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Abstract

We construct a class of solutions to the Cauchy problem of the Klein-Gordon
equation on any standard static spacetime. Specifically, we have constructed
solutions to the Cauchy problem based on any self-adjoint extension (satisfy-
ing a technical condition: “acceptability”) of (some variant of) the Laplace-
Beltrami operator defined on test functions in a L? space of the static hy-
persurface. The proof of the existence of this construction completes and
extends work originally done by Wald. Further results include the unique-
ness of these solutions, their support properties, the construction of the space
of solutions and the energy and symplectic form on this space and an analysis
of certain symmetries on the space of solutions and of various examples of
this method, including the construction of a non-bounded below acceptable

self-adjoint extension generating the dynamics.
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1 Introduction

The first purpose of this thesis is to construct a class of solutions to the
Cauchy problem of the Klein-Gordon equation on any (not necessarily glob-
ally hyperbolic) standard static spacetime (M, g) = (Rx X, V2dt?2 - h), where
(X, h) is a Riemannian manifold and V' is a smooth positive function on 3
(Sanchez [30]). A class of solutions was originally constructed by Wald [37].
His solutions were given in terms of some fixed positive self-adjoint exten-
sion (s.a.e.) of a particular symmetric linear operator on L?(%,V-ldvol,).
Our treatment of the existence of solutions differs from that of Wald in the

following aspects:

1. Wald considered only positive s.a.e.s and so the linear operators C(t, Ag)
and S(t, Ag) (defined in Section 3) used to construct solutions were
bounded. In this thesis however we also consider “acceptable” s.a.e.s
(Definition 3.2). Incidentally, all bounded below s.a.e.s are acceptable.
Under these conditions C(¢, Ag) and S(t, Ag) may be unbounded lin-

ear operators so care is required with the domains.

2. We point out that a more recent result on the extendibility of subsets
of the spacetime to smooth spacelike Cauchy surfaces in globally hy-
perbolic spacetimes by Bernal and Sanchez [6] is needed to complete

the proof on the existence of Wald solutions.

The remainder of the thesis deals with proving various properties satisfied
by the solutions and analysing some examples. Since many already known
results are quoted in this work for completeness, we shall for clarity list the

other main new results of this thesis:

1. We show in detail the properties satisfied by the solutions only implicit
in the paper by Wald and Ishibashi [38]. In that paper, they assumed
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certain conditions on the dynamics (e.g. constraints on the support of
solutions, how they are transformed under time translation and reflec-
tion in time and the existence of an energy norm) and then proved that
it must be generated by a particular s.a.e. Ag. In this thesis we an-
swer the natural question: “to what extent are these conditions on the
dynamics necessary?”, that is, does the dynamics generated by a par-
ticular choice of acceptable s.a.e. Ag satisfy these conditions? We shall
answer mostly to the affirmative. However we note that Assumption 1
in Wald and Ishibashi [38] (the support of solutions/“the causality as-
sumption”: see below) is not always true of dynamics generated by an

arbitrary acceptable s.a.e..

To amplify this point, Assumption 1 on the dynamics in Wald and
Ishibashi [38] states that the support of the solution to the Klein-
Gordon equation corresponding to Cauchy data always lies within the
union of the causal future and past of the support of that data. In Sec-
tion 12.5 we give a simple example of a standard static spacetime and a
choice of s.a.e. Ag such that the dynamics generated satisfies: supp ¢ ¢
J(K) for some initial data (@, o), where K = supp ¢o Usupp ¢. We
show in Section 8 however that, in general, supp ¢ is contained in J(K)
up until the time at which the data can “hit” any edge in the space-
time. We prove that this weaker form of Assumption 1 is true of all
dynamics constructed in this thesis, using the previous results on the
uniqueness of solutions in Section 6 and results on the causal structure

of the spacetime Section 7.

. An important property satisfied by the “Wald solutions” is that the

value of the standard symplectic form evaluated at any pair of solutions



is independent of the static hypersurface on which it is calculated, so
the space of solutions has a natural symplectic space structure. Since
it is this structure which allows the quantisation of the theory, by the
construction of the Weyl algebra (Bér et al. [3]), it is an important result
in Section 10 that even after extending Wald’s method to the case of
only acceptable s.a.e.s, we retain the conservation of the symplectic
form even in the cases where the positive definiteness of the energy

form (Section 9) is lost.

. In Section 11 we prove how the solutions are transformed under time
translation and reflection. We show that the previously constructed
energy form is invariant under both time translation and reflection of
its arguments whereas the symplectic form is time-translation invariant
but acquires a minus sign under reflection of its arguments in time.
(These properties correspond to assumptions 2(i), 2(ii), 3(i) and 3(ii)
of Wald and Ishibashi [38].)

. In Sections 12.1-12.3 and Appendices F,G and H we consider three
simple one-dimensional Riemannian manifolds (S*, (0,00) and (0,a))
with their usual differential structures and Riemannian metrics), each
of which will then generate a standard static spacetime with V' = 1.
In order to classify the dynamics generated on the latter spacetimes
by the construction of this thesis, we have analysed in great detail the
s.a.e.s of minus the Laplacian on S', (0,00) and (0,a). In particular we
have classified the s.a.e.s, determined their spectra and resolvents. The
proofs of these statements are to be found in Appendices F,G and H.
Specifically, it is shown there that the functions given in Sections 12.1,

12.2 and 12.3 do indeed generate the resolvents for all the self-adjoint



extensions of minus the Laplacian on the manifolds S, (0,00) and
(0,a) respectively. It should be mentioned that, while it may be sur-
prising, various parts of this do not seem to be readily accessible in
the literature. The parts which can already be found in the literature
are as follows: although it is the simplest of the examples considered
here, the Green’s function for the first case was not found in the liter-
ature. The Green’s function for the second case is stated in Stakgold
[32] and the expressions for the domains of the extensions of the third
case can be found in Posilicano [26]. The form of the Green’s functions
for the third case can with some effort be reached from the methods
in Posilicano. However our approach, proving directly that the stated
expressions give the resolvents of the extensions, we have not found in

the literature.

5. In Section 12.6 we construct an acceptable non-bounded below s.a.e.
Ag of minus the Laplacian on ¥ = Z x (0, c0). This example then shows
that the extension of theory of Wald [37] from bounded-below s.a.e.s to
acceptable s.a.e.s carried out in this thesis is non-trivial (Wald’s paper

only deals with positive s.a.e.s).
The structure of the thesis is as follows:

In Section 2 we recall the definitions of static and standard static space-
times found in for example Sanchez [30]. In Section 3 we define the Klein-
Gordon equation, describe the functional analytic method employed in its
solution and define the notion of an acceptable s.a.e.. In Section 4 we discuss
the causal structure of the spacetime, and, in particular, characterise the
causal future J*(K) of a compact subset K ¢ ¥y = {0} x ¥ of M and find

a simple expression for the Cauchy development (also called the domain of



dependence) of 3. These facts are especially useful for proving the support

property of the solutions (Section 8).

In Section 5 we prove the existence of Wald solutions with respect to any

acceptable s.a.e. Ag.

In Section 6 we prove a uniqueness theorem concerning Wald solutions and
define the space of solutions. This uniqueness theorem, together with Sec-
tion 7, which contains more results on the causal structure of the spacetime,

allows us to prove the required support properties of solutions in Section 8.

In Sections 9 and 10 we show that on the space of solutions we can
define an energy form and a symplectic form. In Section 11 we show how
solutions are transformed under time-translation and time-reversal. It is
shown that the energy form is invariant under both transformations and
that the symplectic form is invariant under time translation but picks up a

minus sign under time-reversal.

In Sections 12.1 to 12.3 we give some simple examples of Riemannian
manifolds (X, k) (that is: S!, (0,00) and (0,a) mentioned above) and give
all the self-adjoint extensions of minus the Laplacian A (V = 1,m = 0) on
L2(X,dvoly). Since all the s.a.e.s Ag of A are bounded-below, they all gen-
erate a solution of the Laplace-Beltrami equation on (R x 3, dt%2 — h) by the
construction in this thesis. For completeness we also state the resolvents of
the s.a.e.s though we leave the proofs thereof to Appendices F,G and H. In
Section 12.4 we discuss the effect on the s.a.e.s and their corresponding resol-
vents of adding a non-zero mass to the linear operator A. In Section 12.5 we
give a simple example of a standard static spacetime and a choice of s.a.e. Ag

such that the dynamics generated satisfies: supp¢ ¢ J(K') for some initial
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data (this corresponds to 1. of the second list on p.6). In Section 12.6 we con-
struct an acceptable non-bounded below s.a.e. Ar of minus the Laplacian on
a particular (disconnected) Riemannian manifold (specifically: ¥ = Zx (0, o0)
with the Riemannian metric induced from that of R?). This example then
shows that the extension of theory of Wald [37] from bounded-below s.a.e.s
to acceptable s.a.e.s carried out in this thesis is non-trivial (Wald considered

only positive s.a.e.s).

The appendix contains much varied material. Parts are results which
have been postponed so as to improve readability of the main body of the
thesis. Appendices A and B fall under this category. The former shows
when the linear operators C'(¢t, Ag) and S(t, Ag), introduced in Section 3,
are bounded and also constructs a subspace invariant with respect to both
linear operators and on which both linear operators are strongly differen-
tiable with respect to t. These results were quoted in the earlier Section 3.
Appendix B concerns the well-posedness of the Klein-Gordon equation on
globally hyperbolic spacetimes with respect to arbitrary smooth initial data
specified on a Cauchy surface. While the result is probably well known
(Corollary 5, Section 3.5.3 in Ginoux’s contribution in Bar and Fredenhagen

(Eds.) [4]), it is included for completeness.

Appendices C, D and E do not contain new results but are included for
completeness. Appendix C is a reminder of some elements of metric space
theory that are needed in Section 4. Appendix D.1 constructs measure on
manifolds form densities. Appendix D.2 is an introduction to Partial Dif-
ferential Operators based on Chapter 10 of Nicolaescu [22]. Appendix D.3
defines the LP spaces, distributions and Sobolev spaces on manifolds, which

are required constructions for much of this thesis. Appendix E deals pri-
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marily with the derivation of the expressions for the energy and symplectic
forms used in Sections 9 and 10. In this appendix we also prove various
propositions which although well known are not easily found in the standard
texts on Lorentzian Geometry. The remaining Appendices F, G and H deal
with proving that the functions given in Sections 12.1, 12.2 and 12.3 do in-
deed generate the resolvents for all the self-adjoint extensions of minus the

Laplacian on the manifolds S', (0,00) and (0, a) respectively.
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2 Static versus Standard Static Spacetimes

We will shortly give the definition of the class of spacetimes of interest but
we first introduce some necessary concepts from differential geometry. (See

Sachs and Wu [29], Sanchez [30] and O’Neill [23].)

Definition 2.1. Given a smooth n-dimensional manifold M and m an in-
teger, 0 < m < n, an (m-dimensional, smooth) distribution W maps each
peM to an m-dimensional subspace of T,(M), W :pw W (p) < T,(M) such
that for all p € M there exists an open neighbourhood U of p and m smooth
vector fields (X;)iz1.m on U s.t. Yq e U : ({X1(q),...,Xm(q)}) = W(q),
where (S) is the linear span of a subset S of a vector space. Such a collection
of locally defined smooth vector fields is called a (smooth) local basis for the

smooth distribution W.

A local section X of a (smooth) distribution W is a smooth vector field
defined on an open set U s.t. X, e W(p) Vp e U. A smooth distribution is
called involutive if for all local sections X,Y of W, [X,Y] is a local section
of W. A necessary and sufficient condition for a smooth distribution to be
involutive is that for each p € M there exists an open neighbourhood U of p
and a local basis (X;)iz1..,m of W on U such that [X;, X;], € W(q) VqgeU.
Note that if one local basis has this property then all do. Clearly every

1-dimensional smooth distribution is involutive.
We have the following four examples of smooth distributions:

1. Given a non-vanishing smooth vector field X on a manifold M a simple
example of a 1-dimensional smooth distribution is given by: W(p) =
({X,}) € T,(M). Clearly in this example the local basis is given by X
and its domain of definition U = M.

13



2. Similarly, given a collection of smooth vector fields (X;);-1.,m on M
which are linearly independent at every point, then we have the m-

dimensional smooth distribution: W (p) = ({(X1)p, ..., (Xm)p})-

3. W(p) = T,(M) is an n-dimensional smooth distribution on M. It is
smooth as a local basis is given by the n smooth vector fields {%, e 8%}

defined on U where (U, ¢) is a chart and x? are the components of ¢.

4. Let (M, g) be a n-dimensional Lorentzian manifold (in this thesis, al-
ways of signature +—...—) and X be a smooth timelike vector field on
M, define the (n — 1)-dimensional distribution W (p) = {X,}* = {Y, €
T,(M) s.t. g,(X,,Y,) =0}. Note that the subspaces W (p) will consist
of only spacelike vectors and the zero-vector. It is shown in Proposi-

tion E.6 that W so defined is a smooth distribution.

Note: with our choice of signature on a Lorentzian manifold, a vector
X, € T,(M)\{0} is timelike if g,(X,, X,) > 0; null if ¢,(X,, X,,) = 0; causal
if g,(X,,X,) > 0; spacelike if g,(X,, X,) < 0. A smooth vector field X is
as usual timelike, null, causal or spacelike if X, is timelike, null, causal or

spacelike at each pe M.

Definition 2.2. A smooth timelike vector field on a Lorentzian manifold is
called trrotational if the smooth distribution, which it defines according to

Example 4 above, is involutive.
Definition 2.3. Define the following:

1. A Lorentzian manifold (M, g) is time-orientable if there exists on M

a smooth timelike vector field and time-oriented if one such is fized.

2. A spacetime is a time-oriented Lorentzian manifold.

14



3. A spacetime is stationary if there exists on (M,g) a smooth timelike

Killing vector field on M.

4. A spacetime is static if stationary and there exists a smooth timelike
Killing vector field that is irrotational. (Such a vector field is called a
static vector field.)

Note that, unlike some authors, we are not assuming orientability in the
definition of a spacetime. The following is a very important example of a
static spacetime. It is only this class of spacetimes with which this thesis is

concerned.

Definition 2.4. (Sanchez [30]) A standard static spacetime is defined

by:
(M7g) = (R X Ea V2dt? - h)7

where (X, h) is a smooth Riemannian manifold; M is given the usual product
topology and differential structure; dt* is the Euclidean metric on R; V €

C>(X) with V > 0. The time-orientation is that given by the timelike vector
field X = %.

Remark. In the above expression for the metric g = V2dt? — h, we are using
a slightly sloppy notation for conciseness. Denoting by m : R x ¥ - R
and 7 : R x ¥ - ¥ the two projection (bundle) maps, then more precisely:
g =m5 (V)i (dt?) -5 (h), where 7} is the pull-back applied here to metrics
and functions and dt? = dt ® dt is the standard Riemannian metric on R.
Let (M, g) = (RxX,V2dt? - h) be a standard static spacetime. As 3 is a
smooth manifold then for each ¢t € R the map 7, : ¥ - M given by = — (t,z)

is a smooth embedding from ¥ to M and for each embedded submanifold

Y= A{t} x 3 =m(X) c M there exists a unique unit future-pointing smooth

15



timelike vector field n; = V‘lg normal to each tangent space of ¥;. Note

that we have not assumed that the manifold X is orientable.

