribution records  

First, we explored whether mean yearly changes in log10 distribution records (as above) 

were correlated with mean yearly changes in log10 abundance (as above) over the 37-year 

study period, in a multi-species analysis with a control for phylogenetic independence (see 

section above). In both cases (distribution-record and abundance changes), we calculated 

the average absolute magnitude of the year-to-year changes, rather than directional 

changes (positive or negative). This analysis tests whether species with high population 

variability (on transects) also have high variability in terms of numbers of distribution 

records. 

Secondly, we examined each species separately. We calculated the strength of the 

relationships between year-to-year changes in log10 distribution records and changes in 

log10 abundance using R2 values from least squares regressions. This relationship is 
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hereafter termed the inter-annual distribution-abundance relationship and, for each study 

species, it reflects the extent to which yearly changes in log10 numbers of distribution 

records can be used to predict population size changes (from transect data). We analysed 

year-to-year changes rather than absolute numbers each year to de-trend the data, and to 

remove any temporal trends in recording effort. 

Thirdly, we examined the influence of three independent biogeographical attributes on 

these inter-annual distribution-abundance relationships to identify species for which 

distribution records were adequate proxies for population change. These attributes were: 

total number of distribution records; fractal dimension of a species’ range; and overall 

variability in distribution records. We computed the total number of distribution records 

collected at any spatial resolution (10 m to 10 km grid) for a species during the study period 

(1976-2012). Fractal dimension is a metric of how ‘well-filled’ a species’ range is, based on 

the proportion of 10km grid cells with records within each occupied 100km grid cell (Wilson 

et al. 2004). For each species, we calculated the total area of all occupied 10 km and 100 

km grid cells, and regressed these values against the length of the grid cells (10 km and 100 

km respectively; all values log10 transformed).The slope of the regression gives a measure 

(fractal dimension) of how ‘well-filled’ a species range is at 10km scale, where a slope of 0 

indicates a completely-filled range, and a slope of 2 indicates a minimally-filled range (see 

Figure A4.1 for two exemplar species; Thymelicus sylvestris, with the most well-filled range 

and Hipparchia semele with the most minimally-filled range). For overall variability in 

distribution records we used the mean year-to-year change in log10 distribution records 

over the study period.  

A phylogenetic multivariate regression was then fitted with the three biogeographical 

attributes as explanatory variables and the R2 value of each species’ inter-annual 

distribution-abundance relationship as the response variable. We fitted a fourth term to 

the model, the quadratic term of mean year-to-year change in log10 distribution records, to 

account for its apparent non-linear relationship with goodness-of-fit (R2) values when 

relationships were visually inspected by plotting the data. We tested a full model, then 

removed non-significant terms using a stepwise deletion approach.  

Autoecological information may be limited for other taxonomic groups, but the 

biogeographical attributes tested in this paper can be easily derived from distribution 

datasets for many different taxa. Because butterflies do have detailed autoecological 

information, we tested the influence of dispersal ability on the inter-annual distribution-
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abundance relationship in PGLS models, using two metrics: dispersal rankings based on 

expert opinion (Cowley et al., 2001) and a mobility score calculated from indices of 

ecological information (Dennis et al., 2004). We found no significant relationship between 

dispersal ability and the strength of the inter-annual distribution-abundance relationship 

(see Supplementary Table 4.2). 

4.3.6 Comparison of national and regional inter-annual 
distribution-abundance relationships 

To investigate whether the goodness of fit of the inter-annual distribution-abundance 

relationships varied with spatial scale, we repeated our analysis of this relationship at a 

regional level, for the county of Dorset. We compared r2 values from national and regional 

inter-annual distribution-abundance relationships for a sub-set of 23 butterfly species for 

the period 1983-2009 (maximum time period containing abundance data for species in 

Dorset). Dorset was selected because of its extensive history of surveying butterflies 

(Robertson, Woodburn & Hill 1988; Thomas et al. 2001).  
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4.4 Results 

4.4.1 Relationship between variability in abundance and 
distribution records across species 

Across the 33 study species, there was a strong positive relationship between the mean 

year-to-year changes in log10 distribution records and mean year-to-year changes in log10 

abundance (Figure 4.1a, PGLS, λ = 0, R2: 0.95, F1,31 = 623.8, P = <0.001), even when two 

outlier species were removed (Figure 4.1b, λ = 0.059, PGLS, R2: 0.66, F1,29 = 55.35, P = 

<0.001). Thus, species that show high variability in abundance also have high variability in 

distribution records, and there was little evidence for any phylogenetic signal (i.e. results 

were not significantly different between models based on estimated λ, and where λ was set 

to 0).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Regressions of the mean year-to-year change in log10 distribution records 

against the mean year-to-year change in log10 abundance: a) including all 33 species, with 

two outlier species labelled as follows: Celastrina argiolus (1) and Vanessa cardui (2); and b) 

for 31 species, excluding these outlier species. 
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4.4.2 Measuring inter-annual distribution-abundance 
relationships within species 

For each of our 33 study species, the relationships between year-to-year changes in log10 

distribution records and year-to-year changes in log10 abundance produced an overall mean 

R2 value of 0.36, indicating that year-to year changes in distribution records of UK 

butterflies provide a moderate proxy for year-to-year abundance changes. Eight butterfly 

species had R2 > 0.5, showing that distribution records were particularly informative in 

approximately 25% of study species. However, there was considerable variation among 

species, with r2 values varying between 0.03 and 0.92 (Table 4.1). Figure 4.2 highlights two 

exemplar species, where the relationship was strong (Holly blue, Celastrina argiolus, R2 = 

0.85) and one where the relationship was very weak (Marbled White, Melanargia galathea, 

R2 = 0.16).  
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Table 4.1. Goodness of fit of the inter-annual distribution-abundance relationships for 33 

butterflies. Latin names with an asterisk (*) indicate migratory species. Presented are the 

Pearson’s R2 values of the relationship between year-to-year log10 change in abundance and 

year-to-year log10 change in total number of distribution records. We checked r values and 

found them to all be positive, indicating that the relationships below were always positive. 

Biogeographical attribute values are also included for each species: total number of 

distribution records (ƩD), mean absolute year-to-year change in log10 distribution records, 

fractal dimension (Fractal D). 

Species R2 ƩD Mean |∆D| Fractal D 

Aglais io 0.36 407408 0.10 0.338 
Aglais urticae 0.60 442648 0.13 0.322 
Anthocharis cardamines 0.22 220768 0.11 0.302 
Aphantopus hyperantus 0.18 177673 0.08 0.300 
Argynnis aglaja 0.37 28184 0.10 0.468 
Argynnis paphia 0.27 31324 0.13 0.516 
Aricia agestis 0.65 44785 0.16 0.441 
Boloria selene 0.03 20723 0.11 0.480 
Callophrys rubi 0.25 31394 0.12 0.448 
Celastrina argiolus 0.85 165545 0.26 0.365 
Coenonympha pamphilus 0.35 144788 0.08 0.311 
Erynnis tages 0.39 31119 0.10 0.543 
Favonius quercus 0.07 30622 0.14 0.413 
Gonepteryx rhamni 0.34 184215 0.11 0.390 
Hipparchia semele 0.18 22647 0.09 0.716 
Lasiommata megera 0.43 87900 0.11 0.384 
Limenitis camilla 0.48 17988 0.16 0.520 
Lycaena phlaeas 0.66 150387 0.14 0.332 
Maniola jurtina 0.11 459084 0.07 0.309 
Melanargia galathea 0.16 66946 0.10 0.479 
Ochlodes sylvanus 0.29 135278 0.09 0.276 
Pararge aegeria 0.10 400596 0.10 0.375 
Pieris brassicae 0.44 458225 0.13 0.353 
Pieris napi 0.25 399295 0.10 0.303 
Pieris rapae 0.32 474880 0.11 0.370 
Polygonia c-album 0.58 223318 0.14 0.353 
Polyommatus coridon 0.47 17523 0.10 0.669 
Polyommatus icarus 0.55 226639 0.12 0.328 
Pyrgus malvae 0.28 17215 0.12 0.577 
Pyronia tithonus 0.13 278385 0.08 0.331 
Thymelicus sylvestris 0.11 134606 0.09 0.257 
Vanessa atalanta* 0.62 384283 0.18 0.338 
Vanessa cardui* 0.92 183430 0.53 0.342 
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Figure 4.2. Inter-annual distribution-abundance relationships for two exemplar species. 

Plots show year-to-year changes in log10 distribution records and year-to-year change in 

log10 abundance for Celastrina argiolus (a, c; left panels) and Melanargia galathea (b, d; 

right panels). Panels a and b show regressions (each point represents the change between a 

given pair of years), and panels c and d plot the same data together in a time series (solid 

lines indicate year-to-year changes in log10 abundance, dashed line year-to-year changes in 

log10 distribution records). 
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4.4.3 Influence of biogeographical attributes  

The R2 value for each species’ inter-annual distribution-abundance relationship (i.e. 

relationships between year-to year changes in log10 distribution records and year-to-year 

changes in log10 abundance; as in Figure 4.2) was then analysed in relation to the 

biogeographical attributes of each species, which are provided in Table 4.1. We tested all 

these variables in a full model (PGLS, λ = 0, R2 = 0.64, F4,28 = 12.58, AIC = -30.43, P = <0.001; 

Table 4.2a). Only mean absolute year-to-year changes in distribution records and its 

quadratic term significantly influenced inter-annual distribution-abundance relationships: 

total number of distribution records and fractal dimension did not, and were consequently 

dropped during model simplification. The best and most parsimonious model (PGLS, λ = 0, 

R2 = 0.63, F2,30 = 26.02, AIC = -33.70, P = <0.001; Table 4.2b) revealed that the strength of 

the relationship (R2 value) increased with overall variability in distribution records (Figure 

4.3). Thus, the results show that species with greater fluctuations in distribution records 

over time had stronger inter-annual distribution-abundance relationships (although the 

effect of variability in records was non-linear and asymptoted at roughly 0.8; Figure 4.3). 

Two species (Celastrina argiolus and Vanessa cardui) potentially had strong effects on the 

analyses (Figure 4.3c), but excluding these two species did not alter our conclusions (Table 

A4.1).  

 

 

 

 

 

 

 

 



 

 

 

Table 4.2a and 4.2b. The influence of species attributes on the goodness of fit (R2 value) of the inter-annual distribution-abundance 

relationships, which is the response variable. Table 4.2a shows the first, full model with the following explanatory variables: mean absolute 

year- to-year change in distribution records, total number of species records, and fractal dimension. The model summary statistics were:    

λ = 0, R2 = 0.64, F4,28 = 12.58, AIC = -30.43, P = <0.001. Table 4.2b shows the best model with only one explanatory variable: mean absolute 

year-to-year change in distribution records. Model summary statistics: λ = 0, R2 = 0.63, F2,30 = 26.02, AIC = -33.70, P = <0.001. In both 

models, the quadratic term of the mean absolute year-to-year change in distribution records was included to account for the non-linear 

nature of the relationship, and model results with estimated λ were not significantly different from a model with λ set to 0 (Fig. 3).  

 

 

 

 

 

 

 

Coefficients Estimate Std. Error t value P 

a)     
Intercept -0.333 0.193 -1.724 0.096 
Mean year-to-year change in log10 distribution records 6.756 1.385 4.879 <0.001 
Quadratic mean year-to-year change in log10 distribution records -8.307 2.310 -3.597 0.001 
Total number of species records <0.001 <0.001 0.570 0.573 
Fractal dimension -0.025 0.290 -0.086 0.932 
     
b)     
Intercept -0.317 0.128 -2.481 0.019 
Mean year-to-year change in log10 distribution records 6.701 1.351 4.961 <0.001 
Quadratic mean year-to-year change in log10 distribution records -8.214 2.250 -3.660 <0.001 

7
2

 



73 

 

Figure 4.3. Inter-annual distribution-abundance relationship and three biogeographical 

attributes of the species: a) total number of distribution records (PGLS, λ = 0.907, R2 = <0.01 

F1,31 = 0.09, P = 0.76); b) fractal dimension (PGLS, λ = 0.928, R2 = 0.02, F1,31 = 0.61, P = 0.44), and 

c) mean absolute year-to-year change in log10 distribution records (PGLS, λ = 0, R2 = 0.63, F2,30 = 

26.02, P = <0.001). Each dot represents a species; the numbered data points on panel (c) are 

Celastrina argiolus (1) and Vanessa cardui (2). 
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4.4.4 Comparison of national and regional inter-annual 
distribution-abundance relationships 

The strength of inter-annual distribution-abundance relationships computed for species at a 

regional level (Dorset) were strongly positively correlated with those computed at the national 

level, PGLS, λ = 0.562, R2 = 0.53, F1,21 = 23.25, P = <0.001; Figure 4.4). This is despite the fact that 

the average value of the inter-annual distribution-abundance relationships was higher at the 

national level (Mean, National = 0.41 Regional = 0.19; SD, National = 0.24 Regional = 0.24). 

Therefore, we conclude that any differences in population synchrony between national and 

regional scales had little influence on the strength of inter-annual distribution-abundance 

relationships for butterfly species.  

 

 

 

 

 

 

 

 

Figure 4.4. National inter-annual distribution-abundance relationship regressed against a 

regional inter-annual distribution-abundance relationship (region = county of Dorset) 

calculated for 23 butterfly species, indicated by the solid black line. The dashed line indicates 

the 1:1 line. 
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4.5 Discussion 
We found that citizen-collected distribution data can be used to extract information about 

population variability, in the absence of bespoke abundance monitoring programmes. In 

particular, mean year-to-year changes in distribution records were positively related to mean 

year-to-year changes in abundance (with outlier species removed, R2 value: 0.66; Figure 4.1). 

Thus, we were able to identify species with low and high between-year population variability 

quite accurately, using distribution data. This result supports the ability of unstructured citizen 

science data to reflect population-dynamic patterns found in long-term abundance data, and 

hence citizen science data may be useful in multi-species studies for which it is necessary have 

an overall measure of population variability (Robertson et al. 2015; Gandiwa et al. 2016) where 

abundance data are lacking. The ability to recognise species with the highest levels of 

population variability may help identify species that are at greatest risk of stochastic extinction 

following habitat fragmentation (Pimm, Jones & Diamond 1998; Vucetich et al. 2000; Oliver et 

al. 2012), and the most variable species may potentially be the most responsive to yearly 

variation in climatic conditions (Maclean et al. 2008; Howard et al. 2015) and to parasitoids or 

other natural enemies (Robertson et al. 2015). The findings from these analyses imply that 

information from citizen science data can provide useful input to landscape-scale conservation 

planning and to climate-change risk assessments. 

When we considered each species in turn, there was considerable variation in the strength of 

relationships between year-to-year changes in distribution records and abundance among the 

study species; although these associations were always positive, averaging an R2 of 0.36 across 

all species (Table 4.1). These relationships suggest that there is also some potential to use the 

distribution records of individual species to infer their population dynamics in greater detail 

(rather than as one metric for overall variability of the time-series). However, this is only 

feasible for some species: only eight out of 33 species having ‘strong’ relationships (R2 > 0.5) 

between year-to-year abundance and distribution changes. Thus it should not be presumed 

that distribution records can be used as a substitute for population data in the assessment of 

inter-annual change for all species. 
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4.5.1 Inferring abundance change from distribution data 

Many species are declining or facing range retractions (Hayhow et al. 2016), and it is important 

to monitor their population trends. Species with highly variable population dynamics tend to be 

at high risk of extinction (Pimm, Jones & Diamond 1998; Vucetich et al. 2000; Oliver et al. 2012) 

and thus our measure of variability in distribution records has ecological value, with the 

potential to assist conservation assessments by helping to identify species at risk of extinction 

or habitats in need of management (Meyer et al. 2015; Sánchez-Hernández, Cobo & Amundsen 

2015). Our multi-species analysis (Figure 4.1) indicates that it is possible to derive robust 

estimates of population variability using distribution data alone. 

Despite the promising results, there are two caveats that we should highlight. In this study, we 

examined only one taxonomic group with a high level of recording effort by citizen scientists. 

We also included only species with data in every year of the study period, excluding rare/less 

well-studied species. The value of other distribution datasets with lower recording effort may 

not be so informative. Kamp et al. (2016) found that reducing the number of distribution 

records resulted in poorer abundance trend estimates for Danish birds. Even without reducing 

the sample size, population trends were misclassified for 50% of the species they considered. 

Thus, using distribution data to infer population changes may require quite mature citizen 

science schemes, with substantial numbers of distribution records. Given that butterflies are a 

data-rich taxonomic group in the UK it is unknown whether other groups will have sufficient 

data to replicate these results. Datasets which may have sufficient data for this method are 

butterflies in other countries, or other taxa in the UK, for which standardised abundance 

monitoring schemes are lacking, e.g. dragonflies. 

The second caveat is that more detailed population-dynamic interpretations of distribution 

data only seem possible for some species. Our finding that citizen science distribution data 

explain an average of only 34% of the year-to-year variation in abundance is unlikely to be 

sufficient to build meaningful models for examining the sensitivity of populations to 

environmental drivers, such as specific climate variables. For example, Malinowska et al. (2014) 

were unable to detect impacts of extreme weather events on populations of ectothermic 

species from distribution records, despite evidence of these impacts from population data (e.g. 

Oliver et al., 2015b). In addition, while we have removed species which have unusually high 

levels of recording effort due to species-specific surveys, not all species are necessary reliably 
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monitored by UKBMS, which could result in poor year-to-year distribution-abundance 

relationships. For example, the purple hairstreak butterfly (Favonius quercus) occurs in tree 

canopies, and is therefore difficult to monitor from ground-based surveys. Other species may 

suffer from limited recording for other reasons, such as occurring in restricted locations or not 

being identified correctly due to confusion with other morphologically similar species. 

4.5.2 Biogeographical attributes 

Despite the above caveats, we conclude that year-to-year changes in distribution records 

represented an adequate proxy for abundance change in species with large fluctuations in their 

occurrence from year to year (Figure 4.3, Table 4.1). Species with large year-to-year 

fluctuations in their occurrences, such as migrants, may offer the greatest statistical power to 

deduce population changes from distribution data. Even though two migrant species and the 

holly blue butterfly Celastrina argiolus demonstrate the strongest inter-annual distribution-

abundance relationships, the mean year-to-year change in distribution records was also an 

important variable in predicting the strength of the year-to-year distribution-abundance 

relationship for other species. Therefore, mean year-to-year change in distribution records may 

help to identify non-butterfly species where citizen science distribution data could be used as a 

‘replacement’ for direct population data. We found that total numbers of records and fractal 

dimension did not significantly influence the inter-annual distribution-abundance relationship. 

The most parsimonious explanation for this is that these variables are not important, and that 

our hypotheses, that the statistical capacity to detect year-to-year variation in abundance from 

distribution records was linked to the total number of distribution records, and fractal 

dimension, were wrong.  We had predicted that a large total number of records would mean 

greater statistical power to find the inter-annual distribution-abundance relationship. The lack 

of a significant relationship between the inter-annual distribution-abundance relationship and 

total number of distribution records could be because patterns of year-to-year change in 

distribution records can be similar those in abundance even when numbers of observations are 

low. Recorder behaviour may have biased our results, as recorders may not record widespread 

common species on an ad hoc basis instead favouring notable records (e.g. rare species), this 

contrasts the abundance data that were collected following a structured survey design where 

all species seen are recorded. This could lead to mismatch in abundance and distribution 

patterns even for inter-annual changes, as recording effort varies temporally. Finally, the 
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lowest total number of distribution records in this study was quite high (see Table 4.1), 

therefore the concerns with low sample size were not an issue here. However, the issue may 

be important to other more poorly recorded taxonomic groups.  

Fractal dimension of species’ distribution also did not impact the inter-annual distribution-

abundance relationship. This might be because even if a range is fragmented, distribution 

recorders and transect volunteers still find and document species in those locations. In 

addition, if a species is known to be fragmented (which usually indicates rareness or being at 

risk of extinction), there may be a recording bias towards it (Isaac & Pocock 2015), which 

results in good information for that species. Therefore, species with a high fractal dimension 

may still have a positive inter-annual distribution-abundance relationship. However, it should 

be noted that species which are very poorly studied, and therefore likely rare and in 

fragmented habitats, were not been included due to the selection criteria. The study species 

also had ranges which were relatively well-filled, with fractal dimension scores ranging from 

0.257 to 0.716 (maximum possible value is 2). It is possible that fractal dimension is an 

important factor for highly fragmented species, and there may have been insufficient variation 

in this attribute to be important to the inter-annual distribution-abundance relationship. 

Similarly we found no relationship between the inter-annual distribution-abundance 

relationship and dispersal for butterflies (Table A4.2). If these variables lack significant 

explanatory power even for a well-studied taxon, then this suggests that they will have limited 

use for identifying species in other taxa for which our method may be appropriate.  

4.5.3 Population synchrony and inter-annual distribution-
abundance relationships 

The success of year-to-year changes in distribution records mirroring abundance changes in 

migratory species suggests that population synchrony over large areas may play a role, and so 

we examined the impact of scale on the inter-annual distribution-abundance relationship by 

comparing national and county-level analyses. Weak relationships at the national level may 

occur if species’ population dynamics are asynchronous, such that abundances and 

distributions may be closely linked locally, but a ‘good year’ in one region might occur when it 

is a ‘bad year’ in another region, obscuring any overall pattern at a national scale. However, 

when we repeated the national-scale analysis for a much smaller region (the county of Dorset), 

the results were similar: goodness of fit scores across species for the inter-annual distribution-
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abundance relationship for Dorset were correlated with those for the same species at the 

national level (Figure 4.4). The majority of species had lower R2 values for the regional analyses, 

probably due to reduced data quantity. The spatial scales at which abundance and distribution 

changes are linked deserve more attention, but our preliminary conclusion is that reducing the 

extent of the study region considered does not improve the inter-annual distribution-

abundance relationship. 

4.5.4 Conclusions 

The key finding that (mean year-to-year changes in) citizen-collected distribution data can 

provide useful information on population variability suggests that it may be possible to expand 

these methods to other taxonomic groups, or to populations of butterflies in countries that do 

not have standardised population monitoring schemes. Such measures of variability can inform 

habitat, landscape and regional conservation decision-making. The use of distribution data for 

more detailed analyses of inter-annual population change is only likely to be possible, however, 

for species that have highly variable numbers of records between years. For these species, it 

may be possible to analyse year-to-year population changes across much longer time periods 

than are covered by transect data and hence identify how populations are influenced by the 

effects of specific weather variables, density dependence, and any other process that operates 

at a large geographic and temporal scale. Further investigation is required, however, in the 

feasibility of extending these methods to other taxonomic groups without abundance data (e.g. 

grasshoppers, dragonflies). 
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Chapter 5 

General Discussion 

5.1 Synthesis 
The overall aim of my thesis was to explore species’ responses to climate change, quantifying 

rates of range shifts for multiple taxonomic groups and testing the influence of species’ 

attributes and landscapes on these shifts. I did this by utilising British species’ occurrence 

records and land cover maps derived from satellite and cartographic data. My results 

demonstrated that species are, on average, shifting their ranges northwards, and habitat 

specialism and the availability of suitable habitats influences the rate of species’ range 

expansion. Quantifying species’ habitat availability can help conservationists determine 

appropriate actions to facilitate range shifts. In addition, I investigated the potential for 

distribution data to be used as a proxy for abundance patterns. Environmental changes affect 

species’ populations, making it valuable to find ways to make deductions about changes to 

species’ populations in circumstances when abundance data are lacking. I found that the mean 

year-to-year change in distribution records and the mean year-to-year change in abundance 

matched well across all species, suggesting that distribution records may be applied to 

ecological studies in place of abundance change metrics. Below, I briefly review the content 

and results of each of my chapters, before discussing my results and their implications for 

ecology, conservation and species monitoring. 

Chapter 1 is a General Introduction to my thesis, and provides an overview of the impacts of 

climate change on biodiversity, explaining the need to understand how species are responding 

to climate change, and clarifying how citizen science data facilitate the exploration of patterns 

in species’ range shifts. 

In Chapter 2, I investigated the variation in rates of range shifting among 21 taxa, using citizen 

science data to measure changes in northern leading-edge range boundaries from 1966 to 

2010. For the analyses, I examined range shifts across two intervals: interval 1 was 1966 to 

1995, and interval 2 was 1986 to 2010. In this chapter, I investigated variation in range shifting 

rates among taxa and over time. I found that taxonomic groups studied experienced a mean 
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northwards range shift of 24 km decade-1 over interval 1 (13 taxa), and 18 km decade-1 over 

interval 2 (16 taxa). At least half of the taxonomic groups studied underwent significant 

northwards shifts for at least one level of recording effort. The different levels of recorder 

effort were: ‘recorded’, for which range shift calculations incorporated data for all cells where 

at least one species was recorded in both time periods of one interval; ‘well recorded‘, which 

included all cells where at least 10% of a regional species richness was recorded in both time 

periods; and ‘heavily recorded’, with cells including 25% of a regional species richness. There 

were significant differences in rates of range shifting among taxonomic groups at every level of 

recording effort (P<0.05), and confidence intervals indicate high levels of variation in range 

shifts within groups. I also investigated changes in the rate of range shift over time for four taxa 

(dragonflies and damselflies, birds, butterflies and macromoths), and found that the 

Lepidoptera appeared to have accelerated their range expansions over interval 2. I concluded 

that species are responding to environmental change through range shifts, that there is 

variation in rates of shift within and between taxa, and that these rates may not be constant 

over time. 

In Chapter 3, I tested the influence of habitat and traits on rates of range shifting for 347 

species (from 14 taxa) over four decades (1976-1990 to 2001-2015). I investigated the relative 

importance of habitat specialism (a single score indicating how strongly a species was 

associated with 18 habitat classes) and habitat availability (the probability of species being 

observed in those habitats) on range shift, measured as the distance in kilometres that a 

species’ northern range margin moved per year. I used species-specific values for all metrics. 

Using linear regression, I found that there appears to be more variation in range shifts among 

species within taxonomic groups (91%) than between taxonomic groups (9%). I tested the 

hypothesis that habitat availability provides a stronger explanation for the observed variation 

in species’ range shifts, compared to specialisation. Both specialism (4%) and habitat 

availability (17%) significantly explained variation in rates of range shifting (linear mixed-effects 

model, P<0.01). Next, I included an interaction term in my linear model that compared habitat 

availability across the whole range with availability at the northern margin for each species. 

Those species with less habitat availability at the margin were less likely to shift their northern 

range margins polewards. The amount of variation explained by the covariates depended on 

the level of recording effort (defined as the number of heavily recorded grid cells, as described 

in Chapter 2 and above). For well-recorded groups, covariates explained 36% of variation in 
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rates of range shifting. If all 2566 hectads in the study region had been heavily recorded for all 

taxa groups, I estimated that the influence of habitat and traits could explain up to half of the 

variation in species’ range shifts. I concluded that variation in species’ range shifts is driven 

substantially by the habitat availability of species, which is the interplay between species’ level 

of specialisation, the types of habitats species are specialised to, and the accessibility of habitat 

within the landscape. By increasing connectivity and the amount of habitat in the landscape for 

species with low habitat availability, conservationists can facilitate range expansions that may 

not otherwise occur (see ’Conservation Management’ section below). 

In Chapter 4, I examined the potential of distribution data to act as a proxy for changes in 

species’ abundance. Using 33 British butterflies in both between- and within-species analyses, I 

explored whether there were relationships between inter-annual changes in abundance and 

inter-annual changes in distribution records. A multi-species analysis demonstrated that the 

relationship between mean year-to-year changes in abundance and mean year-to-year changes 

in numbers of distribution records was positive and strong (PGLS, R2= 0.95, F1,31 = 623.8, P = 

<0.001). This relationship was maintained when two outlier species were removed from the 

analysis (PGLS, R2= 0.66, F1,29 = 55.35, P = <0.001). Next, I performed a species-specific analysis 

of the relationship between year-to-year changes in abundance and year-to-year changes in 

distribution records. My findings demonstrated that the strength of the relationship varied 

among species (min R2= 0.03 for Boloria selene, max R2= 0.92 for Vanessa cardui, mean R2= 

0.36), implying that using distribution data to monitor inter-annual population changes is 

limited to certain types of species. I investigated species-specific biogeography attributes that 

could explain variation in R2 values. I found that species that had large mean year-to-year 

changes in distribution records showed strong inter-annual abundance-distribution 

relationships (R2 >0.5). In other words, it is feasible to use year-to-year changes in distribution 

records to estimate abundance changes for species such as Vanessa cardui and Celastrina 

argiolus, which have high levels of inter-annual population variability. I concluded that 

distribution records have potential to be used to measure population variability and long-term 

changes in year-to-year abundance.  

In my data chapters, I found that variation in species’ range shifts is influenced by the species’ 

traits and habitat availability. However, much of this variation remains unexplained. I also 

found that distribution data has potential to be used as a proxy for abundance patterns, which 
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is important because abundance data is lacking for many species. In the remainder of this 

chapter, I discuss the implications of these findings, their relationship to the wider literature, 

constraints of my studies and future opportunities for research. I then discuss the overall 

contribution of my findings for conservation of species under climate change, the future for 

citizen science recording schemes, and my final conclusions. 

5.2 Exploring variation in range shifts 
The results indicate that many species from a wide variety of taxonomic groups are shifting the 

leading-edges of their ranges polewards in response to climate change. This finding provides 

further evidence to support the evidence in the current literature, which shows species are 

shifting polewards (Parmesan & Yohe, 2003; Chen et al., 2011a; Lenoir & Svenning, 2015). I 

quantified variation in range shifts within and between taxonomic groups in this thesis, and I 

discuss this below.  

One of my primary goals was to explore variation in range shifts within and between taxonomic 

groups, and I found that, while there are significant differences in mean range shifts among 

different taxonomic groups (Chapter 2), linear regressions revealed that there is more variation 

within groups than between groups (Chapter 3). This is new evidence; previous studies that 

have assessed rates of range shifting have not previously analysed this variation. Chen et al. 

(2011a) examined rates of shift between different taxonomic groups and concluded that 

groups showed similar averages, but contained species with variable rates of range shift, and 

did not explicitly test variation within- and between-groups. My findings indicate that closely-

related species within a single taxon may not necessarily have similar responses to climate 

change. In an ecological context, this conclusion is perhaps unsurprising as single taxonomic 

groups contain species with a variety of niches, life histories, reproductive strategies, habitat 

specialisations, and climate sensitivities, and therefore would be expected to vary in their rates 

of range shift. My results indicate that species within taxonomic groups should be investigated 

individually to quantify specific responses to climate change. Variation in range shift within 

taxonomic groups may be driven by a few species, where most species are responding in a 

similar manner, but a few make large retractions or expansions, which has been observed in 

grasshoppers and crickets (Beckmann et al., 2015). Therefore, average range shifts should be 

taken as general observations about groups of species, and these average shifts may not be 

indicative of rates of individual species’ range shifts.  
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Another discovery of my research is that some taxonomic groups appear to be increasing their 

rates of range shifting over time. For example, butterflies and macromoths shifted their 

northern range margins faster in interval 2, compared to interval 1 (Chapter 2). Past changes in 

rates of range shift have been measured over coarse spatial and temporal scales (Jackson et al., 

2000; Davis & Shaw, 2001), and few studies have considered changes in rates of range shifts 

over recent time scales. One example is the work of Mair et al. (2012), who measured range 

shifts in British butterflies from 1970 to 2009. They noted that species had faster rates of 

shifting in the second time interval (1.29 km yr-1 on average; 1995-1999 to 2005-2009) than the 

first (-0.17 km yr-1 on average, 1970-1982 to 1995-1999), despite a smaller increase in warming 

in the second time period (0.03 °C yr-1 vs. 0.01 °C yr-1). In my study, I did not observe a 

statistically significant change in mean annual temperature between intervals. It is possible that 

the statistically significant increase in autumn (September, October, November) temperatures 

over interval 2 (0.46 °C decade-1) contributed to increases in rates of range shift in Lepidoptera, 

given that this was when most warming was detected (Chapter 2, Figure 2.4, Table A2.6). 

Warm autumn temperatures may delay insect diapause, allowing individuals to remain active 

for longer periods, potentially dispersing further. However, in spite of the many ecological 

processes that occur in autumn, the impacts of changing autumn temperatures on species is 

relatively unknown (Gallinat et al., 2015), and warrants further study.  

In Chapters 2 and 3, I examined rates of range shift and found that while the majority of species 

are shifting northward, some species have not shifted far or have retracted their ranges 

southwards (e.g. 20% of species’ range margins retracted southwards in Chapter 3). This is 

consistent with other studies; slower rates or lags in response to climate change have been 

noted in a variety of taxa including birds (Devictor et al., 2008), fish (Comte & Grenouillet, 

2013) and butterflies (Devictor et al., 2012). Invertebrates, which most of my study species 

were, tend to have rapid generation times and high fecundities, giving them an advantage in 

tracking climate change. However, some invertebrate species may be delayed in responding 

immediately to climate change due to limited dispersal capabilities, or there may be physical 

barriers such as mountains or coastlines, or regions of intensive agriculture, that prevent them 

from doing so (Parmesan & Yohe, 2003). Retractions at leading-edge range margins are a result 

of local extinctions, and for warm-adapted species in the UK, indicate that unfavourable 

climatic conditions (Thomas et al., 2006) or other, non-climatic factors such as habitat loss are 

probably influencing species occupancy of these sites. Habitat, species’ traits, climate and biotic 
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interactions have all been suggested as being important to range shifts, and hence I discuss 

them in the following sections. 

5.3 Habitat and trait drivers of range shift variation 
In Chapter 3, I found that habitat availability, which arises from the interplay with species’ 

attributes and the environment, affected rates of range shifting in multiple taxonomic groups. 

Whilst habitat is commonly assumed to be important to species’ range shifts, this idea is rarely 

directly tested among different taxa, and those tests that do exist often use methodological 

simplification, such as expert opinion (Warren et al., 2001). One of my key findings was that 

species’ attributes (habitat specialism) did not explain much variation in range shifting when 

studied alone (only ~4% across 347 species). In contrast, but when habitat associations were 

combined with a landscape context (i.e. the amount and distribution of suitable habitat), the 

explanatory power was much higher (up to 36%, and as much as 49% under an assumption of 

extensive recording). Thus, I conclude that whilst species’ attributes may be influential to rates 

of range shift, it is the context of the landscape where species are found that determines the 

impacts of species’ traits on range shifting, as species can only utilise habitat that is accessible 

to them. These results are of general importance, both for the fundamental ecological 

understanding of species’ range dynamics, and to identify effective habitat management and 

restoration strategies, which can facilitate range expansions of species for which habitat 

availability is limiting (for example, Great Crested Newts experiencing southwards retractions, 

which is likely caused by the absence of suitable breeding ponds, see Rannap et al., 2009). In 

this next section, I discuss the impacts of habitat availability and species’ traits on variation in 

range shifting, and then discuss other potential drivers of variation in range shifting in the next 

section.  

The impacts of species’ traits on rates of range shifting have been investigated many times in 

recent years. In a key study, Angert et al. (2011) tested the influence of different species’ traits 

(e.g. dispersal rates, physiology and habitat specialism) on rates of range shifting for four 

taxonomic groups (mammals, birds, dragonflies and alpine plants). They found only weak 

associations between traits and rates of shift, with only 3-6% of range shift variation explained 

by traits. Because there are many species’ attributes, and different methods to measure them, 

understanding the role of species’ characteristics on range shifts is not a simple task. MacLean 

& Beissinger (2017) published a recent review and meta-analysis of trait studies across multiple 
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taxa, including more species than Angert et al., and analysed the effect sizes of different traits 

on variation in range shifts. Habitat breadth (the number of habitats a species occupies) in 

some studies had significant positive impacts, so that generalists moved further than 

specialists. However, an important point noted by these authors is that effect sizes of habitat 

specificity varied across studies, and they suggested that this may be due to differences in the 

methods used to calculate specialism metrics. Coverage and quantity of data available may also 

contribute to differences in trait effect sizes, as my findings in Chapter 3 indicated that 

recording effort influenced the amount of variation explained by my models. While habitat 

specialism does appear to be important does appear to be an important influence on range 

shifts, many traits remain untested or have insufficient evidence to determine whether they 

impact range expansion (MacLean & Beissinger, 2017). 

As part of my analysis on the influence of habitat availability on species’ rates of range 

expansion, I used a metric which assessed specialism based on a species distribution modelling 

(SDM) approach (Julliard et al., 2006). By using a logistic regression with a detailed, fine-scaled 

land cover map and long-term species presence data, I determined the likelihood of species’ 

presences in different habitats. The species’ specialism index (SSI) was the coefficient of 

variation calculated from these likelihoods. This methodology for quantifying habitat 

associations of species can potentially be applied to any species that has sufficient occurrence 

data (at least 50 occurrence records found in 100m cells containing one land use or habitat 

type), and where habitat data are present. Previous methods of measuring habitat 

specialisation of species have relied on expert opinion (Reif et al., 2010), or on creating 

composite scores of ecological values (Oliver et al., 2009), or on counting the number of 

habitats where a species is present (MacLean & Beissinger, 2017). Measuring habitat specificity 

objectively is difficult and many methods of calculation do not allow ecologists to compare 

across different taxa (Lawton, 1993; McGeoch & Latombe, 2016). The method I use addresses 

some of these issues, by providing a way of investigating species’ habitat associations that is 

quantitative, comparable across taxa, and does not require in-depth ecological knowledge of 

species.  

In my investigation on the impacts of habitat availability on range shift, I found that habitat 

availability at the northern range margin (relative to the whole range) had a significant effect 

on rates of range shift. In the UK, the quantity of upland and montane habitat increases with 
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latitude, and southern species that are specialised to lowland habitats may be less likely to 

have as much suitable habitat in the north of the country. Habitat generalists, utilising many 

habitats, and habitat specialists, that utilise montane and upland habitat, will be able to expand 

through these areas (excepting any non-habitat barriers). Therefore, habitat availability at the 

leading-edge margin, as determined by species’ specialism, may be a critical barrier to British 

species’ ability to track climate and expand their ranges. This has implications for conservation 

efforts, which can implement techniques to assist species to overcome problems caused by low 

habitat availability, which I discuss further below in Section 5.4. 

5.4 Climate change and other drivers of range shifting 
Habitat and species’ specialism explained up to 36% of variation in range shifts (Chapter 3), yet 

much of the variation in rates of range shifting remained unexplained. Range shifts were 

examined as a response to climate change, however the degree to which climate drives 

variation in range shifts for multiple taxonomic groups (as opposed to other drivers such as 

habitat and species’ traits) is largely unknown. A lack of abundance data or detailed 

understanding of population trends for most species meant that investigating species’ 

sensitivity to climate, as a driver of range shift variation, was not possible in my thesis. I found 

that range shifts, as well as habitat specialism and availability, are species-specific. This implies 

that the degree to which climate impacts species’ rates of range shift may also be 

individualistic, an idea which is supported in the literature (Davis and Shaw, 2001, Parmesan et 

al. 2006), who suggest that past and present range shifts may be linked to species’ climatic 

tolerances. The majority of studies focus on single dimensions of climate i.e. mean temperature 

changes, although species are likely to respond to several different aspects of the climate, such 

as rainfall and seasonal temperatures. Variability and declines in species’ populations as a 

response to climatic extremes have also been shown to be highly individualistic (Palmer et al., 

2017), which is why proxy metrics for population variability would be beneficial to ecologists 

wishing to assess species’ status under climate change. I discuss my attempts to produce a 

proxy measure of abundance changes below (section 5.6.1)  

Because different environmental processes impact species’ responses to climate change, there 

is much uncertainty around the extent to which these factors interact. Many biotic factors 

influence range shifts, such as interspecific competition, population dynamics and predation 

(Van der Putten et al., 2010). Mair et al. (2014) found that the importance of habitat availability 
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(measured as the proportion of a butterfly’s breeding habitat in the landscape) was moderated 

by species’ population trends. Population growth was a key predictor of range margin shift, 

because stable and increasing population produce individuals which can disperse and establish 

further populations. This suggests that habitat creation and restoration to improve availability 

will not help declining species unless these conservation practices also have positive effects on 

population trends. Abundance trend data were not available for most of my study species, and 

so I could not test the importance of population trends on range shifting in my study, but 

further research could investigate whether habitat availability as measured in this thesis also 

interacts with abundance to influence range expansion. 

