White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Klein-Gordon solutions on non-globally hyperbolic standard static spacetimes

Bullock, David (2011) Klein-Gordon solutions on non-globally hyperbolic standard static spacetimes. PhD thesis, University of York.

[img]
Preview
Text
thesisfinal-doublespaced.pdf
Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (969Kb)

Abstract

We construct a class of solutions to the Cauchy problem of the Klein-Gordon equation on any standard static spacetime. Specifically, we have constructed solutions to the Cauchy problem based on any self-adjoint extension (satisfying a technical condition: ``acceptability") of (some variant of) the Laplace-Beltrami operator defined on test functions in a L^2 space of the static hypersurface. The proof of the existence of this construction completes and extends work originally done by Wald. Further results include the uniqueness of these solutions, their support properties, the construction of the space of solutions and the energy and symplectic form on this space and an analysis of certain symmetries on the space of solutions and of various examples of this method, including the construction of a non-bounded below acceptable self-adjoint extension generating the dynamics.

Item Type: Thesis (PhD)
Keywords: Klein-Gordon, Cauchy problem, standard-static, static, non-globally hyperbolic
Academic Units: The University of York > Mathematics (York)
Depositing User: Mr David Bullock
Date Deposited: 13 Dec 2011 12:37
Last Modified: 08 Aug 2013 08:47
URI: http://etheses.whiterose.ac.uk/id/eprint/1954

Actions (repository staff only: login required)