A standard static spacetime is static since a static vector field is given
by X = %, which we shall check shortly. (This vector field also defines the
time-orientation of M.) Note that this is a globally defined smooth vector
field since the map (¢,x) — t is one of the coordinates of each of the charts in
an atlas of M. It is easy to check that this Killing vector field X is complete
and so defines a global group of isometries. Also, every point in M lies in

the orbit of a unique point in {0} x ¥ under this isometry (equivalently in

the integral curve of a unique point in {0} x ¥ under the vector field X).

Proposition 2.5. Every standard static spacetime is static.

Proof. We show first that the vector field X = % is irrotational. Consider

the smooth distribution W defined as orthogonal to X. Clearly W (¢,p) =
T,% € T pyM. A simple local basis of W is as follows: Given (t,p) € M then
let (U, ¢) be a chart in ¥ containing p. This then induces n smooth vector
fields on U: %...6%, where z' are the components of the chart map. Then

define the local basis {X;}i(1,.n) on the domain Rx U as: X;(s,q) = 0

9z’

(s:9)-

Viewed as smooth vector fields on U ¢ ¥, [X;, X;] is a smooth vector field on
U by definition of the Lie bracket. Viewed as smooth vector fields on R x U,
[Xi, Xj]p) € Tp(X) = W(t,p) for each 7,5 and so W is involutive and X is

irrotational.

We now show that X is a Killing vector field. We make use of a well-
known fact (see e.g. p.650 of Misner et al. [21]) that given a spacetime (M, g)
of dimension n and a fixed integer j (1 < j < n), then if there exists an

atlas (U,, ¢o) on M s.t. for each « the induced metric components do not
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depend on 7, (where i is, as usual, short-hand for the i-th component of
the map ¢,) and if 22, and xi, differ by a constant on U, n U, then %
is a smooth Killing vector field for (M, g). Applying this to our case, then
given an atlas (U,, ¢,) for X, then (R x U,, V¥, ) is an atlas for M, where
U, (t,p) = (t,0a(p)). In the coordinates of one of these charts, the metric
has components: goo = V2, go; = gio = 0 and g;; = —hy;, all of which are
independent of t. We have already pointed out that X = % is a smooth

vector field and thus is a smooth Killing vector field.

Thus X is a smooth timelike irrotational Killing vector field and so is a

static vector field by definition. O]

Remark. Note that any open subset of a standard static spacetime with the
induced spacetime structure is static though need not be standard static. See
Sanchez [30] for more discussion and sufficient conditions guaranteeing that

a static spacetime is standard static.

In the next section, we define the Klein-Gordon equation and propose a
solution to a similar problem in functional analysis which shall prove to be

the first step in the solution of the Klein-Gordon equation.
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3 The Cauchy problem of the Klein-(GGordon
Equation on Standard Static Spacetimes:
The construction of candidate solutions as
vector-valued functions

We wish to solve the Klein-Gordon equation on an arbitrary standard static
spacetime. For an arbitrary spacetime and mass m > 0 the Klein-Gordon

equation reads:

(O +m*)¢ =0, (3.1)

where [, = div jograd ; is the Laplace-Beltrami operator (see Appendix D.2),
sometimes locally given by: V#V, where V, is the covariant derivative de-
fined by the metric.

Alternatively, the Klein-Gordon equation can be expressed in local coordi-

nates (see p.86 and p.213 of O’Neill [23]):

1
Oy = —=0u9"" V19l 0,
g \/m#

where ¢ := det(g,,).

Remark. Note also that we shall demand that ¢ € C*°(M), where C* (M)
is defined as the space of all smooth K-valued functions on M, where K = R
or C. We are removing the dependence of the field of scalars from our
notation for C'°(M) purely for brevity. We shall find that the results of
this thesis apply equally well to solving the Klein-Gordon equation for real-
valued functions as for complex-valued functions. In the sequel we shall take
all function spaces, Hilbert spaces etc. to be either over R or C as required.

We shall on occasion in this thesis mention where we may have to treat

18



the two cases separately. For instance Sections 12.1-12.3 only apply to the

complex case as will be discussed there.

Our spacetime of interest is: M =R x X with g = V2dt2 — h, where X is a

smooth manifold with smooth Riemannian metric h and V e C*(X), V > 0.

For this spacetime, we define a solution to the Cauchy problem for the

Klein Gordon equation to be a linear map:

VO (%) x C5°(2g) = C= (M)
(Gﬁoyéo) > ¢

such that: Vg, g € C2(20), if (o, o) = ¢ then:
1. (O +m2)d=0

2. ¢ls, = o

3. 9ifls, = o

In this thesis we shall construct solutions to the Cauchy problem. (We shall
in fact find a solution to an extension of this problem, that is, extend the
space of test functions C§°(Xy) to a certain subspace xp of C*~(%y).) We
start by expressing the Klein-Gordon equation in a simpler form. Given an
atlas (U,, ¢o) for 3 we have the following atlas for M: (R x U,,t x ¢,) and

in these coordinates the metric components are: goo = V2, goi = ¢gio = 0 and

ij = —hij.

The components g* of the (2,0) tensor field are defined as inverse to
those of the (0,2) tensor field g,,. Similarly, the components h¥/ are defined
as inverse to those of h;;. Thus g% = V=2, g% = ¢ = 0, ¢ = -h¥ and

Vgl = V/h. In the last expression we denote by ¢ the determinant of the
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components g, of the metric tensor g, similarly for h. The use of the symbol
g to denote the determinant shall be restricted only to such expressions and

S0 is not to be confused with the metric itself.

So, in these local coordinates the Laplace-Beltrami operator reads:
1 1

OV 2VVhO, - ——=

vV R

1
= V292 - V—ﬂaih”.vﬂaj

=V20? -V 'D'VD;,

O, = 8;h" . V/ho;

where D; is the covariant derivative on ¥ induced by h. Thus equation (3.1)
reads:
(V202 -V ID'VD; +m?)p =0
which is true iff:
(02 -VD'VD; +m*V*)¢p=0
iff:
0id=-A¢ (3:2)

where A = -V D'V D; + m2V2. Note that in coordinate free notation: A =

-Vdiv,Vgrad;, + m?V?2. See Section D.2 for more details.

We solve this form of the Klein-Gordon equation with the methods of
functional analysis on the (real or complex) Hilbert space L2(%,V~1dvoly,).
(This space is defined in Section D.3. The following definitions are taken
from Chapter VIII Reed and Simon [27].)

In the next few pages we shall introduce some necessary concepts from
functional analysis, fixing our notation. Then in equation (3.7) on p.25 we

shall propose a solution to the related problem (equation (3.6) on p.25) to
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the new form of the Klein-Gordon equation (equation (3.2) above). It is
this functional analytic solution that will provide the first step in solving the

Klein Gordon equation.

In this thesis, by a linear operator A on a real or complex Hilbert space
H we shall mean a linear map A: D(A) — H, where D(A) is a subspace of
H, called the domain of the linear operator A. Some authors denote linear
operators by (A, D(A)). For the sake of brevity we shall denote such a linear

operator by A, however its domain D(A) is always to be given.
e A is called densely defined if D(A) is dense in H.
Given a densely defined linear operator A we define its adjoint A* as follows:
D(A*)={¢pe H s.t. Ixe H s.t. (¢,A0)=(x,0) for all 0 D(A)}
A*p = x for ¢p € D(A*), where x is as in the previous line.

Note that as A is densely defined then A* is well defined. A partial order
< is defined on the set of linear operators on a Hilbert space H as follows.

Given linear operators A, B then A < B iff D(A) ¢ D(B) and B|p) = A.

e A linear operator A is called symmetric if it is densely defined and

A < A*. In other words, if it is densely defined and:

(¢, AB) = (A, 0) for all ¢,0 € D(A).

e A linear operator A is called self-adjoint if it is densely defined and

A= A~*, that is, A is symmetric and the following is true:

For all ¢ € H, if there exists y € H such that
(9, Af) = (x,0) for all 6 € D(A),
then ¢ € D(A).
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e A linear operator A is positive if (Az|z) > 0 for all 2 € D(A).

e A linear operator A is bounded-below if there exists M € R s.t. (Az|z) >
—M]||z|* for all ze D(A).
Remark. Note that both positive and bounded-below linear operators
satisfy: (Az|z) € R for all z € D(A). If H is a complex Hilbert space,
then via the polarisation identity, it follows that such an operator A is
symmetric if also densely defined. If A is a self-adjoint linear operator

then it can be shown by the spectral theorem that

(Az|z) > —M]||z|]* for all z € D(A) iff 0(A) € [-M, o).

e A is closable if, given x, € D(A) and y € H satisfying x,, - 0 and
Az, -y, then y =0.
Remark. Note that denoting I'(A) := {(x,Az) e H® H : x € D(A)}
the graph of the linear operator A, then the definition of closable is a
necessary and sufficient condition for m to be the graph of a linear
operator, denoted A. It is shown in Reed and Simon [27] (Theorem

VIII.1) that a densely-defined linear operator A is closable iff its adjoint
A* is densely defined.

e A closable linear operator A is called closed if A = A.

e A symmetric linear operator A is called essentially self-adjoint (e.s.a.)

if A* < A** which is true iff A is self-adjoint.

On the (real or complex) Hilbert space L?(X, V-1dvoly,), we have the following

linear operator A:

D(A) = [C(2)] (3.3)
A[$] = [(-V D'V D; + m?V?)s], (3.4)
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where D; is the covariant derivative on (X,h) and ¢ € C§°(X). That A is

symmetric and positive is proven in Proposition D.10 in the appendix.

Note that the adjoint is a well-defined linear operator since A is densely

defined in L?(X,V-1dvol,). The adjoint A* is given by :

D(A%) = {¢ e LX(S,V"'dvoly) s.t. A e L*(Z,V "dvol,)}
A*¢ = Ag,

where in both lines A¢ is meant distributionally and a priori ¢, Ap € D'(X).
Here, functions are interpreted as distributions by use of the smooth measure

V-1dvol;, on X.

Remark. Note that since [C§°(X)] € D(A*) then D(A*) is densely defined
and so A is closable. Also, be aware that the reason for appearance of the
partial differential operator A instead of its formal adjoint A* in the above
definition of the linear operator A* is that A is formally self-adjoint with
respect to the smooth measure V-1dvol;,. See Section sec:pdos for definitions

of these terms.

The domain of the closure A of A is given by the closure of [Cg*(X)] in
the Hilbert space D(A*) with the inner product (-,-) 4+

(0,0) 4+ =(0,0) L2(s,v-1avo,) + (A" D, A"0) 12(5 v-14vol,)

It is important to note that A is not necessarily essentially self-adjoint

(e.s.a.). The following theorem gives a case where A is e.s.a..

Theorem 3.1 (Essential Self-Adjointness of minus the Laplacian on Com-
plete Riemannian Manifolds). Let (X, h) be a complete Riemannian manifold.

Then letting V =1 and m = 0, we have A = —divpgrady, = —Ay, minus the

Laplacian corresponding to the metric h. Then if D(A) = [C?(X)] in the
Hilbert space H = L2(X, dvoly,), then A is essentially self-adjoint.
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Proof. See e.g. Taylor [35] Proposition 8.2.4. O

As pointed out by Wald [37], since A is a symmetric positive linear op-
erator then at least one positive self-adjoint extension exists. We do not
restrict ourselves however to using a single extension, but we are forced to
only consider a certain class of s.a.e.s of A, which we define shortly. We wish

to first make a remark concerning the choice of the field of scalars.

Remark. Note that if we define Hx = L?(3,K,V-1dvol,) as the space of
equivalence classes of K-valued square-integrable Borel-measurable functions,
where K=R or C and f ~ g iff f = g a.e., then we can view A as a symmetric
linear operator on either the real Hilbert space Hr or the complex Hilbert
space Hc. The set of self-adjoint extensions of these operators are related.
To see how, take the general situation of a real Hilbert space H and its com-
plexification Hc. Now, on H¢ can be defined a natural complex conjugation
operator C. It is shown in Section 2 of Seggev [31] that the self-adjoint
extensions of a symmetric linear operator A on H are are in bijection with
the self-adjoint extensions of the symmetric linear operator Ac on H¢, which

commute with C'; where Ac¢ is the complexification of A.

We now introduce our new notion of an acceptable s.a.e.:

Definition 3.2. A s.a.e. Ag of A is called acceptable if it satisfies:

[C5°(3)] € M D(exp(Ap)' ), (3.5)

t>0

where Ay, := 1~ (Ag) is the positive self-adjoint operator defined via continu-

ous functional calculus using the function x=:R — [0, 00) defined by:

. -y, y<0
x(y) =
0, otherwise.

The operator Ay is called the negative part of the operator Ap and it’s
bounded iff Ag is bounded-below.
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Remark. In the paper [37] by Wald, he considered only positive s.a.e.s of A.
Clearly, a positive linear operator is bounded-below. If Ag is a bounded-
below s.a.e. then A7, is a bounded linear operator, as is (A3)Y2. Then
exp(Az)Y?t is also a bounded linear operator for all ¢ and so:
[Cee(2)] € LA(2, Vdvoly,) = () D(exp(Ag)%t).
t>0
Thus every bounded-below s.a.e Ag is also acceptable. Thus we are extending

the method of Wald to more s.a.e.s of A.

The approach (taken from Wald [37]) is to find a map R - D(Ag) ¢ H
where H = L2(2,V-1dvol,). t — ¢, for each pair of data ¢, € Ce(2).
We demand that the map t — ¢(t) is twice differentiable as a vector-valued

function with double-derivative:

d>¢y
dt?

= _AE(rbt (36)

Our intended solution to this problem is given in terms of any acceptable

s.a.e. Ap of A:
[¢] = cos(A*t)[¢o] + A’ sin(A ) [ o] (3.7)

Our immediate problem is to show that this expression makes sense. If
Ap was positive self-adjoint then, following Wald [37], we can take the square
root to form a positive self-adjoint unbounded linear operator A}Em and then
construct the two bounded linear operators cos(A}E/Qt) and Ag/ 2 sin(A}ft)
by applying the multiplication operator form of the Spectral Theorem, as in
Reed and Simon [27]. If Ag was not positive but merely bounded-below, then
we shall show that this method still works and COS(AJIE{Zt) and A;/ 2 sin(A}E/Qt)
are still well-defined bounded linear operators despite the non-existence of
the square root. If, however Ag is not bounded-below then these linear op-

erators will be unbounded and we must concern ourselves with their (dense)
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domains. We shall show that even when Ag is not bounded-below, but is ac-
ceptable (Definition 3.2), then we can solve the Cauchy problem with respect

to smooth initial data of compact support.

In this thesis, in order to avoid expressions involving square roots of
non-positive self-adjoint linear operators we introduce an alternative repre-

sentation of equation (3.7).

Define the functions C, S : R? —» R:

s cos(z1/?t) for >0

O(t,z) = cos(z/?t) =
cosh((-z)2t) for z <0

sin(z1/2t) x~ Y2 sin(x1/2t) forz >0

S(t,x) =t =
/2t (-z)"Y2sinh((-z)Y2t) for <0

where:
_ ZZn

sinz i and smhz i
= 2n+1)' = 2n+1)'

are analytic functions on C, both being invariant under z - —z (the same is

true of course of the functions cos z and cosh z). This makes the definitions

of C(t,z) and S(t,x) independent of the choice of square root.

The functions C' and S are well-defined as if a different root of = is
taken then the value of C'(¢,x) is unchanged as cos is an even function.
Similarly for S(t,z) as long as the same root of z is used for the numerator
as for the denominator. Since C(t,-) and S(¢,-) are (unbounded) real-valued
measurable functions for each fixed ¢, then by functional calculus we can
construct the (possibly unbounded) self-adjoint linear operators C(t, Ag)
and S(t,Ag), for any s.a.e. Ag of A. It is shown in the remarks following

Propositions A.7 and A.8 that for ¢ > 0:
D(exp(A3)!2t) = D(C(t, Ap)) € D(S(1, Ap)).
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Thus:
[C5°(2)] € (M D(exp(Ap)?t) = D(C(t, Ap))

t>0 t>0

and the condition on Ag that it is acceptable is precisely what is required
for C(t,Ag) (and so S(t,Ag)) to be defined on equivalence classes of test

functions.