5.5 Conservation management 
Under climate change, species may respond to altered environmental conditions by exhibiting 

phenotypic plasticity, adapting in situ, moving to environments that are more suitable, or by 

going extinct. My findings suggest that while some species are able to shift their ranges to track 

climate change, other species are shifting their ranges at a slower rate or not at all. The failure 

of species to shift their ranges in response to environmental change may result in local or, 

eventually, global extinction. Therefore, conservation strategies can be implemented to 

facilitate range shifting for these at-risk species. Several techniques are available to do this, by 

tackling different constraints that limit dispersal and the colonisation of new habitats. These 

include the role of protected areas, habitat connectivity, and human movement of species 

(through reintroductions and translocations). I will introduce each of these techniques and 

their advantages and disadvantages. 

5.5.1 Protected areas and connectivity 

This thesis demonstrates that habitat availability is important for species’ range shifts, and so 

conservation could aim to maintain the quantity and quality of suitable habitat, which will act 

to both provide breeding habitats for species to establish populations, and suitable habitats 

which will help species move through landscapes (Thomas & Gillingham, 2015). Protected areas 

(PAs) are a longstanding method for conserving species where a specific area of land is afforded 

special status, forbidding certain human activities in it and/or promoting beneficial 

management. Over 18% of land in the European Union is protected under the Natura 2000 

network (European Environment Agency, 2015), and the UK has many types of PA, depending 

on the conservation need. These areas are designated by governmental and public bodies, and 
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include National Nature Reserves, Sites of Special Scientific Interest, and Special Areas of 

Conservation.  

As species are shifting their ranges under climate change, there has been concern that species 

currently protected by PAs, would shift outside of these regions, reducing conservation 

protection of vulnerable species and therefore the conservation value of PAs. Thomas and 

Gillingham (2015) reviewed the impacts of protected areas for species under climate change 

and found that while some species shifted their ranges out of protected areas, others persisted 

or colonised PAs as they shifted polewards. Thus, one benefit of PAs is that they may act as 

breeding sites for colonising species, and hence help facilitate range shifts (Thomas et al., 

2012). PAs have also been referred to as ‘landing mats’ and ‘stepping stones’ due to their role 

in allowing species to establish populations and move polewards beyond PA borders (Thomas 

& Gillingham, 2015). In addition, PAs support retracting species, which have showed increased 

persistence within protected regions (Gillingham et al., 2015). PAs benefit species and their 

range shifts by maintaining the amount of available habitat in the landscape through 

management and protection, and conservation efforts should maintain these areas for species.  

Protected areas can also provide connectivity benefits, which are key management strategies 

for facilitating species’ range shifts (Saura et al., 2014). As the climate changes, functional 

connectivity is important for many southern species in the UK, so they can disperse across 

landscapes and colonise climatically-suitable habitats. Enhancing habitat connectivity is done 

through the (re)creation and maintenance of new or existing habitat. Computer modelling 

studies have been used to assess how species will move through landscapes (Hodgson et al., 

2012), identifying colonisation routes through different landscape structures (Hodgson et al., 

2016a) and suitable sites to create and restore habitats. Being able to identify how species 

move through landscapes, and therefore which habitat patches, corridors and conservation 

techniques are associated with high levels of dispersal and range expansion is a vital tool for 

conservationists to implement evidence-based management for range shifting species 

(Baguette et al., 2013). Connectivity measures can be variable in their success, for example, 

wildlife road tunnels, designed to allow species such as great crested newt (Triturus cristatus) 

to transverse underneath, are often not utilised by individuals (Matos et al., 2017). These 

results suggest that careful monitoring is required to check the success rate of connectivity 

measures, with reassessment of conservation strategies based on the latest evidence.  
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5.5.2 Reintroductions and translocations 

My results demonstrate that species with less habitat availability at their northern range 

margins will be less likely to shift northwards into newly climatically suitable areas. Creating 

new habitat or linking habitats together is not always feasible, and so conservationists 

transport species to new areas, bypassing barriers to species’ dispersal that prevent re-

colonisations. Reintroduction is the practice of moving individuals of a species to establish a 

new population, in a location where the species was previously present but became locally 

extinct. Translocation involves the same actions, but species are moved to locations where they 

are not know to have existed previously, but where conditions are now suitable.  

Reintroductions are undertaken in order to rebuild populations where they are known to have 

been established in the past. The motivations for doing so may be to protect species from 

extinction, return ecosystems to a ‘traditional’ state, or to reap ecosystem service benefits 

from the reintroduction. A case study is the reintroduction of the large blue butterfly 

(Maculinea arion) to England, after total extinction in the UK in 1979 (Thomas, 1995). The large 

blue is an endangered species, with a globally declining population. The extinction of this 

species in Britain is thought to have been driven by changes in agricultural practises, coupled 

with specific needs to support a complex life cycle. Reintroductions have taken place at several 

locations, and the butterfly has been successfully re-established in England, 33 years after the 

first reintroduction in 1984. This example demonstrates that reintroductions can benefit 

endangered species that have become locally extinct. However, if climate change makes an 

environment unsuitable for a species, then there is no logic in reintroduction (Seddon, 2010), 

as re-establishment sites must meet the species’ requirements for long-term persistence. 

Conservationists must consider not only how suitable a potential habitat is now, but also how 

suitable it will be in the future as the climate continues to change. In 2013, the IUCN released 

guidelines on releasing species to indigenous and non-indigenous habitats, emphasising that 

for reintroductions, the causes of extinction must be removed or sufficiently reduced before 

any action is taken (IUCN/SSC, 2013). This is why translocations should be preferred in cases 

where climate-driven extinctions occur (Thomas, 2011): species can be moved outside their 

indigenous ranges, and ecosystems which lose species of important functional groups can 

acquire different non-indigenous species which fulfil those roles. Certain types of habitat are 

becoming climatically unsuitable for the species which traditionally dwelt there, such as 
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montane habitat (Hoegh-Guldberg et al., 2008). Species have been noted to shift to higher 

elevations under climate change (Hickling et al., 2006; Chen et al., 2011b), and translocations 

to higher regions outside of species’ indigenous ranges (if possible) may be the only option for 

conservation beyond committing species to extinction. Translocations can assist species that 

have barriers to dispersal (e.g. physical barriers such as mountains, or threats to population 

growth such as disease, competition or predation) and are restricted to isolated habitats. 

Where habitat has become unsuitable, careful management and restoration can make 

conditions suitable for reintroductions. In order to help species respond to climate change, 

these activities are likely to become a vital part of conservation management. 

Human movement of species has many benefits but it also comes with risks. Dealing with the 

logistics of capturing individuals, moving them, monitoring their progress, costs time and 

money, and can have legal constraints, especially if these actions occur over country borders 

(Hoegh-Guldberg et al., 2008). Many introduction attempts fail, which can reduce species’ 

populations; all such projects require careful planning and management (IUCN/SSC, 2013). 

When species are introduced to new areas, there is always uncertainty of how species will fit in 

the pre-existing ecological networks. A famously disastrous example is the release of the cane 

toad Bufo marinus into Australia to act as biocontrol for beetles that fed upon sugar cane 

crops, whereupon the toads became invasive pests. To prevent similar problems occurring, 

conservation actions that involve moving species must be carefully planned. 

To summarise, there are effective conservation strategies available to assist species under 

climate change. Conservation management practices tend to be undertaken by conservation 

charities or government agencies which either target taxonomic groups (e.g. in the UK the 

charity Butterfly Conservation) or geographic areas (e.g. National Park Authorities and Wildlife 

Trusts). These groups need to manage habitats to support the general ecological requirements 

of species according to their rates of range shift, helping maintain breeding habitats to support 

populations, improving connectivity to facilitate range expansions, and moving species to 

establish populations in suitable locations when necessary and appropriate. 
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5.6 Recording species: applications and future prospects  
Throughout this thesis, I stress the importance of measuring biogeographical responses to 

climate change across multiple taxonomic groups. My results endorse the value of citizen 

science data for measuring these responses, using these data to estimate range shifting rates, 

and factors affecting range shifts, including habitat availability. Data derived from citizen 

science schemes can address many ecological questions. In this thesis, I have focussed on 

occurrence data from citizen science schemes, but other sorts of data can be derived from 

voluntary mass participation activities such as Zooniverse, where members of the public extract 

scientific information from images, e.g. population sizes from pictures of penguin colonies 

(Simpson et al., 2014). Here I discuss how I have used occurrence records to estimate 

population trends and my thoughts on the future of recording for ecological research.  

5.6.1 Measuring population variability 

In my thesis, I decided to take a different approach in Chapter 4, and explored the potential for 

distribution data to act as a proxy for abundance data, as abundance is a valuable metric that 

can be used to measure species’ responses to environmental change. By doing this, I provided 

new evidence that population variability information could be obtained from distribution data 

for some British butterfly species, particularly species with highly-fluctuating populations. Inter-

annual fluctuations in population are often linked to weather variation, with climate change 

causing positive or negative impacts depending on species’ climatic tolerances. Martay et al. 

(2016) used inter-annual variation in abundance to assess the impacts of climate change on 

mammal, bird, aphid, and Lepidoptera species, and concluded that climate change is causing 

population declines in many species, while promoting increase in other species. McCain et al. 

(2016) carried out simulations to test the impacts of population variability on estimates of 

population trends and range shifts. They found that when abundances were low, but highly 

variable, there was a 50% chance of detecting local extinctions where none occurred, and 

moderate to high variability in abundance produced a bias towards detecting false range 

expansions and contractions. This means that population variability influences detections of 

range shifts and other responses to climate change. To accurately measure these responses, 

ecologists need to develop methods to estimate these abundance patterns for species without 

detailed population data.  
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There are several avenues for further research after my exploration of a potential abundance 

proxy; firstly, whether other groups with abundance data (macromoths and birds) demonstrate 

similar relationships between abundance and distribution metrics, as my research as only 

examined butterflies. The second question would be whether this abundance and distribution 

relationship is observed in other groups, most of which have no abundance data. This is an 

interesting and important question because taxonomic groups that are lacking in detailed 

abundance information would benefit most from an accurate proxy metric, providing new data 

on how the populations of those species change and respond to changes in their environment, 

particularly climate change. To explore this question, I would investigate the how reducing the 

level of recording intensity would impact the relationship between year-to-year changes in 

abundance and numbers of distribution records. My study was focussed on a taxonomic group 

(butterflies) with widespread intensive recording effort, however this level of recording effort is 

not common across all taxonomic groups (Chapter 2, Figure 2.2). Using the butterfly 

distribution data, subsampling methods would be applied to test how recording intensity (and 

variation in recording effort in time and space) affects the capability of occurrence records to 

measure population variability. These additional investigations further explore the potential for 

citizen science data to provide metrics of population dynamics.  

5.6.2 Future of recording 

As the trajectory of climate change and habitat loss, and consequently their impacts, are set to 

continue (Frishkoff et al., 2016), and ecologists should explore methods for encouraging 

widespread species monitoring, to provide data to examine these impacts. One of the main 

concerns for recording species’ responses to climate change is encouraging the monitoring of a 

wide array of species, so that ecologists can observe responses in different types of species in 

different environments. While I have demonstrated the heterogeneity of responses across 

multiple species and groups in this thesis, the majority of species that are included belong to 

invertebrate families. Invertebrates are only one part of biodiversity, though a large one. It is 

important that other taxa such as mammals, fish, plants, fungi and others are studied to 

examine how these species are responding to climate change. Some groups are not included in 

this thesis because I focused upon groups with the best data availability. For example, Hickling 

et al. (2006) included fish in their analyses, but data from this scheme were insufficient for my 

study. The National Amphibian and Reptile Recording Scheme (NARRS) has experienced a 
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decline in recording effort in recent years, although work has been done to engage more 

volunteers in herptile recording activities. It is important that schemes are maintained because 

many taxonomic groups suffer from a recording deficit. Groups like bryophytes, fungi and 

reptiles each contribute roughly 1% to the Global Biodiversity Information Facility (GBIF) 

records dataset, whereas birds make up over 50% (Chandler et al., 2017). These numbers do 

not reflect the true global biodiversity of these groups, of which bryophytes (0.0008%), reptiles 

(0.0004%), and birds (0.0005%) comprise only a small proportion, and fungi contain a larger 

share (5.2%, all percentages calculated from Chapman, 2009). To get a full picture of 

ecosystem-wide responses to climate change, we need to encourage recording of species 

across the tree of life, and one of the problems that ecologists face is how to encourage 

recording of cryptic and uncharismatic species, which may be of ecological importance.  

Species monitoring benefits from new technologies, as many improvements are made to assist 

and speed up the recording process. This includes apps that help the identification of species, 

geolocation on smart devices which pinpoint the location to fine-scale accuracy, and internet 

connections which allows instant submission of records. Apps also allow rapid responses to the 

detection of invasive species, for example, the Asian Hornet Watch app was created in 

response to a sighting of an Asian hornet in Gloucestershire in 2015, to help people distinguish 

between European and Asian hornets. The iGrasshopper app uses acoustic identification to 

detect species by their calls, with no visual identification required. eDNA and barcoding 

techniques can be used to classify species by their genetic material. Drones flying on fixed 

routes can survey sites for species (Hodgson et al., 2016b), and this has been accomplished for 

bat surveys in Oxfordshire. Hence spatial and temporal coverage of species records has greatly 

increased, improving ecologists’ ability to monitor species and their responses to climate 

change.  
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5.7 Conclusion 
By examining species' responses to climate change, my study has highlighted the variation in 

range shifts that is present within and between taxonomic groups. For the first time, within and 

between group variation has been compared and my findings demonstrate that differences in 

range shifts are larger within taxonomic groups than between groups, supporting previous 

work which has inferred this result (Chen et al., 2011a). While the causes of this variation are 

uncertain, my research points to a substantial proportion (up to a third) being explained by 

species’ traits that affect habitat use and habitat availability. My findings have broad 

implications for conservation management, which can identify species that cannot access 

suitable habitats, and take steps to facilitate range expansion or support population sizes. My 

investigations were only possible due to the enormous amount of data held in citizen science 

schemes, and in this thesis I also demonstrated how occurrence records derived from such 

schemes have the potential to show patterns of population variability where abundance data 

are lacking. The creation and maintenance of these schemes should be encouraged, so that a 

greater variety of species' responses to climate change can be explored in future.  
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Appendix Chapter 2 
In Chapter 2’s appendices, group names with asterisks (*) indicate that those groups contain 

allied species, i.e. species which are phylogenetically related, such as dragonflies and 

damselflies. 

Table A2.1. List of taxonomic groups considered for analysis: the number of species (not all of 

which qualify for analysis) and observations (records) across all time periods for all species for 

each taxonomic group that was analysed. Taxonomic groups were either accepted or rejected 

for analysis in interval 1, interval 2 or over both intervals according to whether they met the 

selection criteria (see methods in main text).  

 

Taxonomic group 
Number of 

species 
Number of 

observations Interval 1 Interval 2 Both intervals 
Birds 243 ~ 2,000,000 Accepted Accepted Accepted 

Butterflies 59 5225574 Accepted Accepted Accepted 

Dragonflies* 53 523899 Accepted Accepted Accepted 

Macromoths 831 10454592 Accepted Accepted Accepted 

Grasshoppers* 68 102088 Accepted Accepted Rejected  

Hoverflies 268 542823 Accepted Accepted Rejected  

Ladybirds 53 112481 Accepted Accepted Rejected  

Woodlice 47 133413 Accepted Accepted Rejected  

Centipedes 55 40757 Accepted Accepted Rejected  

Harvestmen 25 20109 Accepted Rejected  Rejected  

Herptiles 16 38511 Accepted Rejected  Rejected  

Millipedes 60 42203 Accepted Rejected  Rejected  

Spiders 602 339375 Accepted Rejected  Rejected  

Ants 50 33398 Rejected  Accepted Rejected  

Aquatic bugs 92 77811 Rejected  Accepted Rejected  

Bees 235 278431 Rejected  Accepted Rejected  

Caddisflies 26 32245 Rejected  Accepted Rejected  

Ground beetles 356 189104 Rejected  Accepted Rejected  

Shieldbugs 64 24359 Rejected  Accepted Rejected  

Soldierflies* 152 57259 Rejected  Accepted Rejected  

Wasps 213 103398 Rejected  Accepted Rejected  

Groups rejected from all analyses were: auchenorrhyncha, click beetles, craneflies, fleas, gelechiid 
moths, jewelled beetles, lacewings, long horned beetles, mayflies, non-marine molluscs, plantbugs and 
allies, plume moths, predaceous diving beetles, soldier beetles*, ticks, and water scavenger beetles 
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Table A2.2. Overall mean rate of range margin changes (and SEs) across taxonomic groups, calculated for interval 1 and interval 2, and 

for each level of recording effort control. Means were calculated by taking the average of the mean rate of range margin change of all 

taxonomic groups included. With the number of groups is the number of those (in parentheses) which are significantly expanding 

northwards (see Table A2.3). Total numbers of species included in each estimate are shown. The ANOVAs compare mean rate of range 

margin changes across the groups, for each level of recording effort control in each interval; significant results indicate that taxonomic 

groups differ in northwards range shifts. 

Summary statistics of overall rate of northern range margin shifts,  
averaged across taxonomic groups 

Test of whether taxonomic 
groups differ from one 

another in range shift rates 

Interval 
Recording effort 
control 

Mean northwards range shift 
(km decade

-1
) 

Standard 
error 

Number of 
taxonomic groups 

Number of 
species 

 

F 
statistic df p value 

1 Recorded 34.1 7.3 13 (10) 975 
 

46.81 12, 962 <0.001 

1 Well recorded 24.1 5.5 13 (8) 573 
 

4.41 12, 560 <0.001 

1 Heavily recorded 12.8 5.8 7 (3) 260 
 

2.20 6, 253 0.043 

2 Recorded 13.1 6.2 16 (6) 1231 
 

26.04 15, 1215 <0.001 

2 Well recorded 18.0 4.0 16 (6) 884 
 

9.64 15, 868 <0.001 

2 Heavily recorded 17.1 4.0 8 (4) 428 
 

2.58 7, 420 0.013 

 

9
7
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Table A2.3. Summary table and statistics for Figure 3: mean rate of range shift and 95% 

confidence interval (CI) for each taxonomic group, for each interval, and for each level of 

recording effort. Numbers of hectads (No. hectads), the number of species per group (No. spp), 

and results of one-sample t-tests to assess whether shifts for each group differ from zero 

(significant p values in bold) are also given. 

 

Group 
Level of 

recording effort 
Mean range shift  

(km decade-1) 
95% 

CI 
No. 

hectads 
No. 
spp 

One-sample t test 

df t P value 

Interval 1 

Birds Recorded 13.2 13.9 2566 41 40 1.9 0.069 

Birds Well recorded 13.2 13.9 2561 41 40 1.9 0.069 

Birds Heavily recorded 12.5 14.2 2500 41 40 1.7 0.093 

Butterflies Recorded 22.2 10.1 2095 39 38 4.3 <0.001 

Butterflies Well recorded 21.8 9.6 1735 42 41 4.4 <0.001 

Butterflies Heavily recorded 22.3 10.1 1230 41 40 4.3 <0.001 

Centipedes Recorded 39.2 16.2 337 14 13 4.7 <0.001 

Centipedes Well recorded 36.4 19.5 132 7 6 3.6 0.011 

Dragonflies* Recorded 50.6 15.9 936 25 24 6.2 <0.001 

Dragonflies* Well recorded 39.3 14.2 514 22 21 5.4 <0.001 

Dragonflies* Heavily recorded 30.9 8.3 173 15 14 7.2 <0.001 

Grasshoppers* Recorded 11.4 7.4 869 22 21 3 0.006 

Grasshoppers* Well recorded 7.2 8.8 459 20 19 1.6 0.126 

Grasshoppers* Heavily recorded 17.3 16.4 87 5 4 2.1 0.107 

Harvestmen Recorded 17.2 14.2 153 3 2 2.4 0.142 

Harvestmen Well recorded 16.8 14.2 89 2 1 2.3 0.26 

Herptiles Recorded -3.9 24.7 997 7 6 -0.3 0.766 

Herptiles Well recorded -3.9 24.7 989 7 6 -0.3 0.766 

Herptiles Heavily recorded -18.7 37.6 392 5 4 -1 0.384 

Hoverflies Recorded 79.2 10.1 875 99 98 15.4 <0.001 

Hoverflies Well recorded 17.8 8.2 110 19 18 4.2 <0.001 

Ladybirds Recorded 38.6 13.2 382 11 10 5.7 <0.001 

Ladybirds Well recorded 9 5.9 77 3 2 3 0.096 

Macromoths Recorded 10.1 2.7 1492 526 525 7.2 <0.001 

Macromoths Well recorded 6.8 3.4 504 389 388 3.8 <0.001 

Macromoths Heavily recorded 13 4.1 217 150 149 6.2 <0.001 

Millipedes Recorded 38.3 22.5 369 11 10 3.3 0.008 

Millipedes Well recorded 69.3 35 129 4 3 3.9 0.03 

Spiders Recorded 82.8 9.2 451 164 163 17.7 <0.001 

Spiders Well recorded 40.6 21.5 53 6 5 3.7 0.014 

Woodlice Recorded 44.6 29.5 972 13 12 3 0.012 

Woodlice Well recorded 39.5 34.6 511 11 10 2.2 0.049 

Woodlice Heavily recorded 12.3 11.1 55 3 2 2.2 0.16 
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Interval 2 

Ants Recorded 51.8 46 415 12 11 2.2 0.05 

Ants Well recorded 32.4 30.9 123 3 2 2.1 0.176 

Aquatic Bugs Recorded 38.9 22.8 549 21 20 3.3 0.003 

Aquatic Bugs Well recorded 44.4 34.7 156 11 10 2.5 0.031 

Bees Recorded 29.9 8.7 1003 140 139 6.7 <0.001 

Bees Well recorded 21.5 7.4 207 90 89 5.7 <0.001 

Bees Heavily recorded 14 31.4 58 2 1 0.9 0.542 

Birds Recorded 7 20.7 2566 44 43 0.7 0.508 

Birds Well recorded 7 20.7 2562 44 43 0.7 0.508 

Birds Heavily recorded 10.4 19.7 2504 43 42 1 0.308 

Butterflies Recorded 28.9 10.8 2318 34 33 5.2 <0.001 

Butterflies Well recorded 28.7 10.8 2075 34 33 5.2 <0.001 

Butterflies Heavily recorded 27.4 9.5 1715 37 36 5.7 <0.001 

Caddisflies Recorded 3.1 17.1 142 5 4 0.4 0.743 

Caddisflies Well recorded 35 13.7 82 2 1 5 0.126 

Dragonflies* Recorded 34.6 18.6 1663 23 22 3.6 0.001 

Dragonflies* Well recorded 28.4 18.7 1226 23 22 3 0.007 

Dragonflies* Heavily recorded 27.2 15.8 720 22 21 3.4 0.003 

Grasshoppers* Recorded 6.6 15.4 1028 25 24 0.8 0.411 

Grasshoppers* Well recorded 9.6 14.8 671 23 22 1.3 0.216 

Ground beetles Recorded -31.9 10.5 797 132 131 -6 <0.001 

Ground beetles Well recorded -1.7 10.1 95 24 23 -0.3 0.74 

Hoverflies Recorded -22.9 10.8 1783 137 136 -4.2 <0.001 

Hoverflies Well recorded -12.1 9.6 582 131 130 -2.5 0.014 

Hoverflies Heavily recorded 18.6 13.3 130 21 20 2.7 0.013 

Ladybirds Recorded 8.3 19 925 21 20 0.9 0.403 

Ladybirds Well recorded 20.6 31.9 415 13 12 1.3 0.229 

Ladybirds Heavily recorded -0.5 21.1 97 13 12 0 0.963 

Macromoths Recorded 44.1 3.9 1754 454 453 22.3 <0.001 

Macromoths Well recorded 36.1 4 839 411 410 17.6 <0.001 

Macromoths Heavily recorded 32.4 4.8 502 286 285 13.2 <0.001 

Shieldbugs* Recorded 30.3 15.2 462 18 17 3.9 0.001 

Shieldbugs* Well recorded 22.1 18.3 96 5 4 2.4 0.077 

Soldierflies* Recorded -12.6 12.2 680 52 51 -2 0.048 

Soldierflies* Well recorded 3 10.8 113 19 18 0.5 0.591 

Wasps Recorded 2.5 10.4 579 96 95 0.5 0.64 

Wasps Well recorded 12.8 11.4 99 39 38 2.2 0.033 

Woodlice Recorded -9.5 21.4 1120 17 16 -0.9 0.398 

Woodlice Well recorded 0.3 20.8 523 12 11 0 0.98 

Woodlice Heavily recorded 7.7 23.2 89 4 3 0.6 0.564 
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Table A2.4. Northern range margin locations (in metres, on the GB Ordnance Survey Grid) 

during interval 1 of all species included in Figure 3, for each time period, T1 (1966-75) or T2 

(1986-1995), and for each level of recording effort control (Recorded, Well Recorded or Heavily 

Recorded). For bird species, the time period years are 1968-72 for T1 and 1988-1991 for T2. 

Margin values which are denoted as ‘C’ indicate confidential data. Note that for species which 

also qualify for analysis in interval 2, the calculation of range margin locations for 1986-1995 in 

interval 2 (in Table A2.5) will differ from values for 1986-1995 in interval 1 due to a different set 

of hectads being analysed. 
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Birds Acrocephalus palustris 228000 197000 228000 197000 228000 197000 

Birds Acrocephalus 

scirpaceus 

533000 648000 533000 648000 533000 648000 

Birds Alcedo atthis 774000 822000 774000 822000 774000 822000 

Birds Anas querquedula 569000 757000 569000 757000 569000 757000 

Birds Anas strepera 739000 915000 739000 915000 739000 915000 

Birds Aythya ferina 873000 911000 873000 911000 873000 911000 

Birds Botaurus stellaris 405000 333000 405000 333000 405000 333000 

Birds Burhinus oedicnemus 327000 303000 327000 303000 327000 303000 

Birds Caprimulgus 

europaeus 

829000 654000 829000 654000 829000 654000 

Birds Carduelis carduelis 864000 943000 864000 943000 864000 943000 

Birds Charadrius dubius 566000 601000 566000 601000 566000 601000 

Birds Circus aeruginosus 466000 683000 466000 683000 466000 683000 

Birds Circus pygargus C C C C C C 

Birds Coccothraustes 

coccothraustes 

733000 747000 733000 747000 733000 747000 

Birds Coturnix coturnix 856000 937000 856000 937000 856000 937000 

Birds Dendrocopos minor 511000 542000 511000 542000 511000 542000 

Birds Emberiza cirlus 253000 133000 253000 133000 253000 133000 

Birds Falco subbuteo 528000 599000 528000 599000 528000 599000 

Birds Garrulus glandarius 798000 839000 798000 839000 798000 839000 

Birds Lanius collurio C C C C C C 

Birds Limosa limosa 621000 762000 621000 762000 621000 762000 

Birds Lullula arborea 335000 310000 335000 310000 335000 310000 

Birds Luscinia megarhynchos 413000 391000 413000 391000 413000 391000 

Birds Motacilla flava 692000 673000 692000 673000 692000 673000 
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Birds Panurus biarmicus 384000 388000 384000 388000 384000 388000 

Birds Phoenicurus ochruros 347000 448000 347000 448000 347000 448000 

Birds Pica pica 869000 896000 869000 896000 869000 896000 

Birds Picus viridis 782000 851000 782000 851000 782000 851000 

Birds Podiceps cristatus 798000 813000 798000 813000 798000 813000 

Birds Poecile montana 733000 655000 733000 655000 733000 655000 

Birds Poecile palustris 645000 659000 645000 659000 645000 658000 

Birds Porzana porzana 784000 823000 784000 823000 784000 823000 

Birds Puffinus puffinus 797000 864000 797000 864000 797000 864000 

Birds Pyrrhocorax 

pyrrhocorax 

679000 682000 679000 682000 679000 674000 

Birds Rallus aquaticus 878000 890000 878000 890000 878000 890000 

Birds Sitta europaea 614000 626000 614000 626000 614000 626000 

Birds Sterna dougallii 774000 676000 774000 676000 774000 658000 

Birds Streptopelia turtur 777000 679000 777000 679000 777000 645000 

Birds Sylvia curruca 775000 834000 775000 834000 775000 834000 

Birds Sylvia undata 115000 147000 115000 147000 115000 147000 

Birds Tyto alba 864000 871000 864000 871000 864000 871000 

Butterflies Aglais polychloros 337000 366000 337000 366000 337000 286000 

Butterflies Anthocharis 

cardamines 

837000 866000 831000 860000 732000 833000 

Butterflies Apatura iris 208000 235000 208000 235000 208000 216000 

Butterflies Aphantopus 

hyperantus 

741000 853000 734000 849000 722000 823000 

Butterflies Argynnis adippe 405000 430000 405000 407000 403000 407000 

Butterflies Argynnis paphia 325000 411000 323000 411000 320000 411000 

Butterflies Aricia agestis 380000 421000 380000 421000 378000 420000 

Butterflies Aricia artaxerxes 810000 821000 799000 812000 773000 776000 

Butterflies Boloria euphrosyne 827000 839000 822000 816000 746000 785000 

Butterflies Boloria selene 878000 918000 871000 901000 846000 873000 

Butterflies Callophrys rubi 807000 846000 805000 843000 798000 816000 

Butterflies Celastrina argiolus 563000 580000 563000 580000 542000 575000 

Butterflies Colias croceus 629000 950000 603000 930000 564000 875000 

Butterflies Cupido minimus 850000 887000 829000 885000 725000 875000 

Butterflies Erynnis tages 733000 845000 676000 793000 647000 734000 

Butterflies Euphydryas aurinia 750000 726000 750000 723000 694000 645000 

Butterflies Gonepteryx rhamni 493000 508000 487000 508000 487000 507000 

Butterflies Hamearis lucina 390000 471000 390000 464000 390000 430000 

Butterflies Hesperia comma 175000 168000 175000 168000 175000 168000 

Butterflies Hipparchia semele NA NA 879000 873000 NA NA 

Butterflies Inachis io 805000 801000 782000 784000 768000 780000 

Butterflies Lasiommata megera 651000 629000 620000 625000 560000 606000 

Butterflies Leptidea sinapis 278000 318000 278000 318000 278000 283000 

Butterflies Limenitis camilla 308000 371000 308000 371000 308000 369000 

Butterflies Lycaena phlaeas 862000 872000 862000 872000 855000 856000 

Butterflies Lysandra bellargus 176000 179000 176000 179000 176000 172000 
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Butterflies Lysandra coridon 275000 274000 275000 274000 274000 272000 

Butterflies Melanargia galathea 361000 484000 361000 484000 361000 482000 

Butterflies Neozephyrus quercus 576000 624000 551000 610000 494000 555000 

Butterflies Ochlodes faunus 562000 615000 562000 609000 562000 601000 

Butterflies Pararge aegeria 831000 891000 817000 891000 777000 875000 

Butterflies Plebejus argus 366000 374000 366000 374000 366000 367000 

Butterflies Polygonia c-album 396000 573000 396000 573000 396000 561000 

Butterflies Pyrgus malvae 428000 377000 428000 377000 428000 371000 

Butterflies Pyronia tithonus 477000 499000 477000 499000 469000 493000 

Butterflies Satyrium pruni 286000 274000 286000 274000 286000 274000 

Butterflies Satyrium w-album 413000 516000 413000 512000 411000 494000 

Butterflies Thecla betulae 306000 296000 306000 296000 306000 296000 

Butterflies Thymelicus lineola 330000 382000 330000 382000 329000 382000 

Butterflies Thymelicus sylvestris 485000 554000 485000 554000 480000 542000 

Butterflies Vanessa atalanta NA NA 872000 932000 831000 898000 

Butterflies Vanessa cardui NA NA 848000 859000 806000 851000 

Centipedes Cryptops hortensis 259000 407000 245000 361000 NA NA 

Centipedes Geophilus 

carpophagus 

564000 665000 NA NA NA NA 

Centipedes Geophilus flavus 458000 614000 450000 541000 NA NA 

Centipedes Geophilus insculptus 530000 647000 NA NA NA NA 

Centipedes Geophilus truncorum 617000 632000 NA NA NA NA 

Centipedes Lithobius borealis 358000 418000 NA NA NA NA 

Centipedes Lithobius calcaratus 468000 590000 NA NA NA NA 

Centipedes Lithobius melanops 603000 639000 447000 481000 NA NA 

Centipedes Lithobius microps 413000 510000 375000 478000 NA NA 

Centipedes Lithobius variegatus 501000 518000 NA NA NA NA 

Centipedes Schendyla nemorensis 304000 477000 273000 392000 NA NA 

Centipedes Stigmatogaster 

subterranea 

417000 492000 376000 449000 NA NA 

Centipedes Strigamia acuminata 403000 394000 403000 376000 NA NA 

Centipedes Strigamia crassipes 258000 247000 NA NA NA NA 

Dragonflies* Aeshna cyanea 524000 582000 505000 571000 NA NA 

Dragonflies* Aeshna grandis 532000 478000 512000 470000 NA NA 

Dragonflies* Aeshna juncea 848000 894000 827000 867000 NA NA 

Dragonflies* Aeshna mixta 347000 411000 343000 396000 301000 327000 

Dragonflies* Anax imperator 294000 428000 290000 418000 269000 340000 

Dragonflies* Brachytron pratense 343000 545000 343000 410000 313000 346000 

Dragonflies* Calopteryx splendens 420000 552000 389000 508000 369000 442000 

Dragonflies* Calopteryx virgo 529000 645000 459000 567000 319000 418000 

Dragonflies* Ceriagrion tenellum 225000 286000 225000 259000 190000 221000 

Dragonflies* Coenagrion puella 540000 689000 504000 636000 458000 529000 

Dragonflies* Coenagrion pulchellum 400000 514000 377000 443000 347000 360000 

Dragonflies* Cordulegaster boltonii 856000 879000 826000 843000 NA NA 

Dragonflies* Cordulia aenea 273000 586000 273000 430000 200000 297000 
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Dragonflies* Enallagma 

cyathigerum 

831000 886000 NA NA NA NA 

Dragonflies* Erythromma najas 372000 389000 371000 386000 282000 351000 

Dragonflies* Ischnura elegans 761000 894000 NA NA NA NA 

Dragonflies* Lestes sponsa 774000 863000 760000 848000 NA NA 

Dragonflies* Libellula depressa 358000 413000 355000 400000 295000 326000 

Dragonflies* Libellula 

quadrimaculata 

817000 882000 817000 858000 NA NA 

Dragonflies* Orthetrum 

cancellatum 

288000 382000 286000 363000 276000 330000 

Dragonflies* Orthetrum 

coerulescens 

385000 693000 366000 667000 307000 419000 

Dragonflies* Platycnemis pennipes 261000 307000 261000 302000 240000 274000 

Dragonflies* Sympetrum danae 806000 885000 800000 850000 NA NA 

Dragonflies* Sympetrum 

sanguineum 

326000 456000 324000 448000 264000 376000 

Dragonflies* Sympetrum striolatum 788000 887000 NA NA NA NA 

Grasshoppers* Acheta domesticus 391000 345000 377000 289000 NA NA 

Grasshoppers* Chorthippus 

albomarginatus 

385000 383000 368000 361000 NA NA 

Grasshoppers* Chorthippus brunneus 738000 748000 733000 748000 NA NA 

Grasshoppers* Chorthippus parallelus 713000 782000 713000 782000 NA NA 

Grasshoppers* Conocephalus dorsalis 353000 346000 341000 346000 260000 255000 

Grasshoppers* Ectobius lapponicus 153000 208000 153000 180000 NA NA 

Grasshoppers* Ectobius pallidus 165000 205000 165000 205000 NA NA 

Grasshoppers* Ectobius panzeri 157000 198000 NA NA NA NA 

Grasshoppers* Gomphocerippus rufus 166000 179000 NA NA NA NA 

Grasshoppers* Leptophyes 

punctatissima 

402000 394000 398000 367000 NA NA 

Grasshoppers* Meconema 

thalassinum 

388000 401000 351000 362000 258000 293000 

Grasshoppers* Metrioptera 

brachyptera 

393000 465000 378000 448000 NA NA 

Grasshoppers* Metrioptera roeselii 306000 277000 292000 274000 NA NA 

Grasshoppers* Myrmeleotettix 

maculatus 

758000 792000 758000 792000 NA NA 

Grasshoppers* Omocestus rufipes 163000 191000 163000 182000 NA NA 

Grasshoppers* Omocestus viridulus 797000 813000 797000 813000 NA NA 

Grasshoppers* Pholidoptera 

griseoaptera 

363000 421000 363000 386000 NA NA 

Grasshoppers* Platycleis 

albopunctata 

171000 191000 162000 185000 NA NA 

Grasshoppers* Stenobothrus lineatus 270000 285000 270000 280000 189000 198000 

Grasshoppers* Tetrix subulata 282000 386000 265000 361000 188000 280000 

Grasshoppers* Tetrix undulata 664000 646000 647000 618000 NA NA 

Grasshoppers* Tettigonia viridissima 234000 258000 234000 235000 157000 199000 
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Harvestmen Lacinius ephippiatus 449000 455000 NA NA NA NA 

Harvestmen Leiobunum blackwalli 366000 409000 325000 344000 NA NA 

Harvestmen Leiobunum rotundum 470000 524000 434000 482000 NA NA 

Herptiles Anguis fragilis 766000 847000 766000 847000 710000 813000 

Herptiles Lacerta vivipara 836000 875000 836000 875000 NA NA 

Herptiles Natrix natrix 472000 439000 472000 439000 457000 415000 

Herptiles Triturus cristatus 675000 589000 675000 589000 626000 531000 

Herptiles Triturus helveticus 804000 784000 804000 784000 753000 717000 

Herptiles Triturus vulgaris 736000 649000 736000 649000 644000 527000 

Herptiles Vipera berus 825000 876000 825000 876000 NA NA 

Hoverflies Anasimyia lineata 484000 696000 NA NA NA NA 

Hoverflies Arctophila superbiens 755000 662000 NA NA NA NA 

Hoverflies Baccha elongata 603000 783000 NA NA NA NA 

Hoverflies Brachyopa scutellaris 297000 510000 NA NA NA NA 

Hoverflies Chalcosyrphus 

nemorum 

341000 654000 NA NA NA NA 

Hoverflies Cheilosia albitarsis 494000 809000 389000 465000 NA NA 

Hoverflies Cheilosia antiqua 525000 758000 NA NA NA NA 

Hoverflies Cheilosia 

bergenstammi 

647000 820000 NA NA NA NA 

Hoverflies Cheilosia fraterna 592000 797000 NA NA NA NA 

Hoverflies Cheilosia grossa 501000 605000 NA NA NA NA 

Hoverflies Cheilosia illustrata 814000 844000 NA NA NA NA 

Hoverflies Cheilosia impressa 333000 577000 NA NA NA NA 

Hoverflies Cheilosia lasiopa 395000 524000 NA NA NA NA 

Hoverflies Cheilosia pagana 457000 779000 NA NA NA NA 

Hoverflies Cheilosia proxima 509000 525000 NA NA NA NA 

Hoverflies Cheilosia scutellata 417000 542000 NA NA NA NA 

Hoverflies Cheilosia variabilis 432000 763000 377000 432000 NA NA 

Hoverflies Cheilosia vernalis 472000 572000 NA NA NA NA 

Hoverflies Chrysogaster 

solstitialis 

501000 744000 400000 384000 NA NA 

Hoverflies Chrysotoxum 

arcuatum 

685000 815000 NA NA NA NA 

Hoverflies Chrysotoxum 

bicinctum 

569000 762000 346000 432000 NA NA 

Hoverflies Chrysotoxum cautum 279000 289000 NA NA NA NA 

Hoverflies Chrysotoxum festivum 390000 462000 NA NA NA NA 

Hoverflies Chrysotoxum verralli 288000 317000 NA NA NA NA 

Hoverflies Criorhina berberina 468000 514000 369000 351000 NA NA 

Hoverflies Criorhina floccosa 450000 560000 384000 385000 NA NA 

Hoverflies Dasysyrphus 

albostriatus 

516000 753000 NA NA NA NA 

Hoverflies Dasysyrphus pinastri 527000 797000 NA NA NA NA 

Hoverflies Dasysyrphus tricinctus 552000 805000 NA NA NA NA 

Hoverflies Dasysyrphus venustus 542000 805000 NA NA NA NA 

Hoverflies Epistrophe eligans 485000 669000 NA NA NA NA 

Hoverflies Epistrophe 

grossulariae 

616000 786000 NA NA NA NA 
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Hoverflies Epistrophe eligans 485000 669000 NA NA NA NA 

