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Abstract

We construct a class of solutions to the Cauchy problem of the Klein-Gordon

equation on any standard static spacetime. Specifically, we have constructed

solutions to the Cauchy problem based on any self-adjoint extension (satisfy-

ing a technical condition: “acceptability”) of (some variant of) the Laplace-

Beltrami operator defined on test functions in a L2 space of the static hy-

persurface. The proof of the existence of this construction completes and

extends work originally done by Wald. Further results include the unique-

ness of these solutions, their support properties, the construction of the space

of solutions and the energy and symplectic form on this space and an analysis

of certain symmetries on the space of solutions and of various examples of

this method, including the construction of a non-bounded below acceptable

self-adjoint extension generating the dynamics.
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1 Introduction

The first purpose of this thesis is to construct a class of solutions to the

Cauchy problem of the Klein-Gordon equation on any (not necessarily glob-

ally hyperbolic) standard static spacetime (M,g) = (R×Σ, V 2dt2 −h), where

(Σ, h) is a Riemannian manifold and V is a smooth positive function on Σ

(Sanchez [30]). A class of solutions was originally constructed by Wald [37].

His solutions were given in terms of some fixed positive self-adjoint exten-

sion (s.a.e.) of a particular symmetric linear operator on L2(Σ, V −1dvolh).

Our treatment of the existence of solutions differs from that of Wald in the

following aspects:

1. Wald considered only positive s.a.e.s and so the linear operators C(t,AE)

and S(t,AE) (defined in Section 3) used to construct solutions were

bounded. In this thesis however we also consider “acceptable” s.a.e.s

(Definition 3.2). Incidentally, all bounded below s.a.e.s are acceptable.

Under these conditions C(t,AE) and S(t,AE) may be unbounded lin-

ear operators so care is required with the domains.

2. We point out that a more recent result on the extendibility of subsets

of the spacetime to smooth spacelike Cauchy surfaces in globally hy-

perbolic spacetimes by Bernal and Sanchez [6] is needed to complete

the proof on the existence of Wald solutions.

The remainder of the thesis deals with proving various properties satisfied

by the solutions and analysing some examples. Since many already known

results are quoted in this work for completeness, we shall for clarity list the

other main new results of this thesis:

1. We show in detail the properties satisfied by the solutions only implicit

in the paper by Wald and Ishibashi [38]. In that paper, they assumed
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certain conditions on the dynamics (e.g. constraints on the support of

solutions, how they are transformed under time translation and reflec-

tion in time and the existence of an energy norm) and then proved that

it must be generated by a particular s.a.e. AE. In this thesis we an-

swer the natural question: “to what extent are these conditions on the

dynamics necessary?”, that is, does the dynamics generated by a par-

ticular choice of acceptable s.a.e. AE satisfy these conditions? We shall

answer mostly to the affirmative. However we note that Assumption 1

in Wald and Ishibashi [38] (the support of solutions/“the causality as-

sumption”: see below) is not always true of dynamics generated by an

arbitrary acceptable s.a.e..

To amplify this point, Assumption 1 on the dynamics in Wald and

Ishibashi [38] states that the support of the solution to the Klein-

Gordon equation corresponding to Cauchy data always lies within the

union of the causal future and past of the support of that data. In Sec-

tion 12.5 we give a simple example of a standard static spacetime and a

choice of s.a.e. AE such that the dynamics generated satisfies: suppφ ⊈

J(K) for some initial data (φ0, φ̇0), where K = suppφ0 ∪ supp φ̇0. We

show in Section 8 however that, in general, suppφ is contained in J(K)

up until the time at which the data can “hit” any edge in the space-

time. We prove that this weaker form of Assumption 1 is true of all

dynamics constructed in this thesis, using the previous results on the

uniqueness of solutions in Section 6 and results on the causal structure

of the spacetime Section 7.

2. An important property satisfied by the “Wald solutions” is that the

value of the standard symplectic form evaluated at any pair of solutions
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is independent of the static hypersurface on which it is calculated, so

the space of solutions has a natural symplectic space structure. Since

it is this structure which allows the quantisation of the theory, by the

construction of the Weyl algebra (Bär et al. [3]), it is an important result

in Section 10 that even after extending Wald’s method to the case of

only acceptable s.a.e.s, we retain the conservation of the symplectic

form even in the cases where the positive definiteness of the energy

form (Section 9) is lost.

3. In Section 11 we prove how the solutions are transformed under time

translation and reflection. We show that the previously constructed

energy form is invariant under both time translation and reflection of

its arguments whereas the symplectic form is time-translation invariant

but acquires a minus sign under reflection of its arguments in time.

(These properties correspond to assumptions 2(i), 2(ii), 3(i) and 3(ii)

of Wald and Ishibashi [38].)

4. In Sections 12.1-12.3 and Appendices F,G and H we consider three

simple one-dimensional Riemannian manifolds (S1, (0,∞) and (0, a))

with their usual differential structures and Riemannian metrics), each

of which will then generate a standard static spacetime with V = 1.

In order to classify the dynamics generated on the latter spacetimes

by the construction of this thesis, we have analysed in great detail the

s.a.e.s of minus the Laplacian on S1, (0,∞) and (0, a). In particular we

have classified the s.a.e.s, determined their spectra and resolvents. The

proofs of these statements are to be found in Appendices F,G and H.

Specifically, it is shown there that the functions given in Sections 12.1,

12.2 and 12.3 do indeed generate the resolvents for all the self-adjoint
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extensions of minus the Laplacian on the manifolds S1, (0,∞) and

(0, a) respectively. It should be mentioned that, while it may be sur-

prising, various parts of this do not seem to be readily accessible in

the literature. The parts which can already be found in the literature

are as follows: although it is the simplest of the examples considered

here, the Green’s function for the first case was not found in the liter-

ature. The Green’s function for the second case is stated in Stakgold

[32] and the expressions for the domains of the extensions of the third

case can be found in Posilicano [26]. The form of the Green’s functions

for the third case can with some effort be reached from the methods

in Posilicano. However our approach, proving directly that the stated

expressions give the resolvents of the extensions, we have not found in

the literature.

5. In Section 12.6 we construct an acceptable non-bounded below s.a.e.

AE of minus the Laplacian on Σ = Z×(0,∞). This example then shows

that the extension of theory of Wald [37] from bounded-below s.a.e.s to

acceptable s.a.e.s carried out in this thesis is non-trivial (Wald’s paper

only deals with positive s.a.e.s).

The structure of the thesis is as follows:

In Section 2 we recall the definitions of static and standard static space-

times found in for example Sanchez [30]. In Section 3 we define the Klein-

Gordon equation, describe the functional analytic method employed in its

solution and define the notion of an acceptable s.a.e.. In Section 4 we discuss

the causal structure of the spacetime, and, in particular, characterise the

causal future J+(K) of a compact subset K ⊆ Σ0 = {0} × Σ of M and find

a simple expression for the Cauchy development (also called the domain of
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dependence) of Σ0. These facts are especially useful for proving the support

property of the solutions (Section 8).

In Section 5 we prove the existence of Wald solutions with respect to any

acceptable s.a.e. AE.

In Section 6 we prove a uniqueness theorem concerning Wald solutions and

define the space of solutions. This uniqueness theorem, together with Sec-

tion 7, which contains more results on the causal structure of the spacetime,

allows us to prove the required support properties of solutions in Section 8.

In Sections 9 and 10 we show that on the space of solutions we can

define an energy form and a symplectic form. In Section 11 we show how

solutions are transformed under time-translation and time-reversal. It is

shown that the energy form is invariant under both transformations and

that the symplectic form is invariant under time translation but picks up a

minus sign under time-reversal.

In Sections 12.1 to 12.3 we give some simple examples of Riemannian

manifolds (Σ, h) (that is: S1, (0,∞) and (0, a) mentioned above) and give

all the self-adjoint extensions of minus the Laplacian A (V = 1,m = 0) on

L2(Σ, dvolh). Since all the s.a.e.s AE of A are bounded-below, they all gen-

erate a solution of the Laplace-Beltrami equation on (R ×Σ, dt2 − h) by the

construction in this thesis. For completeness we also state the resolvents of

the s.a.e.s though we leave the proofs thereof to Appendices F,G and H. In

Section 12.4 we discuss the effect on the s.a.e.s and their corresponding resol-

vents of adding a non-zero mass to the linear operator A. In Section 12.5 we

give a simple example of a standard static spacetime and a choice of s.a.e. AE

such that the dynamics generated satisfies: suppφ ⊈ J(K) for some initial
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data (this corresponds to 1. of the second list on p.6). In Section 12.6 we con-

struct an acceptable non-bounded below s.a.e. AE of minus the Laplacian on

a particular (disconnected) Riemannian manifold (specifically: Σ = Z×(0,∞)

with the Riemannian metric induced from that of R2). This example then

shows that the extension of theory of Wald [37] from bounded-below s.a.e.s

to acceptable s.a.e.s carried out in this thesis is non-trivial (Wald considered

only positive s.a.e.s).

The appendix contains much varied material. Parts are results which

have been postponed so as to improve readability of the main body of the

thesis. Appendices A and B fall under this category. The former shows

when the linear operators C(t,AE) and S(t,AE), introduced in Section 3,

are bounded and also constructs a subspace invariant with respect to both

linear operators and on which both linear operators are strongly differen-

tiable with respect to t. These results were quoted in the earlier Section 3.

Appendix B concerns the well-posedness of the Klein-Gordon equation on

globally hyperbolic spacetimes with respect to arbitrary smooth initial data

specified on a Cauchy surface. While the result is probably well known

(Corollary 5, Section 3.5.3 in Ginoux’s contribution in Bär and Fredenhagen

(Eds.) [4]), it is included for completeness.

Appendices C, D and E do not contain new results but are included for

completeness. Appendix C is a reminder of some elements of metric space

theory that are needed in Section 4. Appendix D.1 constructs measure on

manifolds form densities. Appendix D.2 is an introduction to Partial Dif-

ferential Operators based on Chapter 10 of Nicolaescu [22]. Appendix D.3

defines the Lp spaces, distributions and Sobolev spaces on manifolds, which

are required constructions for much of this thesis. Appendix E deals pri-
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marily with the derivation of the expressions for the energy and symplectic

forms used in Sections 9 and 10. In this appendix we also prove various

propositions which although well known are not easily found in the standard

texts on Lorentzian Geometry. The remaining Appendices F, G and H deal

with proving that the functions given in Sections 12.1, 12.2 and 12.3 do in-

deed generate the resolvents for all the self-adjoint extensions of minus the

Laplacian on the manifolds S1, (0,∞) and (0, a) respectively.
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2 Static versus Standard Static Spacetimes

We will shortly give the definition of the class of spacetimes of interest but

we first introduce some necessary concepts from differential geometry. (See

Sachs and Wu [29], Sanchez [30] and O’Neill [23].)

Definition 2.1. Given a smooth n-dimensional manifold M and m an in-

teger, 0 ≤ m ≤ n, an (m-dimensional, smooth) distribution W maps each

p ∈M to an m-dimensional subspace of Tp(M), W ∶ p↦W (p) ⊆ Tp(M) such

that for all p ∈M there exists an open neighbourhood U of p and m smooth

vector fields (Xi)i=1...m on U s.t. ∀q ∈ U ∶ ⟨{X1(q), ...,Xm(q)}⟩ = W (q),

where ⟨S⟩ is the linear span of a subset S of a vector space. Such a collection

of locally defined smooth vector fields is called a (smooth) local basis for the

smooth distribution W .

A local section X of a (smooth) distribution W is a smooth vector field

defined on an open set U s.t. Xp ∈ W (p) ∀p ∈ U . A smooth distribution is

called involutive if for all local sections X,Y of W , [X,Y ] is a local section

of W . A necessary and sufficient condition for a smooth distribution to be

involutive is that for each p ∈M there exists an open neighbourhood U of p

and a local basis (Xi)i=1...m of W on U such that [Xi,Xj]q ∈ W (q) ∀q ∈ U.

Note that if one local basis has this property then all do. Clearly every

1-dimensional smooth distribution is involutive.

We have the following four examples of smooth distributions:

1. Given a non-vanishing smooth vector field X on a manifold M a simple

example of a 1-dimensional smooth distribution is given by: W (p) =

⟨{Xp}⟩ ⊆ Tp(M). Clearly in this example the local basis is given by X

and its domain of definition U =M .

13



2. Similarly, given a collection of smooth vector fields (Xi)i=1..m on M

which are linearly independent at every point, then we have the m-

dimensional smooth distribution: W (p) = ⟨{(X1)p, . . . , (Xm)p}⟩.

3. W (p) = Tp(M) is an n-dimensional smooth distribution on M . It is

smooth as a local basis is given by the n smooth vector fields { ∂
∂x1 , ..,

∂
∂xn}

defined on U where (U,φ) is a chart and xi are the components of φ.

4. Let (M,g) be a n-dimensional Lorentzian manifold (in this thesis, al-

ways of signature +− . . .−) and X be a smooth timelike vector field on

M, define the (n − 1)-dimensional distribution W (p) = {Xp}⊥ = {Yp ∈

Tp(M) s.t. gp(Xp, Yp) = 0}. Note that the subspaces W (p) will consist

of only spacelike vectors and the zero-vector. It is shown in Proposi-

tion E.6 that W so defined is a smooth distribution.

Note: with our choice of signature on a Lorentzian manifold, a vector

Xp ∈ Tp(M)/{0} is timelike if gp(Xp,Xp) > 0; null if gp(Xp,Xp) = 0; causal

if gp(Xp,Xp) ≥ 0; spacelike if gp(Xp,Xp) < 0. A smooth vector field X is

as usual timelike, null, causal or spacelike if Xp is timelike, null, causal or

spacelike at each p ∈M .

Definition 2.2. A smooth timelike vector field on a Lorentzian manifold is

called irrotational if the smooth distribution, which it defines according to

Example 4 above, is involutive.

Definition 2.3. Define the following:

1. A Lorentzian manifold (M,g) is time-orientable if there exists on M

a smooth timelike vector field and time-oriented if one such is fixed.

2. A spacetime is a time-oriented Lorentzian manifold.
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3. A spacetime is stationary if there exists on (M,g) a smooth timelike

Killing vector field on M .

4. A spacetime is static if stationary and there exists a smooth timelike

Killing vector field that is irrotational. (Such a vector field is called a

static vector field.)

Note that, unlike some authors, we are not assuming orientability in the

definition of a spacetime. The following is a very important example of a

static spacetime. It is only this class of spacetimes with which this thesis is

concerned.

Definition 2.4. (Sanchez [30]) A standard static spacetime is defined

by:

(M,g) = (R ×Σ, V 2dt2 − h),

where (Σ, h) is a smooth Riemannian manifold; M is given the usual product

topology and differential structure; dt2 is the Euclidean metric on R; V ∈

C∞(Σ) with V > 0. The time-orientation is that given by the timelike vector

field X = ∂
∂t .

Remark. In the above expression for the metric g = V 2dt2 − h, we are using

a slightly sloppy notation for conciseness. Denoting by π1 ∶ R × Σ → R

and π1 ∶ R × Σ → Σ the two projection (bundle) maps, then more precisely:

g = π∗2(V 2)π∗1(dt2) −π∗2(h), where π∗i is the pull-back applied here to metrics

and functions and dt2 = dt⊗ dt is the standard Riemannian metric on R.

Let (M,g) = (R×Σ, V 2dt2 −h) be a standard static spacetime. As Σ is a

smooth manifold then for each t ∈ R the map πt ∶ Σ→M given by x→ (t, x)

is a smooth embedding from Σ to M and for each embedded submanifold

Σt ∶= {t} ×Σ = πt(Σ) ⊂M there exists a unique unit future-pointing smooth
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timelike vector field nt = V −1 ∂
∂t normal to each tangent space of Σt. Note

that we have not assumed that the manifold Σ is orientable.

A standard static spacetime is static since a static vector field is given

by X = ∂
∂t , which we shall check shortly. (This vector field also defines the

time-orientation of M .) Note that this is a globally defined smooth vector

field since the map (t, x) → t is one of the coordinates of each of the charts in

an atlas of M . It is easy to check that this Killing vector field X is complete

and so defines a global group of isometries. Also, every point in M lies in

the orbit of a unique point in {0} × Σ under this isometry (equivalently in

the integral curve of a unique point in {0} ×Σ under the vector field X).

Proposition 2.5. Every standard static spacetime is static.

Proof. We show first that the vector field X = ∂
∂t is irrotational. Consider

the smooth distribution W defined as orthogonal to X. Clearly W (t, p) =

TpΣ ⊆ T(t,p)M . A simple local basis of W is as follows: Given (t, p) ∈M then

let (U,φ) be a chart in Σ containing p. This then induces n smooth vector

fields on U : ∂
∂x1 ...

∂
∂xn , where xi are the components of the chart map. Then

define the local basis {Xi}i∈{1,..n} on the domain R×U as: Xi(s, q) = ∂
∂xi

∣(s,q).

Viewed as smooth vector fields on U ⊆ Σ, [Xi,Xj] is a smooth vector field on

U by definition of the Lie bracket. Viewed as smooth vector fields on R×U ,

[Xi,Xj](t,p) ∈ Tp(Σ) = W (t, p) for each i, j and so W is involutive and X is

irrotational.

We now show that X is a Killing vector field. We make use of a well-

known fact (see e.g. p.650 of Misner et al. [21]) that given a spacetime (M,g)

of dimension n and a fixed integer j (1 ≤ j ≤ n), then if there exists an

atlas (Uα, φα) on M s.t. for each α the induced metric components do not
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depend on xjα (where xiα is, as usual, short-hand for the i-th component of

the map φα) and if xjα and xjα′ differ by a constant on Uα ∩ Uα′ then ∂
∂xj

is a smooth Killing vector field for (M,g). Applying this to our case, then

given an atlas (Uα, φα) for Σ, then (R × Uα,Ψα) is an atlas for M , where

Ψα(t, p) = (t, φα(p)). In the coordinates of one of these charts, the metric

has components: g00 = V 2, g0i = gi0 = 0 and gij = −hij, all of which are

independent of t. We have already pointed out that X = ∂
∂t is a smooth

vector field and thus is a smooth Killing vector field.

Thus X is a smooth timelike irrotational Killing vector field and so is a

static vector field by definition.

Remark. Note that any open subset of a standard static spacetime with the

induced spacetime structure is static though need not be standard static. See

Sanchez [30] for more discussion and sufficient conditions guaranteeing that

a static spacetime is standard static.

In the next section, we define the Klein-Gordon equation and propose a

solution to a similar problem in functional analysis which shall prove to be

the first step in the solution of the Klein-Gordon equation.
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3 The Cauchy problem of the Klein-Gordon

Equation on Standard Static Spacetimes:

The construction of candidate solutions as

vector-valued functions

We wish to solve the Klein-Gordon equation on an arbitrary standard static

spacetime. For an arbitrary spacetime and mass m ≥ 0 the Klein-Gordon

equation reads:

(◻g +m2)φ = 0, (3.1)

where ◻g = div g○grad g is the Laplace-Beltrami operator (see Appendix D.2),

sometimes locally given by: ∇µ∇µ where ∇µ is the covariant derivative de-

fined by the metric.

Alternatively, the Klein-Gordon equation can be expressed in local coordi-

nates (see p.86 and p.213 of O’Neill [23]):

◻g =
1√
∣g∣
∂µg

µν
√

∣g∣ ∂ν

where g ∶= det(gµν).

Remark. Note also that we shall demand that φ ∈ C∞(M), where C∞(M)

is defined as the space of all smooth K-valued functions on M , where K = R

or C. We are removing the dependence of the field of scalars from our

notation for C∞(M) purely for brevity. We shall find that the results of

this thesis apply equally well to solving the Klein-Gordon equation for real-

valued functions as for complex-valued functions. In the sequel we shall take

all function spaces, Hilbert spaces etc. to be either over R or C as required.

We shall on occasion in this thesis mention where we may have to treat
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the two cases separately. For instance Sections 12.1-12.3 only apply to the

complex case as will be discussed there.

Our spacetime of interest is: M = R ×Σ with g = V 2dt2 − h, where Σ is a

smooth manifold with smooth Riemannian metric h and V ∈ C∞(Σ), V > 0.

For this spacetime, we define a solution to the Cauchy problem for the

Klein Gordon equation to be a linear map:

Ψ ∶ C∞
0 (Σ0) ×C∞

0 (Σ0) → C∞(M)

(φ0, φ̇0) ↦ φ

such that: ∀φ0, φ̇0 ∈ C∞
0 (Σ0), if Ψ(φ0, φ̇0) = φ then:

1. (◻g +m2)φ = 0

2. φ∣Σ0 = φ0

3. ∂tφ∣Σ0 = φ̇0

In this thesis we shall construct solutions to the Cauchy problem. (We shall

in fact find a solution to an extension of this problem, that is, extend the

space of test functions C∞
0 (Σ0) to a certain subspace χE of C∞(Σ0).) We

start by expressing the Klein-Gordon equation in a simpler form. Given an

atlas (Uα, φα) for Σ we have the following atlas for M : (R × Uα, t × φα) and

in these coordinates the metric components are: g00 = V 2, g0i = gi0 = 0 and

gij = −hij.

The components gµν of the (2,0) tensor field are defined as inverse to

those of the (0,2) tensor field gµν . Similarly, the components hij are defined

as inverse to those of hij. Thus g00 = V −2, g0i = gi0 = 0, gij = −hij and
√

∣g∣ = V
√
h. In the last expression we denote by g the determinant of the
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components gµν of the metric tensor g, similarly for h. The use of the symbol

g to denote the determinant shall be restricted only to such expressions and

so is not to be confused with the metric itself.

So, in these local coordinates the Laplace-Beltrami operator reads:

◻g =
1

V
√
h
∂tV

−2.V
√
h∂t −

1

V
√
h
∂ih

ij.V
√
h∂j

= V −2∂2
t −

1

V
√
h
∂ih

ij.V
√
h∂j

= V −2∂2
t − V −1DiV Di,

where Di is the covariant derivative on Σ induced by h. Thus equation (3.1)

reads:

(V −2∂2
t − V −1DiV Di +m2)φ = 0

which is true iff:

(∂2
t − V DiV Di +m2V 2)φ = 0

iff:

∂2
t φ = −Aφ (3.2)

where A = −V DiV Di +m2V 2. Note that in coordinate free notation: A =

−V div hV grad h +m2V 2. See Section D.2 for more details.

We solve this form of the Klein-Gordon equation with the methods of

functional analysis on the (real or complex) Hilbert space L2(Σ, V −1dvolh).

(This space is defined in Section D.3. The following definitions are taken

from Chapter VIII Reed and Simon [27].)

In the next few pages we shall introduce some necessary concepts from

functional analysis, fixing our notation. Then in equation (3.7) on p.25 we

shall propose a solution to the related problem (equation (3.6) on p.25) to
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the new form of the Klein-Gordon equation (equation (3.2) above). It is

this functional analytic solution that will provide the first step in solving the

Klein Gordon equation.

In this thesis, by a linear operator A on a real or complex Hilbert space

H we shall mean a linear map A∶ D(A) → H, where D(A) is a subspace of

H, called the domain of the linear operator A. Some authors denote linear

operators by (A,D(A)). For the sake of brevity we shall denote such a linear

operator by A, however its domain D(A) is always to be given.

� A is called densely defined if D(A) is dense in H.

Given a densely defined linear operator A we define its adjoint A∗ as follows:

D(A∗) = {φ ∈H s.t. ∃χ ∈H s.t. ⟨φ,Aθ⟩ = ⟨χ, θ⟩ for all θ ∈D(A)}

A∗φ = χ for φ ∈D(A∗), where χ is as in the previous line.

Note that as A is densely defined then A∗ is well defined. A partial order

≤ is defined on the set of linear operators on a Hilbert space H as follows.

Given linear operators A,B then A ≤ B iff D(A) ⊆D(B) and B∣D(A) = A.

� A linear operator A is called symmetric if it is densely defined and

A ≤ A∗. In other words, if it is densely defined and:

⟨φ,Aθ⟩ = ⟨Aφ, θ⟩ for all φ, θ ∈D(A).

� A linear operator A is called self-adjoint if it is densely defined and

A = A∗, that is, A is symmetric and the following is true:

For all φ ∈H, if there exists χ ∈H such that

⟨φ,Aθ⟩ = ⟨χ, θ⟩ for all θ ∈D(A),

then φ ∈D(A).
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� A linear operator A is positive if ⟨Ax∣x⟩ ≥ 0 for all x ∈D(A).

� A linear operatorA is bounded-below if there existsM ∈ R s.t. ⟨Ax∣x⟩ ≥

−M ∣∣x∣∣2 for all x ∈D(A).

Remark. Note that both positive and bounded-below linear operators

satisfy: ⟨Ax∣x⟩ ∈ R for all x ∈ D(A). If H is a complex Hilbert space,

then via the polarisation identity, it follows that such an operator A is

symmetric if also densely defined. If A is a self-adjoint linear operator

then it can be shown by the spectral theorem that

⟨Ax∣x⟩ ≥ −M ∣∣x∣∣2 for all x ∈D(A) iff σ(A) ⊆ [−M,∞).

� A is closable if, given xn ∈ D(A) and y ∈ H satisfying xn → 0 and

Axn → y, then y = 0.

Remark. Note that denoting Γ(A) ∶= {(x,Ax) ∈ H ⊕ H ∶ x ∈ D(A)}

the graph of the linear operator A, then the definition of closable is a

necessary and sufficient condition for Γ(A) to be the graph of a linear

operator, denoted A. It is shown in Reed and Simon [27] (Theorem

VIII.1) that a densely-defined linear operator A is closable iff its adjoint

A∗ is densely defined.

� A closable linear operator A is called closed if A = A.

� A symmetric linear operatorA is called essentially self-adjoint (e.s.a.)

if A∗ ≤ A∗∗, which is true iff A is self-adjoint.

On the (real or complex) Hilbert space L2(Σ, V −1dvolh), we have the following

linear operator A:

D(A) = [C∞
0 (Σ)] (3.3)

A[φ] = [(−V DiV Di +m2V 2)φ], (3.4)
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where Di is the covariant derivative on (Σ, h) and φ ∈ C∞
0 (Σ). That A is

symmetric and positive is proven in Proposition D.10 in the appendix.

Note that the adjoint is a well-defined linear operator since A is densely

defined in L2(Σ, V −1dvolh). The adjoint A∗ is given by :

D(A∗) = {φ ∈ L2(Σ, V −1dvolh) s.t. Aφ ∈ L2(Σ, V −1dvolh)}

A∗φ = Aφ,

where in both lines Aφ is meant distributionally and a priori φ,Aφ ∈D′(Σ).

Here, functions are interpreted as distributions by use of the smooth measure

V −1dvolh on Σ.

Remark. Note that since [C∞
0 (Σ)] ⊆ D(A∗) then D(A∗) is densely defined

and so A is closable. Also, be aware that the reason for appearance of the

partial differential operator A instead of its formal adjoint A∗ in the above

definition of the linear operator A∗ is that A is formally self-adjoint with

respect to the smooth measure V −1dvolh. See Section sec:pdos for definitions

of these terms.

The domain of the closure A of A is given by the closure of [C∞
0 (Σ)] in

the Hilbert space D(A∗) with the inner product ⟨⋅, ⋅⟩A∗ :

⟨φ, θ⟩A∗ = ⟨φ, θ⟩L2(Σ,V −1dvolh) + ⟨A∗φ,A∗θ⟩L2(Σ,V −1dvolh),

It is important to note that A is not necessarily essentially self-adjoint

(e.s.a.). The following theorem gives a case where A is e.s.a..

Theorem 3.1 (Essential Self-Adjointness of minus the Laplacian on Com-

plete Riemannian Manifolds). Let (Σ, h) be a complete Riemannian manifold.

Then letting V = 1 and m = 0, we have A = −div hgrad h = −∆h, minus the

Laplacian corresponding to the metric h. Then if D(A) = [C∞
0 (Σ)] in the

Hilbert space H = L2(Σ, dvolh), then A is essentially self-adjoint.
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Proof. See e.g. Taylor [35] Proposition 8.2.4.

As pointed out by Wald [37], since A is a symmetric positive linear op-

erator then at least one positive self-adjoint extension exists. We do not

restrict ourselves however to using a single extension, but we are forced to

only consider a certain class of s.a.e.s of A, which we define shortly. We wish

to first make a remark concerning the choice of the field of scalars.

Remark. Note that if we define HK = L2(Σ,K, V −1dvolh) as the space of

equivalence classes of K-valued square-integrable Borel-measurable functions,

where K = R or C and f ∼ g iff f = g a.e., then we can view A as a symmetric

linear operator on either the real Hilbert space HR or the complex Hilbert

space HC. The set of self-adjoint extensions of these operators are related.

To see how, take the general situation of a real Hilbert space H and its com-

plexification HC. Now, on HC can be defined a natural complex conjugation

operator C. It is shown in Section 2 of Seggev [31] that the self-adjoint

extensions of a symmetric linear operator A on H are are in bijection with

the self-adjoint extensions of the symmetric linear operator AC on HC, which

commute with C, where AC is the complexification of A.

We now introduce our new notion of an acceptable s.a.e.:

Definition 3.2. A s.a.e. AE of A is called acceptable if it satisfies:

[C∞
0 (Σ)] ⊆ ⋂

t>0

D(exp(A−
E)1/2t), (3.5)

where A−
E ∶= x−(AE) is the positive self-adjoint operator defined via continu-

ous functional calculus using the function x− ∶ R→ [0,∞) defined by:

x−(y) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−y, y ≤ 0

0, otherwise.

The operator A−
E is called the negative part of the operator AE and it’s

bounded iff AE is bounded-below.
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Remark. In the paper [37] by Wald, he considered only positive s.a.e.s of A.

Clearly, a positive linear operator is bounded-below. If AE is a bounded-

below s.a.e. then A−
E is a bounded linear operator, as is (A−

E)1/2. Then

exp(A−
E)1/2t is also a bounded linear operator for all t and so:

[C∞
0 (Σ)] ⊆ L2(Σ, V −1dvolh) = ⋂

t>0

D(exp(A−
E)1/2t).

Thus every bounded-below s.a.e AE is also acceptable. Thus we are extending

the method of Wald to more s.a.e.s of A.

The approach (taken from Wald [37]) is to find a map R → D(AE) ⊆ H

where H = L2(Σ, V −1dvolh). t → φt, for each pair of data φ0, φ̇0 ∈ C∞
0 (Σ).

We demand that the map t → φ(t) is twice differentiable as a vector-valued

function with double-derivative:

d2φt
dt2

= −AEφt (3.6)

Our intended solution to this problem is given in terms of any acceptable

s.a.e. AE of A:

[φt] = cos(A1/2
E t)[φ0] +A−1/2

E sin(A1/2
E t)[φ̇0] (3.7)

Our immediate problem is to show that this expression makes sense. If

AE was positive self-adjoint then, following Wald [37], we can take the square

root to form a positive self-adjoint unbounded linear operator A
1/2
E and then

construct the two bounded linear operators cos(A1/2
E t) and A

−1/2
E sin(A1/2

E t)

by applying the multiplication operator form of the Spectral Theorem, as in

Reed and Simon [27]. If AE was not positive but merely bounded-below, then

we shall show that this method still works and cos(A1/2
E t) and A

−1/2
E sin(A1/2

E t)

are still well-defined bounded linear operators despite the non-existence of

the square root. If, however AE is not bounded-below then these linear op-

erators will be unbounded and we must concern ourselves with their (dense)
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domains. We shall show that even when AE is not bounded-below, but is ac-

ceptable (Definition 3.2), then we can solve the Cauchy problem with respect

to smooth initial data of compact support.

In this thesis, in order to avoid expressions involving square roots of

non-positive self-adjoint linear operators we introduce an alternative repre-

sentation of equation (3.7).

Define the functions C,S ∶ R2 → R:

C(t, x) = cos(x1/2t) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

cos(x1/2t) for x ≥ 0

cosh((−x)1/2t) for x < 0

S(t, x) = tsin(x
1/2t)

x1/2t
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x−1/2 sin(x1/2t) for x ≥ 0

(−x)−1/2 sinh((−x)1/2t) for x < 0

where:
sin z

z
∶=

∞
∑
n=0

(−1)nz2n

(2n + 1)!
and

sinh z

z
∶=

∞
∑
n=0

z2n

(2n + 1)!
are analytic functions on C, both being invariant under z → −z (the same is

true of course of the functions cos z and cosh z). This makes the definitions

of C(t, x) and S(t, x) independent of the choice of square root.

The functions C and S are well-defined as if a different root of x is

taken then the value of C(t, x) is unchanged as cos is an even function.

Similarly for S(t, x) as long as the same root of x is used for the numerator

as for the denominator. Since C(t, ⋅) and S(t, ⋅) are (unbounded) real-valued

measurable functions for each fixed t, then by functional calculus we can

construct the (possibly unbounded) self-adjoint linear operators C(t,AE)

and S(t,AE), for any s.a.e. AE of A. It is shown in the remarks following

Propositions A.7 and A.8 that for t ≥ 0:

D(exp(A−
E)1/2t) =D(C(t,AE)) ⊆D(S(t,AE)).
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Thus:

[C∞
0 (Σ)] ⊆ ⋂

t>0

D(exp(A−
E)1/2t) = ⋂

t>0

D(C(t,AE))

and the condition on AE that it is acceptable is precisely what is required

for C(t,AE) (and so S(t,AE)) to be defined on equivalence classes of test

functions.

Given an acceptable s.a.e. AE of A, let our proposed solution to Equa-

tion (3.6) for arbitrary φ0, φ̇0 ∈ C∞
0 (Σ) define:

[φt] = C(t,AE)[φ0] + S(t,AE)[φ̇0]. (3.8)

If AE is bounded-below, then C(t,AE) and S(t,AE) are bounded linear

operators for all t (proven in Appendix A) and [φt] is a well-defined element

of L2(Σ, V −1dvolh). If not, then the condition on AE in Definition 3.2 is

precisely what is required for the RHS to make sense. We wish to show that

in fact the map t→ [φt] is infinitely differentiable and that [φt] ∈ [C∞(Σ)] ∩

L2(Σ, V −1dvolh) for all t ∈ R.

The following proposition is vital for this thesis. It is an application of

Sobolev theory. It is taken from Wald [37] and reproduced here for com-

pleteness. (For the definitions of Lp spaces, distributions and Sobolev spaces

W k,p(M,µ) on a Riemannian manifold M with smooth measure µ, see Ap-

pendix D.3.)

Theorem 3.3. Any s.a.e. AE of A satisfies: D(A∞
E ) ⊆ [C∞(Σ)].

Proof. (Wald [37]) We know that [C∞
0 (Σ)] = D(A) ⊆ D(A∞

E ). Take φ ∈

D(A∞
E ). Since L2(Σ, V −1dvolh) ⊆ L1

loc(Σ, V −1dvolh) ⊆ D′(Σ), the space of

distributions on the manifold Σ, then for all f ∈ C∞
0 (Σ):

φ(Anf) = ⟨φ, [Anf]⟩ = ⟨φ,An[f]⟩ = ⟨φ,AnE[f]⟩ = ⟨AnEφ, [f]⟩ = (AnEφ)(f)
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Thus Anφ ∈D(A∞
E ) ⊆ L2(Σ, V −1dvolh), where Anφ is interpreted in the sense

of distributions (since A is a formally self-adjoint partial differential operator

of second order w.r.t. V −1dvolh, see Appendix D.2).

Take an open set Ω ⊆ Σ, which is precompact in the domain of a chart

on Σ. Letting N ∶= dim Σ, then denote the resulting chart map Ψ ∶ Ω → RN .

Restricting φ to Ω, we have

Anφ ∈ L2(Ω, V −1dvolh) =W 0,2(Ω, V −1dvolh).

As V −1 and ∣det(hij)∣ are bounded by below on Ω, then Anφ ∈W 0,2(Ψ(Ω)) ⊆

W 0,2
loc (Ψ(Ω)), where we are now viewing φ as a function and A as a p.d.o.

on Ψ(Ω) ⊆ RN . As An is an elliptic p.d.o. of order 2n, then, by an elliptic

regularity theorem (Theorem D.12), φ ∈ W 2n,2
loc (Ψ(Ω)) for all n. And by

Sobolev’s lemma (Theorem D.13), we have (after possibly changing φ on a

null set) that φ ∈ C l(Ψ(Ω)) for any non-negative integer l < 2n − N
2 . Since n

and Ω are arbitrary, then φ ∈ C∞(Σ).

We begin by defining what we mean by strongly differentiable:

Definition 3.4. If A(t),B are densely defined linear operators for every

t ∈ R and D ⊆ H is a dense subspace satisfying: D ⊆ D(B) ∩D(A(t)) ∀t ∈

(t0 − ε, t0 + ε) and:

for all x ∈D ∶ ∣∣(A(t0 + h) −A(t0)
h

−B)x∣∣ → 0 as h→ 0,

then we write d
dtA(t)∣t0 = B on D and say that A(t) is strongly differen-

tiable at t0 on D with strong derivative B.

Similarly, if A(t) is strongly differentiable at all times t ∈ R on Dt with

derivative B(t) we write d
dtA(t) = B(t) on Dt. Note then, by definition, we
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must have that for each t there exists ε > 0 s.t. Dt ⊆D(A(t′)) ∩D(B(t)) for

all t′ ∈ (t − ε, t + ε).

Using Theorem 3.3, we define a space of smooth functions χE which

contains all compactly supported smooth functions (as AE is acceptable).

We shall show in later sections that we can solve the Klein-Gordon equation

with respect to data in the space χE.

Proposition 3.5. Given an acceptable s.a.e. AE of A, define:

χE ∶= {f ∈ C∞(Σ) s.t. [f] ∈D(A∞
E ) ∩⋂

t>0

D(exp((A−
E)1/2t))}

Then the linear operators C(t,AE) and S(t,AE) satisfy the following:

C(t,AE), S(t,AE) ∶ [χE] → [χE]

Also, the maps t → C(t,AE) and t → S(t,AE) are infinitely often strongly

differentiable on [χE], where for n ∈ N ∪ {∞}:

D(AnE) = {x ∈D(AE) ∶ AmEx ∈D(AE) for all m = 1, ..., n − 1}

In fact, for n ∈ N the following strong derivatives hold on the dense subspace

[χE] of L2(Σ, V −1dvolh):

d2n

dt2n
C(t,AE) = (−1)nAnEC(t,AE)

d2n−1

dt2n−1
C(t,AE) = (−1)nAnES(t,AE)

d2n

dt2n
S(t,AE) = (−1)nAnES(t,AE)

d2n+1

dt2n+1
S(t,AE) = (−1)nAnEC(t,AE)

Proof. See Appendix A.
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Lemma 3.6. Thus just as in equation (3.8), given initial data φ0, φ̇0 ∈ χE
and letting [φt] = C(t,AE)[φ0]+S(t,AE)[φ̇0], then [φt] is differentiable as a

vector valued function to arbitrary order and to even order:

d2n

dt2n
[φt] = (−1)nAnE[φt]

Thus in particular for n = 1 we have reproduced equation (3.6) and:

[φ0] = [φt]∣t=0

[φ̇0] =
d

dt
[φt]∣

t=0

Since [χE] is an invariant subspace of L2(Σ, V −1dvolh) w.r.t. the linear op-

erators C(t,AE) and S(t,AE), so for all initial data φ0, φ̇0 ∈ χE, the solution

given in Proposition 3.6, satisfies:

[φt] ∈D(A∞
E ) ⊆ [C∞(Σt)] ∀t ∈ R.