Given an acceptable s.a.e. Ag of A, let our proposed solution to Equa-

tion (3.6) for arbitrary ¢, ¢ € C (%) define:

[6¢] = C(t, Ap)[¢o] + S(t, Ar)[do)- (3.8)

If Ag is bounded-below, then C(t, Ag) and S(t, Ag) are bounded linear
operators for all ¢ (proven in Appendix A) and [¢;] is a well-defined element
of L2(X,V-1dvol,). If not, then the condition on Ag in Definition 3.2 is
precisely what is required for the RHS to make sense. We wish to show that
in fact the map ¢ — [¢;] is infinitely differentiable and that [¢;] € [C*°(X)]n
L2(%,V-tdvol,) for all t e R.

The following proposition is vital for this thesis. It is an application of
Sobolev theory. It is taken from Wald [37] and reproduced here for com-
pleteness. (For the definitions of LP spaces, distributions and Sobolev spaces
WkP(M, ) on a Riemannian manifold M with smooth measure yu, see Ap-

pendix D.3.)

Theorem 3.3. Any s.a.e. Ap of A satisfies: D(AY) c [C~(2)].

Proof. (Wald [37]) We know that [C5°(X)] = D(A) ¢ D(AY). Take ¢ «
D(A%). Since L*(X,V-tdvol,) ¢ L (X,V-tdvol,) ¢ D'(X), the space of

loc

distributions on the manifold ¥, then for all f e C§°(X):

(A" f) = (0, [A"f]) = (&, A"[f]) = (&, AL[f]) = (Ao, [f]) = (AR (f)
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Thus An¢ € D(AY) € L2(X, V-tdvoly), where A"¢ is interpreted in the sense
of distributions (since A is a formally self-adjoint partial differential operator

of second order w.r.t. V-1dvol,, see Appendix D.2).

Take an open set €2 ¢ ¥, which is precompact in the domain of a chart
on X. Letting NV := dim X, then denote the resulting chart map ¥:Q - R,

Restricting ¢ to (2, we have
Amg e L2(Q, V- tdvoly) = WP2(Q, V-tdvoly,).

As V-1 and |det(h;;)| are bounded by below on €2, then An¢ e WO2(¥(Q)) ¢
W22(W(Q)), where we are now viewing ¢ as a function and A as a p.d.o.
on U(Q)) c RY. As A" is an elliptic p.d.o. of order 2n, then, by an elliptic
regularity theorem (Theorem D.12), ¢ € W2"*(¥(Q)) for all n. And by
Sobolev’s lemma (Theorem D.13), we have (after possibly changing ¢ on a
null set) that ¢ € C/(¥((2)) for any non-negative integer [ < 2n - 5. Since n

and ) are arbitrary, then ¢ € C=(X). O
We begin by defining what we mean by strongly differentiable:

Definition 3.4. If A(t),B are densely defined linear operators for every
teR and D ¢ H is a dense subspace satisfying: D ¢ D(B)n D(A(t)) Vte
(to — €,t0 + €) and:

forallxeD: H(A(t0+h)—A(t0) —B)m

N -0 as h -0,

then we write £ A(t)l,, = B on D and say that A(t) is strongly differen-

tiable at tog on D with strong derivative B.

Similarly, if A(t) is strongly differentiable at all times ¢ € R on D, with
derivative B(t) we write £ A(t) = B(t) on D,. Note then, by definition, we
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must have that for each ¢ there exists e >0 s.t. D, € D(A(')) n D(B(t)) for
all t € (t—¢,t+e).

Using Theorem 3.3, we define a space of smooth functions yp which
contains all compactly supported smooth functions (as Ag is acceptable).
We shall show in later sections that we can solve the Klein-Gordon equation

with respect to data in the space yg.

Proposition 3.5. Given an acceptable s.a.e. Ag of A, define:

xpi={f e C™(8) s.t. [fle D(AF) n () D(exp((Ap)"*))}

t>0

Then the linear operators C(t,Ag) and S(t, Ag) satisfy the following:
C(t, Ag), S(t, Ap) : [xe] = [x&]

Also, the maps t — C(t,Ag) and t - S(t,Ag) are infinitely often strongly

differentiable on [xg], where forn e Nu{oo}:
D(A%) ={zx e D(Ag): ARz e D(Ag) for allm=1,...,n-1}

In fact, for n € N the following strong derivatives hold on the dense subspace
[xE] of L2(X,V-1dvoly):

d2n

dt2n

d2n—1

WC(RAE) = (-1)"AES(t, Ap)
2n

3 S(t Ap) = (A1) ARS (1, Ar)

d2n+1

WS(t, Ap) = (-1)"ARC(t, Ap)

Proof. See Appendix A. m
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Lemma 3.6. Thus just as in equation (3.8), given initial data b0, do € XE
and letting [¢,] = C(t, Ap)[¢o] + S(t, Ag)[do], then [¢:] is differentiable as a

vector valued function to arbitrary order and to even order:

d2n
dt2n

[Cbt] = (‘DHA%[@]

Thus in particular for n =1 we have reproduced equation (3.6) and:

[¢0] = [&¢]]-0
[dol = 194

t=0

Since [xg] is an invariant subspace of L2(%, V-!dvol,,) w.r.t. the linear op-

erators C'(t, Ag) and S(t, Ag), so for all initial data ¢q, ¢g € x &, the solution

given in Proposition 3.6, satisfies:
[¢:] € D(A%) c[C=(%,)] VteR.

Thus we have solved the Hilbert space version of the Klein-Gordon Equa-
tion (equation (3.6)). We shall use this in Section 5 to construct solutions of

the Klein-Gordon equation itself (equation (3.2)).
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4 Causal Structure of Standard Static Space-
times (i)

Before we construct solutions to the Klein-Gordon equation in Section 5, we
shall find it useful to introduce some concepts from geometry, namely we shall
define the causality relations and define the causal future and causal past of
a set. After some preliminaries concerning Riemannian manifolds we shall
then analyse the causal structure of an arbitrary standard static spacetime.
Later in the section, since we shall need to quote results concerning the well-
posedness of the Klein-Gordon equation on globally-hyperbolic spacetimes
when we construct our solutions in Section 5, so we define the terms glob-
ally hyperbolic, Cauchy surfaces and Cauchy developments. Subsequently,
returning to standard static spacetimes, we shall then in Proposition 4.22
re-express the Cauchy development D(3g) of the hypersurface ¥y. Lastly,
in Theorem 4.25 we shall quote the well-known result concerning the well-

posedness of the Klein-Gordon equation on globally-hyperbolic spacetimes.

We first define the causality relations, the causal and chronological future
of a point p and the future and past Cauchy developments of a set in an

arbitrary spacetime M.
Definition 4.1. Given p,q e M then:

1. p < q iff there is a future-pointing smooth timelike curve from p to q.

2. p < q iff there is a future-pointing smooth causal curve from p to q.

By a smooth curve from p to ¢ we mean a smooth map v:[a,b] - M,
where a,b € R, a < b, [a,b] is viewed as a smooth manifold with boundary
and M is a smooth manifold. This is equivalent to there existing a smooth

extension of v to y:(a —€,b+€) > M for some € > 0.
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We note that the relations would have been unchanged had we only used

piecewise smooth curves. We prove this using a result from Penrose ([24]
p.15):

Proposition 4.2. The following statements are true:

1. p < q iff there is a piecewise smooth future-pointing timelike geodesic

from p to q.

2. p < q iff there is a piecewise smooth future-pointing causal geodesic from

p to q.
Corollary 4.3. The following statements are true:

1. p < q iff there is a piecewise smooth future-pointing timelike curve from

p to q.

2. p < q iff there is a piecewise smooth future-pointing causal curve from

p to q.

Proof. Given a piecewise smooth future-pointing timelike curve v from p to
q, then each of its segments can be replaced by a piecewise smooth future-
pointing timelike geodesics. Add these curves together, v can similarly be re-
placed and (again via Proposition 4.2) p and ¢ can be connected by a smooth
future-pointing timelike curve. An identical argument works for causal curves

too. O

Note that it’s the piecewise smooth formulation of the causal relations
that allows one to most easily see that the relations are transitive, i.e. that

p <K q<r=p<r and similarly for the relation <.

Using these relations, given A ¢ M we define its chronological and causal

future (I*(A), J*(A) respectively) as follows:
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Given A ¢ M, let:
I"(A)={qe M:Ipe As.t. p<q}

J(A)={qeM:Ipe Ast. p<q}

(As usual p < ¢ means that either p < ¢ or p = ¢q). The chronological and

causal past are defined similarly:
I"(A)={gqe M:Ipe As.t. ¢ <p}

J (A)={qe M:3pe Ast. ¢<p}

Additionally, define: J(A) =J*(A)uJ-(A), [(A)=1*(A)ul-(A).
We shall now analyse the causal structure of a standard static spacetime:

Before we begin, we shall find it useful to discuss metrics on Riemannian
manifolds (here we use the term “metric” as in “metric space” rather than
as in “metric tensor”!). It is well known that a Riemannian manifold (X, h)

is naturally metrisable. A metric d:¥ x ¥ — [0, 00) is given by:

_ fab lo(t)|dt s.t.  o:[a,b] > X is a piecewise smooth
d(p,q) = inf
curve in ¥ with o(a) =p, o(b) =q.

where |6(t)] := [ho@) (6 (t), 0 (t))]/2.

Theorem 4.4. Given a Riemannian manifold (3, h), then the metric d given

above induces the topology on .
Proof. See for example Lee [19], Lemma 6.2. O]

For a choice of standard static spacetime (M, g) = (R x X, V2dt?2 - h), we
shall always choose the metric on ¥ induced by the Riemannian metric V-2h
on Y. The importance of choosing a metric on > dependent on V' shall be

seen in Proposition 4.12.
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Proposition 4.5. Consider a standard static spacetime (M, g) = (RxX, dt?-
h). Given a smooth curve o:[0,t] - X (smooth in the sense of [0,t] being a

smooth manifold with boundary) satisfying:

o(0)=x
a(t) =y

6(s)[ <1 Vs e [0,]

then define the smooth curve v:[0,t] - M, by: v(s) = (s,0(s)). Then vy is
a smooth future-pointing causal curve from (0,x) to (t,y) and thus (t,y) €

J*((0,2)) and v(s) € 35 Vse[0,t].

Proof. Clearly 7 is smooth. It is also causal since

g"/(s) (7(3)77(3)) =1- ho(s)(d(3)7d(s)) > 0.
From g, ("y(s), %|v(5)) =1> 0 it follows that ~ is future-pointing. O

In fact all future-pointing causal curves from (0,z) to (¢,y) are of this

form, or are reparametrisations thereof as the next proposition shows.

Proposition 4.6. (t,y) € J*(0,2) in the spacetime (M,g) = (R x X, dt? - h)
iff 3 a smooth curve o:[0,t] > X s.t.:

o(0)=x

o(t) =y

6(s)| <1 Vs e [0,]

Proof. We have already proven that this condition is sufficient for (¢,y) €
J*(0,).
Conversely, if (t,y) € J*(0,z) then there exists v:[a,b] - R x ¥ which is

smooth future-pointing and causal s.t. v(a) = (0,z) and v(b) = (¢,y).
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Let v(s) = (71(s),72(s)), where v1:[a,b] - R and 7s:[a,b] - X are both

smooth curves defined using the smooth projection maps. So:

Ir()(1(5):9(5)) = [31.(8) = haos) (F2(5), 32(s)) 2 0

The condition of y being future-pointing gives us: g, (7(s), %‘7(3)) =41(s) >
0. We wish to reparametrise this curve and show that it is of the form of the

previous proposition. For this purpose, let ®:[a,b] = R be given by:

O(s) = fasﬁl(u)du

Since ®(s) = 41(s) > 0 then by the Inverse Function Theorem there exists a

smooth inverse ®71:[0,¢] - [a,b], where ®(a) =0, ®(b) =c.

Define the reparametrisation: 7/(s) = v(®71(s)). 7v':[0,¢] -~ R x X is then

a smooth curve, satisfying:

W(@(s)
$1(27(5))

Thus v{(s) =s Vs €[0,c] and let o =~} so that y(s) = (s,0(s)) and:

i(s) = @7 (s) (@7 (s)) =

(0,0(0)) =~'(0) = v(a) = (0, 2)
(¢,a(c)) =~'(¢) =7(b) = (t,y)

Thus c=t, 0(0) =z, o(t) =y and as 7/ is still causal then |5(s)| < 1 for every
s €[0,t]. O

This easily adapts to an alternative description of the causal future of a

subset K of X.

Proposition 4.7. Given the standard static spacetime (M, g) = (Rx X, dt? -
h) and K ¢ %, then (t,y) € J*(K) iff there exists a smooth curve o:[0,t] - %
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s.t.:

0(0)=zen(K)

a(t)=y

K(s)| <1 Vs e[0,¢]

We recall a property of Riemannian manifolds which will be very useful

to us. Clearly it is false for Lorentzian manifolds.

Proposition 4.8 (Mean Value Theorem). Let (3,h) be a Riemannian man-

ifold. Then, for any piecewise smooth curve o:[a,b] - %, (where a,b € R,

a<b):
b
A(o(@), () < L) = [ 1o()ds < (b-a) sup ()
Note that this implies that for any such curve:

d(o(t),o(t") <[t~ 1] sup {|o(s)[}

sela,b]

for any ¢, € [a,b]. Also, as the speed of ¢ is bounded over [a,b] (a compact
set), then o is uniformly continuous on [a,b]. Similarly, if o:(a,b) - X
is a smooth curve such that |o| is bounded on (a,b), then ¢ is uniformly

continuous on (a,b).

Definition 4.9 (Extendibilty of Curves). Given I, an open interval of R and
a smooth manifold M, a smooth curve y:1 — M is (continuously) extendible
if, denoting I = (A,B), A e Ru{-o0}, BeRu {0}, then vy(t) converges
either ast - A ort — B. A smooth curve is called inextendible if it is not
extendible. Note that a curve is extendible iff one of its reparametrisations is
extendible. If v is a future-pointing smooth or piecewise smooth causal curve

in a spacetime M, we say vy is future-extendible if y(t) converges ast - B
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and past-extendible if v(t) converges either as t - A. Again v is called
future(past)-inextendible if it is not future(past)-extendible. A geodesic
v:I - M (where I € R is open) is called geodesically extendible if we can
extend it to a geodesic ¥':1I' - M defined on a strictly larger open domain
I'2 1. If v is not defined on an open interval, e.g. [a,b) then the notions of
extendibility shall refer to the open end-point, in this case b. For instance,
the geodesic v:[a,b) - M s geodesically extendible if it can be extended to a

geodesic v':[a,b+¢€) - M for some € > 0.

We shall shortly need the following theorem from O’Neill [23] (Lemma
5.8) on the extendibility of geodesics. We quote it here for the reader’s

convenience:

Theorem 4.10. Given b < oo then a geodesic vy:[a,b) - M in a Lorentzian
or Riemannian manifold M is geodesically extendible iff it is (continuously)

extendible.

Lemma 4.11. Let v:[a,b) - M be a geodesic in a Riemannian manifold,

then it is geodesically extendible iff there exists a compact set C' € M s.t.
[V]:=~([a,0)) < C.