Hoverflies Epistrophe 

grossulariae 

616000 786000 NA NA NA NA 

Hoverflies Episyrphus balteatus 686000 913000 NA NA NA NA 

Hoverflies Eristalinus aeneus 553000 633000 NA NA NA NA 

Hoverflies Eristalinus sepulchralis 499000 476000 383000 387000 NA NA 

Hoverflies Eristalis arbustorum 739000 876000 NA NA NA NA 

Hoverflies Eristalis horticola 736000 816000 NA NA NA NA 

Hoverflies Eristalis intricaria 708000 876000 NA NA NA NA 

Hoverflies Eristalis pertinax 797000 890000 NA NA NA NA 

Hoverflies Eristalis tenax 786000 837000 NA NA NA NA 

Hoverflies Eumerus strigatus 428000 430000 350000 351000 NA NA 

Hoverflies Eupeodes corollae 553000 877000 NA NA NA NA 

Hoverflies Eupeodes latifasciatus 421000 612000 NA NA NA NA 

Hoverflies Eupeodes luniger 525000 816000 NA NA NA NA 

Hoverflies Ferdinandea cuprea 410000 687000 381000 423000 NA NA 

Hoverflies Helophilus hybridus 471000 745000 374000 375000 NA NA 

Hoverflies Helophilus pendulus 801000 907000 NA NA NA NA 

Hoverflies Helophilus trivittatus 440000 532000 NA NA NA NA 

Hoverflies Lejogaster metallina 566000 799000 380000 440000 NA NA 

Hoverflies Leucozona glaucia 690000 802000 369000 434000 NA NA 

Hoverflies Leucozona laternaria 661000 688000 NA NA NA NA 

Hoverflies Leucozona lucorum 680000 838000 NA NA NA NA 

Hoverflies Melangyna cincta 421000 789000 NA NA NA NA 

Hoverflies Melangyna labiatarum 483000 768000 NA NA NA NA 

Hoverflies Melangyna 

lasiophthalma 

578000 803000 NA NA NA NA 

Hoverflies Melangyna 

umbellatarum 

355000 579000 NA NA NA NA 

Hoverflies Melanogaster hirtella 705000 832000 NA NA NA NA 

Hoverflies Melanostoma 

mellinum 

806000 869000 NA NA NA NA 

Hoverflies Meliscaeva auricollis 464000 752000 356000 423000 NA NA 

Hoverflies Meliscaeva cinctella 655000 809000 NA NA NA NA 

Hoverflies Myathropa florea 632000 803000 NA NA NA NA 

Hoverflies Neoascia podagrica 652000 817000 NA NA NA NA 

Hoverflies Neoascia tenur 566000 810000 NA NA NA NA 

Hoverflies Parasyrphus 

punctulatus 

459000 777000 NA NA NA NA 

Hoverflies Parhelophilus 

frutetorum 

310000 410000 NA NA NA NA 

Hoverflies Parhelophilus 

versicolor 

406000 478000 NA NA NA NA 

Hoverflies Pipiza austriaca 376000 507000 NA NA NA NA 

Hoverflies Pipiza fenestrata 320000 377000 NA NA NA NA 

Hoverflies Pipiza luteitarsis 420000 448000 NA NA NA NA 
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Hoverflies Pipiza noctiluca 389000 660000 366000 386000 NA NA 

Hoverflies Pipizella viduata 360000 796000 NA NA NA NA 

Hoverflies Platycheirus albimanus 807000 910000 NA NA NA NA 

Hoverflies Platycheirus 

angustatus 

702000 843000 NA NA NA NA 

Hoverflies Platycheirus 

fulviventris 

384000 744000 NA NA NA NA 

Hoverflies Platycheirus 

granditarsus 

602000 810000 NA NA NA NA 

Hoverflies Platycheirus manicatus 815000 922000 NA NA NA NA 

Hoverflies Platycheirus rosarum 509000 751000 391000 446000 NA NA 

Hoverflies Platycheirus scambus 645000 811000 NA NA NA NA 

Hoverflies Platycheirus scutatus 613000 817000 NA NA NA NA 

Hoverflies Portevinia maculata 500000 525000 NA NA NA NA 

Hoverflies Rhingia campestris 751000 848000 NA NA NA NA 

Hoverflies Riponnensia splendens 444000 516000 376000 384000 NA NA 

Hoverflies Scaeva pyrastri 636000 867000 NA NA NA NA 

Hoverflies Sphaerophoria 

interrupta 

790000 803000 NA NA NA NA 

Hoverflies Sphaerophoria scripta 446000 652000 NA NA NA NA 

Hoverflies Sphegina clunipes 759000 815000 NA NA NA NA 

Hoverflies Sphegina elegans 525000 670000 NA NA NA NA 

Hoverflies Syritta pipiens 687000 831000 NA NA NA NA 

Hoverflies Syrphus ribesii 794000 865000 NA NA NA NA 

Hoverflies Syrphus torvus 660000 810000 NA NA NA NA 

Hoverflies Syrphus vitripennis 636000 828000 NA NA NA NA 

Hoverflies Tropidia scita 462000 482000 325000 356000 NA NA 

Hoverflies Volucella pellucens 726000 818000 NA NA NA NA 

Hoverflies Volucella zonaria 184000 186000 NA NA NA NA 

Hoverflies Xanthogramma 

citrofasciatum 

233000 409000 NA NA NA NA 

Hoverflies Xanthogramma 

pedissequum 

279000 458000 240000 349000 NA NA 

Hoverflies Xylota segnis 623000 812000 NA NA NA NA 

Hoverflies Xylota sylvarum 534000 661000 366000 395000 NA NA 

Hoverflies Xylota xanthocnema 342000 310000 NA NA NA NA 

Ladybirds Adalia bipunctata 486000 511000 NA NA NA NA 

Ladybirds Adalia decempunctata 452000 585000 405000 416000 NA NA 

Ladybirds Anisosticta 

novemdecimpunctata 

395000 428000 NA NA NA NA 

Ladybirds Calvia 

quattuordecimguttata 

477000 586000 408000 421000 NA NA 

Ladybirds Chilocorus 

renipustulatus 

337000 480000 NA NA NA NA 

Ladybirds Coccidula rufa 400000 460000 NA NA NA NA 

Ladybirds Coccinella 

undecimpunctata 

428000 474000 NA NA NA NA 
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Ladybirds Coccinella 

undecimpunctata 

428000 474000 NA NA NA NA 

Ladybirds Propylea 

quattuordecimpunctata 

446000 498000 NA NA NA NA 

Ladybirds Psyllobora 

vigintiduopunctata 

412000 469000 395000 425000 NA NA 

Ladybirds Rhyzobius litura 317000 457000 NA NA NA NA 

Ladybirds Subcoccinella 

vigintiquattuorpunctata 

352000 403000 NA NA NA NA 

Macromoths Abraxas grossulariata 868000 884000 746000 767000 NA NA 

Macromoths Abraxas sylvata 555000 592000 509000 568000 NA NA 

Macromoths Abrostola tripartita 842000 919000 NA NA NA NA 

Macromoths Acasis viretata 675000 720000 494000 660000 NA NA 

Macromoths Acherontia atropos 556000 536000 461000 426000 349000 388000 

Macromoths Achlya flavicornis 838000 869000 NA NA NA NA 

Macromoths Acronicta aceris 320000 363000 304000 341000 281000 337000 

Macromoths Acronicta alni 434000 512000 415000 460000 385000 431000 

Macromoths Acronicta leporina 804000 705000 670000 681000 NA NA 

Macromoths Acronicta megacephala 743000 720000 594000 586000 NA NA 

Macromoths Acronicta psi 811000 801000 789000 738000 NA NA 

Macromoths Acronicta rumicis 815000 857000 791000 784000 NA NA 

Macromoths Acronicta tridens 465000 428000 408000 376000 394000 351000 

Macromoths Adscita geryon 401000 416000 NA NA NA NA 

Macromoths Adscita statices 475000 503000 361000 354000 NA NA 

Macromoths Aethalura punctulata 604000 711000 491000 579000 NA NA 

Macromoths Agriopis aurantiaria 822000 881000 NA NA NA NA 

Macromoths Agriopis leucophaearia 690000 647000 603000 560000 NA NA 

Macromoths Agriopis marginaria 818000 885000 NA NA NA NA 

Macromoths Agrius convolvuli 679000 889000 642000 647000 NA NA 

Macromoths Agrochola circellaris 817000 867000 777000 792000 NA NA 

Macromoths Agrochola helvola 794000 780000 717000 658000 NA NA 

Macromoths Agrochola litura 815000 821000 755000 786000 NA NA 

Macromoths Agrochola lota 843000 856000 NA NA NA NA 

Macromoths Agrochola lychnidis 646000 563000 610000 511000 NA NA 

Macromoths Agrochola macilenta 828000 876000 798000 804000 NA NA 

Macromoths Agrotis cinerea 391000 271000 261000 248000 237000 187000 

Macromoths Agrotis clavis 646000 551000 641000 454000 NA NA 

Macromoths Agrotis exclamationis 827000 843000 NA NA NA NA 

Macromoths Agrotis ipsilon 825000 856000 785000 754000 NA NA 

Macromoths Agrotis puta 488000 457000 474000 450000 NA NA 

Macromoths Agrotis ripae 514000 504000 NA NA NA NA 

Macromoths Agrotis segetum 792000 733000 728000 723000 NA NA 

Macromoths Agrotis vestigialis 824000 838000 773000 714000 NA NA 

Macromoths Alcis jubata 796000 820000 727000 797000 NA NA 

Macromoths Alcis repandata 866000 890000 NA NA NA NA 

Macromoths Allophyes oxyacanthae 835000 864000 NA NA NA NA 



108 

 

Macromoths Alsophila aescularia 799000 807000 755000 757000 NA NA 

Macromoths Amphipoea fucosa 427000 675000 409000 447000 NA NA 

Macromoths Amphipoea lucens 830000 899000 NA NA NA NA 

Macromoths Amphipoea oculea 848000 842000 NA NA NA NA 

Macromoths Amphipyra 

tragopoginis 

849000 843000 NA NA NA NA 

Macromoths Anaplectoides prasina 836000 853000 NA NA NA NA 

Macromoths Anarta myrtilli 824000 796000 720000 620000 372000 348000 

Macromoths Angerona prunaria 276000 266000 248000 250000 238000 240000 

Macromoths Anticlea badiata 819000 831000 773000 802000 NA NA 

Macromoths Anticlea derivata 811000 864000 792000 810000 NA NA 

Macromoths Antitype chi 856000 902000 NA NA NA NA 

Macromoths Apamea anceps 362000 328000 328000 328000 324000 322000 

Macromoths Apamea crenata 859000 919000 NA NA NA NA 

Macromoths Apamea epomidion 740000 579000 568000 496000 NA NA 

Macromoths Apamea furva 838000 783000 767000 575000 NA NA 

Macromoths Apamea lithoxylaea 862000 878000 NA NA NA NA 

Macromoths Apamea oblonga 408000 387000 403000 342000 NA NA 

Macromoths Apamea ophiogramma 601000 640000 545000 604000 NA NA 

Macromoths Apamea remissa 843000 901000 NA NA NA NA 

Macromoths Apamea scolopacina 497000 513000 418000 467000 380000 424000 

Macromoths Apamea sordens 835000 829000 NA NA NA NA 

Macromoths Apamea sublustris 303000 318000 254000 291000 248000 249000 

Macromoths Apamea unanimis 693000 740000 631000 704000 NA NA 

Macromoths Apeira syringaria 508000 599000 469000 535000 408000 516000 

Macromoths Aplocera efformata 335000 542000 317000 463000 305000 336000 

Macromoths Aplocera plagiata 860000 886000 NA NA NA NA 

Macromoths Apocheima hispidaria 365000 387000 330000 318000 317000 284000 

Macromoths Apoda limacodes 200000 280000 200000 209000 NA NA 

Macromoths Aporophyla nigra 863000 906000 NA NA NA NA 

Macromoths Archanara dissoluta 358000 361000 350000 338000 339000 322000 

Macromoths Archanara 

geminipuncta 

314000 343000 307000 339000 291000 323000 

Macromoths Archanara sparganii 208000 280000 NA NA NA NA 

Macromoths Archiearis parthenias 809000 695000 680000 629000 NA NA 

Macromoths Arctia villica 242000 258000 242000 246000 232000 230000 

Macromoths Arenostola 

phragmitidis 

427000 449000 417000 438000 380000 402000 

Macromoths Asteroscopus sphinx 491000 507000 386000 465000 385000 374000 

Macromoths Asthena albulata 479000 619000 444000 546000 422000 488000 

Macromoths Atethmia centrago 787000 728000 702000 676000 NA NA 

Macromoths Atolmis rubricollis 356000 436000 275000 396000 NA NA 

Macromoths Autographa jota 839000 783000 NA NA NA NA 

Macromoths Axylia putris 690000 697000 638000 646000 NA NA 

Macromoths Bena bicolorana 358000 435000 334000 424000 320000 384000 

Macromoths Biston betularia 832000 852000 NA NA NA NA 

Macromoths Biston strataria 654000 606000 529000 516000 NA NA 
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Macromoths Biston strataria 654000 606000 529000 516000 NA NA 

Macromoths Blepharita adusta 864000 905000 NA NA NA NA 

Macromoths Brachylomia viminalis 848000 885000 NA NA NA NA 

Macromoths Bupalus piniaria 838000 851000 NA NA NA NA 

Macromoths Cabera exanthemata 839000 887000 NA NA NA NA 

Macromoths Cabera pusaria 866000 883000 NA NA NA NA 

Macromoths Callimorpha dominula 230000 280000 202000 253000 NA NA 

Macromoths Callistege mi 759000 773000 595000 690000 392000 526000 

Macromoths Calliteara pudibunda 502000 487000 448000 464000 429000 440000 

Macromoths Campaea margaritata 856000 914000 NA NA NA NA 

Macromoths Camptogramma 

bilineata 

879000 897000 NA NA NA NA 

Macromoths Caradrina morpheus 807000 767000 746000 709000 NA NA 

Macromoths Catarhoe cuculata 307000 359000 293000 261000 NA NA 

Macromoths Catarhoe rubidata 315000 248000 296000 234000 276000 207000 

Macromoths Catocala nupta 405000 487000 368000 447000 326000 435000 

Macromoths Celaena leucostigma 826000 866000 789000 720000 NA NA 

Macromoths Cepphis advenaria 211000 204000 197000 202000 183000 195000 

Macromoths Cerastis leucographa 312000 376000 295000 309000 284000 303000 

Macromoths Cerastis rubricosa 854000 919000 NA NA NA NA 

Macromoths Cerura vinula 844000 833000 798000 753000 NA NA 

Macromoths Charanyca 

trigrammica 

439000 440000 422000 407000 385000 373000 

Macromoths Charissa obscurata 617000 587000 314000 417000 260000 285000 

Macromoths Chesias legatella 837000 878000 787000 790000 NA NA 

Macromoths Chesias rufata 824000 757000 591000 659000 NA NA 

Macromoths Chiasmia clathrata 736000 724000 674000 693000 NA NA 

Macromoths Chilodes maritimus 332000 426000 314000 395000 312000 346000 

Macromoths Chloroclysta citrata 869000 914000 NA NA NA NA 

Macromoths Chloroclysta miata 841000 898000 NA NA NA NA 

Macromoths Chloroclysta siterata 818000 890000 794000 822000 NA NA 

Macromoths Chloroclysta truncata 869000 906000 NA NA NA NA 

Macromoths Chloroclystis v-ata 503000 662000 463000 635000 NA NA 

Macromoths Chortodes pygmina 838000 926000 NA NA NA NA 

Macromoths Cidaria fulvata 869000 918000 NA NA NA NA 

Macromoths Cilix glaucata 622000 634000 573000 618000 NA NA 

Macromoths Cleorodes lichenaria 726000 761000 608000 618000 424000 407000 

Macromoths Clostera curtula 325000 330000 312000 324000 302000 323000 

Macromoths Clostera pigra 634000 654000 NA NA NA NA 

Macromoths Coenobia rufa 439000 390000 394000 383000 384000 358000 

Macromoths Colocasia coryli 851000 868000 NA NA NA NA 

Macromoths Colostygia 

multistrigaria 

839000 919000 NA NA NA NA 

Macromoths Colotois pennaria 838000 861000 791000 818000 NA NA 

Macromoths Comibaena bajularia 380000 422000 348000 406000 348000 355000 

Macromoths Conistra ligula 571000 557000 549000 458000 NA NA 

Macromoths Conistra rubiginea 188000 204000 NA NA NA NA 

Macromoths Conistra vaccinii 829000 864000 NA NA NA NA 

Macromoths Cosmia affinis 375000 359000 349000 312000 306000 290000 
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Macromoths Conistra rubiginea 188000 204000 NA NA NA NA 

Macromoths Conistra vaccinii 829000 864000 NA NA NA NA 

Macromoths Cosmia affinis 375000 359000 349000 312000 306000 290000 

Macromoths Cosmia pyralina 313000 331000 312000 326000 304000 320000 

Macromoths Cosmia trapezina 820000 824000 NA NA NA NA 

Macromoths Cosmorhoe ocellata 878000 925000 NA NA NA NA 

Macromoths Cossus cossus 463000 386000 333000 257000 NA NA 

Macromoths Craniophora ligustri 636000 696000 476000 620000 405000 473000 

Macromoths Crocallis elinguaria 865000 890000 NA NA NA NA 

Macromoths Cryphia domestica 778000 744000 673000 691000 NA NA 

Macromoths Cryphia muralis 228000 218000 203000 209000 164000 189000 

Macromoths Cucullia absinthii 368000 388000 NA NA NA NA 

Macromoths Cucullia asteris 320000 338000 313000 303000 NA NA 

Macromoths Cucullia chamomillae 560000 554000 531000 545000 NA NA 

Macromoths Cucullia umbratica 850000 812000 654000 675000 NA NA 

Macromoths Cybosia mesomella 737000 728000 638000 651000 NA NA 

Macromoths Cyclophora 

albipunctata 

828000 825000 627000 676000 NA NA 

Macromoths Cyclophora annularia 247000 205000 224000 205000 208000 185000 

Macromoths Cyclophora linearia 316000 385000 272000 347000 265000 331000 

Macromoths Cyclophora porata 307000 271000 NA NA NA NA 

Macromoths Cyclophora punctaria 351000 366000 310000 315000 287000 287000 

Macromoths Cymatophorima diluta 368000 387000 331000 306000 298000 284000 

Macromoths Dasypolia templi 827000 919000 NA NA NA NA 

Macromoths Deilephila elpenor 658000 781000 583000 712000 NA NA 

Macromoths Deilephila porcellus 616000 694000 489000 594000 408000 478000 

Macromoths Deileptenia ribeata 418000 662000 320000 567000 314000 521000 

Macromoths Deltote uncula 549000 692000 442000 436000 393000 360000 

Macromoths Diacrisia sannio 782000 771000 768000 732000 NA NA 

Macromoths Diaphora mendica 547000 636000 497000 541000 NA NA 

Macromoths Diarsia brunnea 859000 888000 NA NA NA NA 

Macromoths Diarsia dahlii 834000 905000 NA NA NA NA 

Macromoths Dicallomera fascelina 806000 783000 732000 670000 NA NA 

Macromoths Dichonia aprilina 777000 745000 773000 679000 NA NA 

Macromoths Diloba 

caeruleocephala 

653000 611000 633000 587000 NA NA 

Macromoths Discestra trifolii 676000 581000 562000 512000 NA NA 

Macromoths Discoloxia blomeri 427000 455000 318000 391000 298000 340000 

Macromoths Drepana falcataria 810000 809000 771000 752000 NA NA 

Macromoths Drymonia dodonaea 592000 615000 490000 528000 366000 384000 

Macromoths Drymonia ruficornis 699000 637000 538000 616000 NA NA 

Macromoths Dryobotodes eremita 692000 777000 609000 746000 NA NA 

Macromoths Dypterygia 

scabriuscula 

343000 395000 343000 380000 340000 359000 

Macromoths Dyscia fagaria 834000 822000 786000 749000 NA NA 

Macromoths Earias clorana 338000 389000 301000 338000 NA NA 

Macromoths Ecliptopera silaceata 839000 890000 763000 803000 NA NA 

Macromoths Ectropis bistortata 833000 859000 NA NA NA NA 

Macromoths Ectropis crepuscularia 596000 519000 561000 476000 NA NA 
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Macromoths Ecliptopera silaceata 839000 890000 763000 803000 NA NA 

Macromoths Ectropis bistortata 833000 859000 NA NA NA NA 

Macromoths Ectropis crepuscularia 596000 519000 561000 476000 NA NA 

Macromoths Eilema complana 361000 392000 340000 364000 323000 352000 

Macromoths Eilema depressa 304000 348000 290000 327000 269000 322000 

Macromoths Eilema griseola 354000 375000 332000 359000 308000 347000 

Macromoths Eilema lurideola 797000 709000 609000 611000 NA NA 

Macromoths Eilema sororcula 175000 288000 NA NA NA NA 

Macromoths Elaphria venustula 171000 235000 164000 195000 NA NA 

Macromoths Electrophaes corylata 834000 863000 NA NA NA NA 

Macromoths Ematurga atomaria 842000 831000 NA NA NA NA 

Macromoths Enargia paleacea 774000 831000 613000 673000 NA NA 

Macromoths Ennomos alniaria 851000 834000 NA NA NA NA 

Macromoths Ennomos autumnaria 284000 303000 265000 296000 NA NA 

Macromoths Ennomos erosaria 668000 627000 621000 579000 NA NA 

Macromoths Ennomos fuscantaria 471000 469000 463000 438000 NA NA 

Macromoths Ennomos quercinaria 485000 469000 453000 414000 424000 363000 

Macromoths Epione repandaria 827000 862000 792000 799000 NA NA 

Macromoths Epirrhoe alternata 872000 908000 NA NA NA NA 

Macromoths Epirrhoe galiata 575000 515000 463000 426000 360000 415000 

Macromoths Epirrhoe rivata 376000 383000 363000 381000 353000 351000 

Macromoths Epirrita autumnata 822000 869000 785000 817000 NA NA 

Macromoths Epirrita christyi 716000 771000 689000 725000 NA NA 

Macromoths Epirrita dilutata 820000 861000 786000 796000 NA NA 

Macromoths Erannis defoliaria 821000 877000 793000 806000 NA NA 

Macromoths Eremobia ochroleuca 400000 459000 382000 433000 366000 387000 

Macromoths Euchoeca nebulata 442000 663000 393000 508000 357000 466000 

Macromoths Euclidia glyphica 534000 488000 410000 461000 376000 376000 

Macromoths Eulithis mellinata 803000 717000 740000 670000 NA NA 

Macromoths Eulithis prunata 803000 801000 777000 739000 NA NA 

Macromoths Eulithis pyraliata 822000 896000 795000 813000 NA NA 

Macromoths Eulithis testata 870000 926000 NA NA NA NA 

Macromoths Euphyia biangulata 266000 277000 243000 257000 224000 247000 

Macromoths Euphyia unangulata 352000 318000 335000 314000 316000 282000 

Macromoths Eupithecia abbreviata 749000 823000 695000 812000 NA NA 

Macromoths Eupithecia absinthiata 823000 874000 766000 777000 NA NA 

Macromoths Eupithecia assimilata 817000 881000 765000 765000 NA NA 

Macromoths Eupithecia 

centaureata 

698000 683000 664000 654000 NA NA 

Macromoths Eupithecia dodoneata 310000 498000 295000 461000 275000 429000 

Macromoths Eupithecia exiguata 680000 713000 550000 676000 NA NA 

Macromoths Eupithecia expallidata 365000 404000 319000 280000 NA NA 

Macromoths Eupithecia 

haworthiata 

350000 334000 284000 288000 263000 278000 

Macromoths Eupithecia icterata 849000 850000 NA NA NA NA 

Macromoths Eupithecia indigata 799000 821000 702000 745000 NA NA 

Macromoths Eupithecia innotata 615000 369000 NA NA NA NA 

Macromoths Eupithecia inturbata 393000 421000 321000 364000 286000 348000 

Macromoths Eupithecia linariata 624000 592000 584000 535000 NA NA 
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Macromoths Eupithecia innotata 615000 369000 NA NA NA NA 

Macromoths Eupithecia inturbata 393000 421000 321000 364000 286000 348000 

Macromoths Eupithecia linariata 624000 592000 584000 535000 NA NA 

Macromoths Eupithecia nanata 865000 907000 NA NA NA NA 

Macromoths Eupithecia 

pimpinellata 

318000 312000 NA NA NA NA 

Macromoths Eupithecia 

plumbeolata 

350000 360000 287000 311000 NA NA 

Macromoths Eupithecia pulchellata 833000 880000 NA NA NA NA 

Macromoths Eupithecia pusillata 836000 873000 NA NA NA NA 

Macromoths Eupithecia simpliciata 388000 461000 368000 412000 284000 351000 

Macromoths Eupithecia subfuscata 812000 875000 752000 804000 NA NA 

Macromoths Eupithecia subumbrata 464000 429000 420000 342000 330000 314000 

Macromoths Eupithecia 

succenturiata 

636000 661000 636000 636000 NA NA 

Macromoths Eupithecia tantillaria 784000 804000 629000 743000 NA NA 

Macromoths Eupithecia tenuiata 729000 776000 608000 744000 NA NA 

Macromoths Eupithecia tripunctaria 609000 768000 537000 718000 NA NA 

Macromoths Eupithecia trisignaria 369000 600000 NA NA NA NA 

Macromoths Eupithecia valerianata 534000 703000 NA NA NA NA 

Macromoths Eupithecia venosata 598000 644000 524000 540000 NA NA 

Macromoths Eupithecia virgaureata 572000 840000 NA NA NA NA 

Macromoths Eupithecia vulgata 836000 894000 794000 817000 NA NA 

Macromoths Euplexia lucipara 853000 880000 NA NA NA NA 

Macromoths Euproctis chrysorrhoea 331000 475000 296000 427000 254000 344000 

Macromoths Euproctis similis 566000 533000 508000 509000 NA NA 

Macromoths Eupsilia transversa 780000 816000 712000 758000 NA NA 

Macromoths Eurois occulta 821000 797000 NA NA NA NA 

Macromoths Euthrix potatoria 821000 854000 765000 777000 NA NA 

Macromoths Euxoa cursoria 843000 773000 NA NA NA NA 

Macromoths Euxoa nigricans 828000 827000 787000 741000 NA NA 

Macromoths Euxoa tritici 863000 844000 NA NA NA NA 

Macromoths Falcaria lacertinaria 843000 860000 NA NA NA NA 

Macromoths Furcula bicuspis 336000 417000 304000 393000 NA NA 

Macromoths Furcula bifida 445000 461000 439000 429000 375000 409000 

Macromoths Furcula furcula 832000 809000 795000 785000 NA NA 

Macromoths Gastropacha 

quercifolia 

342000 322000 327000 312000 309000 308000 

Macromoths Geometra papilionaria 834000 864000 NA NA NA NA 

Macromoths Gortyna flavago 796000 818000 734000 766000 NA NA 

Macromoths Graphiphora augur 858000 898000 NA NA NA NA 

Macromoths Gymnoscelis 

rufifasciata 

826000 861000 800000 766000 NA NA 

Macromoths Habrosyne pyritoides 481000 541000 461000 497000 NA NA 

Macromoths Hada plebeja 832000 916000 793000 803000 NA NA 

Macromoths Hadena bicruris 822000 813000 755000 733000 NA NA 

Macromoths Hadena confusa 755000 794000 642000 733000 NA NA 
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Macromoths Hadena confusa 755000 794000 642000 733000 NA NA 

Macromoths Hadena perplexa 524000 581000 524000 534000 NA NA 

Macromoths Hadena rivularis 848000 856000 796000 711000 NA NA 

Macromoths Hecatera bicolorata 687000 690000 577000 626000 NA NA 

Macromoths Helicoverpa armigera 323000 373000 NA NA NA NA 

Macromoths Heliothis peltigera 270000 510000 263000 423000 NA NA 

Macromoths Hemistola 

chrysoprasaria 

353000 336000 336000 333000 324000 328000 

Macromoths Hemithea aestivaria 450000 466000 450000 460000 429000 442000 

Macromoths Hepialus 

fusconebulosa 

850000 910000 NA NA NA NA 

Macromoths Hepialus hecta 828000 845000 784000 801000 NA NA 

Macromoths Hepialus humuli 863000 896000 779000 793000 NA NA 

Macromoths Hepialus lupulinus 720000 699000 678000 678000 NA NA 

Macromoths Hepialus sylvina 786000 804000 695000 715000 NA NA 

Macromoths Herminia grisealis 795000 821000 762000 763000 NA NA 

Macromoths Hoplodrina alsines 691000 665000 645000 603000 NA NA 

Macromoths Hoplodrina ambigua 248000 340000 238000 339000 238000 327000 

Macromoths Hoplodrina blanda 797000 758000 741000 708000 NA NA 

Macromoths Horisme tersata 315000 323000 299000 315000 298000 292000 

Macromoths Horisme vitalbata 273000 300000 265000 282000 259000 280000 

Macromoths Hydraecia petasitis 571000 547000 538000 459000 NA NA 

Macromoths Hydrelia flammeolaria 437000 641000 421000 608000 409000 558000 

Macromoths Hydrelia sylvata 302000 258000 NA NA NA NA 

Macromoths Hydriomena 

impluviata 

820000 873000 771000 806000 NA NA 

Macromoths Hydriomena ruberata 780000 865000 677000 706000 NA NA 

Macromoths Hylaea fasciaria 858000 916000 NA NA NA NA 

Macromoths Hyles gallii 725000 515000 646000 426000 NA NA 

Macromoths Hyloicus pinastri 253000 342000 235000 334000 211000 328000 

Macromoths Hypena crassalis 347000 334000 311000 321000 242000 271000 

Macromoths Hypena rostralis 258000 264000 240000 219000 NA NA 

Macromoths Hypenodes humidalis 374000 576000 359000 452000 NA NA 

Macromoths Hypomecis punctinalis 282000 326000 282000 325000 263000 309000 

Macromoths Hypomecis roboraria 264000 309000 237000 260000 233000 247000 

Macromoths Idaea aversata 853000 855000 NA NA NA NA 

Macromoths Idaea biselata 851000 876000 797000 817000 NA NA 

Macromoths Idaea dimidiata 624000 662000 616000 627000 NA NA 

Macromoths Idaea emarginata 391000 366000 354000 363000 337000 355000 

Macromoths Idaea fuscovenosa 362000 396000 328000 386000 314000 362000 

Macromoths Idaea muricata 319000 374000 NA NA NA NA 

Macromoths Idaea seriata 753000 823000 641000 694000 NA NA 

Macromoths Idaea straminata 817000 842000 771000 780000 NA NA 

Macromoths Idaea subsericeata 445000 412000 419000 343000 338000 342000 

Macromoths Idaea sylvestraria 300000 234000 280000 177000 264000 177000 

Macromoths Idaea trigeminata 288000 325000 286000 324000 285000 303000 

Macromoths Ipimorpha retusa 332000 339000 286000 278000 NA NA 

Macromoths Ipimorpha subtusa 562000 560000 475000 491000 426000 440000 

Macromoths Jodis lactearia 553000 575000 547000 439000 NA NA 
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Macromoths Ipimorpha retusa 332000 339000 286000 278000 NA NA 

Macromoths Ipimorpha subtusa 562000 560000 475000 491000 426000 440000 

Macromoths Jodis lactearia 553000 575000 547000 439000 NA NA 

Macromoths Lacanobia contigua 778000 783000 726000 753000 425000 527000 

Macromoths Lacanobia oleracea 853000 889000 NA NA NA NA 

Macromoths Lacanobia suasa 470000 506000 407000 454000 350000 362000 

Macromoths Lacanobia thalassina 848000 888000 NA NA NA NA 

Macromoths Lacanobia w-latinum 342000 349000 308000 338000 276000 320000 

Macromoths Lampropteryx 

otregiata 

290000 337000 NA NA NA NA 

Macromoths Lampropteryx 

suffumata 

853000 898000 NA NA NA NA 

Macromoths Laothoe populi 879000 896000 NA NA NA NA 

Macromoths Larentia clavaria 469000 431000 438000 395000 387000 357000 

Macromoths Lasiocampa quercus NA NA 787000 798000 NA NA 

Macromoths Laspeyria flexula 339000 359000 324000 356000 307000 343000 

Macromoths Leucoma salicis 427000 455000 422000 426000 371000 405000 

Macromoths Ligdia adustata 383000 419000 329000 341000 329000 325000 

Macromoths Lithophane hepatica 316000 382000 257000 357000 194000 329000 

Macromoths Lithophane ornitopus 351000 365000 324000 365000 304000 343000 

Macromoths Lithophane 

semibrunnea 

336000 390000 318000 372000 289000 343000 

Macromoths Lithosia quadra 363000 209000 NA NA NA NA 

Macromoths Lobophora halterata 813000 810000 723000 791000 NA NA 

Macromoths Lomaspilis marginata 833000 849000 756000 806000 NA NA 

Macromoths Lomographa 

bimaculata 

368000 407000 350000 370000 331000 357000 

Macromoths Lomographa temerata 616000 701000 595000 674000 NA NA 

Macromoths Luperina testacea 824000 820000 763000 721000 NA NA 

Macromoths Lycia hirtaria 813000 828000 793000 788000 NA NA 

Macromoths Lycophotia porphyrea 866000 928000 NA NA NA NA 

Macromoths Lygephila pastinum 446000 393000 376000 375000 336000 332000 

Macromoths Lymantria monacha 321000 326000 321000 323000 299000 309000 

Macromoths Macaria alternata 350000 348000 282000 302000 282000 273000 

Macromoths Macaria liturata 827000 832000 788000 783000 NA NA 

Macromoths Macaria notata 820000 854000 718000 784000 NA NA 

Macromoths Macaria wauaria 784000 686000 726000 655000 NA NA 

Macromoths Macrochilo cribrumalis 296000 319000 NA NA NA NA 

Macromoths Macroglossum 

stellatarum 

626000 637000 390000 508000 365000 455000 

Macromoths Macrothylacia rubi 875000 887000 NA NA NA NA 

Macromoths Malacosoma neustria 421000 473000 371000 437000 342000 407000 

Macromoths Mamestra brassicae 814000 801000 749000 709000 NA NA 

Macromoths Meganola albula 215000 265000 NA NA NA NA 

Macromoths Melanchra persicariae 562000 545000 549000 520000 NA NA 

Macromoths Melanchra pisi 847000 869000 NA NA NA NA 

Macromoths Melanthia procellata 332000 318000 308000 305000 296000 297000 

Macromoths Menophra abruptaria 444000 466000 404000 432000 389000 403000 

Macromoths Mesapamea secalis 801000 899000 763000 807000 NA NA 
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Macromoths Mesoleuca albicillata 640000 785000 592000 685000 NA NA 

Macromoths Mesoligia furuncula 719000 670000 711000 668000 NA NA 

Macromoths Mesoligia literosa 831000 853000 744000 683000 NA NA 

Macromoths Miltochrista miniata 335000 331000 327000 329000 313000 307000 

Macromoths Mimas tiliae 399000 450000 390000 432000 377000 406000 

Macromoths Minoa murinata 256000 250000 NA NA NA NA 

Macromoths Mormo maura 655000 652000 538000 543000 418000 466000 

Macromoths Mythimna comma 761000 809000 663000 754000 NA NA 

Macromoths Mythimna ferrago 841000 836000 NA NA NA NA 

Macromoths Mythimna l-album 123000 108000 122000 108000 NA NA 

Macromoths Mythimna litoralis 494000 433000 427000 393000 NA NA 

Macromoths Mythimna obsoleta 366000 419000 339000 392000 NA NA 

Macromoths Mythimna pallens 822000 796000 795000 727000 NA NA 

Macromoths Mythimna pudorina 412000 366000 386000 357000 365000 356000 

Macromoths Mythimna straminea 416000 427000 375000 411000 359000 384000 

Macromoths Mythimna turca 294000 226000 NA NA NA NA 

Macromoths Mythimna unipuncta 363000 240000 228000 208000 NA NA 

Macromoths Mythimna vitellina 173000 389000 NA NA NA NA 

Macromoths Naenia typica 847000 789000 771000 700000 NA NA 

Macromoths Noctua fimbriata 791000 806000 686000 719000 NA NA 

Macromoths Noctua interjecta 503000 529000 462000 507000 NA NA 

Macromoths Nola confusalis 697000 813000 563000 750000 NA NA 

Macromoths Nola cucullatella 482000 532000 461000 492000 NA NA 

Macromoths Nonagria typhae 664000 752000 535000 602000 NA NA 

Macromoths Notodonta 

dromedarius 

848000 875000 NA NA NA NA 

Macromoths Notodonta ziczac 835000 837000 NA NA NA NA 

Macromoths Nudaria mundana 800000 798000 743000 746000 NA NA 

Macromoths Nycteola revayana 654000 688000 341000 578000 329000 538000 

Macromoths Ochropacha duplaris 844000 863000 NA NA NA NA 

Macromoths Ochropleura plecta 872000 922000 NA NA NA NA 

Macromoths Odezia atrata 819000 815000 782000 732000 NA NA 

Macromoths Odontopera bidentata 833000 898000 793000 821000 NA NA 

Macromoths Odontosia carmelita 797000 821000 703000 749000 NA NA 

Macromoths Oligia fasciuncula 866000 925000 NA NA NA NA 

Macromoths Oligia latruncula 735000 551000 639000 474000 NA NA 

Macromoths Oligia strigilis 827000 816000 NA NA NA NA 

Macromoths Oligia versicolor 668000 639000 541000 580000 NA NA 

Macromoths Omphaloscelis lunosa 765000 741000 717000 675000 NA NA 

Macromoths Operophtera brumata 820000 894000 792000 790000 NA NA 

Macromoths Operophtera fagata 819000 833000 790000 784000 NA NA 

Macromoths Orgyia antiqua 817000 769000 760000 638000 NA NA 

Macromoths Orthonama obstipata 534000 452000 494000 365000 NA NA 

Macromoths Orthonama vittata 833000 848000 751000 789000 NA NA 

Macromoths Orthosia cerasi 837000 903000 NA NA NA NA 

Macromoths Orthosia cruda 757000 772000 717000 732000 NA NA 

Macromoths Orthosia gothica 843000 919000 NA NA NA NA 

Macromoths Orthosia gracilis 835000 804000 NA NA NA NA 

Macromoths Orthosia incerta 837000 888000 NA NA NA NA 
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Macromoths Orthosia gothica 843000 919000 NA NA NA NA 