Thus we have solved the Hilbert space version of the Klein-Gordon Equa-

tion (equation (3.6)). We shall use this in Section 5 to construct solutions of

the Klein-Gordon equation itself (equation (3.2)).
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4 Causal Structure of Standard Static Space-

times (i)

Before we construct solutions to the Klein-Gordon equation in Section 5, we

shall find it useful to introduce some concepts from geometry, namely we shall

define the causality relations and define the causal future and causal past of

a set. After some preliminaries concerning Riemannian manifolds we shall

then analyse the causal structure of an arbitrary standard static spacetime.

Later in the section, since we shall need to quote results concerning the well-

posedness of the Klein-Gordon equation on globally-hyperbolic spacetimes

when we construct our solutions in Section 5, so we define the terms glob-

ally hyperbolic, Cauchy surfaces and Cauchy developments. Subsequently,

returning to standard static spacetimes, we shall then in Proposition 4.22

re-express the Cauchy development D(Σ0) of the hypersurface Σ0. Lastly,

in Theorem 4.25 we shall quote the well-known result concerning the well-

posedness of the Klein-Gordon equation on globally-hyperbolic spacetimes.

We first define the causality relations, the causal and chronological future

of a point p and the future and past Cauchy developments of a set in an

arbitrary spacetime M .

Definition 4.1. Given p, q ∈M then:

1. p≪ q iff there is a future-pointing smooth timelike curve from p to q.

2. p < q iff there is a future-pointing smooth causal curve from p to q.

By a smooth curve from p to q we mean a smooth map γ∶ [a, b] → M ,

where a, b ∈ R, a < b, [a, b] is viewed as a smooth manifold with boundary

and M is a smooth manifold. This is equivalent to there existing a smooth

extension of γ to γ′∶ (a − ε, b + ε) →M for some ε > 0.
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We note that the relations would have been unchanged had we only used

piecewise smooth curves. We prove this using a result from Penrose ([24]

p.15):

Proposition 4.2. The following statements are true:

1. p ≪ q iff there is a piecewise smooth future-pointing timelike geodesic

from p to q.

2. p < q iff there is a piecewise smooth future-pointing causal geodesic from

p to q.

Corollary 4.3. The following statements are true:

1. p≪ q iff there is a piecewise smooth future-pointing timelike curve from

p to q.

2. p < q iff there is a piecewise smooth future-pointing causal curve from

p to q.

Proof. Given a piecewise smooth future-pointing timelike curve γ from p to

q, then each of its segments can be replaced by a piecewise smooth future-

pointing timelike geodesics. Add these curves together, γ can similarly be re-

placed and (again via Proposition 4.2) p and q can be connected by a smooth

future-pointing timelike curve. An identical argument works for causal curves

too.

Note that it’s the piecewise smooth formulation of the causal relations

that allows one to most easily see that the relations are transitive, i.e. that

p≪ q ≪ r⇒ p≪ r and similarly for the relation <.

Using these relations, given A ⊆M we define its chronological and causal

future (I+(A), J+(A) respectively) as follows:
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Given A ⊆M , let:

I+(A) = {q ∈M ∶ ∃p ∈ A s.t. p≪ q}

J+(A) = {q ∈M ∶ ∃p ∈ A s.t. p ≤ q}

(As usual p ≤ q means that either p < q or p = q). The chronological and

causal past are defined similarly:

I−(A) = {q ∈M ∶ ∃p ∈ A s.t. q ≪ p}

J−(A) = {q ∈M ∶ ∃p ∈ A s.t. q ≤ p}

Additionally, define: J(A) = J+(A) ∪ J−(A), I(A) = I+(A) ∪ I−(A).

We shall now analyse the causal structure of a standard static spacetime:

Before we begin, we shall find it useful to discuss metrics on Riemannian

manifolds (here we use the term “metric” as in “metric space” rather than

as in “metric tensor”!). It is well known that a Riemannian manifold (Σ, h)

is naturally metrisable. A metric d∶Σ ×Σ→ [0,∞) is given by:

d(p, q) = inf

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
b

a ∣σ̇(t)∣dt s.t. σ∶ [a, b] → Σ is a piecewise smooth

curve in Σ with σ(a) = p, σ(b) = q.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

where ∣σ̇(t)∣ ∶= [hσ(t)(σ̇(t), σ̇(t))]1/2.

Theorem 4.4. Given a Riemannian manifold (Σ, h), then the metric d given

above induces the topology on Σ.

Proof. See for example Lee [19], Lemma 6.2.

For a choice of standard static spacetime (M,g) = (R ×Σ, V 2dt2 − h), we

shall always choose the metric on Σ induced by the Riemannian metric V −2h

on Σ. The importance of choosing a metric on Σ dependent on V shall be

seen in Proposition 4.12.
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Proposition 4.5. Consider a standard static spacetime (M,g) = (R×Σ, dt2−

h). Given a smooth curve σ∶ [0, t] → Σ (smooth in the sense of [0, t] being a

smooth manifold with boundary) satisfying:

σ(0) = x

σ(t) = y

∣σ̇(s)∣ ≤ 1 ∀s ∈ [0, t]

then define the smooth curve γ∶ [0, t] → M , by: γ(s) = (s, σ(s)). Then γ is

a smooth future-pointing causal curve from (0, x) to (t, y) and thus (t, y) ∈

J+((0, x)) and γ(s) ∈ Σs ∀s ∈ [0, t].

Proof. Clearly γ is smooth. It is also causal since

gγ(s)(γ̇(s), γ̇(s)) = 1 − hσ(s)(σ̇(s), σ̇(s)) ≥ 0.

From gγ(s) (γ̇(s), ∂
∂t
∣
γ(s)) = 1 > 0 it follows that γ is future-pointing.

In fact all future-pointing causal curves from (0, x) to (t, y) are of this

form, or are reparametrisations thereof as the next proposition shows.

Proposition 4.6. (t, y) ∈ J+(0, x) in the spacetime (M,g) = (R×Σ, dt2 − h)

iff ∃ a smooth curve σ∶ [0, t] → Σ s.t.:

σ(0) = x

σ(t) = y

∣σ̇(s)∣ ≤ 1 ∀s ∈ [0, t]

Proof. We have already proven that this condition is sufficient for (t, y) ∈

J+(0, x).

Conversely, if (t, y) ∈ J+(0, x) then there exists γ∶ [a, b] → R ×Σ which is

smooth future-pointing and causal s.t. γ(a) = (0, x) and γ(b) = (t, y).
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Let γ(s) = (γ1(s), γ2(s)), where γ1∶ [a, b] → R and γ2∶ [a, b] → Σ are both

smooth curves defined using the smooth projection maps. So:

gγ(s)(γ̇(s), γ̇(s)) = ∣γ̇1(s)∣2 − hγ2(s)(γ̇2(s), γ̇2(s)) ≥ 0

The condition of γ being future-pointing gives us: gγ(s)(γ̇(s), ∂
∂t
∣
γ(s)) = γ̇1(s) >

0. We wish to reparametrise this curve and show that it is of the form of the

previous proposition. For this purpose, let Φ∶ [a, b] → R be given by:

Φ(s) = ∫
s

a
γ̇1(u)du

Since Φ̇(s) = γ̇1(s) > 0 then by the Inverse Function Theorem there exists a

smooth inverse Φ−1∶ [0, c] → [a, b], where Φ(a) = 0, Φ(b) = c.

Define the reparametrisation: γ′(s) = γ(Φ−1(s)). γ′∶ [0, c] → R×Σ is then

a smooth curve, satisfying:

γ̇′1(s) = Φ̇−1(s)γ̇1(Φ−1(s)) = γ̇1(Φ−1(s))
γ̇1(Φ−1(s))

= 1

Thus γ′1(s) = s ∀s ∈ [0, c] and let σ = γ′2 so that γ(s) = (s, σ(s)) and:

(0, σ(0)) = γ′(0) = γ(a) = (0, x)

(c, σ(c)) = γ′(c) = γ(b) = (t, y)

Thus c = t, σ(0) = x, σ(t) = y and as γ′ is still causal then ∣σ̇(s)∣ ≤ 1 for every

s ∈ [0, t].

This easily adapts to an alternative description of the causal future of a

subset K of Σ0.

Proposition 4.7. Given the standard static spacetime (M,g) = (R×Σ, dt2 −

h) and K ⊆ Σ0, then (t, y) ∈ J+(K) iff there exists a smooth curve σ∶ [0, t] → Σ
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s.t.:

σ(0) = x ∈ π(K)

σ(t) = y

∣γ̇(s)∣ ≤ 1 ∀s ∈ [0, t]

We recall a property of Riemannian manifolds which will be very useful

to us. Clearly it is false for Lorentzian manifolds.

Proposition 4.8 (Mean Value Theorem). Let (Σ, h) be a Riemannian man-

ifold. Then, for any piecewise smooth curve σ∶ [a, b] → Σ, (where a, b ∈ R,

a < b):

d(σ(a), σ(b)) ≤ L(σ) = ∫
b

a
∣σ̇(s)∣ds ≤ (b − a) sup

s∈[a,b]
{∣σ̇(s)∣}

Note that this implies that for any such curve:

d(σ(t), σ(t′)) ≤ ∣t′ − t∣ sup
s∈[a,b]

{∣σ̇(s)∣}

for any t, t′ ∈ [a, b]. Also, as the speed of σ is bounded over [a, b] (a compact

set), then σ is uniformly continuous on [a, b]. Similarly, if σ∶ (a, b) → Σ

is a smooth curve such that ∣σ̇∣ is bounded on (a, b), then σ is uniformly

continuous on (a, b).

Definition 4.9 (Extendibilty of Curves). Given I, an open interval of R and

a smooth manifold M , a smooth curve γ∶ I →M is (continuously) extendible

if, denoting I = (A,B), A ∈ R ∪ {−∞}, B ∈ R ∪ {∞}, then γ(t) converges

either as t→ A or t→ B. A smooth curve is called inextendible if it is not

extendible. Note that a curve is extendible iff one of its reparametrisations is

extendible. If γ is a future-pointing smooth or piecewise smooth causal curve

in a spacetime M , we say γ is future-extendible if γ(t) converges as t→ B
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and past-extendible if γ(t) converges either as t → A. Again γ is called

future(past)-inextendible if it is not future(past)-extendible. A geodesic

γ∶ I →M (where I ⊆ R is open) is called geodesically extendible if we can

extend it to a geodesic γ′∶ I ′ → M defined on a strictly larger open domain

I ′ ⊋ I. If γ is not defined on an open interval, e.g. [a, b) then the notions of

extendibility shall refer to the open end-point, in this case b. For instance,

the geodesic γ∶ [a, b) →M is geodesically extendible if it can be extended to a

geodesic γ′∶ [a, b + ε) →M for some ε > 0.

We shall shortly need the following theorem from O’Neill [23] (Lemma

5.8) on the extendibility of geodesics. We quote it here for the reader’s

convenience:

Theorem 4.10. Given b < ∞ then a geodesic γ∶ [a, b) →M in a Lorentzian

or Riemannian manifold M is geodesically extendible iff it is (continuously)

extendible.

Lemma 4.11. Let γ∶ [a, b) → M be a geodesic in a Riemannian manifold,

then it is geodesically extendible iff there exists a compact set C ⊆ M s.t.

[γ]∶ = γ([a, b)) ⊆ C.

Proof. If γ is geodesically extendible then its extension γ′∶ [a, b] → M is

continuous so C = γ′([a, b]) is compact. Conversely, if γ([a, b)) ⊆ C then

since it is a geodesic it has constant speed and so uniformly continuous.

As C is compact it is complete as a metric space. Thus we can extend

γ continuously to [a, b] by basic functional analysis. So γ is continuously

extendible and so geodesically extendible by Theorem 4.10.

Note that this lemma is also true in the case of Lorentzian manifolds. The

proof can be reached by applying Lemma 1.56, Proposition 3.38 and Lemma

5.8 of O’Neill [23]. In this thesis we only need the result in its current form.
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Proposition 4.12. Consider the spacetime (M,g) = (R × Σ, dt2 − h). Let

t ≥ 0 and K ⊆ Σ0 be compact. Then the following statements are equivalent:

1. C(K, t) is compact,

2. Bt(0) ⊆ εp for all p ∈K,

3. J(K) ∩Σt is compact.

If Statements 1-3 are true, then C(K, t) = ⋃p∈K expp[Bt(0)] = J(K) ∩Σt.

Remark. In order to make sense of this proposition, take note of the following

definitions: Given a metric space (X,d) and K ⊆X, then for t ≥ 0 define:

C(K, t) ∶= {p ∈X such that d(p,K) ≤ t},

where d(p,K) ∶= infq∈K{d(p, q)} (see Appendix C). We are implicitly using

the metric d on Σ0 induced by the Riemannian metric h via Theorem 4.4. We

define εp ⊆ TpM to be the domain of the exponential map expp at p, induced

by the Riemannian metric h. The set Bt(0) ⊆ TpM is the open ball of radius

t centered on 0 ∈ TpM with respect to the norm induced by hp. Note that,

since C(K, t) is given in terms of the metric d induced by the Riemannian

metric h, then all three expressions C(K, t),Bt(0) and J(K)∩Σt depend on

h. Indeed, if a different equivalent metric d was chosen, then this proposition

would be, in general, false.

Proof of Proposition 4.12.

(1⇒2 )

C(K, t) is compact ⇒ C(p, t) is compact for all p ∈K.

Take p ∈K and let Xp ∈ Bt(0), so ∣Xp∣ ≤ t. Let σ be the maximal geodesic in

Σ through p s.t.: σ̇(0) = Xp, σ∶ [0, b) → Σ and so ∣σ̇(s)∣ = ∣Xp∣ ≤ t ∀s ∈ [0, b).
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If b ≤ 1, then L(σ∣t′0 ) = ∫
t′

0 ∣σ̇(s)∣ds ≤ t′t ≤ bt ≤ t and so d(p, σ(s)) ≤ L(σ∣t′0 ) ≤

t ∀s ∈ [0, b).

And so σ(s) ∈ C(p, t) ∀s ∈ [0, b) but by Theorem 4.10, then σ can be

extended to a geodesic defined on [0, b + ε), contradiction. Thus b > 1 and

Xp ∈ εp ∀p ∈K.

(3⇒2 )

As in the proof of (1⇒ 2), choose p ∈K, Xp ∈ Bt(0) and σ∶ [0, b) → Σ be the

maximal geodesic through p with speed Xp at p. If b ≤ 1, for c ∈ [0, b), let

σ′∶ [0, t] → Σ, σ′(s) = σ(s ct) and ∣σ̇′(s)∣ = c
t ∣σ̇(s

c
t)∣ ≤ c < b ≤ 1.

Thus (t, σ(s)) ⊆ J(p) ∩Σt ⊆ J(K) ∩Σt (compact by assumption) ∀s ∈ [0, b).

Again by Theorem 4.10, then σ can be extended to a geodesic defined on

[0, b + ε), contradiction. Thus b > 1 and Xp ∈ εp for all p ∈ K such that

∣Xp∣ ≤ t.

(2⇒1 )

Bt(0) ⊆ εp ∀p ∈ K implies C(p, t) = expp[Bt(0)], which is Corollary 5.6.4 in

Petersen [25]. Note that since the exponential map is certainly continuous

then it follows that C(p, t) is compact ∀p ∈ K. It follows from this that

C(K, t) = ⋃p∈K C(p, t) is compact, as is shown in Proposition C.7 in the

appendix.

(1⇒3 )

Given qn ∈ J(K) ∩ Σt ⊆ C(K, t), then by compactness there exists a subse-

quence qnk → q ∈ C(K, t) = ⋃p∈K C(p, t). Thus q ∈ C(p, t) = expp[Bt(0)] for

some p ∈K.

So there exists a geodesic σ∶ [0,1] → Σ s.t. σ(0) = p, σ(1) = q, ∣σ̇(s)∣ =

∣σ̇(0)∣ ≤ t. So define σ′∶ [0, t] → Σ, σ′(s) = σ(s/t), ∣σ̇′(s)∣ = 1
t ∣σ̇(s/t)∣ ≤ 1,
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σ′(0) = p, σ′(1) = q and (t, q) ∈ J(K) ∩Σt by Proposition 4.7, so J(K) ∩Σt

is compact.

(The final statement)

When Statements 1 -3 are true then, fixing p ∈K, we have C(p, t) = expp[Bt(0)]

from Corollary 5.6.4 in Petersen [25]. But we have J(p) ∩ Σt ⊆ C(p, t) =

expp[Bt(0)] ∀t ∈ R. Furthermore, the argument in the proof of (1⇒ 3) shows:

expp[Bt(0)] ⊆ J(p) ∩Σt. So C(p, t) = expp[Bt(0)] = J(p) ∩Σt ∀p ∈ K. Thus

C(K, t) = ⋃p∈K C(p, t) = ⋃p∈K expp[Bt(0)] = ⋃p∈K J(p) ∩Σt = J(K) ∩Σt.

In particular, the content of this proposition is true when K = {p} is

any point in Σ0. The usefulness of this proposition arises from the fact that

C(K, t) is easier to visualise than J(K) ∩Σt as Section 7 utilises.

We recall the notion of a globally hyperbolic spacetime:

Definition 4.13. A spacetime (M,g) is globally hyperbolic if:

1. It obeys the causality condition: there exist no closed causal curves.

2. J+(p)⋂J−(q) is compact ∀p, q ∈M .

(A curve γ ∶ [a, b] →M is called closed if γ(a) = γ(b).) Note, it is shown

in Bernal and Sanchez [7] that condition 1 may be equivalently replaced by

the “strong causality condition”.

Definition 4.14. Given a spacetime (M,g), a Cauchy surface (of (M,g))

is a subset S of M that is met exactly once by every inextendible smooth

timelike curve in M .

To explain the name, we note that every such set is an achronal closed

topological embedded hypersurface in M (see Lemma 14.29 in O’Neill [23]).
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It is an important fact that global hyperbolicity is equivalent to the exis-

tence of a Cauchy surface in the spacetime as the following theorem states,

which we include for completeness and future reference. Before we state it,

we first define the concept of an acausal set in a spacetime, since this notion

shall be used in the following theorem.

Definition 4.15 (Acausal Set). A subset S of a spacetime M is called

acausal if it is met at most once by any causal curve in M .

An achronal set is defined similarly with “any causal curve” replaced by

“any timelike curve”.

Theorem 4.16. A spacetime (M,g) is globally hyperbolic iff it possesses a

Cauchy surface. If so, then it also possesses a smooth spacelike Cauchy sur-

face. Additionally, if H is a smooth spacelike acausal compact m-dimensional

embedded submanifold with boundary in M , then there exists a smooth space-

like Cauchy surface S in M that contains H.

Proof. If S ⊆M is Cauchy surface then M is globally hyperbolic by Corollary

14.39 in O’Neill [23]. That M is globally hyperbolic implies that it possesses

a smooth spacelike Cauchy surface is proved in Theorem 1 in Bernal and

Sanchez [8]. For the last statement see Theorem 1.1 of Bernal and Sanchez

[6].

Note that if M is n-dimensional, then in the above theorem: m ∈ {0, ..., n−

1}.

In order to aid the understanding of this theorem, we shall shortly give an

example to illustrate why we cannot remove the condition of compactness.

In order to state this example, we first introduce the concept of Cauchy

deveploment of a set, a notion that will be frequently used later.
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Figure 1: A smooth spacelike acausal embedded submanifold of a globally

hyperbolic spacetime need not be extendible to a Cauchy surface.

Definition 4.17 (The Past and Future Cauchy Developments). Given a

subset S of a spacetime M , then the future Cauchy development D+(S) ⊆

M is defined as:

D+(S) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
p ∈M ∶

Every past-inextendible future-pointing smooth

causal curve through p intersects S.

⎫⎪⎪⎪⎬⎪⎪⎪⎭
The past Cauchy development D−(S) of S is defined similarly with

“past-inextendible” replaced by “future-inextendible”. The Cauchy devel-

opment D(S) of S is then defined: D(S) =D+(S) ∪D−(S).

Using this definition, let M = D({0} × (0,1)) be an open subset of 2-

dimensional Minkowski space and fix 0 < ∣t∣ < 1/2. Then H = {t} × (0,1) ∩M

is a 1-dimensional smooth spacelike, acausal embedded submanifold and so

also a submanifold with boundary (just with empty boundary!). However, it

is non-compact in M and is contained in no Cauchy surface (see Figure 1).

The following proposition gives a necessary and sufficient condition for

a standard static spacetime to be globally hyperbolic. The content of this

proposition is already known, however we give an alternative proof. See

Lemma A.5.14 in Bär, Ginoux and Pfäffle [3] or Theorem 3.67 in Beem,

Ehrlich and Easley [5] for other proofs.
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Figure 2: Examples of Cauchy

surfaces in the globally hyper-

bolic spacetime M1+1 which are (i)

smooth hypersurfaces but which

contain both null and spacelike

tangent vectors, (ii) smooth and

contain only spacelike tangent vec-

tors and (iii) not C1.

Proposition 4.18. Given the Riemannian manifold (Σ, h), then the stan-

dard static spacetime (M,g) = (R×Σ, dt2 −h) is globally hyperbolic iff (Σ, h)

is a complete Riemannian manifold.

Proof. Let (Σ, h) be complete. We wish to give two proofs that (M,g)

is globally hyperbolic, namely that it possesses a smooth spacelike Cauchy

surface and that it satisfies the definition of global hyperbolicity (equivalent

by Theorem 4.16).

We wish to show that Σ0 = {0}×Σ is a smooth spacelike Cauchy surface.

Let γ∶ I →M be a smooth inextendible causal curve w.l.o.g. given by γ(t) =

(t, σ(t)), where σ∶ I → Σ is a smooth inextendible curve in Σ with speed

bounded by 1. Then if I ≠ R then as σ is uniformly continuous and Σ is

complete then σ can be continuously extended to the closure I of I in R,

where I ≠ I ′, contradicting the inextendibility of σ. Thus I = R, γ(0) ∈

Σ0, and so any inextendible smooth causal curve passes Σ0. Note also the

parametrisation: γ(t) = (t, σ(t)) also shows that it must pass Σ0 once and

only once.

We now show that M satisfies the definition of a globally hyperbolic
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spacetime. That it is causal follows from the previous argument. We must

now show that J+(x) ∩ J−(y) is compact for all x, y ∈ M . Let x = (t, p)

and y = (t′, q). By Proposition 4.12, since (Σ, h) is complete we know that

J+(x) ∩Σs = {s} ×C(p, s − t) for all s ≥ t. Thus:

J+(x) ∩ J−(y) = [⋃
s≥t

{s} ×C(p, s − t)] ∩ [ ⋃
s′≤t′

{s′} ×C(q, t′ − s′)]

= ⋃
s≥t,s′≤t′

{s} ×C(p, s − t) ∩ {s′} ×C(q, t′ − s′)

= ⋃
t≤s≤t′

{s} × [C(p, s − t) ∩C(q, t′ − s)]

Note that C(p, s − t) ∩ C(q, t′ − s) is compact since complete Riemannian

manifolds obey the Heine-Borel property (Theorem 16 of Petersen [25]). Let

zn = (sn, rn) ∈ J+(x)∩J−(y), so sn ∈ [t, t′] and rn ∈ [C(p, sn−t)∩C(q, t′−sn)].

By taking successive subsequences we have that snk → s ∈ [t, t′] and rnk →

r ∈ C(p, s− t) ∩C(q, t′ − s). So znk → z = (s, r) ∈ J+(x) ∩ J−(y) and the latter

is compact.

Now for the converse: If (Σ, h) is not complete, then εp ≠ TpΣ for some

p ∈ Σ. So ∃Xp ∈ TpΣ s.t. ∣Xp∣ = R, B(0,R) ⊆ εp and Xp ∉ εp. Consequently,

there exists a geodesic σ∶ [0, t) → Σ that is (continuously) inextendible by

Theorem 4.10 and has unit speed. Let x = (0, p), y = (2t, p) so (t, σ(s)) ∈

J+(x)∩J−(y) ∀s ∈ [0, t). If (M,g) is globally hyperbolic, then J+(x)∩J−(y)

is compact and for all s ∈ [0, t): σ(s) ∈ π−1
t [Σt ∩ J+(x) ∩ J−(y)], where

the RHS is compact in Σ. So, σ is extendible by Lemma 4.11, which is a

contradiction.

Note that since global hyperbolicity is preserved under conformal trans-

formations then we also have the following result:

Lemma 4.19. Given the Riemannian manifold (Σ, h) and the smooth func-

tion V ∈ C∞(Σ), V > 0 then the standard static spacetime (M,g) = (R ×
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Σ, V 2dt2 − h) is globally hyperbolic iff (Σ, V −2h) is a complete Riemannian

manifold.

We shll now analyse the Cauchy development D(Σ0) of the set Σ0 in a

standard static spacetime. Note that the Cauchy development of a set may

be open (in the case of D({0} × R) ⊆ M1+1) or closed (as in the case of

D({0} × [a, b]) ⊆M1+1). The following proposition states that in a standard

static spacetime the Cauchy development of Σ0 is open. Thus it is a smooth

embedded submanifold and the metric g gives it the structure of a spacetime.

Note that this spacetime is also static but not in general standard static (e.g.

let M = R×(0,1) be a strip in Minkowski space with the induced Lorentzian

metric. Then D(Σ0) is an open diamond.) In fact, this spacetime D(Σ0) is

also globally hyperbolic.

Proposition 4.20. Let (M,g) = (R × Σ, V 2dt2 − h) be the standard static

spacetime in Definition 2.4 then Σ0 is an acausal smooth embedded spacelike

hypersurface in M . Also, M satisfies the causality condition.

Proof. We have shown in Proposition 4.6 that if γ∶ I →M is a causal curve

meeting Σ0 (where I is an open interval of R) then, after taking a reparametri-

sation, we may let γ(t) = (t, σ(t)), where σ∶ I → Σ is a smooth curve with

speed bounded by 1 and 0 ∈ I and clearly γ only passes Σ0 once. A similar

argument also works for the second statement.

Proposition 4.21. Given any acausal topological hypersurface S in a space-

time (M,g), then D(S) is open in M and (D(S), g) is a globally hyperbolic

spacetime. In fact S is a Cauchy surface for (D(S), g).

Proof. See Propositions 14.38 and 14.43 of O’Neill [23].
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Thus a consequence of the previous two propositions is that given a stan-

dard static spacetime (M,g) = (R×Σ, V 2dt2−h) then (D(Σ0), g) is a globally

hyperbolic spacetime.

We give here an explicit form of D(Σ0) and an alternative proof that it

is an open set in M .

Proposition 4.22. Given a standard static spacetime (M,g) = (R×Σ, V 2dt2−

h) then the following statements are true:

1. D+(Σ0) = {(t, p) ∈M ∶ C(p, t) is compact in Σ, t ≥ 0}.

2. D−(Σ0) = {(−t, p) ∈M ∶ C(p, t) is compact in Σ, t ≥ 0} = TD+(Σ0).

3. D(Σ0) =D+(Σ0) ∪D−(Σ0) = {(t, p) ∈M ∶ C(p, ∣t∣) is compact in Σ}.

4. D(Σ0) is open in M ,

where C(p, t) is the closed ball centered on p of radius t in the metric on Σ

induced by the Riemannian metric V −2h (see Theorem 4.4), T ∶ M → M is

the smooth map: T (t, p) = (−t, p) and Σ0 = {0} ×Σ.

Before we prove Proposition 4.22, we prove the following very useful re-

sult:

Proposition 4.23. With the definitions of the previous proposition, let K ⊆

Σ and C(K, t) be compact in Σ, where t ≥ 0, then {t} ×K ⊆D+(Σ0).

Proof. As usual we let w.l.o.g. V = 1 for simplicity. Let p ∈ K and γ∶ I →

R×Σ be an inextendible future-pointing smooth causal curve through (t, p),

where I is an open interval of R. By Proposition 4.7 w.l.o.g. we can set

γ(s) = (s, σ(s)) ∀s ∈ I, where σ∶ I → Σ is a smooth curve with t ∈ I, σ(t) = p

and ∣σ̇(s)∣ ≤ 1 ∀s ∈ I.
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Let I = (a, b) where b ∈ R ∪ {∞}. If a ≥ 0 then for s ∈ (a, t):

d(p, σ(s)) ≤ L(σ∣ts) = ∫
t

s
∣σ̇(s′)∣ds′ ≤ t − s ≤ t

and so σ(s) ∈ C(K, t) ∀s ∈ (a, t). But since σ is a smooth curve in Σ with

speed bounded by 1 it is uniformly continuous by the Mean Value Theorem

(Theorem 4.8) and since it is contained in the compact (and thus complete)

set C(p, t), then it can be continuously extended, contradiction. Thus a < 0

and γ passes Σ0.

Corollary 4.24. Again, with the definitions of the previous propositions, if

C(K, t) is compact in Σ then {s} ×C(K, t − s) ⊆D+(Σ0) for all s ∈ [0, t].

Proof. So (by Proposition C.4) C(K, t) = C(C(K, t − s), s) is compact. By

the previous proposition then {s}×C(K, t−s) ⊆D+(Σ0) for all s ∈ [0, t].

Proof of Proposition 4.22. Again, for simplicity and w.l.o.g. assume V = 1.

We start by proving Statement 1 :

D+(Σ0) = {(t, p) ∈M ∶ C(p, t) is compact in Σ, t ≥ 0}

That the RHS is contained in the LHS follows from Corollary 4.24 with

K = {p} and s = t. For the converse, let (t, p) ∈ D+(Σ0). So t ≥ 0 and any

past-inextendible future-pointing inextendible smooth causal curve through

(t, p) passes Σ0. Thus, using the symmetry of the spacetime, any future-

pointing future-inextendible smooth causal curve through (t, p) passes Σ2t.

Take for instance the curve γ∶ I →M , where 0 ∈ I, γ(s) = (t + s, σ(s)) and σ

is an inextendible geodesic with σ(0) = p and σ̇(0) = Xp, with ∣Xp∣ ≤ 1. Let

I = (a, b). The curve γ is thus causal and inextendible and so passes Σ2t and

so b > t. Alternatively if ∣Xp∣ ≤ t then (by Lemma 5.8 (Rescaling Lemma) in

Lee [19]) b > 1 and so B(0, t) ⊆ εp or, by Proposition 4.12, C(p, t) is compact

in Σ.
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Statements 2 and 3 follow. Now for the Statement 4 that D(Σ0) is open:

Let (t, p) ∈ D(Σ0) w.l.o.g. t ≥ 0. So C(p, t) is compact in Σ and from

Corollary C.6, there exists ε > 0 s.t. C(p, t + ε) is also compact. We propose

that:

(−(t + ε
2
) , t + ε

2
) ×B (p, ε

2
) ⊆D(Σ0).

This follows by showing that if (s, q) ∈ (−(t+ ε
2), t+

ε
2)×B(p, ε2) then C(q, s) is

compact (the result then follows from the description of D(Σ0) just proven).

Firstly, we can set w.l.o.g. s ∈ [0, t+ ε
2), d(p, q) <

ε
2 . But r ∈ C(q, s) ⇒ d(r, q) ≤

s and so:

d(r, p) ≤ d(r, q) + d(q, p) < s + ε
2
< t + ε

2
+ ε

2
= t + ε

So C(q, s) ⊆ C(p, t + ε) and as the RHS is compact then so is C(q, s)

It is well known that given a globally hyperbolic spacetime and smooth

initial data of compact support defined on a smooth spacelike Cauchy surface

then the Klein-Gordon equation can be solved uniquely with respect to this

data:

Theorem 4.25 (Existence and Uniqueness of Classical Solutions on Globally

Hyperbolic Spacetimes with respect to compactly supported initial data).

(Bär et al. [3] Theorem 3.2.11) Let (M,g) be a globally hyperbolic spacetime

with smooth, spacelike Cauchy surface S. Then the Klein-Gordon equation

has a well-posed initial value formulation, that is, given data φ0, φ̇0 ∈ C∞
0 (S)

then there exists a unique solution ψ ∈ C∞(M) to:

(◻g +m2)ψ = 0

ψ∣S = φ0

∇nψ∣S = φ̇0,
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where n is the unique unit smooth future-pointing timelike vector field along

S normal to S. Moreover:

suppψ ⊆ J(K)

where K = suppφ0⋃ supp φ̇0.

Note that there exists along any smooth spacelike surface S in a spacetime

M such a smooth vector field n along S normal to S (the smooth vector field n

is not to be confused with the dimension of the spacetime). For completeness,

this is proven in Proposition E.1. Note that the orientability of M or S is

not assumed.

We shall use a modification of this theorem in the next section, that is,

we can drop the condition on the data of being of compact support. This is

shown in the Appendix (Theorem B.1).
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5 The Existence of Wald solutions

In this section we show how to construct our solution to the Klein-Gordon

equation from the vector-valued function t → [φt]. This section is based

on the paper by Wald [37], but is extended in the following aspects. The

more recent result by Bernal and Sanchez [6] on the extendibility of subsets

of the spacetime to smooth spacelike Cauchy surfaces in globally hyperbolic

spacetimes (the second half of Theorem 4.16) is needed to complete the proof

on the existence of Wald solutions. We also extend Wald’s proof to the case

of acceptable s.a.e.s. The reference for the results on globally hyperbolic

spacetimes is, as usual, Bär et al. [3]. This section is of great importance to

us as it proves that the construction of Section 3 defines a smooth solution

to the Klein-Gordon equation. We answer in the next section the question

of its uniqueness.

Now we finally come to the statement concerning the agreement between

our solution (Equation (3.8), p.27) to the Hilbert space version of the Klein-

Gordon equation (Equation 3.6, p.25) and that arising from an application

of Theorem B.1.:

Theorem 5.1. Given initial data φ0, φ̇0 ∈ χE, where AE is an acceptable

s.a.e. of A, choose φt ∈ χE s.t. [φt] = C(t,AE)[φ0] + S(t,AE)[φ̇0]. If we

define the function φ on M by: φ(t, x) = φt(x), and let ψ be the unique

smooth solution in D(Σ0) satisfying this smooth Cauchy data according to

Theorem B.1 then φ = ψ in D(Σ0) and, in particular, φ∣D(Σ0) is smooth and

solves the Klein-Gordon equation there.

Note that if AE is bounded-below then A−
E is bounded and χE = {f ∈

C∞(Σ) s.t. [f] ∈D(A∞
E )}.
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Figure 3: φ = ψ in D(Σ0), where (M,g) = (R × (0,1), dt2 − dx2)

We will prove this theorem by contradiction. The proof is based on Wald

[37] but completed (with a more recent result of Bernal and Sanchez [6] on

the existence of smooth spacelike Cauchy surfaces) and extended.

Proposition 5.2. If there exists t1 such that φ ≠ ψ everywhere in a non-null

set in Σt1 ∩D(Σ0), then there exists a compact set H in Σt1 ∩D(Σ0) and a

smooth spacelike Cauchy surface S for D(Σ0) s.t. H ⊆ S and volh{(t1, x) ∈

H ∶ ψ(t1, x) ≠ φ(t1, x)} > 0.

Proof. So, by assumption there exists t1 ∈ R such that

volh{(t1, x) ∈ Σt1 ∩D(Σ0)∶ψ(t1, x) ≠ φ(t1, x)} > 0. (5.1)

Now we construct a smooth compact embedded submanifold with boundary

H of Σt1 ∩D(Σ0) s.t.

volh{(t1, x) ∈H ∶ ψ(t1, x) ≠ φ(t1, x)} > 0.
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Firstly, let U = {(t1, x) ∈ Σt1 ∩D(Σ0)∶ ψ(t1, x) ≠ φ(t1, x)}, so volh(U) > 0.

Since any manifold has a countable atlas (see e.g. [39] Lemma 1.9) then

there exists such an atlas (Vn, φn)n≥0 of Σt1 ∩D(Σ0) with U = ⋃n≥0U ∩ Vn
and volh(U) ≤ ∑n≥0 volh(U ∩Vn) and so there must be one chart (Vn, φn) s.t.

volh(U ∩ Vn) > 0. Let (V,φ) = (Vn, φn).

Secondly, by a similar argument, as φ(V ) is a open subset of R4 and any

open subset of Rn can be covered by a countable number of open balls then

there exists an open ball B = {x ∈ R4 s.t. ∣∣x∣∣ < r} (w.l.o.g. centered at 0) s.t.

B ⊆ φ(V ) and volh(U ∩ φ−1(B)) > 0.

Lastly, since B = {x ∈ R4 s.t. ∣∣x∣∣ < r} is covered by the countable col-

lection of closed balls Cn = {x ∈ R4 s.t. ∣∣x∣∣ ≤ rn} where (rn)n≥1 is any se-

quence of positive reals s.t. rn ↗ r and as before there must exist n ≥ 1

s.t. volh(U ∩ φ−1(Cn)) > 0. Let H = φ−1(Cn) be the desired smooth com-

pact submanifold with boundary of Σt1 ∩D(Σ0). Since H ⊆ Σt1 ∩D(Σ0) and

the latter is a smooth spacelike acausal embedded submanifold then H is a

smooth compact acausal spacelike embedded submanifold with boundary of

the spacetime (D(Σ0), g). The reason for this construction is that it allows

us to apply Theorem 4.16. Thus there exists a smooth spacelike Cauchy

surface S of (D(Σ0), g) which contains H.

Now let ḟt1 be a smooth compactly supported function on S with support

in S ∩Σt1 such that ḟt1 ≥ 0 and ḟt1 = 1 on H. Thus:

∫
S∩Σt1

ḟt1(ψ − φ)V −1dvolh ≠ 0

and define f to be the unique smooth solution to the Klein-Gordon equation

on D(Σ0) with Cauchy data (0, ḟ1) on S, according to Theorem 4.25.

52



We define F ∶ [0, t1] ×Σ→ R as:

F (p) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f(p), p ∈ [0, t1] ×Σ ∩D(Σ0).

0, otherwise.