Proof. 1f 7 is geodesically extendible then its extension 7':[a,b] — M is
continuous so C' = 7/([a,b]) is compact. Conversely, if v([a,b)) € C' then
since it is a geodesic it has constant speed and so uniformly continuous.
As C' is compact it is complete as a metric space. Thus we can extend
v continuously to [a,b] by basic functional analysis. So v is continuously

extendible and so geodesically extendible by Theorem 4.10. O]

Note that this lemma is also true in the case of Lorentzian manifolds. The
proof can be reached by applying Lemma 1.56, Proposition 3.38 and Lemma
5.8 of O’Neill [23]. In this thesis we only need the result in its current form.
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Proposition 4.12. Consider the spacetime (M,g) = (R x X, dt?> = h). Let

t>0 and K € Xy be compact. Then the following statements are equivalent:

1. C(K,t) is compact,

2. B(0)ce, forallpe K,
3. J(K)nX, is compact.
If Statements 1-3 are true, then C(K,t) = Upex exp,[B(0)] = J(K) n %,

Remark. In order to make sense of this proposition, take note of the following

definitions: Given a metric space (X,d) and K ¢ X, then for ¢ > 0 define:
C(K,t):={pe X such that d(p, K) <t},

where d(p, K) := inf ek {d(p,q)} (see Appendix C). We are implicitly using
the metric d on ¥y induced by the Riemannian metric i via Theorem 4.4. We
define €, € T, M to be the domain of the exponential map exp, at p, induced
by the Riemannian metric h. The set B,(0) ¢ T,M is the open ball of radius
t centered on 0 € T, M with respect to the norm induced by h,. Note that,
since C'(K,t) is given in terms of the metric d induced by the Riemannian
metric h, then all three expressions C'(K,t), B;(0) and J(K) Y, depend on
h. Indeed, if a different equivalent metric d was chosen, then this proposition

would be, in general, false.

Proof of Proposition 4.12.
(1=2)
C(K,t) is compact = C(p,t) is compact for all p € K.

Take p € K and let X, € B;(0), so |X,| <t. Let o be the maximal geodesic in
¥ through p s.t.: 6(0) = X, 0:[0,b) > X and so |d(s)| = |X,| <t Vs e [0,D).
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If b <1, then L(o]?) = [ |6(s)|ds < 't < bt < t and so d(p,a(s)) < L(o]}) <
t Vse[0,b).

And so o(s) € C(p,t) Vs € [0,b) but by Theorem 4.10, then ¢ can be
extended to a geodesic defined on [0,b + €), contradiction. Thus b > 1 and

X,€e, Vpe K.

(3=2)
As in the proof of (1= 2), choose p € K, X, € B;(0) and 0:[0,b) - X be the

maximal geodesic through p with speed X, at p. If b < 1, for ¢ € [0,b), let
0’:[0,t] = X, 0'(s) = o(s$) and [¢7(s)| = ¢o(s§)[ <ec<b< 1.

Thus (t,0(s)) € J(p)n3; ¢ J(K)nX; (compact by assumption) Vs € [0,b).
Again by Theorem 4.10, then o can be extended to a geodesic defined on
[0,b + €), contradiction. Thus b > 1 and X, € ¢, for all p € K such that
| X, <t.

(2=1)

B,(0) ce, Ype K implies C(p,t) = expp[m], which is Corollary 5.6.4 in
Petersen [25]. Note that since the exponential map is certainly continuous
then it follows that C(p,t) is compact Vp € K. It follows from this that
C(K,t) = Upex C(p,t) is compact, as is shown in Proposition C.7 in the
appendix.

(1=3)
Given ¢, € J(K)n X, ¢ C(K,t), then by compactness there exists a subse-
quence G, — q € C(K,t) = Upeg C(p,t). Thus q € C(p,t) = exp,[B(0)] for

some p € K.

So there exists a geodesic 0:[0,1] - ¥ s.t. ¢(0) = p,o(1) = q,|6(s)| =
|5(0)] < t. So define ':[0,t] - 3, o'(s) = a(s/t), |0'(s)| = Lo (s/t)] < 1,

Tt
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a'(0) =p, o’(1) = q and (¢,q) € J(K) nX; by Proposition 4.7, so J(K) n X,

is compact.

(The final statement)

When Statements -3 are true then, fixing p € K, we have C(p,t) = exp, [B,(0)]
from Corollary 5.6.4 in Petersen [25]. But we have J(p) n %, € C(p,t) =
exp,, [B,(0)] Vt € R. Furthermore, the argument in the proof of (1= 3) shows:
expp[m] c J(p) n%:. So C(p,t) = epr[m] =J(p)nY; Vpe K. Thus

C(K>t) = UpeK C(pat) = UpeK epr[Bt(O)] = UpeK J(p) n Et = J(K) n Et' L

In particular, the content of this proposition is true when K = {p} is
any point in Xy. The usefulness of this proposition arises from the fact that

C(K,t) is easier to visualise than J(K) nX; as Section 7 utilises.

We recall the notion of a globally hyperbolic spacetime:

Definition 4.13. A spacetime (M, g) is globally hyperbolic if:
1. It obeys the causality condition: there exist no closed causal curves.
2. J*(p)NJ=(q) is compact Vp,q e M.

(A curve 7 :[a,b] > M is called closed if v(a) = v(b).) Note, it is shown
in Bernal and Sanchez [7] that condition I may be equivalently replaced by

the “strong causality condition”.

Definition 4.14. Given a spacetime (M, g), a Cauchy surface (of (M,g))
is a subset S of M that is met exactly once by every inextendible smooth

timelike curve in M.

To explain the name, we note that every such set is an achronal closed

topological embedded hypersurface in M (see Lemma 14.29 in O’Neill [23]).
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It is an important fact that global hyperbolicity is equivalent to the exis-
tence of a Cauchy surface in the spacetime as the following theorem states,
which we include for completeness and future reference. Before we state it,
we first define the concept of an acausal set in a spacetime, since this notion

shall be used in the following theorem.

Definition 4.15 (Acausal Set). A subset S of a spacetime M is called

acausal if it is met at most once by any causal curve in M.

An achronal set is defined similarly with “any causal curve” replaced by

“any timelike curve”.

Theorem 4.16. A spacetime (M, g) is globally hyperbolic iff it possesses a
Cauchy surface. If so, then it also possesses a smooth spacelike Cauchy sur-
face. Additionally, if H is a smooth spacelike acausal compact m-dimensional
embedded submanifold with boundary in M, then there exists a smooth space-

like Cauchy surface S in M that contains H.

Proof. It S ¢ M is Cauchy surface then M is globally hyperbolic by Corollary
14.39 in O’Neill [23]. That M is globally hyperbolic implies that it possesses
a smooth spacelike Cauchy surface is proved in Theorem 1 in Bernal and

Sanchez [8]. For the last statement see Theorem 1.1 of Bernal and Sanchez

[6]. O

Note that if M is n-dimensional, then in the above theorem: m € {0, ..., n—

1.

In order to aid the understanding of this theorem, we shall shortly give an
example to illustrate why we cannot remove the condition of compactness.
In order to state this example, we first introduce the concept of Cauchy

deveploment of a set, a notion that will be frequently used later.
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Figure 1: A smooth spacelike acausal embedded submanifold of a globally

hyperbolic spacetime need not be extendible to a Cauchy surface.

Definition 4.17 (The Past and Future Cauchy Developments). Given a
subset S of a spacetime M, then the future Cauchy development D*(S) c
M is defined as:

Every past-inextendible future-pointing smooth
D (S)=dpen: VP Juture-pointing
causal curve through p intersects S.
The past Cauchy development D=(S) of S is defined similarly with
“past-inextendible” replaced by “future-inextendible”. The Cauchy devel-

opment D(S) of S is then defined: D(S) = D*(S)u D=(95).

Using this definition, let M = D({0} x (0,1)) be an open subset of 2-
dimensional Minkowski space and fix 0 < [¢{| < 1/2. Then H = {t} x (0,1)n M
is a 1-dimensional smooth spacelike, acausal embedded submanifold and so
also a submanifold with boundary (just with empty boundary!). However, it

is non-compact in M and is contained in no Cauchy surface (see Figure 1).

The following proposition gives a necessary and sufficient condition for
a standard static spacetime to be globally hyperbolic. The content of this
proposition is already known, however we give an alternative proof. See
Lemma A.5.14 in Bér, Ginoux and Pfiffle [3] or Theorem 3.67 in Beem,
Ehrlich and Easley [5] for other proofs.
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Figure 2: Examples of Cauchy

4
(i) I surfaces in the globally hyper-

bolic spacetime M'*! which are (i)

{) smooth hypersurfaces but which
i1

contain both null and spacelike

tangent vectors, (ii) smooth and

contain only spacelike tangent vec-

) /\ tors and (iii) not C".

Proposition 4.18. Given the Riemannian manifold (X,h), then the stan-
dard static spacetime (M, g) = (R x X, dt? — h) is globally hyperbolic iff (X, h)

is a complete Riemannian manifold.

Proof. Let (X,h) be complete. We wish to give two proofs that (M, g)
is globally hyperbolic, namely that it possesses a smooth spacelike Cauchy
surface and that it satisfies the definition of global hyperbolicity (equivalent
by Theorem 4.16).

We wish to show that ¥y = {0} x X is a smooth spacelike Cauchy surface.
Let v: I — M be a smooth inextendible causal curve w.l.o.g. given by () =
(t,o(t)), where o:1 — ¥ is a smooth inextendible curve in ¥ with speed
bounded by 1. Then if I # R then as ¢ is uniformly continuous and X is
complete then o can be continuously extended to the closure I of I in R,
where [ # I', contradicting the inextendibility of o. Thus I = R, ~(0)
Yo, and so any inextendible smooth causal curve passes ¥,. Note also the
parametrisation: y(t) = (¢,0(t)) also shows that it must pass ¥y once and

only once.
We now show that M satisfies the definition of a globally hyperbolic
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spacetime. That it is causal follows from the previous argument. We must
now show that J*(z) n J=(y) is compact for all x,y € M. Let x = (¢,p)
and y = (t,q). By Proposition 4.12, since (X, h) is complete we know that
JH(x)n3s={s} xC(p,s—t) for all s >t. Thus:

JHx)nJ (y) = || U{s} xC(p,s —t):| N l U{s't xC(g,t' - ")

s>t s'<t!

U {S} X C(p7 S— t) n {S,} X C(Qat, - S,)

s>t,s'<t’

U {s} x[C(p.s-1) nC(q,t' - 5)]

t<s<t’

Note that C(p,s —t) n C(q,t’' — s) is compact since complete Riemannian
manifolds obey the Heine-Borel property (Theorem 16 of Petersen [25]). Let
Zn = (Sn,rn) € J*(x)NJ(y), s0 s, € [t,t'] and 1, € [C(p, s, —t)NC(q,t'—5,)].
By taking successive subsequences we have that s, — s € [t,t'] and r,, —
reC(p,s-t)nC(q,t'—s). So z,, = z=(s,r) e J*(x)nJ (y) and the latter

is compact.

Now for the converse: If (X,h) is not complete, then ¢, # T, for some
peX. So 3X, eT,X st. |X,| =R, B(0,R) Ce¢, and X, ¢ €,. Consequently,
there exists a geodesic 0:[0,t) - ¥ that is (continuously) inextendible by
Theorem 4.10 and has unit speed. Let x = (0,p), y = (2t,p) so (t,0(s)) €
JH(x)nJ=(y) Vs e[0,t). If (M, g) is globally hyperbolic, then J*(x)nJ=(y)
is compact and for all s € [0,t): o(s) € ;[ n J*(x) n J(y)], where
the RHS is compact in ¥. So, o is extendible by Lemma 4.11, which is a

contradiction. ]

Note that since global hyperbolicity is preserved under conformal trans-

formations then we also have the following result:

Lemma 4.19. Given the Riemannian manifold (3, h) and the smooth func-

tion Ve C>=(X), V > 0 then the standard static spacetime (M, g) = (R x
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X, V2dt? - h) is globally hyperbolic iff (X,V~2h) is a complete Riemannian

manifold.

We shll now analyse the Cauchy development D(Xg) of the set ¥y in a
standard static spacetime. Note that the Cauchy development of a set may
be open (in the case of D({0} x R) ¢ M!*!) or closed (as in the case of
D({0} x [a,b]) ¢ M!*1). The following proposition states that in a standard
static spacetime the Cauchy development of ¥ is open. Thus it is a smooth
embedded submanifold and the metric g gives it the structure of a spacetime.
Note that this spacetime is also static but not in general standard static (e.g.
let M =R x(0,1) be a strip in Minkowski space with the induced Lorentzian
metric. Then D(X) is an open diamond.) In fact, this spacetime D(%g) is
also globally hyperbolic.

Proposition 4.20. Let (M,g) = (R x X,V2dt? — h) be the standard static
spacetime in Definition 2.4 then g is an acausal smooth embedded spacelike

hypersurface in M. Also, M satisfies the causality condition.

Proof. We have shown in Proposition 4.6 that if 4v:1 — M is a causal curve
meeting ¥g (where I is an open interval of R) then, after taking a reparametri-
sation, we may let v(t) = (¢,0(t)), where o:I — X is a smooth curve with
speed bounded by 1 and 0 € I and clearly v only passes >y once. A similar

argument also works for the second statement. O

Proposition 4.21. Given any acausal topological hypersurface S in a space-
time (M, g), then D(S) is open in M and (D(S),g) is a globally hyperbolic
spacetime. In fact S is a Cauchy surface for (D(S),g).

Proof. See Propositions 14.38 and 14.43 of O’Neill [23]. O
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Thus a consequence of the previous two propositions is that given a stan-
dard static spacetime (M, g) = (RxX, V2dt2—h) then (D(X), g) is a globally

hyperbolic spacetime.

We give here an explicit form of D(X,) and an alternative proof that it

is an open set in M.

Proposition 4.22. Given a standard static spacetime (M, g) = (RxX, V2dt?-

h) then the following statements are true:
1. D*(%g) ={(t,p) € M: C(p,t) is compact in X,t > 0}.
2. D~ (X0) ={(~t,p) e M: C(p,t) is compact in 3,t >0} =T D*(%).
3. D(39) = D*(X9)u D= (%20) ={(t,p) e M: C(p,|t]) is compact in X}.
4. D(Xg) is open in M,

where C'(p,t) is the closed ball centered on p of radius ¢ in the metric on ¥
induced by the Riemannian metric V=2h (see Theorem 4.4), T : M — M is
the smooth map: T'(¢,p) = (-t,p) and ¥ = {0} x X.

Before we prove Proposition 4.22, we prove the following very useful re-

sult:

Proposition 4.23. With the definitions of the previous proposition, let K ¢
Y and C(K,t) be compact in ¥, where t >0, then {t} x K ¢ D*(%).

Proof. As usual we let w.l.o.g. V' =1 for simplicity. Let p e K and v:I -
R x ¥ be an inextendible future-pointing smooth causal curve through (¢,p),
where [ is an open interval of R. By Proposition 4.7 w.l.o.g. we can set
v(s) = (s,0(s)) Vs € I, where 0: 1 - ¥ is a smooth curve with t € I, o(t) = p
and |o(s)|<1Vsel.
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Let I = (a,b) where be Ru{oo}. If a > 0 then for s € (a,t):

d(p,o(s)) < L(olt) = fst|<'7(s’)|ds’ <tos<t

and so o(s) € C(K,t) Vs € (a,t). But since o is a smooth curve in ¥ with
speed bounded by 1 it is uniformly continuous by the Mean Value Theorem
(Theorem 4.8) and since it is contained in the compact (and thus complete)
set C'(p,t), then it can be continuously extended, contradiction. Thus a < 0

and vy passes Y. O]

Corollary 4.24. Again, with the definitions of the previous propositions, if
C(K,t) is compact in 3 then {s} x C(K,t—s) < D*(3) for all s €[0,t].