Macromoths Orthosia gracilis 835000 804000 NA NA NA NA 

Macromoths Orthosia incerta 837000 888000 NA NA NA NA 

Macromoths Orthosia miniosa 338000 329000 283000 318000 263000 300000 

Macromoths Orthosia munda 618000 651000 517000 620000 NA NA 

Macromoths Orthosia opima 560000 463000 446000 348000 NA NA 

Macromoths Orthosia populeti 775000 639000 737000 549000 NA NA 

Macromoths Ourapteryx 

sambucaria 

690000 680000 669000 639000 NA NA 

Macromoths Pachycnemia 

hippocastanaria 

240000 146000 227000 146000 225000 144000 

Macromoths Panemeria tenebrata 462000 492000 404000 476000 376000 468000 

Macromoths Panolis flammea 825000 854000 794000 755000 NA NA 

Macromoths Papestra biren 843000 849000 NA NA NA NA 

Macromoths Paradarisa consonaria 332000 289000 309000 274000 287000 245000 

Macromoths Paradrina clavipalpis 869000 812000 NA NA NA NA 

Macromoths Parascotia fuliginaria 234000 298000 229000 276000 214000 253000 

Macromoths Parasemia plantaginis 829000 839000 699000 681000 NA NA 

Macromoths Parastichtis suspecta 794000 807000 742000 733000 NA NA 

Macromoths Parastichtis ypsillon 575000 600000 560000 553000 NA NA 

Macromoths Parectropis similaria 268000 313000 268000 304000 263000 278000 

Macromoths Pasiphila rectangulata 802000 854000 750000 763000 NA NA 

Macromoths Pelurga comitata 654000 740000 588000 623000 NA NA 

Macromoths Perconia strigillaria 678000 534000 486000 373000 312000 263000 

Macromoths Peribatodes 

rhomboidaria 

855000 787000 788000 718000 NA NA 

Macromoths Peridea anceps 430000 471000 368000 407000 351000 359000 

Macromoths Peridroma saucia 691000 540000 599000 478000 NA NA 

Macromoths Perizoma affinitata 785000 820000 722000 756000 NA NA 

Macromoths Perizoma albulata 871000 871000 NA NA NA NA 

Macromoths Perizoma alchemillata 864000 894000 NA NA NA NA 

Macromoths Perizoma bifaciata 575000 577000 500000 485000 NA NA 

Macromoths Perizoma flavofasciata 708000 835000 702000 750000 NA NA 

Macromoths Petrophora chlorosata 833000 878000 NA NA NA NA 

Macromoths Phalera bucephala 836000 834000 784000 781000 NA NA 

Macromoths Pheosia gnoma 860000 878000 NA NA NA NA 

Macromoths Pheosia tremula 812000 827000 NA NA NA NA 

Macromoths Phibalapteryx virgata 271000 284000 NA NA NA NA 

Macromoths Phigalia pilosaria 839000 849000 NA NA NA NA 

Macromoths Philereme transversata 409000 413000 356000 344000 354000 343000 

Macromoths Philereme vetulata 348000 356000 313000 334000 312000 318000 

Macromoths Phlogophora 

meticulosa 

839000 892000 781000 813000 NA NA 

Macromoths Photedes minima 841000 915000 NA NA NA NA 

Macromoths Phragmatobia 

fuliginosa 

834000 828000 799000 784000 NA NA 
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Macromoths Phytometra viridaria 790000 795000 613000 590000 297000 373000 

Macromoths Plagodis dolabraria 611000 665000 565000 599000 NA NA 

Macromoths Plagodis pulveraria 755000 725000 631000 651000 NA NA 

Macromoths Plemyria rubiginata 823000 801000 747000 710000 NA NA 

Macromoths Plusia festucae 860000 892000 NA NA NA NA 

Macromoths Plusia putnami 649000 733000 607000 701000 NA NA 

Macromoths Poecilocampa populi 831000 860000 793000 815000 NA NA 

Macromoths Polia bombycina 370000 278000 NA NA NA NA 

Macromoths Polia nebulosa 804000 771000 781000 691000 NA NA 

Macromoths Polia trimaculosa 805000 644000 782000 445000 NA NA 

Macromoths Polychrysia moneta 550000 531000 542000 510000 NA NA 

Macromoths Polymixis flavicincta 392000 366000 356000 348000 353000 344000 

Macromoths Polymixis lichenea 474000 488000 443000 481000 421000 442000 

Macromoths Polyploca ridens 348000 336000 307000 321000 291000 299000 

Macromoths Protodeltote pygarga 332000 346000 318000 342000 302000 337000 

Macromoths Pseudoips prasinana 604000 703000 554000 522000 NA NA 

Macromoths Pseudopanthera 

macularia 

774000 791000 431000 581000 326000 404000 

Macromoths Pseudoterpna pruinata 564000 615000 529000 570000 NA NA 

Macromoths Pterapherapteryx 

sexalata 

351000 405000 312000 359000 295000 302000 

Macromoths Pterostoma palpina 706000 834000 606000 805000 NA NA 

Macromoths Ptilodon capucina 864000 888000 NA NA NA NA 

Macromoths Ptilodon cucullina 304000 323000 300000 322000 296000 316000 

Macromoths Pyrrhia umbra 448000 546000 448000 487000 403000 353000 

Macromoths Rheumaptera 

cervinalis 

325000 413000 280000 302000 252000 280000 

Macromoths Rheumaptera hastata 809000 772000 500000 530000 NA NA 

Macromoths Rheumaptera 

undulata 

422000 494000 362000 454000 351000 386000 

Macromoths Rhizedra lutosa 746000 756000 711000 648000 NA NA 

Macromoths Rhodometra sacraria 480000 570000 430000 557000 376000 393000 

Macromoths Rhyacia simulans 492000 705000 373000 631000 NA NA 

Macromoths Rivula sericealis 752000 816000 705000 698000 NA NA 

Macromoths Rusina ferruginea 857000 893000 NA NA NA NA 

Macromoths Schrankia 

costaestrigalis 

604000 759000 495000 638000 378000 483000 

Macromoths Schrankia taenialis 222000 201000 206000 187000 NA NA 

Macromoths Scoliopteryx libatrix 795000 829000 768000 719000 NA NA 

Macromoths Scopula emutaria 308000 324000 299000 292000 NA NA 

Macromoths Scopula floslactata 732000 767000 589000 623000 NA NA 

Macromoths Scopula imitaria 430000 444000 420000 424000 371000 395000 

Macromoths Scopula immutata 413000 427000 352000 395000 349000 356000 

Macromoths Scopula 

marginepunctata 

416000 394000 303000 322000 272000 283000 

Macromoths Scotopteryx 

bipunctaria 

389000 334000 253000 197000 NA NA 

Macromoths Scotopteryx 

chenopodiata 

870000 877000 NA NA NA NA 
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Macromoths Scotopteryx 

bipunctaria 

389000 334000 253000 197000 NA NA 

Macromoths Scotopteryx 

chenopodiata 

870000 877000 NA NA NA NA 

Macromoths Scotopteryx luridata 829000 708000 NA NA NA NA 

Macromoths Scotopteryx 

mucronata 

810000 781000 753000 624000 NA NA 

Macromoths Selenia dentaria 831000 898000 NA NA NA NA 

Macromoths Selenia lunularia 799000 874000 748000 799000 NA NA 

Macromoths Selenia tetralunaria 737000 766000 737000 705000 NA NA 

Macromoths Semiaspilates 

ochrearia 

303000 341000 282000 297000 223000 271000 

Macromoths Sesia bembeciformis 453000 716000 NA NA NA NA 

Macromoths Shargacucullia 

verbasci 

451000 453000 440000 417000 400000 371000 

Macromoths Sideridis albicolon 413000 458000 330000 348000 NA NA 

Macromoths Smerinthus ocellata 473000 480000 448000 463000 425000 421000 

Macromoths Spaelotis ravida 439000 419000 418000 408000 402000 323000 

Macromoths Sphinx ligustri 373000 396000 368000 328000 353000 323000 

Macromoths Spilosoma lubricipeda 852000 915000 NA NA NA NA 

Macromoths Spilosoma luteum 798000 773000 734000 680000 NA NA 

Macromoths Spodoptera exigua 355000 403000 285000 361000 231000 318000 

Macromoths Standfussiana 

lucernea 

868000 643000 NA NA NA NA 

Macromoths Stauropus fagi 350000 331000 310000 326000 290000 306000 

Macromoths Stilbia anomala 873000 884000 NA NA NA NA 

Macromoths Tethea ocularis 444000 553000 439000 496000 425000 491000 

Macromoths Tethea or 813000 834000 522000 811000 408000 608000 

Macromoths Tetheella fluctuosa 336000 428000 280000 380000 238000 297000 

Macromoths Thalpophila matura 772000 733000 582000 612000 NA NA 

Macromoths Thera firmata 823000 861000 792000 829000 NA NA 

Macromoths Thera juniperata 815000 832000 794000 805000 NA NA 

Macromoths Thera obeliscata 844000 904000 NA NA NA NA 

Macromoths Theria primaria 656000 637000 618000 594000 NA NA 

Macromoths Tholera cespitis 797000 657000 711000 516000 NA NA 

Macromoths Tholera decimalis 673000 641000 602000 611000 NA NA 

Macromoths Thumatha senex 416000 489000 365000 446000 357000 356000 

Macromoths Thyatira batis 778000 800000 773000 773000 NA NA 

Macromoths Timandra comae 504000 555000 493000 509000 NA NA 

Macromoths Trichiura crataegi 860000 885000 NA NA NA NA 

Macromoths Trichopteryx carpinata 835000 883000 NA NA NA NA 

Macromoths Triphosa dubitata 459000 460000 429000 410000 374000 345000 

Macromoths Tyria jacobaeae 715000 659000 605000 618000 NA NA 

Macromoths Watsonalla binaria 430000 470000 420000 458000 402000 420000 

Macromoths Watsonalla cultraria 337000 354000 306000 318000 285000 297000 

Macromoths Xanthia aurago 445000 441000 384000 400000 333000 384000 

Macromoths Xanthia citrago 767000 734000 656000 715000 NA NA 

Macromoths Xanthia gilvago 572000 618000 507000 578000 NA NA 

Macromoths Xanthia icteritia 843000 904000 NA NA NA NA 
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Macromoths Xanthia citrago 767000 734000 656000 715000 NA NA 

Macromoths Xanthia gilvago 572000 618000 507000 578000 NA NA 

Macromoths Xanthia icteritia 843000 904000 NA NA NA NA 

Macromoths Xanthia togata 835000 904000 799000 833000 NA NA 

Macromoths Xanthorhoe designata 853000 905000 NA NA NA NA 

Macromoths Xanthorhoe ferrugata 802000 707000 775000 668000 NA NA 

Macromoths Xanthorhoe fluctuata 865000 917000 NA NA NA NA 

Macromoths Xanthorhoe 

quadrifasiata 

370000 441000 347000 402000 337000 365000 

Macromoths Xanthorhoe 

spadicearia 

815000 852000 790000 801000 NA NA 

Macromoths Xestia agathina 844000 910000 NA NA NA NA 

Macromoths Xestia baja 847000 899000 NA NA NA NA 

Macromoths Xestia c-nigrum 856000 903000 NA NA NA NA 

Macromoths Xestia castanea 872000 856000 NA NA NA NA 

Macromoths Xestia ditrapezium 784000 753000 719000 589000 NA NA 

Macromoths Xestia rhomboidea 538000 471000 425000 377000 NA NA 

Macromoths Xestia sexstrigata 872000 915000 NA NA NA NA 

Macromoths Xestia triangulum 834000 869000 NA NA NA NA 

Macromoths Xylena vetusta 822000 883000 NA NA NA NA 

Macromoths Xylocampa areola 781000 742000 672000 648000 NA NA 

Macromoths Zanclognatha 

tarsipennalis 

664000 667000 636000 638000 NA NA 

Macromoths Zeuzera pyrina 400000 436000 371000 412000 337000 384000 

Macromoths Zygaena filipendulae 823000 873000 629000 741000 NA NA 

Macromoths Zygaena lonicerae 602000 615000 521000 548000 NA NA 

Macromoths Zygaena trifolii 414000 322000 347000 300000 320000 265000 

Millipedes Blaniulus guttulatus 435000 587000 336000 525000 NA NA 

Millipedes Brachydesmus superus 457000 677000 457000 558000 NA NA 

Millipedes Cylindroiulus 

latestriatus 

456000 645000 NA NA NA NA 

Millipedes Glomeris marginata 552000 552000 NA NA NA NA 

Millipedes Julus scandinavius 737000 795000 NA NA NA NA 

Millipedes Nemasoma varicorne 552000 607000 440000 497000 NA NA 

Millipedes Ommatoiulus 

sabulosus 

736000 743000 NA NA NA NA 

Millipedes Ophyiulus pilosus NA NA 454000 661000 NA NA 

Millipedes Polydesmus angustus 738000 751000 NA NA NA NA 

Millipedes Polydesmus coriaceus 349000 392000 NA NA NA NA 

Millipedes Polydesmus 

denticulatus 

461000 489000 NA NA NA NA 

Millipedes Polydesmus inconstans 404000 482000 NA NA NA NA 

Spiders Agelena labyrinthica 289000 355000 NA NA NA NA 

Spiders Agroeca brunnea 306000 322000 NA NA NA NA 

Spiders Agroeca proxima 378000 717000 NA NA NA NA 

Spiders Agyneta conigera 361000 688000 NA NA NA NA 

Spiders Agyneta subtilis 469000 619000 NA NA NA NA 

Spiders Alopecosa barbipes 279000 371000 NA NA NA NA 
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Spiders Agyneta subtilis 469000 619000 NA NA NA NA 

Spiders Alopecosa barbipes 279000 371000 NA NA NA NA 

Spiders Alopecosa 

pulverulenta 

666000 816000 NA NA NA NA 

Spiders Amaurobius fenestralis 756000 798000 NA NA NA NA 

Spiders Anelosimus vittatus 288000 478000 NA NA NA NA 

Spiders Antistea elegans 538000 720000 NA NA NA NA 

Spiders Aphileta misera 513000 507000 NA NA NA NA 

Spiders Araeoncus humilis 541000 522000 NA NA NA NA 

Spiders Araneus quadratus 321000 781000 NA NA NA NA 

Spiders Arctosa perita 358000 551000 NA NA NA NA 

Spiders Bathyphantes 

approximatus 

528000 598000 NA NA NA NA 

Spiders Bathyphantes gracilis 685000 806000 NA NA NA NA 

Spiders Bathyphantes nigrinus 581000 695000 NA NA NA NA 

Spiders Bathyphantes parvulus 518000 626000 NA NA NA NA 

Spiders Centromerita bicolor 570000 787000 NA NA NA NA 

Spiders Centromerita concinna 681000 830000 NA NA NA NA 

Spiders Centromerus dilutus 514000 772000 NA NA NA NA 

Spiders Centromerus sylvaticus 493000 756000 NA NA NA NA 

Spiders Ceratinella brevipes 785000 840000 NA NA NA NA 

Spiders Ceratinella brevis 430000 668000 NA NA NA NA 

Spiders Clubiona comta 497000 732000 NA NA NA NA 

Spiders Clubiona corticalis 300000 357000 NA NA NA NA 

Spiders Clubiona diversa 610000 756000 NA NA NA NA 

Spiders Clubiona lutescens 416000 679000 NA NA NA NA 

Spiders Clubiona phragmitis 399000 501000 301000 348000 NA NA 

Spiders Clubiona reclusa 409000 798000 303000 486000 NA NA 

Spiders Clubiona stagnatilis 394000 494000 NA NA NA NA 

Spiders Clubiona subtilis 334000 329000 NA NA NA NA 

Spiders Clubiona terrestris 419000 584000 307000 375000 NA NA 

Spiders Cnephalocotes 

obscurus 

575000 683000 NA NA NA NA 

Spiders Crustulina guttata 351000 338000 NA NA NA NA 

Spiders Dictyna arundinacea 611000 718000 NA NA NA NA 

Spiders Dicymbium nigrum 743000 696000 NA NA NA NA 

Spiders Diplocephalus cristatus 563000 730000 NA NA NA NA 

Spiders Diplocephalus latifrons 504000 779000 NA NA NA NA 

Spiders Diplocephalus 

permixtus 

627000 788000 NA NA NA NA 

Spiders Diplocephalus picinus 428000 736000 NA NA NA NA 

Spiders Diplostyla concolor 615000 735000 NA NA NA NA 

Spiders Dismodicus bifrons 674000 776000 NA NA NA NA 

Spiders Drapetisca socialis 339000 737000 NA NA NA NA 

Spiders Drassodes cupreus 399000 784000 NA NA NA NA 

Spiders Drassodes lapidosus 541000 386000 NA NA NA NA 

Spiders Enoplognatha 

thoracica 

220000 443000 NA NA NA NA 

Spiders Episinus angulatus 377000 408000 NA NA NA NA 
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Spiders Enoplognatha 

thoracica 

220000 443000 NA NA NA NA 

Spiders Episinus angulatus 377000 408000 NA NA NA NA 

Spiders Erigone atra 517000 817000 NA NA NA NA 

Spiders Erigone dentipalpis 618000 838000 NA NA NA NA 

Spiders Erigonella hiemalis 493000 776000 NA NA NA NA 

Spiders Ero cambridgei 356000 679000 NA NA NA NA 

Spiders Ero furcata 360000 677000 NA NA NA NA 

Spiders Euophrys frontalis 400000 501000 NA NA NA NA 

Spiders Evarcha falcata 364000 419000 NA NA NA NA 

Spiders Floronia bucculenta 309000 442000 NA NA NA NA 

Spiders Gnathonarium 

dentatum 

481000 629000 NA NA NA NA 

Spiders Gonatium rubellum 379000 778000 NA NA NA NA 

Spiders Gonatium rubens 771000 796000 NA NA NA NA 

Spiders Gongylidiellum vivum 476000 731000 NA NA NA NA 

Spiders Gongylidium rufipes 436000 676000 NA NA NA NA 

Spiders Hahnia helveola 387000 481000 NA NA NA NA 

Spiders Hahnia montana 589000 769000 NA NA NA NA 

Spiders Hahnia nava 414000 587000 NA NA NA NA 

Spiders Haplodrassus signifer 320000 784000 NA NA NA NA 

Spiders Harpactea hombergi 372000 548000 NA NA NA NA 

Spiders Heliophanus cupreus 283000 302000 NA NA NA NA 

Spiders Heliophanus flavipes 275000 549000 NA NA NA NA 

Spiders Helophora insignis 389000 734000 NA NA NA NA 

Spiders Hypomma 

bituberculatum 

590000 741000 NA NA NA NA 

Spiders Hypselistes jacksoni 447000 509000 NA NA NA NA 

Spiders Hypsosinga pygmaea 395000 369000 NA NA NA NA 

Spiders Kaestneria pullata 471000 568000 NA NA NA NA 

Spiders Labulla thoracica 509000 761000 NA NA NA NA 

Spiders Larinioides cornutus 388000 835000 NA NA NA NA 

Spiders Lathys humilis 221000 341000 NA NA NA NA 

Spiders Lepthyphantes alacris 727000 776000 NA NA NA NA 

Spiders Lepthyphantes 

cristatus 

617000 752000 NA NA NA NA 

Spiders Lepthyphantes 

ericaeus 

795000 848000 NA NA NA NA 

Spiders Lepthyphantes flavipes 360000 727000 308000 341000 NA NA 

Spiders Lepthyphantes 

minutus 

411000 776000 NA NA NA NA 

Spiders Lepthyphantes 

obscurus 

518000 779000 NA NA NA NA 

Spiders Lepthyphantes pallidus 629000 744000 NA NA NA NA 

Spiders Lepthyphantes tenuis 757000 861000 NA NA NA NA 

Spiders Lepthyphantes 

zimmermanni 

831000 871000 NA NA NA NA 

Spiders Leptorhoptrum 

robustum 

422000 675000 NA NA NA NA 
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Spiders Lepthyphantes 

zimmermanni 

831000 871000 NA NA NA NA 

Spiders Leptorhoptrum 

robustum 

422000 675000 NA NA NA NA 

Spiders Linyphia hortensis 306000 578000 NA NA NA NA 

Spiders Linyphia triangularis 496000 793000 NA NA NA NA 

Spiders Lophomma punctatum 548000 692000 NA NA NA NA 

Spiders Macrargus rufus 476000 728000 NA NA NA NA 

Spiders Maso sundevalli 532000 729000 NA NA NA NA 

Spiders Meioneta rurestris 408000 672000 307000 400000 NA NA 

Spiders Metellina mengei 725000 821000 NA NA NA NA 

Spiders Metellina merianae 800000 835000 NA NA NA NA 

Spiders Metopobactrus 

prominulus 

496000 503000 NA NA NA NA 

Spiders Micaria pulicaria 433000 616000 NA NA NA NA 

Spiders Microlinyphia impigra 307000 328000 NA NA NA NA 

Spiders Microlinyphia pusilla 594000 809000 NA NA NA NA 

Spiders Microneta viaria 486000 743000 NA NA NA NA 

Spiders Monocephalus 

fuscipes 

748000 825000 NA NA NA NA 

Spiders Neon reticulatus 541000 683000 NA NA NA NA 

Spiders Neriene clathrata 572000 733000 NA NA NA NA 

Spiders Neriene montana 348000 676000 NA NA NA NA 

Spiders Neriene peltata 400000 762000 NA NA NA NA 

Spiders Nuctenea umbratica 476000 789000 NA NA NA NA 

Spiders Oedothorax fuscus 491000 840000 NA NA NA NA 

Spiders Oedothorax gibbosus 641000 816000 NA NA NA NA 

Spiders Oedothorax retusus 558000 758000 NA NA NA NA 

Spiders Ozyptila atomaria 482000 475000 NA NA NA NA 

Spiders Ozyptila trux 472000 778000 NA NA NA NA 

Spiders Pachygnatha clercki 562000 791000 NA NA NA NA 

Spiders Pachygnatha degeeri 725000 741000 NA NA NA NA 

Spiders Pardosa amentata 767000 806000 NA NA NA NA 

Spiders Pardosa monticola 314000 439000 NA NA NA NA 

Spiders Pardosa nigriceps 531000 819000 NA NA NA NA 

Spiders Pardosa palustris 584000 766000 NA NA NA NA 

Spiders Pardosa prativaga 365000 479000 NA NA NA NA 

Spiders Peponocranium 

ludicrum 

698000 667000 NA NA NA NA 

Spiders Philodromus aureolus 444000 781000 NA NA NA NA 

Spiders Philodromus cespitum 356000 706000 NA NA NA NA 

Spiders Philodromus dispar 283000 392000 NA NA NA NA 

Spiders Pholcomma gibbum 582000 783000 NA NA NA NA 

Spiders Phrurolithus festivus 262000 322000 NA NA NA NA 

Spiders Pirata hygrophilus 408000 533000 NA NA NA NA 

Spiders Pirata latitans 367000 350000 NA NA NA NA 

Spiders Pirata piraticus 630000 822000 NA NA NA NA 

Spiders Pirata uliginosus 453000 557000 NA NA NA NA 

Spiders Pisaura mirabilis 348000 483000 298000 361000 NA NA 
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Spiders Pirata piraticus 630000 822000 NA NA NA NA 

Spiders Pirata uliginosus 453000 557000 NA NA NA NA 

Spiders Pisaura mirabilis 348000 483000 298000 361000 NA NA 

Spiders Pocadicnemis juncea 367000 474000 NA NA NA NA 

Spiders Porrhomma 

pygmaeum 

517000 703000 NA NA NA NA 

Spiders Robertus lividus 839000 873000 NA NA NA NA 

Spiders Saaristoa abnormis 705000 826000 NA NA NA NA 

Spiders Salticus scenicus 317000 543000 NA NA NA NA 

Spiders Segestria senoculata 755000 810000 NA NA NA NA 

Spiders Steatoda bipunctata 300000 616000 NA NA NA NA 

Spiders Stemonyphantes 

lineatus 

559000 723000 NA NA NA NA 

Spiders Tallusia experta 527000 496000 NA NA NA NA 

Spiders Tapinocyba praecox 394000 423000 NA NA NA NA 

Spiders Tapinopa longidens 573000 769000 NA NA NA NA 

Spiders Taranucnus setosus 332000 348000 NA NA NA NA 

Spiders Tetragnatha extensa 607000 838000 NA NA NA NA 

Spiders Tetragnatha montana 470000 580000 NA NA NA NA 

Spiders Textrix denticulata 749000 809000 NA NA NA NA 

Spiders Theridion sisyphium 518000 770000 NA NA NA NA 

Spiders Theridion varians 301000 660000 NA NA NA NA 

Spiders Tibellus oblongus 365000 701000 NA NA NA NA 

Spiders Tiso vagans 623000 725000 NA NA NA NA 

Spiders Trichopterna thorelli 268000 539000 NA NA NA NA 

Spiders Trochosa ruricola 437000 401000 NA NA NA NA 

Spiders Trochosa terricola 665000 789000 NA NA NA NA 

Spiders Walckenaeria 

acuminata 

742000 870000 NA NA NA NA 

Spiders Walckenaeria antica 513000 703000 NA NA NA NA 

Spiders Walckenaeria 

atrotibialis 

438000 402000 NA NA NA NA 

Spiders Walckenaeria 

cucullata 

345000 519000 NA NA NA NA 

Spiders Walckenaeria 

cuspidata 

661000 799000 NA NA NA NA 

Spiders Walckenaeria 

nudipalpis 

722000 822000 NA NA NA NA 

Spiders Walckenaeria 

unicornis 

399000 494000 NA NA NA NA 

Spiders Walckenaeria vigilax 446000 470000 NA NA NA NA 

Spiders Xysticus cristatus 753000 812000 NA NA NA NA 

Spiders Xysticus erraticus 244000 482000 NA NA NA NA 

Spiders Zelotes latreillei 322000 536000 NA NA NA NA 

Spiders Zora spinimana 386000 585000 NA NA NA NA 

Spiders Zygiella atrica 456000 625000 NA NA NA NA 

Spiders Zygiella x-notata 439000 703000 NA NA NA NA 

Woodlice Androniscus dentiger 511000 738000 505000 724000 379000 409000 
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Spiders Zygiella x-notata 439000 703000 NA NA NA NA 

Woodlice Androniscus dentiger 511000 738000 505000 724000 379000 409000 

Woodlice Armadillidium 

nasatum 

253000 283000 NA NA NA NA 

Woodlice Armadillidium vulgare 525000 647000 525000 643000 NA NA 

Woodlice Asellus aquaticus 669000 624000 616000 594000 379000 420000 

Woodlice Haplophthalmus 

danicus 

284000 384000 284000 384000 NA NA 

Woodlice Ligidium hypnorum 238000 288000 219000 260000 NA NA 

Woodlice Philoscia muscorum 752000 887000 NA NA NA NA 

Woodlice Platyarthrus 

hoffmannseggii 

423000 467000 420000 452000 349000 352000 

Woodlice Porcellio spinicornis 540000 738000 540000 736000 NA NA 

Woodlice Porcellionides 

cingendus 

208000 275000 198000 265000 NA NA 

Woodlice Porcellionides 

pruinosus 

383000 495000 370000 436000 NA NA 

Woodlice Proasellus meridianus 593000 454000 593000 416000 NA NA 

Woodlice Trichoniscus pygmaeus 484000 743000 474000 702000 NA NA 
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Ants Formica cunicularia 235000 238000 188000 195000 NA NA 

Ants Formica fusca 353000 417000 NA NA NA NA 

Ants Formica rufa 298000 313000 NA NA NA NA 

Ants Formica sanguinea 431000 571000 NA NA NA NA 

Ants Lasius brunneus 203000 241000 NA NA NA NA 

Ants Lasius fuliginosus 286000 319000 208000 258000 NA NA 

Ants Myrmecina graminicola 192000 202000 NA NA NA NA 

Ants Myrmica scabrinodis 416000 855000 NA NA NA NA 

Ants Myrmica schencki 197000 236000 NA NA NA NA 

Ants Stenamma debile 213000 246000 NA NA NA NA 

Ants Temnothorax nylanderi 225000 224000 NA NA NA NA 

Ants 
Tetramorium 
caespitum 

256000 375000 195000 284000 NA NA 

Aquatic Bugs Corixa dentipes 455000 626000 NA NA NA NA 

Aquatic Bugs Corixa panzeri 370000 437000 355000 405000 NA NA 

Aquatic Bugs Cymatia coleoptrata 389000 423000 387000 376000 NA NA 

Aquatic Bugs Gerris gibbifer 403000 377000 NA NA NA NA 

Aquatic Bugs Gerris thoracicus 493000 730000 410000 659000 NA NA 

Aquatic Bugs Hebrus ruficeps 439000 385000 NA NA NA NA 

Aquatic Bugs Hesperocorixa castanea 720000 695000 NA NA NA NA 

Aquatic Bugs Hesperocorixa linnaei NA NA 394000 503000 NA NA 

Aquatic Bugs Hesperocorixa moesta 255000 341000 NA NA NA NA 

Aquatic Bugs Hydrometra stagnorum 485000 519000 NA NA NA NA 

Aquatic Bugs Ilyocoris cimicoides 371000 447000 371000 407000 NA NA 

Aquatic Bugs Mesovelia furcata 341000 322000 NA NA NA NA 

Aquatic Bugs Micronecta poweri 488000 498000 NA NA NA NA 

Aquatic Bugs Micronecta scholtzi 326000 412000 NA NA NA NA 

 

Table A2.5. Northern range margin locations (in metres, on the GB Ordnance Survey Grid) 

during interval 2 of all species included in Figure 3, for each time period T2 (1986-1995) or T3 

(2001-2010) and for each level of recording effort control (Recorded, Well Recorded or Heavily 

Recorded). For bird species, the time period years are 1988-1991 for T2 and 2007-2011 for T3. 

Margin values which are denoted as ‘C’ indicate confidential data. Note that for species which 

also qualify for analysis in interval 1, the calculation of range margin locations for 1986-1995 in 

interval 1 (in Table A2.4) will differ from values for 1986-1995 in interval 2 due to a different set 

of hectads being analysed. Ground beetles are denoted by ‘G beetles’.  
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Aquatic Bugs Microvelia reticulata 402000 596000 330000 502000 NA NA 

Aquatic Bugs Notonecta glauca 722000 713000 NA NA NA NA 

Aquatic Bugs Notonecta maculata 375000 462000 367000 372000 NA NA 

Aquatic Bugs Notonecta viridis 344000 467000 344000 405000 NA NA 

Aquatic Bugs Plea minutissima 407000 486000 387000 411000 NA NA 

Aquatic Bugs Ranatra linearis 304000 425000 297000 400000 NA NA 

Aquatic Bugs Sigara falleni 726000 711000 NA NA NA NA 

Aquatic Bugs Sigara stagnalis 386000 355000 370000 305000 NA NA 

Bees Andrena angustior 452000 333000 296000 250000 NA NA 

Bees Andrena argentata 146000 161000 NA NA NA NA 

Bees Andrena barbilabris 496000 623000 431000 499000 NA NA 

Bees Andrena bicolor 494000 747000 NA NA NA NA 

Bees Andrena bimaculata 227000 298000 221000 246000 NA NA 

Bees Andrena bucephala 232000 231000 182000 213000 NA NA 

Bees Andrena carantonica 746000 850000 NA NA NA NA 

Bees Andrena chrysosceles 468000 476000 NA NA NA NA 

Bees Andrena cineraria 490000 491000 421000 450000 NA NA 

Bees Andrena clarkella 481000 771000 448000 580000 NA NA 

Bees Andrena coitana 418000 489000 NA NA NA NA 

Bees Andrena denticulata 402000 731000 351000 540000 NA NA 

Bees Andrena dorsata 303000 331000 286000 302000 NA NA 

Bees Andrena flavipes 221000 310000 182000 280000 170000 215000 

Bees Andrena fucata 705000 713000 NA NA NA NA 

Bees Andrena fulva 492000 486000 NA NA NA NA 

Bees Andrena fuscipes 447000 572000 385000 432000 NA NA 

Bees Andrena haemorrhoa 802000 847000 NA NA NA NA 

Bees Andrena hattorfiana 188000 248000 NA NA NA NA 

Bees Andrena helvola 429000 423000 379000 381000 NA NA 

Bees Andrena humilis 415000 452000 354000 371000 NA NA 

Bees Andrena labialis 238000 245000 201000 203000 NA NA 

Bees Andrena labiata 215000 280000 168000 224000 NA NA 

Bees Andrena lapponica 807000 695000 NA NA NA NA 

Bees Andrena minutula 463000 480000 397000 424000 NA NA 

Bees Andrena nigroaenea 465000 511000 442000 490000 NA NA 

Bees Andrena nitida 294000 324000 263000 302000 NA NA 

Bees Andrena ovatula 309000 338000 219000 275000 NA NA 

Bees Andrena praecox 328000 385000 278000 316000 NA NA 

Bees Andrena proxima 196000 161000 NA NA NA NA 

Bees Andrena semilaevis 478000 523000 NA NA NA NA 

Bees Andrena subopaca 734000 830000 437000 609000 NA NA 

Bees Andrena synadelpha 303000 375000 246000 335000 NA NA 

Bees Andrena tarsata 547000 704000 NA NA NA NA 

Bees Andrena thoracica 266000 293000 200000 240000 NA NA 

Bees Andrena tibialis 321000 330000 274000 259000 NA NA 

Bees Andrena trimmerana 243000 215000 226000 177000 NA NA 

Bees Andrena wilkella 743000 602000 NA NA NA NA 
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Bees Anthophora plumipes 375000 429000 281000 337000 NA NA 

Bees Apis mellifera 485000 559000 NA NA NA NA 

Bees Bombus barbutellus 571000 473000 304000 310000 NA NA 

Bees Bombus bohemicus 875000 880000 NA NA NA NA 

Bees Bombus campestris 647000 577000 402000 459000 NA NA 

Bees Bombus humilis 229000 213000 177000 209000 NA NA 

Bees Bombus lapidarius 658000 858000 NA NA NA NA 

Bees Bombus muscorum 842000 918000 NA NA NA NA 

Bees Bombus pratorum 857000 867000 NA NA NA NA 

Bees Bombus ruderarius 445000 418000 275000 262000 NA NA 

Bees Bombus rupestris 205000 408000 NA NA NA NA 

Bees Bombus sylvestris 775000 854000 NA NA NA NA 

Bees Bombus terrestris 643000 852000 NA NA NA NA 

Bees Bombus vestalis 555000 504000 419000 471000 NA NA 

Bees 
Chelostoma 
campanularum 

212000 288000 196000 231000 NA NA 

Bees Chelostoma florisomne 415000 377000 308000 220000 NA NA 

Bees Coelioxys conoidea 238000 249000 NA NA NA NA 

Bees Coelioxys elongata 561000 396000 NA NA NA NA 

Bees Coelioxys rufescens 257000 273000 250000 215000 NA NA 

Bees Colletes daviesanus 483000 556000 NA NA NA NA 

Bees Colletes fodiens 371000 402000 281000 339000 NA NA 

Bees Colletes similis 240000 239000 188000 215000 NA NA 

Bees Colletes succinctus 548000 906000 424000 535000 NA NA 

Bees Dasypoda hirtipes 248000 278000 223000 236000 NA NA 

Bees Epeolus cruciger 394000 432000 355000 393000 NA NA 

Bees Epeolus variegatus 396000 401000 347000 370000 NA NA 

Bees Halictus rubicundus 802000 857000 NA NA NA NA 

Bees Halictus tumulorum 503000 604000 NA NA NA NA 

Bees Hoplitis claviventris 303000 327000 274000 267000 NA NA 

Bees Hylaeus brevicornis 408000 383000 353000 361000 NA NA 

Bees Hylaeus communis 443000 485000 425000 431000 NA NA 

Bees Hylaeus confusus 397000 444000 293000 274000 NA NA 

Bees Hylaeus cornutus 193000 217000 174000 207000 NA NA 

Bees Hylaeus dilatatus 267000 281000 240000 249000 NA NA 

Bees Hylaeus hyalinatus 429000 456000 390000 366000 NA NA 

Bees Hylaeus signatus 336000 384000 312000 339000 NA NA 

Bees Lasioglossum albipes 621000 737000 NA NA NA NA 

Bees 
Lasioglossum 
calceatum 

766000 855000 NA NA NA NA 

Bees 
Lasioglossum 
cupromicans 

537000 542000 NA NA NA NA 

Bees Lasioglossum fratellum 829000 850000 NA NA NA NA 

Bees Lasioglossum fulvicorne 481000 448000 410000 306000 NA NA 

Bees 
Lasioglossum 
laevigatum 

223000 229000 200000 190000 NA NA 

Bees Lasioglossum lativentre 189000 331000 166000 309000 NA NA 

Bees Lasioglossum leucopus 779000 668000 NA NA NA NA 
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Bees Lasioglossum leucopus 779000 668000 NA NA NA NA 

Bees 
Lasioglossum 
leucozonium 

378000 437000 363000 398000 NA NA 

Bees 
Lasioglossum 
malachurum 

205000 278000 179000 257000 NA NA 

Bees 
Lasioglossum 
minutissimum 

292000 328000 265000 311000 NA NA 

Bees Lasioglossum morio 367000 382000 340000 343000 NA NA 

Bees Lasioglossum parvulum 333000 310000 263000 264000 NA NA 

Bees Lasioglossum pauxillum 214000 288000 NA NA NA NA 

Bees Lasioglossum prasinum 150000 155000 NA NA NA NA 

Bees 
Lasioglossum 
punctatissimum 

433000 417000 330000 371000 NA NA 

Bees Lasioglossum rufitarse 648000 715000 NA NA NA NA 

Bees 
Lasioglossum 
smeathmanellum 

457000 484000 447000 441000 NA NA 

Bees 
Lasioglossum 
villosulum 

553000 496000 NA NA NA NA 

Bees 
Lasioglossum 
xanthopus 

207000 227000 NA NA NA NA 

Bees Lasioglossum zonulum 184000 187000 166000 169000 158000 155000 

Bees Macropis europaea 212000 247000 NA NA NA NA 

Bees 
Megachile 
centuncularis 

508000 632000 NA NA NA NA 

Bees Megachile dorsalis 256000 323000 NA NA NA NA 

Bees Megachile ligniseca 294000 345000 250000 322000 NA NA 

Bees Megachile maritima 288000 275000 211000 247000 NA NA 

Bees Megachile versicolor 423000 457000 384000 425000 NA NA 

Bees Megachile willughbiella 461000 561000 432000 516000 NA NA 

Bees Melecta albifrons 224000 345000 NA NA NA NA 

Bees Melitta leporina 252000 246000 217000 225000 NA NA 

Bees Melitta tricincta 179000 173000 170000 162000 NA NA 

Bees Nomada fabriciana 480000 492000 438000 470000 NA NA 

Bees Nomada flava 371000 444000 345000 424000 NA NA 

Bees Nomada flavoguttata 482000 604000 435000 523000 NA NA 

Bees Nomada flavopicta 261000 275000 261000 240000 NA NA 

Bees Nomada fucata 200000 260000 179000 229000 NA NA 

Bees Nomada fulvicornis 263000 339000 NA NA NA NA 

Bees Nomada goodeniana 474000 520000 NA NA NA NA 

Bees Nomada lathburiana 451000 421000 NA NA NA NA 

Bees 
Nomada 
leucophthalma 

513000 642000 444000 453000 NA NA 

Bees Nomada marshamella 606000 777000 NA NA NA NA 

Bees Nomada panzeri 631000 668000 NA NA NA NA 

Bees Nomada ruficornis 625000 635000 NA NA NA NA 

Bees Nomada rufipes 426000 471000 404000 398000 NA NA 

Bees Nomada striata 473000 479000 423000 406000 NA NA 

Bees Osmia aurulenta 322000 299000 195000 210000 NA NA 

Bees Osmia bicolor 261000 285000 225000 255000 NA NA 
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Bees Osmia caerulescens 397000 436000 357000 375000 NA NA 

Bees Osmia leaiana 383000 374000 324000 344000 NA NA 

Bees Osmia spinulosa 246000 302000 238000 274000 NA NA 

Bees Panurgus banksianus 279000 287000 216000 229000 NA NA 

Bees Panurgus calcaratus 201000 190000 165000 175000 NA NA 

Bees Sphecodes crassus 371000 412000 339000 405000 NA NA 

Bees Sphecodes ephippius 372000 458000 357000 437000 NA NA 

Bees Sphecodes ferruginatus 280000 313000 NA NA NA NA 

Bees Sphecodes geoffrellus 621000 811000 NA NA NA NA 

Bees Sphecodes gibbus 462000 457000 432000 391000 NA NA 

Bees Sphecodes hyalinatus 559000 583000 439000 336000 NA NA 

Bees Sphecodes monilicornis 455000 615000 442000 559000 NA NA 

Bees Sphecodes pellucidus 442000 464000 427000 403000 NA NA 

Bees Sphecodes puncticeps 390000 423000 343000 387000 NA NA 

Bees Sphecodes reticulatus 280000 364000 251000 340000 NA NA 

Birds Accipiter gentilis 819000 867000 819000 867000 819000 867000 

Birds 
Acrocephalus 
scirpaceus 

648000 712000 648000 712000 648000 710000 

Birds Alcedo atthis 822000 844000 822000 844000 822000 844000 

Birds Anas acuta 859000 757000 859000 757000 859000 757000 

Birds Anas querquedula 757000 727000 757000 727000 757000 727000 

Birds Burhinus oedicnemus 303000 306000 303000 306000 303000 306000 

Birds Calidris pugnax 673000 519000 673000 519000 673000 519000 

Birds Caprimulgus europaeus 654000 629000 654000 629000 654000 629000 

Birds Cettia cetti 309000 437000 309000 437000 309000 437000 

Birds Charadrius dubius 601000 797000 601000 797000 601000 797000 

Birds Circus aeruginosus 683000 841000 683000 841000 683000 841000 

Birds Circus pygargus C C C C C C 

Birds 
Coccothraustes 
coccothraustes 

747000 681000 747000 681000 747000 681000 

Birds Columba oenas 864000 907000 864000 907000 864000 907000 

Birds Dendrocopos minor 542000 515000 542000 515000 542000 515000 

Birds Emberiza cirlus 133000 78000 133000 78000 133000 78000 

Birds Falco subbuteo 599000 768000 599000 768000 599000 768000 

Birds Garrulus glandarius 839000 861000 839000 861000 839000 861000 

Birds Larus melanocephalus 433000 686000 433000 686000 433000 686000 

Birds Limosa limosa 762000 452000 762000 452000 762000 452000 

Birds Locustella luscinioides 357000 329000 357000 329000 357000 329000 

Birds Lullula arborea 310000 423000 310000 423000 310000 423000 

Birds Luscinia megarhynchos 391000 417000 391000 417000 391000 417000 

Birds Motacilla flava 673000 658000 673000 658000 673000 657000 

Birds Oriolus oriolus 524000 377000 524000 377000 524000 377000 

Birds Panurus biarmicus 388000 590000 388000 590000 388000 590000 

Birds Pernis apivorus C C C C C C 

Birds Phoenicurus ochruros 448000 587000 448000 587000 448000 538000 

Birds Picus viridis 851000 824000 851000 824000 851000 824000 

Birds Podiceps cristatus 813000 788000 813000 788000 813000 788000 
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Birds Podiceps nigricollis 710000 571000 710000 571000 710000 571000 