Proposition 5.3. F satisfies the following:

1. suppF is compact in [0, t1] ×Σ ∩D(Σ0).

2. It is compactly supported on each Σt ∩D(Σ0) for 0 ≤ t ≤ t1.

3. F ∈ C∞([0, t1] ×Σ) (as a smooth manifold with boundary).

4. (◻g +m2)F = 0 (as an element of C∞([0, t1] ×Σ)).

5. supp (∂tF )∩Σt1 = supp ḟt1 ⊆ S ∩Σt1 and ∂tF (p) = ḟt1(p) for p ∈ S ∩Σt1.

6. F ∣Σt1 = 0.

Proof. By construction supp ḟt1 compact in S and contained in D(Σ0) ∩Σt1 .

As all hypersurfaces concerned are embedded, then all have their topologies

induced from that of M and thus supp ḟt1 compact in D(Σ0).

But, the causal past of a compact set intersected with the causal future

of a Cauchy surface S (in a globally hyperbolic spacetime) is always compact

(see Corollary A.5.4 of Bär et al. [3]). Thus:

J−D(Σ0)(supp ḟ1) ∩ J+D(Σ0)(Σ0) is compact in D(Σ0).

So,

J−D(Σ0)(supp ḟ1) ∩ [0, t1] ×Σ is compact in D(Σ0),

and so also in [0, t1] ×Σ ∩D(Σ0).

Thus, suppF ⊆ suppf ∩ [0, t1] ×Σ is compact in [0, t1] ×Σ ∩D(Σ0) and

Statement 1 is proved.
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Statements 2 and 3 follow directly from 1. Now, since by definition

F is locally equal to either f or 0, where both are smooth solutions to the

Klein-Gordon equation, then Statement 4 follows. Statements 5 and 6 result

straight from the definitions of F and f .

Theorem 5.4. The functions φ and ψ are equal on D(Σ0).

Proof. If there exists t1 such that φ ≠ ψ everywhere in a non-null set in

Σt1 ∩D(Σ0), construct H,S and F as above. Now define:

c(t) = ∫
Σt
V −1 [F (∂ψ

∂t
− dφt
dt

) − ∂F
∂t

(ψ − φt)]dvolh (5.2)

Clearly since φt and dφt
dt are only defined a.e. in Σ we should point out

that any other choices in the same respective equivalence classes would yield

an identical value of c. As both functions are in L2(Σ), then multiplying by

the smooth functions of compact support, F and ∂F
∂t , we obtain an element

of L1(Σ).

The smooth function ψ is only defined in D(Σ0) and so on each hyper-

surface Σt ∩ D(Σ0), ψ and ∂ψ
∂t are smooth functions but as F and ∂F

∂t are

compactly supported smooth functions on each Σt ∩D(Σ0), then f ∂ψ∂t and
∂F
∂t ψ are easily definable and smooth on each Σt, t ∈ [0, t1]. Indeed they are

of compact support also so they are integrable on Σt (since we are dealing
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with a Radon measure). Thus:

dc

dt
= ∫

Σt

V −1
[

∂F

∂t
(

∂ψ

∂t
−

dφt
dt

) + F (

∂2ψ

∂t2
−

d2φt
dt2

) −

∂2F

∂t2
(ψ − φt) −

∂F

∂t
(

∂ψ

∂t
−

dφt
dt

)]dvolh

= ∫
Σt

V −1
[F

∂2ψ

∂t2
−

∂2F

∂t2
ψ]dvolh − ∫

Σt

V −1
[F

d2φt
dt2
−

∂2F

∂t2
φt]dvolh

= ∫
Σt

V −1
[FV Di

(V Diψ) − V D
i
(V DiF )ψ]dvolh − ∫

Σt

V −1
[F

d2φt
dt2
−

∂2F

∂t2
φt]dvolh

= ∫
Σt

[FDi
(V Diψ) −D

i
(V Dif)ψ]dvolh − ∫

Σt

V −1
[F

d2φt
dt2
−

∂2F

∂t2
φt]dvolh

= ∫
Σt

[−(DiF )(V Diψ) + (V DiF )(Diψ)]dvolh − ∫
Σt

V −1
[F

d2φt
dt2
−

∂2F

∂t2
φt]dvolh

= ∫
Σt

V −1
[−F

d2φt
dt2
+

∂2F

∂t2
φt]dvolh

= ⟨F,AEφt⟩ − ⟨AEF,φt⟩

= 0.

But, ψ∣Σ0 = φ0 and ∂ψ
∂t ∣Σ0 = φ̇0, so c(0) = 0

and since F ∣t1 = 0 by definition, we have:

c(t1) = −∫
Σt
V −1Ḟt1(ψ − φt)dvolh

≠ 0.

However c ∈ C1[0, t1] and so this last statement contradicts the Intermediate

Value Theorem, yielding that φ = ψ a.e. in D(Σ0) ∩ Σt for all t. Since φ

and ψ are continuous, then φ = ψ in D(Σ0) ∩ Σt for all t and so φ = ψ in

D(Σ0).

Thus we have proven Theorem 5.1. We shall now show that φ solves the

Klein-Gordon equation everywhere in M .

Theorem 5.5 (Existence of Wald Solutions). Let AE be an acceptable s.a.e.

of A. Given any pair of functions φ0, φ̇0 ∈ χE, for each t ∈ R define φt ∈ χE
uniquely by: [φt] = C(t,AE)[φ0] +S(t,AE)[φ̇0] and define the function φ on

M as φ(t, x) = φt(x), where φt ∈ C∞(Σ). This function is smooth, solves
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the Klein-Gordon equation and satisfies the Cauchy data (φ0, φ̇0), that is

φ∣Σ0 = φ0, ∂tφ∣Σ0 = φ̇0.

Proof. Given p = (t1, x) ∈M , we wish to find an open neighbourhood of p in

M in which φ is smooth and satisfies the Klein-Gordon equation. We begin

by reformulating our vector-valued solution. We propose that:

[φt] = C(t,AE)[φ0] + S(t,AE)[φ̇0]

= C(t − t1 + t1,AE)[φ0] + S(t − t1 + t1,AE)[φ̇0]

= [C(t − t1,AE)C(t1,AE) −AES(t − t1,AE)S(t1,AE)][φ0]

+ [S(t − t1,AE)C(t1,AE) +C(t − t1,AE)S(t1,AE)][φ̇0]

= C(t − t1)[C(t1,AE)[φ1] + S(t1,AE)[φ̇0]]

+ S(t − t1,AE)[−AES(t1,AE)[φ0] +C(t1,AE)[φ̇0]]

= C(t − t1,AE)[φt1] + S(t − t1,AE)[φ̇t1].

Here, we have used the identities:

C(t1 + t2,AE) = C(t1,AE)C(t2,AE) −AES(t1,AE)S(t2,AE)

S(t1 + t2,AE) = S(t1,AE)C(t2,AE) +C(t1,AE)S(t2,AE)

on D(AE). But φt1 , φ̇t1 ∈ χE and Theorem (5.1) can be applied to this data

to show that φ is smooth in the open neighbourhood D(Σt1) of p and satisfies

the Klein-Gordon equation there.
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6 Uniqueness of Wald Solutions

We so far have concerned ourselves with constructing a class of solutions

to the Klein-Gordon equation on standard static spacetimes. Our set of

prescriptions is parametrised by acceptable s.a.e.s AE of the linear operator

A on the (real or complex) Hilbert space L2(Σ, V −1dvolh). For each such

linear operator AE we show that the solution to the Klein-Gordon equation

w.r.t. chosen Cauchy data it generates is unique up to some conditions yet

to be stated. We will use this result to define a vector space of solutions,

corresponding to each acceptable s.a.e. AE.

Theorem 6.1 (Uniqueness of Solutions (i)). Let A be the symmetric linear

operator on the (real or complex) Hilbert space L2(Σ, V −1dvolh), defined by:

D(A) = [C∞
0 (Σ)], A([φ]) = [(−V DiV Di +m2V 2)φ] for φ ∈ C∞

0 (Σ). Let AE

be an acceptable s.a.e. of A and if Ψ ∈ C2(M) satisfies:

(◻g +m2)Ψ = 0

Ψ∣Σ0 = ∂tΨ∣Σ0 = 0

[π∗t (Ψ∣t)] ∈D(AE)

[π∗t (∂tΨ∣t)] ∈ L2(Σ, V −1dvolh)

(where π∗t is the pull-back of the map πt∶Σ→ Σt), then Ψ = 0.

We start with a proposition, which has its roots in distribution theory on

arbitrary Riemannian manifolds.

Proposition 6.2. Take A and AE as above. If φ ∈ C2(Σ) such that [φ] ∈

D(AE), then AE[φ] = [(−V DiV Di +m2V 2)φ].

Proof. We know (already stated on p.23), that the adjoint A∗ of the linear

operator A is given by:

D(A∗) = {φ ∈ L2(Σ, V −1dvolh) s.t. Aφ ∈ L2(Σ, V −1dvolh)},
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since A is formally self-adjoint with respect to the smooth measure V −1dvolh,

which is proven in Proposition D.10. We can strengthen Proposition D.10 to

the following case:

∫
Σ
(Aφ)θV −1dvolh = ∫

Σ
φ(Aθ)V −1dvolh,

for all φ ∈ C2(Σ) and θ ∈ C∞
0 (Σ), since A is of second order and commutes

with complex conjugation. The proof is similar. Then, if φ ∈ C2(Σ) and

[φ] ∈D(A∗), we have:

A∗[φ](θ) = ∫
Σ
φ(Aθ)V −1dvolh = ∫

Σ
(Aφ)θV −1dvolh = [Aφ](θ),

where A∗[φ] is meant distributionally. Therefore A∗[φ] = [Aφ]. Lastly, since

AE is a s.a.e. of A, then A ≤ AE and we have: AE ≤ A∗. So, AE is the

restriction of A∗ to space D(AE). Therefore, if φ ∈ C2(Σ) and [φ] ∈D(AE),

then AE[φ] = A∗[φ] = [Aφ].

Proof of Theorem 6.1. We use a proof by contradiction.

Firstly, we point out that if (◻g +m2)Ψ = 0 then ∂2
t Ψ = −AΨ.

But as π∗t (Ψ∣t) ∈D(AE), by the previous proposition:

A(π∗t (Ψ∣t)) = AE(π∗t (Ψ∣t)) ∈ L2(Σ, V −1dvolh)

and thus π∗t (∂2
t Ψ∣t) ∈ L2(Σ, V −1dvolh) also.

If Ψ ≠ 0 then ∃t1 ∈ R s.t. Ψ∣Σt1 ≠ 0.

Let ḟt1 ∈ C∞
0 (Σt1) s.t. ∫Σt1

ḟt1ΨV
−1dvolh ≠ 0

Let ft = S(t − t1,AE)(π∗t1 ḟt1) be the vector-valued function. According to

Theorem 5.5 on the existence of smooth Wald solutions, this function can be

represented by the smooth solution f ∈ C∞(M) to the Cauchy problem with

smooth initial data (0, ḟt1), of compact support on Σt1 .
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We now evaluate the symplectic form at our two solutions Ψ and f :

c(t) = ∫
Σt

[∂tfΨ − f∂tΨ]V −1dvolh

= ∫
Σ
π∗t (∂tf ∣t)π∗t (Ψt) − π∗t (f ∣t)π∗t (∂tΨt)V −1dvolh.

Then, the following are true:

1. π∗t (f ∣t) ∈ L2(Σ, V −1dvolh) ∩ [C∞(Σ)].

2. π∗t (∂tf ∣t) ∈ L2(Σ, V −1dvolh) ∩ [C∞(Σ)].

3. π∗t (∂2
t f ∣t) ∈ L2(Σ, V −1dvolh) ∩ [C∞(Σ)].

4. π∗t (Ψ∣t) ∈D(AE) ∩C2(Σ) ⊆ L2(Σ, V −1dvolh) ∩ [C2(Σ)].

5. π∗t (∂tΨ∣t) ∈ L2(Σ, V −1dvolh) ∩ [C1(Σ)].

6. π∗t (∂2
t Ψ∣t) ∈ L2(Σ, V −1dvolh) ∩ [C(Σ)].

Then clearly c(t1) ≠ 0 and c(0) = 0 but:

dc(t)
dt

= ∫
Σt

[∂2
t fΨ − f∂2

t Ψ]

= −⟨Af,Ψ⟩ + ⟨f,AΨ⟩

= −⟨AEf,Ψ⟩ + ⟨f,AEΨ⟩

= 0,

which is a contradiction.

Lemma 6.3 (Uniqueness of Solutions (ii)). Let AE be an acceptable s.a.e.

of A. Given two solutions Ψ1,Ψ2 ∈ C2(M) of the Klein-Gordon equation:

(◻g +m2)Ψi = 0 for i ∈ {1,2}, corresponding to Cauchy data φ0 ∈ C2(Σ0) s.t.
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[φ0] ∈D(AE) and φ̇0 ∈ C1(Σ) ∩ L2(Σ, V −1dvolh) such that ∀i ∈ {1,2}:

Ψi∣Σ0 = φ0

∂tΨi∣Σ0 = φ̇0

[π∗t (Ψi∣t)] ∈D(AE)

[π∗t (∂tΨi∣t)] ∈ L2(Σ, V −1dvolh)

then Ψ1 = Ψ2

Proof. Let Ψ = Ψ1 −Ψ2, then Ψ ∈ C2(M) and satisfies the conditions of the

previous proposition since all operations concerned are linear and D(AE)

and L2(Σ, V −1dvolh) are vector spaces. Thus Ψ = 0.

We note here the following trivial generalisation, the proof of which is

similar to those previous. It will be this result that will be of use in Section 8

in describing the support of the Wald solution φ.

Lemma 6.4 (Uniqueness of Solutions (iii)). Let AE be an acceptable s.a.e.

of A. Given two solutions

Ψ1,Ψ2 ∈ C2([t1, t2) ×Σ)

of the Klein-Gordon equation (regarding [t1, t2) × Σ) as a smooth manifold

with boundary): (◻g +m2)Ψi = 0 for i ∈ {1,2}, corresponding to Cauchy data

φt1 ∈ C2(Σt1) s.t. [φt1] ∈D(AE) and φ̇t1 ∈ C1(Σ)∩L2(Σ, V −1dvolh) such that

∀i ∈ {1,2} and ∀t ∈ [t1, t2):

Ψi∣Σt1 = φt1

∂tΨi∣Σt1 = φ̇t1

[π∗t (Ψi∣t)] ∈D(AE)

[π∗t (∂tΨi∣t)] ∈ L2(Σ, V −1dvolh)

then Ψ1 = Ψ2
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Using Theorems 5.5 and 6.1 on the existence and uniqueness of solutions

to the Klein-Gordon equation, we will find it useful to define a vector space

of solutions, for each acceptable s.a.e. AE of A. We show that it can be

given a natural symplectic structure in Section 10. It’s this structure that

is required for the construction of the Weyl-algebra, however we will not be

concerned with quantisation in this thesis.

Definition 6.5 (Space of Solutions). Given an acceptable s.a.e. AE of A,

define the space of solutions, SE to be:

SE = {φ ∈ C∞(M)∶ (◻g +m2)φ = 0, π−1
t (φt), π−1

t (φ̇t) ∈ χE for all t}

Proposition 6.6. We have the linear isomorphism: Ψ∶χE×χE → SE, defined

by Ψ(φ0, φ̇0) = φ, where φ is constructed using Theorem 5.5 on the existence

of Wald solutions.

Proof. Clearly Ψ is linear. Surjectivity follows since, if ψ ∈ SE, then ψ0, ψ̇0 ∈

χE. Let φ be the Wald solution, satisfying the Cauchy data (ψ0, ψ̇0). Then

ψ and φ satisfy all the conditions of Theorem 6.1 on uniqueness and so

ψ = φ.
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7 Causal Structure of Standard Static Space-

times (ii)

We shall in Section 8 further analyse some of the properties of our constructed

solutions to the Klein-Gordon equation. However, we must first prove some

basic properties of the causal structure of standard static spacetimes. One

apparently simple result of this section is that if K is a compact subset of

Σ0 then for all sufficiently small t, J+(K) ∩ Σt is compact in Σt. It will be

this result and the adapted uniqueness result of Lemma 6.4 which will prove

useful in the next section. We shall also need to prove more properties of

J+(K) to be used in Section 8.

For all the results of this section, let (M,g) = (R × Σ, V 2dt2 − h) be a

standard static spacetime as in Definition 2.4, however in all the statements

we can set w.l.o.g V = 1, since both the Cauchy development and causal

future of a set in a spacetime are invariant under conformal transformations

of the spacetime to itself.

Proposition 7.1. Let K ⊆ Σ0 be a compact set. If J(K) ∩ Σt is compact

then J(K) ∩Σt′ is compact for all ∣t′∣ ≤ ∣t∣. Define:

t∞(K)∶ = sup{t ≥ 0∶J+(K) ∩Σt is compact in Σt}.

Then t∞(K) ∈ (0,∞]. Furthermore, the following are true:

1. J(K) ∩Σt is compact for all ∣t∣ < t∞(K).

2. If t∞(K) < ∞ then J(K) ∩Σt is not compact for all ∣t∣ ≥ t∞(K).

3. If Σ is complete, then C(K, t) is compact for all t and t∞(K) = ∞.

4. If t∞(K) = ∞ for any non-empty compact set K, then Σ is complete.
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Note that Σ is complete as a metric space iff geodesically complete by

the Hopf-Rinow Theorem (see e.g. Theorem 6.13 Lee [19]). If so, then Σ

obeys the Heine-Borel property, that is K ⊆ Σ is compact iff K is closed and

bounded (see e.g. Theorem 16 in Petersen [25]).

Proof. Let t ≥ 0. If J(K) ∩ Σt is compact, then, by Proposition 4.12,

J(K) ∩ Σt = C(K, t). But as C(K, t) is compact, it easily follows that

C(K, t′) is compact for all ∣t′∣ ≤ ∣t∣ and similarly for J(K) ∩ Σt′ . That

t∞(K) > 0 is proven as follows. As K is compact, then, by Proposition C.5,

C(K, t) is compact for some t > 0 and so J+(K) ∩Σt is compact by Propo-

sition 4.12. It then follows that t∞(K) > 0 and also that Statement 1 is

true. If t∞(K) < ∞ and J(K) ∩ Σt∞(K) is compact then C(K, t∞(K)) is

compact, as is C(K, t∞(K) + ε) for some ε > 0 (by Proposition C.6), and

so also J(K) ∩ Σt∞(K)+ε which contradicts the definition of t∞(K). This

proves Statement 2. If Σ is complete, then, for all t, as C(K, t) is closed

and bounded, so it’s also compact by the Heine-Borel property. Statement 3

then follows from Proposition 4.12. If pn is a Cauchy sequence, then it is

bounded and so contained in the compact set C(K, t) for some t and so pn

converges, which proves Statement 4.

Proposition 7.2. Let C(K, t) be compact in Σ, where K is a compact subset

of Σ and t ≥ 0, then { t2} ×C(K, t2) ⊆D(Σ0).

Proof. This follows from Corollary 4.24 with s = t
2 .

Corollary 7.3. If J(K) ∩Σt is compact, then J(K) ∩Σ t
2
⊆D(Σ0).

Proof. It follows easily from Proposition 7.2 and repeated use of Proposi-

tion 4.12.

Proposition 7.4. ∀0 ≤ t1 ≤ t2:
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1. π(J(p) ∩Σt1) ⊆ π(J(p) ∩Σt2)

2. π(D(Σ0) ∩Σt2) ⊆ π(D(Σ0) ∩Σt1),

where π∶R ×Σ→ Σ is the map: π(t, x) = x.

Proof. We can set w.l.o.g V = 1 since otherwise:

π(J(p)V 2dt2−h ∩Σt1) = π(J(p)dt2−V −2h ∩Σt1) ⊆ π(J(p)dt2−V −2h ∩Σt2)

= π(J(p)V 2dt2−h ∩Σt2),

where our subscript notation highlights the dependence of J(p) on the metric.

To prove 1 : If q ∈ LHS, then ∃γ∶ [0, t1] → R×Σ, γ(t) = (t, σ(t)), ∣σ̇(t)∣ ≤ 1,

σ(0) = p, σ(t1) = q.

Let γ′∶ [0, t2] → R × Σ, γ′(t) = (t, σ(t t1t2 )), ∣γ̇′∣2 = 1 − ( t1t2 )
2∣σ̇(t t1t2 )∣

2 ≤ 0,

γ′(0) = (0, p), γ′(t2) = (t2, q), so that q ∈ RHS.

Statement 2 follows from Proposition 4.22.

Corollary 7.5. J(p) ∩Σt1 ⊈D(Σ0) ⇒ J(p) ∩Σt2 ⊈D(Σ0) ∀0 ≤ t1 ≤ t2.

Proposition 7.6. If t∞(K) < ∞, then J(K) ∩Σt∞(K)/2 ⊈D(Σ0).

Proof. Again w.l.o.g let V = 1. We know via Propositions 7.1 and 4.12, that:

B(p, t) ⊆ εp for all t < t∞(K) and p ∈ K; B(p, t∞(K)) ⊆ εp for all p ∈ K, and

that there exists p ∈K such that B(p, t∞(K)) ⊈ εp.

Thus there existsXp ∈ TpΣ/εp with ∣Xp∣ = t∞(K). We hold that there must

then exist a geodesic σ∶ [0,1) → Σ inextendible to 1 such that σ̇(0) =Xp.

To show this is true, let σ ∶ [0, a) → Σ the maximal geodesic, starting at

p with σ̇(0) = Xp. If a > 1, then Xp ∈ εp by definition, which is however a
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contradiction. If a < 1, then γ be the geodesic through p with γ̇(0) = aXp. By

the rescaling Lemma, σ being inextendible to a implies that γ is inextendible

to 1. So, by definition, aXp ∉ εp. But ∣aXp∣ < ∣Xp∣ = t∞(K), which is a

contradiction.

Now that the existence of the geodesic σ is proven, define σ′∶ [0, t∞(K)) →

Σ via: σ′(s) = σ( s
t∞(K)). It is satisfies: ∣σ̇′(s)∣ = 1

t∞(K) ∣σ̇(
s

t∞(K))∣ = 1 and

σ′(0) = p. So, from Proposition 4.7, x = ( t
∞(K)

2 , σ′( t
∞(K)

2 )) ∈ J(K)∩Σt∞(K)/2.

Now define α∶ (0, t∞(K)/2] → R × Σ, α(s) = (s, σ′(t∞(K) − s)). Since

σ is inextendible to 1 then σ′ is inextendible to t∞(K) and so α is past-

inextendible to 0. Clearly, α does not pass Σ0 although α(t∞(K)/2) =

(t∞(K)/2, σ′(t∞(K)/2)) = x. Since α is a future-pointing past-inextendible

smooth causal curve passing x but not Σ0, then x ∉ D(Σ0). Thus x ∈

J(K) ∩Σt∞(K)/2/D(Σ0).

Corollary 7.7. The following statements are true:

1. J(K) ∩Σt ⊆D(Σ0) ∀0 ≤ t < t∞(K)/2.

2. t∞(K) < ∞⇒ J(K) ∩Σt ⊈D(Σ0) ∀t ≥ t∞(K)/2.

3. t1(K)∶ = sup{t∶J+(K) ∩Σt ⊆D(Σ0)} = t∞(K)/2.

For the purposes of the following section, we continue these arguments to

define an increasing sequence:

tn+1(K)∶ = sup{t∶J+(K) ∩Σt ⊆D(Σtn(K))},

where t0(K) = 0 and the resulting definition of t1(K) agrees with that used

above. We are led to the following corollary:

Corollary 7.8. The following statements are true:
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1. J(K) ∩Σt ⊆D(Σtn(K)) ∀tn(K) ≤ t < (1 − 1
2n )t∞(K).

2. t∞(K) < ∞⇒ J(K) ∩Σt ⊈D(Σtn(K)) ∀t ≥ (1 − 1
2n )t∞(K).

3. tn(K) = (1 − 1
2n )t∞(K) ↗ t∞(K) as n→∞.

66



8 Support of Wald Solutions

We now prove a result concerning the support of our “Wald solutions”. It is in

fact not true that given Cauchy data consisting of two test functions (φ0, φ̇0)

then the support of the corresponding solution φ (w.r.t. some acceptable

s.a.e. AE of A) as constructed in Theorem 5.5, is necessarily contained in

J(K), where K = suppφ0 ∪ supp φ̇0 and J(K) is as usual the union of the

causal future and past of K: J(K) = J+(K) ∪ J−(K). A counterexample is

given in Section 12.5.

It would however be natural to guess that up until a time at which data

can pass to a possible edge, the support of φ is contained in J(K). More

precisely, if we define:

t∞(K) = sup{t ≥ 0∶J+(K) ∩Σt is compact in Σt} ∈ (0,∞],

then we propose that:

suppφ ∩ [−t∞, t∞] ×Σ ⊆ J(K).

It was proven in Proposition 7.1 that t∞(K) > 0, so this is a non-trivial state-

ment. At first sight it might appear that this result is trivial. Since D(Σ0)

is a globally hyperbolic spacetime we know that suppφ ∩ D(Σ0) ⊆ J(K)

however this does not show that φ is zero in the shaded triangular region in

Figure 4. Thus this does not even prove that φ is compactly supported on

Σt for small t.

The proof we give shortly uses the uniqueness result of Lemma 6.4 and

the sequence tn(K) constructed in the previous section. We shall define

Ψ∶ (−t1(K), t1(K))×Σ→ R to be equal to φ inside J(K) and zero outside it.

We shall show that Ψ so defined is smooth, compactly supported on Σt for
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Figure 4: The construction of t∞(K) and tn(K) in for example (M,g) =

(R × (0,1), dt2 − dx2).

t ∈ (−t1(K), t1(K)) and satisfies the Klein-Gordon equation in its domain.

Thus [Ψ∣Σt] ∈D(A) ⊆D(AE) and so Ψ = φ in the domain of Ψ by Lemma 6.4.

By induction and the fact that tn(K) ↗ t∞(K) the result then follows.

Proposition 8.1. Given φ0, φ̇0 ∈ C∞
0 (Σ) let K = suppφ0 ∪ supp φ̇0. Define

t∞(K) as earlier. Let φ be the solution to the Klein-Gordon equation gener-

ated by some acceptable s.a.e. AE of A and data (φ0, φ̇0) via Theorem 5.5.

Then:

1. If t∞(K) = ∞ then: suppφ ⊆ J(K)

2. If t∞(K) < ∞ then: suppφ ∩ [−t∞(K), t∞(K)] ×Σ ⊆ J(K)

Proof. If t∞(K) = ∞ then by Proposition 7.1 (Σ, V −2h) is a complete Rie-

mannian manifold and so M is globally hyperbolic by Lemma 4.19 and

suppφ ⊆ J(K) follows from Theorem 4.25.
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If t∞(K) < ∞, construct a strictly increasing sequence (tn(K))n≥0 induc-

tively as follows. Let t0(K) = 0 and:

tn+1(K)∶ = sup{t∶J+(K) ∩Σt ⊆D(Σtn(K))}.

From Corollary 7.8 we know that tn(K) ↗ t∞(K). Define Ψ∶ (−t1(K), t1(K))×

Σ→ R as:

Ψ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

φ(x), for x ∈ (−t1(K), t1(K)) ×Σ ∩ J(K)

0, otherwise.

The first problem is to show that the function Ψ so defined is smooth. We

do this by finding for each x ∈ (−t1(K), t1(K)) × Σ an open neighbourhood

U s.t. Ψ either equals φ on U or is zero on U .

If x ∈ (−t1(K), t1(K)) × Σ ∩D(Σ0) = U , an open neighbourhood (since

D(Σ0) is open by Proposition 4.21), then Ψ = φ on U . This is because

if y ∈ U then either y ∈ J(K) and so Ψ(y) = φ(y) by definition, or y ∈

D(Σ0)/J(K) = D(Σ0/K) and Ψ(y) = 0 = φ(y) (by the uniqueness of so-

lutions to the Klein-Gordon equation on the globally hyperbolic spacetime

D(Σ0/K) (Theorem 4.25), where Σ0/K is an acausal topological hypersur-

face and so D(Σ0/K) is an open set in M and a globally hyperbolic spacetime

by Proposition 4.21).

If x ∈ (−t1(K), t1(K))×Σ/D(Σ0) ⊆ (−t1(K), t1(K))×Σ/J(K) =∶U (from

Corollary 7.7, Statement 1 ), then Ψ = 0 on U by definition.

Thus Ψ ∈ C∞((−t1(K), t1(K)) ×Σ) and

[Ψt], [∂tΨt] ∈ [C∞
0 (Σ)] =D(A) ⊆D(AE),

for all t ∈ [0, t1(K)). We also have Ψ∣Σ0 = φ0 and ∂tΨ∣Σ0 = φ̇0. Since Ψ is

locally either equal to φ, or zero, both being solutions of the Klein-Gordon
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equation, then so is Ψ, that is (◻g + m2)Ψ = 0 on (−t1(K), t1(K)) × Σ.

Moreover, by definition Ψ = 0 on [0, t1(K)) ×Σ/J(K).

By uniqueness of the Wald solution (Lemma 6.4), then:

φ = Ψ in [0, t1(K)) ×Σ.

Therefore φ = 0 on [0, t1(K)) × Σ/J(K). But since φ is smooth, then also

∂tφ = 0 on [0, t1)×Σ/J(K). In particular then, φ = ∂tφ = 0 on Σt1(K)/J(K) =

N1.

Using the constructed sequence (tn(K))n≥0, we prove the proposition by

induction. Our inductive hypothesis P (n) is as follows:

P (n)∶ suppφ ∩ [0, tn(K)] ×Σ ⊆ J(K)

We have already proven the statement for n = 1. If P (n) is true, by

smoothness φ, ∂tφ are zero on Nn = Σtn(K)/J(K). Now, as before, define:

Ψ∶ [tn(K), tn+1(K)) ×Σ→ R as:

Ψ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

φ(x), for x ∈ [tn(K), tn+1(K)) ×Σ ∩ J(K)

0, otherwise.

Similarly to the previous argument Ψ ∈ C∞([tn(K), tn+1(K)) ×Σ) as a man-

ifold with boundary. Also:

[ΨΣt] ∈ [C∞
0 (Σ)] =D(A) ⊆D(AE) ∀t ∈ [tn(K), tn+1(K)),

Ψ∣Σtn(K) = φtn(K) and ∂tΨ∣Σ0 = φ̇tn(K).

By the uniqueness theorem (Lemma 6.4), φ = Ψ in [tn(K), tn+1(K)) × Σ.

Thus φ = 0 on [tn(K), tn+1(K)) × Σ/J(K). But since φ is smooth, then

also ∂tφ = 0 on [tn(K), tn+1(K)) × Σ/J(K). In particular then, φ = 0 on

Σtn+1(K)/J(K) = N1 and P (n + 1) is proven.
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Hence suppφ ∩ [0, tn(K)] ×Σ ⊆ J(K) for all n. But as tn(K) ↗ t∞(K),

then suppφ ∩ [0, t∞(K)) ×Σ ⊆ J(K), and by continuity:

suppφ ∩ [0, t∞(K)] ×Σ ⊆ J(K).

Finally, since the spacetime is symmetric around Σ0, we have:

suppφ ∩ [−t∞(K), t∞(K)] ×Σ ⊆ J(K).
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9 Energy form on the Space of Solutions

In Sections 9 to 11, we shall prove the existence of certain structures on the

space of solutions SE (Definition 6.5), corresponding to a particular accept-

able s.a.e. AE. Specifically, we shall show the existence of an energy form, a

symplectic form and certain symmetries: time translation and time-reversal.

These were all conditions placed on the dynamics in the paper by Wald and

Ishibashi [38]. It is important for us to show that these conditions are in fact

necessary, even in our extended case of dynamics generated by an acceptable

s.a.e. AE. In this section we show that there is a natural bilinear symmet-

ric form E on our constructed space of solutions SE to the Klein-Gordon

equation. In general, it is not a norm. However, if our choice of acceptable

self-adjoint extension AE is positive and zero is not an eigenvalue, then E is

a norm on SE.

Given two pairs of smooth Cauchy data: (φ0, φ̇0), (φ′0, φ̇′0) ∈ χ2
E ⊆ C∞(Σ)2

then we have by the existence of Wald solutions (Theorem 5.5) two corre-

sponding solutions φ,φ′ to the Klein Gordon equation on our spacetime. For

each time t ∈ R we define the energy at time t to be:

E(φ,φ′)(t) = ⟨φ̇t, φ̇′t⟩Σt + ⟨φt,AEφ′t⟩Σt

Our task is to show that E(φ,φ′) is in fact independent of time. Remember

that:

φt = C(t,AE)φ0 + S(t,AE)φ̇0

φ̇t = −AES(t,AE)φ0 +C(t,AE)φ̇0
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Thus for all t ∈ R:

E(φ,φ′)(t) = ⟨−AES(t,AE)φ0 +C(t,AE)φ̇0,−AES(t,AE)φ′0 +C(t,AE)φ̇′0⟩

+ ⟨C(t,AE)φ0 + S(t,AE)φ̇0,AEC(t,AE)φ′0 +AES(t,AE)φ̇′0⟩

= ⟨AES(t,AE)φ0,AES(t,AE)φ′0⟩ − ⟨AES(t,AE)φ0,C(t,AE)φ̇′0⟩

− ⟨C(t,AE)φ̇0,AES(t,AE)φ′0⟩ + ⟨C(t,AE)φ̇0,C(t,AE)φ̇′0⟩

+ ⟨C(t,AE)φ0,AEC(t,AE)φ′0⟩ + ⟨C(t,AE)φ0,AES(t,AE)φ̇′0⟩

+ ⟨S(t,AE)φ̇0,AEC(t,AE)φ′0⟩ + ⟨S(t,AE)φ̇0,AES(t,AE)φ̇′0⟩

= ⟨φ0,AE(AES(t,AE)2 +C(t,AE)2)φ′0⟩

+ ⟨φ̇0, (AES(t,AE)2 +C(t,AE)2)φ̇′0⟩

= ⟨φ0,AEφ
′
0⟩ + ⟨φ̇0, φ̇

′
0⟩

= E(φ,φ′)(0)

where we have used the following identity: AES(t,AE)2 + C(t,AE)2 = I on

[χE]. Hence E(t) has the same value at all times.

Using the linear isomorphism Ψ∶χE ×χE → SE between χ2
E and the space

of solutions SE defined in Proposition 6.5 then E defined above is a bilinear

symmetric form on SE (the symmetry of E follows easily since as AE is

self-adjoint it is certainly symmetric) and is called the energy form.
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10 The Symplectic Form on the Space of So-

lutions

Similarly to the previous section, we show that there exists a natural sym-

plectic form on the real vector space of our space of solutions SE.

Given two pairs of smooth Cauchy data: (φ0, φ̇0), (φ′0, φ̇′0) ∈ χ2
E ⊆ C∞(Σ)2

then we have by the existence of Wald solutions (Theorem 5.5) two corre-

sponding solutions φ,φ′ to the Klein Gordon equation on our spacetime. For

each time t ∈ R we define the symplectic form at time t to be:

σE(φ,φ′)(t) = ⟨φt, φ̇′t⟩ − ⟨φ̇t, φ′t⟩

We show again that this form is independent of time. For all t ∈ R:

σE(φ,φ′)(t) = ⟨C(t,AE)φ0 + S(t,AE)φ̇0,−AES(t,AE)φ′0 +C(t,AE)φ̇′0⟩

+ ⟨AES(t,AE)φ0 −C(t,AE)φ̇0,C(t,AE)φ′0 + S(t,AE)φ̇′0⟩

= −⟨C(t,AE)φ0,AES(t,AE)φ′0⟩ + ⟨C(t,AE)φ0,C(t,AE)φ̇′0⟩

− ⟨S(t,AE)φ̇0,AES(t,AE)φ′0⟩ + ⟨S(t,AE)φ̇0,C(t,AE)φ̇′0⟩

+ ⟨AES(t,AE)φ0,C(t,AE)φ′0⟩ + ⟨AES(t,AE)φ0, S(t,AE)φ̇′0⟩

− ⟨C(t,AE)φ̇0,C(t,AE)φ′0⟩ − ⟨C(t,AE)φ̇0, S(t,AE)φ̇′0⟩

= ⟨φ0, (AES(t,AE)2 +C(t,AE)2)φ̇′0⟩

− ⟨φ̇0, (AES(t,AE)2 +C(t,AE)2)φ′0⟩

= ⟨φ0, φ̇
′
0⟩ − ⟨φ̇0, φ

′
0⟩

= σE(φ,φ′)(0)

Here, we have again made use of the identity AES(t,AE)2 + C(t,AE)2 =

I on [χE]. Thus we have a map σE ∶SE × SE → R, where SE is the real
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vector space of solutions. It is clearly bilinear, antisymmetric and also weakly

nondegenerate, since if φ ∈ SE is non-zero then (by uniqueness) (φ0, φ̇0) ≠

(0,0) ∈ χE × χE. Consequently, let φ′ = Ψ(−φ̇0, φ0). Then, σE(φ,φ′) =

∣∣φ0∣∣2 + ∣∣φ̇0∣∣2 > 0 as either φ0 or φ̇0 is non-zero and so has non-zero norm (as

both are continuous). Thus, (SE, σE) is a real symplectic space.
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11 Symmetries

In this section, we derive some symmetries satisfied by the linear isomorphism

Ψ ∶ χE × χE → SE defined in Proposition 6.6. Consider the maps Tt, P ∶

C∞(M) → C∞(M) given by:

(TtF )(s, x) = F (s − t, x)

(PF )(s, x) = F (−s, x)

Proposition 11.1. Given a standard static spacetime and the linear operator

A defined as usual on the Hilbert space L2(Σ, dvolh) then for any acceptable

s.a.e. AE of A. The maps Tt and P satisfy: Tt, P ∶ SE → SE. Then letting

φt = Ψ(φ0, φ̇0)∣Σt and φ̇t = ∂tΨ(φ0, φ̇0)∣Σt we have:

Ψ(φt, φ̇t) = T−t[Ψ(φ0, φ̇0)]

Ψ(φ̇0,−AEφ0) =
∂

∂t
[Ψ(φ0, φ̇0)]

Ψ(φ0,−φ̇0) = P [Ψ(φ0, φ̇0)]

In particular this also proves that ∂
∂t ∶ χE → χE. Additionally, for all Ψ1,Ψ2 ∈

SE:

E(TtΨ1, TtΨ2) = E(Ψ1,Ψ2)

E(PΨ1, PΨ2) = E(Ψ1,Ψ2)

σE(TtΨ1, TtΨ2) = σE(Ψ1,Ψ2)

σE(PΨ1, PΨ2) = −σE(Ψ1,Ψ2)

(Note that the first five properties correspond to Assumptions 2(i), 2(ii),

3(i) and 3(ii) in Wald and Ishibashi [38].)
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Proof.