Proof. So (by Proposition C.4) C(K,t) = C(C(K,t-s),s) is compact. By
the previous proposition then {s} x C(K,t—s) € D*(X) for all s€ [0,¢t]. [

Proof of Proposition 4.22. Again, for simplicity and w.l.o.g. assume V = 1.
We start by proving Statement 1:

D* (%) ={(t,p) e M: C(p,t) is compact in X,t >0}

That the RHS is contained in the LHS follows from Corollary 4.24 with
K = {p} and s = t. For the converse, let (t,p) € D*(3y). So t >0 and any
past-inextendible future-pointing inextendible smooth causal curve through
(t,p) passes ¥y. Thus, using the symmetry of the spacetime, any future-
pointing future-inextendible smooth causal curve through (¢,p) passes Y.
Take for instance the curve v: I — M, where 0 € I, y(s) = (t+ s,0(s)) and o
is an inextendible geodesic with ¢(0) = p and ¢(0) = X,,, with |X,| < 1. Let
I = (a,b). The curve v is thus causal and inextendible and so passes > and
so b>t. Alternatively if |X,| <t then (by Lemma 5.8 (Rescaling Lemma) in
Lee [19]) b> 1 and so B(0,t) € ¢, or, by Proposition 4.12, C(p,t) is compact
in 2.
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Statements 2 and & follow. Now for the Statement 4 that D(X%,) is open:

Let (¢,p) € D(X0) w.lo.g. t >0. So C(p,t) is compact in 3 and from

Corollary C.6, there exists € >0 s.t. C(p,t+¢€) is also compact. We propose

(e+3) 300 3) 00

This follows by showing that if (s,q) € (=(t+5),t+5)xB(p, 5) then C(q, s) is

that:

compact (the result then follows from the description of D(3X) just proven).
Firstly, we can set w.l.o.g. s € [0,t+5), d(p,q) < 5. But r € C(q,s) = d(r,q) <
s and so:

d(rvp)Sd(TaQ)er(q,p)<s+§<t+§+§=t+e
So C(q,s) € C(p,t+e€) and as the RHS is compact then so is C(q, s) O

It is well known that given a globally hyperbolic spacetime and smooth
initial data of compact support defined on a smooth spacelike Cauchy surface
then the Klein-Gordon equation can be solved uniquely with respect to this

data:

Theorem 4.25 (Existence and Uniqueness of Classical Solutions on Globally
Hyperbolic Spacetimes with respect to compactly supported initial data).
(Bdr et al. [3] Theorem 3.2.11) Let (M, g) be a globally hyperbolic spacetime
with smooth, spacelike Cauchy surface S. Then the Klein-Gordon equation
has a well-posed initial value formulation, that is, given data ¢, Q.SO e C5(9)

then there exists a unique solution ¢ € C*(M) to:

(O, + m?) =0
Yls = do
Vn¢|s = (Z'507
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where n 1s the unique unit smooth future-pointing timelike vector field along

S normal to S. Moreover:

suppip € J(K)

where K = supp ¢o U supp ¢y .

Note that there exists along any smooth spacelike surface S in a spacetime
M such a smooth vector field n along S normal to S (the smooth vector field n
is not to be confused with the dimension of the spacetime). For completeness,
this is proven in Proposition E.1. Note that the orientability of M or S is

not assumed.

We shall use a modification of this theorem in the next section, that is,
we can drop the condition on the data of being of compact support. This is

shown in the Appendix (Theorem B.1).
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5 The Existence of Wald solutions

In this section we show how to construct our solution to the Klein-Gordon
equation from the vector-valued function ¢t — [¢;]. This section is based
on the paper by Wald [37], but is extended in the following aspects. The
more recent result by Bernal and Sanchez [6] on the extendibility of subsets
of the spacetime to smooth spacelike Cauchy surfaces in globally hyperbolic
spacetimes (the second half of Theorem 4.16) is needed to complete the proof
on the existence of Wald solutions. We also extend Wald’s proof to the case
of acceptable s.a.e.s. The reference for the results on globally hyperbolic
spacetimes is, as usual, Bér et al. [3]. This section is of great importance to
us as it proves that the construction of Section 3 defines a smooth solution
to the Klein-Gordon equation. We answer in the next section the question

of its uniqueness.

Now we finally come to the statement concerning the agreement between
our solution (Equation (3.8), p.27) to the Hilbert space version of the Klein-
Gordon equation (Equation 3.6, p.25) and that arising from an application
of Theorem B.1.:

Theorem 5.1. Given initial data ¢o, ¢ € X5, where Ap is an acceptable
s.a.e. of A, choose ¢y € xp s.t. [¢] = C(t, Ap)[oo] + S(¢, AE)[éo]. If we
define the function ¢ on M by: ¢(t,x) = ¢ (x), and let ¢ be the unique
smooth solution in D(X) satisfying this smooth Cauchy data according to
Theorem B.1 then ¢ = in D(Xo) and, in particular, ¢|pcs,) is smooth and

solves the Klein-Gordon equation there.

Note that if Ap is bounded-below then A7 is bounded and xp = {f €
C>(X) st. [fle D(AR)}.
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Figure 3: ¢ =1 in D(Xg), where (M, g) = (R x (0,1),dt? - dx?)

We will prove this theorem by contradiction. The proof is based on Wald
[37] but completed (with a more recent result of Bernal and Sanchez [6] on

the existence of smooth spacelike Cauchy surfaces) and extended.

Proposition 5.2. If there exists t; such that ¢ # 1) everywhere in a non-null
set in Xy, 0 D(X), then there exists a compact set H in ¥y 0 D(3g) and a
smooth spacelike Cauchy surface S for D(Xq) s.t. H €S and vol,{(t1,z) €

H: ¢(t17I) # ¢(t17$)} >0.
Proof. So, by assumption there exists ¢; € R such that

volp{(t1,2) € Xy, n D(3o): 90 (t1,2) # ¢(t1,2)} > 0. (5.1)

Now we construct a smooth compact embedded submanifold with boundary

H of ¥y, n D(%p) s.t.
volp{(t1,x) € H: ¥(t1,x) # ¢(t1,2)} > 0.
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Firstly, let U = {(t1,x) € Xy, n D(X0): ¥(t1,2) # ¢(t1,2)}, so vol,(U) > 0.
Since any manifold has a countable atlas (see e.g. [39] Lemma 1.9) then
there exists such an atlas (V},, ¢, )ns0 of Xy, N D(Xg) with U = U,s0U NV,
and vol, (U) < ¥,.50 volp (U nV,,) and so there must be one chart (V,,, ¢,) s.t.
voly (U n V) > 0. Let (V,8) = (Vi, bn).

Secondly, by a similar argument, as ¢(V) is a open subset of R* and any
open subset of R can be covered by a countable number of open balls then
there exists an open ball B = {x e R* s.t. ||z|| <7} (w.l.o.g. centered at 0) s.t.

B < ¢(V) and vol, (U n¢~(B)) > 0.

Lastly, since B = {x € R* s.t. ||z|| < r} is covered by the countable col-
lection of closed balls C,, = {z € R* s.t. ||z|| < r,} where (r,)n>1 is any se-
quence of positive reals s.t. 7, ~ r and as before there must exist n > 1
s.t. vol, (U n o 1(C,)) > 0. Let H = ¢71(C,,) be the desired smooth com-
pact submanifold with boundary of ¥;, n D(3). Since H ¢ ¥, n D(%,) and
the latter is a smooth spacelike acausal embedded submanifold then H is a
smooth compact acausal spacelike embedded submanifold with boundary of
the spacetime (D(Xg),g). The reason for this construction is that it allows
us to apply Theorem 4.16. Thus there exists a smooth spacelike Cauchy
surface S of (D(Xg),g) which contains H. O

Now let ft1 be a smooth compactly supported function on S with support

in S Y, such that f, >0 and f,, =1 on H. Thus:

f o (0 = &)V "dvol, 0
SNty

and define f to be the unique smooth solution to the Klein-Gordon equation

on D(X) with Cauchy data (0, f;) on S, according to Theorem 4.25.
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We define F:[0,#1] x ¥ - R as:

f(p), pel0,t1] xXn D(%).

0, otherwise.

F(p) =

Proposition 5.3. F' satisfies the following:
1. supp F' is compact in [0,t1] x ¥ n D(Zp).
2. It is compactly supported on each ¥y 0 D(3g) for 0 <t < t.
3. FeC>([0,t1] xX) (as a smooth manifold with boundary).
4. (Og+m2)F =0 (as an element of C*([0,t;1] x X)).
5. supp (0, F) NSy, = supp fr, € Sn%y, and O, F(p) = fi,(p) forpe SNLy,.
0. F|Zt1 =0.

Proof. By construction supp f;, compact in S and contained in D(2g) N3, .
As all hypersurfaces concerned are embedded, then all have their topologies
induced from that of M and thus supp ftl compact in D(Xg).

But, the causal past of a compact set intersected with the causal future
of a Cauchy surface S (in a globally hyperbolic spacetime) is always compact

(see Corollary A.5.4 of Bér et al. [3]). Thus:
Ip(s,) (SUPP fi)n Ip(s)(Z0) is compact in D(Zp).

So,
JB(ZO)(SUPP f1) N [0,¢1] x ¥ is compact in D(Xg),
and so also in [0,¢1] x ¥ n D(3).

Thus, supp F' € supp f n[0,¢1] x ¥ is compact in [0,¢;] x X n D(Xg) and

Statement 1 is proved.
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Statements 2 and & follow directly from 1. Now, since by definition
F' is locally equal to either f or 0, where both are smooth solutions to the
Klein-Gordon equation, then Statement 4 follows. Statements 5 and 6 result

straight from the definitions of F' and f. m
Theorem 5.4. The functions ¢ and ¢ are equal on D(%).

Proof. 1f there exists t; such that ¢ # 1 everywhere in a non-null set in

¢, N D(Xg), construct H,S and F' as above. Now define:

o(t) = [E v [F(%—f—%)—%—f(w-@)]dvolh (5.2)

Clearly since ¢, and % are only defined a.e. in ¥ we should point out

that any other choices in the same respective equivalence classes would yield
an identical value of ¢. As both functions are in £2(X), then multiplying by

the smooth functions of compact support, F and 22, we obtain an element

ot
of L1(X).

The smooth function v is only defined in D (%) and so on each hyper-

surface ¥; n D(%y), ¢ and %—qf are smooth functions but as F' and %—f

compactly supported smooth functions on each 3, n D(X%), then f %_@tz; and

are

%—ij are easily definable and smooth on each ¥, t € [0,%1]. Indeed they are

of compact support also so they are integrable on ¥, (since we are dealing
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with a Radon measure). Thus:

dc—'/ztv—l[aF(aw—CM)+F(82¢—M)—aQF(w—qét)—a;;(&/}—d@)]dvolh

dt ot \ ot dt oz a4z | o2 ot dt
- [E ! [F%i;/’ - ﬁljlp] dvoly, - fz v [Fd;t‘zt - ?;I;@]dvolh
- fz t VT [FVD (VD) - VD (VD F)y ] dvol, - fz t Vvt [Fd;gt - %iqut]dvolh
- fz t [FD' (VD) - D'(V D, f)¢] dvol, - fz t Vvt [Fd;:;t —?;f@]dvolh
- [ O VDw) VD@ avol - [[ v P - S v,

d*¢y  O*F
-1 t
= /;t Vv [—F 72 + oz ¢t] dvoly,

= <F7 AE¢t) - (AEFv (bt)
=0.

But, 9|5, = ¢o and Z|s, = do, so ¢(0) =0

and since F;, = 0 by definition, we have:

o(t) == [ V1 (v - g)dvol,

# 0.

However ¢ € C''[0,t;] and so this last statement contradicts the Intermediate
Value Theorem, yielding that ¢ = ¢ a.e. in D(3) n %, for all ¢. Since ¢
and 1 are continuous, then ¢ = ¢ in D(Xy) n %, for all ¢ and so ¢ = ¢ in
D(X%). O

Thus we have proven Theorem 5.1. We shall now show that ¢ solves the

Klein-Gordon equation everywhere in M.

Theorem 5.5 (Existence of Wald Solutions). Let Ag be an acceptable s.a.e.
of A. Given any pair of functions ¢o, o € X, for each t € R define ¢y € Y&
uniquely by: [¢] = C(t, Ag)[do] + S(t, Ag)[do] and define the function ¢ on

M as ¢(t,x) = ¢4(x), where ¢y € C°(X). This function is smooth, solves

95



the Klein-Gordon equation and satisfies the Cauchy data (¢0,q30), that s
¢|Eo = ¢OJ at¢|20 = QBO'

Proof. Given p = (t1,z) € M, we wish to find an open neighbourhood of p in
M in which ¢ is smooth and satisfies the Klein-Gordon equation. We begin

by reformulating our vector-valued solution. We propose that:

(0] = C(t, Ap)[do] + S(t, Ar) o]
=CO(t—ty +11, A)[¢o] + S(t =ty +t1, Ap)[do]
=[C(t-t1,Ap)C(t1,Ag) - ApS(t —t1, Ag)S(t1, Ar)][¢o]
+[S(t =1, Ap)C(ty, Ap) + C(t —tr, Ap)S(tr, Ar)][bo]
= C(t = 11)[C(t1, Ap)[¢1] + S(tr, Ar)[do]]
+ S(t—t1, Ap)[-ApS(t, Ap)[do] + C(t1, Ag)[do]]
= C(t -t Ap)[n, ]+ S(t - 11, Ap)[or, ]

Here, we have used the identities:

C(tl + tQ,AE) = O(tl,AE)O(tQ,AE) - AES(tl,AE)S(t27AE)
S(tl + tQ,AE) = S(tl,AE)C(tQ,AE) + C(tl,AE)S(tQ,AE)

on D(Ag). But ¢y, ¢y, € xg and Theorem (5.1) can be applied to this data
to show that ¢ is smooth in the open neighbourhood D(3;,) of p and satisfies
the Klein-Gordon equation there. O
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6 Uniqueness of Wald Solutions

We so far have concerned ourselves with constructing a class of solutions
to the Klein-Gordon equation on standard static spacetimes. Our set of
prescriptions is parametrised by acceptable s.a.e.s Ag of the linear operator
A on the (real or complex) Hilbert space L?(X,V~tdvol,). For each such
linear operator Ag we show that the solution to the Klein-Gordon equation
w.r.t. chosen Cauchy data it generates is unique up to some conditions yet
to be stated. We will use this result to define a vector space of solutions,

corresponding to each acceptable s.a.e. Ag.

Theorem 6.1 (Uniqueness of Solutions (i)). Let A be the symmetric linear
operator on the (real or complex) Hilbert space L*(X,V-1dvoly), defined by:
D(A) = [C52(D)], A([¢]) = [(-V D'V D; +m?V?)¢] for ¢ € C5°(X). Let Ap
be an acceptable s.a.e. of A and if ¥ e C?(M) satisfies:

(O, + m*)¥ =0

\II|EU = at\:[/k]o = 0

(7 (]:)] € D(Ag)

[7} (0:¥]y)] € LA(Z, V dwoly)
(where m; is the pull-back of the map 723 - %), then W = 0.

We start with a proposition, which has its roots in distribution theory on

arbitrary Riemannian manifolds.