Birds Poecile montana 655000 623000 655000 623000 655000 623000 

Birds Poecile palustris 659000 647000 659000 647000 658000 647000 

Birds Porzana porzana 823000 755000 823000 755000 823000 755000 

Birds Puffinus puffinus 864000 607000 864000 607000 NA NA 

Birds 
Pyrrhocorax 
pyrrhocorax 

682000 668000 682000 668000 674000 668000 

Birds Recurvirostra avosetta 324000 524000 324000 524000 324000 524000 

Birds Regulus ignicapilla 321000 375000 321000 375000 321000 375000 

Birds Sitta europaea 626000 717000 626000 717000 626000 717000 

Birds Sterna dougallii 676000 416000 676000 416000 658000 416000 

Birds Streptopelia turtur 679000 525000 679000 525000 645000 525000 

Birds Sylvia curruca 834000 790000 834000 790000 834000 790000 

Birds Sylvia undata 147000 342000 147000 342000 147000 342000 

Birds Tyto alba 871000 959000 871000 959000 871000 959000 

Butterflies Aglais polychloros 387000 347000 387000 347000 387000 347000 

Butterflies 
Anthocharis 
cardamines 

866000 924000 866000 924000 862000 909000 

Butterflies Apatura iris 235000 272000 235000 272000 235000 272000 

Butterflies Aphantopus hyperantus 855000 877000 854000 873000 839000 866000 

Butterflies Argynnis adippe 430000 479000 430000 479000 430000 479000 

Butterflies Argynnis paphia 411000 478000 411000 478000 411000 478000 

Butterflies Aricia agestis 421000 512000 421000 512000 421000 505000 

Butterflies Boloria euphrosyne 856000 877000 850000 877000 843000 852000 

Butterflies Callophrys rubi 855000 889000 855000 883000 848000 867000 

Butterflies Celastrina argiolus 580000 674000 580000 674000 580000 674000 

Butterflies Erynnis tages 853000 858000 853000 858000 818000 857000 

Butterflies Euphydryas aurinia 731000 751000 730000 744000 701000 739000 

Butterflies Gonepteryx rhamni 518000 571000 518000 561000 516000 561000 

Butterflies Hamearis lucina 471000 440000 471000 440000 471000 440000 

Butterflies Hesperia comma 168000 184000 168000 184000 168000 184000 

Butterflies Hipparchia semele NA NA NA NA 873000 897000 

Butterflies Inachis io 841000 959000 825000 956000 825000 943000 

Butterflies Lasiommata megera 635000 654000 635000 650000 629000 647000 

Butterflies Leptidea sinapis 318000 356000 318000 356000 318000 356000 

Butterflies Limenitis camilla 371000 406000 371000 406000 371000 406000 

Butterflies Lycaena phlaeas NA NA NA NA 878000 878000 

Butterflies Lysandra bellargus 179000 208000 179000 208000 179000 208000 

Butterflies Lysandra coridon 274000 292000 274000 292000 273000 292000 

Butterflies Melanargia galathea 484000 533000 484000 533000 482000 527000 

Butterflies Neozephyrus quercus 641000 745000 627000 745000 627000 737000 

Butterflies Ochlodes faunus 615000 636000 607000 633000 606000 625000 

Butterflies Papilio machaon 319000 410000 319000 410000 319000 410000 

Butterflies Plebejus argus 374000 377000 374000 377000 374000 377000 

Butterflies Polygonia c-album 573000 795000 573000 785000 573000 772000 

Butterflies Pyrgus malvae 377000 366000 377000 366000 377000 366000 

Butterflies Pyronia tithonus 499000 540000 499000 540000 497000 533000 
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Butterflies Satyrium pruni 274000 297000 274000 297000 274000 297000 

Butterflies Satyrium w-album 516000 578000 516000 578000 516000 572000 

Butterflies Thecla betulae 296000 300000 296000 300000 296000 300000 

Butterflies Thymelicus lineola 385000 408000 385000 408000 385000 408000 

Butterflies Thymelicus sylvestris 554000 642000 554000 634000 550000 624000 

Butterflies Vanessa cardui NA NA NA NA 875000 945000 

Caddisflies Leuctra fusca 487000 504000 441000 504000 NA NA 

Caddisflies Leuctra hippopus 480000 501000 446000 488000 NA NA 

Caddisflies Nemoura avicularis 400000 428000 NA NA NA NA 

Caddisflies Nemoura cambrica 421000 423000 NA NA NA NA 

Caddisflies Nemoura erratica 475000 430000 NA NA NA NA 

Dragonflies* Aeshna cyanea 719000 856000 718000 856000 717000 853000 

Dragonflies* Aeshna grandis 486000 497000 476000 470000 476000 466000 

Dragonflies** Aeshna mixta 432000 582000 424000 582000 414000 530000 

Dragonflies* Anax imperator 452000 663000 452000 663000 422000 597000 

Dragonflies* Brachytron pratense 582000 617000 580000 617000 580000 616000 

Dragonflies* Calopteryx splendens 558000 621000 531000 590000 483000 577000 

Dragonflies* Calopteryx virgo 745000 744000 743000 744000 713000 710000 

Dragonflies* Ceriagrion tenellum 289000 279000 289000 279000 277000 275000 

Dragonflies* Coenagrion mercuriale 209000 216000 209000 210000 NA NA 

Dragonflies* Coenagrion puella 699000 717000 699000 711000 689000 701000 

Dragonflies* Coenagrion pulchellum 591000 595000 587000 564000 541000 548000 

Dragonflies* Cordulia aenea 658000 679000 657000 679000 609000 665000 

Dragonflies* Erythromma najas 392000 420000 392000 420000 392000 396000 

Dragonflies* Gomphus vulgatissimus 331000 334000 331000 334000 331000 334000 

Dragonflies* Ischnura pumilio 352000 380000 352000 335000 336000 334000 

Dragonflies* Libellula depressa 432000 570000 432000 528000 432000 483000 

Dragonflies* Libellula fulva 290000 300000 287000 300000 277000 300000 

Dragonflies* Orthetrum cancellatum 383000 552000 375000 541000 357000 487000 

Dragonflies* Orthetrum coerulescens 799000 752000 787000 746000 661000 628000 

Dragonflies* Platycnemis pennipes 308000 322000 308000 322000 308000 320000 

Dragonflies* Somatochlora metallica 548000 656000 548000 601000 546000 601000 

Dragonflies* Sympetrum flaveolum 458000 458000 446000 422000 420000 398000 

Dragonflies* 
Sympetrum 
sanguineum 

446000 542000 446000 534000 445000 504000 

Grasshoppers* Acheta domesticus 405000 291000 357000 277000 NA NA 

Grasshoppers* 
Chorthippus 
albomarginatus 

380000 402000 361000 385000 NA NA 

Grasshoppers* Chorthippus brunneus 775000 749000 NA NA NA NA 

Grasshoppers* Chorthippus parallelus 868000 881000 868000 881000 NA NA 

Grasshoppers* Conocephalus discolor 225000 351000 225000 342000 NA NA 

Grasshoppers* Conocephalus dorsalis 339000 479000 339000 464000 NA NA 

Grasshoppers* Ectobius lapponicus 200000 183000 190000 183000 NA NA 

Grasshoppers* Ectobius panzeri 198000 156000 194000 143000 NA NA 

Grasshoppers* Forficula lesnei 221000 228000 210000 228000 NA NA 

Grasshoppers* Gomphocerippus rufus 183000 212000 183000 212000 NA NA 

Grasshoppers* Labia minor 450000 322000 391000 295000 NA NA 
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Grasshoppers* 
Leptophyes 
punctatissima 

372000 427000 359000 427000 NA NA 

Grasshoppers* 
Meconema 
thalassinum 

436000 450000 415000 429000 NA NA 

Grasshoppers* 
Metrioptera 
brachyptera 

489000 479000 489000 464000 NA NA 

Grasshoppers* Metrioptera roeselii 299000 369000 299000 364000 NA NA 

Grasshoppers* 
Myrmeleotettix 
maculatus 

855000 851000 855000 851000 NA NA 

Grasshoppers* Omocestus rufipes 194000 176000 194000 176000 NA NA 

Grasshoppers* Omocestus viridulus 858000 861000 858000 861000 NA NA 

Grasshoppers* 
Pholidoptera 
griseoaptera 

407000 410000 386000 377000 NA NA 

Grasshoppers* Platycleis albopunctata 191000 225000 156000 207000 NA NA 

Grasshoppers* Stenobothrus lineatus 285000 340000 285000 338000 NA NA 

Grasshoppers* Tetrix ceperoi 170000 168000 NA NA NA NA 

Grasshoppers* Tetrix subulata 387000 444000 380000 438000 NA NA 

Grasshoppers* Tetrix undulata 856000 827000 856000 827000 NA NA 

Grasshoppers* Tettigonia viridissima 258000 267000 248000 260000 NA NA 

G. beetles Abax parallelepipedus 662000 646000 NA NA NA NA 

G. beetles Acupalpus dubius 420000 433000 366000 393000 NA NA 

G. beetles Acupalpus meridianus 363000 315000 NA NA NA NA 

G. beetles Acupalpus parvulus 385000 363000 NA NA NA NA 

G. beetles Agonum emarginatum 495000 405000 356000 344000 NA NA 

G. beetles Agonum fuliginosum 799000 837000 NA NA NA NA 

G. beetles Agonum gracile 684000 747000 NA NA NA NA 

G. beetles Agonum marginatum 528000 426000 NA NA NA NA 

G. beetles Agonum micans 495000 359000 NA NA NA NA 

G. beetles Agonum muelleri 813000 778000 NA NA NA NA 

G. beetles Agonum piceum 508000 687000 NA NA NA NA 

G. beetles Agonum thoreyi 477000 465000 337000 369000 NA NA 

G. beetles Agonum viduum 0 357000 NA NA NA NA 

G. beetles Amara aenea 634000 592000 NA NA NA NA 

G. beetles Amara apricaria 620000 342000 NA NA NA NA 

G. beetles Amara bifrons 598000 382000 NA NA NA NA 

G. beetles Amara communis 658000 623000 NA NA NA NA 

G. beetles Amara convexior 324000 371000 NA NA NA NA 

G. beetles Amara eurynota 378000 289000 NA NA NA NA 

G. beetles Amara familiaris 671000 602000 NA NA NA NA 

G. beetles Amara lunicollis 730000 484000 NA NA NA NA 

G. beetles Amara ovata 598000 628000 NA NA NA NA 

G. beetles Amara plebeja 707000 672000 NA NA NA NA 

G. beetles Amara similata 521000 488000 NA NA NA NA 

G. beetles Amara tibialis 468000 415000 NA NA NA NA 

G. beetles Anchomenus dorsalis 653000 645000 NA NA NA NA 

G. beetles Asaphidion curtum 432000 481000 NA NA NA NA 

G. beetles Asaphidion stierlini 338000 304000 NA NA NA NA 

G. beetles Badister bullatus 574000 546000 NA NA NA NA 
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G. beetles Bembidion aeneum 653000 545000 NA NA NA NA 

G. beetles Bembidion articulatum 345000 338000 308000 305000 NA NA 

G. beetles Bembidion assimile 396000 399000 313000 353000 NA NA 

G. beetles Bembidion biguttatum 520000 471000 NA NA NA NA 

G. beetles Bembidion clarkii 367000 326000 NA NA NA NA 

G. beetles Bembidion deletum 487000 448000 NA NA NA NA 

G. beetles Bembidion dentellum 413000 409000 364000 367000 NA NA 

G. beetles Bembidion doris 614000 705000 NA NA NA NA 

G. beetles Bembidion femoratum 600000 605000 NA NA NA NA 

G. beetles Bembidion fumigatum 345000 366000 NA NA NA NA 

G. beetles Bembidion gilvipes 367000 312000 NA NA NA NA 

G. beetles Bembidion guttula 633000 634000 NA NA NA NA 

G. beetles Bembidion illigeri 438000 380000 354000 298000 NA NA 

G. beetles Bembidion iricolor 335000 327000 NA NA NA NA 

G. beetles Bembidion lampros 664000 632000 NA NA NA NA 

G. beetles Bembidion lunulatum 418000 437000 NA NA NA NA 

G. beetles 
Bembidion 
mannerheimii 

606000 721000 NA NA NA NA 

G. beetles Bembidion minimum 607000 431000 NA NA NA NA 

G. beetles Bembidion normannum 382000 301000 NA NA NA NA 

G. beetles Bembidion obtusum 453000 370000 357000 293000 NA NA 

G. beetles Bembidion properans 464000 407000 NA NA NA NA 

G. beetles 
Bembidion 
punctulatum 

713000 613000 NA NA NA NA 

G. beetles 
Bembidion 
quadrimaculatum 

438000 468000 363000 316000 NA NA 

G. beetles Bembidion tetracolum 831000 827000 NA NA NA NA 

G. beetles Bembidion varium 423000 367000 311000 311000 NA NA 

G. beetles Bradycellus harpalinus 758000 692000 NA NA NA NA 

G. beetles Bradycellus ruficollis 594000 517000 NA NA NA NA 

G. beetles Bradycellus verbasci 470000 448000 344000 308000 NA NA 

G. beetles Broscus cephalotes 715000 419000 NA NA NA NA 

G. beetles Calathus ambiguus 368000 294000 NA NA NA NA 

G. beetles Calathus cinctus 386000 322000 NA NA NA NA 

G. beetles Calathus erratus 703000 691000 NA NA NA NA 

G. beetles 
Calathus 
melanocephalus 

714000 754000 NA NA NA NA 

G. beetles Calathus mollis 840000 482000 NA NA NA NA 

G. beetles Calathus rotundicollis 672000 577000 364000 354000 NA NA 

G. beetles Calodromius spilotus 420000 530000 NA NA NA NA 

G. beetles Carabus granulatus 514000 476000 NA NA NA NA 

G. beetles Carabus nemoralis 634000 556000 NA NA NA NA 

G. beetles Carabus violaceus 852000 710000 NA NA NA NA 

G. beetles Chlaenius nigricornis 329000 296000 NA NA NA NA 

G. beetles Chlaenius vestitus 310000 341000 NA NA NA NA 

G. beetles Clivina collaris 449000 409000 NA NA NA NA 

G. beetles Clivina fossor 716000 655000 NA NA NA NA 

G. beetles Curtonotus aulicus 646000 545000 NA NA NA NA 
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G. beetles Curtonotus aulicus 646000 545000 NA NA NA NA 

G. beetles 
Curtonotus 
convexiusculus 

445000 276000 NA NA NA NA 

G. beetles Cychrus caraboides 873000 850000 NA NA NA NA 

G. beetles Demetrias atricapillus 412000 422000 361000 368000 NA NA 

G. beetles Demetrias imperialis 275000 305000 NA NA NA NA 

G. beetles Dicheirotrichus gustavii 690000 614000 NA NA NA NA 

G. beetles Dromius meridionalis 352000 287000 NA NA NA NA 

G. beetles 
Dromius 
quadrimaculatus 

679000 480000 366000 373000 NA NA 

G. beetles Dyschirius aeneus 347000 318000 NA NA NA NA 

G. beetles Dyschirius globosus 640000 618000 NA NA NA NA 

G. beetles Dyschirius luedersi 445000 354000 NA NA NA NA 

G. beetles Dyschirius salinus 533000 421000 NA NA NA NA 

G. beetles Elaphrus riparius 682000 604000 NA NA NA NA 

G. beetles Harpalus affinis 654000 540000 NA NA NA NA 

G. beetles Harpalus anxius 347000 326000 NA NA NA NA 

G. beetles Harpalus latus 762000 574000 NA NA NA NA 

G. beetles Harpalus rubripes 345000 398000 318000 326000 NA NA 

G. beetles Harpalus rufipalpis 357000 202000 NA NA NA NA 

G. beetles Harpalus rufipes 612000 508000 NA NA NA NA 

G. beetles Harpalus tardus 490000 383000 347000 342000 NA NA 

G. beetles Leistus ferrugineus 534000 474000 NA NA NA NA 

G. beetles Leistus fulvibarbis 559000 521000 NA NA NA NA 

G. beetles Leistus rufomarginatus 519000 407000 NA NA NA NA 

G. beetles Leistus spinibarbis 428000 433000 348000 351000 NA NA 

G. beetles Leistus terminatus 874000 744000 NA NA NA NA 

G. beetles Microlestes maurus 341000 288000 NA NA NA NA 

G. beetles Nebria salina 843000 787000 NA NA NA NA 

G. beetles Notiophilus aquaticus 846000 820000 NA NA NA NA 

G. beetles Notiophilus germinyi 614000 651000 NA NA NA NA 

G. beetles Notiophilus palustris 597000 682000 371000 486000 NA NA 

G. beetles Notiophilus rufipes 370000 322000 NA NA NA NA 

G. beetles Notiophilus substriatus 621000 467000 NA NA NA NA 

G. beetles Ocys harpaloides 521000 518000 NA NA NA NA 

G. beetles Olisthopus rotundatus 706000 569000 NA NA NA NA 

G. beetles Ophonus rufibarbis 480000 386000 NA NA NA NA 

G. beetles Oxypselaphus obscurus 450000 420000 NA NA NA NA 

G. beetles Paradromius linearis 683000 467000 NA NA NA NA 

G. beetles Patrobus atrorufus 683000 469000 NA NA NA NA 

G. beetles 
Philorhizus 
melanocephalus 

475000 431000 335000 339000 NA NA 

G. beetles Platyderus depressus 304000 326000 NA NA NA NA 

G. beetles Platynus assimilis 658000 760000 NA NA NA NA 

G. beetles Poecilus cupreus 370000 394000 311000 316000 NA NA 

G. beetles Poecilus versicolor 537000 564000 NA NA NA NA 

G. beetles Pogonus chalceus 415000 371000 NA NA NA NA 
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G. beetles Pterostichus madidus 866000 680000 NA NA NA NA 

G. beetles 
Pterostichus 
melanarius 

751000 618000 NA NA NA NA 

G. beetles Pterostichus minor 647000 625000 NA NA NA NA 

G. beetles Pterostichus nigrita 507000 815000 NA NA NA NA 

G. beetles Pterostichus rhaeticus 715000 841000 NA NA NA NA 

G. beetles Pterostichus strenuus 738000 798000 NA NA NA NA 

G. beetles Pterostichus vernalis 592000 493000 368000 363000 NA NA 

G. beetles Stenolophus mixtus 415000 402000 331000 339000 NA NA 

G. beetles Stomis pumicatus 495000 370000 377000 308000 NA NA 

G. beetles Syntomus foveatus 445000 378000 333000 319000 NA NA 

G. beetles 
Syntomus 
obscuroguttatus 

202000 267000 NA NA NA NA 

G. beetles Synuchus vivalis 535000 404000 NA NA NA NA 

G. beetles Trechus obtusus 867000 807000 NA NA NA NA 

G. beetles Trechus quadristriatus 672000 647000 NA NA NA NA 

G. beetles Trichocellus placidus 675000 466000 NA NA NA NA 

Hoverflies Anasimyia contracta 628000 474000 507000 459000 NA NA 

Hoverflies Anasimyia lineata 767000 718000 734000 619000 NA NA 

Hoverflies Anasimyia transfuga 479000 379000 419000 374000 NA NA 

Hoverflies Arctophila superbiens 809000 785000 719000 678000 NA NA 

Hoverflies Baccha elongata 863000 845000 838000 827000 NA NA 

Hoverflies Brachyopa insensilis 819000 458000 NA NA NA NA 

Hoverflies Brachyopa scutellaris 655000 560000 576000 498000 347000 334000 

Hoverflies Brachypalpoides lentus 694000 520000 469000 477000 NA NA 

Hoverflies 
Brachypalpus 
laphriformis 

415000 441000 382000 417000 NA NA 

Hoverflies Callicera aurata 214000 257000 NA NA NA NA 

Hoverflies 
Chalcosyrphus 
nemorum 

806000 809000 698000 739000 NA NA 

Hoverflies Cheilosia albipila 738000 529000 509000 405000 NA NA 

Hoverflies Cheilosia albitarsis 855000 850000 829000 831000 NA NA 

Hoverflies Cheilosia antiqua 830000 777000 789000 660000 NA NA 

Hoverflies 
Cheilosia 
bergenstammi 

874000 858000 824000 828000 NA NA 

Hoverflies Cheilosia fraterna 826000 836000 815000 708000 NA NA 

Hoverflies Cheilosia griseiventris 447000 374000 425000 302000 NA NA 

Hoverflies Cheilosia grossa 761000 803000 578000 746000 NA NA 

Hoverflies Cheilosia impressa 653000 508000 465000 427000 NA NA 

Hoverflies Cheilosia lasiopa 612000 516000 509000 510000 NA NA 

Hoverflies Cheilosia latifrons 548000 676000 448000 524000 NA NA 

Hoverflies Cheilosia longula 873000 854000 NA NA NA NA 

Hoverflies Cheilosia pagana 872000 847000 822000 821000 NA NA 

Hoverflies Cheilosia proxima 639000 767000 535000 660000 NA NA 

Hoverflies Cheilosia scutellata 702000 662000 586000 560000 NA NA 

Hoverflies Cheilosia soror 263000 300000 257000 292000 212000 244000 

Hoverflies Cheilosia urbana 522000 322000 NA NA NA NA 

Hoverflies Cheilosia variabilis 839000 809000 750000 722000 NA NA 
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Hoverflies Cheilosia vulpina 346000 318000 307000 310000 209000 260000 

Hoverflies 
Chrysogaster 
cemiteriorum 

668000 720000 467000 623000 360000 402000 

Hoverflies Chrysogaster solstitialis 851000 865000 841000 835000 NA NA 

Hoverflies Chrysogaster virescens 838000 801000 801000 697000 NA NA 

Hoverflies Chrysotoxum bicinctum 792000 821000 678000 680000 NA NA 

Hoverflies Chrysotoxum cautum 296000 296000 291000 296000 267000 274000 

Hoverflies Chrysotoxum elegans 197000 232000 188000 218000 NA NA 

Hoverflies Chrysotoxum festivum 501000 599000 407000 461000 NA NA 

Hoverflies Chrysotoxum verralli 334000 319000 314000 316000 265000 307000 

Hoverflies Criorhina asilica 448000 394000 400000 372000 NA NA 

Hoverflies Criorhina berberina 672000 660000 540000 553000 NA NA 

Hoverflies Criorhina floccosa 650000 570000 495000 474000 362000 362000 

Hoverflies Criorhina ranunculi 539000 679000 472000 667000 353000 419000 

Hoverflies 
Dasysyrphus 
albostriatus 

829000 853000 720000 817000 NA NA 

Hoverflies Dasysyrphus pinastri 873000 825000 839000 743000 NA NA 

Hoverflies Dasysyrphus tricinctus 837000 838000 831000 792000 NA NA 

Hoverflies Dasysyrphus venustus 841000 839000 823000 766000 NA NA 

Hoverflies Didea fasciata 739000 797000 677000 652000 NA NA 

Hoverflies Didea intermedia 790000 834000 NA NA NA NA 

Hoverflies Epistrophe diaphana 194000 284000 178000 262000 161000 221000 

Hoverflies Epistrophe eligans 748000 704000 641000 679000 NA NA 

Hoverflies Epistrophe grossulariae 834000 889000 814000 854000 NA NA 

Hoverflies Epistrophe nitidicollis 453000 372000 380000 372000 336000 338000 

Hoverflies Eristalinus aeneus 674000 751000 376000 413000 NA NA 

Hoverflies Eristalinus sepulchralis 704000 569000 527000 501000 NA NA 

Hoverflies Eristalis abusiva 760000 670000 693000 615000 NA NA 

Hoverflies Eristalis arbustorum NA NA 841000 851000 NA NA 

Hoverflies Eristalis horticola 866000 856000 828000 811000 NA NA 

Hoverflies Eristalis intricaria NA NA 835000 832000 NA NA 

Hoverflies Eristalis tenax NA NA 831000 849000 NA NA 

Hoverflies Eumerus ornatus 351000 324000 336000 320000 203000 252000 

Hoverflies Eumerus strigatus 450000 425000 394000 381000 NA NA 

Hoverflies Eupeodes corollae NA NA 827000 839000 NA NA 

Hoverflies Eupeodes latifasciatus 786000 830000 618000 689000 NA NA 

Hoverflies Eupeodes luniger 843000 846000 804000 819000 NA NA 

Hoverflies Ferdinandea cuprea 798000 782000 741000 645000 NA NA 

Hoverflies Helophilus hybridus 835000 793000 644000 730000 NA NA 

Hoverflies Helophilus trivittatus 586000 761000 438000 503000 NA NA 

Hoverflies Heringia heringi 418000 377000 411000 335000 NA NA 

Hoverflies Heringia vitripennis 375000 394000 NA NA NA NA 

Hoverflies Lejogaster metallina 857000 831000 807000 773000 NA NA 

Hoverflies Leucozona glaucia 841000 878000 811000 860000 NA NA 

Hoverflies Leucozona laternaria 822000 832000 716000 763000 NA NA 

Hoverflies Leucozona lucorum 873000 870000 847000 849000 NA NA 

Hoverflies Melangyna cincta 803000 783000 768000 680000 NA NA 
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Hoverflies 
Melangyna 
compositarum 

833000 850000 791000 839000 NA NA 

Hoverflies Melangyna labiatarum 851000 450000 707000 435000 NA NA 

Hoverflies 
Melangyna 
lasiophthalma 

855000 840000 825000 807000 NA NA 

Hoverflies 
Melangyna 
umbellatarum 

763000 639000 634000 598000 NA NA 

Hoverflies Melanogaster aerosa 870000 641000 NA NA NA NA 

Hoverflies 
Meligramma 
trianguliferum 

453000 414000 372000 328000 NA NA 

Hoverflies Meliscaeva auricollis 823000 872000 726000 822000 NA NA 

Hoverflies Meliscaeva cinctella 864000 876000 845000 857000 NA NA 

Hoverflies Microdon mutabilis 465000 368000 NA NA NA NA 

Hoverflies Myathropa florea 879000 863000 848000 835000 NA NA 

Hoverflies Myolepta dubia 206000 270000 NA NA NA NA 

Hoverflies Neoascia geniculata 733000 595000 584000 521000 NA NA 

Hoverflies Neoascia meticulosa 785000 781000 723000 760000 NA NA 

Hoverflies Neoascia obliqua 718000 637000 NA NA NA NA 

Hoverflies Neoascia podagrica NA NA 847000 840000 NA NA 

Hoverflies Neoascia tenur 866000 843000 836000 776000 NA NA 

Hoverflies Orthonevra brevicornis 466000 430000 444000 404000 NA NA 

Hoverflies Orthonevra geniculata 756000 721000 585000 545000 NA NA 

Hoverflies Orthonevra nobilis 693000 527000 568000 392000 334000 307000 

Hoverflies Paragus haemorrhous 734000 791000 543000 655000 NA NA 

Hoverflies Parasyrphus annulatus 696000 336000 NA NA NA NA 

Hoverflies 
Parasyrphus 
punctulatus 

853000 844000 817000 807000 NA NA 

Hoverflies 
Parhelophilus 
frutetorum 

425000 345000 414000 344000 NA NA 

Hoverflies Parhelophilus versicolor 585000 522000 524000 487000 NA NA 

Hoverflies Pipiza austriaca 559000 499000 466000 436000 NA NA 

Hoverflies Pipiza bimaculata 559000 504000 499000 440000 NA NA 

Hoverflies Pipiza fenestrata 410000 270000 NA NA NA NA 

Hoverflies Pipiza lugubris 237000 274000 190000 206000 NA NA 

Hoverflies Pipiza luteitarsis 593000 496000 466000 442000 NA NA 

Hoverflies Pipiza noctiluca 790000 759000 653000 530000 NA NA 

Hoverflies Pipizella viduata NA NA 813000 735000 NA NA 

Hoverflies Pipizella virens 340000 335000 315000 331000 285000 299000 

Hoverflies Platycheirus ambiguus 508000 401000 440000 361000 NA NA 

Hoverflies Platycheirus angustatus NA NA 822000 838000 NA NA 

Hoverflies Platycheirus clypeatus NA NA 847000 845000 NA NA 

Hoverflies Platycheirus europaeus 693000 828000 NA NA NA NA 

Hoverflies Platycheirus fulviventris 800000 679000 767000 561000 NA NA 

Hoverflies 
Platycheirus 
granditarsus 

NA NA 846000 832000 NA NA 

Hoverflies Platycheirus occultus 845000 821000 753000 652000 NA NA 

Hoverflies Platycheirus peltatus 865000 859000 832000 827000 NA NA 

Hoverflies Platycheirus rosarum 832000 816000 803000 760000 NA NA 

Hoverflies Platycheirus scambus 877000 866000 NA NA NA NA 
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Hoverflies Platycheirus scutatus 877000 873000 NA NA NA NA 

Hoverflies Platycheirus tarsalis 835000 562000 763000 481000 NA NA 

Hoverflies Portevinia maculata 691000 687000 639000 660000 NA NA 

Hoverflies Rhingia campestris NA NA 850000 849000 NA NA 

Hoverflies Rhingia rostrata 200000 318000 NA NA NA NA 

Hoverflies Riponnensia splendens 792000 665000 615000 444000 366000 341000 

Hoverflies Scaeva pyrastri NA NA 823000 817000 NA NA 

Hoverflies Scaeva selenitica 729000 677000 543000 638000 320000 388000 

Hoverflies Sphaerophoria batava 645000 446000 559000 356000 NA NA 

Hoverflies 
Sphaerophoria 
interrupta 

859000 884000 819000 827000 NA NA 

Hoverflies 
Sphaerophoria 
philanthus 

841000 834000 817000 700000 NA NA 

Hoverflies 
Sphaerophoria 
rueppellii 

609000 356000 458000 285000 NA NA 

Hoverflies Sphaerophoria scripta 744000 756000 549000 615000 NA NA 

Hoverflies Sphaerophoria taeniata 239000 235000 204000 212000 186000 165000 

Hoverflies Sphegina clunipes 878000 854000 NA NA NA NA 

Hoverflies Sphegina elegans 812000 657000 735000 446000 NA NA 

Hoverflies Sphegina verecunda 661000 764000 473000 526000 NA NA 

Hoverflies Syritta pipiens 874000 870000 NA NA NA NA 

Hoverflies Syrphus ribesii NA NA 843000 851000 NA NA 

Hoverflies Syrphus torvus 862000 887000 818000 848000 NA NA 

Hoverflies Syrphus vitripennis NA NA 818000 846000 NA NA 

Hoverflies 
Trichopsomyia 
flavitarsis 

826000 709000 758000 546000 NA NA 

Hoverflies Tropidia scita 594000 503000 486000 430000 NA NA 

Hoverflies Volucella bombylans NA NA 804000 823000 NA NA 

Hoverflies Volucella inanis 209000 370000 196000 362000 168000 343000 

Hoverflies Volucella inflata 237000 310000 220000 305000 217000 280000 

Hoverflies Volucella pellucens 866000 866000 840000 855000 NA NA 

Hoverflies Volucella zonaria 191000 338000 184000 323000 NA NA 

Hoverflies Xanthandrus comtus 467000 506000 401000 345000 305000 297000 

Hoverflies 
Xanthogramma 
citrofasciatum 

409000 329000 378000 326000 297000 281000 

Hoverflies 
Xanthogramma 
pedissequum 

495000 368000 375000 348000 316000 340000 

Hoverflies Xylota abiens 349000 227000 NA NA NA NA 

Hoverflies Xylota florum 511000 379000 374000 305000 NA NA 

Hoverflies Xylota sylvarum 827000 775000 769000 735000 NA NA 

Hoverflies Xylota xanthocnema 331000 300000 NA NA NA NA 

Ladybirds Adalia bipunctata 631000 684000 NA NA NA NA 

Ladybirds Anatis ocellata 492000 559000 464000 513000 440000 401000 

Ladybirds 
Anisosticta 
novemdecimpunctata 

467000 478000 446000 454000 421000 424000 

Ladybirds Aphidecta obliterata NA NA NA NA 413000 362000 

Ladybirds Chilocorus bipustulatus 440000 471000 426000 437000 348000 223000 

Ladybirds 
Chilocorus 
renipustulatus 

501000 501000 NA NA NA NA 
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Ladybirds Coccidula rufa 567000 611000 NA NA 438000 447000 

Ladybirds Coccidula scutellata 440000 393000 407000 365000 NA NA 

Ladybirds 
Coccinella 
undecimpunctata 

601000 580000 NA NA 426000 414000 

Ladybirds 
Exochomus 
quadripustulatus 

506000 491000 475000 478000 439000 429000 

Ladybirds Halyzia sedecimguttata 502000 690000 410000 682000 334000 427000 

Ladybirds Hippodamia variegata 409000 459000 403000 456000 402000 426000 

Ladybirds 
Myrrha 
octodecimguttata 

540000 439000 480000 393000 353000 321000 

Ladybirds Myzia oblongoguttata 671000 598000 NA NA NA NA 

Ladybirds Nephus redtenbacheri 525000 469000 426000 457000 NA NA 

Ladybirds 
Propylea 
quattuordecimpunctata 

505000 574000 NA NA NA NA 

Ladybirds 
Psyllobora 
vigintiduopunctata 

478000 526000 476000 468000 NA NA 

Ladybirds Rhyzobius litura 557000 528000 NA NA 411000 437000 

Ladybirds Scymnus auritus 365000 311000 NA NA NA NA 

Ladybirds Scymnus suturalis 403000 479000 366000 460000 NA NA 

Ladybirds 
Subcoccinella 
vigintiquattuorpunctata 

490000 447000 461000 413000 357000 363000 

Ladybirds 
Tytthaspis 
sedecimpunctata 

361000 424000 347000 413000 300000 398000 

Macromoths Abraxas sylvata 597000 637000 583000 581000 568000 558000 

Macromoths Acasis viretata 776000 865000 677000 851000 NA NA 

Macromoths Acherontia atropos 581000 636000 464000 515000 406000 410000 

Macromoths Achlya flavicornis 877000 889000 NA NA NA NA 

Macromoths Acronicta aceris 381000 397000 364000 391000 363000 376000 

Macromoths Acronicta alni 512000 663000 496000 601000 477000 573000 

Macromoths Acronicta leporina 776000 837000 747000 800000 NA NA 

Macromoths Acronicta megacephala 720000 834000 708000 771000 NA NA 

Macromoths Acronicta psi 841000 946000 821000 905000 764000 849000 

Macromoths Acronicta rumicis 868000 923000 NA NA NA NA 

Macromoths Acronicta tridens 428000 508000 414000 463000 392000 458000 

Macromoths Adscita geryon 416000 472000 NA NA NA NA 

Macromoths Adscita statices 588000 634000 464000 528000 362000 433000 

Macromoths Aethalura punctulata 742000 856000 667000 789000 NA NA 

Macromoths Agriopis leucophaearia 647000 690000 607000 637000 598000 628000 

Macromoths Agrius convolvuli NA NA 784000 763000 582000 618000 

Macromoths Agrochola helvola 814000 845000 814000 826000 NA NA 

Macromoths Agrochola litura 836000 872000 822000 845000 NA NA 

Macromoths Agrochola lota 865000 912000 838000 892000 NA NA 

Macromoths Agrochola lychnidis 563000 548000 550000 537000 539000 515000 

Macromoths Agrotis cinerea 287000 325000 276000 253000 221000 214000 

Macromoths Agrotis clavis 613000 770000 524000 563000 496000 501000 

Macromoths Agrotis exclamationis 860000 892000 NA NA NA NA 

Macromoths Agrotis ipsilon 872000 929000 NA NA NA NA 

Macromoths Agrotis puta 457000 655000 457000 643000 457000 571000 

Macromoths Agrotis ripae 523000 549000 408000 468000 295000 300000 
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Macromoths Agrotis segetum 781000 869000 730000 826000 NA NA 

Macromoths Agrotis vestigialis 839000 895000 749000 783000 500000 529000 

Macromoths Alcis jubata 833000 909000 797000 878000 NA NA 

Macromoths Aleucis distinctata 221000 221000 NA NA NA NA 

Macromoths Allophyes oxyacanthae 873000 883000 NA NA NA NA 

Macromoths Alsophila aescularia 838000 863000 806000 839000 NA NA 

Macromoths Amphipoea fucosa 724000 668000 665000 589000 540000 563000 

Macromoths Amphipoea oculea 862000 884000 828000 838000 NA NA 

Macromoths 
Amphipyra 
tragopoginis 

872000 878000 NA NA NA NA 

Macromoths Anaplectoides prasina 866000 899000 NA NA NA NA 

Macromoths Anarta myrtilli 817000 865000 734000 781000 472000 549000 

Macromoths Angerona prunaria 269000 295000 269000 284000 269000 274000 

Macromoths Anticlea badiata 854000 867000 819000 832000 NA NA 

Macromoths Anticlea derivata 877000 897000 850000 885000 NA NA 

Macromoths Apamea anceps 332000 375000 331000 364000 327000 359000 

Macromoths Apamea epomidion 583000 666000 561000 573000 503000 520000 

Macromoths Apamea furva 856000 871000 816000 772000 NA NA 

Macromoths Apamea oblonga 398000 425000 372000 419000 351000 386000 

Macromoths Apamea ophiogramma 655000 834000 624000 775000 578000 695000 

Macromoths Apamea scolopacina 529000 738000 510000 677000 480000 659000 

Macromoths Apamea sordens 850000 861000 835000 840000 NA NA 

Macromoths Apamea sublustris 320000 346000 320000 337000 312000 319000 

Macromoths Apamea unanimis 784000 851000 745000 737000 678000 666000 

Macromoths Apeira syringaria 601000 680000 584000 614000 573000 562000 

Macromoths Aplocera efformata 542000 624000 513000 576000 463000 525000 

Macromoths Apocheima hispidaria 393000 384000 362000 355000 350000 355000 

Macromoths Apoda limacodes 280000 299000 280000 299000 276000 299000 

Macromoths Archanara dissoluta 362000 456000 358000 432000 351000 393000 

Macromoths 
Archanara 
geminipuncta 

344000 463000 344000 455000 341000 440000 

Macromoths Archanara sparganii 280000 379000 280000 379000 272000 343000 

Macromoths Archiearis notha 268000 268000 266000 256000 NA NA 

Macromoths Archiearis parthenias 712000 835000 661000 786000 531000 606000 

Macromoths Arctia villica 258000 288000 258000 286000 258000 286000 

Macromoths 
Arenostola 
phragmitidis 

450000 493000 448000 484000 448000 474000 

Macromoths Asteroscopus sphinx 507000 494000 502000 473000 480000 469000 

Macromoths Asthena albulata 619000 696000 522000 482000 482000 452000 

Macromoths Atethmia centrago 747000 864000 711000 841000 685000 816000 

Macromoths Atolmis rubricollis 436000 733000 414000 706000 392000 652000 

Macromoths Autographa jota 837000 873000 811000 841000 NA NA 

Macromoths Axylia putris 715000 781000 687000 737000 NA NA 

Macromoths Bena bicolorana 436000 522000 435000 513000 431000 492000 

Macromoths Biston betularia 864000 911000 840000 875000 NA NA 

Macromoths Biston strataria 613000 757000 590000 687000 572000 660000 

Macromoths Bupalus piniaria 860000 923000 NA NA NA NA 
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Macromoths Callimorpha dominula 280000 308000 275000 293000 256000 281000 