Ψ(φt, φ̇t)(s, x) =
⎡⎢⎢⎢⎢⎢⎣

C(s,AE)(C(t,AE)φ0 + S(t,AE)φ̇0)

+S(s,AE)(−AES(t,AE)φ0 +C(t,AE)φ̇0)

⎤⎥⎥⎥⎥⎥⎦
(x)

= [C(s + t,AE)φ0 + S(s + t,AE)φ̇0](x)

= Ψ(φ0, φ̇0)(t + s, x)

= T−t(Ψ(φ0, φ̇0))(s, x)

Ψ(φ̇0,−AEφ0)(t, s) = [C(t,AE)φ̇0 + S(t,AE)(−φ0))] (x)

= φ̇t(x)

= ∂

∂t
[Ψ(φ0, φ̇0)](t, x)

Ψ(φ0,−φ̇0)(t, x) = [C(t,AE)φ0 + S(t,AE)(−φ̇0))](x)

= [C(−t,AE)φ0 + S(−t,AE)φ̇0)](x)

= Ψ(φ0, φ̇0)(−t, x)

= P (Ψ(φ0, φ̇0))(t, x)

The remaining properties are easily proven from the time independence of

E(Ψ1,Ψ2)(t) and σ(Ψ1,Ψ2)(t) (Sections 9 and 10).
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12 Examples

In this section we shall discuss a few simple examples of standard static space-

times. In all the examples we examine we shall let V = 1 for simplicity. Thus

the spacetime (M,g) = (R×Σ, dt2−h) and the solutions to the Cauchy prob-

lem of the Klein-Gordon equation constructed in this thesis for each of these

spacetimes will be indexed by the acceptable s.a.e.s AE of the symmetric

linear operator A on L2(Σ, dvolh) generated by the partial differential opera-

tor (also labelled by) A = −div hgrad h, minus the Laplace-Beltrami operator,

and D(A) = [C∞
0 (Σ)].

We shall also only consider the case of the solving the Klein-Gordon case

for complex-valued data and so we only consider complex Hilbert spaces.

Note that it’s only on complex Hilbert spaces that we can define the deficiency

spaces H± of a densely defined operator A as H± ∶= ker(A∗ ∓ i). We note

the following theorem (see Theorems 83.1 and 85.1 in Akhiezer and Glazman

[2]):

Theorem 12.1. Let A be a positive symmetric linear operator with equal

and finite deficiency indices, that is, denoting n±∶ = dim ker(A∗ ∓ i), we have

n+ = n− = n < ∞. Then every s.a.e. AE of A is bounded-below. Furthermore,

every s.a.e. AE has the same continuous spectrum as A, each of the s.a.e.s has

only a finite number of negative eigenvalues and the sum of the multiplicities

of the negative eigenvalues of any particular s.a.e. AE is not greater than n.

Thus if A has finite deficiency indices then in particular every s.a.e. AE

of A is acceptable. In all the following examples the deficiency indices are

finite and are equal to 0, 1 or 2.
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12.1 Self-Adjoint Extensions of minus the Laplacian

on S1

In our first example we let Σ = S1. We equip S1 with its (unique) differential

structure, the Riemannian metric induced from that on R2 and the induced

smooth measure from this metric. Since S1 is compact in its topology induced

from R2, then it is also compact in its topology induced from the Riemannian

metric h (Theorem 4.4), so it is also complete in this metric and so complete

as a Riemannian manifold by the Hopf-Rinow Theorem (See e.g. Theorem

6.13 Lee [19]). Thus the linear operator A given by:

D(A) = [C∞
0 (S1)] = [C∞(S1)]

A([φ]) = −[φ′′] for φ ∈ C∞(S1)

is essentially self-adjoint by Theorem 3.1. Thus A = A∗ is the unique s.a.e.

of A and

D(A) =W 2,2(S1) = {φ ∈ L2(S1) s.t. φ′, φ′′ ∈ L2(S1)}.

Note the Sobolev space W 2,2(S1) is defined in Appendix D.3, where we are

implicitly adopting the standard Riemannian metric on S1 as on all the

manifolds in Section 12.

The spectrum of A is shown in the Appendix to be:

σ(A) = σdisc(A) = {n2∶ n ∈ N0}

If we identify S1/{1} with (0,2π) by the chart: φ∶ U = S1/{1} → (0,2π),

φ−1(θ) = exp iθ, then define the function g∶U ×U ×C/{n2∶ n ∈ N} → C by:

g(θ, φ;λ) = i

2
√
λ
[exp i

√
λ∣θ − φ∣ + 2 cos

√
λ(θ − φ)

exp(−2πi
√
λ) − 1

] .
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As {1} ⊆ S1 is clearly null, h generates a well-defined integral kernel.

The Green’s function for λ ∈ ρ(A) = C/{n2∶ n ∈ N0} is given by g(⋅, ⋅, λ),

which does not depend on the choice of square root of λ used to define it.

12.2 Self-Adjoint Extensions of minus the Laplacian

on (0,∞)

In the remaining cases the domains D(AE) of the s.a.e.s of A shall be given

by conditions placed on the domain of the adjoint of A, that is D(A∗). Since

A ≤ AE ≤ A∗ then all the s.a.e.s of A are restrictions of A∗ to their domain

D(AE). The conditions placed on the domain will be in terms of “trace

maps”. The derivation of these maps is to be found in Lions and Magenes

[20].

Theorem 12.2. Let Ω be an open interval of R. Consider the linear maps:

ρ∶ C∞
0 (Ω) → C∣∂Ω∣, φ↦ φ∣∂Ω

τ ∶ C∞
0 (Ω) → C∣∂Ω∣, φ↦ φ′∣∂Ω.

These maps extend by continuity to a unique continuous maps

ρ, τ ∶ W 2,2(Ω) → C∣∂Ω∣.

Letting Φ = (ρ, τ), then Ψ is linear and surjective. Additionally: W 2,2
0 (Ω) =

kerΨ = {φ ∈W 2,2(Ω)∶ ρ(φ) = τ(φ) = 0}.

Note that C∞
0 (Ω) is defined as the space of smooth functions on the smooth

manifold with boundary Ω which are of compact support. If Ω is compact

then clearly C∞
0 (Ω) = C∞(Ω). Note also that we define:

W 2,2
0 (Ω)∶ = [C∞

0 (Ω)]
W 2,2(Ω)

,
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the closure of [C∞
0 (Ω)] in the Sobolev norm on W 2,2(Ω).

If Σ = (0,∞) then the s.a.e.s of A are indexed by α ∈ (−π/2, π/2], denoted

Aα. Their domains are given by:

D(Aα) = {φ ∈W 2,2(0,∞) s.t. cosα ρ(φ) = sinα τ(φ)}

The spectra of these s.a.e.s are given by the following:

σ(Aα) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[0,∞) for α ∈ [0, π/2]

[0,∞) ∪ {− cot2α} for α ∈ (−π/2,0)

The pure point spectrum σpp(Aα), continuous spectrum σcont(Aα) and dis-

crete spectrum σdisc(Aα) of the operator Aα are given by the following state-

ments:

1. σcont(Aα) = [0,∞) for all α.

2. If α ∈ [0, π2 ]: σ(Aα) = σcont(Aα) = [0,∞).

3. If α ∈ (−π2 ,0): σpp(Aα) = σdisc(Aα) = {− cot2α}.

Thus for α ∈ [0, π2 ], Aα is a positive s.a.e. of A and for α ∈ (−π2 ,0), Aα is

not positive but it is bounded-below. Thus all the s.a.e.s of A are acceptable

according to Definition 3.2.

For completeness we also now give the Green’s function for each s.a.e.

Aα, that is g∶ (0,∞) × (0,∞) × ρ(Aα) → C given by:

g(x, ξ, λ) = A[cosα sin(
√
λx<) +

√
λ sinα cos(

√
λx<)] exp(i

√
λx>),

where A = [
√
λ(cosα − i

√
λ sinα)]−1, x> = max{x, ξ}, x< = min{x, ξ} and

√
λ = a + bi, b > 0 is defined as the unique square root of λ in the upper-half

plane, possible since λ ∉ [0,∞). These statements are proven in Appendix G.
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12.3 Self-Adjoint Extensions of minus the Laplacian

on (0, a)

Now consider the case where Σ = (0, a). Again, the domains of the s.a.e.s

of A are given in terms of the elements of W 2,2(0, a) satisfying conditions

placed on them via the trace map. The set of all s.a.e.s of A are given by

the Dirichlet extension and two groups of extensions which we shall describe

presently. The first group shall also contain the Neumann extension.

We shall give a very brief explanation of the origin of this classification

of the self-adjoint extensions of the A. We refer the reader to Posilicano [26].

The set of s.a.e.s of A is indexed by pairs:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(Π,Θ)∶

Π is an orthogonal projection operator on the Hilbert space C2

Θ is a bounded s.a. linear operator on the Hilbert space Im(Π)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Given the pair (Π,Θ) the s.a.e. AΠ,Θ is then given by:

D(AΠ,Θ) = {φ ∈W 2,2(0, a)∶ ρφ ∈ Im(Π), Πτφ = Θρφ} ,

where:

ρ∶W 2,2(0, a) → C2, ρ(φ) =
⎛
⎜
⎝

φ(0)

φ(a)

⎞
⎟
⎠

τ ∶W 2,2(0, a) → C2, τ(φ) =
⎛
⎜
⎝

φ′(0)

−φ′(a)

⎞
⎟
⎠
.

Here we are implicitly using Theorem 12.2. Note that τ evaluates the inward-

pointing derivative at the boundary, hence the sign.

There are three natural collections of s.a.e.s of A according as rank(Π) =

0,1 or 2.

82



Picking rank(Π) = 0, then we have Π = 0 and Θ = 0. This is the Dirichlet

s.a.e. AD (which we may also call the s.a.e. of the zeroth kind), defined

by the following domain:

D(AD) = {φ ∈W 2,2(0, a) s.t. φ(0) = φ(1) = 0}.

Picking rank(Π) = 2, we obtain the next collection of s.a.e.s, which we

shall call the s.a.e.s of the first kind, in agreement with the language of

Posilicano [26]. They are obtained by setting Π = I. Then ImΠ = C2 and let

Θ be defined by a self-adjoint complex 2 × 2 matrix

θ =
⎛
⎜
⎝

θ11 θ12

θ12 θ22

⎞
⎟
⎠
,

where θ11, θ22 ∈ R, θ12 ∈ C. The domain of the extension D(Aθ) is defined as

those elements φ ∈W 2,2(0, a) such that Πτφ = Θρφ, that is:

⎛
⎜
⎝

φ′(0)

−φ′(a)

⎞
⎟
⎠
=
⎛
⎜
⎝

θ11 θ12

θ12 θ22

⎞
⎟
⎠

⎛
⎜
⎝

φ(0)

φ(a)

⎞
⎟
⎠
,

or:

D(Aθ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ ∈W 2,2(0, a) s.t.:

θ11φ(0) − φ′(0) + θ12φ(a) = 0

θ12φ(0) + θ22φ(a) + φ′(a) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Note that letting θ11 = θ22 = θ12 = 0 we obtain the Neumann extension AN =

A0:

D(AN) = {φ ∈W 2,2(0, a) s.t. φ′(0) = φ′(a) = 0}.

Picking rank(Π) = 1, we obtain the last collection of s.a.e.s, which we

shall call the s.a.e.s of the second kind. They are obtained by setting

Π = w ⊗w =
⎛
⎜
⎝

∣w1∣2 w1w2

w1w2 ∣w2∣2

⎞
⎟
⎠
,
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where w = (w1,w2) ∈ C2 is a unit vector, spanning a one-dimensional subspace

in C2 and defining Π by orthogonal projection onto this subspace. We set Θ

to be defined as multiplication by θ ∈ R. These s.a.e.s are then indexed by

triples: {(w1,w2, θ)∶ w1,w2 ∈ C s.t. ∣w1∣2 + ∣w2∣2 = 1 and θ ∈ R}. The domain

of the extension D(Aw1w2θ) is then those elements φ ∈W 2,2(0, a) such that:

ρ(φ) =
⎛
⎜
⎝

φ(0)

φ(a)

⎞
⎟
⎠
∈ ImΠ = ⟨

⎛
⎜
⎝

w1

w2

⎞
⎟
⎠
⟩

⎛
⎜
⎝

θφ(0)

θφ(a)

⎞
⎟
⎠
= θρφ = Πτφ

= Π
⎛
⎜
⎝

φ′(0)

−φ′(a)

⎞
⎟
⎠

=
⎛
⎜
⎝

∣w1∣2 w1w2

w1w2 ∣w2∣2

⎞
⎟
⎠

⎛
⎜
⎝

φ′(0)

−φ′(a)

⎞
⎟
⎠

Then, from the first condition: w2φ(0) = w1φ(a). And from the second:

w1θφ(0) +w2θφ(a) = w1∣w1∣2φ′(0) −w2∣w1∣2φ′(a) +w1∣w2∣2φ′(0) −w2∣w2∣2φ′(a)

= w1φ
′(0) −w2φ

′(a)

Thus,

D(Aw1w2θ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ ∈W 2,2(0, a) s.t.:

w2φ(0) −w1φ(a) = 0

w1(θφ(0) − φ′(0)) +w2(θφ(a) + φ′(a)) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭

Remark. Note that replacing wi with wieiφ for i = 1,2 then we obtain identical

boundary conditions and so the same s.a.e. of A. Clearly this is because

both choices yield the same 1-dimensional subspace in C2 and so the same

orthogonal projection operator Π.
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We shall now give the spectra of all these self-adjoint extensions and the

their corresponding Green’s functions. By analysing the spectra or by the

finiteness of the deficiency indices and using Theorem 12.1, all s.a.e.s are

bounded-below. These results can either be reached via the approach of

Posilicano [26] (Example 5.1) or the methods of Stakgold [32]. The proofs

of all but the case of the Dirichlet extension are found in Section H. The

case of the Dirichlet extension itself is simpler, along similar lines and is to

be found in Stakgold [32]. The numbering below corresponds to the three

groupings of s.a.e.s previously introduced: s.a.e.s of zeroth, first and second

kinds.

0. Denoting N0 = N ∪ {0}, we have:

σ(AD) = {(nπ
a

)
2

, n ∈ N} .

1. If λ ≠ 0 then λ ∈ σ(Aθ) iff

0 = θ11

√
λ cos

√
λa + θ22

√
λ cos

√
λa − λ sin

√
λa

+ θ11θ22 sin
√
λa − ∣θ12∣2 sin

√
λa + 2R(θ12)

√
λ

(note that the validity of this condition is independent of which square

root of λ we take) and:

0 ∈ σ(Aθ) iff a∣θ12∣2 − θ11 − aθ11θ22 − θ22 − 2R(θ12) = 0.

For instance, letting θ11 = θ22 = θ12 = 0, we have that:

σ(AN) = {(nπ
a

)
2

, n ∈ N0} .

2. If λ ≠ 0 then λ ∈ σ(Aw1w2θ) iff

−
√
λ cos

√
λa + 2R(w1w2)

√
λ − θ sin

√
λa = 0

and 0 ∈ σ(Aw1w2θ) iff aθ − 2R(w1w2) + 1 = 0.
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The Green’s functions for each of these cases is treated in the following:

0. The Green’s function for the Dirichlet extension AD is given in terms

of the kernel g(x, y;λ).

For λ ∈ C/{(nπa )2, n ∈ N0}, define:

g(x, y;λ) = sin
√
λ(a − x>) sin

√
λx<√

λ sina
√
λ

,

where x<∶ = min{x, y}, x>∶ = max{x, y}. And for λ = 0, let:

g(x, y; 0) = (a − x>)x<
a

.

1. The Green’s function for the s.a.e. of the first kind is given by the

following.

For λ ∈ ρ(Aθ)/{0}:

g(x, y;λ)

= A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ cos
√
λ(a − x>) cos

√
λx< + θ22

√
λ sin

√
λ(a − x>) cos

√
λx<

+θ11

√
λ cos

√
λ(a − x>) sin

√
λx< + θ11θ22 sin

√
λ(a − x>) sin

√
λx<

+∣θ12∣2 sin
√
λ(x> − a) sin

√
λx< +C(x, y)(θ12)

√
λ sin

√
λ(x< − x>)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where

A−1 =
√
λ

⎡⎢⎢⎢⎢⎢⎣

θ11

√
λ cos

√
λa + θ22

√
λ cos

√
λa − λ sin

√
λa

+θ11θ22 sin
√
λa − ∣θ12∣2 sin

√
λa + 2R(θ12)

√
λ

⎤⎥⎥⎥⎥⎥⎦
,

and for k ∈ C,

C(x, y)(k) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k if x < y.

k if x ≥ y.

If 0 ∈ ρ(Aθ), then

g(x, y,0) = A
⎡⎢⎢⎢⎢⎢⎣

(a − x>)x<∣θ12∣2 − θ11x< + (x> − a)x<θ11θ22

+(x> − a)θ22 − 1 +C(x, y)(θ12)(x> − x<)

⎤⎥⎥⎥⎥⎥⎦
,
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where

A−1 = a∣θ12∣2 − θ11 − aθ11θ22 − θ22 − 2R(θ12).

In particular, the Green’s function for the Neumann extension AN is

given as follows:

For λ ∈ C/{(nπa )2, n ∈ N0}, define:

g(x, y;λ) = −cos
√
λ(a − x>) cos

√
λx<√

λ sina
√
λ

.

2. The Green’s function for the s.a.e. of the second kind is given as follows.

For λ ∈ ρ(Aw1w2θ)/{0},

g(x, y;λ)

= A
⎡⎢⎢⎢⎢⎢⎣

∣w1∣2
√
λ sin

√
λ(x> − a) cos

√
λx< +

√
λC(x, y)(w1w2) sin

√
λ(x< − x>)

+θ sin
√
λ(x> − a) sin

√
λx< − ∣w2∣2

√
λ cos

√
λ(x> − a) sin

√
λx<

⎤⎥⎥⎥⎥⎥⎦
,

where

A−1 =
√
λ [−

√
λ cos

√
λa + 2R(w1w2)

√
λ − θ sin

√
λa] .

If 0 ∈ ρ(Aw1w2θ), then

g(x, y; 0) = A[θ(a−x>)x<+C(x, y)(w1w2)(x>−x<)+∣w1∣2(a−x>)+∣w2∣2x<],

where

A−1 = aθ − 2R(w1w2) + 1.

12.4 Self-adjoint Extensions of minus the Laplacian

plus mass

We shall show here that the s.a.e.s of the operator A = −div h ○ grad h +m2

is easily given in terms of the s.a.e.s of −div h ○ grad h. The corresponding

Green’s functions are then easily constructible.
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This situation is covered by the following more general problem:

Proposition 12.3. Let A be a linear operator on a (real or complex) Hilbert

space H. For µ ∈ R define the linear operator A+µ via the domain D(A+µ) =

D(A), (A + µ)φ = Aφ + µφ. Then the following are true:

1. A is closable ⇔ A + µ is closable.

2. If A is closable then: A + µ = A + µ.

3. A is self-adjoint ⇔ A + µ self-adjoint.

4. A is e.s.a. iff A + µ is e.s.a..

5. If A is a symmetric linear operator and {Aγ ∶ γ ∈ Γ} are all the s.a.e.s of

A (Γ = φ is possible). Then the s.a.e.s of A+µ are precisely {Aγ+µ∶ γ ∈

Γ}. Additionally, σ(Aγ+µ) = σ(Aγ)+µ and if Gλ is the resolvent of Aγ

at λ ∈ ρ(Aγ) then Gλ+µ is the resolvent of Aγ + µ for λ + µ ∈ ρ(Aγ + µ).

Proof. The proposition is easily proven directly by the definitions of closabil-

ity, self-adjointness etc.

We now apply this proposition to the problem of finding the s.a.e.s of

the Klein-Gordon operator on a Riemannian manifold, for which we already

know all the s.a.e.s of minus the Laplacian. For instance let Σ = S1. This

was treated in Section 12.1. Let H = L2(S1) (the Borel measure on S1 being

induced by the Riemannian metric on S1). Define the linear operator A on

H:

D(A) = [C∞
0 (S1)] = [C∞(S1)]

A([φ]) = −[φ′′] for φ ∈ C∞(S1).
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Consider B = A +m2. We are using the previous notation. So D(B) =

D(A). Then, according to the previous proposition, as A is e.s.a. so also is

B and:

D(B) =D(A) =W 2,2(S1) = {φ ∈ L2(S1) s.t. φ′, φ′′ ∈ L2(S1)}.

Since σ(A) = σdisc(A) = {n2∶ n ∈ N0}, then the spectrum of B is:

σ(B) = σdisc(B) = {n2 +m2∶ n ∈ N0}.

Using the chart: φ∶ U = S1/{1} → (0,2π), φ−1(θ) = exp iθ, define the function

g∶ U ×U ×C/{n2 +m2∶ n ∈ N0} → C by:

g(θ, φ;λ) = i

2
√
λ −m2

[exp i
√
λ −m2∣θ − φ∣ + 2 cos

√
λ −m2(θ − φ)

exp(−2πi
√
λ −m2) − 1

] .

Clearly as before, this expression for g does not depend on the choice of

square root of λ−m2 taken. It follows from Proposition 12.3 that g so defined

is the Green’s function for B, that is, it generates its resolvent.

12.5 Example of Wald Dynamics satisfying suppφ ⊈

J(K)

We shall show here by means of the examples just given that there ex-

ist simple standard static spacetimes and Wald dynamics generated by a

s.a.e. AE such that suppφ ⊈ J(K) for some initial data (φ0, φ̇0), where

K = suppφ0 ∪ supp φ̇0.

Consider the example considered in Section 12.3, that is Σ = (0, a), so

M = R × (0, a), g = dt2 − dx2. (See Figure 5). Take for instance

θ =
⎛
⎜
⎝

0 1

1 0

⎞
⎟
⎠
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Figure 5: Wald dynamics satisfying: suppφ ⊈ J(K), where (M,g) = (R ×

(0,1), dt2 − dx2). For some s.a.e.s AE there exist points in the shaded area

at which φ is non-zero though they are clearly not contained in J+(K).

and pick the s.a.e. Aθ of A. Thus its domain is given by:

D(Aθ) = {φ ∈W 2,2(0, a)∶ φ′(0) = φ(a), φ(0) = −φ′(a)}.

From this we can see that if φ′(t, a) ≠ 0 then so is φ(t,0) and hence φ is

non-zero in a neighbourhood of (0, t) and so also non-zero at points outside

J(K).

12.6 Example of non-bounded below acceptable self-

adjoint extensions of minus the Laplacian

We shall, in this section, construct examples of non-bounded below accept-

able s.a.e.s of minus the Laplacian on certain choices of simple Riemannian

manifolds (though our example shall be on a disconnected manifold). In par-

ticular, this shows that the class of solutions to the Cauchy problem of the
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Klein-Gordon equation on non-globally hyperbolic spacetimes constructed in

this thesis a nontrivial extension of the application of theory of Wald [37]

from bounded-below s.a.e.s to acceptable s.a.e.s (Wald considered only those

that were positive).

Before we begin the construction, we shall briefly describe some necessary

background. It concerns the the direct sum of linear operators on Hilbert

spaces. Given a sequence Hn of (real or complex) Hilbert spaces, then the

direct sum is defined as usual as:

H = ⊕
n∈N

Hn ∶= {(φn)n ∈ N such that ∑
n∈N

∣∣φn∣∣2n < ∞} ,

where ∣∣ ⋅ ∣∣n is the norm in the Hilbert space Hn.

Definition 12.4. For each n ∈ N, let An be a linear operator on the Hilbert

space Hn. Then define the linear operator A on H as the direct sum of the

linear operators An as follows:

D(A) = {φ = (φn)n∈N such that φn ∈D(An) and ∑
n

∣∣Anφn∣∣2n < ∞}

(Aφ)n = Anφn.

We then define the countable direct sum ⊕n∈NAn of the operators An to be

the operator A.

Proposition 12.5. The following are true:

1. If all the linear operators An are densely defined (closed, symmetric,

self-adjoint), then A is densely-defined (closed, symmetric, self-adjoint)

respectively.

2. If all the linear operators An are bounded, then the sequence (∣∣An∣∣) is

bounded iff A = ⊕n∈NAn is bounded.
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3. The spectrum σ(A) is obtained from the spectra σ(An) by the relation:

σ(A) = ⋃n σ(An).

4. If each operator An is a orthogonal projection operator on Hn, then A

is an orthogonal projection operator on H.

5. If all the operators Pn are projection-valued measures (p.v.m.s) on Hn,

then P is a p.v.m. on H defined by:

PΩ = ⊕
n∈N

(Pn)Ω for each Ω ⊆ R Borel.

We shall denote this p.v.m. P by ⊕n∈NPn.

6. Let all the operators An be self-adjoint. If Pn is the projection-valued

measure (p.v.m.) on Hn associated to An via the spectral theorem and

P is the p.v.m. on H associated to A, then:

P = ⊕
n∈N

Pn.

7. If all the operators An are self-adjoint and f ∶ R → R is Borel measur-

able, then:

f(⊕
n∈N

An) = ⊕
n∈N

f(An),

where we are using the spectral theorem to define the self-adjoint oper-

ators f(⊕n∈NAn) and f(An).

The proof of this proposition is an exercise in functional analysis (see e.g.

Reed and Simon [27] or Birman and Solomjak [9]). The proof is omitted here

for brevity.

Using this notation, we construct such extensions as follows: Given a fixed

Riemannian manifold (Σ, h), we shall first consider the case of constructing

a s.a.e. A of minus the Laplacian on (Σ′, h) = (Z ×Σ, h) from s.a.e.s (An)n∈Z
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of minus the Laplacian on (Σ, h). We then show that if all the s.a.e.s An are

acceptable, then so is A. We then give necessary and sufficient conditions

for A to be non-bounded below before giving a concrete example. We state

our results in the form of the following proposition.

Proposition 12.6. Fix a Riemannian manifold (Σ, h) and define (Σ′, h) =

(Z×Σ, h). Considering the Hilbert spaces L2(Σ, dvolh) and L2(Σ′, dvolh) then

we have the following isomorphism:

L2(Σ′, dvolh) ≅⊕
n∈Z

L2(Σ, dvolh).

Define the following linear operators A and A′ on the Hilbert spaces L2(Σ, dvolh)

and L2(Σ′, dvolh) as follows: D(A) = [C∞
0 (Σ)], A[φ] = [−◻hφ] for φ ∈

C∞
0 (Σ) and similarly for A′. For simplicity, we shall treat the aforementioned

isomorphism as an identification. Then we have the following relationship

between D(A) and D(A′):

D(A′) = {φ ∈ ⊕
n∈Z

D(A) such that φn ≠ 0 for at most finitely many n} .

Now, for each n ∈ Z, let AE,n be a s.a.e. of A and define the operator A′
E =

⊕n∈ZAE,n. Then:

1. A′
E is a s.a.e. of A′.

2. If for all n, AE,n is an acceptable s.a.e. of A, then A′
E is an acceptable

s.a.e. of A′.

3. σ(A′
E) = ⋃n∈Z σ(AE,n).

Therefore, if for all n, AE,n is an acceptable s.a.e. of A and if ⋃n∈Z σ(AE,n)

has no lower bound in R, then A′
E is a non-bounded below acceptable s.a.e.

of A′.
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Remark. In the equation relating D(A) with D(A′) we are adopting the

following notation: If H = ⊕n∈ZHn is the countable direct sum of Hilbert

spaces, then if for each n, Vn ≤ Hn is a (not necessarily closed) subspace,

then we define:

⊕
n∈Z

Vn ∶= {φ ∈ ⊕
n∈Z

Hn such that φ ∈ Vn for each n} .

With this notation, note that in general: D(⊕n∈ZAn) ≠ ⊕n∈ZD(An) but

rather:

D(⊕
n∈Z

An) = {φ ∈ ⊕
n∈Z

D(An) such that ∑
n∈Z

∣∣Anφn∣∣2 < ∞} .

Proof of Proposition 12.6. It follows from the previous proposition, that AE

is a self-adjoint operator on L2(Σ′, dvolh). We must first show that it is in

fact a self-adjoint extension of A′.

By definition of A′
E we have:

D(A′) = {φ ∈ ⊕
n∈Z

D(A) such that φn ≠ 0 for at most finitely many n}

⊆ {φ ∈ ⊕
n∈Z

D(AE,n) such that φn ≠ 0 for at most finitely many n}

⊆ {φ ∈ ⊕
n∈Z

D(AE,n) such that ∑
n

∣∣AE,nφn∣∣2n < ∞}

=D(A′
E)

If φ ∈D(A′) = {φ ∈ ⊕
n∈Z

D(A) such that φn ≠ 0 for at most finitely many n} ,

then (AEφ)n = AE,nφn = Aφn = (A′φ)n. This proves Statement 1.
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Let AE,n be an acceptable s.a.e. of A for each n. Then, for all t > 0:

[C∞
0 (Σ′)] =D(A′)

= {φ ∈ ⊕
n∈Z

D(A) such that φn ≠ 0 for at most finitely many n}

⊆
⎧⎪⎪⎪⎨⎪⎪⎪⎩

φ ∈ ⊕n∈ZD(exp((A−
E,n)1/2t))

and ∑n∈Z ∣∣ exp((A−
E,n)1/2t)φn∣∣2 < ∞

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=D(exp((A′−

E )1/2t)),

where the last equality follows from Statement 7 of Proposition 12.5, which

gives: exp((A′−
E )1/2t) = ⊕n∈Z exp((A−

E,n)1/2t). Therefore, A′
E is also an ac-

ceptable s.a.e. of A′.

The last statement follows from Statement 3 of the previous proposition.

Lemma 12.7. Let Σ = (0,∞) and pick a sequence αn ∈ (−π2 ,
π
2 ] indexed by

n ∈ Z such that for all 0 < ε < π
2 there exists n with αn ∈ (−ε,0). Define

AE,n = Aαn. Then, the corresponding operator A′
E = ⊕n∈ZAαn is a non-

bounded below acceptable s.a.e. of minus the Laplacian.

Proof. Note that the s.a.e.s Aα were defined in Section 12.2 as:

D(Aα) = {φ ∈W 2,2(0,∞) s.t. cosα ρ(φ) = sinα τ(φ)}.

The spectra of these s.a.e.s were given by the following:

σ(Aα) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[0,∞) for α ∈ [0, π/2]

[0,∞) ∪ {− cot2α} for α ∈ (−π/2,0)
.

So, since limx→0 cot2 x = ∞ then, by Statement 3 of Proposition 12.6, σ(A′
E) =

⋃n∈Z σ(Aαn) has no lower bound in R, i.e. inf σ(A′
E) = −∞ and A′

E is not

bounded below. That A′
E is still an acceptable s.a.e. of minus the Laplacian

follows from the previous proposition.
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13 Summary

We have shown the existence and uniqueness properties of solutions of the

Klein-Gordon equation on arbitrary standard static spacetimes based on “ac-

ceptable” self-adjoint extensions AE of the symmetric linear operator A, as

defined in equation (3.3). The proof of the existence (Section 5) was based

on work by Wald [37], though differs in the following: Our treatment utilised

the more recent result of Bernal and Sanchez [6]. Also, we have shown that

the construction of solutions is valid also when the self-adjoint extension is

merely acceptable (Definition 3.2).

Separate to the work of Wald, we proved in this thesis a result concerning

the uniqueness of the Wald solutions and used this to prove a result on

their support. The stronger statement: suppφ ⊆ J(K) for K = supp (φ0) ∪

supp (φ̇0), which was a condition on the dynamics in the paper by Wald and

Ishibashi on this topic [38], was seen to be false in general. In Section 12.5

we gave a simple example where suppφ ⊈ J(K).

Also, using the uniqueness result, we defined the space of solutions in

Definition 6.5, constructed both the “energy form” and the “symplectic form”

on the space of solutions (Sections 9 and 10 respectively) and analysed some

symmetries of the space of solutions (Section 11).

In Sections 12.1 to 12.3 we considered three simple one-dimensional Rie-

mannian manifolds (S1, (0,∞) and (0, a) with their usual Riemannian met-

rics), determined all the self-adjoint extensions of minus the Laplacian on

each of these spaces, found their spectra and proved the form of their resol-

vents as integral operators. This then specifies the dynamics as constructed

in this thesis as generated by each of these s.a.e.s on the standard static
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spacetimes (M,g) = (R × Σ, dt2 − h), as Σ = S1, (0,∞) or (0, a). In Sec-

tion 12.5 we give a simple example of a standard static spacetime and a

choice of s.a.e. AE such that the dynamics generated satisfies: suppφ ⊈ J(K)

for some initial data (this corresponds to 1. of the second list on p.6). In

Section 12.6 we constructed an acceptable non-bounded below s.a.e. AE of

minus the Laplacian on a particular (disconnected) Riemannian manifold

(specifically: Σ = Z × (0,∞) with the Riemannian metric induced from that

of R2). This example then shows that the extension of theory of Wald [37]

from bounded-below s.a.e.s to acceptable s.a.e.s carried out in this thesis is

non-trivial (Wald considered only positive s.a.e.s).

We shall now discuss avenues of further work on the subject of this thesis.

We list them as follows, some of which are related:

1. The well-posedness of the Cauchy problem for the Klein-Gordon equa-

tion often has a stronger meaning than that used in this thesis. The

stronger sense includes continuity of the map

C∞
0 (Σ) ×C∞

0 (Σ) → C∞(M)

(φ0, φ̇0) → φ.

A problem unanswered in this thesis is whether our solution to the

Cauchy problem generated by an acceptable s.a.e. is well-posed in this

sense.

2. We constructed in Section 12.6 an example of an acceptable non-bounded

below s.a.e. on a disconnected Riemannian manifold. It would be of

interest to construct examples on connected ones.

3. Once the answer to Statement 1 is known, a natural question in line

with the paper by Wald and Ishibashi [38] is whether there are necessary
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and sufficient conditions on a solution to the Cauchy problem to be

generated by an acceptable s.a.e. via this thesis. Since their paper

dealt with the case of sufficient conditions for the Cauchy problem to

be generated by a positive s.a.e. then this would be an extension of

their work to the present case.

4. An important question, connected with Statement 3, is whether or not

there exists dynamics conserving the symplectic form constructed in

Section 10 (but possibly not conserving an energy form), that is not

generated by a s.a.e. via the construction in this thesis. This question

posed by Kay and Studer [17] (Appendix A.2) is still unanswered.
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Appendices

A The Linear Operators C(t,AE) and S(t,AE)

In the first part of this appendix we show that if the s.a.e. AE of A is bounded

below then the linear operators C(t,AE) and S(t,AE) are both bounded on

L2(Σ, V −1dvolh). In the second part of the appendix we prove Proposition 3.5

concerning the strong derivatives of these linear operators.

We begin my defining a multiplication operator and stating our required

form of the Spectral Theorem. In the following, denote by L2(M,Ω, µ) the

space of (real or complex valued) square-integrable measurable functions (by

measurability here we mean with respect to the σ-algebra Ω on M and the

σ-algebra of Borel sets on R or C as required). Denote by L2(M,Ω, µ) the

(real or complex) Hilbert space consisting of equivalence classes of elements

in L2(M,Ω, µ).

Definition A.1 (Multiplication Operators (see e.g. Reed and Simon [27])).

Let (M,Ω, µ) be a measure space (a triple consisting of a set M , a σ-algebra

Ω of subsets of M and measure µ on Ω) and f ∶M → R be a measurable

function. Then define the linear operator Tf on L2(M,Ω, µ) by:

D(Tf) = {[φ] ∈ L2(M,Ω, µ) s.t f(⋅)φ(⋅) ∈ L2(M,Ω, µ)},

T ([φ]) = [f(⋅)φ(⋅)] on D(Tf).

The following are true of the linear operator Tf (see Reed and Simon [27]):

� It is a self-adjoint linear operator.

� It is bounded iff f ∈ L∞(M,Ω, µ).
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� It is bounded-below iff f ≥ −M a.e. for some M ∈ R i.e. iff f− ∈

L∞(M,Ω, µ).

Theorem A.2 (Multiplication Operator Version of the The Spectral Theo-

rem (See e.g. Reed and Simon [27])). Let H be a complex separable Hilbert

space and A be a self-adjoint linear operator on H. Then there exists a mea-

sure space (M,Ω, µ), real-valued measurable function f on M and a unitary

operator U ∶H → L2(M,Ω, µ) s.t. A and Tf are unitarily equivalent via U ,

that is:

U(D(A)) =D(Tf)

UAU−1[φ] = [f(⋅)φ(⋅)], for all [φ] ∈D(Tf).

In the following propositions, using the Spectral Theorem in the form

stated above, we shall show that if AE is a bounded-below self-adjoint op-

erator, then C(t,AE) and S(t,AE) are bounded linear operators. We shall

then consider their strong derivatives.

Proposition A.3. Using the above definitions, let f ≥ −M a.e. where M ≥ 0.

Then for all t ∈ R∶ C(t, f(⋅)) ∈ L∞(M,Ω, µ) and so TC(t,f(⋅)) is a bounded

self-adjoint operator by the previous proposition. In fact,

∣∣TC(t,f(⋅))∣∣ ≤ 1 + cosh(M1/2t).

Proof. ∣C(t, f(m))∣ = ∣ cos(f(m)1/2t)∣ ≤ 1 for f(m) ≥ 0

∣C(t, f(m))∣ = ∣ cosh((−f(m))1/2t)∣ ≤ cosh(M1/2t) for f(m) < 0 as cosh is a

monotonic decreasing function on the negative reals.

Thus ∣C(t, f(m))∣ ≤ 1 + cosh(M1/2t) for all m.

Using the last theorem we can state the properties of C(t,AE) for an

arbitrary bounded-below self-adjoint operator AE:
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Lemma A.4. Let AE be a bounded-below self-adjoint operator. Defining

C(t, x) as above then C(t,AE) is a bounded self-adjoint operator satisfying

∣∣C(t,AE)∣∣ ≤ 1 + cosh(M1/2t) for all t ∈ R.

Proposition A.5. Using the above definitions, let f ≥ −M a.e. where M ≥ 0.

Then S(t, f(⋅)) ∈ L∞(M,Ω, µ) and so TS(t,f(⋅)) is a bounded self-adjoint oper-

ator by the previous proposition. In fact ∣∣TS(t,f(⋅))∣∣ ≤ t(1+M−1/2 sinh(M1/2t))

Proof. ∣S(t, f(m))∣ = ∣f(m)−1/2 sin(f(m)1/2t)∣ ≤ t for f(m) ≥ 0

∣S(t, f(m))∣ = ∣(−f(m))−1/2 sinh((−f(m))1/2t)∣ ≤ tM−1/2 sinh(M1/2t) for f(m) <

0 as x−1 sinhx monotonic decreasing function on the negative reals.