Proposition 6.2. Take A and Agp as above. If ¢ € C*(X) such that [¢] €
D(Ag), then Ag[¢] = [(-V DV D; + m?*V2)¢].

Proof. We know (already stated on p.23), that the adjoint A* of the linear

operator A is given by:
D(A*) ={p e L*(Z,V tdvoly,) s.t. Agp e L*(X,V tdvoly)},
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since A is formally self-adjoint with respect to the smooth measure V-1dvol,,
which is proven in Proposition D.10. We can strengthen Proposition D.10 to

the following case:

f (A$)8V L dvol,, = f $(A0)V " dvol,,
by by

for all ¢ € C?(X) and 0 € C5°(X), since A is of second order and commutes
with complex conjugation. The proof is similar. Then, if ¢ € C?(X) and
[¢] € D(A*), we have:

A[8)(0) = [ o(a0)vtdvoly = [ (40)6VLdvol, = [A6)(6),

where A*[¢] is meant distributionally. Therefore A*[¢] = [A¢]. Lastly, since
Ap is a s.a.e. of A, then A < Ap and we have: Ap < A*. So, Ag is the
restriction of A* to space D(Ag). Therefore, if ¢ € C?(X) and [¢] € D(Ag),
then Ap[¢] = A*[¢] = [A¢]. O

Proof of Theorem 6.1. We use a proof by contradiction.
Firstly, we point out that if (O, + m?)¥ =0 then 97V = —AWV.

But as 7 (V|;) € D(Ag), by the previous proposition:
A(rf(],)) = Ap(m; (¥],)) € L*(2, V- tdvoly,)
and thus 7} (02W|;) € L2(3, V-1dvoly,) also.

Tf W # 0 then 3ty e R s.t. Uy, #0.

Let f,, € Cc°(5y,) s.t. 5., f1, ¥V -1dvol, # 0

Let f; = S(t - t1, Ag)(7} fi,) be the vector-valued function. According to
Theorem 5.5 on the existence of smooth Wald solutions, this function can be
represented by the smooth solution f e C*(M) to the Cauchy problem with

smooth initial data (0, ftl), of compact support on >, .
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We now evaluate the symplectic form at our two solutions ¥ and f:
o(t) = /E [0uf0 - fO,41Vdvoly
= fzﬂf(ﬁtﬂt)ﬁf(‘l’t) =7 (fle)mi (0:2,)V ™ dvoly,.
Then, the following are true:
L. 7w (f|e) € L2(X, V-tdvoly) n [C=(X)].
2. (0 f]e) € L2(X, V-tdvol,) n[C=(X)].
3. mr (02 f|) € L2(X, V-tdvoly) n[C=(2)].
4. i (V) e D(Ag) nC?(X) ¢ L3(X, V-tdvol,) n[C%(X)].
5. m (0,V];) € L2(X2,V-tdvol,) n [CH(X)].
6. 7 (0?W|;) € L2(X, V-ldvol,) n [C(2)].

Then clearly ¢(¢;) # 0 and ¢(0) = 0 but:

9O - [ o sopo]
- (AL W)+ (f, AT)
- {Apf W) + (], ApT)
-0,
which is a contradiction. O

Lemma 6.3 (Uniqueness of Solutions (ii)). Let Ag be an acceptable s.a.e.
of A. Given two solutions Wi, Vy € C?(M) of the Klein-Gordon equation:
(Qy+m?2)V,; =0 forie{1,2}, corresponding to Cauchy data ¢ € C?*(X) s.t.
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[¢0] € D(AE) and ¢o € CL(8) n L2(, V-1dvol,) such that Vie {1,2}:

Uils, = ¢o

OVils, = do

(7 (Vil:)] € D(Ag)

[77 (0:V4]:)] € L2(%, Vdwoly,)
then W, = W,

Proof. Let W =W — Wy, then W e C?(M) and satisfies the conditions of the
previous proposition since all operations concerned are linear and D(Ag)

and L2(X,V-tdvoly,) are vector spaces. Thus ¥ = 0. O

We note here the following trivial generalisation, the proof of which is
similar to those previous. It will be this result that will be of use in Section 8

in describing the support of the Wald solution ¢.

Lemma 6.4 (Uniqueness of Solutions (iii)). Let Ag be an acceptable s.a.e.

of A. Given two solutions
\Ifl, \IIQ € 02([t1,t2) X Z)

of the Klein-Gordon equation (regarding [t1,t2) x ¥) as a smooth manifold
with boundary): (O, +m?)VY,; =0 forie {1,2}, corresponding to Cauchy data
b1, € C2(8y,) s.t. [¢,] € D(Ap) and ¢y, € CH(X) N L2(X, V-1dvoly) such that
Vie{l,2} and Vt € [ty,ts):

Wils,, = ¢4

OVils,, = o,

(7 (Wile)] € D(Ag)

[77 (0:4]:)] € L2(%, Vtdvoly,)

then \Ifl = \112
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Using Theorems 5.5 and 6.1 on the existence and uniqueness of solutions
to the Klein-Gordon equation, we will find it useful to define a vector space
of solutions, for each acceptable s.a.e. Agp of A. We show that it can be
given a natural symplectic structure in Section 10. It’s this structure that
is required for the construction of the Weyl-algebra, however we will not be

concerned with quantisation in this thesis.

Definition 6.5 (Space of Solutions). Given an acceptable s.a.e. Ag of A,

define the space of solutions, Sg to be:

Sp={peC™(M): (Qy+m?)¢=0,7,"(¢:), 7 (1) € x for all t}

Proposition 6.6. We have the linear isomorphism: V:xgxxg — Sg, defined
by U (oo, (;50) = ¢, where ¢ is constructed using Theorem 5.5 on the existence

of Wald solutions.

Proof. Clearly W is linear. Surjectivity follows since, if 1 € S, then 1y, ¢y €
Xg- Let ¢ be the Wald solution, satisfying the Cauchy data (v, 1/)0). Then

v and ¢ satisfy all the conditions of Theorem 6.1 on uniqueness and so

Y=o o
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7 Causal Structure of Standard Static Space-
times (ii)

We shall in Section 8 further analyse some of the properties of our constructed
solutions to the Klein-Gordon equation. However, we must first prove some
basic properties of the causal structure of standard static spacetimes. One
apparently simple result of this section is that if K is a compact subset of
Yo then for all sufficiently small ¢, J*(K)n X, is compact in ¥;. It will be
this result and the adapted uniqueness result of Lemma 6.4 which will prove
useful in the next section. We shall also need to prove more properties of

J*(K) to be used in Section 8.

For all the results of this section, let (M,g) = (R x X,V2dt? - h) be a
standard static spacetime as in Definition 2.4, however in all the statements
we can set w.l.o.g V' = 1, since both the Cauchy development and causal
future of a set in a spacetime are invariant under conformal transformations

of the spacetime to itself.

Proposition 7.1. Let K € ¥y be a compact set. If J(K)n X, is compact
then J(K)n Xy is compact for all |t'| <|t|. Define:

t°(K):=sup{t > 0: J*(K) nX; is compact in X;}.
Then t=(K) € (0,00]. Furthermore, the following are true:
1. J(K)nXy is compact for all |t] < t=(K).
2. Ift>(K) < oo then J(K) nX; is not compact for all |t| >t (K).
3. If ¥ 1s complete, then C'(K,t) is compact for all t and t>°(K) = oo.
4. If t°(K) = oo for any non-empty compact set K, then X is complete.
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Note that X is complete as a metric space iff geodesically complete by
the Hopf-Rinow Theorem (see e.g. Theorem 6.13 Lee [19]). If so, then %
obeys the Heine-Borel property, that is K ¢ ¥ is compact iff K is closed and
bounded (see e.g. Theorem 16 in Petersen [25]).

Proof. Let t > 0. If J(K) n X, is compact, then, by Proposition 4.12,
J(K)n%; = C(K,t). But as C(K,t) is compact, it easily follows that
C(K,t") is compact for all [t/| < |{| and similarly for J(K) n Xp. That
t°(K) > 0 is proven as follows. As K is compact, then, by Proposition C.5,
C(K,t) is compact for some ¢ > 0 and so J*(K) n X, is compact by Propo-
sition 4.12. It then follows that ¢*°(K) > 0 and also that Statement I is
true. If t=(K) < oo and J(K) N Xy () is compact then C(K,t>(K)) is
compact, as is C'(K,t*(K) + €) for some ¢ > 0 (by Proposition C.6), and
so also J(K) N X~ (k)+e Which contradicts the definition of ¢>(K’). This
proves Statement 2. If ¥ is complete, then, for all ¢, as C'(K,t) is closed
and bounded, so it’s also compact by the Heine-Borel property. Statement 3
then follows from Proposition 4.12. If p, is a Cauchy sequence, then it is
bounded and so contained in the compact set C'(K,t) for some t and so p,

converges, which proves Statement /. O]

Proposition 7.2. Let C(K,t) be compact in 3, where K is a compact subset
of ¥ and t >0, then {3} x C(K, %) c D(%).

Proof. This follows from Corollary 4.24 with s = L. O
Corollary 7.3. If J(K) Xy is compact, then J(K)nX ¢ D().

Proof. 1t follows easily from Proposition 7.2 and repeated use of Proposi-

tion 4.12. L]
Proposition 7.4. V0 <t <ty
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1. 7(J(p)nXy) cn(J(p)nXy,)
2. 1(D(Xp) nXy,) €m(D(X0) Nn3y,),
where TR x 3 - ¥ is the map: w(t,x) = x.
Proof. We can set w.l.o.g V' =1 since otherwise:
T(J(P)vzaez—n N Ey) = 7(J(P)arz-v-2n 0 E4,) € T(J(P)arz-v-2 0 24,)
=m(J(P)vear-n N p,),
where our subscript notation highlights the dependence of J(p) on the metric.

To prove 1: If ge LHS, then 3y:[0,t1] » RxX,v(t) = (¢t,0(t)), |o(t)] < 1,

(0) =p, o(t1) =q.

Let 7:[0,t2] = Rx %, v'(t) = (t,0(t2)), ¥ = 1= (£)*e(t2)P <0,
7'(0) = (0,p), ¥'(t2) = (t2,q), so that ge RHS.

Statement 2 follows from Proposition 4.22. O
Corollary 7.5. J(p)nXy, € D(3g) = J(p) N2y, € D(3g) VO <ty <to.
Proposition 7.6. If t>(K) < oo, then J(K) N X (x)2 ¢ D(X0).

Proof. Again w.l.o.g let V = 1. We know via Propositions 7.1 and 4.12, that:
B(p,t) ce, for all t <t°(K) and p e K; B(p,t*(K)) C¢, for all pe K, and
that there exists p € K such that B(p,t*(K)) ¢ ¢,.

Thus there exists X, € T,X\¢, with | X,| = t=(K). We hold that there must
then exist a geodesic ¢:[0,1) - X inextendible to 1 such that ¢(0) = X,,.

To show this is true, let o : [0,a) - X the maximal geodesic, starting at

p with 6(0) = X,,. If a > 1, then X, € ¢, by definition, which is however a
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contradiction. If a < 1, then 7 be the geodesic through p with 4(0) = aX,. By
the rescaling Lemma, o being inextendible to a implies that ~ is inextendible
to 1. So, by definition, aX, ¢ €,. But |aX,| < |X,| = t>(K), which is a

contradiction.

Now that the existence of the geodesic o is proven, define ¢’:[0,t*(K)) -
¥ viar 0'(s) = o(=(zy)- It is satisfies: |67(s)| = %M(Wﬂ =1 and

o'(0) = p. So, from Proposition 4.7, z = (tng),a’(tw(zK))) € J(K) N X (k))2-

Now define a:(0,t°(K)/2] - Rx X, a(s) = (s,0'(t*(K) — s)). Since
o is inextendible to 1 then o’ is inextendible to t*(K) and so « is past-
inextendible to 0. Clearly, a does not pass ¥, although «a(t*(K)/2) =
(t=(K)/[2,0'(t>(K)/2)) = x. Since « is a future-pointing past-inextendible
smooth causal curve passing = but not Xy, then = ¢ D(Xg). Thus z «

J(K) 0 B (10y2\ D (30). O
Corollary 7.7. The following statements are true:

1. J(K)n¥; € D(Xg) VO<t <t (K)/2.

2. t°(K)<oo= J(K)nX, ¢ D(3) Vt >t (K)/2.

3. t1(K):=sup{t: JH(K)nX; € D(Xg)} =t=(K)/2.

For the purposes of the following section, we continue these arguments to

define an increasing sequence:
tna1 (K):=sup{t: J*(K) n Xy € D(Ze, (i)},

where to(K) =0 and the resulting definition of ¢;(K') agrees with that used

above. We are led to the following corollary:

Corollary 7.8. The following statements are true:
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1 J(K) NS € D(Se, 1)) Vi (K) <t < (1 )t (K).
2. 1%(K) <00 = J(K) NS, & D(S, x0)) Yt > (1 - )t (K).

8. to(K) = (1-5)t=(K) 7 t=(K) as n - oo.
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8 Support of Wald Solutions

We now prove a result concerning the support of our “Wald solutions”. It is in
fact not true that given Cauchy data consisting of two test functions (¢, éo)
then the support of the corresponding solution ¢ (w.r.t. some acceptable
s.a.e. Ag of A) as constructed in Theorem 5.5, is necessarily contained in
J(K), where K = supp ¢y U supp ¢y and J(K) is as usual the union of the
causal future and past of K: J(K) = J*(K)uJ (K). A counterexample is

given in Section 12.5.

It would however be natural to guess that up until a time at which data
can pass to a possible edge, the support of ¢ is contained in J(K). More

precisely, if we define:
t>(K) =sup{t > 0: J*(K)nX, is compact in 3;} € (0, 00],
then we propose that:
supppn [-t*, t*°] x X c J(K).

It was proven in Proposition 7.1 that t=(K) > 0, so this is a non-trivial state-
ment. At first sight it might appear that this result is trivial. Since D(Xg)
is a globally hyperbolic spacetime we know that supp¢ n D(%y) € J(K)
however this does not show that ¢ is zero in the shaded triangular region in
Figure 4. Thus this does not even prove that ¢ is compactly supported on

> for small ¢.

The proof we give shortly uses the uniqueness result of Lemma 6.4 and
the sequence t,(K) constructed in the previous section. We shall define
U: (-t (K),t1(K))x% - R to be equal to ¢ inside J(K') and zero outside it.

We shall show that ¥ so defined is smooth, compactly supported on ; for
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Figure 4: The construction of ¢*(K) and t,(K) in for example (M,g) =
(Rx(0,1),dt? - da?).

t € (-t1(K),t1(K)) and satisfies the Klein-Gordon equation in its domain.
Thus [V[s,] € D(A) € D(Ag) and so ¥ = ¢ in the domain of ¥ by Lemma 6.4.
By induction and the fact that ¢,(K) / t.(K) the result then follows.

Proposition 8.1. Given ¢, ¢ € C(X) let K = supppo U supp go. Define
t(K) as earlier. Let ¢ be the solution to the Klein-Gordon equation gener-
ated by some acceptable s.a.e. Ag of A and data (¢0,¢0) via Theorem 5.5.
Then:

1. Ift°(K) = oo then: suppo € J(K)
2. If t=(K) < oo then: suppodn [-t=(K),t>(K)]xXc J(K)

Proof. If t=(K) = oo then by Proposition 7.1 (3,V~2h) is a complete Rie-
mannian manifold and so M is globally hyperbolic by Lemma 4.19 and
supp ¢ € J(K) follows from Theorem 4.25.
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If t>°(K) < oo, construct a strictly increasing sequence (t,(K)),so induc-

tively as follows. Let to(K) =0 and:
tpa (K)i=sup{t: J*(K) nX; € D(3,(x))}-

From Corollary 7.8 we know that ¢,(K) ~ t>°(K). Define ¥: (=t (K),t1(K))x
Y- Ras:
o(x), for xe(~t1(K),t1(K))xXnJ(K)
V() =

0, otherwise.