Macromoths Callistege mi 788000 866000 745000 779000 582000 650000 

Macromoths Calliteara pudibunda 491000 557000 487000 544000 475000 503000 

Macromoths Caradrina morpheus 802000 853000 773000 739000 NA NA 

Macromoths Carsia sororiata 782000 901000 NA NA NA NA 

Macromoths Catarhoe cuculata 359000 372000 303000 365000 303000 316000 

Macromoths Catarhoe rubidata 248000 285000 246000 285000 246000 283000 

Macromoths Catocala nupta 506000 583000 480000 571000 479000 545000 

Macromoths Cepphis advenaria 208000 224000 208000 221000 197000 220000 

Macromoths Cerastis leucographa 376000 479000 362000 423000 362000 395000 

Macromoths Cerura vinula 838000 870000 813000 836000 NA NA 

Macromoths Charanyca trigrammica 440000 487000 439000 474000 416000 467000 

Macromoths Charissa obscurata 649000 756000 570000 709000 417000 530000 

Macromoths Chesias rufata 757000 864000 703000 821000 538000 692000 

Macromoths Chiasmia clathrata 733000 813000 733000 789000 NA NA 

Macromoths Chilodes maritimus 426000 523000 415000 474000 388000 458000 

Macromoths Chloroclystis v-ata 663000 796000 655000 776000 NA NA 

Macromoths Chortodes elymi 574000 615000 NA NA NA NA 

Macromoths Chortodes fluxa 330000 379000 330000 346000 317000 319000 

Macromoths Cilix glaucata 641000 632000 630000 604000 NA NA 

Macromoths Cleorodes lichenaria 806000 865000 772000 822000 676000 724000 

Macromoths Clostera curtula 330000 411000 330000 404000 328000 358000 

Macromoths Clostera pigra 697000 409000 438000 320000 315000 195000 

Macromoths Coenobia rufa 390000 469000 390000 460000 384000 453000 

Macromoths Colocasia coryli 874000 902000 NA NA NA NA 

Macromoths Colotois pennaria 871000 877000 850000 856000 NA NA 

Macromoths Comibaena bajularia 422000 415000 409000 404000 405000 399000 

Macromoths Conistra ligula 566000 655000 547000 613000 537000 597000 

Macromoths Conistra rubiginea 204000 271000 201000 271000 193000 268000 

Macromoths Conistra vaccinii 874000 915000 NA NA NA NA 

Macromoths Cosmia affinis 359000 378000 352000 377000 335000 371000 

Macromoths Cosmia pyralina 333000 350000 333000 322000 333000 314000 

Macromoths Cosmia trapezina 842000 859000 832000 830000 NA NA 

Macromoths Cossus cossus 506000 690000 331000 325000 259000 295000 

Macromoths Craniophora ligustri 714000 863000 680000 844000 598000 788000 

Macromoths Cryphia domestica 766000 841000 731000 762000 661000 685000 

Macromoths Cryphia muralis 218000 331000 218000 311000 217000 297000 

Macromoths Cucullia absinthii 388000 374000 380000 336000 380000 331000 

Macromoths Cucullia asteris 338000 368000 313000 353000 277000 320000 

Macromoths Cucullia chamomillae 554000 845000 554000 766000 498000 605000 

Macromoths Cucullia umbratica 830000 876000 799000 858000 NA NA 

Macromoths Cybosia mesomella 745000 802000 647000 687000 522000 611000 

Macromoths 
Cyclophora 
albipunctata 

832000 873000 810000 849000 681000 817000 

Macromoths Cyclophora annularia 205000 244000 205000 244000 189000 228000 

Macromoths Cyclophora linearia 385000 509000 373000 494000 336000 475000 
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Macromoths Cyclophora porata 274000 280000 NA NA NA NA 

Macromoths Cyclophora punctaria 366000 420000 342000 401000 334000 396000 

Macromoths Cymatophorima diluta 390000 396000 354000 392000 321000 366000 

Macromoths Deilephila elpenor 833000 904000 775000 879000 689000 827000 

Macromoths Deilephila porcellus 715000 873000 688000 828000 549000 718000 

Macromoths Deileptenia ribeata 662000 887000 643000 846000 NA NA 

Macromoths Deltote uncula 729000 789000 558000 773000 374000 569000 

Macromoths Diacrisia sannio 779000 857000 771000 821000 688000 782000 

Macromoths Diaphora mendica 640000 694000 604000 604000 564000 585000 

Macromoths Dicallomera fascelina 794000 866000 783000 817000 NA NA 

Macromoths Dichonia aprilina 765000 878000 765000 857000 NA NA 

Macromoths Diloba caeruleocephala 612000 582000 591000 554000 562000 528000 

Macromoths Discestra trifolii 591000 803000 537000 699000 509000 531000 

Macromoths Discoloxia blomeri 455000 490000 436000 459000 409000 405000 

Macromoths Drepana falcataria 834000 884000 800000 865000 NA NA 

Macromoths Drymonia dodonaea 656000 720000 630000 618000 496000 555000 

Macromoths Drymonia ruficornis 637000 810000 626000 760000 588000 660000 

Macromoths Dryobotodes eremita 790000 824000 776000 742000 NA NA 

Macromoths Dypterygia scabriuscula 395000 446000 395000 427000 374000 422000 

Macromoths Dyscia fagaria 850000 851000 802000 837000 NA NA 

Macromoths Earias clorana 389000 465000 367000 454000 359000 442000 

Macromoths Ectropis bistortata 873000 909000 NA NA NA NA 

Macromoths Ectropis crepuscularia 519000 561000 519000 501000 485000 466000 

Macromoths Egira conspicillaris 256000 262000 256000 261000 254000 257000 

Macromoths Eilema complana 412000 539000 373000 448000 361000 419000 

Macromoths Eilema depressa 348000 572000 333000 565000 330000 554000 

Macromoths Eilema griseola 375000 509000 375000 480000 358000 469000 

Macromoths Eilema lurideola 777000 864000 714000 774000 NA NA 

Macromoths Eilema sororcula 288000 471000 288000 464000 278000 458000 

Macromoths Elaphria venustula 235000 279000 235000 278000 222000 277000 

Macromoths Electrophaes corylata 872000 904000 NA NA NA NA 

Macromoths Ematurga atomaria 848000 941000 827000 896000 NA NA 

Macromoths Enargia paleacea 831000 872000 804000 820000 NA NA 

Macromoths Ennomos alniaria 850000 876000 813000 852000 NA NA 

Macromoths Ennomos autumnaria 305000 350000 305000 340000 302000 324000 

Macromoths Ennomos erosaria 660000 785000 642000 629000 NA NA 

Macromoths Ennomos fuscantaria 476000 535000 460000 534000 460000 499000 

Macromoths Ennomos quercinaria 472000 509000 437000 490000 417000 461000 

Macromoths Epione repandaria 877000 895000 NA NA NA NA 

Macromoths Epirrhoe galiata 563000 669000 474000 529000 451000 444000 

Macromoths Epirrhoe rivata 383000 405000 381000 347000 333000 336000 

Macromoths Epirrita christyi 811000 814000 740000 780000 NA NA 

Macromoths Epirrita dilutata 879000 907000 NA NA NA NA 

Macromoths Eremobia ochroleuca 459000 521000 457000 513000 445000 473000 

Macromoths Eriogaster lanestris 320000 378000 285000 361000 279000 340000 

Macromoths Euchoeca nebulata 684000 802000 574000 733000 484000 617000 
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Macromoths Euclidia glyphica 505000 578000 494000 497000 440000 439000 

Macromoths Eulithis mellinata 717000 734000 682000 633000 NA NA 

Macromoths Eulithis prunata 844000 849000 820000 802000 766000 776000 

Macromoths Euphyia biangulata 278000 336000 263000 285000 257000 280000 

Macromoths Euphyia unangulata 319000 350000 319000 336000 319000 328000 

Macromoths Eupithecia abbreviata 830000 871000 804000 848000 NA NA 

Macromoths Eupithecia centaureata 695000 852000 645000 725000 NA NA 

Macromoths Eupithecia dodoneata 498000 611000 489000 573000 478000 549000 

Macromoths Eupithecia exiguata 713000 776000 652000 715000 NA NA 

Macromoths Eupithecia expallidata 404000 501000 365000 325000 356000 301000 

Macromoths Eupithecia haworthiata 334000 415000 334000 415000 328000 383000 

Macromoths Eupithecia icterata 868000 877000 NA NA NA NA 

Macromoths Eupithecia indigata 840000 870000 831000 843000 NA NA 

Macromoths Eupithecia innotata 369000 581000 360000 483000 360000 338000 

Macromoths Eupithecia insigniata 307000 320000 305000 315000 279000 294000 

Macromoths Eupithecia inturbata 421000 437000 421000 416000 413000 402000 

Macromoths Eupithecia irriguata 280000 222000 270000 202000 240000 186000 

Macromoths Eupithecia linariata 592000 655000 582000 613000 551000 602000 

Macromoths Eupithecia millefoliata 234000 309000 234000 307000 207000 307000 

Macromoths Eupithecia pimpinellata 334000 332000 334000 330000 NA NA 

Macromoths Eupithecia plumbeolata 360000 465000 317000 422000 312000 420000 

Macromoths Eupithecia pygmaeata 785000 844000 738000 824000 535000 562000 

Macromoths Eupithecia simpliciata 478000 506000 477000 502000 399000 427000 

Macromoths Eupithecia subumbrata 429000 572000 389000 432000 383000 391000 

Macromoths 
Eupithecia 
succenturiata 

661000 677000 655000 656000 NA NA 

Macromoths Eupithecia tantillaria 813000 842000 778000 818000 NA NA 

Macromoths Eupithecia tenuiata 819000 835000 792000 811000 768000 760000 

Macromoths Eupithecia tripunctaria 832000 828000 773000 786000 NA NA 

Macromoths Eupithecia trisignaria 624000 778000 614000 649000 497000 546000 

Macromoths Eupithecia valerianata 706000 775000 617000 684000 478000 552000 

Macromoths Eupithecia venosata 644000 621000 621000 549000 546000 434000 

Macromoths Eupithecia virgaureata 866000 894000 831000 864000 NA NA 

Macromoths 
Euplagia 
quadripunctaria 

133000 244000 132000 223000 132000 223000 

Macromoths Euproctis chrysorrhoea 479000 481000 470000 467000 395000 425000 

Macromoths Euproctis similis 544000 581000 544000 568000 528000 556000 

Macromoths Eupsilia transversa 845000 909000 819000 857000 NA NA 

Macromoths Eurois occulta 823000 846000 813000 831000 NA NA 

Macromoths Euthrix potatoria NA NA 832000 878000 764000 774000 

Macromoths Euxoa cursoria 750000 713000 NA NA NA NA 

Macromoths Euxoa nigricans 837000 838000 804000 790000 NA NA 

Macromoths Euxoa obelisca 446000 582000 NA NA NA NA 

Macromoths Euxoa tritici 849000 906000 821000 838000 NA NA 

Macromoths Falcaria lacertinaria 873000 880000 NA NA NA NA 

Macromoths Furcula bicuspis 417000 456000 416000 438000 412000 424000 

Macromoths Furcula bifida 461000 543000 460000 535000 416000 468000 
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Macromoths Furcula furcula 831000 866000 822000 838000 NA NA 

Macromoths 
Gastropacha 
quercifolia 

322000 280000 322000 274000 320000 247000 

Macromoths Geometra papilionaria 873000 896000 NA NA NA NA 

Macromoths Gortyna flavago 827000 886000 768000 856000 NA NA 

Macromoths 
Gymnoscelis 
rufifasciata 

872000 939000 NA NA NA NA 

Macromoths Habrosyne pyritoides 545000 577000 520000 564000 508000 539000 

Macromoths Hadena bicruris 851000 912000 NA NA NA NA 

Macromoths Hadena confusa 806000 873000 776000 862000 NA NA 

Macromoths Hadena perplexa 581000 568000 555000 534000 528000 492000 

Macromoths Hadena rivularis 875000 908000 NA NA NA NA 

Macromoths Hecatera bicolorata 735000 853000 686000 743000 NA NA 

Macromoths Helicoverpa armigera 429000 768000 378000 654000 374000 517000 

Macromoths Heliothis peltigera 554000 622000 442000 575000 396000 549000 

Macromoths Heliothis viriplaca 277000 334000 273000 332000 273000 325000 

Macromoths Hemaris fuciformis 336000 351000 317000 339000 305000 335000 

Macromoths Hemaris tityus 740000 845000 421000 821000 NA NA 

Macromoths 
Hemistola 
chrysoprasaria 

336000 509000 336000 395000 332000 389000 

Macromoths Hemithea aestivaria 466000 546000 466000 530000 462000 495000 

Macromoths Hepialus hecta 860000 877000 NA NA NA NA 

Macromoths Hepialus lupulinus 725000 909000 694000 854000 674000 721000 

Macromoths Hepialus sylvina 849000 898000 811000 860000 NA NA 

Macromoths Herminia grisealis 845000 868000 815000 830000 NA NA 

Macromoths Hoplodrina alsines 665000 741000 661000 678000 NA NA 

Macromoths Hoplodrina ambigua 340000 514000 340000 481000 340000 453000 

Macromoths Hoplodrina blanda 758000 895000 739000 839000 NA NA 

Macromoths Horisme tersata 323000 333000 323000 329000 315000 317000 

Macromoths Horisme vitalbata 301000 331000 301000 331000 298000 322000 

Macromoths Hydraecia petasitis 563000 613000 536000 530000 437000 472000 

Macromoths Hydrelia flammeolaria 641000 703000 611000 639000 576000 615000 

Macromoths Hydrelia sylvata 263000 282000 252000 258000 242000 237000 

Macromoths Hyles gallii 525000 724000 417000 560000 328000 522000 

Macromoths Hyles livornica 256000 428000 NA NA NA NA 

Macromoths Hyloicus pinastri 342000 460000 341000 456000 338000 446000 

Macromoths Hypena crassalis 337000 447000 333000 414000 320000 375000 

Macromoths Hypena rostralis 264000 328000 253000 328000 244000 328000 

Macromoths Hypenodes humidalis 599000 735000 599000 731000 464000 643000 

Macromoths Hypomecis punctinalis 326000 359000 326000 342000 326000 337000 

Macromoths Hypomecis roboraria 309000 298000 269000 239000 269000 239000 

Macromoths Idaea aversata 864000 882000 NA NA NA NA 

Macromoths Idaea dimidiata 662000 714000 657000 659000 NA NA 

Macromoths Idaea emarginata 368000 401000 367000 369000 359000 352000 

Macromoths Idaea fuscovenosa 403000 462000 402000 446000 393000 420000 

Macromoths Idaea muricata 384000 348000 364000 332000 326000 311000 

Macromoths Idaea seriata 835000 838000 787000 771000 NA NA 
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Macromoths Idaea subsericeata 412000 507000 379000 453000 351000 423000 

Macromoths Idaea sylvestraria 234000 190000 209000 177000 209000 161000 

Macromoths Idaea trigeminata 325000 338000 325000 336000 323000 333000 

Macromoths Ipimorpha retusa 339000 342000 322000 336000 322000 331000 

Macromoths Ipimorpha subtusa 560000 645000 538000 609000 517000 567000 

Macromoths Jodis lactearia 575000 673000 531000 574000 482000 533000 

Macromoths Lacanobia contigua 792000 831000 787000 800000 683000 652000 

Macromoths Lacanobia suasa 514000 558000 492000 528000 438000 486000 

Macromoths Lacanobia w-latinum 349000 373000 347000 361000 345000 354000 

Macromoths Lampropteryx otregiata 337000 416000 290000 386000 272000 361000 

Macromoths Larentia clavaria 431000 443000 402000 432000 398000 378000 

Macromoths Lasiocampa quercus 872000 916000 825000 894000 766000 825000 

Macromoths Laspeyria flexula 359000 430000 359000 422000 359000 412000 

Macromoths Leucoma salicis 456000 533000 448000 524000 447000 483000 

Macromoths Ligdia adustata 419000 464000 394000 455000 379000 443000 

Macromoths Lithophane hepatica 382000 663000 380000 608000 370000 560000 

Macromoths Lithophane ornitopus 366000 477000 362000 472000 362000 468000 

Macromoths 
Lithophane 
semibrunnea 

390000 543000 385000 507000 377000 477000 

Macromoths Lithosia quadra 213000 455000 NA NA NA NA 

Macromoths Lobophora halterata 810000 856000 798000 841000 NA NA 

Macromoths Lomaspilis marginata 863000 885000 NA NA NA NA 

Macromoths 
Lomographa 
bimaculata 

407000 575000 402000 542000 389000 496000 

Macromoths Lomographa temerata 709000 821000 701000 785000 666000 719000 

Macromoths Luperina testacea 847000 902000 814000 844000 NA NA 

Macromoths Lycia hirtaria 841000 871000 821000 823000 NA NA 

Macromoths Lygephila pastinum 393000 480000 375000 453000 360000 444000 

Macromoths Lymantria monacha 326000 387000 326000 368000 321000 352000 

Macromoths Macaria alternata 348000 536000 336000 462000 312000 448000 

Macromoths Macaria liturata 848000 873000 809000 845000 NA NA 

Macromoths Macaria notata 863000 897000 NA NA NA NA 

Macromoths Macaria wauaria 709000 658000 705000 510000 688000 471000 

Macromoths Macrochilo cribrumalis 319000 332000 318000 327000 318000 324000 

Macromoths 
Macroglossum 
stellatarum 

748000 886000 622000 865000 560000 770000 

Macromoths Malacosoma neustria 474000 458000 447000 444000 443000 421000 

Macromoths Mamestra brassicae 842000 871000 792000 835000 NA NA 

Macromoths Meganola albula 265000 360000 264000 359000 264000 340000 

Macromoths Melanchra persicariae 551000 643000 550000 588000 487000 568000 

Macromoths Melanthia procellata 318000 387000 318000 374000 308000 343000 

Macromoths Menophra abruptaria 466000 506000 466000 489000 461000 477000 

Macromoths Mesoleuca albicillata 819000 872000 771000 852000 NA NA 

Macromoths Mesoligia furuncula 694000 714000 691000 695000 660000 669000 

Macromoths Mesoligia literosa 877000 897000 NA NA 765000 722000 

Macromoths Miltochrista miniata 331000 354000 331000 346000 327000 344000 

Macromoths Mimas tiliae 451000 534000 451000 525000 448000 496000 
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Macromoths Minoa murinata 254000 243000 251000 238000 NA NA 

Macromoths Mormo maura 655000 831000 596000 783000 546000 707000 

Macromoths Mythimna albipuncta 264000 386000 264000 367000 264000 340000 

Macromoths Mythimna comma 818000 853000 794000 818000 NA NA 

Macromoths Mythimna favicolor 217000 240000 210000 237000 NA NA 

Macromoths Mythimna ferrago 851000 869000 825000 838000 NA NA 

Macromoths Mythimna flammea 314000 349000 314000 326000 314000 317000 

Macromoths Mythimna l-album 108000 273000 108000 267000 108000 265000 

Macromoths Mythimna litoralis 433000 489000 424000 438000 335000 306000 

Macromoths Mythimna loreyi 179000 340000 169000 320000 145000 261000 

Macromoths Mythimna obsoleta 425000 489000 413000 477000 394000 447000 

Macromoths Mythimna pallens 836000 940000 799000 900000 NA NA 

Macromoths Mythimna pudorina 366000 438000 359000 398000 359000 370000 

Macromoths Mythimna straminea 434000 502000 434000 496000 432000 473000 

Macromoths Mythimna turca 235000 323000 235000 311000 NA NA 

Macromoths Mythimna unipuncta 255000 522000 249000 480000 216000 448000 

Macromoths Mythimna vitellina 411000 568000 382000 514000 363000 479000 

Macromoths Naenia typica 812000 902000 788000 861000 NA NA 

Macromoths Noctua fimbriata 837000 866000 801000 822000 NA NA 

Macromoths Noctua interjecta 538000 657000 520000 627000 490000 587000 

Macromoths Noctua orbona 352000 365000 352000 330000 NA NA 

Macromoths Nola confusalis 840000 886000 792000 854000 NA NA 

Macromoths Nola cucullatella 532000 581000 528000 581000 515000 558000 

Macromoths Nonagria typhae 752000 834000 676000 752000 546000 666000 

Macromoths Notodonta ziczac 852000 941000 833000 911000 NA NA 

Macromoths Nudaria mundana 799000 826000 789000 785000 NA NA 

Macromoths Nycteola revayana 714000 800000 607000 767000 596000 691000 

Macromoths Ochropacha duplaris 869000 902000 NA NA NA NA 

Macromoths Odezia atrata 828000 874000 798000 846000 675000 794000 

Macromoths Odontosia carmelita 833000 861000 821000 834000 NA NA 

Macromoths Oligia latruncula 594000 793000 569000 701000 529000 629000 

Macromoths Oligia strigilis 833000 876000 821000 852000 NA NA 

Macromoths Oligia versicolor 662000 765000 641000 700000 NA NA 

Macromoths Omphaloscelis lunosa 789000 842000 772000 801000 686000 716000 

Macromoths Operophtera fagata 848000 854000 804000 819000 NA NA 

Macromoths Orgyia antiqua 786000 899000 730000 843000 NA NA 

Macromoths Orthonama obstipata 452000 659000 417000 584000 339000 542000 

Macromoths Orthonama vittata 860000 877000 813000 846000 NA NA 

Macromoths Orthosia cruda 803000 862000 755000 820000 NA NA 

Macromoths Orthosia gracilis 824000 898000 786000 891000 NA NA 

Macromoths Orthosia miniosa 329000 383000 329000 381000 324000 352000 

Macromoths Orthosia munda 682000 793000 672000 782000 NA NA 

Macromoths Orthosia opima 463000 490000 429000 406000 331000 390000 

Macromoths Orthosia populeti 639000 814000 603000 778000 568000 652000 

Macromoths Ourapteryx sambucaria 684000 810000 674000 789000 NA NA 
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Macromoths 
Pachycnemia 
hippocastanaria 

146000 156000 146000 155000 146000 151000 

Macromoths Panemeria tenebrata 492000 520000 491000 507000 475000 481000 

Macromoths Panolis flammea 863000 908000 NA NA NA NA 

Macromoths Paradarisa consonaria 289000 371000 283000 365000 281000 344000 

Macromoths Paradrina clavipalpis 868000 824000 NA NA 764000 663000 

Macromoths Parascotia fuliginaria 298000 364000 282000 350000 277000 350000 

Macromoths Parasemia plantaginis 862000 887000 774000 824000 563000 619000 

Macromoths Parastichtis suspecta 817000 822000 770000 811000 NA NA 

Macromoths Parastichtis ypsillon 600000 666000 595000 614000 516000 559000 

Macromoths Parectropis similaria 313000 328000 313000 325000 313000 325000 

Macromoths Pasiphila chloerata 447000 485000 422000 474000 415000 456000 

Macromoths Pasiphila debiliata 253000 372000 194000 339000 NA NA 

Macromoths Pasiphila rectangulata 873000 879000 NA NA NA NA 

Macromoths Pelurga comitata 740000 790000 710000 628000 NA NA 

Macromoths Perconia strigillaria 534000 722000 483000 631000 378000 519000 

Macromoths 
Peribatodes 
rhomboidaria 

812000 869000 790000 834000 NA NA 

Macromoths Peridea anceps 495000 668000 495000 530000 430000 453000 

Macromoths Peridroma saucia 582000 793000 574000 749000 532000 631000 

Macromoths Perizoma affinitata 844000 865000 814000 839000 NA NA 

Macromoths Perizoma bifaciata 580000 658000 521000 555000 496000 518000 

Macromoths Perizoma flavofasciata 855000 918000 836000 869000 NA NA 

Macromoths Phalera bucephala 855000 891000 839000 868000 NA NA 

Macromoths Pheosia tremula 833000 895000 815000 856000 NA NA 

Macromoths Phibalapteryx virgata 284000 294000 283000 293000 NA NA 

Macromoths Phigalia pilosaria 863000 883000 833000 858000 NA NA 

Macromoths Philereme transversata 413000 452000 411000 444000 380000 412000 

Macromoths Philereme vetulata 356000 381000 348000 364000 331000 342000 

Macromoths 
Phragmatobia 
fuliginosa 

846000 893000 811000 867000 NA NA 

Macromoths Phytometra viridaria 797000 843000 683000 741000 457000 535000 

Macromoths Plagodis dolabraria 671000 836000 671000 787000 NA NA 

Macromoths Plagodis pulveraria 785000 850000 742000 837000 662000 795000 

Macromoths Plemyria rubiginata 830000 862000 816000 832000 NA NA 

Macromoths Plusia putnami 766000 907000 741000 871000 NA NA 

Macromoths Poecilocampa populi 874000 882000 NA NA NA NA 

Macromoths Polia nebulosa 797000 887000 760000 867000 685000 823000 

Macromoths Polia trimaculosa 644000 804000 NA NA NA NA 

Macromoths Polychrysia moneta 536000 545000 536000 540000 504000 491000 

Macromoths Polymixis flavicincta 366000 428000 348000 372000 343000 354000 

Macromoths Polymixis lichenea 499000 544000 495000 485000 492000 461000 

Macromoths Polyploca ridens 336000 357000 326000 340000 326000 338000 

Macromoths Protodeltote pygarga 346000 490000 346000 472000 342000 446000 

Macromoths Pseudoips prasinana 715000 832000 688000 809000 505000 711000 

Macromoths 
Pseudopanthera 
macularia 

791000 846000 669000 784000 475000 700000 

Macromoths Pseudoterpna pruinata 615000 636000 596000 595000 561000 549000 
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Macromoths 
Pterapherapteryx 
sexalata 

408000 359000 373000 331000 373000 330000 

Macromoths Pterostoma palpina 852000 899000 834000 865000 NA NA 

Macromoths Ptilodon cucullina 323000 336000 323000 335000 323000 331000 

Macromoths Pyrrhia umbra 546000 615000 508000 579000 449000 521000 

Macromoths Rheumaptera cervinalis 413000 626000 345000 452000 345000 368000 

Macromoths Rheumaptera hastata 792000 919000 666000 858000 NA NA 

Macromoths Rheumaptera undulata 517000 635000 492000 611000 477000 555000 

Macromoths Rhizedra lutosa 778000 859000 726000 819000 NA NA 

Macromoths Rhodometra sacraria 586000 743000 586000 694000 544000 648000 

Macromoths Rhyacia simulans 750000 840000 666000 720000 562000 554000 

Macromoths Rivula sericealis 837000 902000 806000 871000 NA NA 

Macromoths 
Schrankia 
costaestrigalis 

799000 920000 754000 879000 661000 791000 

Macromoths Schrankia taenialis 201000 270000 201000 270000 201000 266000 

Macromoths Scoliopteryx libatrix 839000 907000 821000 877000 NA NA 

Macromoths Scopula emutaria 324000 352000 306000 351000 292000 316000 

Macromoths Scopula floslactata 798000 850000 749000 828000 671000 712000 

Macromoths Scopula imitaria 445000 483000 445000 476000 445000 453000 

Macromoths Scopula immutata 427000 527000 419000 470000 416000 434000 

Macromoths 
Scopula 
marginepunctata 

394000 483000 348000 452000 341000 431000 

Macromoths Scotopteryx bipunctaria 334000 423000 259000 325000 216000 237000 

Macromoths Scotopteryx luridata 777000 856000 751000 818000 520000 558000 

Macromoths Scotopteryx mucronata 792000 821000 739000 796000 549000 588000 

Macromoths Selenia tetralunaria 792000 866000 767000 833000 NA NA 

Macromoths Semiaspilates ochrearia 341000 388000 340000 377000 326000 338000 

Macromoths Sesia apiformis 326000 328000 280000 326000 NA NA 

Macromoths Sesia bembeciformis 744000 758000 658000 630000 567000 544000 

Macromoths Shargacucullia verbasci 453000 506000 449000 481000 447000 477000 

Macromoths Sideridis albicolon 458000 511000 391000 450000 335000 355000 

Macromoths Simyra albovenosa 323000 339000 322000 336000 320000 333000 

Macromoths Smerinthus ocellata 480000 505000 480000 472000 479000 461000 

Macromoths Sphinx ligustri 396000 413000 334000 374000 331000 363000 

Macromoths Spilosoma luteum 785000 867000 752000 856000 682000 760000 

Macromoths Spodoptera exigua 403000 604000 403000 575000 401000 484000 

Macromoths Standfussiana lucernea 814000 865000 678000 763000 NA NA 

Macromoths Stauropus fagi 331000 339000 331000 337000 329000 332000 

Macromoths 
Synanthedon 
culiciformis 

446000 718000 442000 417000 274000 398000 

Macromoths 
Synanthedon 
formicaeformis 

315000 432000 301000 374000 NA NA 

Macromoths 
Synanthedon 
vespiformis 

322000 394000 283000 369000 283000 348000 

Macromoths Tethea ocularis 554000 588000 530000 568000 507000 507000 

Macromoths Tethea or 845000 878000 820000 861000 NA NA 

Macromoths Tetheella fluctuosa 428000 760000 339000 425000 321000 299000 

Macromoths Thalpophila matura 777000 796000 737000 675000 NA NA 
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Macromoths Thera firmata 875000 915000 NA NA NA NA 

Macromoths Thera juniperata 846000 821000 820000 707000 NA NA 

Macromoths Theria primaria 637000 678000 617000 625000 NA NA 

Macromoths Tholera cespitis 665000 795000 640000 736000 599000 573000 

Macromoths Tholera decimalis 641000 666000 632000 632000 597000 619000 

Macromoths Thumatha senex 511000 629000 483000 588000 443000 469000 

Macromoths Thyatira batis 828000 887000 823000 864000 NA NA 

Macromoths Timandra comae 555000 611000 524000 567000 503000 527000 

Macromoths Trichoplusia ni 222000 368000 NA NA NA NA 

Macromoths Triphosa dubitata 460000 528000 436000 500000 423000 414000 

Macromoths Tyria jacobaeae 689000 781000 652000 734000 593000 657000 

Macromoths Watsonalla binaria 470000 529000 468000 503000 458000 483000 

Macromoths Watsonalla cultraria 355000 467000 355000 459000 335000 446000 

Macromoths Xanthia aurago 441000 486000 420000 479000 419000 474000 

Macromoths Xanthia citrago 772000 847000 752000 830000 NA NA 

Macromoths Xanthia gilvago 618000 666000 587000 578000 530000 538000 

Macromoths Xanthorhoe ferrugata 737000 839000 730000 801000 NA NA 

Macromoths 
Xanthorhoe 
quadrifasiata 

445000 499000 445000 490000 426000 480000 

Macromoths Xanthorhoe spadicearia 870000 880000 NA NA NA NA 

Macromoths Xestia castanea 868000 895000 NA NA NA NA 

Macromoths Xestia ditrapezium 774000 852000 701000 833000 584000 753000 

Macromoths Xestia rhomboidea 471000 663000 440000 573000 408000 462000 

Macromoths Xestia triangulum 877000 933000 NA NA NA NA 

Macromoths Xylena exsoleta 828000 858000 818000 832000 NA NA 

Macromoths Xylocampa areola 785000 883000 726000 861000 NA NA 

Macromoths 
Zanclognatha 
tarsipennalis 

667000 744000 660000 711000 NA NA 

Macromoths Zeuzera pyrina 436000 474000 420000 463000 402000 458000 

Macromoths Zygaena filipendulae 877000 885000 826000 838000 NA NA 

Macromoths Zygaena lonicerae 617000 682000 595000 650000 517000 554000 

Macromoths Zygaena trifolii 330000 329000 306000 317000 306000 315000 

Shieldbugs* 
Acanthosoma 
haemorrhoidale 

547000 688000 NA NA NA NA 

Shieldbugs* Aelia acuminata 352000 374000 NA NA NA NA 

Shieldbugs* Chorosoma schillingi 360000 384000 NA NA NA NA 

Shieldbugs* Coreus marginatus 228000 334000 194000 248000 NA NA 

Shieldbugs* Coriomeris denticulatus 303000 396000 NA NA NA NA 

Shieldbugs* Corizus hyoscyami 268000 361000 NA NA NA NA 

Shieldbugs* Dolycoris baccarum 435000 486000 NA NA NA NA 

Shieldbugs* Elasmucha grisea NA NA 435000 426000 NA NA 

Shieldbugs* Eurygaster testudinaria 201000 228000 NA NA NA NA 

Shieldbugs* Legnotus limbosus 275000 320000 NA NA NA NA 

Shieldbugs* Myrmus miriformis 439000 396000 NA NA NA NA 

Shieldbugs* Palomena prasina 394000 454000 317000 385000 NA NA 

Shieldbugs* Pentatoma rufipes NA NA 436000 477000 NA NA 

Shieldbugs* Picromerus bidens 550000 540000 NA NA NA NA 
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Shieldbugs* Piezodorus lituratus 538000 518000 NA NA NA NA 

Shieldbugs* Podops inuncta 226000 241000 NA NA NA NA 

Shieldbugs* 
Rhacognathus 
punctatus 

456000 465000 NA NA NA NA 

Shieldbugs* Rhopalus subrufus 232000 347000 211000 223000 NA NA 

Shieldbugs* Troilus luridus 450000 509000 NA NA NA NA 

Shieldbugs* Zicrona caerulea 463000 495000 NA NA NA NA 

Soldierflies* Asilus crabroniformis 222000 162000 NA NA NA NA 

Soldierflies* Beris chalybata 517000 593000 NA NA NA NA 

Soldierflies* Beris fuscipes 376000 476000 NA NA NA NA 

Soldierflies* Beris morrisii 372000 362000 267000 303000 NA NA 

Soldierflies* Bombylius major 521000 449000 NA NA NA NA 

Soldierflies* Chloromyia formosa 545000 579000 NA NA NA NA 

Soldierflies* Choerades marginatus 266000 281000 NA NA NA NA 

Soldierflies* Chorisops nagatomii 220000 240000 NA NA NA NA 

Soldierflies* Chorisops tibialis 430000 399000 320000 355000 NA NA 

Soldierflies* Chrysopilus asiliformis 402000 380000 318000 300000 NA NA 

Soldierflies* Chrysopilus cristatus 594000 779000 NA NA NA NA 

Soldierflies* Chrysops caecutiens 492000 423000 286000 308000 NA NA 

Soldierflies* Chrysops viduatus 299000 294000 235000 273000 NA NA 

Soldierflies* Dioctria atricapilla 383000 349000 NA NA NA NA 

Soldierflies* Dioctria baumhaueri 350000 335000 311000 259000 NA NA 

Soldierflies* Dioctria linearis 328000 316000 246000 239000 NA NA 

Soldierflies* Dioctria rufipes 542000 518000 NA NA NA NA 

Soldierflies* Dysmachus trigonus 377000 358000 276000 268000 NA NA 

Soldierflies* 
Haematopota 
crassicornis 

542000 565000 NA NA NA NA 

Soldierflies* Hybomitra bimaculata 357000 354000 NA NA NA NA 

Soldierflies* 
Hybomitra 
distinguenda 

441000 373000 NA NA NA NA 

Soldierflies* Leptarthrus brevirostris 482000 514000 NA NA NA NA 

Soldierflies* Leptogaster cylindrica 403000 455000 315000 343000 NA NA 

Soldierflies* Machimus atricapillus 459000 443000 NA NA NA NA 

Soldierflies* Machimus cingulatus 324000 397000 222000 283000 NA NA 

Soldierflies* Microchrysa flavicornis 550000 482000 NA NA NA NA 

Soldierflies* Microchrysa polita 535000 445000 NA NA NA NA 

Soldierflies* Nemotelus nigrinus 418000 405000 NA NA NA NA 

Soldierflies* Nemotelus notatus 476000 343000 NA NA NA NA 

Soldierflies* Nemotelus pantherinus 323000 274000 NA NA NA NA 

Soldierflies* Nemotelus uliginosus 548000 434000 NA NA NA NA 

Soldierflies* Neoitamus cyanurus 519000 364000 NA NA NA NA 

Soldierflies* Odontomyia tigrina 244000 284000 NA NA NA NA 

Soldierflies* Oplodontha viridula 469000 471000 NA NA NA NA 

Soldierflies* Oxycera morrisii 443000 345000 NA NA NA NA 

Soldierflies* Oxycera nigricornis 373000 321000 282000 250000 NA NA 

Soldierflies* Oxycera rara 390000 353000 307000 294000 NA NA 

Soldierflies* Oxycera trilineata 446000 340000 318000 266000 NA NA 
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Soldierflies* Pachygaster atra 338000 330000 296000 302000 NA NA 

Soldierflies* Pachygaster leachii 311000 340000 247000 311000 NA NA 

Soldierflies* Philonicus albiceps 423000 335000 NA NA NA NA 

Soldierflies* Rhagio tringarius 516000 630000 NA NA NA NA 

Soldierflies* Sargus bipunctatus 468000 401000 233000 222000 NA NA 

Soldierflies* Sargus flavipes 489000 328000 NA NA NA NA 

Soldierflies* Sargus iridatus 574000 506000 NA NA NA NA 

Soldierflies* Stratiomys potamida 408000 396000 314000 301000 NA NA 

Soldierflies* Stratiomys singularior 348000 308000 294000 254000 NA NA 

Soldierflies* Tabanus autumnalis 285000 275000 NA NA NA NA 

Soldierflies* Tabanus bromius 222000 264000 155000 197000 NA NA 

Soldierflies* Tabanus sudeticus 488000 496000 NA NA NA NA 

Soldierflies* Thereva nobilitata 544000 610000 NA NA NA NA 

Soldierflies* Vanoyia tenuicornis 321000 254000 NA NA NA NA 

Wasps Agenioideus cinctellus 232000 243000 183000 183000 NA NA 

Wasps Ammophila pubescens 219000 208000 208000 208000 NA NA 

Wasps Ammophila sabulosa NA NA 365000 361000 NA NA 

Wasps Ancistrocerus gazella 427000 499000 363000 417000 NA NA 

Wasps Ancistrocerus oviventris 469000 721000 NA NA NA NA 

Wasps 
Ancistrocerus 
parietinus 

449000 518000 NA NA NA NA 

Wasps Ancistrocerus parietum 450000 494000 NA NA NA NA 

Wasps Ancistrocerus scoticus 469000 382000 NA NA NA NA 

Wasps 
Ancistrocerus 
trifasciatus 

462000 464000 NA NA NA NA 

Wasps Anoplius infuscatus 344000 355000 247000 288000 NA NA 

Wasps Anoplius viaticus 358000 363000 313000 318000 NA NA 

Wasps Arachnospila minutula 321000 233000 NA NA NA NA 

Wasps Arachnospila spissa NA NA 374000 348000 NA NA 

Wasps Arachnospila trivialis 289000 334000 NA NA NA NA 

Wasps Argogorytes mystaceus NA NA 379000 273000 NA NA 

Wasps Astata boops 191000 299000 187000 249000 NA NA 

Wasps Caliadurgus fasciatellus 180000 247000 NA NA NA NA 

Wasps Cerceris arenaria 311000 387000 258000 352000 NA NA 

Wasps Cerceris ruficornis 165000 253000 141000 201000 NA NA 

Wasps Cerceris rybyensis 282000 335000 240000 301000 NA NA 

Wasps Chrysis angustula 463000 425000 NA NA NA NA 

Wasps Chrysis impressa 472000 445000 NA NA NA NA 

Wasps Chrysis viridula 303000 337000 NA NA NA NA 

Wasps Crabro cribrarius NA NA 371000 368000 NA NA 

Wasps Crabro scutellatus 161000 144000 NA NA NA NA 

Wasps Crossocerus annulipes 440000 510000 NA NA NA NA 

Wasps Crossocerus capitosus 382000 296000 NA NA NA NA 

Wasps Crossocerus cetratus 427000 443000 269000 371000 NA NA 

Wasps 
Crossocerus 
distinguendus 

190000 331000 NA NA NA NA 

Wasps Crossocerus nigritus 363000 317000 NA NA NA NA 
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Wasps Crossocerus ovalis 443000 476000 363000 384000 NA NA 