Thus ∣S(t, f(m))∣ ≤ t(1 +M−1/2 sinh(M1/2t)) for all m.

The result follows.

Lemma A.6. Let AE be a bounded-below self-adjoint operator. Defining

S(t, x) as above then S(t,AE) is a bounded self-adjoint operator satisfying

∣∣S(t,AE)∣∣ ≤ t(1 +M−1/2 sinh(M1/2t)) for all t ∈ R.

Before we further consider the linear operators C(t,AE) and S(t,AE) we

make a simple proposition which allows us to quickly compare the domains

of multiplication operators, and hence also functions of self-adjoint operators

in any Hilbert space by the above version of the Spectral Theorem.

Proposition A.7. Let (M,Ω, µ) be a measure space and f ∶M → R be a Borel

measurable function. If g, h ∶ R→ R are continuous functions satisfying:

g(x) = O(h(x)) as ∣x∣ → ∞

(that is ∣g(x)∣ ≤ A∣h(x)∣ for all ∣x∣ > K and some A ≥ 0), then D(Th○f) ⊆

D(Tg○f).
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Proof. Firstly let ∣g(x)∣ ≤ A∣h(x)∣ for all ∣x∣ >K. If [φ] ∈D(Th○f) then:

∫
M
∣g ○ f(m)∣2∣φ(m)∣2dµ(m)

= ∫
∣f ∣≤K

∣g ○ f(m)∣2∣φ(m)∣2dµ(m) + ∫
∣f ∣>K

∣g ○ f(m)∣2∣φ(m)∣2dµ(m)

≤ ( sup
∣x∣≤K

∣g(x)∣)2∫
∣f ∣≤K

∣φ(m)∣2dµ(m) +A∫
∣f ∣>K

∣h ○ f(m)∣2∣φ(m)∣2dµ(m)

< ∞,

since the first term is finite as g is continuous and [φ] ∈ L2(M,Ω, µ) and the

second term is finite since [φ] ∈D(Th○f).

Remark. The result is also true (by a similar proof) if g(x) = O(1) as x→∞

and g(x) = O(h(x)) as x → −∞. Using this result we have for instance that

D(TC(t,f)) ⊆D(TS(t,f)) and so D(C(t,AE)) ⊆D(S(t,AE)) for all t.

Lemma A.8. Let (M,Ω, µ) and f be as in the last proposition. If g, h ∶ R→

(0,∞) are continuous functions satisfying:

∣g(x)
h(x)

∣ → c > 0 as ∣x∣ → ∞,

then D(Tg○f) =D(Th○f).

This lemma follows easily from the last proposition. Similarly to the

previous remark it would be sufficient if g and h were bounded on [0,∞)

and ∣ g(x)h(x) ∣ → c > 0 as x → −∞. Using this result with g(x) = C(t, x) and

h(x) = exp t(x−)1/2 for some t > 0 results in: D(TC(t,f)) = D(Texp t(x−)1/2) and

hence D(C(t,AE)) =D(exp t(A−
E)1/2).

We now find the strong derivatives of the linear operators C(t,AE) and

S(t,AE) (Proposition 3.5) and show that [χE] is an invariant space with

respect to both linear operators.
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Proposition A.9. Given an acceptable s.a.e. AE of A, define:

χE ∶= {f ∈ C∞(Σ) s.t. [f] ∈D(A∞
E ) ∩⋂

t>0

D(exp((A−
E)1/2t))}

then the linear operators C(t,AE) and S(t,AE) satisfy the following:

C(t,AE), S(t,AE) ∶ [χE] → [χE].

Also, the maps t → C(t,AE) and t → S(t,AE) are infinitely often strongly

differentiable on [χE], where for n ∈ N ∪ {∞}:

D(AnE) = {x ∈D(AE) ∶ AmEx ∈D(AE) for all m = 1, ..., n − 1}.

In fact, for n ∈ N the following strong derivatives hold on the dense subspace

[χE] of L2(Σ, V −1dvolh):

d2n

dt2n
C(t,AE) = (−1)nAnEC(t,AE),

d2n−1

dt2n−1
C(t,AE) = (−1)nAnES(t,AE),

d2n

dt2n
S(t,AE) = (−1)nAnES(t,AE),

d2n+1

dt2n+1
S(t,AE) = (−1)nAnEC(t,AE).

Proof. It suffices to prove these facts for the unitarily equivalent case of Tf ,

where f ∶M → R is measurable.

We show first that

TC(t,f) ∶ ⋂
t>0

D(Texp((f−)1/2t)) → ⋂
t>0

D(Texp((f−)1/2t))

and then that:

TC(t,f) ∶D(Tfn) ∩⋂
t>0

D(Texp((f−)1/2t)) →D(Tfn).
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Indeed, if φ ∈ ⋂t>0D(Texp((f−)1/2t)) then:

∫
M
∣C(t, f(m)∣2∣ exp f−(m)1/2t′∣2∣φ(m)∣2dµ(m)

≤ ∫
f≤0

∣C(t, f(m)∣2 exp 2f−(m)1/2t′∣φ(m)∣2dµ(m)

+ ∫
f>0

exp 2f−(m)1/2t′∣φ(m)∣2dµ(m)

= ∫
f≤0

cosh2 tf−(m)1/2 exp 2f−(m)1/2t′∣φ(m)∣2dµ(m) +C

= 1

4 ∫f≤0
exp 2(t + t′)f−(m)1/2∣φ(m)∣2dµ(m)

+ 1

2 ∫f≤0
exp 2f−(m)1/2t′∣φ(m)∣2dµ(m)

+ 1

4 ∫f≤0
exp−2(t + t′)f−(m)1/2∣φ(m)∣2dµ(m) +C

< ∞.

Secondly,

∫
M
∣f(m)∣2n∣C(t, f(m))∣2∣φ(m)∣2dµ(m)

= ∫
f<0

∣f(m)∣2n cosh2(tf−(m)1/2)∣φ(m)∣2dµ(m)

+ ∫
f≥0

∣f(m)∣2n∣ cos(tf(m)1/2)∣2∣φ(m)∣2dµ(m)

≤ 1

4 ∫f<0
∣f(m)∣2n exp 2tf−(m)1/2t)∣φ(m)∣2dµ(m)

+ 1

2 ∫f<0
∣f(m)∣2n∣φ(m)∣2dµ(m)

+ 1

4 ∫f<0
∣f(m)∣2n exp−2tf−(m)1/2t)∣φ(m)∣2dµ(m) +C

< ∞.

Thus TC(t,f) maps the subspace D(T∞
f )∩⋂t>0D(Texp((f−)1/2t)) to itself. Again,

arguing by the Spectral Theorem, we have C(t,AE) ∶ [χE] → [χE] for any

s.a.e. AE. The proof for the linear operator S(t,AE) is similar. We prove

the last properties by a sequence of lemmas.
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Lemma A.10. Let f be measurable. Then the map t → Tcos tf is strongly

differentiable at t on D(Tf2) with strong derivative T−f sin tf .

Proof.

lim
h→0

∣∣1
h
(Tcos(t+h)f − Tcos tf)φ − T−f sin tfφ∣∣

2

= lim
h→0

∫
M

⎡⎢⎢⎢⎢⎢⎣

1
h (cos(t + h)f(m) − cos tf(m))

+f(m) sin tf(m)

⎤⎥⎥⎥⎥⎥⎦

2

∣φ(m)∣2dµ(m) (A.1)

As t is fixed, the integrand approaches zero pointwise in M as h → 0. In

order to show that the integral converges to zero, we use the Dominated

Convergence theorem (D.C.T.). By Taylor’s theorem, for all h there exists k

such that ∣k∣ < ∣h∣ and

cos(t + h)f(m) = cos tf(m) − hf(m) sin tf(m) − h
2

2
f(m)2 cos(t + k)f(m), so

∣1
h
(cos(t + h)f(m) − cos tf(m)) + f(m) sin tf(m)∣ ≤ ∣h∣

2
∣f(m)∣2.

We define g(m) = 1
4 ∣f(m)∣4∣φ(m)∣2.

So for ∣h∣ < 1, [ 1
h (cos(t + h)f(m) − cos tf(m)) + f(m) sin tf(m)]2 ∣φ(m)∣2 ≤

g(m) ∈ L1(M,Ω, µ) as φ ∈D(Tf2).

Thus by the D.C.T., the RHS of (A.1) is zero.

Lemma A.11. Letting f be measurable, then the map t→ Tcosh tf is strongly

differentiable at t > 0 on D(Tf2 cosh t′f) (for any t′ > t) with strong derivative

Tf sinh tf .

Proof.

lim
h→0

∣∣1
h
(Tcosh(t+h)f − Tcosh tf)φ − Tf sinh tfφ∣∣

2

= lim
h→0

∫
M

⎡⎢⎢⎢⎢⎢⎣

1
h (cosh(t + h)f(m) − cosh tf(m))

−f(m) sinh tf(m)

⎤⎥⎥⎥⎥⎥⎦

2

∣φ(m)∣2dµ(m) (A.2)
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For ∣h∣ < t′ − t there exists k ∶ ∣k∣ < ∣h∣ such that:

cosh(t+h)f(m) = cosh tf(m)+hf(m) sinh tf(m)− h
2

2
f(m)2 cosh(t+k)f(m).

So

∣1
h
(cosh(t + h)f(m) − cosh tf(m)) − f(m) sinh tf(m)∣

≤ ∣h∣
2

∣f(m)∣2 cosh(t + k)f(m).

So we define g(m) = 1
4 ∣f(m)∣4∣φ(m)∣2 cosh2 t′f(m).

So for ∣h∣ < 1, [ 1
h(cosh(t + h)f(m) − cosh tf(m)) − f(m) sinh tf(m)]2 ∣φ(m)∣2 ≤

g(m) ∈ L1(M,Ω, µ) as φ ∈D(Tf2 cosh t′f).

Thus by the D.C.T., the RHS of (A.2) is zero.

Lemma A.12. The map t → TC(t,f) is strongly differentiable at t > 0 on

D(Tf+) ∩D(Tf− cosh t′(f−)1/2) (for any t′ > t) with strong derivative T−fS(t,f).
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Proof.

lim
h→0

∣∣1
h
(TC(t+h,f) − TC(t,f))φ + TfS(t,f)φ∣∣

2

= lim
h→0

∫
M

⎡⎢⎢⎢⎢⎢⎣

1
h(C(t + h, f(m)) −C(t, f(m)))

+f(m)S(t, f(m))

⎤⎥⎥⎥⎥⎥⎦

2

∣φ(m)∣2dµ(m)

= lim
h→0

∫
f<0

⎡⎢⎢⎢⎢⎢⎣

1
h(cosh(t + h)(−f(m))1/2 − cosh t(−f(m))1/2)

+f(m)(−f(m))−1/2 sinh t(−f(m))1/2

⎤⎥⎥⎥⎥⎥⎦

2

∣φ(m)∣2dµ(m)

+ lim
h→0

∫
f≥0

⎡⎢⎢⎢⎢⎢⎣

1
h(cos(t + h)f(m)1/2 − cos tf(m)1/2)

+f(m)(f(m))−1/2 sin t(f(m))1/2

⎤⎥⎥⎥⎥⎥⎦

2

∣φ(m)∣2dµ(m)

= lim
h→0

∫
M

⎡⎢⎢⎢⎢⎢⎣

1
h(cosh(t + h)f−(m)1/2 − cosh t(f−(m))1/2)

−f−(m)1/2 sinh tf−(m)1/2

⎤⎥⎥⎥⎥⎥⎦

2

∣φ(m)∣2dµ(m)

+ lim
h→0

∫
M

⎡⎢⎢⎢⎢⎢⎣

1
h(cos(t + h)f+(m)1/2 − cos tf+(m)1/2)

+f+(m)1/2 sin tf+(m)1/2

⎤⎥⎥⎥⎥⎥⎦

2

∣φ(m)∣2dµ(m)

→ 0,

since: φ ∈D(Tf+) ∩D(Tf− cosh t′(f−)1/2).

Note that:

⋂
n≥0,t>0

D(Tfn) ∩D(TC(t,f)) ⊆D(Tf) ∩D(TfC(t′,f))

⊆D(Tf+) ∩D(Tf− cosh t′(f−)1/2)

(All inclusions between domains of multiplication operators follow from either

Proposition A.7 or the remark thereafter.) So t → TC(t,f) is also strongly

differentiable on

⋂
n≥0,t>0

D(Tfn) ∩D(TC(t,f)).
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Thus if AE is an acceptable s.a.e. of A then t → C(t,AE) is strongly differ-

entiable on

D(A∞
E ) ∩⋂

t>0

D(C(t,AE)) =∶ [χE] ⊆D(A∞
E ) ⊆ [C∞(Σ)],

where the last inclusion is the content of Theorem 3.3.

The following statements follow by similar arguments.

Lemma A.13. Again with f measurable, then the following are true:

1. The map t→ Tsin tf is strongly differentiable at t on D(Tf2) with strong

derivative Tf cos tf .

2. The map t → Tsinh tf is strongly differentiable at t > 0 on D(Tf2 sinh t′f)

for t′ > t with strong derivative Tf cosh tf .

3. The map t→ TS(t,f) is strongly differentiable at t > 0 on

D(T(f−)1/2 sinh t′(f−)1/2) ∩D(T(f+)1/2)

for t′ > t with strong derivative TC(t,f).

Using the last two lemmas we obtain the required last properties given in

Proposition A.9.
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B Klein-Gordon Solutions on Globally Hy-

perbolic Spacetimes not of Compact Sup-

port on any Cauchy surface

This section is devoted to proving an extension of Theorem 4.25. It is in-

cluded here for completeness. (See also Corollary 5, Section 3.5.3 in Ginoux’s

contribution in Bär and Fredenhagen (Eds.) [4].)

Theorem B.1 (Existence and Uniqueness of Classical Solutions on Globally

Hyperbolic Spacetimes with respect to smooth initial data:). Let (M,g) be a

globally hyperbolic spacetime with smooth, spacelike Cauchy surface S. Then

the Klein-Gordon equation has a well-posed initial value formulation, that is,

given data φ0, φ̇0 ∈ C∞(S) then there exists a unique solution φ ∈ C∞(M) to:

(◻g +m2)ψ = 0

ψ∣S = φ0

∇nψ∣S = φ̇0,

where n is the unique unit smooth future-pointing timelike vector field on S

normal to the smooth spacelike Cauchy surface S. Moreover:

suppψ ⊆ J(K),

where K = suppφ0⋃ supp φ̇0.

To show this, we begin by proving some basic lemmas. Throughout,

(M,g) is a globally hyperbolic spacetime and S is some smooth spacelike

Cauchy hypersurface of M . We refer the reader to O’Neill [23] for a thorough

introduction to causality theory.

Lemma B.2. D(W )C = J(S/W ) ∀W ⊆ S
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Proof. x ∈ LHS

iff ∃ an inextendible causal curve that does not pass through W .

iff ∃ an inextendible causal curve that passes S/W .

iff x ∈ RHS

Lemma B.3. W ⊆D(J(W ) ∩ S) ∀W ⊆M

Proof. If x ∈W , take γ to be an inextendible causal curve through p. As S is

a smooth Cauchy surface, γ passes through S at some y ∈ S. So y ∈ J(W )∩Σ

and x ∈D(J(W ) ∩ S).

Lemma B.4. K ⊆ S is closed ⇒ J(K) is closed in M .

Proof. If K is closed then S/K is open in S. Thus S/K is an acausal topo-

logical hypersurface in M and, according to Theorem 4.21, D(S/K) is open

in M . But D(S/K) = J(K)C due to Lemma B.2 and so J(K) is closed.

(Proof of Theorem B.1). We start by proving existence of our solution. Given

any p ∈ M , then J(p) ∩ S is compact in S. Let f ∈ C∞
0 (S) s.t. f = 1 on an

open neighbourhood U of J(p) ∩ S. Since φ0f, φ̇0f ∈ C∞
0 (S), then define

φp,f ∈ C∞(M) as the solution to the Cauchy problem w.r.t compactly sup-

ported smooth data (φ0f, φ̇0f), via Theorem 4.25. Now, define the function

φ∶M → K as φ(p) = φp,f(p). We shall first show that the value φ(p) is inde-

pendent of which function f we take. Let f, g ∈ C∞
0 (M) such that f = g = 1

on an open neighbourhood U of J(p) ∩ S. So, f − g = 0 on U and:

φ0(f − g), φ̇0(f − g) = 0 on U ⊇ J(p) ∩ S.

Therefore, φp,f−g = φp,f − φp,g = 0 on D(U). But p ∈ D(J(p) ∩ S) ⊆ D(U) by

Lemma B.4 and so φp,f(p) = φp,g(p). Thus φ is a well-defined function on M .

110



Figure 6: The definition of the solution of the Cauchy problem to arbitrary

smooth data.

Figure 7: A reformulation of the defintion of the solution of the Cauchy

problem to arbitrary smooth data.
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We must now show that it is smooth, solves the K-G equation with respect to

smooth inital data (φ0, φ̇0). This is proven by an alternative characterisation

of the function φ. For any precompact open subset O, let g ∈ C∞
0 (S) such

that g = 1 on an open neighbourhood V of J(O) ∩ S. Let φO,g ∈ C∞(M) be

the solution to the Klein-Gordon equation corresponding to data (φg, φ̇0g)

according to Theorem 4.25. It follows, from the previous argument, that for

all p ∈ O: φ(p) = φO,g(p), where φ was defined previously, since J(p) ⊆ J(O)

and if g = 1 on an open neighbourhood of J(O) ∩S, then so also on an open

neighbourhood of J(p) ∩ S.

As φO,g is smooth and solves the Klein-Gordon equation, then so does φ. If

p ∈ S, then φ satisfies:

φ(p) = Ψ(p) = φ0(p)f(p) = φ0(p)

∇nφ(p) = ∇nΨ(p) = φ̇0(p)f(p) = φ̇0(p).

So, φ∣S = φ0 and ∇nφ∣S = φ̇0.

We now check the property concerning the support of φ. If J(K) = M

then the statement is trivially true. If p ∉ J(K), then as K is closed and

J(p) ∩ S compact in S, there exists an open neighbourhood U of J(p) ∩ S

and f ∈ C∞
0 (S) s.t. f = 1 on U and f = 0 on K. So, φ0, φ̇0 = 0 on U and

U ∩ K = φ then φ0f = φ̇0f = 0 on S. Therefore, φ(p) = Ψ(p) = 0 and so

p ∉ J(K) ⇒ φ(p) = 0 or {φ ≠ 0} ⊆ J(K) and

suppφ = {φ ≠ 0} ⊆ J(K) = J(K),

by Lemma B.4.

The proof of the uniqueness of such a solution is given by the following short

argument. Consider the following statements:
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1. We have uniqueness of the Cauchy problem w.r.t. arbitrary smooth

data.

2. If φ ∈ C∞(M) satisfies (◻g +m2)φ = 0, φ∣S = 0 and ∇nφ∣S = 0 then

φ = 0.

3. We have uniqueness of the Cauchy problem w.r.t. arbitrary smooth

data of compact support.

The following equivalences are easy to show, by the linearity of the Klein-

Gordon operator, the covariant derivative and the restrictions onto the sur-

face S:

1.⇔ 2.⇔ 3.

Thus, since Statement 3. is true by Theorem 4.25, then Statement 1. is

true.
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C Basic Metric Space Theory

In this appendix we deal with the some relatively basic results in metric space

theory needed in the proofs of Propositions 4.22 and 4.12. We include them

for completeness.

Let (X,d) be a metric space. Given K ⊆X, then we define:

d(q,K) ∶= inf
p∈K

{d(p, q)}.

The closed ball around K of radius t is then defined as:

C(K, t)∶ = {q∶ d(q,K) ≤ t}.

Note its alternative characterisation:

q ∈ C(K, t) iff for all ε > 0 there exists p ∈K such that d(p, q) < t + ε.

Proposition C.1. Let (X,d) be a metric space and K ⊆X a compact subset.

Then:

C(K, t)∶ = {q∶ d(q,K) ≤ t}

= {q∶ inf
p∈K

{d(p, q)} ≤ t}

= ⋃
p∈K

C(p, t).

Note that in the last step we have used the compactness of K and the con-

tinuity of the metric. We now check that the closed ball C(K, t) is indeed

closed.

Proposition C.2. Let (X,d) be a metric space and K ⊆ X. Then, C(K, t)

is closed for all t ≥ 0.
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Proof. Let qn ∈ C(K, t) and qn → q ∈X. We want to show that

inf
p∈K

{d(p, q)} ≤ t.

If this were not true, then there would exist ε > 0 such that d(p, q) > t + ε

for all p ∈ K. But since qn → q, then d(p, qn) > t + ε/2 for all p ∈ K and

all n > N for some N . So d(qn,K) = infp∈K{d(p, qn)} ≥ t + ε/2, which is a

contradiction.

We shall now prove some more simple properties of the closed ball:

Proposition C.3. Letting (X,d) be a metric space and A,B ⊆X, then:

1. If A ⊆ B, then C(A, t) ⊆ C(B, t).

2. C(A ∪B, t) ⊆ C(A, t) ∪C(B, t).

3. C(C(A, t), s) ⊆ C(A, t + s).

Proof. To prove Statement 1, note that:

{d(p, q) ∶ q ∈ A} ⊆ {d(p, q) ∶ q ∈ B}.

So, if p ∈ C(A, t) then:

t ≥ d(A,p) = inf{d(p, q) ∶ q ∈ A} ≥ inf{d(p, q) ∶ q ∈ B} = d(B,p)

and so p ∈ C(B, t).

To prove Statement 2 :

{d(p, q) ∶ q ∈ A ∪B} = {d(p, q) ∶ q ∈ A} ∪ {d(p, q) ∶ q ∈ B}

and so

d(p,A ∪B) = inf{d(p, q) ∶ q ∈ A ∪B} = min{d(p,A), d(p,B)}.
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So if p ∈ C(A∪B, t) then d(p,A∪B) ≤ t and either d(p,A) < t or d(p,B) < t,

that is, p ∈ C(A, t) or p ∈ C(B, t).

To prove Statement 3 : If q ∈ C(C(A, t), s) and ε > 0, then ∃r ∈ C(A, t) such

that d(q, r) < s + ε. Additionally, ∃p ∈ A such that d(p, r) < t + ε. Thus,

d(p, q) ≤ d(p, r) + d(q, r) < s + t + 2ε

and so q ∈ C(A, t + s).

Remark. Note that equality in Statement 3 is in fact false for general metric

spaces. However, it is true in the case of interest in this thesis: when (Σ, h)

is a Riemannian manifold and (Σ, d) is the induced metric space, via Theo-

rem 4.4. This is shown in the following proposition, together with the result

that the closure of the open ball is the closed ball, another statement which

is false for general metric spaces.

Proposition C.4. Let (Σ, h) be a Riemannian manifold, (Σ, d) the induced

metric space, via Theorem 4.4, and A ⊆ Σ. Then:

1. C(C(A, t), s) = C(A, s + t) for all s, t ≥ 0.

2. B(p, t) = C(p, t) for all p ∈ Σ and t ≥ 0..

Proof. We start by proving Statement 1 : The inclusion ⊆ was already proven

in Proposition C.3. For the converse: Let q ∈ C(A, s + t), so d(q,A) ≤ s + t.

If d(q,A) ≤ t then q ∈ LHS. So, let w.l.o.g. d(q,A) > t. Pick γn ∶ [0,1] → Σ

piecewise smooth such that γn(0) = pn ∈ A, γn(1) = q for all n and

L(γn) ↘ d(q,A) ≤ s + t.

We must have L(γn) > t for all n. For each n, let sn ∈ [0,1] such that

L(γn∣[0,sn]) = t and let qn = γn(sn) ∈ C(A, t). Then:

d(qn, q) ≤ L(γn∣[sn,1]) = L(γn)−L(γn∣[0,sn]) = L(γn)−t↘ d(q,A)−t ≤ s+t−t = s.
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Thus d(C(A, t), q) ≤ s and so q ∈ C(C(A, t), s).

To prove Statement 2 : The inclusion ⊆ is clear. Conversely, let q ∈ C(p, t). If

d(p, q) < t then we are done. So, let d(p, q) = t. Let γn ∶ [0,1] → Σ piecewise

smooth such that γn(0) = p, γn(1) = q and:

L(γn) ↘ d(p, q) = t.

Pick sn ∈ [0,1] such that L(γn∣[0,sn]) = t(1 − 1
n) and set qn = γn(sn). Thus

d(p, qn) ≤ L(γn∣[0,sn]) = t(1 − 1
n) < t and so qn ∈ B(p, t). Finally:

d(q, qn) ≤ L(γn∣[sn,1]) = L(γn) −L(γn∣[0,sn]) = L(γn) − t + t/n↘ 0.

So qn → q and q ∈ B(p, t).

Proposition C.5. Let X be a locally compact metric space. Given K ⊆ X

compact, then there exists ε > 0 s.t. C(K, ε) is compact.

Proof. As X is locally compact, for each p ∈ X choose εp > 0 s.t. C(p, εp)

is compact. Then since ⋃p∈K B(p, εp2 ) is an open cover of K. By com-

pactness of K there exists a finite collection of points (pn)1≤n≤N in K s.t.

⋃1≤n≤N B(pn, εpn2 ) is an open cover of K. Thus

K ⊆ ⋃
1≤n≤N

B (pn,
εpn
2

) ⊆ ⋃
1≤n≤N

C (pn,
εpn
2

) .

Let ε = min{εpn ∶ 1 ≤ n ≤ N} and so

C (K, ε
2
) ⊆ C ( ⋃

1≤n≤N
C(pn,

εpn
2

), ε
2
)

⊆ ⋃
1≤n≤N

C (C(pn,
εpn
2

), ε
2
)

⊆ ⋃
1≤n≤N

C (C(pn,
εpn
2

),
εpn
2

)

⊆ ⋃
1≤n≤N

C (pn, εpn) ,

where we have used all the properties proven in Proposition C.3. The RHS

is compact as a finite union of compact sets and so the LHS is compact.
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Note that the previous proposition applies to the case of (Σ, d) in Propo-

sition C.4, as this is locally compact, as is any (finite dimensional) smooth

manifold. We would like to prove that, if K ⊆ Σ and C(K, t) is compact

then C(K, t+ ε) is compact for small ε. However this is false in general, even

for locally compact metric spaces: for example let X = R/(0,1] with the

Euclidean metric and K = {0}. Then, C(0,1) is compact but C(0,1 + ε) is

never compact for any ε > 0. However, let the (locally compact) metric space

(Σ, d) be induced by a Riemannian manifold (Σ, h). Then, by the previous

proposition, if C(K, t) is compact then C(C(K, t), ε) is compact for small ε.

Then, by Proposition C.4, C(K, t + ε) = C(C(K, t), ε) is compact, which we

state in the following corollary:

Corollary C.6. Let (Σ, h) be a Riemannian manifold and (Σ, d) the induced

(locally compact) metric space. If K ⊆ Σ and C(K, t) is compact for some

t ≥ 0, then C(K, t + ε) is compact for sufficiently small ε > 0.

We apply this in the following useful proposition:

Proposition C.7. Let (Σ, h) be a Riemannian manifold and (Σ, d) the in-

duced metric space. Let K be a compact set in Σ. If C(p, t) is compact for

all p ∈K, then C(K, t) = ⋃p∈K C(p, t) is compact in Σ.

Proof. Let qn ∈ C(K, t). So, there exists a sequence pn ∈ K s.t. d(pn, qn) ≤ t.

By compactness, there exists a subsequence pnk → p ∈ K. We can take

w.l.o.g. pn → p. Then, for all ε > 0 there exists N ∣ d(p, qn) ≤ t + ε ∀n > N .

But C(p, t) is compact implies that C(p, t+ ε) is compact for some ε, by the

previous corollary. So qn ∈ C(p, t + ε) for all n > N . Again, by compactness

there exists a convergent subsequence qnk s.t. qnk → q ∈ Σ. By the closure of

C(K, t) proved in Proposition C.2, we have q ∈ C(K, t).
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D Partial Differential Operators on Manifolds

In this section we shall mainly deal with the topic of partial differential op-

erators on manifolds, but we shall find it useful to first introduce smooth

measures on manifolds as these will be needed in the later parts of this ap-

pendix. In Section D.2 we discuss the concept of partial differential operators

(p.d.o.s) on manifolds and in particular define such terms as elliptic and for-

mally self-adjoint with the view to checking that these properties do in fact

hold for our p.d.o. A first introduced on p.20 in Section 3. We will then

define the Lp spaces, distributions and Sobolev spaces in Section D.3, which

are used in much of this thesis. We have tried to give a fuller account of this

material than that found in the literature. In particular we have tried to use

only global notation and definitions, motivated by the approach of Bär et al.

[3] and Nicolaescu [22]. We shall not be including all proofs of the theory

in this section for brevity, especially those already to be found in Nicolaescu

[22] and Treves [36], but give full references.

D.1 Smooth Measures on Smooth Manifolds

In thus section we wish to give an account of the construction of smooth

measures on manifolds from volume elements (special types of densities), in

particular from pseudo-Riemannian metrics. This is well known and covered

in many books (e.g. Nicolaescu [22]), however one usually constructs a func-

tional on the space of test-functions and then invokes Riesz Representation

Theorem (Theorem 12.31 Driver [12]) to construct the measure if desired.

However, for completeness we would like to give here a more self-contained

and direct approach to constructing a measure.

We start by defining densities, not via giving the transition maps and
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invoking the Existence Theorem of Vector Bundles (Steenrod [33]), but by

giving its explicit construction (p.107 Nicolaescu [22]). We shall then define

volume elements, as certain types of densities, show how pseudo-Riemannian

metrics generate volume elements and subsequently show how volume ele-

ments generate smooth measures.

We first define densities on an n-dimensional manifold. Given a smooth

manifold M , let:

∣Λ∣p =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Vp ∶ Λn(TpM) → R

s.t. Vp(λep) = ∣λ∣Vp(ep) for all ep ∈ Λn(TpM)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

where Λn(TpM) is the n-th exterior product of the vector space TpM . Thus

∣Λ∣p is a 1-dimensional vector space. Now define:

∣Λ∣ = ⋃
p∈M

(p, ∣Λ∣p).

A density is then a map

V ∶M → ∣Λ∣

p↦ Vp

s.t. Vp ∈ ∣Λ∣p ∀p ∈M.

Note that if ωp ∈ ΛnT ∗
pM then define ∣ω∣p ∈ ∣Λ∣p by: ∣ωp∣(ep) = ∣ωp(ep)∣, which

makes sense since ωp ∈ ΛnT ∗
pM ≅ (Λn(TpM))∗.

If (Uα, φα) is an atlas then we can write V locally as: V = Vα∣dx1
α∧...∧dxnα∣,

where x1
α, ..., x

n
α are the coordinates of φα and Vα ∶ Uα → R. We then define a

density to be smooth if Vα ∈ C∞(Uα) for all α.

Using these definitions we show here the transformation law for the co-

ordinates of a density. Given local coordinates x1, ..., xn and y1, ..., yn, then:

V = v∣dx1 ∧ ... ∧ dxn∣ = v′∣dy1 ∧ ... ∧ dyn∣.
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But as dyi = ∂yi

∂xj
dxj, then:

V = v′ ∣ ∂y
1

∂xj1
dxj1 ∧ ... ∧ ∂yn

∂xjn
dxjn ∣

= v′ ∣det( ∂y
i

∂xj
)dx1 ∧ ... ∧ dxn∣

= v′ ∣det( ∂y
i

∂xj
)∣ ∣dx1 ∧ ... ∧ dxn∣,

and so v = ∣det ( ∂y
i

∂xj
)∣ v′ and v′ = ∣det ( ∂xi

∂yj
)∣ v.

Definition D.1. A volume element on a smooth manifold M is a smooth

density such that given an atlas (Uα, φα), then vα > 0 for all α. Equivalently,

a smooth density V is a volume element if for all p ∈ M , Vp ∶ Λn(TpM) →

(0,∞).

Note that a pseudo-Riemannian metric (and a symplectic form) generate

a volume element. To see this note that the components of a metric transform

as: g′ij = ∂xl

∂yi
∂xm

∂yj
glm. Thus:

det g′ij = det(∂x
l

∂yi
∂xm

∂yj
glm)

= det(∂x
i

∂yj
)

2

det(gij).

So: ∣det g′ij ∣1/2 = ∣det ( ∂xi
∂yj

)∣ ∣det(gij)∣1/2 and ∣det(gij)∣1/2 transforms as the

component of a density. Thus Vg ∶= ∣det(gij)∣1/2∣dx1 ∧ ... ∧ dxn∣ is a (global)

volume element on M . Since on every manifold can be defined a Riemannian

metric then on every manifold there exists a volume element.

Before we state a theorem on the existence of a Borel measure w.r.t. any

volume element V , we prove a statement regarding Borel sets on the manifold.

Remember, that on any topological space (M,τ), the Borel σ-algebra σ(τ) is

defined as the smallest σ-algebra containing all open sets in the topology τ .
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Proposition D.2. Let (M,τ) be a topological space and Un be a countable

open cover of M . Given U ⊆M , then:

1. For all n, σ(τUn) = {U ∩Un, U ∈ σ(τ)}

2. U ∈ σ(τ) iff U ∩Un ∈ σ(τUn) for all n,

where τUn is the induced topology of τ on Un.

Proof. To prove 1 : By definition of the induced topology, we know that if

U ⊆M then:

U ∈ τ iff U ∩Un ∈ τUn for all n.

We now prove that U ∈ σ(τ) ⇒ U ∩ Un ∈ σ(τUn). This then proves RHS ⊆

LHS of Statement 1 and LHS ⇒ RHS of Statement 2. To do this consider:

Π ∶= {U ⊆M s.t. U ∩Un ∈ σ(τUn) for all n}.

We check that Π is in fact a σ-algebra on M that clearly contains τ :

(i) φ,M ∈ Π.

(ii) U ∈M ⇒ U ∩Un ∈ σ(τUn) and so U c ∩Un = Un/(U ∩Un) ∈ σ(τUn) and so

U c ∈ Π.

(iii) Um ∈ Π⇒ Um ∩Un ∈ σ(τUn) for all m,n. Thus (⋃mUm)∩Un = ⋃m(Um ∩

Un) ∈ σ(τUn) and so ⋃mUm ∈ Π.

Thus, if U ∈ τ then U ∩ Un ∈ τUn ⊆ σ(τUn) for all n and U ∈ Π. So we have

τ ⊆ Π, which implies σ(τ) ⊆ Π, i.e.

U ∈ σ(τ) ⇒ U ∩Un ∈ σ(τUn) for all n.

Now, let Πn ∶= {U ∩ Un ∶ U ∈ σ(τ)}. We shall check that for all n, Πn is

a σ-algebra on Un, which contains the topology τUn .

(i) π,Un ∈ Πn
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(ii) U ∈ σ(τ) ⇒ Un/(U ∩Un) = U c ∩Un where U c ∈ σ(τ). So: Un/(U ∩Un) ∈

Πn.

(iii) Um ∈ σ(τ) ⇒ (⋃mUm) ∩Un = ⋃m(Um ∩Un) ∈ Πn.

In particular we have that τUn ⊆ Πn and so σ(τUn) ⊆ Πn for all n. Thus

the remaining direction of 1 is proven. Now to prove that LHS ⇐ RHS of

Statement 2, let U ⊆ M and U ∩ Un ∈ σ(τUn) for all n. Then by 1 we have

for each n: U ∩Un = Vn ∩Un for Vn ∈ σ(τ). Then:

U = ⋃
n≥1

(U ∩Un)

= ⋃
n≥1

(Vn ∩Un)

∈ σ(τ) (since Un ∈ τU ⊆ σ(τU)).

The following definition is taken from p.332 of Folland [14], the definition

of a smooth measure on a manifold.

Definition D.3. A smooth measure on a manifold M is a Borel measure

µ such that on any chart (U,φ) on M , dµ = fφ−1
∗ (dλ), where f ∈ C∞(U),

f > 0 and φ−1
∗ (dλ) is the push-forward of the Lebesgue measure dλ to U along

φ−1.

Theorem D.4. Given a smooth manifold M with a volume element V , then

there exists a unique smooth measure µ on M such that if (Un, φn) is a

countable atlas of M then for all n ∈ N:

µ∣Un = vn(φ−1
n )∗(dλ),

where vn ∈ C∞(Un) is the component of V in the local basis of densities

induced by the chart (Un, φn).

Furthermore, the following are true of µ:
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1. Given any locally finite atlas (Un, φn) and any partition of unity {fn ∶

fn ∈ C∞(M)} subordinate to (Un), then for U ∈ σ(τ), µ(U) is given by:

µ(U) = ∑
n
∫
φn(U∩Un)

fn ○ φ−1
n .vn ○ φ−1

n dλ

2. The measure µ is Radon and regular.

3. The null sets w.r.t. µ are independent of the volume element V . Ex-

plicitly, N ⊆M is null iff there exists a countable atlas (Un, φn) s.t. for

each n: φn(N ∩Un) is null w.r.t. the Lebesgue measure.

4. Every smooth measure on M arises in this way from some volume ele-

ment.

Note that according to Statement 3, the set of Lebesgue sets in M w.r.t.

µ (the completion of σ(τ) w.r.t. µ) is independent of the volume element

used to define µ.

We begin with a Lemma:

Lemma D.5. Given volume element V , charts (Un, φn) and (Um, φm), f ∈

C∞
0 (M) of compact support in Un ∩Um and U ⊆ Un ∩Um Borel, then:

∫
φn(U)

f ○ φ−1
n .vn ○ φ−1

n dλ = ∫
φm(U)

f ○ φ−1
m .vm ○ φ−1

m dλ

Proof.

∫
φn(U)

f ○ φ−1
n .vn ○ φ−1

n dλ

= ∫
φn(U)

f ○ φ−1
n .vn ○ φ−1

n .∣detD(φm ○ φ−1
n )∣−1∣detD(φm ○ φ−1

n )∣dλ

= ∫
φn(U)

f ○ φ−1
n .vm ○ φ−1

n .∣detD(φm ○ φ−1
n )∣dλ

= ∫
φm(U)

f ○ φ−1
m .vm ○ φ−1

m dλ
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Proof of Theorem D.4. We first prove uniqueness. As (Un) is a countable

cover of M then define Vn = ⋃nn=1Un and W1 = V1 and Wn = Vn/Vn−1 for n ≥ 2.

So (Wn) is a countable cover of M by pairwise disjoint measurable sets. As

Wn ⊆ Un so µ is uniquely determined on each Wn and so also on M .