The first problem is to show that the function ¥ so defined is smooth. We
do this by finding for each x € (—=t1(K),t1(K)) x X an open neighbourhood

U s.t. W either equals ¢ on U or is zero on U.

If 2 € (-t1(K),t1(K)) x X n D(X9) = U, an open neighbourhood (since
D(Xg) is open by Proposition 4.21), then ¥ = ¢ on U. This is because
if y € U then either y € J(K) and so ¥(y) = ¢(y) by definition, or y ¢
D(Xo)\J(K) = D(3o\K) and ¥(y) = 0 = ¢(y) (by the uniqueness of so-
lutions to the Klein-Gordon equation on the globally hyperbolic spacetime
D(Xo\K) (Theorem 4.25), where ¥o\K is an acausal topological hypersur-
face and so D(3\K) is an open set in M and a globally hyperbolic spacetime
by Proposition 4.21).

If 2 e (—t1(K),t1(K)) xX\D(X0) € (-t1(K),t1(K)) xX\J(K) =U (from
Corollary 7.7, Statement 1), then ¥ =0 on U by definition.

Thus ¥ e C((~t1(K),t1(K)) x X) and
[W:], [0:9:] € [C5° ()] = D(A) € D(Ag),

for all t € [0,¢,(K)). We also have W|y, = ¢y and 0,¥|s, = ¢o. Since W is

locally either equal to ¢, or zero, both being solutions of the Klein-Gordon
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equation, then so is W, that is (0, + m?)¥ = 0 on (-t1(K),t1(K)) x X.
Moreover, by definition ¥ =0 on [0,#,(K)) x X\ J(K).

By uniqueness of the Wald solution (Lemma 6.4), then:
¢ =0 in [0,4,(K)) x T,

Therefore ¢ = 0 on [0,#1(K)) x X\J(K). But since ¢ is smooth, then also
Oip=0on [0,t;) x X\J(K). In particular then, ¢ = ;¢ = 0 on 5y, i)\ J(K) =
Ny.

Using the constructed sequence (¢,,(K)).s0, We prove the proposition by

induction. Our inductive hypothesis P(n) is as follows:
P(n): suppon[0,t,(K)] x X c J(K)

We have already proven the statement for n = 1. If P(n) is true, by
smoothness ¢, 0;¢ are zero on N, = ¥, (x)\J(K). Now, as before, define:
U: [t,(K),th(K)) x X >R as:

o(x), for ze[t,(K),th1(K))xXnJ(K)

V() =
0, otherwise.

Similarly to the previous argument W e C*°([t,,(K),t,1(K)) x 3) as a man-

ifold with boundary. Also:

(Vs ] €[G5 (3)] = D(A) € D(Ag) Vi€ [tn(K), tna (K)),

Uls,, ) = Pra(x) and 0, ¥[x, = Dir (K-

By the uniqueness theorem (Lemma 6.4), ¢ = U in [t,(K),t1(K)) x X.
Thus ¢ = 0 on [t,(K),t,1(K)) x X\J(K). But since ¢ is smooth, then
also 9y, = 0 on [t,(K),tn1(K)) x X\J(K). In particular then, ¢ = 0 on
Yt )\J(K) = Ny and P(n + 1) is proven.
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Hence supp ¢ n [0,¢,(K)] x X ¢ J(K) for all n. But as ¢,(K) » t=(K),
then supp ¢ N [0,t*(K)) x X ¢ J(K), and by continuity:

supp ¢ n [0, (K)] x X ¢ J(K).
Finally, since the spacetime is symmetric around >y, we have:

supp o N [-t*(K),t>(K)] x X c J(K).
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9 Energy form on the Space of Solutions

In Sections 9 to 11, we shall prove the existence of certain structures on the
space of solutions Sg (Definition 6.5), corresponding to a particular accept-
able s.a.e. Ag. Specifically, we shall show the existence of an energy form, a
symplectic form and certain symmetries: time translation and time-reversal.
These were all conditions placed on the dynamics in the paper by Wald and
Ishibashi [38]. It is important for us to show that these conditions are in fact
necessary, even in our extended case of dynamics generated by an acceptable
s.a.e. Ag. In this section we show that there is a natural bilinear symmet-
ric form E on our constructed space of solutions Sg to the Klein-Gordon
equation. In general, it is not a norm. However, if our choice of acceptable
self-adjoint extension A is positive and zero is not an eigenvalue, then F is

a norm on Sg.

Given two pairs of smooth Cauchy data: (¢, éo), (0. ¢6) € X% cC>=(%)?
then we have by the existence of Wald solutions (Theorem 5.5) two corre-
sponding solutions ¢, ¢’ to the Klein Gordon equation on our spacetime. For

each time t € R we define the energy at time ¢ to be:

E(¢,¢")(t) = (b1, d1)s, + (D0, Apdl)s,

Our task is to show that E(¢,¢’) is in fact independent of time. Remember
that:

¢y = C(t, Ap)do + S(t, Ap)do
b= —ApS(t, Ap)do + C(t, Ag)do
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Thus for all ¢t € R:

E(¢,¢')(t) = (-ApS(t, Ap) o + C(t, Ap)do, ~ApS(t, Ap)d) + C(t, Ap) )

+{(C(t, Ap)do + S(t, Ap)po, ApC(t, Ap)d) + ApS(t, Ap)dp)

= (ApS(t, Ap)do, ApS(t, Ap)dh) - (ApS(t, Ap) o, C(t, Ap)dp)
—(C(t, Ap)do, ApS(t, Ap) ) + (C(t, Ap)do, C(t, A) )
+{C(t, Ap) o, ApC(t, Ap)¢p) + (C(t, Ap)do, ApS(t, Ap)d)
+{S(t, Ap) o, AsC(t, Ap)p) + (S(t, Ap)do, ArS(t, Ap)dp)

= (g0, Ap(ApS(t, Ap)? + C(t, Ap)*) )
+(do, (ApS(t, Ap)* + C(t, Ap)*) o))

= (g0, Apdp) + (b0, 95)

= E(¢,¢')(0)

where we have used the following identity: ApS(t, Ag)?+ C(t,Ag)?> =1 on

[xr]- Hence E(t) has the same value at all times.

Using the linear isomorphism U: x g x xg = Sk between x% and the space
of solutions Sg defined in Proposition 6.5 then E defined above is a bilinear
symmetric form on Sg (the symmetry of E follows easily since as Ag is

self-adjoint it is certainly symmetric) and is called the energy form.
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10 The Symplectic Form on the Space of So-
lutions

Similarly to the previous section, we show that there exists a natural sym-

plectic form on the real vector space of our space of solutions Sg.

Given two pairs of smooth Cauchy data: (¢, d), (0, qﬁg) € X% cC>(%)?
then we have by the existence of Wald solutions (Theorem 5.5) two corre-
sponding solutions ¢, ¢’ to the Klein Gordon equation on our spacetime. For

each time t € R we define the symplectic form at time t to be:

UE(¢7 Cb,)(t) = <¢t7 Qb;) - (Q.Sty sz,t)

We show again that this form is independent of time. For all ¢ € R:

op(6,¢)(t) = (C(t, Ap)do + S(t, Ap)do, ~ApS(t, Ap) g} + C(t, Ap)dp)

+(ApS(t, Ap)go — C(t, Ag) o, C(t, Ap) ¢y + S(t, Ap)dh)

= ~(C(t, Ap)do, ApS(t, Ap)y) + (C(t, Ar)do, C(t, A) )
~(S(t, Ap) o, ApS(t, Ap)dy) + (S(t, Ap) o, C(t, Ap) )
+{ApS(t, Ap) o, C(t, Ap) ) + (ApS(t, Ap) o, S(t, Ap) )
—{C(t, Ap) o, C(t, Ar)dp) = (C(t, Ap)do, S(t, A)dh)

= (g0, (ApS(t, Ap)* + C(t, Ap)*) o))

— {90, (ApS(t, Ag)* + C(t, Ap)*)¢))
= {60, %) — (b0, ¥
= 0($,¢')(0)

Here, we have again made use of the identity AgS(t,Ar)? + C(t, Ag)? =

I on [xg]. Thus we have a map og:Sg x Sp - R, where Sg is the real
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vector space of solutions. It is clearly bilinear, antisymmetric and also weakly
nondegenerate, since if ¢ € Sp is non-zero then (by uniqueness) (¢o, o) *
(0,0) € xg x xg. Consequently, let ¢’ = ¥(=dg, ). Then, og(d,¢') =
||bol|? + H%’P > 0 as either ¢ or ¢y is non-zero and so has non-zero norm (as

both are continuous). Thus, (Sg,og) is a real symplectic space.
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11 Symmetries

In this section, we derive some symmetries satisfied by the linear isomorphism
U : xg x xg = Sg defined in Proposition 6.6. Consider the maps T}, P :
C>=(M) - C>~(M) given by:

(EF)(S,ZE) = F(S - t,ZL‘)
(PF)(s,x) = F(-s,x)
Proposition 11.1. Given a standard static spacetime and the linear operator

A defined as usual on the Hilbert space L?(X,dvoly) then for any acceptable
s.a.e. Ag of A. The maps Ty and P satisfy: T,, P: Sg - Sg. Then letting

¢t = ‘P(qu’ (ZBO)|E15 and ét = at\I]((b(b ¢0)|Et we have:
\Il(¢t7 ¢t) = Tft[‘;[](¢07 (b())]
. o .
U (po, ~Arpgo) = a[‘l’(%a%)]
W (o, ~d0) = P[¥(do, b0)]
In particular this also proves that %: XE = Xg- Additionally, for all ¥y, Vs €
SE.'
E(T, 0, T,U,) = E(¥y, T,)
E(P\I]hp‘lfg) = E(‘I’l,\IIQ)
UE(Tt‘I’hTt\Ifz) = UE(‘I’h ‘1’2)
op(PYy,PVUy) = -0 (¥, ¥,)

(Note that the first five properties correspond to Assumptions 2(i), 2(ii),
3(i) and 3(ii) in Wald and Ishibashi [38].)
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Proof.

B on) | CEANCE A5t A0 |
t: Pt)S, +S(s,AE)(_AES(t7AE)¢O+C(t7AE)<‘bO)

= [C(s+1t,Ap)do+ S(s+t, Ag)do](x)
= U (¢o, éo)(t +5,7)
= T (U (o, o)) (5, 2)

W (g0, ~Apdo)(t, ) = [O(t, Ag)do + S(t, Ap) (~0))] ()
= Cﬁt(x)
= 106, )] (1, 2)
ot ’ ’

U(go, ~¢o) (t,2) = [C(t, Ap) o + S(t, Ap) (=) ()
= [C(=t, Ap)do + S(-t, Ap) )] ()
= U(¢o, do)(~t, )
= P(¥(¢o, ¢0))(t, )

The remaining properties are easily proven from the time independence of

E(Vq,¥s5)(t) and o(Vq,Wy)(t) (Sections 9 and 10). O
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12 Examples

In this section we shall discuss a few simple examples of standard static space-
times. In all the examples we examine we shall let V' =1 for simplicity. Thus
the spacetime (M, g) = (Rx X, dt?—h) and the solutions to the Cauchy prob-
lem of the Klein-Gordon equation constructed in this thesis for each of these
spacetimes will be indexed by the acceptable s.a.e.s Ag of the symmetric
linear operator A on L?(X, dvol,) generated by the partial differential opera-
tor (also labelled by) A = —div pgrad,, minus the Laplace-Beltrami operator,
and D(A) = [C&(2)].

We shall also only consider the case of the solving the Klein-Gordon case
for complex-valued data and so we only consider complex Hilbert spaces.
Note that it’s only on complex Hilbert spaces that we can define the deficiency
spaces H* of a densely defined operator A as H* := ker(A* ¥i). We note

the following theorem (see Theorems 83.1 and 85.1 in Akhiezer and Glazman

[2]):

Theorem 12.1. Let A be a positive symmetric linear operator with equal
and finite deficiency indices, that is, denoting n*:= dimker(A* ¥1i), we have
nt=n-=n<oo. Then every s.a.e. Ag of A is bounded-below. Furthermore,
every s.a.e. Ag has the same continuous spectrum as A, each of the s.a.e.s has
only a finite number of negative eigenvalues and the sum of the multiplicities

of the negative eigenvalues of any particular s.a.e. Ag is not greater than n.

Thus if A has finite deficiency indices then in particular every s.a.e. Ag
of A is acceptable. In all the following examples the deficiency indices are

finite and are equal to 0, 1 or 2.
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12.1 Self-Adjoint Extensions of minus the Laplacian

on S!

In our first example we let 3 = ST. We equip S* with its (unique) differential
structure, the Riemannian metric induced from that on R? and the induced
smooth measure from this metric. Since S is compact in its topology induced
from R?, then it is also compact in its topology induced from the Riemannian
metric h (Theorem 4.4), so it is also complete in this metric and so complete
as a Riemannian manifold by the Hopf-Rinow Theorem (See e.g. Theorem

6.13 Lee [19]). Thus the linear operator A given by:
D(A) = [C5(SH] =[C=(S)]
A([¢]) = -[¢"] for g e C=(S")

is essentially self-adjoint by Theorem 3.1. Thus A = A* is the unique s.a.e.
of A and

D(A) =W?>*(SY) = {pe L*(S") s.t. ¢, ¢" € L*(SY)}.

Note the Sobolev space W22(S1) is defined in Appendix D.3, where we are
implicitly adopting the standard Riemannian metric on S!' as on all the

manifolds in Section 12.

The spectrum of A is shown in the Appendix to be:
0(A) = 04ise(A) = {n? neNy}

If we identify S™\{1} with (0,27) by the chart: ¢: U = S'\{1} - (0,2n),
¢~1(0) = expif, then define the function g:U x U x C\{n?: n e N} - C by:

(4

2V/\

2cos V(0 - ¢)
exp(=2mivA) -1]

9(0,¢; ) = [expmw - ¢+
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As {1} € S! is clearly null, h generates a well-defined integral kernel.

The Green’s function for A € p(A) = C\{n2: n € Ny} is given by g(-,-, \),

which does not depend on the choice of square root of A used to define it.

12.2 Self-Adjoint Extensions of minus the Laplacian
on (0,00)

In the remaining cases the domains D(Ag) of the s.a.e.s of A shall be given
by conditions placed on the domain of the adjoint of A, that is D(A*). Since
A < Ap < A* then all the s.a.e.s of A are restrictions of A* to their domain
D(Ag). The conditions placed on the domain will be in terms of “trace
maps”. The derivation of these maps is to be found in Lions and Magenes

[20].
Theorem 12.2. Let €2 be an open interval of R. Consider the linear maps:
p G5 (Q) = C, ¢ = dlan
7 G5 () > CP ¢ > ¢/ o
These maps extend by continuity to a unique continuous maps
p, Tt W22(Q) - CloY,
Letting ® = (p,7), then U is linear and surjective. Additionally: Wg*(Q) =
ker® ={¢ e W22(Q): p(¢) = 7(¢) = 0}.

Note that Cg°(€2) is defined as the space of smooth functions on the smooth
manifold with boundary Q which are of compact support. If Q is compact

then clearly C°(Q) = C>=(Q). Note also that we define:

e W22(Q)
Wi (92):= [C ()] ,
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the closure of [C§°(€2)] in the Sobolev norm on W22((2).