Wasps Crossocerus podagricus 443000 454000 NA NA NA NA 

Wasps 
Crossocerus 
quadrimaculatus 

486000 502000 366000 407000 NA NA 

Wasps Crossocerus wesmaeli 410000 403000 NA NA NA NA 

Wasps Diodontus luperus 382000 276000 NA NA NA NA 

Wasps Diodontus minutus 311000 360000 231000 259000 NA NA 

Wasps 
Dipogon 
subintermedius 

477000 362000 310000 294000 NA NA 

Wasps Dipogon variegatus 418000 392000 NA NA NA NA 

Wasps Dolichovespula media 438000 465000 279000 353000 NA NA 

Wasps 
Dolichovespula 
saxonica 

222000 414000 NA NA NA NA 

Wasps Dryudella pinguis 499000 225000 NA NA NA NA 

Wasps Ectemnius cephalotes 429000 384000 363000 285000 NA NA 

Wasps Ectemnius continuus 478000 513000 NA NA NA NA 

Wasps Ectemnius dives 274000 227000 NA NA NA NA 

Wasps Ectemnius lapidarius 347000 367000 NA NA NA NA 

Wasps Ectemnius lituratus 201000 289000 171000 226000 NA NA 

Wasps Ectemnius rubicola 233000 270000 NA NA NA NA 

Wasps Ectemnius ruficornis 364000 447000 NA NA NA NA 

Wasps Ectemnius sexcinctus 419000 433000 NA NA NA NA 

Wasps Elampus panzeri 310000 294000 271000 219000 NA NA 

Wasps Entomognathus brevis 368000 350000 307000 318000 NA NA 

Wasps Episyron rufipes 419000 420000 NA NA NA NA 

Wasps Eumenes coarctatus 145000 144000 NA NA NA NA 

Wasps Evagetes crassicornis 474000 499000 NA NA NA NA 

Wasps Gorytes quadrifasciatus 372000 389000 NA NA NA NA 

Wasps Hedychridium ardens 494000 399000 NA NA NA NA 

Wasps Hedychridium roseum 151000 290000 148000 219000 NA NA 

Wasps Lestiphorus bicinctus 215000 243000 NA NA NA NA 

Wasps Lindenius albilabris 402000 477000 NA NA NA NA 

Wasps Lindenius panzeri 195000 306000 NA NA NA NA 

Wasps Methocha articulata 163000 268000 NA NA NA NA 

Wasps Mimesa lutaria 358000 354000 274000 339000 NA NA 

Wasps Mimumesa dahlbomi 434000 470000 NA NA NA NA 

Wasps Mutilla europaea 149000 179000 NA NA NA NA 

Wasps Myrmosa atra 431000 459000 NA NA NA NA 

Wasps Nysson spinosus 487000 442000 NA NA NA NA 

Wasps Nysson trimaculatus 309000 319000 NA NA NA NA 

Wasps Odynerus spinipes 468000 407000 315000 253000 NA NA 

Wasps Oxybelus uniglumis 478000 460000 NA NA NA NA 

Wasps Passaloecus corniger 390000 404000 NA NA NA NA 

Wasps Passaloecus eremita 174000 201000 NA NA NA NA 

Wasps Passaloecus gracilis 371000 323000 232000 294000 NA NA 

Wasps Passaloecus insignis 396000 269000 NA NA NA NA 

Wasps Passaloecus singularis 436000 363000 NA NA NA NA 
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Wasps Pemphredon inornata 473000 480000 313000 334000 NA NA 

Wasps Pemphredon lethifer 457000 397000 NA NA NA NA 

Wasps Philanthus triangulum 264000 377000 230000 341000 NA NA 

Wasps Pompilus cinereus 451000 468000 NA NA NA NA 

Wasps Priocnemis exaltata 448000 388000 NA NA NA NA 

Wasps Priocnemis fennica 362000 279000 NA NA NA NA 

Wasps Priocnemis parvula NA NA 301000 320000 NA NA 

Wasps Priocnemis perturbator NA NA 376000 327000 NA NA 

Wasps Priocnemis pusilla 227000 211000 NA NA NA NA 

Wasps Psenulus concolor 413000 212000 NA NA NA NA 

Wasps Psenulus pallipes 425000 369000 278000 332000 NA NA 

Wasps Pseudomalus auratus 417000 293000 259000 196000 NA NA 

Wasps Rhopalum clavipes 427000 344000 NA NA NA NA 

Wasps Rhopalum coarctatum 436000 366000 320000 297000 NA NA 

Wasps 
Sapyga 
quinquepunctata 

333000 274000 NA NA NA NA 

Wasps Smicromyrme rufipes 165000 164000 NA NA NA NA 

Wasps Spilomena troglodytes 248000 265000 NA NA NA NA 

Wasps Stigmus solskyi 264000 347000 205000 270000 NA NA 

Wasps 
Symmorphus 
bifasciatus 

458000 435000 NA NA NA NA 

Wasps Symmorphus gracilis 412000 285000 271000 245000 NA NA 

Wasps Tiphia femorata 238000 309000 NA NA NA NA 

Wasps Tiphia minuta 278000 374000 NA NA NA NA 

Wasps Trichrysis cyanea 471000 424000 NA NA NA NA 

Wasps Trypoxylon attenuatum 448000 401000 NA NA NA NA 

Wasps Trypoxylon clavicerum 444000 386000 367000 340000 NA NA 

Wasps Trypoxylon medium 232000 281000 218000 210000 NA NA 

Wasps Vespa crabro 328000 431000 229000 345000 NA NA 

Wasps Vespula germanica 462000 491000 NA NA NA NA 

Woodlice Androniscus dentiger 777000 709000 762000 699000 NA NA 

Woodlice 
Armadillidium 
depressum 

257000 275000 228000 251000 NA NA 

Woodlice Armadillidium nasatum 283000 316000 275000 308000 243000 245000 

Woodlice 
Armadillidium 
pulchellum 

481000 499000 NA NA NA NA 

Woodlice Armadillidium vulgare 551000 612000 NA NA NA NA 

Woodlice Asellus aquaticus 594000 644000 576000 586000 NA NA 

Woodlice 
Haplophthalmus 
danicus 

396000 501000 374000 466000 302000 289000 

Woodlice Haplophthalmus mengii 527000 528000 480000 494000 NA NA 

Woodlice Ligia oceanica 862000 817000 NA NA NA NA 

Woodlice Ligidium hypnorum 297000 221000 269000 215000 NA NA 

Woodlice 
Platyarthrus 
hoffmannseggii 

504000 487000 449000 485000 335000 328000 

Woodlice Porcellio spinicornis 793000 773000 765000 685000 NA NA 

Woodlice 
Porcellionides 
cingendus 

272000 212000 265000 209000 NA NA 

Woodlice Porcellionides pruinosus 563000 381000 NA NA NA NA 
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Woodlice Porcellionides pruinosus 563000 381000 NA NA NA NA 

Woodlice Proasellus meridianus 510000 553000 443000 514000 322000 386000 

Woodlice Trachelipus rathkii 294000 261000 277000 256000 NA NA 

Woodlice Trichoniscus pygmaeus 744000 674000 NA NA NA NA 

 



 
 

 

 

Table A2.6. Seasonal and annual temperature trends across the study period (1966-2010). P values in bold denote a significant change 

in the temperature measurement over each interval period. Seasons are defined by three month bins: Winter (December, January, 

February; assigned to the year represented by January and February); Spring (March, April, May); Summer (June, July, August); Autumn 

(September, October, November).  The annual temperature of year T is, thus, the average temperature taken across December of year 

T-1 and January through November of year T.  

 

 

 

 

Response variable Fixed effects Slope (°C/decade) SE Multiple R2 F-statistic df p value 

Mean annual temperature Year (Interval 1 - 1966-1995) 0.21 0.11 0.1 3.4 1,28 0.078 

Mean winter temperature Year (Interval 1 - 1966-1995) 0.18 0.25 0.0 0.5 1,28 0.486 

Mean spring temperature Year (Interval 1 - 1966-1995) 0.39 0.11 0.3 11.9 1,28 0.002 

Mean summer temperature Year (Interval 1 - 1966-1995) 0.23 0.20 0.0 1.3 1,28 0.259 

Mean autumn temperature Year (Interval 1 - 1966-1995) 0.03 0.15 0.0 0.0 1,28 0.850 

        

Mean annual temperature Year (Interval 2 - 1986-2010) 0.28 0.16 0.1 3.0 1,22 0.095 

Mean winter temperature Year (Interval 2 - 1986-2010) 0.02 0.33 0.0 0.0 1,23 0.954 

Mean spring temperature Year (Interval 2 - 1986-2010) 0.33 0.19 0.1 3.0 1,23 0.096 

Mean summer temperature Year (Interval 2 - 1986-2010) 0.31 0.20 0.1 2.4 1,23 0.139 

Mean autumn temperature Year (Interval 2 - 1986-2010) 0.46 0.21 0.2 4.6 1,23 0.043 
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Table A2.7. Summary table and statistics for Figure 4 (taxonomic groups studied over both intervals).  Mean rates of range margin 

change were compared between the two intervals using paired t-tests (species as pairs; shifts that are significantly different from zero 

are given in bold). 

Taxonomic 

group 

Level of 

recording effort 

control 

Number 

of 

hectads 

No. 

spp 

Interval 1 Interval 2 paired t test 

Mean range shift 

(km decade-1) 95% CI  

Mean range shift 

(km decade-1) 95% CI df t p value 

Birds Well recorded 2561 31 7.7 15.8 6.3 21.6 30 0.12 0.908 

Birds Heavily recorded 2500 31 6.7 16.3 6.5 20.8 30 0.02 0.983 

Butterflies Well recorded 1729 35 18.3 8.0 30.3 10.7 34 -2.26 0.030 

Butterflies Heavily recorded 1218 35 16.9 8.2 28.0 9.5 34 -2.26 0.031 

Dragonflies* Well recorded 414 7 32.0 13.3 43.3 23.8 6 -1.32 0.236 

Dragonflies* Heavily recorded 119 7 25.1 7.5 37.4 23.8 6 -1.00 0.356 

Macromoths Well recorded 477 132 11.4 4.4 31.2 6.5 131 -5.77 <0.001 

Macromoths Heavily recorded 205 132 9.4 3.3 26.1 5.6 131 -5.41 <0.002 
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Table A2.8. Northings (in metres, on the GB Ordnance Survey Grid) of all 205 species included 

in Figure 4, with their northern range margin locations for each time period, for well-recorded 

and heavily-recorded cells that were common to all three time periods (T1: 1966-75, T2: 1986-

95, T3: 2001-2010). Note that for bird species, the time period years are 1968-72, 1988-1991, 

and 2007-2011. 
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Birds Acrocephalus scirpaceus 533000 648000 712000 533000 648000 710000 

Birds Alcedo atthis 774000 822000 844000 774000 822000 844000 

Birds Anas querquedula 569000 757000 727000 569000 757000 727000 

Birds Burhinus oedicnemus 327000 303000 306000 327000 303000 306000 

Birds Caprimulgus europaeus 829000 654000 629000 829000 654000 629000 

Birds Charadrius dubius 566000 601000 797000 566000 601000 797000 

Birds Circus aeruginosus 466000 683000 841000 466000 683000 841000 

Birds Circus pygargus C C C C C C 

Birds Coccothraustes coccothraustes 733000 747000 681000 733000 747000 681000 

Birds Dendrocopos minor 511000 542000 515000 511000 542000 515000 

Birds Emberiza cirlus 253000 133000 78000 253000 133000 78000 

Birds Falco subbuteo 528000 599000 768000 528000 599000 768000 

Birds Garrulus glandarius 798000 839000 861000 798000 839000 861000 

Birds Limosa limosa 621000 762000 452000 621000 762000 452000 

Birds Lullula arborea 335000 310000 423000 335000 310000 423000 

Birds Luscinia megarhynchos 413000 391000 417000 413000 391000 417000 

Birds Motacilla flava 692000 673000 658000 692000 673000 657000 

Birds Panurus biarmicus 384000 388000 590000 384000 388000 590000 

Birds Phoenicurus ochruros 347000 448000 587000 347000 448000 538000 

Birds Picus viridis 782000 851000 824000 782000 851000 824000 

Birds Podiceps cristatus 798000 813000 788000 798000 813000 788000 

Birds Poecile montana 733000 655000 623000 733000 655000 623000 

Birds Poecile palustris 645000 659000 647000 645000 658000 647000 

Birds Porzana porzana 784000 823000 755000 784000 823000 755000 

Birds Pyrrhocorax pyrrhocorax 679000 682000 668000 679000 674000 668000 

Birds Sitta europaea 614000 626000 717000 614000 626000 717000 

Birds Sterna dougallii 774000 676000 416000 774000 658000 416000 

Birds Streptopelia turtur 777000 679000 525000 777000 645000 525000 

Birds Sylvia curruca 775000 834000 790000 775000 834000 790000 

Birds Sylvia undata 115000 147000 342000 115000 147000 342000 

Birds Tyto alba 864000 871000 959000 864000 871000 959000 
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Butterflies Aglais polychloros 337000 366000 347000 337000 286000 327000 

Butterflies Anthocharis cardamines 831000 860000 914000 732000 833000 875000 

Butterflies Apatura iris 208000 235000 268000 208000 216000 268000 

Butterflies Aphantopus hyperantus 734000 849000 866000 718000 823000 859000 

Butterflies Argynnis adippe 405000 407000 462000 395000 407000 441000 

Butterflies Argynnis paphia 323000 411000 466000 313000 411000 466000 

Butterflies Aricia agestis 380000 421000 507000 378000 420000 487000 

Butterflies Boloria euphrosyne 822000 816000 869000 746000 785000 791000 

Butterflies Callophrys rubi 805000 843000 876000 798000 816000 840000 

Butterflies Celastrina argiolus 563000 580000 664000 542000 575000 646000 

Butterflies Erynnis tages 676000 793000 851000 647000 734000 746000 

Butterflies Euphydryas aurinia 750000 723000 740000 694000 645000 719000 

Butterflies Gonepteryx rhamni 487000 508000 561000 487000 505000 551000 

Butterflies Hamearis lucina 390000 464000 414000 390000 430000 387000 

Butterflies Hesperia comma 175000 168000 184000 175000 168000 184000 

Butterflies Inachis io 782000 784000 944000 768000 780000 908000 

Butterflies Lasiommata megera 620000 625000 646000 560000 606000 629000 

Butterflies Leptidea sinapis 278000 318000 355000 278000 283000 344000 

Butterflies Limenitis camilla 308000 371000 406000 308000 369000 401000 

Butterflies Lycaena phlaeas 862000 872000 899000 855000 856000 872000 

Butterflies Lysandra bellargus 176000 179000 208000 176000 172000 208000 

Butterflies Lysandra coridon 275000 274000 292000 274000 272000 286000 

Butterflies Melanargia galathea 361000 484000 530000 361000 482000 523000 

Butterflies Neozephyrus quercus 551000 610000 730000 494000 555000 655000 

Butterflies Ochlodes faunus 562000 607000 632000 562000 601000 618000 

Butterflies Plebejus argus 366000 374000 377000 366000 367000 368000 

Butterflies Polygonia c-album 396000 573000 785000 396000 561000 768000 

Butterflies Pyrgus malvae 428000 377000 366000 428000 371000 359000 

Butterflies Pyronia tithonus 469000 497000 539000 469000 491000 520000 

Butterflies Satyrium pruni 286000 274000 297000 286000 274000 297000 

Butterflies Satyrium w-album 413000 512000 578000 411000 494000 558000 

Butterflies Thecla betulae 306000 296000 300000 306000 296000 300000 

Butterflies Thymelicus lineola 330000 382000 408000 329000 382000 405000 

Butterflies Thymelicus sylvestris 485000 554000 633000 480000 542000 617000 

Butterflies Vanessa cardui 848000 859000 944000 806000 851000 908000 

Dragonflies Aeshna mixta 340000 396000 509000 286000 321000 438000 

Dragonflies Anax imperator 281000 409000 529000 255000 335000 426000 

Dragonflies Brachytron pratense 343000 410000 436000 305000 337000 361000 

Dragonflies Ceriagrion tenellum 225000 259000 259000 190000 217000 230000 

Dragonflies Erythromma najas 371000 386000 408000 274000 345000 334000 

Dragonflies Libellula depressa 332000 400000 488000 267000 325000 421000 

Dragonflies Orthetrum cancellatum 283000 363000 449000 272000 320000 383000 

Macromoths Acherontia atropos 461000 426000 433000 349000 388000 343000 

Macromoths Acronicta aceris 304000 341000 370000 268000 335000 352000 

Macromoths Acronicta alni 405000 459000 580000 385000 409000 517000 
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Macromoths Acronicta tridens 400000 372000 430000 390000 351000 403000 

Macromoths Anarta myrtilli 715000 620000 636000 342000 348000 359000 

Macromoths Angerona prunaria 248000 250000 279000 238000 240000 250000 

Macromoths Apamea anceps 328000 328000 358000 319000 322000 341000 

Macromoths Apamea scolopacina 410000 467000 667000 377000 424000 583000 

Macromoths Apamea sublustris 254000 291000 306000 248000 249000 286000 

Macromoths Aplocera efformata 317000 457000 559000 305000 326000 500000 

Macromoths Apocheima hispidaria 330000 318000 324000 284000 284000 315000 

Macromoths Archanara dissoluta 344000 338000 382000 339000 322000 348000 

Macromoths Archanara geminipuncta 307000 339000 430000 291000 323000 372000 

Macromoths Arctia villica 237000 246000 266000 229000 230000 249000 

Macromoths Arenostola phragmitidis 417000 438000 465000 374000 402000 392000 

Macromoths Asteroscopus sphinx 386000 462000 419000 352000 336000 371000 

Macromoths Asthena albulata 374000 501000 453000 359000 414000 384000 

Macromoths Bena bicolorana 334000 424000 479000 320000 384000 437000 

Macromoths Catarhoe rubidata 296000 233000 268000 260000 207000 265000 

Macromoths Cepphis advenaria 197000 202000 221000 175000 189000 209000 

Macromoths Cerastis leucographa 295000 309000 362000 284000 303000 295000 

Macromoths Charanyca trigrammica 422000 402000 454000 385000 373000 424000 

Macromoths Charissa obscurata 314000 409000 416000 260000 285000 353000 

Macromoths Chilodes maritimus 314000 395000 443000 312000 346000 408000 

Macromoths Cleorodes lichenaria 549000 561000 665000 358000 340000 387000 

Macromoths Clostera curtula 312000 324000 403000 302000 323000 348000 

Macromoths Coenobia rufa 394000 383000 430000 384000 358000 421000 

Macromoths Comibaena bajularia 348000 398000 373000 348000 355000 357000 

Macromoths Cosmia affinis 349000 303000 349000 296000 290000 349000 

Macromoths Cosmia pyralina 312000 326000 319000 294000 320000 302000 

Macromoths Cryphia muralis 195000 209000 287000 164000 189000 280000 

Macromoths Cybosia mesomella 549000 573000 609000 418000 405000 446000 

Macromoths Cyclophora albipunctata 452000 570000 810000 298000 359000 529000 

Macromoths Cyclophora annularia 224000 205000 244000 208000 185000 215000 

Macromoths Cyclophora linearia 272000 347000 476000 255000 299000 442000 

Macromoths Cyclophora punctaria 310000 315000 362000 287000 287000 354000 

Macromoths Cymatophorima diluta 331000 306000 345000 298000 276000 314000 

Macromoths Deltote uncula 397000 436000 597000 340000 360000 373000 

Macromoths Drymonia dodonaea 478000 517000 534000 366000 384000 409000 

Macromoths Dypterygia scabriuscula 343000 380000 408000 340000 359000 382000 

Macromoths Ectropis crepuscularia 561000 476000 423000 429000 399000 380000 

Macromoths Eilema complana 340000 364000 446000 323000 352000 367000 

Macromoths Eilema depressa 290000 327000 565000 269000 322000 521000 

Macromoths Eilema griseola 332000 359000 463000 298000 347000 449000 

Macromoths Ennomos quercinaria 453000 411000 453000 375000 353000 382000 

Macromoths Epirrhoe galiata 462000 426000 411000 352000 415000 358000 
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Macromoths Epirrhoe rivata 363000 381000 327000 340000 312000 315000 

Macromoths Eremobia ochroleuca 382000 428000 490000 361000 383000 429000 

Macromoths Euclidia glyphica 397000 461000 413000 376000 376000 370000 

Macromoths Euphyia unangulata 335000 314000 333000 316000 282000 300000 

Macromoths Eupithecia dodoneata 294000 461000 571000 275000 429000 498000 

Macromoths Eupithecia haworthiata 283000 288000 349000 263000 278000 337000 

Macromoths Eupithecia inturbata 321000 364000 342000 286000 348000 320000 

Macromoths Eupithecia simpliciata 368000 412000 443000 284000 309000 394000 

Macromoths Eupithecia subumbrata 420000 342000 419000 330000 314000 329000 

Macromoths Euproctis chrysorrhoea 296000 427000 432000 236000 344000 351000 

Macromoths Furcula bifida 439000 424000 506000 375000 385000 397000 

Macromoths Gastropacha quercifolia 327000 312000 245000 309000 308000 186000 

Macromoths Hemistola chrysoprasaria 336000 333000 329000 318000 328000 317000 

Macromoths Hoplodrina ambigua 238000 339000 461000 238000 327000 387000 

Macromoths Horisme tersata 299000 315000 323000 287000 280000 303000 

Macromoths Horisme vitalbata 265000 282000 326000 259000 280000 312000 

Macromoths Hyloicus pinastri 235000 334000 439000 211000 328000 392000 

Macromoths Hypena crassalis 311000 321000 400000 242000 271000 336000 

Macromoths Hypomecis punctinalis 282000 325000 339000 263000 309000 331000 

Macromoths Hypomecis roboraria 237000 260000 229000 233000 247000 228000 

Macromoths Idaea emarginata 342000 363000 355000 329000 350000 343000 

Macromoths Idaea fuscovenosa 328000 386000 414000 314000 356000 382000 

Macromoths Idaea subsericeata 417000 343000 431000 333000 342000 362000 

Macromoths Idaea sylvestraria 280000 177000 177000 264000 177000 158000 

Macromoths Idaea trigeminata 286000 324000 332000 279000 303000 327000 

Macromoths Ipimorpha subtusa 475000 491000 607000 423000 422000 503000 

Macromoths Lacanobia contigua 678000 729000 781000 307000 428000 488000 

Macromoths Lacanobia suasa 407000 454000 505000 350000 362000 408000 

Macromoths Lacanobia w-latinum 308000 338000 356000 276000 320000 335000 

Macromoths Larentia clavaria 429000 393000 395000 383000 357000 334000 

Macromoths Laspeyria flexula 324000 356000 392000 307000 343000 366000 

Macromoths Leucoma salicis 416000 426000 502000 370000 405000 470000 

Macromoths Ligdia adustata 329000 341000 373000 329000 325000 371000 

Macromoths Lithophane hepatica 257000 350000 590000 194000 329000 492000 

Macromoths Lithophane ornitopus 324000 361000 451000 304000 343000 430000 

Macromoths Lithophane semibrunnea 318000 369000 498000 289000 343000 449000 

Macromoths Lomographa bimaculata 350000 367000 506000 322000 356000 454000 

Macromoths Lygephila pastinum 361000 375000 438000 336000 332000 420000 

Macromoths Lymantria monacha 321000 323000 359000 299000 309000 338000 

Macromoths Macaria alternata 282000 302000 356000 282000 273000 294000 

Macromoths Macaria notata 607000 739000 804000 315000 414000 561000 

Macromoths Malacosoma neustria 371000 437000 416000 334000 405000 349000 

Macromoths Melanthia procellata 308000 305000 347000 283000 297000 329000 
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Macromoths Menophra abruptaria 404000 430000 470000 384000 400000 455000 

Macromoths Miltochrista miniata 327000 329000 337000 313000 307000 328000 

Macromoths Mimas tiliae 390000 432000 501000 373000 406000 461000 

Macromoths Mythimna pudorina 386000 357000 352000 324000 356000 342000 

Macromoths Mythimna straminea 375000 411000 475000 359000 384000 416000 

Macromoths Orthosia miniosa 283000 318000 353000 262000 300000 319000 

Macromoths Pachycnemia hippocastanaria 227000 146000 155000 225000 144000 149000 

Macromoths Paradarisa consonaria 309000 274000 335000 286000 245000 315000 

Macromoths Parascotia fuliginaria 229000 276000 329000 214000 253000 326000 

Macromoths Parectropis similaria 268000 304000 320000 263000 278000 309000 

Macromoths Perconia strigillaria 486000 373000 576000 259000 263000 337000 

Macromoths Peridea anceps 368000 407000 454000 351000 359000 423000 

Macromoths Philereme transversata 356000 344000 361000 350000 341000 354000 

Macromoths Philereme vetulata 313000 334000 342000 312000 313000 339000 

Macromoths Phytometra viridaria 613000 533000 590000 297000 303000 264000 

Macromoths Polymixis flavicincta 356000 348000 372000 342000 336000 341000 

Macromoths Polyploca ridens 307000 321000 337000 291000 299000 328000 

Macromoths Protodeltote pygarga 318000 342000 432000 302000 337000 400000 

Macromoths Pseudopanthera macularia 431000 581000 657000 326000 404000 396000 

Macromoths Pterapherapteryx sexalata 312000 359000 329000 295000 302000 321000 

Macromoths Ptilodon cucullina 300000 322000 330000 296000 316000 323000 

Macromoths Pyrrhia umbra 448000 487000 515000 403000 353000 432000 

Macromoths Rheumaptera cervinalis 272000 301000 346000 248000 280000 274000 

Macromoths Rheumaptera undulata 359000 454000 588000 351000 386000 550000 

Macromoths Rhodometra sacraria 382000 557000 539000 320000 364000 429000 

Macromoths Scopula imitaria 411000 424000 473000 366000 392000 426000 

Macromoths Scopula immutata 352000 392000 401000 341000 356000 365000 

Macromoths Scopula marginepunctata 303000 322000 431000 272000 283000 371000 

Macromoths Semiaspilates ochrearia 282000 290000 367000 223000 271000 305000 

Macromoths Shargacucullia verbasci 421000 417000 476000 400000 371000 452000 

Macromoths Smerinthus ocellata 444000 463000 457000 425000 421000 440000 

Macromoths Sphinx ligustri 368000 328000 355000 346000 323000 342000 

Macromoths Spodoptera exigua 278000 361000 487000 209000 318000 427000 

Macromoths Stauropus fagi 310000 326000 334000 290000 306000 318000 

Macromoths Tetheella fluctuosa 280000 322000 302000 233000 234000 249000 

Macromoths Thumatha senex 365000 446000 472000 357000 351000 347000 

Macromoths Triphosa dubitata 429000 395000 407000 374000 345000 372000 

Macromoths Watsonalla binaria 420000 456000 487000 400000 420000 463000 

Macromoths Watsonalla cultraria 305000 318000 417000 258000 297000 389000 

Macromoths Xanthia aurago 370000 400000 463000 333000 384000 420000 

Macromoths Xanthorhoe quadrifasiata 347000 402000 474000 324000 359000 443000 

Macromoths Zeuzera pyrina 358000 412000 445000 330000 384000 412000 

Macromoths Zygaena trifolii 338000 300000 294000 320000 265000 288000 

 



 
 

 

Table A2.9. Results of linear mixed effects models for the rate of range margin change between two intervals spanning 1966-2010 

(response variable is change in northern range margin in km per decade), for well-recorded and heavily-recorded hectads. Numbers in 

cells show differences in Akaike information criterion (ΔAIC) values between the best model (shown as 0.0) in each column and the 

other models.  Comparisons with all four taxonomic groups included (‘All groups’), models excluding each taxon in turn (columns 6-9), 

and models excluding both butterflies and macromoths (‘Without Lepidoptera’), all found that the best model was always the one that 

included an interval*group interaction term (these models also included group and interval as fixed effects). The numbers of species 

given in each column (in parentheses) are the numbers of species remaining in the analysis after the specified taxonomic group(s) had 

been excluded.  

M
o

d
el 

Recording 

effort Fixed effects 

Null 

model 

All 

groups 

(205) 

Without 

birds 

(174) 

Without 

butterflies 

(170) 

Without 

dragonflies* 

(198) 

Without 

macromoths 

(73) 

Without 

Lepidoptera 

(38) 

1 WR 1 64.6 NA NA NA NA NA NA 

2 WR Group NA 43.0 45.0 34.7 36.5 16.5 11.1 

3 WR Interval NA 41.2 20.8 32.2 28.1 28.1 15.5 

4 WR Interval + Group NA 19.6 10.4 15.0 14.0 12.0 6.6 

5 WR Interval + Group + Interval:Group NA 0.0 0.0 0.0 0.0 0.0 0.0 

  

        6 HR 1 60.2 NA NA NA NA NA NA 

7 HR Group NA 40.6 46.6 32.6 34.4 16.2 11.1 

8 HR Interval NA 37.3 19.6 28.3 25.4 26.2 14.3 

9 HR Interval + Group NA 17.8 9.3 13.6 12.5 11.6 6.6 

10 HR Interval + Group + Interval:Group NA 0.0 0.0 0.0 0.0 0.0 0.0 

1
6

2
 



 
 

 

Table A2.10. Results of ANCOVAs of seasonal and annual temperatures in each interval. Seasons are defined by three month bins: 

Winter (December, January, February); Spring (March, April, May); Summer (June, July, August); Autumn (September, October, 

November); annual as December year t-1 through to November year t. Intervals are as follows: Interval 1: 1966-1995, Interval 2: 1986-

2010, all years inclusive. There was no significant change in the rate of seasonal or annual temperature change between the two 

intervals, except for mean autumn temperature, which significantly increased between intervals.  

 

 

Response variable Multiple R2 F-statistic df Fixed effects Coefficient SE p value 

Mean annual temperature 0.23 5.29 3,52 Year            0.02 0.03 0.562 

    

Interval       -9.21 36.82 0.803 

    

Year:Interval   0.00 0.02 0.802 

Mean winter temperature 0.03 0.56 3,52 Year            0.05 0.06 0.427 

    

Interval        60.12 80.76 0.460 

    

Year:Interval   -0.03 0.04 0.462 

Mean spring temperature 0.41 12.05 3,52 Year            0.04 0.03 0.202 

    

Interval        0.02 40.82 1.000 

    

Year:Interval   0.00 0.02 0.999 

Mean summer temperature 0.07 1.37 3,52 Year            0.03 0.04 0.527 

    

Interval       8.85 57.25 0.878 

    

Year:Interval  0.00 0.03 0.877 

Mean autumn temperature  0.20 4.33 3,52 Year            -0.05 0.04 0.181 

    

Interval       -105.84 49.98 0.039 

    

Year:Interval     0.05 0.03 0.039 

1
6

3
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Figure A2.1. Comparison of mean rates of range margin change calculated for four 

taxonomic groups when the hectads selected for analysis are common to two time periods 

in a single interval or the subset of hectads common to intervals 1 and 2. 
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Figure A2.2. Comparison of mean rates of range margin change for common species in 

three taxonomic groups across two intervals (as in Figure 2.4). 
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Appendix Chapter 3 
 

Table A3.1. (see next page) Details of citizen-science recording schemes. Data were 

obtained on 02 June 2017 from the UK Biological Records Centre 

(https://www.brc.ac.uk/theme/datasets), and represent ad hoc point observations at or 

near breeding sites (but see Remarks). Recording level is the number of 10-km grid squares 

(out of a possible 2566 in the study area) where at least 10% or 25% of the regional species 

pool was sampled in both recording periods (1976-1990 and 2001-2015).



 

Taxonomic group Recording scheme name 
and affiliation 

National 
organiser(s) 

Remarks Number 
of species 

Recording level 

(10%)       (25%) 

 
Aquatic bugs Aquatic Heteroptera Recording Scheme (Aquatic 

Coleoptera Conservation Trust) 
Dr Garth Foster The Trust is a Registered Charity No. SCO37556 9 166 35 

 Bees Bees, Wasps and Ants Recording Scheme / Society Mr Mike Edwards Thanks to the committee and members of BWARS 
for permission to use their data 

48 164 39 

 Butterflies Butterflies for the New Millennium (Butterfly 
Conservation, BC) 

Mr Richard Fox Includes long-term monitoring transects. BC is a 
Registered Charity No. 254937 and No. SCO39268 

16 2157 1710 

 
Dragonflies and 
damselflies 

Dragonfly Recording Network (British Dragonfly 
Society) 

Mr David Hepper Registered charity (1168300) 9 1350 813 

 Grasshoppers and allies Grasshoppers and Related Insects Recording 
Scheme of Britain and Ireland 

Prof Peter Sutton 
Dr Björn Beckmann 

Both visual and acoustic identification 14 831 234 

 
Ground beetles Ground Beetle Recording Scheme Dr Mark Telfer –  11 182 23 

 
Hoverflies Hoverfly Recording Scheme (Dipterists Forum) Dr Roger Morris 

Dr Stuart Ball 
– 19 540 116 

 
Macromoths National Moth Recording Scheme (Butterfly 

Conservation, BC) 
Mr Richard Fox Includes use of light traps at night 132 1034 600 

 Non-marine molluscs Non-marine Mollusc Recording Scheme 
(Conchological Society of Great Britain and Ireland) 

Mr Adrian Norris The Society is a Registered Charity No. 208205 7 243 54 

 
Shieldbugs and allies Terrestrial Heteroptera Recording Scheme Dr Tristan Bantock – 6 134 17 

 Soldierflies and allies Soldierflies and Allies Recording Scheme (Dipterists 
Forum) 

Mr Martin Harvey Additional records obtained direct from recording 
scheme (28.06.2017) 

21 182 15 

 
Spiders Spider Recording Scheme (British Arachnological 

Society) 
Mr Peter Harvey The Society is a Registered Charity No. 260346 and 

No. SC044090 
38 242 38 

 
Wasps Bees, Wasps and Ants Recording Scheme / Society Mr Mike Edwards – 12 94 18 

 
Woodlice Non-marine Isopoda Recording Scheme (British 

Myriapod and Isopod Group) 
Mr Steve Gregory Includes ex situ identification using microscopes 5 617 112 

1
6

7
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Table A3.2. Descriptive statistics for species’ range shifts (km y-1), detailed by taxonomic 

group. Positive values indicate northward (poleward) expansion, negative values indicate 

southward retreat, measured over a 25-year period (1976-1990 to 2001-2015). Range shifts 

varied significantly between taxonomic groups (F13, 333 = 2.503, P = 0.003), with group 

explaining 9% of the variation in linear regression. 

 

 

 

 

 

 

 

 

 

 

Taxonomic group Median  Mean SD Min Max 

Aquatic bugs 1.64 2.03 2.58 -2.16 5.96 

Bees 1.10 1.67 2.47 -2.04 9.96 

Butterflies 1.84 1.80 1.90 -1.60 5.40 

Dragonflies and damselflies 1.04 3.71 4.01 0.04 10.36 

Grasshoppers and allies 2.04 2.31 2.62 -1.72 9.12 

Ground beetles 0.44 1.49 4.47 -2.76 14.12 

Hoverflies 0.20 -0.24 3.48 -7.88 6.68 

Macromoths 1.64 2.20 2.71 -4.32 13.08 

Non-marine molluscs 4.56 4.87 2.94 0.88 9.32 

Shieldbugs and allies 1.68 1.12 3.16 -4.68 4.08 

Soldierflies and allies 1.28 0.85 2.13 -4.48 4.00 

Spiders 1.82 1.57 1.97 -2.44 7.40 

Wasps 1.04 1.06 1.19 -1.04 2.68 

Woodlice 1.04 2.49 4.63 -1.56 10.48 

All groups 1.32 1.84 2.78 -7.88 14.12 
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Table A3.3. Descriptive statistics for species’ specialisation indices (SSIs), detailed by 

taxonomic group. Low values indicate a generalist, and high values indicate a high level of 

habitat specialisation. Specialisation varied significantly between taxonomic groups (F13, 333 = 

1.919, P = 0.027), with group explaining 7% of the variation in linear regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taxonomic group Median  Mean SD Min Max 

Aquatic bugs 1.44 1.35 0.42 0.76 2.02 

Bees 1.40 1.34 0.43 0.55 2.56 

Butterflies 1.44 1.25 0.56 0.36 2.23 

Dragonflies and damselflies 1.10 1.16 0.44 0.71 2.17 

Grasshoppers and allies 1.27 1.37 0.48 0.75 2.38 

Ground beetles 1.31 1.30 0.17 0.98 1.59 

Hoverflies 1.31 1.32 0.38 0.67 2.14 

Macromoths 1.18 1.28 0.52 0.44 2.89 

Non-marine molluscs 1.49 1.59 0.25 1.32 1.96 

Shieldbugs and allies 1.11 1.12 0.33 0.75 1.58 

Soldierflies and allies 1.39 1.42 0.24 1.04 1.95 

Spiders 1.40 1.45 0.36 0.85 2.43 

Wasps 1.39 1.49 0.50 0.91 2.72 

Woodlice 1.91 2.07 0.69 1.41 3.22 

All groups 1.31 1.34 0.46 0.36 3.22 
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Table A3.4. Descriptive statistics for habitat availability at the range margin (%), detailed by 

taxonomic group. Values in parentheses are on the log10 scale used in models of range shift. 

Log10-habitat availability varied significantly between taxonomic groups (F13, 333 = 4.443, P < 

10-6), with group explaining 15% of the variation. 

Taxonomic group Median Mean SD Min Max 

Aquatic bugs 7.1 (0.85) 11.9 (0.99) 8.3 (0.28) 4.6 (0.66) 26.8 (1.43) 

Bees 7.5 (0.88) 9.2 (0.90) 5.5 (0.23) 3.6 (0.56) 23.5 (1.37) 

Butterflies 7.5 (0.87) 12.8 (0.91) 13.7 (0.43) 1.3 (0.11) 55.7 (1.75) 

Dragonflies and damselflies 13.4 (1.13) 16.3 (1.12) 10.9 (0.33) 3.6 (0.56) 36.4 (1.56) 

Grasshoppers and allies 5.3 (0.71) 10.4 (0.81) 9.4 (0.47) 1.5 (0.17) 28.7 (1.46) 

Ground beetles 5.5 (0.74) 5.8 (0.74) 2.1 (0.14) 3.4 (0.53) 10.7 (1.03) 

Hoverflies 3.5 (0.54) 4.5 (0.58) 3.4 (0.26) 1.4 (0.14) 15.5 (1.19) 

Macromoths 7.8 (0.89) 9.5 (0.84) 7.1 (0.38) 0.4 (-0.41) 35.4 (1.55) 

Non-marine molluscs 8.1 (0.91) 11.2 (0.98) 6.8 (0.28) 4.6 (0.66) 21.6 (1.33) 

Shieldbugs and allies 12.6 (1.02) 14.0 (1.03) 10.2 (0.37) 4.3 (0.64) 26.4 (1.42) 

Soldierflies and allies 4.6 (0.67) 6.0 (0.72) 3.3 (0.22) 2.3 (0.35) 15.5 (1.19) 

Spiders 3.6 (0.55) 4.6 (0.56) 3.5 (0.30) 1.1 (0.04) 15.4 (1.19) 

Wasps 7.2 (0.86) 8.7 (0.85) 6.1 (0.29) 2.5 (0.40) 22.3 (1.35) 

Woodlice 3.4 (0.53) 3.6 (0.52) 1.6 (0.19) 1.9 (0.28) 5.9 (0.77) 

All groups 6.2 (0.79) 8.7 (0.81) 7.3 (0.35) 0.4 (-0.41) 55.7 (1.75) 
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Table A3.5. Descriptive statistics for habitat availability at the range margin, as a 

percentage of the range-wide average, detailed by taxonomic group. Low values indicate 

habitat-poor margins relative to the average across a species’ range; high values indicate 

habitat-rich margins. This variable did not vary significantly between taxonomic groups (F13, 

333 = 0.859, P = 0.598), with group explaining 3% of the variation. 