In order to prove the remaining properties we shall first find an alternative

expression for our proposed Borel measure µ. If µ is a Borel measure on M

satisfying the condition, then if U ⊆ M is Borel, (Un, φn) is a locally finite

atlas and {fn ∶ fn ∈ C∞(M)} is a partition of unity subordinate to (Un),

then:

µ(U) = ∫
M
1Udµ

= ∫
M
(∑
n

fn).1Udµ

= ∑
n
∫
M
fn.1Udµ

= ∑
n
∫
Un
fn.1Udµ

= ∑
n
∫
Un
fn.1Uvn(φ−1

n )∗(dλ)

= ∑
n
∫
φn(Un)

fn ○ φ−1
n .1U ○ φ−1

n .vn ○ φ−1
n dλ

= ∑
n
∫
φn(Un)∩φn(U)

fn ○ φ−1
n .vn ○ φ−1

n dλ

= ∑
n
∫
φn(Un∩U)

fn ○ φ−1
n .vn ○ φ−1

n dλ

We must show that if we take this final expression to define µ, then it is

indeed a measure. So we are defining, for U ∈ σ(τ):

µ(U) = ∑
n
∫
φn(Un∩U)

fn ○ φ−1
n .vn ○ φ−1

n dλ
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If U = ⋃mUm is a disjoint union of Borel sets in M , then:

µ(U) = ∑
n
∫
φn(Un∩(⋃m Um))

fn ○ φ−1
n .vn ○ φ−1

n dλ

= ∑
n
∫
φn(⋃m(Un∩Um))

fn ○ φ−1
n .vn ○ φ−1

n dλ

= ∑
n
∫
⋃m(φn(Un∩Um))

fn ○ φ−1
n .vn ○ φ−1

n dλ

= ∑
n
∑
m
∫
φn(Un∩Um)

fn ○ φ−1
n .vn ○ φ−1

n dλ

= ∑
m
∑
n
∫
φn(Un∩Um)

fn ○ φ−1
n .vn ○ φ−1

n dλ

= ∑
m

µ(Um)

So µ is countably additive. Clearly we also have: µ(φ) = φ. Thus µ is a Borel

measure on M . If U ⊆ Um then:

µ(U) = ∑
n
∫
φn(Un∩U)

fn ○ φ−1
n .vn ○ φ−1

n dλ

= ∑
n
∫
φm(Un∩U)

fn ○ φ−1
m .vm ○ φ−1

m dλ (using the Lemma)

= ∑
n
∫
φm(U)

fn ○ φ−1
m .vm ○ φ−1

m dλ

= ∫
φm(U)

∑
n

fn ○ φ−1
m .vm ○ φ−1

m dλ

= ∫
φm(U)

vm ○ φ−1
m dλ

Thus the main statement of the theorem and Statement 1 are proven.

Now to prove the remaining properties of µ.

To prove Statement 2, take a compact subset K of M . We will show

that µ(K) < ∞. Firstly, given any countable locally finite atlas (Un, φn)

then as K is compact then K is covered by Un1 , ..., UnN . Pick any partition

of unity {fk ∶ k = 1...N} of the submanifold ⋃k Unk subordinate to (Unk).

126



So fk ∈ C∞(M) with suppfk ⊆ Unk . Similarly to the previous parts of the

theorem, then µ(K) is given by:

µ(K) =
N

∑
k=1
∫
φnk(Unk∩K)

fk ○ φ−1
nk
.Vnk ○ φ−1

nk
dλ

=
N

∑
k=1
∫
φnk(Unk)∩φnk(K∩supp (fnk))

fk ○ φ−1
nk
.Vnk ○ φ−1

nk
dλ

< ∞

as each term is finite since φnk(K ∩ supp (fnk)) is compact in φnk(Unk) and

fk ○ φ−1
nk
.Vnk ○ φ−1

nk
dλ is a Radon measure since dλ is and all functions are

smooth. Thus µ is Radon. That all Radon measures on a locally compact,

Hausdorff, second countable topological space are regular is a consequence

of Theorem 12.32 in Driver [12].

Property 3 regarding null sets follows easily from the above description

of µ.

Property 4 follows from the Change of Variables Theorem (Theorem 21.1

of Driver [12]).

Thus according to the previous theorem, the set of smooth measures on

a manifold M can be identified with the set of volume elements on M . As

an aside, note that since the set of densities is the set of sections of a vector

bundle, so it can be given the structure of a Fréchet space. The set of volume

elements is then given the induced topology and the set of smooth measures

on a manifold will thus inherit a topology from the set of volume elements.

We conclude this section by defining some notation which is used in much of

the thesis.
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Definition D.6. If g is a pseudo-Riemannian metric on a manifold M , we

know that Vg = ∣det(gij)∣1/2∣dx1 ∧ ... ∧ dxn∣ is a volume element on M . Using

Theorem D.4, define dvolg as the Borel measure on M generated by Vg.

Note that most authors do not distinguish in notation between volume

elements and smooth measures. We do so here for clarity. In the next section

we shall define partial differential operators (p.d.o.s) and analyse the p.d.o.

A used throughout this thesis.

D.2 Partial Differential Operators and an Analysis of A

In this appendix we introduce the concept of a partial differential operator

(p.d.o.) on a smooth manifold M , following Chapter 10 of Nicolaescu [22].

Given two vector bundles E and F over M , define

Op(E,F) ∶= L(Γ(E),Γ(F )),

that is, the space of linear maps from the vector space of smooth sections of

the vector bundle E to that of the vector bundle F .

We shall now define the set of partial differential operators of order

at most n, PDO(n)(E,F). Firstly, define PDO0(E,F ) = Γ(Hom(E,F )),

where Hom(E,F ) is the homomorphism bundle between E and F . Re-

member that Hom(E,F ) is a vector bundle over M whose fibre at x ∈ M

is: Hom(E,F )x = L(Ex, Fx). Note that if T ∈ Γ(Hom(E,F )) and f ∈

Γ(E) then define Tf ∈ Γ(F ) by: (Tf)(x) = T (x)f(x). Thus we view

T ∈ L(Γ(E),Γ(F )) = Op(E,F ) and Γ(Hom(E,F )) ⊆ Op(E,F ).

Given f ∈ C∞(M), define ad(f)∶ Op(E,F ) → Op(E,F ) by ad(f)(T ) =
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T ○ f − f ○ T and then set:

PDO(n)(E,F )

= ker adn+1

= {T ∈ Op(E,F )∶ ad(f1)ad(f2)...ad(fn+1)T = 0 for all f1, ...fn+1 ∈ C∞(M)}

We define

PDOn(E,F)∶ = PDO(n)(E,F )/PDO(n−1)(E,F ),

the set of partial differential operators between E and F of order n.

In order to define the concept of an elliptic p.d.o. we first introduce the

principal symbol of a partial differential operator. It is covered in full detail

on p.430 of Nicolaescu [22]. If P ∈ PDO(n)(E,F ) then for f1, ..., fn ∈ C∞(M)

by definition ad(f1)ad(f2)...ad(fn)P ∈ PDO0(E,F ) = Γ(Hom(E,F )). It

can be shown that for x0 ∈ M , the linear map ad(f1)ad(f2)...ad(fn)P ∣x0 ∈

L(Ex0 , Fx0) depends only on the values dfi(x0) of the functions fi. Using the

fact that [ad(f), ad(g)] = 0 for all f, g ∈ C∞(M), then we have a symmetric

multilinear map:

σ(P )(x0)∶ T ∗
x0M × ... × T ∗

x0M → L(Ex0 , Fx0)

(ξ1, ..., ξn) ↦
1

n!
ad(f1)ad(f2)...ad(fn)P ∣x0 ,

where dfi(x0) = ξi. As shown on p.312 of Nicolaescu [22], as for any sym-

metric multilinear map, σ(P )(x0) is completely determined by its values on

{(ξ, ..., ξ)∶ ξ ∈ T ∗
x0M}.

Define σn(P )(x0, ξ) = σ(P )(x0)(ξ, ..., ξ). Then for each (x0, ξ) ∈ T ∗M

and λ ∈ R:

σn(P )(x0, ξ) ∈ L(Ex0 , Fx0)

σn(P )(x0, λξ) = λnσn(P )(x0, ξ)
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In fact,

σn(P ) ∈ Γ(π∗Hom(E,F )) ≅ Γ(Hom(π∗E,π∗F )) = PDO0(π∗E,π∗F ),

where π∗(E) of a vector bundle E over M is the pullback bundle (also called

the induced bundle) along the bundle map π ∶ T ∗M → M , that is, it is a

vector bundle with base space T ∗M and its fibre at (x0, ξ) ∈ T ∗M is Ex0 .

Additionally “≅” denotes a vector space isomorphism between the respec-

tive spaces of sections between isomorphic bundles (the induced bundle is

constructed on p.47 of Steenrod [33]).

It is important to note that if E,F,G are all vector bundles over the same

manifold M and P ∈ PDO(m)(F,G) and Q ∈ PDO(n)(E,F ) then P ○ Q ∈

PDO(n+m)(E,G) (see p.428 of Nicolaescu [22]). With this notation then we

also have: σm+n(P ○Q) = σm(P ) ○ σn(Q).

We shall now consider an alternative definition of PDOn(E,F ) and define

an elliptic p.d.o..

Recalling that P ∈ PDO(n)(E,F ) then P ∈ PDOn(E,F ) iff ∃f1, .., fn ∈

C∞(M) s.t. ad(f1)..ad(fn)P ≠ 0. Since σ(P ) is reconstructible from σn(P )

then if one is zero then so is the other. Thus P ∈ PDOn(E,F ) iff σn(P ) ≠

0 ∈ Γ(Hom(π∗E,π∗F )).

Definition D.7. The operator P ∈ PDOn(E,F ) is said to be elliptic if

σn(P )(x0, ξ)∶Ex0 → Fx0 is a linear isomorphism for all x0 ∈ M and ξ ∈

Tx0M/{0}.

Remark. Clearly if P ∈ PDO(E,F ) is an elliptic operator then rank(E) =

rank(F ).
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We shall now introduce some common partial differential operators be-

tween certain bundles, consider their principal symbols, recall the partial

differential operator A of interest to us in this thesis and show that it is of

second order and elliptic.

Given a pseudo-Riemannian manifold (M,g) (called semi-

Riemannian by O’Neill [23]), we define the partial differential operator div g ∈

PDO1(TM,M). Here we denote by M the trivial bundle and by TM the

tangent bundle. For the vector field X on M :

div g(X) ∶= trace(∇X).

Note that ∇ is the covariant derivative induced by g and so ∇X is a rank

(1,1) tensor. In fact div g is of order 1. Thus:

div g ∶ Γ(TM) → C∞(M).

We will show that div g ∈ PDO1(TM,R ×M). It is easily shown that

div g(fX) = fdiv gX +X(f). From this it follows:

div g(f1f2X) = f1div g(f2X) + f2div g(f1X) − f1f2div gX

and hence ad(f1)ad(f2)(div g) = 0 for all f1, f2 ∈ C∞(M).

Thus div g ∈ PDO(1)(TM,R ×M).

To calculate the principal symbol of div g let f ∈ C∞ with df(x0) = ξ ≠ 0.

Then:

σ1(div g)(x0, ξ) = [ad(f)div g]∣x0

= [div g ○ f − f ○ div g]∣x0

= df ∣x0

= ξ∶ Tx0 → R

≠ 0
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Thus div g ∈ PDO1(TM,R ×M).

We also define the p.d.o. grad g ∈ PDO1(R ×M,TM), also of order 1.

Given f ∈ C∞(M):

grad gf = df ∣#,

where #∶Γ(T ∗M) → Γ(TM) is the “index-raising” map induced by the met-

ric g. Thus:

grad g ∶ C∞(M) → Γ(TM)

i.e. grad g ∈ Op(R×M,TM). We now show that grad g ∈ PDO(1)(R×M,TM).

It is easy to show that grad g(f1f2) = f1grad g(f2) + f2grad g(f1), from which

it follows that

f1f2grad gf3 − f1grad gf2f3 − f2grad gf1f3 + grad gf1f2f3 = 0

for all f3 ∈ C∞(M). Thus grad g is a p.d.o. of order at most 1. The principal

symbol of grad g is:

σ1(grad g)(x0, ξ) = [ad(f)grad g]∣x0

= [grad g ○ f − fgrad g]∣x0

= grad gf(x0)

= ξ#

≠ 0,

where f ∈ C∞(M) satisfies df(x0) = ξ ≠ 0. Thus grad g ∈ PDO1(R×M,TM).

Recall that the Laplace-Beltrami operator is the composition of these two

operators:

◻g = div g ○ grad g ∶ C∞(M) → C∞(M).

We have ◻g ∈ PDO(2)(R×M,R×M), where R×M is the trivial real vector

bundle over M of rank 1.
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Remark. Note that, for the sake of definiteness, one can let C∞(M) ∶=

C∞(M,R), the space of real-valued smooth functions on M . We can also

define ◻g to act on C∞(M,C), instead. One can either define it to act on

real and imaginary parts separately, or, in line with the above treatment, one

can first define grad g ∈ PDO1(C×M,TMC) and div g ∈ PDO1(TMC,C×M ,

where C×M is the trivial complex vector bundle over M and TMC is the com-

plexified tangent bundle. Then ◻g = div g ○ grad g ∶ C∞(M,C) → C∞(M,C).

In this thesis, of fundamental importance is the partial differential oper-

ator:

A = −V div hV grad h +m2V 2∶ C∞(Σ) → C∞(Σ),

where (Σ, h) is a Riemannian manifold and V ∈ C∞(Σ, V > 0.

Here we check that the p.d.o. A = −V div hV grad h+m2V 2 on a Riemannian

manifold (Σ, h) used in this thesis is of second order, elliptic and formally

self-adjoint w.r.t. V −1dvolh. The consequences of this last property is that the

linear operator A generated by this p.d.o. with the domain D(A) = [C∞
0 (Σ)]

on the Hilbert space L2(Σ, V −1dvolh) is symmetric.

First, by composition of p.d.o.s, again we know that A ∈ PDO(2)(Σ,Σ).

To show that A is in fact of second order, we calculate its principal symbol

σ2(A). Given f ∈ C∞(Σ) with df(x0) = ξ ≠ 0, then:

σ2(A)(x0, ξ) = −σ0(V )(x0, ξ) ○ σ1(div h)(x0, ξ) ○ σ0(V )(x0, ξ) ○ σ1(grad h)(x0, ξ)

= −V (x0)ξV (x0)ξ#

= −V (x0)2ξ(ξ#)

= −V (x0)2∣∣ξ∣∣2h∶ R→ R

≠ 0,
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where ∣ ⋅ ∣h is the inner product induced on each cotangent space Tx0Σ by the

Riemannian metric h. Since V > 0 and as h is Riemannian then ξ ≠ 0 ⇒

∣∣ξ∣∣h ≠ 0. Thus A is an elliptic partial differential operator of order 2.

We shall now show that the p.d.o. A is also formally self-adjoint with

respect to the smooth measure V −1dvolh. We shall define here what we

mean by this (Nicolaescu [22]) but first give the definition of a (Riemannian

or Hermitian) metric on a (real or complex) vector bundle.

Definition D.8. (see e.g. p.167 of Bär et al. [3]) Given a real vector bundle

E over M , a Riemannian metric on E is a smooth choice of inner prod-

uct ⟨⋅, ⋅⟩x (on a real vector space this is a positive definite symmetric bilinear

form) on each fibre Ex for x ∈ M . The choice is smooth if for all smooth

sections u, v ∈ Γ(E), the map x ↦ ⟨u(x), v(x)⟩x is smooth. If E is a com-

plex vector bundle then a Hermitian metric on E is a smooth choice of

inner product ⟨⋅, ⋅⟩x on Ex for all x (on a complex vector space this means

a positive definite conjugate-symmetric sesquilinear form). The condition of

smoothness is as before.

Given a partial differential operator P ∈ PDO(E,F ), between vector

bundles E and F (both with Riemannian metrics if real and Hermitian met-

rics if complex vector bundles) over a manifold M with smooth measure µ,

then the formal adjoint P ∗ of P w.r.t. µ is a partial differential operator

P ∗ ∈ PDO(F,E), defined uniquely by:

∫
M
⟨ψ,Pφ⟩Fdµ = ∫

M
⟨P ∗ψ,φ⟩Edµ

for all φ ∈ Γ(E) and ψ ∈ Γ(F ) s.t. suppφ ∩ suppψ is compact in M .

Any p.d.o. P ∈ PDO(E,F ) between vector bundles E and F overM (with

Hermitian or Riemannian metrics) has, with respect to any smooth measure

134



µ on M , a unique formal adjoint P ∗ ∈ PDO(F,E). The proof of this for the

case when µ = dvolg and M is oriented is the content of Proposition 10.1.30 in

Nicolaescu [22]. His proof generalises to the case of nonorientable manifolds.

Lastly, fixing a Riemannian metric g, any smooth measure µ can be written

µ = fdvolg for some smooth function f > 0. Denoting P ∗
g the formal adjoint

of P w.r.t. g then it is shown: P ∗ = f−1P ∗
g ○ f . Note that the formal adjoint

P ∗ does depend on the choice of smooth measure µ although for brevity we

are omitting it from the notation.

If P is a p.d.o. from the vector bundle E (with Riemannian or Hermitian

metric) to itself (i.e. P ∈ PDO(E,E)), then P is called formally self-adjoint

w.r.t. the smooth measure µ on M if E = E∗. In order to show that the p.d.o.

A is in fact formally self-adjoint w.r.t. V −1dvolh we first need the following:

Proposition D.9. Let (Σ, h) be a (not necessarily orientable) Riemannian

manifold. Denote by dvolh the smooth measure on Σ generated by the metric

h (Section D.1). Then the following holds:

∫
Σ
df(X)dvolh = −∫

Σ
fdiv h(X)dvolh

for all f ∈ C∞
0 (Σ) and all X ∈ Γ0(TM), the space of compactly supported

smooth vector fields on M .

Proof. This results from an application of Gauss Theorem (Theorem E.4)

to the Riemannian case (here the manifold has no boundary: ∂M = φ) and

df(X) = div h(fX) − fdiv hX.

The following proposition is therefore sufficient to show that A is formally

self-adjoint w.r.t. V −1dvolh.
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Proposition D.10. Let A = −V div hV grad h +m2V 2, where (Σ, h) is a Rie-

mannian manifold and V ∈ C∞(Σ), V > 0. Then:

∫
Σ
(Af)gV −1dvolh = ∫

Σ
f(Ag)V −1dvolh

for all f, g ∈ C∞
0 (Σ).

Proof.

∫
Σ
(Af)gV −1dvolh = ∫

Σ
−V div h(V grad hf)gV −1dvolh + ∫

Σ
m2V 2fgV −1dvolh

= ∫
Σ
dg(V grad hf)dvolh + ∫

Σ
m2V fgdvolh

= ∫
Σ
V dg(grad hf)dvolh + ∫

Σ
m2V fgdvolh

= ∫
Σ
V g(df, dg)dvolh + ∫

Σ
m2V fgdvolh

= ∫
Σ
V df(grad hg)dvolh + ∫

Σ
m2V fgdvolh

= ∫
Σ
df(V grad hg)dvolh + ∫

Σ
m2V fgdvolh

= ∫
Σ
−fdiv h(V grad hg)dvolh + ∫

Σ
m2V fgdvolh

= ∫
Σ
f(Ag)V −1dvolh.

Thus the linear operator A on the real Hilbert space L2(Σ, V −1dvolh) as

defined in Section 3 is symmetric, that is:

D(A) = [C∞
0 (Σ)]

A[φ] = [(−V DiV Di +m2V 2)φ].

Additionally, consider now the case of the linear operator A on the complex

Hilbert space L2(Σ, V −1dvolh) (the space of equivalence classes of complex-

valued square-integrable measurable functions). Since the partial differential
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operator A commutes with complex conjugation, that is: Af = Af for f ∈

C∞(Σ) smooth and complex valued, then:

∫
Σ
(Af)gV −1dvolh = ∫

Σ
f(Ag)V −1dvolh

for all f, g ∈ C∞
0 (Σ) complex-valued. Therefore, the linear operator A now

defined on the complex Hilbert space is also symmetric.

D.3 Definitions of Lp spaces, Distributions and Sobolev

spaces on Manifolds

In this section, given any manifold M with smooth measure µ and a vector

bundle π ∶ E → M (with Riemannian metric if E is real and a Hermitian

metric if a complex vector bundle), we define the spaces Lp(M,E,µ) and the

Sobolev spaces W k,p(M,µ). In order to give our preferred definitions we refer

to various constructions found in Nicolaescu [22], Bär et el. [3] and Treves

[36]. We adopt the approach of [3] in defining the spaces of distributions, and

apply this method to define the Sobolev spaces, globally and not via taking

the abstract completion of a normed vector space (c.f. Hebey [16]). Thus

we aim here to give a more intrinsic definition of the Sobolev spaces than

that found in Hebey [16]. Our treatment differs from Nicolaescu [22], who

in Section 10.2.4 defines Sobolev spaces on oriented Riemannian manifolds.

The manifolds we shall consider here may be nonorientable and have a both

a smooth measure (Section D.1) and Riemannian metric defined on them

(they are not necessary related).

We remind the reader that any pseudo-Riemannian metric g defines a

smooth measure volg. This in turn defines a regular Borel measure on the

manifold M , also often denoted volg (see Section D.1). Before we define
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the Lp spaces we define the space of Borel measurable sections of the vector

bundle E:

ΓBor(E) = {u ∶M → E Borel measurable s.t. u(x) ∈ Ex a.e.},

where Ex = π−1(x) is the fibre of x ∈ M and π ∶ E → M is the bundle map.

Note that here “a.e.” refers to any smooth measure on M but is independent

of which smooth measure we take. Given a manifold M with a smooth

measure µ and a vector bundle π ∶ E → M with a Riemannian metric (or

with Hermitian metric), then define the following spaces:

Lp(M,E,µ) = {u ∈ ΓBor(E) s.t. ∫
M

∣∣u(x)∣∣pExdµ(x) < ∞}/ ∼

L∞(M,E) = {u ∈ ΓBor(E) s.t. ∃C ∈ R with ∣∣u(x)∣∣Ex < C a.e. } / ∼

Lploc(M,E) = {u ∈ ΓBor(E) s.t. ∀K ⊆c M ∶ ∫
K
∣∣u(x)∣∣pExdµ(x) < ∞}/ ∼

L∞loc(M,E) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

u ∈ ΓBor(E) s.t. ∀K ⊆c M ∃C ∈ R s.t.:

∣∣u(x)∣∣Ex < C a.e. in K

⎫⎪⎪⎪⎬⎪⎪⎪⎭
/ ∼,

Note the following:

1. The expression K ⊆c M denotes that K is a compact subset of M .

2. ∣∣ ⋅ ∣∣Ex denotes the norm on the fibre Ex defined by the Riemannian

metric on the vector bundle E.

3. In each case, ∼ denotes the equivalence relation on ΓBor(E): u ∼ v iff

u = v a.e.. Thus each of the spaces just defined consists of equivalence

classes of Borel measurable sections of E.

4. If we set E to be the trivial bundle R × M then the above defines

Lp(M,µ) etc..

5. Of the above spaces only Lp(M,E,µ) depends on the choice of smooth

measure µ on M as the notation might suggest. This follows from the
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following lemma. In spite of this, we shall sometimes include a smooth

measure in the expressions for the remaining spaces, e.g. L∞loc(M,E,µ),

when we are dealing with a particular choice of smooth measure µ on

M .

6. For p ∈ [1,∞], Lp(M,E,µ) is a Banach space while Lploc(M,E) is a

Fréchet space.

Lemma D.11. Let µ and λ be smooth measures on a smooth manifold M .

If K ⊆c M , then there exists A,B > 0 s.t. Aµ ≤ λ ≤ Bµ on K.

Proof. Let h be a Riemannian metric on M . Let µ = f dvolh and λ = g dvolh.

So f, g > 0 are smooth functions on M . Let A = minK
g
f and B = maxK

g
f .

So,

Aµ = min
K

( g
f
) f dvolh = min

K
(g) dvolh ≤ g dvolh = λ

and similarly for the remaining inequality.

Before we define the Sobolev spaces, we first describe some necessary

constructions from Bär et al. ([3] Section 1.1.2). We start with a different

but related definition of the formal adjoint of a p.d.o. from that given in

Section D.2. Given a partial differential operator P ∈ PDO(E,F ) between

vector bundles E and F over a manifold M with smooth measure µ, then

the formal adjoint P ∗ of P w.r.t. µ is a partial differential operator P ∗ ∈

PDO(F ∗,E∗), defined uniquely by:

∫
M
ψ[Pφ]dµ = ∫

M
(P ∗ψ)[φ]dµ

for all φ ∈ Γ0(E) and ψ ∈ Γ0(F ∗).

The proof of existence is based on the proof of the corresponding con-

struction in Section D.2. Equip the vector bundles E and F with Hermitian
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metrics and denote IE ∶ Γ(E) → Γ(E∗) and IF ∶ Γ(F ) → Γ(F ∗) be the in-

duced isomorphisms. Note IE ∈ PDO0(E,E∗) and IF ∈ PDO0(F,F ∗). It’s

then shown that, denoting P ∗
H the formal adjoint of P with respect to the

metrics just defined using the definition of Section D.2, P ∗ = IE ○P ∗
H ○ I−1

F is

a formal adjoint of P . Uniqueness follows then by showing that if θ ∈ Γ0(E∗)

and ∫M θ[φ]dµ = 0 for all φ ∈ Γ0(E) then θ = 0, which is proven by assuming

the contrary, picking a local frame of E, and corresponding coordinates of θ,

choosing an appropriate φ using a bump function and reaching a contradic-

tion.

We also need to define the spaces of distributions over a vector bundle

E. As ever, the analogy should always be with the construction of distribu-

tions on R, where they are defined as the continuous dual to the space of

test functions. Thus we must first define the space of compactly supported

smooth sections of the bundle E denoted:

Γ0(E) = {u ∈ Γ(E) s.t. suppu ⊆c M},

where suppu = {x ∈M ∶u(x) ≠ 0 ∈ Ex}. We define a Fréchet topology on Γ(E)

(see Section 1.1.1 Bär et al. [3]). Γ0(E), the space of smooth sections of E

of compact support is given a LF topology (see Chapter 13 in Treves [36]).

The dual to a LF space is a locally convex topological vector space, when

given either the strong or the weak topology.

We then define the space of distributions in E, denoted D′(M,E), as

the continuous dual to Γ0(E∗):

D′(M,E) ∶= Γ0(E∗)′

The reason for the perhaps surprising occurrence of the dual bundle E∗

in the definition is to ensure that if we pick out a smooth measure µ on M ,
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then we have the continuous linear injection i ∶ Γ(E) → D′(M,E), given by

(iφ)(θ) = ∫M θ(φ)dµ for φ ∈ Γ(E) and θ ∈ Γ0(E∗).

The definitions of a p.d.o. guarantee that a p.d.o. is “local” (see Lemma

10.1.3 in Nicolaescu [22]) and the map P ∶ Γ(E) → Γ(F ) is linear and con-

tinuous, where Γ(E) and Γ(F ) are given the Fréchet topologies previously

described. Restricted to compact sections we have: P ∶ Γ0(E) → Γ0(F ) is

then also continuous, where this time both spaces are LF spaces.

Using this we extend (using the Corollary following Proposition 19.5

in Treves [36]) this map to the continuous linear operator P ∶D′(M,E) →

D′(M,F ) by:

P (Ψ)(φ) = Ψ(P ∗φ),

for all Ψ ∈D′(M,E) and φ ∈ Γ0(F ). In other words, we extend a p.d.o. P by

taking the transpose (in the sense of the transpose of a continuous linear map

between Fréchet spaces, e.g. Treves [36]) of the p.d.o. P ∗ ∈ PDO(F ∗,E∗) (the

formal adjoint p.d.o. of P ). We apply this construction to the k-th covariant

derivative ∇k ∈ PDOk(K ×M,T ∗M⊗k), where K = R or C. (See Definition

3.17 in O’Neill [23] and Example 10.1.19 in Nicolaescu [22] for the covariant

derivative and then compose it repeatedly with itself. Also see p.457 in [22].)

We will then find the extension ∇k ∶D′(M) →D′(M,T ∗M⊗k).

We first note that for any vector bundle E (with Riemannian or Hermitian

metric) over the Riemannian manifold M , we have the following continuous

linear injections for all k ∈ N0:

Lp(M,E,µ) i1→ L1
loc(M,E,µ) i2→D′(M,E)

given by: i1(u) = u and i2(v)(φ) = ∫M φ(x)(v(x))dµ(x) for u ∈ Lp(M,E,µ),

v ∈ L1
loc(M,E,µ) and φ ∈ Γ0(E∗). Since µ is a smooth measure then according
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to Section D.1 it is also Radon and so the map i1 is well-defined. Note that

both maps i1 and i2 are continuous linear injections though are not necessarily

embeddings.

Now we finally define for any Riemannian manifold M , equipped with a

smooth measure µ, and for every p ∈ [1,∞] and k ∈ N0 the Sobolev space

W k,p(M,µ) = {F ∈ Lp(M,µ) s.t. ∀1 ≤ j ≤ k integer: ∇jF ∈ Lp(M,T ∗M⊗j, µ)} .

Note that if we had instead started with the k-th covariant derivative

∇k ∈ PDOk((R ×M) ⊗ E,T ∗M⊗k ⊗ E), where E is a Riemannian vector

bundle over M , then we would have obtained the generalised Sobolev spaces

W k,p(M,E,µ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

F ∈ Lp(M,E,µ) s.t. ∀0 ≤ j ≤ k integer:

∇jF ∈ Lp(M,T ∗M⊗j ⊗E,µ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

However, in this thesis we shall only need the usual Sobolev spacesW k,p(M,µ).

Note that as usual, the Sobolev spaces are Banach Spaces with the norm:

∣∣F ∣∣ =
k

∑
j=0

∣∣∇jF ∣∣Lp(M,T ∗M⊗j ,µ)

for F ∈W k,p(M,µ). Letting p = 2, one usually definesHk(M,µ) ∶=W k,2(M,µ),

which is a Hilbert space with the (equivalent) norm:

∣∣F ∣∣ = [
k

∑
j=0

∣∣∇jF ∣∣2L2(M,T ∗M⊗j ,µ)]
1/2

and the corresponding inner-product. Note that for all p ∈ [1,∞] and k ∈ N0,

we have the inclusion [C∞
0 (M)] ⊆W k,p(M,µ) (where [C∞

0 (M)] is the set of

equivalence classes of test functions) and so we can define:

W k,p
0 (M,µ) ∶= [C∞

0 (M)],
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where we are closing [C∞
0 (M)] in the topology of W k,p(M,µ) defined by

the norm ∣∣ ⋅ ∣∣ just given. Thus, as a closed subspace of a Banach space,

W k,p
0 (M,µ) is itself a Banach space.

We shall also need to define the local Sobolev spaces W k,p
loc (M,µ). They

are defined very similarly to Sobolev spaces W k,p(M,µ) treated above. Fix

a Riemannian manifold M equipped with a smooth measure µ. Then, for

every p ∈ [1,∞] and k ∈ N0, the local Sobolev space is defined as :

W k,p
loc (M,µ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

F ∈ Lploc(M,µ) s.t. ∀1 ≤ j ≤ k integer:

∇jF ∈ Lploc(M,T ∗M⊗j, µ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We could then, similarly to above, define the generalised local Sobolev space,

but again, this is not needed in this thesis. Actually, we shall only need the

case of M = Ω ⊆ RN (an open subset) with the usual metric and Lebesgue

measure. For simplicity we shall denote the corresponding Sobolev space by

W k,p(Ω) and the local Sobolev space by W k,p
loc (Ω).

Remark. The spaces W k,p(Ω) and W k,p
loc (Ω) are also defined in p.50-51 in

Reed and Simon [28]. The defintions there agree with those here but not

the notation. The space Wm,2(Rn) corresponds to the expression Wm used

there. Our term Wm,2
loc (Ω) corresponds to their expression Wm(Ω). (In their

notation be aware that Wm(Rn) ≠ Wm since the first expression is a local

Sobolev space and the second is not). In addition, note that the definitions

there extend the cases of W k,p(Ω) and W k,p
loc (Ω) from integer k to arbitary

real k. For definitions more similar to our approach see Definition 10.2.33 in

Nicolaescu [22].

We wish to quote for completeness two theorems on Sobolev theory, which

were needed in the proof of Theorem 3.3.
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The first is an elliptic regularity theorem. It is Theorem 10.3.6 in Nico-

laescu [22].

Theorem D.12 (Elliptic Regularity Theorem). Let p ∈ (0,∞) and let P ∈

PDOm(E,E) be an elliptic p.d.o. from the vector bundle E (with Rieman-

nian or Hermitian metric) to itself, where E is over the Riemannian manifold

M . Fix a smooth measure µ on M (for instance µ = dvolg). Remember that

P can be extended to act: P ∶ D′(M,E) → D′(M,E). If u ∈ Lploc(M,E,µ)

and Pu = v ∈W p
loc(M,E,µ), then u ∈Wm,p

loc (M,E,µ).

The second theorem to be quoted is Theorem IX.24 in Reed and Si-

mon [28].

Theorem D.13 (Sobolev’s Lemma). If Ω ⊆ RN is open and let T ∈W k,2
loc (Ω)

for non-negative integer k > N/2. Then, if l is a non-negative integer satis-

fying l < k −N/2, then T is equal to a C l function.
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E Construction of Energy/Symplectic Forms

In this section we shall introduce the energy-momentum tensor associated

with a smooth function on a spacetime satisfying the Klein-Gordon equa-

tion. We shall then specialise this to a standard static spacetime. The

expression obtained shall be shown to agree with the energy-form introduced

in Section 9. Indeed this is why this form was chosen by Wald.

Given a spacetime (M,g), then a smooth function φ ∈ C∞(M) satisfies

the Klein-Gordon equation iff

(◻g +m2)φ = 0.

As can be found using Noether’s theorem, the associated Energy-Momentum

Tensor T [φ] is a rank (0,2) tensor, T [φ] ∈ Γ(T ∗M ⊗ T ∗M), given in compo-

nents by:

Tµν[φ] =
1

2
∇µφ

∗∇νφ +
1

2
∇νφ

∗∇µφ −
1

2
gµν(∇σφ∗∇σφ −m2φ∗φ)

In coordinate independent form this is:

T [φ] = 1

2
∇φ∗ ⊗∇φ + 1

2
∇φ⊗∇φ∗ − 1

2
g [∇φ((∇φ∗)#) −m2φ∗φ] ,

where ∇∶ C∞(M) → Γ(T ∗M) is the covariant derivative generated by the

Levi-Civita connection of the metric g and #∶Γ(T ∗M) → Γ(TM) is the

“index-raising” map induced by the metric.

It is known from Noether’s theorem that the Energy-Momentum Tensor

T [φ] satisfies: ∇µT µν[φ] = 0. For sake of completeness we now show this

directly, in coordinates.

T µν[φ] = 1

2
∇µφ∗∇νφ + 1

2
∇νφ∗∇µφ − 1

2
gµν(∇σφ∗∇σφ −m2φ∗φ)
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and

∇µT
µν[φ] = 1

2
∇µ∇µφ∗∇νφ + 1

2
∇µφ∗∇µ∇νφ + 1

2
∇µ∇νφ∗∇µφ

+ 1

2
∇νφ∗∇µ∇µφ − 1

2
gµν∇µ(∇σφ∗∇σφ −m2φ∗φ)

= −1

2
m2φ∗∇νφ + 1

2
∇µφ∗∇µ∇νφ + 1

2
∇µ∇νφ∗∇µφ

− 1

2
m2∇νφ∗φ − 1

2
gµν∇µ∇σφ∗∇σφ −

1

2
gµν∇σφ∗∇µ∇σφ

− 1

2
gµν(−m2∇µφ

∗φ −m2φ∗∇µφ)

= 1

2
∇µφ∗∇µ∇νφ + 1

2
∇µ∇νφ∗∇µφ

− 1

2
gµν∇µ∇σφ∗∇σφ −

1

2
gµν∇σφ∗∇µ∇σφ

= 1

2
∇µφ∗∇µ∇νφ + 1

2
∇µ∇νφ∗∇µφ

− 1

2
∇ν∇µφ∗∇µφ −

1

2
∇µφ∗∇ν∇µφ

= 1

2
∇µφ∗∇µ∇νφ + 1

2
∇µ∇νφ∗∇µφ

− 1

2
∇ν∇µφ

∗∇µφ − 1

2
∇µφ∗∇ν∇µφ

= 0

Note that in the first equality we used the fact that we are dealing with

the covariant derivative defined by a metric connection and so ∇g = 0 and

also ∇µgµν = 0. In the last equality we have used that ∇ν∇µφ = ∇µ∇νφ = 0

for all smooth functions φ. This itself follows from the symmetry of the

covariant Hessian (Lemma 3.49 in O’Neill [23]) for the covariant derivative

of a symmetric connection and a second use of the fact ∇g = 0. In particular

this is true for the covariant derivative defined by the Levi-Civita connection

of our metric.

The Energy-Momentum tensor is of most use when there exists on the

spacetime a Killing vector field ξ, since the field given in components as ξνT µν
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will then be a divergence-free smooth vector field as:

∇µ(ξνT µν) = (∇µξν)T µν + ξν(∇µT
µν)

= (∇(µξν))T µν + ξν(∇µT
µν) (as T µν = T νµ)

= 0,

since the first term ∇(µξν) is zero as a consequence of ξ being a Killing vector

field and ∇µT µν = 0 as shown above.

We shall next use Gauss’ Divergence Theorem. Before we state it we

mention here a well-known result that on the boundary ∂M of a smooth

pseudo-Riemannian manifold with boundary M such that g∣∂M is nondegen-

erate there exists a unique outward-pointing unit normal vector field N along

∂M . Gauss’ divergence theorem is expressed in terms of this vector field. (In

this section we shall only require the Lorentzian case.)

Proposition E.1 (Existence of Normal to Boundary of a pseudo-Rieman-

nian Manifold with Boundary). Given a smooth pseudo-Riemannian mani-

fold with boundary (M,g) such that g∣∂M is nondegenerate at all points in

∂M , then there exists a unique outward-pointing smooth unit vector field N

along ∂M such that Np is normal to Tp(∂M) for all p ∈ ∂M .

Remark. Thus N is a smooth map N ∶∂M → TM (between smooth manifolds

with boundary) such that π ○N = id where π∶TM →M is the smooth bundle

map. By a unit vector Xp we mean that ∣gp(Xp,Xp)∣ = 1 and similarly for a

unit vector field.