 

 

 

 

 

 

 

 

 

 

Taxonomic group Median  Mean SD Min Max 

Aquatic bugs 100.7 100.9 3.7 95.1 107.1 

Bees 100.4 99.9 6.2 79.8 121.4 

Butterflies 95.4 97.1 21.5 76.1 171.4 

Dragonflies and damselflies 102.4 99.5 6.2 86.5 106.1 

Grasshoppers and allies 96.9 99.1 11.2 76.3 122.0 

Ground beetles 102 102.5 4.7 96.6 109.6 

Hoverflies 98.1 100.3 12.5 85.8 146.2 

Macromoths 97.6 97.7 8.6 75.6 141.9 

Non-marine molluscs 96.2 98.0 4.6 94.1 106.1 

Shieldbugs and allies 101.6 101.7 2.2 98.7 104.4 

Soldierflies and allies 99.9 102.1 8.5 90.8 125.9 

Spiders 98.6 97.7 6.6 84.8 110.3 

Wasps 100.0 99.4 5.0 89.6 107.6 

Woodlice 93.8 94.9 6.4 88.0 102.6 

All groups 98.8 98.8 9 75.6 171.4 

Random effects (var.) Fixed effects (coefficients, mean over groups)    
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Table A3.6. Linear mixed-effects models of range shift (km y-1) vs. habitat specialisation 

(SSI), log10-habitat availability at the range margin (HA), and margin habitat relative to the 

range-wide average for a species (HR). We fitted models using the R function ‘lmer’ via 

maximum likelihood, with all predictors centred and scaled. The grouping variable for 

random effects was taxonomic group. For each set of fixed effects, we tested models with a 

random intercept only, and models with both random slope and intercept terms (with 

either uncorrelated (||) or correlated (|) random effects). In each case, coloured text 

identifies the top model (lowest conditional AIC), as reported in the main text and applied 

to the subsets of groups in Figure 3.3. 

Table A3.7. R packages used in the analysis (in addition to base R). 

Interc. Slope Resid. Interc. SSI HA HR HA:HR R
2
 [m, c] AIC cAIC 

Specialisation model (N = 352 species) 

0.65 – 6.95 1.85
***

 -0.60
***

 – – – 0.04, 0.13 1679 1663 

0.65 || 0.00 || 6.95 1.85
***

 -0.60
***

 – – – 0.04, 0.13 1681 1665 

0.78 | 0.10 | 6.88 1.88
***

 -0.58
*
 – – – 0.04, 0.15 1682 1665 

           

Habitat availability model (N = 352 species) 

0.21 – 6.28 1.78
***

 – 1.07
***

 – – 0.15, 0.17 1643 1632 

0.09 || 0.27 || 6.29 1.77
***

 – 1.15
**

 – – 0.17, 0.21 1644 1628 

0.12 | 0.20 | 6.31 1.78
***

 – 1.20
**

 – – 0.18, 0.22 1645 1633 

           

Habitat interaction model (N = 352 species) 

0.33 – 6.14 1.71
***

 – 1.10
***

 0.26 0.44
**

 0.17, 0.21 1636 1624 

0.33 || 0.00 || 6.14 1.71
***

 – 1.10
***

 0.26 0.44
***

 0.17, 0.21 1638 1626 

0.24 | 0.05 | 6.14 1.72
***

 – 1.18
***

 0.24 0.42
**

 0.19, 0.23 1639 1628 

Fig. 3, A-C: Four groups with high levels of recording (N = 58 species) 

1.20 – 8.74 1.76 -0.61 – – – 0.04, 0.15 303 296 

0.00 || 1.29 || 6.16 1.67
***

 – 1.95
*
 – – 0.34, 0.45 285 277 

0.07 – 6.52 1.35
*
 – 1.91

***
 0.16 1.33

*
 0.36, 0.37 286 282 

           

Fig. 3, E-G: Macromoths only (N = 132 species, no group effects) 

– – – 2.20
***

 -0.62
**

 – – – 0.05,   – 636   – 

– – – 2.20
***

 – 1.07
***

 – – 0.16,   – 620   – 

– – – 2.22
***

 – 1.08
***

 0.41 0.41
*
 0.19,   – 619   – 

           

Fig. 3, I-K: Nine groups with low levels of recording (N = 157 species) 

0.52 – 6.27 1.79
*
 -0.57

**
 – – – 0.05, 0.12 749 737 

0.19 || 0.00 || 6.19 1.68
*
 – 0.77

***
 – – 0.08, 0.11 745 737 

0.27 – 6.10 1.65
*
 – 0.80

***
 0.19 0.28 0.09, 0.13 746 737 

***, P < 0.001; **, P < 0.01; *, P < 0.05 (t-tests using Satterthwaite approximation) 
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R package Application Author(s) 

raster Manipulation of species, climate 

and land cover data 

Robert J. Hijmans 

rgeos Spatial buffers around species data Roger Bivand and Colin Rundel 

mgcv Fitting phenology curves using 

penalized regression splines 

Simon N. Wood 

lme4 Fitting linear mixed-effects models Douglas Bates, Martin Maechler, Ben 

Bolker and Steve Walker 

lmerTest t-tests in linear mixed-effects 

models 

Alexandra Kuznetsova, Per Bruun 

Brockhoff and Rune Haubo Bojesen 

Christensen 

MuMIn Marginal and conditional R2 Kamil Barton 

cAIC4 Corrected conditional AIC (using 

conditional bootstrap) 

Benjamin Saefken and David 

Ruegamer, with contributions from 

Sonja Greven and Thomas Kneib 

doParallel Parallel processing Revolution Analytics and Steve Weston 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Group Species 
Range shift 
(km per y) 

Specialisation  
index 

Habitat availability at 
margin (%) 

 Margin vs range-
wide habitat (%) 

Aquatic bugs Corixa panzeri 1.64 1.62 6.29 99.81 
Aquatic bugs Cymatia coleoptrata -0.16 1.45 7.10 107.06 
Aquatic bugs Ilyocoris cimicoides 3.36 0.76 26.78 95.12 
Aquatic bugs Microvelia reticulata 2 0.95 20.30 100.82 
Aquatic bugs Notonecta maculata 0.72 1.44 5.68 100.66 
Aquatic bugs Notonecta viridis 5.96 1.73 8.87 106.07 
Aquatic bugs Plea minutissima 1.44 0.85 20.29 98.58 
Aquatic bugs Ranatra linearis 5.44 1.33 6.76 100.69 
Aquatic bugs Sigara stagnalis -2.16 2.02 4.58 99.19 
Bees Andrena bicolor 5.92 0.80 18.18 95.53 
Bees Andrena denticulata 6 1.89 5.32 83.14 
Bees Andrena dorsata 1.36 0.80 21.42 100.59 
Bees Andrena flavipes 2.44 0.72 22.78 99.56 
Bees Andrena helvola -1.48 1.56 5.24 103.40 
Bees Andrena labialis 0.04 2.14 7.56 91.57 
Bees Andrena minutula 3.12 0.69 16.11 103.73 
Bees Andrena nigroaenea 0.28 0.81 19.93 97.94 
Bees Andrena ovatula 3.24 1.67 3.91 79.85 
Bees Andrena praecox 2.76 1.25 10.35 100.07 
Bees Andrena thoracica -0.24 1.83 4.48 110.67 
Bees Andrena trimmerana 0 1.80 4.22 101.91 
Bees Anthidium manicatum 7.6 1.42 6.55 121.36 
Bees Anthophora bimaculata 1.32 1.34 8.45 99.51 
Bees Anthophora furcata -0.2 1.14 4.08 95.59 
Bees Chelostoma campanularum 0.32 1.69 8.09 104.68 
Bees Colletes daviesanus -1.36 1.61 6.54 91.29 
Bees Colletes fodiens -2.04 1.46 5.52 102.83 
Bees Colletes similis -0.52 1.74 3.59 102.45 
Bees Epeolus cruciger 1.08 1.46 6.05 102.68 

Table A3.8 Study results summarised for 347 species: range shifts, specialisation index scores, habitat availability at the margin and at the margin vs across 

the whole range. Range shifts in the polewards range margin are given in km per year. The specialisation index is the coefficient of variation across 18 

habitat classes. Habitat availability at the margin is the mean species’ probability of occurrence in a 50km buffer around the margin. Margin vs range-wide 

habitat availability is the division of margin habitat availability by the range-wide habitat availability.  
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Bees Anthophora furcata -0.2 1.14 4.08 95.59 
Bees Chelostoma campanularum 0.32 1.69 8.09 104.68 
Bees Colletes daviesanus -1.36 1.61 6.54 91.29 
Bees Colletes fodiens -2.04 1.46 5.52 102.83 
Bees Colletes similis -0.52 1.74 3.59 102.45 
Bees Epeolus cruciger 1.08 1.46 6.05 102.68 
Bees Epeolus variegatus 1.12 1.15 5.72 100.30 
Bees Halictus tumulorum 2.96 0.76 17.08 98.43 
Bees Hoplitis claviventris 0.28 1.45 4.63 102.04 
Bees Hylaeus brevicornis -2.04 1.16 6.61 100.54 
Bees Hylaeus communis 0.64 0.91 16.01 94.56 
Bees Hylaeus confusus 0.6 1.42 4.25 94.27 
Bees Hylaeus hyalinatus 1.96 0.95 8.36 103.61 
Bees Hylaeus signatus 0.64 1.88 4.63 107.79 
Bees Lasioglossum laevigatum 0.32 1.47 4.73 98.21 
Bees Lasioglossum leucozonium 2.6 0.55 14.50 98.62 
Bees Lasioglossum minutissimum 2.08 1.28 8.70 99.48 
Bees Lasioglossum morio 2.32 0.82 17.53 99.71 
Bees Lasioglossum parvulum 3 1.54 8.74 98.71 
Bees Lasioglossum punctatissimum 0.2 1.48 5.93 97.29 
Bees Lasioglossum smeathmanellum 1.32 1.17 7.54 100.60 
Bees Megachile centuncularis -0.28 1.71 5.82 100.55 
Bees Megachile ligniseca 4.2 1.69 6.28 105.46 
Bees Melitta tricincta -0.04 2.56 7.82 93.86 
Bees Nomada flava 9.96 0.94 23.49 102.27 
Bees Nomada fucata 1.12 1.00 10.00 97.62 
Bees Osmia aurulenta 0.04 1.96 4.62 102.10 
Bees Osmia leaiana 0.64 1.26 5.30 101.39 
Bees Panurgus calcaratus -0.4 1.39 7.80 102.55 
Bees Sphecodes crassus 4.8 1.43 7.99 99.91 
Bees Sphecodes ephippius 5.2 0.78 14.23 103.32 
Bees Sphecodes monilicornis 4.36 1.19 9.74 101.67 
Bees Sphecodes pellucidus -0.08 1.40 4.66 98.79 
Bees Sphecodes puncticeps 3 1.10 8.55 101.13 
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Butterflies Apatura iris 1.84 1.52 2.70 88.79 
Butterflies Aricia agestis 3.76 0.84 12.50 97.16 
Butterflies Celastrina argiolus 5.4 0.56 17.97 82.54 
Butterflies Gonepteryx rhamni 2.68 0.62 24.18 90.40 
Butterflies Hamearis lucina -1.6 1.71 3.27 85.56 
Butterflies Hesperia comma -0.08 1.59 6.08 101.87 
Butterflies Leptidea sinapis 3.08 2.23 1.28 76.11 
Butterflies Limenitis camilla 1.84 1.50 5.05 81.66 
Butterflies Melanargia galathea 3.4 0.69 24.67 99.24 
Butterflies Plebejus argus -0.04 1.59 6.38 171.40 
Butterflies Polyommatus bellargus 0.84 1.82 7.06 102.76 
Butterflies Polyommatus coridon 3.2 1.37 7.88 96.84 
Butterflies Pyrgus malvae -0.36 1.05 9.58 95.14 
Butterflies Pyronia tithonus 0.8 0.36 55.70 95.63 
Butterflies Satyrium pruni 0.48 1.91 2.41 85.24 
Butterflies Thymelicus lineola 3.64 0.72 17.77 104.01 
Dragonflies* Aeshna mixta 6.32 0.76 36.43 102.44 
Dragonflies* Anax imperator 10.4 0.71 28.69 102.65 
Dragonflies* Brachytron pratense 0.6 1.28 8.66 86.50 
Dragonflies* Erythromma najas 1.04 1.20 10.44 100.72 
Dragonflies* Gomphus vulgatissimus 0.16 1.37 5.97 94.73 
Dragonflies* Libellula fulva 0.04 2.17 3.60 95.53 
Dragonflies* Orthetrum cancellatum 8.12 0.93 19.64 106.14 
Dragonflies* Platycnemis pennipes 0.64 1.10 13.37 103.51 
Dragonflies* Sympetrum sanguineum 6.08 0.89 20.36 103.68 
Grasshoppers* Chorthippus albomarginatus 1.24 1.15 16.25 114.94 
Grasshoppers* Conocephalus discolor 9.12 0.98 21.44 102.50 
Grasshoppers* Conocephalus dorsalis 4.52 1.53 4.03 95.89 
Grasshoppers* Labia minor -1.72 1.44 1.72 109.75 
Grasshoppers* Leptophyes punctatissima 2.96 0.82 22.43 99.45 
Grasshoppers* Meconema thalassinum 1.4 1.27 13.85 92.02 
Grasshoppers* Metrioptera brachyptera 1.88 2.06 2.84 121.98 
Grasshoppers* Metrioptera roeselii 3.48 0.87 28.68 97.62 
Grasshoppers* Omocestus rufipes 0.2 1.55 1.68 102.45 
Grasshoppers* Pholidoptera griseoaptera -0.88 0.75 18.25 91.14 
Grasshoppers* Platycleis albopunctata 2.2 2.38 3.90 92.78 
Grasshoppers* Stenobothrus lineatus 2.68 1.84 1.47 76.31 
Grasshoppers* Tetrix subulata 3.8 1.27 6.56 96.10 
Grasshoppers* Tettigonia viridissima 1.4 1.27 2.98 94.31 
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Grasshoppers* Pholidoptera griseoaptera -0.88 0.75 18.25 91.14 
Grasshoppers* Platycleis albopunctata 2.2 2.38 3.90 92.78 
Grasshoppers* Stenobothrus lineatus 2.68 1.84 1.47 76.31 
Grasshoppers* Tetrix subulata 3.8 1.27 6.56 96.10 
Grasshoppers* Tettigonia viridissima 1.4 1.27 2.98 94.31 
Ground beetles Bembidion articulatum 2.64 1.31 5.02 105.45 
Ground beetles Bembidion assimile 1.04 1.36 5.51 109.63 
Ground beetles Bembidion illigeri -1.84 1.23 3.40 96.56 
Ground beetles Bembidion varium 0 1.59 3.64 106.54 
Ground beetles Demetrias atricapillus 0.12 1.21 10.67 109.17 
Ground beetles Leistus spinibarbis 0.88 1.17 5.98 103.34 
Ground beetles Ophonus rufibarbis -0.36 1.44 5.83 100.06 
Ground beetles Poecilus cupreus 2.08 1.26 8.36 98.12 
Ground beetles Pterostichus nigrita 14.1 0.98 5.51 101.97 
Ground beetles Stenolophus mixtus 0.44 1.31 4.90 100.04 
Ground beetles Syntomus foveatus -2.76 1.48 4.81 96.75 
Hoverflies Cheilosia soror 1.04 1.53 3.50 99.03 
Hoverflies Cheilosia vulpina -2.04 1.21 2.28 97.64 
Hoverflies Chrysotoxum cautum -0.28 1.32 5.45 99.01 
Hoverflies Chrysotoxum festivum 1.32 0.76 5.85 100.36 
Hoverflies Chrysotoxum verralli 0.16 1.60 3.85 93.96 
Hoverflies Epistrophe nitidicollis 0.32 1.25 1.40 96.01 
Hoverflies Eumerus ornatus 0.2 1.97 1.63 98.10 
Hoverflies Eumerus strigatus -3.32 1.01 2.77 99.53 
Hoverflies Paragus haemorrhous 0 0.81 5.12 107.44 
Hoverflies Parhelophilus frutetorum -1.24 1.12 2.81 102.82 
Hoverflies Parhelophilus versicolor -3.36 1.39 3.12 96.79 
Hoverflies Pipizella virens 0.64 1.25 2.64 104.12 
Hoverflies Platycheirus ambiguus -7.88 1.31 2.62 86.71 
Hoverflies Sphaerophoria taeniata -6.76 1.47 3.58 93.90 
Hoverflies Tropidia scita 2.16 1.23 4.42 93.72 
Hoverflies Volucella inanis 6.68 1.39 15.51 107.85 
Hoverflies Volucella inflata 2.44 1.66 2.71 85.78 
Hoverflies Volucella zonaria 5 2.14 9.95 146.24 
Hoverflies Xanthogramma pedissequum 0.36 0.67 7.10 97.58 
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Hoverflies Xanthogramma pedissequum 0.36 0.67 7.10 97.58 
Macromoths Acronicta aceris 2.44 0.80 14.25 99.47 
Macromoths Acronicta tridens 1.44 1.52 3.22 91.67 
Macromoths Agrotis cinerea -0.08 2.12 1.43 98.74 
Macromoths Agrotis puta 6.2 0.66 16.85 84.19 
Macromoths Agrotis ripae 0.68 2.27 2.20 110.76 
Macromoths Agrotis trux 1.12 1.78 2.94 94.51 
Macromoths Amphipyra pyramidea 9.76 0.64 24.61 98.87 
Macromoths Angerona prunaria 0.16 1.82 2.15 95.87 
Macromoths Apamea anceps 0.8 0.89 13.13 102.64 
Macromoths Apamea oblonga 1 2.07 2.33 101.19 
Macromoths Apamea sublustris 2.08 1.70 5.31 99.77 
Macromoths Apoda limacodes 1.68 1.11 5.06 95.42 
Macromoths Aporophyla australis 3.4 1.50 7.84 102.40 
Macromoths Archanara dissoluta 1.32 1.33 4.58 105.80 
Macromoths Arctia villica 1.8 1.11 8.97 107.73 
Macromoths Arenostola phragmitidis 1.68 1.54 7.93 93.70 
Macromoths Aspitates ochrearia 2.64 1.17 7.22 101.66 
Macromoths Bembecia ichneumoniformis 2.8 2.05 2.67 113.08 
Macromoths Bena bicolorana 5.04 0.92 10.28 100.91 
Macromoths Boudinotiana notha 0.08 2.47 0.92 83.24 
Macromoths Catarhoe cuculata -1.32 1.34 3.26 91.76 
Macromoths Catarhoe rubidata 1.24 1.32 4.00 101.20 
Macromoths Catocala nupta 4.16 0.83 22.20 92.09 
Macromoths Cepphis advenaria 1.16 1.91 2.05 91.81 
Macromoths Chilodes maritima 2.92 1.71 3.11 104.44 
Macromoths Chlorissa viridata -2.08 2.41 0.39 97.77 
Macromoths Clostera curtula 0.24 0.78 16.17 91.79 
Macromoths Coenobia rufa 2.96 0.89 9.70 104.57 
Macromoths Comibaena bajularia -0.44 1.10 6.93 92.06 
Macromoths Conistra rubiginea 3.8 1.10 21.92 97.90 
Macromoths Cosmia affinis -0.8 1.27 4.09 91.56 
Macromoths Cosmia diffinis -0.28 2.50 5.03 116.73 
Macromoths Cosmia pyralina -0.2 1.26 10.43 96.07 
Macromoths Cucullia absinthii -0.4 2.49 2.06 93.68 
Macromoths Cucullia asteris 1.08 1.46 3.33 107.96 
Macromoths Cyclophora annularia 0.76 1.65 3.87 95.15 
Macromoths Cyclophora linearia 3 1.37 4.10 93.41 

 

Hoverflies Xanthogramma pedissequum 0.36 0.67 7.10 97.58 
Macromoths Acronicta aceris 2.44 0.80 14.25 99.47 
Macromoths Acronicta tridens 1.44 1.52 3.22 91.67 
Macromoths Agrotis cinerea -0.08 2.12 1.43 98.74 
Macromoths Agrotis puta 6.2 0.66 16.85 84.19 
Macromoths Agrotis ripae 0.68 2.27 2.20 110.76 
Macromoths Agrotis trux 1.12 1.78 2.94 94.51 
Macromoths Amphipyra pyramidea 9.76 0.64 24.61 98.87 
Macromoths Angerona prunaria 0.16 1.82 2.15 95.87 
Macromoths Apamea anceps 0.8 0.89 13.13 102.64 
Macromoths Apamea oblonga 1 2.07 2.33 101.19 
Macromoths Apamea sublustris 2.08 1.70 5.31 99.77 
Macromoths Apoda limacodes 1.68 1.11 5.06 95.42 
Macromoths Aporophyla australis 3.4 1.50 7.84 102.40 
Macromoths Archanara dissoluta 1.32 1.33 4.58 105.80 
Macromoths Arctia villica 1.8 1.11 8.97 107.73 
Macromoths Arenostola phragmitidis 1.68 1.54 7.93 93.70 
Macromoths Aspitates ochrearia 2.64 1.17 7.22 101.66 
Macromoths Bembecia ichneumoniformis 2.8 2.05 2.67 113.08 
Macromoths Bena bicolorana 5.04 0.92 10.28 100.91 
Macromoths Boudinotiana notha 0.08 2.47 0.92 83.24 
Macromoths Catarhoe cuculata -1.32 1.34 3.26 91.76 
Macromoths Catarhoe rubidata 1.24 1.32 4.00 101.20 
Macromoths Catocala nupta 4.16 0.83 22.20 92.09 
Macromoths Cepphis advenaria 1.16 1.91 2.05 91.81 
Macromoths Chilodes maritima 2.92 1.71 3.11 104.44 
Macromoths Chlorissa viridata -2.08 2.41 0.39 97.77 
Macromoths Clostera curtula 0.24 0.78 16.17 91.79 
Macromoths Coenobia rufa 2.96 0.89 9.70 104.57 
Macromoths Comibaena bajularia -0.44 1.10 6.93 92.06 
Macromoths Conistra rubiginea 3.8 1.10 21.92 97.90 
Macromoths Cosmia affinis -0.8 1.27 4.09 91.56 
Macromoths Cosmia diffinis -0.28 2.50 5.03 116.73 
Macromoths Cosmia pyralina -0.2 1.26 10.43 96.07 
Macromoths Cucullia absinthii -0.4 2.49 2.06 93.68 
Macromoths Cucullia asteris 1.08 1.46 3.33 107.96 
Macromoths Cyclophora annularia 0.76 1.65 3.87 95.15 
Macromoths Cyclophora linearia 3 1.37 4.10 93.41 



 
 

 

 

Macromoths Cucullia absinthii -0.4 2.49 2.06 93.68 
Macromoths Cucullia asteris 1.08 1.46 3.33 107.96 
Macromoths Cyclophora annularia 0.76 1.65 3.87 95.15 
Macromoths Cyclophora linearia 3 1.37 4.10 93.41 
Macromoths Cyclophora punctaria 3.24 0.85 12.45 99.60 
Macromoths Deltote pygarga 5.8 0.75 12.14 95.93 
Macromoths Dypterygia scabriuscula 1.92 0.80 9.59 102.57 
Macromoths Earias clorana 4.56 1.23 7.98 109.28 
Macromoths Eilema caniola 3.32 1.58 5.62 90.72 
Macromoths Eilema complana 2.24 0.44 22.35 97.61 
Macromoths Eilema depressa 13.1 0.87 14.98 92.39 
Macromoths Eilema griseola 6.12 0.58 32.10 102.86 
Macromoths Eilema sororcula 8.24 0.91 14.95 102.20 
Macromoths Elaphria venustula 2.36 1.34 3.09 100.77 
Macromoths Ennomos autumnaria 1.04 1.72 11.84 106.63 
Macromoths Ennomos quercinaria 0.96 0.97 7.78 75.59 
Macromoths Eremobia ochroleuca 2.08 0.81 23.65 93.34 
Macromoths Eriogaster lanestris 3.36 1.62 11.44 102.36 
Macromoths Euphyia biangulata 1.96 1.37 4.59 103.41 
Macromoths Euphyia unangulata 0.56 0.83 4.68 96.85 
Macromoths Eupithecia haworthiata 2.44 0.82 5.30 91.43 
Macromoths Eupithecia inturbata 0.68 1.19 6.25 88.03 
Macromoths Eupithecia millefoliata 4.68 1.93 4.36 110.35 
Macromoths Eupithecia simpliciata 2.76 1.21 7.81 98.96 
Macromoths Eupithecia subumbrata 3.44 0.98 2.86 78.66 
Macromoths Euplagia quadripunctaria 6.24 1.33 32.22 99.88 
Macromoths Euproctis chrysorrhoea 2.88 0.85 17.97 101.16 
Macromoths Gastropacha quercifolia -4.32 1.11 4.30 107.72 
Macromoths Globia sparganii 4.6 1.45 6.33 103.78 
Macromoths Hemaris fuciformis 1.6 1.58 1.16 99.28 
Macromoths Hemistola chrysoprasaria 1.64 0.83 14.77 98.78 
Macromoths Hemithea aestivaria 0.24 0.73 20.38 86.95 
Macromoths Horisme tersata 0.52 0.99 7.82 104.89 
Macromoths Horisme vitalbata 1.44 0.91 12.44 104.19 
Macromoths Hypena rostralis 3.96 2.04 9.29 111.51 
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Macromoths Hypena rostralis 3.96 2.04 9.29 111.51 
Macromoths Hypomecis punctinalis -1.32 0.84 9.20 88.30 
Macromoths Hypomecis roboraria -0.64 1.63 3.13 91.53 
Macromoths Idaea emarginata -0.32 0.73 10.46 100.68 
Macromoths Idaea fuscovenosa 0.16 0.78 13.85 102.28 
Macromoths Idaea muricata -0.48 1.41 0.87 141.95 
Macromoths Idaea rusticata 6.96 1.07 14.41 112.38 
Macromoths Idaea subsericeata 1.12 1.05 5.60 98.70 
Macromoths Idaea sylvestraria -2.52 2.07 1.37 99.48 
Macromoths Idaea trigeminata 0.8 1.17 14.39 103.94 
Macromoths Lacanobia suasa 2.88 1.77 4.00 90.54 
Macromoths Lacanobia w-latinum 0.32 0.72 11.71 96.20 
Macromoths Larentia clavaria -1.8 1.12 18.45 91.34 
Macromoths Laspeyria flexula 5.16 0.90 17.21 104.96 
Macromoths Lenisa geminipuncta 7.52 0.86 8.29 125.14 
Macromoths Leucania obsoleta 2.88 1.33 3.68 111.15 
Macromoths Leucoma salicis 1.04 1.07 9.23 80.70 
Macromoths Ligdia adustata 1.08 1.06 9.07 86.71 
Macromoths Lithophane ornitopus 5.76 0.91 35.39 100.21 
Macromoths Lithophane semibrunnea 6.04 1.34 13.34 93.57 
Macromoths Lomographa bimaculata 5.04 1.05 10.72 91.02 
Macromoths Lygephila pastinum 3.04 0.86 12.58 106.15 
Macromoths Lymantria monacha 2.92 0.73 18.78 96.83 
Macromoths Macaria alternata 7.24 0.66 10.07 97.97 
Macromoths Macrochilo cribrumalis 0.88 1.61 6.53 98.13 
Macromoths Malacosoma neustria -0.56 0.66 15.10 97.44 
Macromoths Meganola albula 6.36 1.24 10.63 101.43 
Macromoths Meganola strigula -1.32 2.89 0.54 96.59 
Macromoths Melanthia procellata 2.88 1.10 4.55 94.02 
Macromoths Miltochrista miniata 1.16 0.67 17.81 97.30 
Macromoths Mimas tiliae 3.96 0.83 17.61 96.84 
Macromoths Minoa murinata -0.6 2.46 1.79 89.29 
Macromoths Mythimna favicolor 0.72 1.99 2.78 102.83 
Macromoths Mythimna l-album 6.76 1.19 13.97 94.35 
Macromoths Mythimna pudorina 4.32 1.47 5.94 97.56 
Macromoths Mythimna straminea 3.96 1.45 6.86 103.05 
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Macromoths Mythimna pudorina 4.32 1.47 5.94 97.56 
Macromoths Mythimna straminea 3.96 1.45 6.86 103.05 
Macromoths Nyctobrya muralis 2.52 1.28 11.39 98.03 
Macromoths Pachycnemia hippocastanaria -2.96 1.32 3.83 110.34 
Macromoths Paradarisa consonaria 7.52 1.63 3.50 94.25 
Macromoths Parascotia fuliginaria 4.24 1.26 6.81 97.09 
Macromoths Parectropis similaria 1.2 1.45 3.26 84.68 
Macromoths Pechipogo strigilata 0 2.77 1.06 85.43 
Macromoths Philereme transversata 1.32 1.19 7.89 86.68 
Macromoths Philereme vetulata 0.4 1.30 5.42 88.99 
Macromoths Photedes fluxa 0.44 1.90 4.58 96.75 
Macromoths Polymixis flavicincta 1.08 1.07 18.58 93.23 
Macromoths Polyploca ridens 2.48 1.17 18.55 97.58 
Macromoths Ptilodon cucullina 0.52 0.90 8.79 96.37 
Macromoths Schrankia taenialis 1.16 1.72 1.53 97.55 
Macromoths Scopula emutaria 0.6 1.78 2.79 97.74 
Macromoths Scopula imitaria 0.92 0.67 15.62 94.66 
Macromoths Scopula marginepunctata 0.56 1.15 5.47 90.02 
Macromoths Sesia apiformis 1.72 1.75 1.98 106.32 
Macromoths Simyra albovenosa 0.56 1.88 5.32 104.99 
Macromoths Sphinx ligustri 2.68 0.71 18.35 104.25 
Macromoths Sphinx pinastri 4.8 0.88 11.24 98.26 
Macromoths Spilosoma urticae 2 1.92 2.88 102.08 
Macromoths Stauropus fagi 0.36 0.88 10.52 90.35 
Macromoths Synanthedon myopaeformis 1.56 2.31 2.12 98.15 
Macromoths Synanthedon vespiformis 1 1.82 0.32 83.79 
Macromoths Thumatha senex 1.4 1.21 6.65 95.26 
Macromoths Tiliacea aurago 0.8 1.00 29.74 87.79 
Macromoths Timandra comae 1.64 0.66 17.62 86.33 
Macromoths Trichoplusia ni 4.4 1.57 6.47 110.96 
Macromoths Trichopteryx polycommata 10.7 2.78 2.57 80.30 
Macromoths Watsonalla binaria 1.8 0.70 16.65 89.03 
Macromoths Watsonalla cultraria 3.44 1.06 5.04 95.86 
Macromoths Xanthorhoe quadrifasiata 4.76 0.66 12.33 99.65 
Macromoths Zeuzera pyrina 1.64 0.68 13.50 95.96 
Macromoths Zygaena trifolii -2.04 1.42 3.51 93.79 
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Soldierflies* Tabanus autumnalis 2.64 1.48 4.10 100.49 
Soldierflies* Tabanus bromius 1.16 1.30 4.65 100.93 
Spiders Achaearanea lunata 1.8 1.96 1.79 87.90 
Spiders Agalenatea redii 3.56 1.10 5.30 99.31 
Spiders Agelena labyrinthica 2.4 0.90 9.56 105.07 
Spiders Agroeca brunnea -2.44 1.92 1.52 91.13 
Spiders Anelosimus vittatus 7.4 1.15 9.09 104.46 
Spiders Clubiona corticalis -1.12 1.56 1.94 89.89 
Spiders Clubiona pallidula 2.44 1.43 2.87 99.41 
Spiders Clubiona subtilis -1.4 1.25 2.39 110.25 
Spiders Crustulina guttata -0.24 1.59 1.09 102.91 
Spiders Diaea dorsata 2.16 1.78 1.72 87.00 
Spiders Dictyna latens 0.8 1.36 4.52 99.72 
Spiders Dictyna uncinata -0.28 1.02 13.41 98.49 
Spiders Enoplognatha latimana 4.48 1.31 11.90 103.85 
Spiders Enoplognatha thoracica 2.2 1.24 2.96 84.85 
Spiders Gibbaranea gibbosa 0.76 1.45 2.11 95.75 
Spiders Hylyphantes graminicola 2.52 0.99 2.89 101.66 
Spiders Larinioides sclopetarius 2.8 2.43 1.66 108.90 
Spiders Lathys humilis -0.48 1.51 3.07 89.39 
Spiders Mangora acalypha 0.44 1.84 2.23 96.30 
Spiders Microlinyphia impigra 1.84 2.15 1.87 104.35 
Spiders Misumena vatia 0.32 1.27 4.56 100.57 
Spiders Neoscona adianta 0.56 1.04 8.21 102.77 
Spiders Ozyptila praticola 3.72 1.53 4.27 103.92 
Spiders Ozyptila simplex 0 1.42 4.23 101.55 
Spiders Pardosa prativaga -0.52 0.91 15.38 94.81 
Spiders Philodromus albidus 2.2 1.65 6.76 98.49 
Spiders Philodromus dispar 2.76 1.24 5.85 94.35 
Spiders Philodromus praedatus 1.96 1.73 3.41 85.18 
Spiders Phrurolithus festivus 3.24 1.28 3.78 98.67 
Spiders Pocadicnemis juncea 3.72 0.85 8.20 107.42 
Spiders Porrhomma microphthalmum 1.68 1.26 4.55 100.38 
Spiders Simitidion simile 1.2 1.57 1.87 89.52 
Spiders Tegenaria silvestris 5.08 1.63 1.39 96.94 
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Macromoths Zeuzera pyrina 1.64 0.68 13.50 95.96 
Macromoths Zygaena trifolii -2.04 1.42 3.51 93.79 
Non-marine molluscs Acroloxus lacustris 9.32 1.49 6.90 106.11 
Non-marine molluscs Anisus leucostoma 4.56 1.96 4.64 102.77 
Non-marine molluscs Anisus vortex 4.56 1.35 16.20 94.10 
Non-marine molluscs Bithynia tentaculata 7.76 1.48 16.28 96.23 
Non-marine molluscs Planorbis planorbis 2.12 1.32 21.62 97.08 
Non-marine molluscs Pomatias elegans 0.88 1.64 4.59 95.23 
Non-marine molluscs Valvata cristata 4.88 1.85 8.07 94.83 
Shieldbugs* Coreus marginatus 3.48 0.75 23.04 99.95 
Shieldbugs* Coriomeris denticulatus 4.08 1.58 5.43 104.44 
Shieldbugs* Dolycoris baccarum 1 0.79 19.82 101.80 
Shieldbugs* Myrmus miriformis -4.68 1.25 5.04 103.78 
Shieldbugs* Palomena prasina 2.36 0.97 26.36 98.66 
Shieldbugs* Troilus luridus 0.48 1.36 4.34 101.46 
Soldierflies* Asilus crabroniformis 0.12 1.43 11.32 98.17 
Soldierflies* Choerades marginatus 1.72 1.95 2.26 107.31 
Soldierflies* Chorisops tibialis 1.28 1.22 4.28 90.83 
Soldierflies* Chrysopilus asiliformis 1.4 1.15 8.25 95.85 
Soldierflies* Chrysops viduatus -4.48 1.58 4.23 125.90 
Soldierflies* Dioctria atricapilla -1.4 1.07 6.57 98.92 
Soldierflies* Dioctria baumhaueri 2.64 1.72 7.75 99.77 
Soldierflies* Dioctria linearis -0.16 1.66 3.14 92.76 
Soldierflies* Dysmachus trigonus 1.44 1.33 3.01 121.54 
Soldierflies* Leptogaster cylindrica 3.28 1.20 15.50 104.86 
Soldierflies* Machimus cingulatus 3.36 1.28 4.88 95.97 
Soldierflies* Nemotelus notatus -2.68 1.74 3.87 108.89 
Soldierflies* Odontomyia tigrina -0.08 1.72 7.20 96.36 
Soldierflies* Oxycera nigricornis -0.88 1.61 3.10 97.93 
Soldierflies* Oxycera rara 1.28 1.04 3.39 99.94 
Soldierflies* Oxycera trilineata 0.04 1.39 3.48 97.65 
Soldierflies* Pachygaster atra 4 1.28 9.93 102.14 
Soldierflies* Pachygaster leachii 3.48 1.34 8.88 107.53 
Soldierflies* Stratiomys singularior -0.4 1.43 6.22 100.80 
Soldierflies* Tabanus autumnalis 2.64 1.48 4.10 100.49 
Soldierflies* Tabanus bromius 1.16 1.30 4.65 100.93 
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Spiders Tegenaria silvestris 5.08 1.63 1.39 96.94 
Spiders Thanatus striatus -0.88 1.81 2.07 91.44 
Spiders Theridion pictum -0.2 1.92 1.37 101.75 
Spiders Theridion tinctum 2.44 1.30 5.12 95.93 
Spiders Xysticus kochi 1.88 1.36 4.84 95.11 
Spiders Zilla diodia 0.88 1.38 4.08 91.92 
Wasps Ammophila pubescens 0.96 1.63 3.55 94.40 
Wasps Caliadurgus fasciatellus 0.36 1.31 4.19 101.06 
Wasps Cerceris arenaria 2.68 0.95 13.27 100.41 
Wasps Cerceris ruficornis 1.2 1.96 2.50 95.25 
Wasps Cerceris rybyensis 1.88 0.91 22.27 99.69 
Wasps Crossocerus cetratus 1 1.82 6.60 98.25 
Wasps Episyron rufipes 2.12 1.31 7.81 103.92 
Wasps Evagetes crassicornis -1.04 1.38 10.00 107.63 
Wasps Hedychridium ardens -0.8 1.40 8.57 100.55 
Wasps Oxybelus uniglumis 0.6 1.07 17.38 104.94 
Wasps Passaloecus gracilis 2.64 1.40 3.83 96.77 
Wasps Priocnemis pusilla 1.08 2.72 4.83 89.60 
Woodlice Armadillidium depressum 1.72 2.10 3.36 93.77 
Woodlice Armadillidium nasatum 1.04 1.91 1.89 89.71 
Woodlice Haplophthalmus danicus 10.5 1.73 4.19 102.62 
Woodlice Ligidium hypnorum -1.56 3.22 2.56 88.04 
Woodlice Platyarthrus hoffmannseggii 0.76 1.41 5.90 100.21 
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Table A3.9 Summaries of habitat associations for 352 species. The columns below show species’ probability of occurrence values for 18 habitat classes 

derived from the Land Cover Map 2007. Four categories are the result of combining narrower categories: Heather and Heather Grassland became Dwarf 

Shrub Heath [1]; Supra-littoral Rock and Littoral Rock became Coastal Rock [2]; Supra-littoral Sediment and Littoral Sediment became Coastal Sediment [3]; 

Suburban and Urban became Built-up and Gardens [4]. 
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Appendix Chapter 4 
 

Table A4.1. Results of the best model explaining the inter-annual distribution-abundance 

relationship. Two outlying species, Celastrina argiolus and Vanessa cardui were excluded 

from this analysis. One biogeographical attribute was included as an explanatory variable: 

mean absolute year-to- year change in distribution records. PGLS model results: λ = 0.049, 

R2 = 0.43, F1,28 = 20.86, AIC = -31.11, P =<0.001.  

 

Table A4.2. Results of two models examining the relationship between dispersal ability and 

the inter-annual distribution-abundance relationship. The explanatory variable in Model 1 is 

a dispersal ranking from Cowley et al. (2001), PGLS model results: λ = 0.904, R2 = 0.13, F1,26 = 

3.776, AIC= -17.52, P = 0.063; and the explanatory variable in Model 2 is a dispersal score 

from (Dennis et al. 2004) PGLS model results: λ = 0.874, R2  = 0.08, F1,26 = 2.119, AIC = -

15.78, P =<0.157. 

 

 

 

 

 

 

Coefficients Estimate Std. Error t value P 

Intercept -0.206 0.119 -1.739 0.093 

Mean absolute year-to-year change in  

distribution records 4.702 1.029 4.567 <0.001 

Model Coefficients Estimate Std. Error t value P 

1 Intercept 0.13 0.12 1.04 0.31 

Mobility ranking (Cowley et al.) 0.01 0.004 1.94 0.06 

2 Intercept 0.20 0.11 1.75 0.09 

Mobility score (Dennis et al.) 0.03 0.02 1.46 0.16 
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Figure A4.1. The ranges of a) the small skipper butterfly, Thymelicus sylvestris, a species 

with a well-filled range (fractal dimension: 0.257), and b) the Grayling butterfly, Hipparchia 

semele, a species with the most minimally filled range of the 33 species studied (fractal 

dimension: 0.716).  

 

 

Figure A4.2. The annual total number of distribution records for all 33 study butterfly 

species across the study period 1972–2012. 
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