Note that even if M is connected ∂M need not be. Note that the metric

g has the same signature on each connected component of ∂M (by the conti-

nuity of the signature which follows from Lemma E.3 and the fact that g∣∂M
is nondegenerate).
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The content of the proposition may at first sight be surprising since we

haven’t assumed the orientability of M or its boundary ∂M . However it

is precisely the concept of outward-pointing vectors on the boundary which

gives the preferred direction with which we define the normal vector field

N . Although this result is well known, for completeness sake and since it

cannot be found easily in the literature, we give a proof similar to that of

the proof of the existence of local pseudo-orthonormal frames in O’Neill [23]

(see after Corollary 3.46). It should be noted that the Riemannian version

of this proposition is given in Proposition 10.39 of Lee [18].

We begin by stating a proposition.

Proposition E.2. Let P be an m-dimensional smoothly embedded subman-

ifold of a pseudo-Riemannian manifold M (with or without boundary) such

that g∣P is nondegenerate (dimM = n). Then for all p ∈ P there exists an

open neighbourhood U of p in P and n smooth pseudo-orthonormal vector

fields {X1, ...,Xn} in M along U such that X1, ...,Xm are tangent to P .

Proof. Given p ∈ P , choose a pseudo-orthonormal set of vectors

{(X1)p, ..., (Xn)p}

in Tp(M) such that

(X1)p, ..., (Xm)p ∈ Tp(P ).

(This is possible by for example Bishop and Goldberg [10] (Theorem 2.21.1).)

Pick a normal neighbourhood U ⊆ P with respect to the metric g∣P . Define

the vector fields {X1, ...,Xm} on U by parallel transporting in P along the

unique minimal geodesics in U between p and the other points in U . Define

{Xm+1, ...,Xn} by parallel transporting via the normal connection (see e.g.

Lemma 4.40 p.119 in O’Neill [23]). All the resulting vector fields are smooth

148



by the same argument as in O’Neill ([23] after Corallary 3.46). The vector

fields are pseudo-orthonormal as parallel transporting always preserves the

metric.

Proof of Proposition E.1. We first show uniqueness of such a vector field N .

From the following proof of the local existence of n will then follow its global

existence.

Since the boundary ∂M of M is a hypersurface (i.e. dim∂M = dimM −

1) then for every point p ∈ ∂M , Tp(∂M)⊥ is one-dimensional. As g∣∂M is

nondegenerate, then g∣Tp(∂M)⊥ is non-zero and we can pick Np such that

gp(Np,Np) = ±1. Demanding that Np is also outward-pointing determines

it uniquely.

To show the local existence, apply the previous proposition to the embed-

ded hypersurface ∂M in M . Since w.l.o.g. U is connected then the smooth

vector field Xn is either inward-pointing or outward pointing. Switching the

sign of Xn if necessary we then set N =Xn.

Lemma E.3 (The signature of a pseudo-Riemannian metric is locally con-

stant). Let M be a smooth manifold. Let g be a smooth symmetric nonde-

generate (0,2) tensor field (also called a pseudo-Riemannian metric). Define

the following function f on M . For p ∈ M let f(p) be the number of diag-

onal elements that are +1 in the matrix representation of g in any pseudo-

orthonormal basis of Tp(M). Then f is locally constant. The same result is

true if f gives instead the number of −1 terms. In particular the signature of

g is also locally constant and constant if M is connected.

Proof (O’Neill [23] (see after Corollary 3.46)). Note first that f is well-

defined as the number of +1 terms is independent of the pseudo-orthonormal
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basis. See for example Bishop and Goldberg [10] (Theorem 2.21.1)). Given

p ∈ M construct a local pseudo-orthonormal frame as follows: Let U ⊆

M be a normal neighbourhood of p and pick a pseudo-orthonormal ba-

sis {(X1)p, ...(Xn)p} of Tp(M). Extend these vectors to smooth pseudo-

orthonormal vector fields {X1, ...Xn} by parallel transporting along the unique

minimal geodesics in U to points in U . If {Y1, ...Yn} is another pseudo-

orthonormal frame on U then the number of fields Yi such that g(Yi, Yi) = 1

equals the number of fields Xi with g(Xi,Xi) = 1 since the both equal the

number of +1 terms in the matrix representation of gp for any point p ∈ U .

Thus f is constant on U .

Remark. Note that the content of this lemma is false if we relax the condition

of non-degeneracy of g. For instance multiplying any pseudo-Riemannian

metric by a bump function f in M yields a somewhere degenerate symmetric

(0,2) tensor field whose signature is not constant.

We shall need here and elsewhere in this thesis the following important

and well-known theorem. The oriented Riemannian case is probably the

most common (e.g. Lee [19]), though as we shall need both the nonorientable

Riemannian and Lorentzian case we shall quote here the yet more general

case for a nonorientable pseudo-Riemannian manifold. The statement of the

Lorentzian case is found in Theorem 1.3.16 of Bär et al. [3]. The general

nonorientable pseudo-Riemannian case is reached by application of Theo-

rem 7.2.15 in Abraham et al. [1] (the nonorientable Stokes’ Theorem) and a

mimicking of Theorem 7.2.9 and Corollary 7.2.10 in Abraham et al..

Theorem E.4 (Gauss’ Divergence Theorem). Given a smooth pseudo-

Riemannian manifold with boundary (M,g) such that g∣∂M is nondegener-

ate at all points in ∂M , then for all compactly supported smooth vector fields
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X in M :

∫
M

div g(X) dvolg = ∫
∂M

εNg(X,N) dvolg∣∂M ,

where dvolg and dvolg∣∂M are respectively the induced measures on M and

∂M induced from the metrics g and g∣∂M . N is the unique outward-pointing

smooth unit vector field N along ∂M orthogonal to ∂M given in Proposi-

tion E.1 and εN = g(N,N) ∈ C∞(∂M) is locally constant with ∣εN ∣ = 1.

Now returning to the construction of the Energy form we know that ξνT µν

are the components of smooth vector field in M where ξ is a particular Killing

vector field on M . Specialising now to the class of spacetimes of interest here,

standard static spacetimes (M,g) = R×Σ, V 2dt2−h), then ξ = ∂
∂t is the static

vector field and so in particular Killing. We shall consider the case where

the scalar field φ obeying the Klein-Gordon equation in M is compactly

supported. Thus the corresponding Energy-Momentum tensor T [φ] also has

compact support as also the vector field with components ξνT µν . We shall now

apply the Divergence Theorem to this vector field and the smooth embedded

manifold with boundary [t1, t2] × Σ. With the induced metric, this forms a

Lorentzian manifold with boundary and the metric is clearly nondegenerate

on the boundary as it is negative-definite there. The boundary clearly has

two connected components: {t1} × Σ and {t2} × Σ. The outward pointing

unit normal N is N1 = V −1 ∂
∂t on the former and N2 = −V −1 ∂

∂t on the latter

connected component of the boundary. Both vector fields are timelike so

εN1 = εN2 = 1.

Inserting all this into the Divergence Theorem, we obtain:

0 = ∫
{t1}×Σ

g(X,N1)dvolh + ∫
{t2}×Σ

g(X,N2)dvolh,

or:

∫
{t1}×Σ

g(X, ∂
∂t

)V −1dvolh = ∫
{t2}×Σ

g(X, ∂
∂t

)V −1dvolh.
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In components:

g(X, ∂
∂t

) = ( ∂
∂t

)µξνTµν[φ] = T00[φ]

= 1

2
∂tφ

∗∂tφ +
1

2
V 2Diφ∗Diφ +

1

2
m2V 2φ∗φ,

and thus:

∫
{t1}×Σ

[1

2
∂tφ

∗∂tφ +
1

2
V 2Diφ∗Diφ +

1

2
m2V 2φ∗φ]V −1dvolh

= ∫
{t2}×Σ

[1

2
∂tφ

∗∂tφ +
1

2
V 2Diφ∗Diφ +

1

2
m2V 2φ∗φ]V −1dvolh.

Thus if we define for each t ∈ R: E(φ,φ)(t) = ⟨φ̇t, φ̇t⟩Σt + ⟨φt,Aφt⟩Σt where

A = −V DiV Di+m2V 2 and we are working in L2(Σt, V −1dvolh) for each t, then

we have shown that E(φ,φ)(t) is independent of time when φ is a smooth

compactly supported solution of the Klein-Gordon equation.

It follows however by the polarization identity that defining E(φ,φ′)(t) =

⟨φ̇t, φ̇′t⟩Σt+⟨φt,Aφ′t⟩Σt then E(φ,φ′)(t) is also independent of time. Replacing

A by AE gives us the energy form as given in Section 9.

We shall now justify the expression of the symplectic form as given in Sec-

tion 10. Given two compactly supported smooth solutions φ,φ′ to the Klein-

Gordon equation define the smooth vector fieldX given by components: Xµ =

φ∇µφ′ − φ′∇µφ. In coordinate free notation this is: X = φ(∇φ′)# − φ′(∇φ)#.

Then:

∇µX
µ = ∇µφ∇µφ′ + φ∇µ∇µφ′ −∇µφ

′∇µφ − φ′∇µ∇µφ

= φ∇µ∇µφ′ − φ′∇µ∇µφ

= −m2φφ′ +m2φφ′

= 0.
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Since X is also compactly supported we can again then apply the Diver-

gence Theorem to the submanifold with boundary [t1, t2] ×Σ: Again using:

∫
{t1}×Σ

g(X, ∂
∂t

)V −1dvolh = ∫
{t2}×Σ

g(X, ∂
∂t

)V −1dvolh,

we have

∫
{t1}×Σ

[φφ̇′ − φ′φ̇]V −1dvolh = ∫
{t2}×Σ

[φφ̇′ − φ′φ̇]V −1dvolh

and so

σ(φ,φ′)(t) = ∫
{t}×Σ

[φφ̇′ − φ′φ̇]V −1dvolh

= ⟨φt, φ̇′t⟩Σt − ⟨φ̇t, φ′t⟩Σt

is independent of time (where the brackets refer to the inner-product in

L2(Σt, V −1dvolh)). This is the form of the symplectic map as used in Sec-

tion 10 and also in Theorem 5.4, the important step in proving the existence

of the Wald solutions.

Proposition E.5. Let (M,g) be a spacetime and let X be a smooth timelike

vector field on M defining the time-orientation. If S ⊆M is a smooth space-

like hypersurface in M then there exists a unique smooth timelike f.p. unit

normal vector field n along S.

Remark. Again, we haven’t the orientability of either M or S. Here, it is the

fact that (M,g) is time-oriented that allows us to construct n.

Proof. We first show the uniqueness of a tangent vector np for p ∈ S time-

like f.p. unit vector orthogonal to Tp(S). Uniqueness of the vector field n

will then follow. If p ∈ S then Tp(S)⊥ is one-dimensional in Tp(M). The

conditions of being unit and future-pointing determine a unique vector in

Tp(S)⊥.
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Existence is next to be proven. Given p ∈ S let {Z1, .., Zn−1} be a pseudo-

orthonormal frame of (S, g∣S) defined on U ⊆ S open, with p ∈ U . Thus

g(Zi, Zj) = −δij as smooth functions on U . (Such a frame is easily defin-

able from any coordinate frame using the Gram-Schmidt orthogonalisation

procedure since g∣S is negative definite as S spacelike.)

Define n on U by: n =X +∑n−1
i=1 g(Zi,X)Zi. So n is a smooth vector field

along U , such that np is orthogonal to Tp(s) for each p ∈ U since:

g(n,Zj) = g(X,Zj) +∑
i

g(Zi,X)g(Zi, Zj)

= g(X,Zj) −∑
i

g(Zi,X)δij

= 0.

n is a timelike vector field because:

g(n,n) = g(X,X) +∑
i,j

g(Zi,X)g(Zj,X)g(Zi, Zj) + 2∑
i

g(Zi,X)g(Zi,X)

= g(X,X) −∑
i

g(Zi,X)g(Zi,X) + 2∑
i

g(Zi,X)g(Zi,X)

= g(X,X) +∑
i

g(Zi,X)g(Zi,X)

≥ g(X,X)

> 0,

and n is also future-pointing as:

g(n,X) = g(X,X) +
n−1

∑
i=1

g(Zi,X)g(Zi,X) ≥ g(X,X) > 0.

After normalising n, then it has all the desired properties. Thus we have

proven local existence. As usual, this together with uniqueness at every p ∈ S

proves the global existence.
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Alternatively, if {Y1, ..Yn−1} is another pseudo-orthonormal frame defined

on V ⊆ S, then g(Yi, Yj) = −δij and Zi = AijYj where AijAik = AjiAki = δjk.

The two frames produce the vector fields nZ , nY along U ∩ V . Then

nZ =X + g(Zi,X)Zi

=X + g(AijYj,X)AikYk

=X + g(Yj,X)AijAikYk

=X + g(Yj,X)δjkYk

=X + g(Yj,X)Yj

= nY .

Thus n is well-defined on all S.

Proposition E.6. Let (M,g) be a Lorentzian manifold and X a smooth

timelike vector field on M . Then W (p) = {Xp}⊥ defines a smooth distribution

in M and around any point p there exists a pseudo-orthonormal basis of the

distribution.

Proof. Firstly, w.l.o.g. let g(X,X) = 1. Given p ∈ M , let U ⊆ M be open

and {X1, ...Xn} be a pseudo-orthonormal basis on U . So g(X1,X1) = 1,

g(Xi,Xj) = −δij, g(X1,Xi) = 0 for i, j ≥ 2.

As X and X1 are both timelike then g(X,X1) never vanishes in U . So

X = ∑i fiXi where fi are smooth functions on U with f1 never vanishing.

Thus, since

X1 = f−1
1 X − f−1

1 ∑
i≥2

fiXi

Xi = (Xi − g(X,Xi)X) + g(X,Xi)X for i ≥ 2,
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each element in one of the following sets is in the span of the other set:

{X1,X2, ...,Xn}

{X,X2 − g(X,X2)X, ...,Xn − g(X,Xn)X}.

As the former set is a local basis of M then so is the latter set of vector fields.

Define Yi = Xi − g(X,Xi)X i ≥ 2. These vector fields satisfy: g(X,Yi) =

g(X,Xi) − g(X,Xi)g(X,X) = 0. Thus {Y2, ..., Yn} is a local basis of the

distribution W . As also g is negative definite on W (p) = {X(p)}⊥ then we

can apply the Gram-Schmidt orthonormalisation procedure to {Y2, ..., Yn} to

form the vector fields {Z2, ..., Zn} with g(Zi, Zj) = −δij.
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F Green’s Function for the Closure of minus

the Laplacian on S1

We showed in Section 12.1 that in the case Σ = S1, V = 1, m = 0, A is e.s.a.

and

D(A) =W 2,2(S1) = {φ ∈ L2(S1) s.t. φ′, φ′′ ∈ L2(S1)},

A([φ]) = −[φ′′] for [φ] ∈W 2,2(S1). We wish to directly determine the spec-

trum of A by stating its eigenvalues, eigenvectors and determining its resol-

vents.

Proposition F.1. The spectrum of A is given by:

σ(A) = σdisc(A) = {n2∶n ∈ N0}

We are using the chart: φ∶U = S1/{1} → (0,2π), φ−1(θ) = exp iθ, define the

function h∶U ×U ×C/Z→ C by:

h(θ, φ; z) = i

2z
[exp iz∣θ − φ∣ + 2 cos z(θ − φ)

exp(−2πiz) − 1
]

As {1} ⊆ S1 is clearly null, h generates a well-defined integral kernel.

Then h(θ, φ; z) = h(θ, φ;−z) and g(θ, φ;λ) = h(θ, φ;
√
λ) is the Green’s

function for λ ∈ ρ(A) = C/{n2∶n ∈ N0} and g does not depend on the choice

of square root of λ used to define it.

The eigenspace corresponding to the eigenvalue n2, (n ∈ N0) is spanned

by the vectors [φ±n], where φ±n(θ) = exp(±inθ). So dimE0 = 1 and dimEn2 = 2

for n ∈ N.

Proof. Firstly check that

1

exp(−2πiz) − 1
+ 1

exp(2πiz) − 1
= −1,
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for all z ∈ C/Z. Then:

0 = exp iz(θ − φ) + exp−iz(θ − φ)

+ 2 cos z(θ − φ) [ 1

exp(−2πiz) − 1
+ 1

exp(2πiz) − 1
]

= exp iz∣θ − φ∣ + exp−iz∣θ − φ∣

+ 2 cos z(θ − φ) [ 1

exp(−2πiz) − 1
+ 1

exp(2πiz) − 1
] ,

so:

exp iz∣θ − φ∣ + 2 cos z(θ − φ)
exp(−2πiz) − 1

= −[exp−iz∣θ − φ∣ + 2 cos z(θ − φ)
exp(2πiz) − 1

]

i

2z
[exp iz∣θ − φ∣ + 2 cos z(θ − φ)

exp(−2πiz) − 1
] = i

−2z
[exp−iz∣θ − φ∣ + 2 cos z(θ − φ)

exp(2πiz) − 1
] ,

and

h(θ, φ; z) = h(θ, φ;−z).

Thus, we are setting:

g(θ, φ;λ) = i

2
√
λ
[exp i

√
λ∣θ − φ∣ + 2 cos

√
λ(θ − φ)

exp(−2πi
√
λ) − 1

]

Since for each fixed λ ∈ C/{n2∶n ∈ N}, g, viewed as a function on (0,2π)×

(0,2π), has a continuous extension to [0,2π]×[0,2π] then, for each λ, g(⋅, ⋅;λ)

is bounded on U ×U . Also, since S1 is of finite measure, then for each fixed

λ, g(⋅, ⋅;λ) is a Hilbert-Schmidt integral kernel. (It can be shown that in fact

g(⋅, ⋅;λ) is a continuous function of S1 × S1 for each λ ∈ C/{n2∶n ∈ N} and is

even smooth on S1×S1/{(p, p)∶ p ∈ S1}.) In particular Gλ defines a bounded

linear map (even compact) from L2(S1) to itself as follows:

Gλ∶L2(S1) → L2(S1)

Gλ(f)(θ) = ∫
2π

0
g(θ, φ;λ)f(φ)dφ.
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(Clearly we are being sloppy here. We actually mean:

Gλ([f]) = [∫
2π

0
g(θ, φ;λ)f(φ)dφ].

We shall however adopt this same notation for all the examples here in the

appendix for the sake of brevity.)

We must now show that this is indeed the resolvent for A. So:

−2i
√
λGλ(f)(θ) = ∫

θ

0
exp i

√
λ(θ − φ)f(φ)dφ + ∫

2π

θ
exp i

√
λ(φ − θ)f(φ)dφ

+ 2

exp−2πi
√
λ − 1

∫
2π

0
cos

√
λ(θ − φ)f(φ)dφ.

It not at first clear that we can differentiate this expression. We can

however evaluate its distributional derivative. We shall follow this procedure

in all the other examples too without further mention. We have

−2i
√
λGλ(f)′(θ) = ∫

θ

0
(i
√
λ) exp i

√
λ(θ − φ)f(φ)dφ +���f(θ)

+ ∫
2π

θ
(−i

√
λ) exp i

√
λ(φ − θ)f(φ)dφ −���f(θ)

− 2

exp−2πi
√
λ − 1

(
√
λ)∫

2π

0
sin

√
λ(θ − φ)f(φ)dφ

and

−2i
√
λGλ(f)′′(θ) = ∫

θ

0
−λ exp i

√
λ(θ − φ)f(φ)dφ + i

√
λf(θ)

+ ∫
2π

θ
−λ exp i

√
λ(φ − θ)f(φ)dφ + i

√
λf(θ)

− 2λ

exp−2πi
√
λ − 1

∫
2π

0
cos

√
λ(θ − φ)f(φ)dφ,

so

Gλ(f)′′(θ) = (−λGλ(f) + 2iA
√
λf)(θ).

Note that we have shown that Gλ(f),G′
λ(f) and G′′

λ(f) (viewed a priori

as distributions) are elements of L2(S1). And so Gλ∶ L2(S1) → W 2,2(S1) =

159



D(A). Additionally:

−Gλ(f)′′ − λGλ(f) = f

(A − λ)(Gλ(f)) = f

(A − λ) ○Gλ = id on L2(S1) for all λ ∈ C/{n2∶n ∈ N0}

Therefore Gλ is a right-inverse of A−λ for λ ∈ C/{n2∶n ∈ N0}. Now, to check

that it is also a left-inverse:

Let f ∈D(A) =W 2,2(S1), then:

− 2i
√
λ∫

2π

0
g(θ, φ;λ)f ′′(θ)dθ

= ∫
θ

0
exp i

√
λ(θ − φ)f ′′(φ)dφ + ∫

2π

θ
exp i

√
λ(φ − θ)f ′′(φ)dφ

+ 2

exp−2πi
√
λ − 1

∫
2π

0
cos

√
λ(θ − φ)f ′′(φ)dφ

= ∫
θ

0
−λ exp i

√
λ(θ − φ)f(φ)dφ

+ [exp i
√
λ(θ − φ)f ′(φ) + i

√
λ exp i

√
λ(θ − φ)f(φ)]θ0

+ ∫
2π

θ
−λ exp i

√
λ(φ − θ)f(φ)dφ

+ [exp i
√
λ(φ − θ)f ′(φ) − i

√
λ exp i

√
λ(φ − θ)f(φ)]2π

θ

+ 2

exp−2πi
√
λ − 1

∫
2π

0
−λ cos

√
λ(θ − φ)f(φ)dφ

+ 2

exp−2πi
√
λ − 1

[cos
√
λ(θ − φ)f ′(φ) −

√
λ sin

√
λ(θ − φ)f(φ)]2π

0 .
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Thus:

− 2i
√
λ∫

2π

0
g(θ, φ;λ)f ′′(φ)dφ

= 2iλ
√
λ∫

2π

0
g(θ, φ;λ)f(φ)dφ

+ f ′(θ) + i
√
λf(θ) − exp i

√
λθf ′(0) − i

√
λ exp i

√
λθf(0)

+ exp i
√
λ(2π − θ)f ′(2π) − i

√
λ exp i

√
λ(2π − θ)f(2π)

− f ′(θ) + i
√
λf(θ)

+ 2

exp−2πi
√
λ − 1

⎡⎢⎢⎢⎢⎢⎣

cos
√
λ(θ − 2π)f ′(2π) −

√
λ sin

√
λ(θ − 2π)f(2π)

− cos
√
λθf ′(0) +

√
λ sin

√
λθf(0)

⎤⎥⎥⎥⎥⎥⎦
.

The boundary terms can be collected together and using the fact that f(0) =

f(2π) and f ′(0) = f ′(2π).

The coefficient of the f(0) term is proportional to:

(exp(−2πi
√
λ) − 1)(−i

√
λ exp i

√
λθ − i

√
λ exp i

√
λ(2π − θ)

+ 2(−i
√
λ sin

√
λ(θ − 2π) +

√
λ sin

√
λθ)

= − exp i
√
λ(θ − 2π) − exp(−i

√
λθ) + exp i

√
λθ

+ exp i
√
λ(2π − θ) + 2i sin

√
λ(θ − 2π) − 2i sin

√
λθ

= 0.

The coefficient of the f ′(0) term is proportional to:

(exp(−2πi
√
λ) − 1)(− exp i

√
λθ + exp i

√
λ(2π − θ)

+ 2(cos
√
λ(θ − 2π) − cos

√
λθ)

= − exp i
√
λ(θ − 2π) − exp(−i

√
λθ) + exp i

√
λθ

− exp i
√
λ(2π − θ) + 2 cos

√
λ(θ − 2π) − 2 cos

√
λθ

= 0
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Thus:

∫
2π

0
g(θ, φ;λ)f ′′(φ)dφ = −λ∫

2π

0
g(θ, φ;λ)f(φ)dφ − f(θ)

∫
2π

0
g(θ, φ;λ)((A − λ)f)(φ)dφ = f(θ)

Gλ ○ (A − λ)(f) = f for f ∈D(A)

Gλ ○ (A − λ) = id on D(A)

.
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G The Self-Adjoint Extensions of minus the

Laplacian on (0,∞) and Spectral Analysis

Consider the linear operator given by minus the Laplacian on the Riemannian

manifold (0,∞). More precisely, let:

D(A) = [C∞
0 (0,∞)] ⊆ L2(0,∞)

A([φ]) = −[φ′′] ∀φ ∈ C∞
0 (0,∞)

This linear operator is symmetric on the Hilbert space L2(0,∞), that is:

⟨φ,Aθ⟩ = ⟨Aφ, θ⟩ ∀φ, θ ∈D(A). We also have that

1. The adjoint of A is: D(A∗) =W 2,2(0,∞)

2. The closure of A is: D(A) =W 2,2
0 (0,∞)∶= [C∞

0 (0,∞)]
W 2,2(0,∞)

, that is,

the closure of the domain of A in the norm of W 2,2(0,∞).

These last two statements are not trivial from the definitions of the closure

and adjoint of linear operators. It does follow from the definitions that:

D(A∗) = {φ ∈ L2(0,∞) s.t. φ′′ ∈ L2(0,∞)}, where the derivative is as usual in

the sense of distributions. However, W 2,2(0,∞) = {φ ∈ L2(0,∞) s.t. φ′, φ′′ ∈

L2(0,∞)}. That φ,φ′′ ∈ L2(0,∞) implies that φ′ ∈ L2(0,∞) also follows from

a more general theorem in Lions and Magenes [20]. Indeed, more is true:

φ↦ φ′ is continuous as a linear map from D(A∗) to L2(0,∞) (where D(A∗)

is given the graph norm: ∣∣φ∣∣2A∗ = ∣∣φ∣∣2 + ∣∣A∗φ∣∣2 = ∣∣φ∣∣2 + ∣∣φ′′∣∣2). Thus in fact

∣∣φ∣∣A∗ and
√

∣∣φ∣∣2 + ∣∣φ′∣∣2 + ∣∣φ′′∣∣2 are equivalent norms on D(A∗).

Statement (2) follows from the following. If A is a symmetric linear

operator on a Hilbert space, then D(A) = D(A)
D(A∗)

(the last expression

denotes the closure of D(A) in the graph norm on D(A∗)). The result then

follows from the previous discussion of equivalent norms on D(A∗).

163



We now follow the method of Reed and Simon [28] to construct all the

self-adjoint extensions of this linear operator. We start by constructing ex-

plicitly the form of the deficiency spaces H± = ker(A∗ ∓ I) ⊆D(A∗).

By elementary analysis, H± = ⟨{[φ±]}⟩ where φ±(x) = 2
1
4 exp( (−1±i)x√

2
).

Now, since n+ = dimH+ = dimH− = n−, then the self-adjoint extensions are

labelled by the group U(1) = {u ∈ C∶ ∣u∣ = 1}.

Given a unitary map U ∶ H+ → H− we define the self-adjoint extension AU

by the domain:

D(AU) =D(A) + (I +U)H+.

Given u ∈ C, ∣u∣ = 1, let U(u)(λφ+) = uλφ− and thus let Au∶ = AU(u). So:

D(Au) = {φ0 + λφ+ + λuφ−∶ φ0 ∈D(A), λ ∈ C}

Au(φ0 + λφ+ + λuφ−) = Aφ + iλφ+ − iλuφ−.

Now we have an expression for the domains of our extensions we wish to

re-express them more familiarly in terms of their boundary behaviour. This

is the content of the following proposition:

Proposition G.1. Define the bijection {u ∈ C∶ ∣u∣ = 1} → (−π/2, π/2] given

by u↦ α(u) where:

α(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

cot−1[2−1/2 (1−u)i−1−u
u+1 ] for u ≠ −1

0 for u = −1

Then, in terms of this map:

D(AU(u)) = {φ ∈W 2,2(0,∞)∶ cosα(u) φ(0) = sinα(u) φ′(0)}.

164



Proof. Letting φ = φ0 + λφ+ + λuφ− ∈D(Au), then:

φ(0) = λ2
1
4 + uλ2

1
4 = 2

1
4λ(u + 1),

φ′(0) = λ

21/4 ((1 − u)i − 1 − u).

Eliminating λ we get:

21/4φ′(0)(u + 1) = φ(0)2−1/4((1 − u)i − 1 − u)

and so
√

2φ′(0)(u + 1) = φ(0)((1 − u)i − 1 − u).

If u ≠ −1 then

φ′(0) = 2−1/2φ(0)(1 − u)i − 1 − u
u + 1

= γφ(0),

where γ = 2−1/2 (1−u)i−1−u
u+1 = γ∗. Using the fact that u∗ = u−1 it is easy to show

that γ ∈ R. Reformulating this condition we have:

φ′(0)
(1 + γ2)1/2 = γφ(0)

(1 + γ2)1/2 ,

which can then be put into the form

cosα φ(0) = sinα φ′(0),

where α ∈ (−π/2, π/2], cotα = γ = 2−1/2 (1−u)i−1−u
u+1 . If u = −1 then 0 = φ(0)(2i)

so φ(0) = 0 and cosα φ(0) = sinα φ′(0) is satisfied as α(−1) = 0.

We have shown one direction of the inclusion. For the other: if u = −1

and φ ∈ RHS, then let λ = −i2−3/4φ′(0) and θ = φ − (I + U)(λφ+). An easy

computation shows that θ(0) = θ′(0) = 0 and so by Theorem 12.2, then

θ ∈W 2,2(0,∞) =D(A) and φ ∈ LHS.

If u ≠ −1 and φ ∈ RHS then let λ = 2−1/4(1 + u)−1φ(0) and θ = φ − (I +

U)(λφ+). Again it is seen that θ ∈W 2,2(0,∞) = D(A∗) and θ(0) = θ′(0) = 0.

Thus by Theorem 12.2 θ ∈D(A) and φ ∈ LHS.
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Conclusion: the self-adjoint extensions of the linear operator A are in-

dexed by U(1). Given α ∈ (−π/2, π/2]:

D(Aα) = {φ ∈W 2,2(0,∞)∶ cosα φ(0) = sinα φ′(0)}.

Now, given the precise form of the self-adjoint extensions Aα we determine

their spectra and resolvents.

Define ρ(Aα) = C/σ(Aα), where:

σ(Aα)∶ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[0,∞), α ∈ [0, π/2].

[0, ∞) ∪ {− cot2α}, α ∈ (−π/2,0).

We define σ(Aα) and ρ(Aα) in this way for brevity. We show in the following

that they are the spectrum and resolvent set of Aα respectively. For fixed

α ∈ (−π/2, π/2], define the Green’s function, g∶ (0,∞) × (0,∞) × ρ(Aα) → C

by:

g(x, ξ, λ) = A[cosα sin(
√
λx<) +

√
λ sinα cos(

√
λx<)] exp(i

√
λx>),

where A = [
√
λ(cosα − i

√
λ sinα)]−1, x> = max{x, ξ}, x< = min{x, ξ} and

√
λ = a + bi, b > 0 is the unique square root of λ in the upper-half plane

(possible since λ ∉ [0,∞)). This function is given on p.487 of Stakgold [32].

Alternatively to the methods applied there we shall check directly that this

defines the resolvent of Aα.

Fix α ∈ (−π/2, π/2] and λ ∈ ρ(Aα). Given a function f ∈ L(0,∞), define

Gλ(f)∶ (0,∞) → C by:

Gλ(f)(x) = ∫
∞

0
g(x, ξ, λ)f(ξ)dξ.

We will show that this function Gλ(f) is the resolvent for the linear

operator Aα. However first we discuss some relevant functional analysis,
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that is, the definition of a Holmgren kernel, after which we show that the

function g defined above is such a kernel.

Definition G.2. (See Stakgold [32] p.324) Given a measure space (M,Ω, µ)

then a Holmgren kernel is a measurable function k∶M×M → C s.t.: ∃C ∈ R

s.t. for all η ∈M :

∫
M
dξ ∫

M
dx∣k(x, ξ)∣∣k(x, η)∣ < C

Proposition G.3. A Holmgren kernel defines a bounded linear map K ∶ L2(M) →

L2(M) according to the prescription:

K(u) = ∫
M
k(x, ξ)u(ξ)dξ.

It generates a bounded linear map K ′∶ L2(M) → L2(M) via K ′([u]) =

[K(u)].

Proof. We first must show that Ku∶ M → C is a measurable function and

that if u1, u2∶ M → C are measurable functions almost everywhere equal then

K(u1) = K(u2) almost everywhere. In fact it will be sufficient to show that

if u = 0 a.e. then K(u) = 0 everywhere, which itself follows from standard

properties of Lebesgue integration.

We now show that K maps L2 functions to L2 functions and in fact is a
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bounded linear map of the semi-normed space L2(M) to itself:

∫
M
dx∣(Ku)(x)∣2 = ∫ dx ∣∫

M
dξ k(x, ξ)u(ξ)∣

2

≤ ∫
M
dx [∫

M
dξ ∣k(x, ξ)∣1/2∣k(x, ξ)∣1/2u(ξ)]

2

≤ ∫
M
dx∫

M
dξ ∣k(x, ξ)∣ ∫

M
dη ∣k(x, η)∣∣u(η)∣2dη

= ∫
M
dη ∣u(η)∣2∫

M
dξ ∫

M
dx ∣k(x, ξ)∣∣k(x, η)∣

≤ C ∫
M
dη ∣u(η)∣2

= C ∣∣η∣∣2

Thus K generates a bounded linear map from L2(M) to itself.

Lemma G.4. A sufficient condition that a measurable function k∶ M ×M →

C is a Holmgren kernel is that it satisfies:

∫
M
dξ ∣k(x, ξ)∣ < C for all x ∈M

∫
M
dx ∣k(x, ξ)∣ < C for all ξ ∈M.

Proof.

∫
M
dξ ∫

M
dx ∣k(x, ξ)∣∣k(x, η)∣ = ∫

M
dx ∣k(x, η)∣ ∫

M
dξ ∣k(x, ξ)∣

≤ C ∫
M
dx ∣k(x, η)∣

≤ C2

Thus for instance if k satisfies ∫M dξ ∣k(x, ξ)∣ < C ∀x ∈ M and k(x, ξ) =

k(ξ, x) ∀x, ξ then k is a Holmgren kernel. It is this case that will be of use

to us in determining the spectra of the self-adjoint extensions Aα of A.
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Proposition G.5 (The Green’s function is a Holmgren kernel). Recalling

the Green’s function:

g(x, ξ;λ) = A[cosα sin(
√
λx<) +

√
λ sinα cos(

√
λx<)] exp(i

√
λx>).

Then g is a Holmgren kernel.

Proof. We have already seen that g(x, ξ;λ) = g(ξ, x, ;λ)) ∀x, ξ ∈ (0,∞), thus

we only have one integral to evaluate:

∫
∞

0
∣g(x, ξ;λ)∣dξ

= ∣A∣ ∫
∞

0
∣[cosα sin(

√
λx<) +

√
λ sinα cos(

√
λx<)] exp(i

√
λx>)∣dξ

= ∣A∣ ∫
x

0
∣[cosα sin(

√
λξ) +

√
λ sinα cos(

√
λξ)] exp(i

√
λx)∣dξ

+ ∣A∣ ∫
∞

x
∣[cosα sin(

√
λx) +

√
λ sinα cos(

√
λx)] exp(i

√
λξ)∣dξ

= ∣A∣ ∫
x

0
∣[cosα sin((a + ib)ξ) + (a + ib) sinα cos((a + ib)ξ)] exp(i(a + ib)x)∣dξ

+ ∣A∣ ∫
∞

x
∣[cosα sin((a + ib)x) + (a + ib) sinα cos((a + ib)x)] exp(i(a + ib)ξ)∣dξ

≤ ∣A∣e−bx∣ cosα∣ ∫
x

0
∣ sin((a + ib)ξ)∣dξ + ∣A∣e−bx∣(a + ib) sinα∣ ∫

x

0
∣ cos((a + ib)ξ)∣dξ

+ ∣A∣∣ cosα sin(a + ib)x∣ ∫
∞

0
exp(−bξ)dξ

+ ∣A∣∣(a + ib) sinα cos(a + ib)x∣ ∫
∞

x
exp(−bξ)dξ

= ∣A∣e−bx∣ cosα∣ ∫
x

0
∣ sin((a + ib)ξ)∣dξ + ∣A∣e−bx∣(a + ib) sinα∣ ∫

x

0
∣ cos((a + ib)ξ)∣dξ

+ ∣A∣∣ cosα sin(a + ib)x∣1
b

exp(−bx) + ∣A∣∣(a + ib) sinα cos(a + ib)x∣1
b

exp(−bx)

≤ ∣A∣∣ cosα∣
√

2

be
+ ∣A∣∣(a + ib) sinα∣

√
2

be
+ ∣A∣∣ cosα∣1

b
+ ∣A∣∣(a + ib) sinα∣1

b

≤ ∣A∣
b

(
√

2

e
+ ∣a + ib∣

√
2

e
+ 1 + ∣a + ib∣)

= ∣A∣
b

(1 +
√

2

e
)(1 + ∣a + ib∣)

= ∣A∣
b

(1 +
√

2

e
)(1 + ∣λ∣1/2),

169



where we have used the four inequalities of the following lemma.

Lemma G.6. The following are true for all x, b > 0:

1. e−βx∣ sin((α + iβ)x)∣ ≤ 1.

2. e−βx∣ cos((α + iβ)x)∣ ≤ 1.

3. e−βx ∫
x

0 ∣ sin[(α + iβ)ξ]∣dξ ≤
√

2
βe .

4. e−βx ∫
x

0 ∣ cos[(α + iβ)ξ]∣dξ ≤
√

2
βe .

Proof. For the first inequality, we have

e−2βx∣ sin((α + iβ)x)∣2 = e−2βx∣ sin(αx) cosh(βx) + i cos(αx) sinh(βx)∣2

= e−2βx[sin2(αx) cosh2(βx) + cos2(αx) sinh2(βx)]

= e−2βx

⎡⎢⎢⎢⎢⎢⎣

(1 − cos2(αx))(1 + sinh2(βx))

+ cos2(αx) sinh2(βx)

⎤⎥⎥⎥⎥⎥⎦
= e−2βx[1 + sinh2(βx) − cos2(αx)]

≤ e−2βx[1 + 1

4
e2βx + 1

4
e−2βx − 1

2
]

= 1

4
+ 1

2
e−2βx + 1

4
e−4βx

≤ 1.
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Similarly for the second inequality. Now, for the third inequality:

e−βx∫
x

0
∣ sin[(α + iβ)ξ]∣dξ = e−βx∫

x

0
(1 + sinh2(βξ) − cos2(αξ))1/2

≤ e−βx∫
x

0
(2 + sinh2(βξ))1/2

≤ e−βx∫
x

0
(
√

2 + sinh(βξ))

= e−βx[
√

2ξ + 1

2β
(eβξ + e−βξ)]x0

= e−βx[
√

2x + 1

2β
eβx + 1

2β
e−βx − 1

β
]

=
√

2xe−βx + 1

2β
+ 1

2β
e−2βx − 1

β
e−βx

≤
√

2

βe
+ 1

2β
+ 1

2β
− 1

β

=
√

2

βe
.

Where we have used the simple inequality (a2 + b2)1/2 ≤ a + b ∀a, b ≥ 0. The

fourth inequality follows similarly.

We now show that:

Proposition G.7. For each α ∈ (−π/2, π/2], the Green’s function for Aα is

the function g∶ (0,∞) × (0,∞) × ρ(Aα) → C defined above as:

g(x, ξ, λ) = A[cosα sin(
√
λx<) +

√
λ sinα cos(

√
λx<)] exp(i

√
λx>),

where A = [
√
λ(cosα − i

√
λ sinα)]−1, x> = max{x, ξ}, x< = min{x, ξ} and

√
λ = a + bi, b > 0 is the unique square root of λ in the upper-half plane

(possible since λ ∉ [0,∞)).

Proof. Recalling,

Gλ(f)(x) = A∫
∞

0
[cosα sin(

√
λx<)+

√
λ sinα cos(

√
λx<)] exp(i

√
λx>)f(ξ)dξ

we show here that (Aα − λI) ○Gλ = IL2(0,∞).
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Note first that for fixed x, the term in the square brackets is a bounded

function of ξ and the remaining two terms are square integrable. Thus the

integral converges absolutely for all x ∈ (0,∞).

Gλ(f)(0) = A
√
λ sinα ∫

∞
0 exp(i

√
λξ)f(ξ)dξ

Gλ(f)(x) = A∫
x

0
[cosα sin(

√
λξ) +

√
λ sinα cos(

√
λξ)] exp(i

√
λx)f(ξ)dξ

+A∫
∞

x
[cosα sin(

√
λx) +

√
λ sinα cos(

√
λx)] exp(i

√
λξ)f(ξ)dξ

A−1Gλ(f)′(x)

= i
√
λ∫

x

0
[cosα sin(

√
λξ) +

√
λ sinα cos(

√
λξ)] exp(i

√
λx)f(ξ)dξ

+ [cosα sin(
√
λx) +

√
λ sinα cos(

√
λx)] exp(i

√
λx)f(x)

+ [
√
λ cosα cos(

√
λx) − λ sinα sin(

√
λx)]∫

∞

x
exp(i

√
λξ)f(ξ)dξ

− [cosα sin
√
λx) +

√
λ sinα cos(

√
λx)] exp(i

√
λx)f(x)

= i
√
λ∫

x

0
[cosα sin(

√
λξ) +

√
λ sinα cos(

√
λξ)] exp(i

√
λx)f(ξ)dξ

+ [
√
λ cosα cos(

√
λx) − λ sinα sin(

√
λx)]∫

∞

x
exp(i

√
λξ)f(ξ)dξ

Thus in particular: Gλ(f)′(0) = A
√
λ cosα ∫

∞
0 exp(i

√
λξ)f(ξ)dξ and so

cosαGλ(f)(0) = sinαG′
λ(f)(0).

Thus Gλ∶ L2(0,∞) →D(Aα) for λ ∈ ρ(Aα). We now show that Gλ is actually

the Green’s function of Aα. Differentiating again we have:

A−1Gλ(f)′′(x) = −λ∫
x

0
[cosα sin(

√
λξ) +

√
λ sinα cos(

√
λξ)] exp(i

√
λx)f(ξ)dξ

+ i
√
λ [cosα sin(

√
λx) +

√
λ sinα cos(

√
λx)] exp(i

√
λx)f(x)

+ [−λ cosα sin(
√
λx) − λ

√
λ sinα cos(

√
λx)]∫

∞

x
exp(i

√
λξ)f(ξ)dξ

− [
√
λ cosα cos(

√
λx) − λ sinα sin(

√
λx)] exp(i

√
λx)f(x).
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Thus:

−Gλ(f)′′(x) − λGλ(f)(x)

= −A
⎡⎢⎢⎢⎢⎢⎣

i
√
λ(cosα sin(

√
λx) +

√
λ sinα cos(

√
λx))

−
√
λ cosα cos(

√
λx) + λ sinα sin(

√
λx)

⎤⎥⎥⎥⎥⎥⎦
exp(i

√
λx)f(x)

= −A
⎡⎢⎢⎢⎢⎢⎣

√
λ cosα(− cos(

√
λx) + i sin(

√
λx))

+λ sinα(i cos(
√
λx) + sin(

√
λx)

⎤⎥⎥⎥⎥⎥⎦
exp(i

√
λx)f(x)

= −A [−
√
λ cosα exp(−i

√
λx) + λ sinαi exp(−i

√
λx)] exp(i

√
λx)f(x)

= −A [−
√
λ cosα + λi sinα] f(x)

= A
√
λ [cosα − i

√
λ sinα] f(x)

= f(x),

and so (Aα − λI)(Gλ(f)) = −Gλ(f)′′(x) − λGλ(f) = f ∀f ∈ L2(0,∞).

Now, to prove that Gλ ○ (Aα − λI) = ID(Aα). Let φ ∈D(Aα), then

Gλ(Aαφ)(x)

= A∫
∞

0
g(x, ξ, λ)(Aαφ)(ξ)dξ

= −A∫
∞

0
g(x, ξ, λ)φ′′(ξ)dξ

= −A∫
∞

0
[cosα sin(

√
λx<) +

√
λ sinα cos(

√
λx<)] exp(i

√
λx>)φ′′(ξ)dξ

And:

−A−1Gλ(Aαφ)(x)

= ∫
x

0
[cosα sin(

√
λξ) +

√
λ sinα cos(

√
λξ)] exp(i

√
λx)φ′′(ξ)dξ

+ ∫
∞

x
[cosα sin(

√
λx) +

√
λ sinα cos(

√
λx)] exp(i

√
λξ)φ′′(ξ)dξ

We shall proceed by integrating by parts so as to convert the φ′′ term into

φ. Doing so will produce various ‘boundary terms’, some of which will can-
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cel, whereas others will cancel upon imposition of the boundary conditions.

We shall consider the two terms in the right-hand-side of the last expression

separately at first for simplicity.

Thus the first term is proportional to:

∫
x

0
[cosα sin(

√
λξ) +

√
λ sinα cos(

√
λξ)]φ′′(ξ)dξ

= [(cosα sin(
√
λξ) +

√
λ sinα cos(

√
λξ)φ′(ξ)]

x

0

− ∫
∞

0
[
√
λ cosα cos(

√
λξ) − λ sinα sin(

√
λξ)]φ′(ξ)dξ

= (cosα sin(
√
λx) +

√
λ sinα cos(

√
λx)φ′(x) −

√
λ sinαφ′(0)

− [(
√
λ cosα cos(

√
λξ) − λ sinα sin(

√
λξ)φ(ξ)]

x

0

+ ∫
x

0
[−λ cosα sin(

√
λξ) − λ3/2 sinα cos(

√
λξ)]φ(ξ)dξ

= (cosα sin(
√
λx) +

√
λ sinα cos(

√
λx)φ′(x) −

√
λ sinαφ′(0)

−
√
λ cosα cos(

√
λx) + λ sinα sin(

√
λx)φ(x) +

√
λ cosαφ(0)

− λ∫
x

0
[cosα sin(

√
λξ) +

√
λ sinα cos(

√
λξ)]φ(ξ)dξ

The second term is proportional to:

∫
∞

x
exp(i

√
λξ)φ′′(ξ)dξ

= [exp(i
√
λξ)φ′(ξ)]

∞

x
− i

√
λ∫

∞

x
exp(i

√
λξ)φ′(ξ)dξ

= − exp(i
√
λx)φ′(x) − i

√
λ [exp(i

√
λξ)φ(ξ)]

∞

0
− λ∫

∞

x
exp(i

√
λξ)φ(ξ)dξ

= − exp(i
√
λx)φ′(x) + i

√
λ exp(i

√
λx)φ(x) − λ∫

∞

x
exp(i

√
λξ)φ(ξ)dξ
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Combining these terms we find:

−A−1Gλ(Aαφ)(x)

= exp(i
√
λx)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(cosα sin(
√
λx) +

√
λ sinα cos(

√
λx))φ′(x) −

√
λ sinαφ′(0)

−
√
λ cosα cos(

√
λx)φ(x) + λ sinα sin(

√
λx)φ(x) +

√
λ cosαφ(0)

−λ ∫
x

0 [cosα sin(
√
λξ) +

√
λ sinα cos(

√
λξ)]φ(ξ)dξ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ (cosα sin(
√
λx) +

√
λ sinα cos(

√
λx))×

[− exp(i
√
λx)φ′(x) + i

√
λ exp(i

√
λx)φ(x) − λ∫

∞

x
exp(i

√
λξ)φ(ξ)dξ]

Cancelling, we therefore get that

−A−1Gλ(Aαφ)(x) =

exp(i
√
λx)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

((((
(((

((((
cosα sin(

√
λx)φ′(x) +

(((
((((

(((
(((√

λ sinα cos(
√
λx)φ′(x)

((((
((((

((((− cosα sin(
√
λx)φ′(x) −

((((
(((

((((
((√

λ sinα cos(
√
λx)φ′(x)

−
√
λ cosα cos(

√
λx)φ(x) + λ sinα sin(

√
λx)φ(x) +

√
λ cosαφ(0)

+i
√
λ cosα sin(

√
λx)φ(x) + i

√
λ sinα cos(

√
λx)φ(x)

((((
(((

((((
(((

((

−
√
λ sinαφ′(0) +

√
λ cosαφ(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− λ∫

x

0
[cosα sin(

√
λξ) +

√
λ sinα cos(

√
λξ)] exp(i

√
λx)φ′′(ξ)dξ

− λ∫
∞

x
[cosα sin(

√
λx) +

√
λ sinα cos(

√
λx)] exp(i

√
λξ)φ′′(ξ)dξ

= exp(i
√
λx)

⎡⎢⎢⎢⎢⎢⎣

−
√
λ cosα(cos(

√
λx) − i sin(

√
λx))φ(x)

+iλ sinα(cos(
√
λx) − i sin(

√
λx))φ(x)

⎤⎥⎥⎥⎥⎥⎦
− λ∫

∞

0
[cosα sin(

√
λx<) +

√
λ sinα cos(

√
λx<)] exp(i

√
λx>)φ′′(ξ)dξ

= [−
√
λ cosαφ(x) + iλ sinαφ(x)] − λA−1Gλ(φ)(x)

= −A−1φ(x) − λA−1Gλ(φ)(x)

Consequently, Gλ(Aαφ)(x) = φ(x) + λ(Gλ(φ))(x) and so

Gλ((Aα − λ)φ) = Gλ(Aαφ − λφ) = Gλ(Aαφ) − λGλ(φ) = φ ∀φ ∈D(Aα).

175



Therefore Gλ is the inverse of Aα−λ as required. It follows from Proposition

G.5 and Proposition G.3 that Gλ is a bounded linear operator.

Having proven that Gλ is the Green’s function for Aα at λ ∈ ρ(Aα), we

shall show that ρ(Aα), defined earlier, is contained in the resolvent set for

Aα. We shall then proceed to prove that [0,∞) ⊆ σcont(Aα), the continuous

spectrum of Aα, for all α ∈ (−π/2, π/2] and that for α ∈ (−π/2,0), we have

{− cot2α} ⊆ σpp(Aα). Combining all these together yields:

σ(Aα) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[0,∞), α ∈ [0, π/2].

[0,∞) ∪ {− cot2α} , α ∈ (−π/2,0).

and

1. σcont(Aα) = [0,∞) for all α.

2. If α ∈ [0, π2 ]: σ(Aα) = σcont(Aα) = [0,∞).

3. If α ∈ (−π2 ,0): σpp(Aα) = σdisc(Aα) = {− cot2α}.

We first remind the reader of the decomposition of the spectrum being

used, before proving these statements. Let A be a closed linear operator A

on a Hilbert space H and λ ∈ C. Then we define

λ ∈ σ(A) iff A − λ is not invertible (to a bounded linear operator H →H).

λ ∈ σpp(A) iff A − λ is not injective: ∃φ ∈D(A)/{0}∶ Aφ = λφ.

λ ∈ σcont(A) iff A − λ is injective and Im(A − λ) is a proper dense subspace of H.

λ ∈ σres(A) iff A − λ injective and Im(A − λ) is not dense in H.

σ(A), σpp(A), σcont(A) and σres(A) are respectively called the spectrum, pure

point spectrum, continuous spectrum and residual spectrum of A. Note:

σ(A) = σpp(A) ∪ σcont(A) ∪ σres(A)
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A necessary and sufficient condition for λ ∈ σcont(A) is that A−λ is injective

and ∄c > 0 s.t. ∣∣(A− λ)x∣∣ ≥ c∣∣x∣∣ ∀x ∈D(A). This is clear as the continuity

of the inverse would contradict this statement. Thus if A − λ is injective,

then λ ∈ σcont(A) iff there exists a sequence (un)n≥1 in D(A)/{0} with:

∣∣(A − λ)un∣∣
∣∣un∣∣

→ 0 as n→∞

Proposition G.8. [0,∞) ⊆ σcont(Aα) for all α ∈ (−π/2, π/2].

Proof. (We shall be using the methods of Stakgold [32]). Given λ > 0, we de-

fine un as follows. Pick F ∈ C2[0,1] s.t. F (0) =
√
λ sin α, F ′(0) =

√
λ cos α

and F (1) = F ′(1) = 0, where
√
λ > 0. Define the sequence of functions

un(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cos α sin
√
λx +

√
λ sin α cos

√
λx, 0 ≤ x ≤ ln

F (x − ln), ln ≤ x ≤ ln + 1

0, x ≥ ln + 1

It is readily seen that un ∈D(Aα) for all n and:

Aαun(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λun, 0 ≤ x ≤ ln
−F ′′(x − ln), ln ≤ x ≤ ln + 1

0, x ≥ ln + 1.

Thus:

∣∣un∣∣2 = ∫
ln

0
(cos α sin

√
λx +

√
λ sin α cos

√
λx)2dx + ∫

ln+1

ln
F (x − ln)2dx

= 1

2
cos2αln +

1

2
λ sin2αln + ∫

1

0
F 2dx

and:

∣∣(Aα − λ)un∣∣2 = ∫
ln+1

ln
(−F ′′(x − ln) − λF (x − ln))2dx

= ∫
1

0
(F ′′(x) + λF (x))2dx

=∶C
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Thus
∣∣(Aα − λ)un∣∣2

∣∣un∣∣2
= C

1
2(cos2α + λ sin2α)ln + ∫

1

0 F
2dx

→ 0

as n→∞.

We show similarly that 0 ∈ σcont(Aα) for all α:

Let F,G ∈ C2[0,1] satisfy: F (0) = F ′(0) = G(0) = 1, F (1) = F ′(1) =

G′(0) = G(1) = G′(1) = 0. Then define

un(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x cos α + sin α, 0 ≤ x ≤ n

n cos αF (x−nn ) + sin αG(x−nn ), n ≤ x ≤ 2n

0, x ≥ 2n

It follows that un ∈D(Aα) for all n and:

∣∣un∣∣2 =
⎡⎢⎢⎢⎢⎢⎣

n3 cos2 α (1
3 + ∫

1

0 F
2dx) + n2 sin 2α (∫

1

0 FGdx + 1/2)

+n sin2α (1 + ∫
1

0 G
2dx)

⎤⎥⎥⎥⎥⎥⎦

and:

∣∣Aαun∣∣2 =
1

n ∫
1

0
[n2 cos2αF ′′ + sin2αG′′ + n sin 2αF ′′G′′]dx.

∣∣Aαun∣∣2
∣∣un∣∣2

=
n2 cos2α ∫

1

0 F
′′dx + sin2α ∫

1

0 G
′′dx + n sin 2α ∫

1

0 F
′′G′′dx

n4 cos2 α(1
3 + ∫

1

0 F
2dx) + n3 sin 2α(∫

1

0 FGdx + 1/2) + n2 sin2α(1 + ∫
1

0 G
2dx)

→ 0 as n→∞.

Note that we can check the last statement in the two cases: α ≠ π/2 and

α = π/2.

The previous statement, regarding the pure point spectrum of Aα for

α ∈ (−π/2,0) is easily proven as follows:
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Lemma G.9. For α ∈ (−π/2,0), we have − cot2α ∈ σpp(Aα).

Proof. Fixing α ∈ (−π/2,0), let φα(x) = exp(x cotα). Then as cotα < 0,

we know [φα] ∈ L2(0,∞). Clearly [φα] ∈ W 2,2(0,∞) and cosαφα(0) =

cosα = sinα cotα = sinαφ′α(0). So, [φα] ∈ D(Aα) and Aα[φα] = −[φ′′α] =

− cot2α [φα].
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H The Self-Adjoint Extensions of minus the

Laplacian on (0, a) and Spectral Analysis

Given θ11, θ22 ∈ R, θ12 ∈ C denote the self-adjoint 2 × 2 complex matrix

θ =
⎛
⎜
⎝

θ11 θ12

θ12 θ22

⎞
⎟
⎠
.

The domain of the extensionD(Aθ) is defined as those elements φ ∈W 2,2(0, a)

such that:

θ11φ(0) − φ′(0) + θ12φ(a) = 0

θ12φ(0) + θ22φ(a) + φ′(a) = 0

Proposition H.1. The Green’s function for the s.a.e. of the first kind for

λ ∈ ρ(Aθ)/{0} is given by the following.

g(x, y;λ)

= A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ cos
√
λ(a − x>) cos

√
λx< + θ22

√
λ sin

√
λ(a − x>) cos

√
λx<

+θ11

√
λ cos

√
λ(a − x>) sin

√
λx< + θ11θ22 sin

√
λ(a − x>) sin

√
λx<

+∣θ12∣2 sin
√
λ(x> − a) sin

√
λx< +C(x, y)(θ12)

√
λ sin

√
λ(x< − x>)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

where:

A−1 =
√
λ

⎡⎢⎢⎢⎢⎢⎣

θ11

√
λ cos

√
λa + θ22

√
λ cos

√
λa − λ sin

√
λa

+θ11θ22 sin
√
λa − ∣θ12∣2 sin

√
λa + 2R(θ12)

√
λ

⎤⎥⎥⎥⎥⎥⎦
,

and for k ∈ C:

C(x, y)(k) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

k if x < y.

k if x > y.

Remark. We have not specified which square root
√
λ to take as it can be

seen that the expression for g is invariant under replacing
√
λ with −

√
λ.
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Proof. We first show that, for each θ and λ ∈ ρ(Aθ), Gλ∶ L2(0, a) → D(Aθ).

By definition:

Gλ(f)(x) = ∫
a

0
g(x, y;λ)f(y)dy,

and so

Gλ(f)(0)

= ∫
a

0
g(0, y;λ)f(y)dy

= A∫
a

0
[λ cos

√
λ(a − y) + θ22

√
λ sin

√
λ(a − y) − θ12

√
λ sin

√
λy] f(y)dy.

Similarly:

Gλ(f)(a) = ∫
a

0
g(a, y;λ)f(y)dy

= A∫
a

0
[λ cos

√
λy + θ11

√
λ sin

√
λy + θ12

√
λ sin

√
λ(y − a)] f(y)dy

We have the following “boundary values”:

Gλ(f)′(0) = A∫
a

0

⎡⎢⎢⎢⎢⎢⎣

θ11λ cos
√
λ(a − y) + θ11θ22

√
λ sin

√
λ(a − y)

+∣θ12∣2
√
λ sin

√
λ(y − a) + θ12λ cos

√
λy

⎤⎥⎥⎥⎥⎥⎦
f(y)dy

Gλ(f)′(a) = A∫
a

0

⎡⎢⎢⎢⎢⎢⎣

−θ22λ cos
√
λy − θ11θ22

√
λ sin

√
λy

+∣θ12∣2
√
λ sin

√
λy − θ12λ cos

√
λ(y − a)

⎤⎥⎥⎥⎥⎥⎦
f(y)dy

Using this we check that Gλ(f) ∈D(Aθ):

θ11Gλ(f)(0) + θ12Gλ(f)(a)

= A∫
a

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ11λ cos
√
λ(a − y) + θ11θ22

√
λ sin

√
λ(a − y)

−θ11θ12

√
λ sin

√
λy + θ12λ cos

√
λy

+θ11θ12

√
λ sin

√
λy + ∣θ12∣2

√
λ sin

√
λ(y − a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

f(y)dy

= Gλ(f)′(0)

181



and

θ12Gλ(f)(0) + θ22Gλ(f)(a)

= A∫
a

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ12λ cos
√
λ(a − y) + θ12θ22

√
λ sin

√
λ(a − y)

−∣θ12∣2
√
λ sin

√
λy + θ22λ cos

√
λy

+θ11θ22

√
λ sin

√
λy + θ12θ22

√
λ sin

√
λ(y − a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

f(y)dy

= −Gλ(f)′(a).

In order to show that g is the Green’s function and to greatly simplify the

calculations we analyse the effect of each of the terms in g at first separately.

Consider the following

g → [−Gλ(f)′′ − λGλ(f)](x)

We summarise here this map for the following integral kernels:

cos
√
λ(a − x>) cos

√
λx< → −

√
λ sin

√
λaf(x)

sin
√
λ(a − x>) cos

√
λx< →

√
λ cos

√
λaf(x)

cos
√
λ(a − x>) sin

√
λx< →

√
λ cos

√
λaf(x)

sin
√
λ(a − x>) sin

√
λx< →

√
λ sin

√
λaf(x)

C(x, y)(θ12) sin
√
λ(x< − x>) → 2

√
λR(θ12)f(x).

Adding all these terms together gives the function [−Gλ(f)′′ − λGλ(f)](x)

for the candidate Green’s function:

[−Gλ(f)′′ − λGλ(f)](x)

= A
√
λ

⎡⎢⎢⎢⎢⎢⎣

θ11

√
λ cos

√
λa + θ22

√
λ cos

√
λa − λ sin

√
λa

+θ11θ22 sin
√
λa − ∣θ12∣2 sin

√
λa + 2R(θ12)

√
λ

⎤⎥⎥⎥⎥⎥⎦
f(x)

= f(x)
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Thus (Aθ − λ)(Gλ(f)) = −Gλ(f)′′ − λGλ(f) = f and (Aθ − λ) ○Gλ on D(Aθ)

for λ ∈ ρ(Aθ)/{0}. So Gλ is the left-inverse of Aθ − λ. We now show that it

is also the right-inverse:

Denoting g → [−Gλ(f ′′) − λGλ(f)](x), we summarise the action of this

map acting on the following integral kernels:

cos
√
λ(a − x>) cos

√
λx< →

−
√
λ sin

√
λaf(x) + cos

√
λ(a − x)f ′(0) − cos

√
λxf ′(a)

sin
√
λ(a − x>) cos

√
λx< →

√
λ cos

√
λaf(x) + sin

√
λ(a − x)f ′(0) −

√
λ cos

√
λxf(a)

cos
√
λ(a − x>) sin

√
λx< →

√
λ cos

√
λaf(x) −

√
λ cos

√
λ(a − x)f(0) − sin

√
λxf ′(a)

sin
√
λ(a − x>) sin

√
λx< →

√
λ sin

√
λaf(x) −

√
λ sin

√
λ(a − x)f(0) −

√
λ sin

√
λxf(a)

C(x, y)(θ12) sin
√
λ(x< − x>) →

2
√
λR(θ12)f(x) − θ12 sin

√
λxf ′(0) − θ12

√
λ cos

√
λxf(0)

− θ12 sin
√
λ(x − a)f ′(a) − θ12

√
λ cos

√
λ(x − a)f(a).

Adding all these terms together gives the function [−Gλ(f ′′) − λGλ(f)](x)
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for the candidate Green’s function:

[−Gλ(f ′′) − λGλ(f)](x)

= f(x) +A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ cos
√
λ(a − x)f ′(0) − λ cos

√
λxf ′(a)

+θ22

√
λ sin

√
λ(a − x)f ′(0) − θ22λ cos

√
λxf(a)

−θ11λ cos
√
λ(a − x)f(0) − θ11

√
λ sin

√
λxf ′(a)

−θ11θ22

√
λ sin

√
λ(a − x)f(0) − θ11θ22

√
λ sin

√
λxf(a)

+∣θ12∣2
√
λ sin

√
λ(a − x)f(0) + ∣θ12∣2

√
λ sin

√
λxf(a)

−θ12

√
λ sin

√
λxf ′(0) − θ12λ cos

√
λxf(0)

−θ12

√
λ sin

√
λ(x − a)f ′(a) − θ12λ cos

√
λ(x − a)f(a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f(x) +A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ cos
√
λ(a − x)[f ′(0) − θ11f(0) − θ12f(a)]

√
λ sin

√
λ(a − x)[−θ22f ′(0) − θ11θ22f(0) + ∣θ12∣2f(0) + θ12f ′(a)]

−λ cos
√
λx[f ′(a) + θ22f(a) + θ12f(0)]

−
√
λ sin

√
λx[θ11f ′(a) + θ11θ22f(a) − ∣θ12∣2f(a) + θ12f ′(0)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= f(x),

where the cancellations all follow from the condition that f ∈D(Aθ).

Thus Gλ((Aθ − λ)(f)) = −Gλ(f ′′) − λGλ(f) = f

and Gλ ○ (Aθ − λ) = id on D(Aθ).

Proposition H.2. If 0 ∈ ρ(Aθ), the Green’s function for the s.a.e. of the

first kind at λ = 0 is given by the following integral kernel:

g(x, y,0) = A
⎡⎢⎢⎢⎢⎢⎣

(a − x>)x<∣θ12∣2 − θ11x< + (x> − a)x<θ11θ22

+(x> − a)θ22 − 1 +C(x, y)(θ12)(x> − x<)

⎤⎥⎥⎥⎥⎥⎦
,

where

A−1 = a∣θ12∣2 − θ11 − aθ11θ22 − θ22 − 2R(θ12)

Proof. Again, we first show that G0∶ L2(0, a) → D(Aθ). From the Green’s
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function, we can find the following boundary values of G0(f):

G0(f)(0) = A∫
a

0
[(y − a)θ22 − 1 + θ12y] f(y)dy

G0(f)(a) = A∫
a

0
[−θ11y − 1 + θ12(a − y)] f(y)dy

G0(f)′(0) = A∫
a

0
[(a − y)∣θ12∣2 − θ11 + (y − a)θ11θ22 − θ12] f(y)dy

G0(f)′(a) = A∫
a

0
[−y∣θ12∣2 + yθ11θ22 + θ22 + θ12] f(y)dy.

Thus to check that G0(f) ∈D(Aθ) we evaluate:

θ11G0(f)(0) + θ12G0(f)(a)

= A∫
a

0

⎡⎢⎢⎢⎢⎢⎣

(y − a)θ11θ22 − θ11 +����θ11θ12y

��
���−θ11θ12y − θ12 + ∣θ12∣2(a − y)

⎤⎥⎥⎥⎥⎥⎦
f(y)dy

= G0(f)′(0)

and

θ12G0(f)(0) + θ22G0(f)(a)

= A∫
a

0

⎡⎢⎢⎢⎢⎢⎣

���
���

�
(y − a)θ12θ22 − θ12 + ∣θ12∣2y

−θ11θ22y − θ12 +����
���θ12θ22(a − y)

⎤⎥⎥⎥⎥⎥⎦
f(y)dy

= −G0(f)′(a).

Now we show that G0 is indeed the Green’s function for Aθ.

We first list the effect of the map g → −G0(f)′′(x) on the following integral

kernels:

(a − x>) → 1 x< → 1 (x> − a)x< → −a

(x> − a) → −1 1→ 0 C(x, y)(θ12)(x> − x<) → −R(θ12).

Summing these terms yields: −G0(f)′′(x) = A[a∣θ12∣2 − θ11 − aθ11θ22 − θ22 −

2R(θ12)]f(x) = f(x).
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Thus Aθ ○G0 = id on L2(0, a) and G0 is the right-inverse of Aθ. Now to show

that it is also the left-inverse:

Again we list the effect of the map g → −G0(f ′′)(x) on each of the terms:

(a − x>) → f(x) + (a − x)f ′(0) − f(a)

x< → f(x) − f(0) − xf(a)

(x> − a)x< → −af(x) + (a − x)f(0) + xf(a)

(x> − a) → −f(x) + (x − a)f ′(0) + f(a)

1→ f ′(0) − f ′(a)

C(x, y)(θ12)(x> − x<) →

− 2R(θ12)f(x) + θ12xf
′(0) − θ12f(0) − θ12(a − x)f ′(a) + θ12f(a)

Adding these terms together after multiplying by a constant as it appears in

186



our proposed Green’s function we obtain:

−G0(f ′′)(x) = Af(x)[a∣θ12∣2 − θ11 − aθ11θ22 − θ22 − 2R(θ12)]

+A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∣θ12∣2(a − x)f(0) − ∣θ12∣2xf(a)

+θ11f(0) + θ11xf ′(a)

+θ11θ22(a − x)f(0) − θ11θ22xf(a)

+θ22(x − a)f ′(0) + θ22f(a)

−f ′(0) + f ′(a)

θ12xf ′(0) + θ12f(0)

−θ12(a − x)f ′(a) + θ12f(a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f(x) +A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[θ11f(0) − f ′(0) + θ12f(a)]

+[θ22f(a) + f ′(a) + θ12f(0)]

+(a − x)[−∣θ12∣2f(0) + θ11θ22f(0) − θ22f ′(0) − θ12f ′(a)]

+x[−∣θ12∣2f(a) + θ11f ′(a) + θ11θ22f(a) + θ12f ′(0)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= f(x)

Thus G0(Aθ(f)) = −G0(f ′′) = f and G0 ○Aθ = id on D(Aθ).

Now, we do the same for the s.a.e.s of the second kind. Remembering

that the domain of this extension is defined as:

D(Aw1w2θ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
φ ∈W 2,2(0, a) s.t.:

w2φ(0) −w1φ(a) = 0

w1(θφ(0) − φ′(0)) +w2(θφ(a) + φ′(a)) = 0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
,

where w1,w2 ∈ C, ∣w1∣2 + ∣w2∣2 = 1 and θ ∈ R. We shall prove the following:

Proposition H.3. The Green’s function for the s.a.e. of the second kind for

λ ∈ ρ(Aw1w2θ)/{0} is given by:
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For λ ∈ ρ(Aw1w2θ)/{0}:

g(x, y;λ)

= A
⎡⎢⎢⎢⎢⎢⎣

∣w1∣2
√
λ sin

√
λ(x> − a) cos

√
λx< +

√
λC(x, y)(w1w2) sin

√
λ(x< − x>)

+θ sin
√
λ(x> − a) sin

√
λx< − ∣w2∣2

√
λ cos

√
λ(x> − a) sin

√
λx<

⎤⎥⎥⎥⎥⎥⎦
,

where

A−1 =
√
λ [−

√
λ cos

√
λa + 2R(w1w2)

√
λ − θ sin

√
λa]

Remark. We have not specified which square root
√
λ to take as it can be

seen that the expression for g is invariant under replacing
√
λ with −

√
λ.

Proof. Again, we first check that Gλ∶ L2(0, a) → D(Aw1w2θ). Following the

previous method we can find the following boundary values of Gλ(f):

Gλ(f)(0) = A∫
a

0
[∣w1∣2

√
λ sin

√
λ(y − a) −

√
λw1w2 sin

√
λy] f(y)dy

Gλ(f)(0) = A∫
a

0
[w1w2

√
λ sin

√
λ(y − a) −

√
λ∣w2∣2 sin

√
λy] f(y)dy

Gλ(f)′(0) = A∫
a

0

⎡⎢⎢⎢⎢⎢⎣

λw1w2

√
λ cos

√
λy + θ

√
λ sin

√
λ(y − a)

−∣w2∣2λ cos
√
λ(y − a)

⎤⎥⎥⎥⎥⎥⎦
f(y)dy

Gλ(f)′(a) = A∫
a

0

⎡⎢⎢⎢⎢⎢⎣

λ∣w1∣2
√
λ cos

√
λy − λw1w2 cos

√
λ(y − a)

+θ
√
λ sin

√
λy

⎤⎥⎥⎥⎥⎥⎦
f(y)dy

We can see from inspection that w2Gλ(f)(0) = w1Gλ(f)(a). Furthermore:

w1(θGλ(f)(0) −Gλ(f)′(0))

= A∫
a

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θw1∣w1∣2
√
λ sin

√
λ(y − a) − θ

√
λ∣w1∣2w2 sin

√
λy

−λ∣w1∣2w2 cos
√
λy − θw1

√
λ sin

√
λ(y − a)

+w1∣w2∣2λ cos
√
λ(y − a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

f(y)dy
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and

w2(θGλ(f)(a) −Gλ(f)′(a))

= A∫
a

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θw1∣w2∣2
√
λ sin

√
λ(y − a) − θ

√
λ∣w2∣2w2 sin

√
λy

+λ∣w1∣2w2 cos
√
λy

−w1∣w2∣2λ cos
√
λ(y − a) + θw2

√
λ sin

√
λy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

f(y)dy,

from which we see that

w1(θGλ(f)(0) −Gλ(f)′(0)) +w2(θGλ(f)(a) −Gλ(f)′(a)) = 0

and so Gλ(f) ∈ D(Aw1w2θ). We now show that Gλ is indeed the resolvent of

Aw1w2θ. Using the first table of integral kernels in Proposition H.1, by the

same argument we have:

[−Gλ(f)′′ − λGλ(f)](x)

= Af(x)
⎡⎢⎢⎢⎢⎢⎣

−∣w1∣2λ cos
√
λa + 2λR(w1w2)

−θ
√
λ sin

√
λa − ∣w2∣2λ cos

√
λa

⎤⎥⎥⎥⎥⎥⎦
= Af(x)[−λ cos

√
λa + 2λR(w1w2) − θ

√
λ sin

√
λa]

= f(x)

Thus Aw1w2θ ○Gλ = id on L2(0, a) for λ ∈ ρ(Aw1w2θ).
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Using the second table of integral kernels in Proposition H.1, we have:

[−Gλ(f ′′) − λGλ(f)](x)

= f(x) +A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∣w1∣2
√
λ sin

√
λ(a − x)f ′(0) + ∣w1∣2λ cos

√
λxf(a)

−
√
λw1w2 sin

√
λxf ′(0) − λw1w2 cos

√
λxf(0)

−
√
λw1w2 sin

√
λ(x − a)f ′(a) − λw1w2 cos

√
λ(x − a)f(a)

+θ
√
λ sin

√
λ(a − x)f(0) + θ

√
λ sin

√
λxf(a)

+∣w2∣2λ cos
√
λ(a − x)f(0) + ∣w2∣2

√
λ sin

√
λxf ′(a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f(x) +A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
λ sin

√
λ(a − x)[−∣w1∣2f ′(0) +w1w2f ′(a) + θf(0)]

λ cos
√
λx[∣w1∣2f(a) −w1w2f(0)]

+
√
λ sin

√
λx[−w1w2f ′(0) + θf(a) + ∣w2∣2f ′(a)]

+λ cos
√
λ(a − x)[−w1w2f(a) + ∣w2∣2f(0)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= f(x)

Thus Gλ((Aw1w2θ − λ)(f)) = −Gλ(f ′′) − λGλ(f) = f

and Gλ ○ (Aw1w2θ − λ) = id on D(Aw1w2θ).

Proposition H.4. If 0 ∈ ρ(Aw1w2θ) then the Green’s function for the s.a.e.

of the second kind at λ = 0 is:

g(x, y; 0) = A[θ(a − x>)x< +C(x, y)(w1w2)(x> − x<) + ∣w1∣2(a − x>) + ∣w2∣2x<],

where

A−1 = aθ − 2R(w1w2) + 1

Proof. As before, we first check that G0∶ L2(0, a) → D(Aw1w2θ). The follow-
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ing boundary values can be calculated:

G0(f)(0) = A∫
a

0
[w1w2y + ∣w1∣2(a − y)] f(y)dy

G0(f)(a) = A∫
a

0
[w1w2(a − y) + ∣w2∣2y] f(y)dy

G0(f)′(0) = A∫
a

0
[θ(a − y) −w1w2 + ∣w2∣2] f(y)dy

G0(f)′(a) = A∫
a

0
[−θy +w1w2 − ∣w1∣2] f(y)dy

It can be seen that we already have: w2G0(f)(0) = w1G0(f)(a). Addition-

ally:

w1(θG0(f)(0) −G0(f)′(0))

= A∫
a

0

⎡⎢⎢⎢⎢⎢⎣

θ∣w1∣2w2y + θw1∣w1∣2(a − y)

−θw1(a − y) + ∣w1∣2w2 −w1∣w2∣2

⎤⎥⎥⎥⎥⎥⎦
f(y)dy

and:

w2(θG0(f)(a) −G0(f)′(a))

= A∫
a

0

⎡⎢⎢⎢⎢⎢⎣

θ∣w2∣2w1(a − y) + θw2∣w2∣2y

−θw2y + ∣w2∣2w1 −w2∣w1∣2

⎤⎥⎥⎥⎥⎥⎦
f(y)dy,

whence:

w1(θG0(f)(0) −G0(f)′(0)) +w2(θG0(f)(a) −G0(f)′(a))

= A∫
a

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ∣w1∣2w2y + θw1(a − y)

−θw1(a − y) + θw2∣w2∣2y

−θw2y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

f(y)dy

= 0.

Thus G0(f) ∈ D(Aw1w2θ). We now show that G0 is indeed the resolvent of
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Aw1w2θ. Using the first table of integral kernels in Proposition H.2:

−G0(f)′′(x) = A[aθ − 2R(w1w2) + ∣w1∣2 + ∣w2∣2]f(x)

= A[aθ − 2R(w1w2) + 1]f(x)

= f(x).

Thus Aw1w2θ ○G0 = id on L2(0, a).

Now we prove that G0 is also the left-inverse of Aw1w2θ. Using the second

table of integral kernels in Proposition H.2, we have:

−G0(f ′′)(x)

= f(x) +A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ(x − a)f(0) − θxf(a)

+θ12xf ′(0) + θ12f(0) − θ12(a − x)f ′(a) + θ12f(a)

−∣w1∣2f(a) + ∣w1∣2(a − x)f ′(0)

−∣w2∣2f(0) − ∣w2∣2xf ′(a)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f(x) +A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ12f(0) + θ12f(a) − ∣w1∣2f(a) − ∣w2∣2f(0)

+(x − a)[θf(0) + θ12f ′(a) − ∣w1∣2f ′(0)]

+x[−θf(a) + θ12f ′(0) − ∣w2∣2f ′(a)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

= f(x)

Thus G0(Aw1w2θ(f)) = −G0(f ′′) = f

and G0 ○Aw1w2θ = id on D(Aw1w2θ).
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