If 3 = (0, 00) then the s.a.e.s of A are indexed by « € (-7/2,7/2], denoted

A,. Their domains are given by:
D(Ay) = {pe W?*2(0,00) s.t. cosa p(¢) =sina 7(¢)}

The spectra of these s.a.e.s are given by the following:

o(A,) = [0, 00) for a € [0, 7/2]
[0,00)U{-cot?a} for ae€(-7/2,0)

The pure point spectrum o,,(A,), continuous spectrum o (Ay) and dis-
crete spectrum o4;.( Ay ) of the operator A, are given by the following state-

ments:
1. eont(Aa) = [0, 00) for all a.

2. fae[0,%]: 0(An) = 0cont(An) = [0, 00).

2
3. Ifae(-%,0): 0pp(Aa) = Oaisc(Aa) = {—cot® a}.

Thus for a € [0, 5], A, is a positive s.a.e. of A and for a € (-5,0), A, is
not positive but it is bounded-below. Thus all the s.a.e.s of A are acceptable

according to Definition 3.2.

For completeness we also now give the Green’s function for each s.a.e.

A, that is g: (0, 00) x (0, 00) x p(A,) = C given by:
g(x,&,\) = A[cos asin(VAz.) + VAsina cos(V Az ) ] exp(iv/ Az, ),

where A = [V A(cosa —iv/Asina)]™!, z, = max{z,¢}, 2. = min{z,&} and
VA =a+bi,b>0 is defined as the unique square root of \ in the upper-half

plane, possible since A ¢ [0, 00). These statements are proven in Appendix G.
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12.3 Self-Adjoint Extensions of minus the Laplacian
on (0,a)

Now consider the case where ¥ = (0,a). Again, the domains of the s.a.e.s
of A are given in terms of the elements of W?22(0,a) satisfying conditions
placed on them via the trace map. The set of all s.a.e.s of A are given by
the Dirichlet extension and two groups of extensions which we shall describe

presently. The first group shall also contain the Neumann extension.

We shall give a very brief explanation of the origin of this classification
of the self-adjoint extensions of the A. We refer the reader to Posilicano [26].

The set of s.a.e.s of A is indexed by pairs:

(IL6) IT is an orthogonal projection operator on the Hilbert space C?

© is a bounded s.a. linear operator on the Hilbert space I'm(II)

Given the pair (II,0) the s.a.e. Ay e is then given by:

D(Ane) = {¢ € W**(0,a): pg € Im(I1), Ilm¢ = Opg},

where:
o w22(0,0)» 2, p(6)=| *O
¢(a)
T W?%0,a) - C?, 7(¢) = ¢'(0)
~¢'(a)

Here we are implicitly using Theorem 12.2. Note that 7 evaluates the inward-

pointing derivative at the boundary, hence the sign.

There are three natural collections of s.a.e.s of A according as rank(Il) =

0,1 or 2.
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Picking rank(IT) = 0, then we have IT =0 and © = 0. This is the Dirichlet
s.a.e. Ap (which we may also call the s.a.e. of the zeroth kind), defined

by the following domain:

D(Ap) = {¢ € W?2(0,a) s.t. 6(0) = 6(1) = 0}.

Picking rank(II) = 2, we obtain the next collection of s.a.e.s, which we
shall call the s.a.e.s of the first kind, in agreement with the language of
Posilicano [26]. They are obtained by setting IT = I. Then ImII = C? and let

O be defined by a self-adjoint complex 2 x 2 matrix

o[ 0
912 922

where 011,05 € R, 015 € C. The domain of the extension D(Ay) is defined as
those elements ¢ € W?22(0,a) such that IIT¢ = ©p¢, that is:

¢'(0) _ 01 Or2 ¢(0)
-¢'(a) 512 022 P(a) 7

01:6(0) = ¢(0) + O120(a) = 0 } |
0129(0) + O226(a) + ¢/ (a) = 0

or:
D(Ap) = {gb e W?2%(0,a) s.t.:

Note that letting 611 = 655 = 615 = 0 we obtain the Neumann extension Ay =
Aol
D(Ay) = {¢p e W??(0,a) s.t. ¢'(0) = ¢'(a) = 0}.

Picking rank(IT) = 1, we obtain the last collection of s.a.e.s, which we

shall call the s.a.e.s of the second kind. They are obtained by setting

w2 wyiws
.

Wwrwy  |waf?
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where w = (wy, ws) € C? is a unit vector, spanning a one-dimensional subspace
in C? and defining IT by orthogonal projection onto this subspace. We set ©
to be defined as multiplication by ¢ € R. These s.a.e.s are then indexed by
triples: {(wy,ws,0): wy,ws € C s.t. |wi]? + |we]?> = 1 and 0 € R}. The domain

of the extension D( Ay, w,0) is then those elements ¢ € W22(0,a) such that:

(2 (2)

( 06(0)

= 6pg =TI
0(a)

[ oo
-¢'(a)
NI A TR0
wiwy  [wsf? -¢'(a)
Then, from the first condition: we¢(0) = wi¢(a). And from the second:
w10¢(0) + Wab¢(a) = Wilwi[¢'(0) - Welwi ¢’ (a) + Wilwa[*¢' (0) - Walwsl*¢'(a)
=w1¢'(0) - wa¢'(a)
Thus,

D(Auw,ur0) = {(b e W?2(0,a) s.t.: wy(0) —wi¢(a) =0 }

w1 (06(0) - ¢'(0)) +wa(0¢(a) +¢'(a)) =0
Remark. Note that replacing w; with w;e?® for 7 = 1,2 then we obtain identical
boundary conditions and so the same s.a.e. of A. Clearly this is because

both choices yield the same 1-dimensional subspace in C? and so the same

orthogonal projection operator II.
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We shall now give the spectra of all these self-adjoint extensions and the
their corresponding Green’s functions. By analysing the spectra or by the
finiteness of the deficiency indices and using Theorem 12.1, all s.a.e.s are
bounded-below. These results can either be reached via the approach of
Posilicano [26] (Example 5.1) or the methods of Stakgold [32]. The proofs
of all but the case of the Dirichlet extension are found in Section H. The
case of the Dirichlet extension itself is simpler, along similar lines and is to
be found in Stakgold [32]. The numbering below corresponds to the three
groupings of s.a.e.s previously introduced: s.a.e.s of zeroth, first and second

kinds.
0. Denoting Ny = Nu {0}, we have:
o(Ap) = {(T)2 ne N}.
a
1. If A% 0 then A € o(Ay) iff

0 = 0,1V cos VAa + BasV/ X cos VAa — Asin vV a
+ ‘911022 sin \/XCL - |912|2 sin \/XCL + 2%(912)\5

(note that the validity of this condition is independent of which square

root of A we take) and:
0 € o(Ag) iff alfio|* - 011 — abi105 — Ooy — 293(612) = 0.
For instance, letting 611 = 095 = 015 = 0, we have that:
o(Ay) = {(T)Q, ne NO} :
a
2. It A #0 then X\ € 0( Ay, w,) iff
—VAcos VAa + 20 (w1 w3) VA - Osin vV Aa = 0
and 0 € 0( Ay wyg) iff al = 2R(wiwy) +1=0.
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The Green’s functions for each of these cases is treated in the following:

0.

The Green’s function for the Dirichlet extension Ap is given in terms

of the kernel g(z,y; \).

For A e C\{("*)?,n € Ny}, define:

oy \) = sin \/X(a—x>)sin\/Xx<
e Vsinava ’

where x.:= min{z,y}, z.:= max{x,y}. And for A =0, let:

9(z,y;0) = LT

. The Green’s function for the s.a.e. of the first kind is given by the

following.

For A\ € p(Ag)\{0}:

9(z,y;0)
A oS \/X(a - x,)cos VAT + 0a93/ N sin \/X(a - ,)cos Vz.

= A| +60;,V/\cos \/X(a — x5 )sin VAZ< + 01109 sin \/X(a — x5 )sin Vz.
+0122 sin VA (25 — a) sin vz + C(z,9) (A12)VAsin VN (z. - )

where

011V A cos VA + O/ A cos vV Aa — Asin vV a
+911922 sin \/Xa - |912|2 sin \/Xa + 2%(612)&

A=\

and for k € C,
kif x <y.

C(x,y)(k) { _

kif x> y.
If 0 € p(Ap), then

(CE - $>)ZE<|912|2 -0z + ($> - a)x<911922
g(z,y,0) = A
+(zs —a)loy — 1+ C(z,y)(012) (s — <)
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where

A_l = a|912|2 - 811 - a/011022 - 022 - 2%(012)

In particular, the Green’s function for the Neumann extension Ay is

given as follows:

For A e C\{(®)?,n € Ny}, define:

(2 \) = _cos V(a - x,) cos V Az
g Jy) \/Xsina\/x .

2. The Green’s function for the s.a.e. of the second kind is given as follows.

For A e p(Aw1w29)\{0}7

9(x,y; A)
lw1 |2V Asin VA(z5 — a) cos vV Az + VAC(z,9) (wy@3) sin vV (z< - )
+0sin V(x5 — a) sin vV Az, — [we2vV/Acos V(x5 — a) sin v Az,

where
A=\ [—\/XCOS Va + 29%(w1w_2)\/x - 0sin \/Xa] .
IfOe p(AwleG)’ then

g(x,y;0) = A[0(a—x5) 1 +C (2, y) (w1W3) (25 —2 ) +|w |* (a5 ) +|ws 22 ],

where

A7V =af - 2R (wwy) + 1.

12.4 Self-adjoint Extensions of minus the Laplacian

plus mass

We shall show here that the s.a.e.s of the operator A = —div, o grad, + m?
is easily given in terms of the s.a.e.s of —divy, o grad,. The corresponding

Green’s functions are then easily constructible.
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This situation is covered by the following more general problem:

Proposition 12.3. Let A be a linear operator on a (real or complex) Hilbert
space H. For p € R define the linear operator A+ p via the domain D(A+p) =
D(A), (A+p)p=A¢p+ up. Then the following are true:

1. A is closable < A+ 1 is closable.

2. If A is closable then: A+ = A+ pu.
3. A s self-adjoint < A+ u self-adjoint.
4. As es.a. iff A+ pis e.s.a..

5. If A is a symmetric linear operator and {A.: v €'} are all the s.a.e.s of
A (T = ¢ is possible). Then the s.a.e.s of A+ are precisely {A,+p: 7y €
I'}. Additionally, o(A,+p) = 0(A,)+p and if Gy is the resolvent of A,
at X € p(Ay) then Gy, is the resolvent of A, +p for X+ p e p(A, + ).

Proof. The proposition is easily proven directly by the definitions of closabil-

ity, self-adjointness etc. O]

We now apply this proposition to the problem of finding the s.a.e.s of
the Klein-Gordon operator on a Riemannian manifold, for which we already
know all the s.a.e.s of minus the Laplacian. For instance let ¥ = S'. This
was treated in Section 12.1. Let H = L2(S') (the Borel measure on S* being
induced by the Riemannian metric on S*!). Define the linear operator A on

H:

D(A) = [C5(SH] =[C~(S)]

A([¢]) = —[¢"] for ¢ e C(S").
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Consider B = A +m?. We are using the previous notation. So D(B) =
D(A). Then, according to the previous proposition, as A is e.s.a. so also is

B and:
D(B) = D(A) =W2*(S") = {¢ e L*(SY) s.t. ¢, ¢" € L*(SY)}.
Since 0(A) = 04i5.(A) = {n% n e Ny}, then the spectrum of B is:
0(B) = 04ise(B) = {n* + m*% n e Ny}.

Using the chart: ¢: U = S1\{1} - (0,27), ¢~1(0) = expif, define the function
g: UxUxC\{n2+m? neNy} > C by:
N —m2(h —
eXpZ\/iW ol + 2cosVA-m2(0 - ¢) ]
Wr-m? exp(—2mivA-m?2) -1

Clearly as before, this expression for g does not depend on the choice of

g(ea ¢; )\) -

square root of A—m? taken. It follows from Proposition 12.3 that g so defined

is the Green’s function for B, that is, it generates its resolvent.

12.5 Example of Wald Dynamics satisfying supp¢ ¢
J(K)

We shall show here by means of the examples just given that there ex-
ist simple standard static spacetimes and Wald dynamics generated by a

s.a.e. Ap such that supp¢ ¢ J(K) for some initial data (qbo,q.ﬁo), where

K = supp ¢ U supp go.

Consider the example considered in Section 12.3, that is ¥ = (0,a), so

M =R x(0,a), g =dt?>—dz?. (See Figure 5). Take for instance

01
10
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RxX |

Yoo (1)

Figure 5: Wald dynamics satisfying: supp¢ ¢ J(K), where (M,g) = (R x
(0,1),dt? — dx?). For some s.a.e.s Ap there exist points in the shaded area

at which ¢ is non-zero though they are clearly not contained in J*(K).

and pick the s.a.e. Ag of A. Thus its domain is given by:

D(Ap) = {¢ e W*2(0,a): ¢'(0) = ¢(a), ¢(0) =-¢'(a)}.

From this we can see that if ¢'(¢,a) # 0 then so is ¢(t,0) and hence ¢ is
non-zero in a neighbourhood of (0,¢) and so also non-zero at points outside

J(K).

12.6 Example of non-bounded below acceptable self-

adjoint extensions of minus the Laplacian

We shall; in this section, construct examples of non-bounded below accept-
able s.a.e.s of minus the Laplacian on certain choices of simple Riemannian
manifolds (though our example shall be on a disconnected manifold). In par-

ticular, this shows that the class of solutions to the Cauchy problem of the
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Klein-Gordon equation on non-globally hyperbolic spacetimes constructed in
this thesis a nontrivial extension of the application of theory of Wald [37]
from bounded-below s.a.e.s to acceptable s.a.e.s (Wald considered only those

that were positive).

Before we begin the construction, we shall briefly describe some necessary
background. It concerns the the direct sum of linear operators on Hilbert
spaces. Given a sequence H,, of (real or complex) Hilbert spaces, then the

direct sum is defined as usual as:

neN neN

H=@H,::= {(¢n)n € N such that ) [|¢,]|2 < 00},

where |||, is the norm in the Hilbert space H,,.

Definition 12.4. For each n € N, let A,, be a linear operator on the Hilbert
space H,,. Then define the linear operator A on H as the direct sum of the

linear operators A, as follows:

D(A) = {(b = (@n)nen such that ¢, € D(A,,) and Z |4, on|l? < oo}
(A¢)n = An¢n-

We then define the countable direct sum @,y A, of the operators A, to be

the operator A.
Proposition 12.5. The following are true:

1. If all the linear operators A, are densely defined (closed, symmetric,
self-adjoint), then A is densely-defined (closed, symmetric, self-adjoint)

respectively.

2. If all the linear operators A, are bounded, then the sequence (||An||) is
bounded iff A = @,en Ap is bounded.
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. The spectrum o(A) is obtained from the spectra o(A,) by the relation:
o(A)=U,oc(A4,).

. If each operator A,, is a orthogonal projection operator on H,, then A

s an orthogonal projection operator on H.

. If all the operators P, are projection-valued measures (p.v.m.s) on H,,
then P is a p.v.m. on H defined by:
Po =@ (P,)a for each Q <R Borel.
neN

We shall denote this p.v.m. P by @pen Ph-

. Let all the operators A, be self-adjoint. If P, is the projection-valued
measure (p.v.m.) on H, associated to A, via the spectral theorem and
P is the p.v.m. on H associated to A, then:

P-@®P.

neN

. If all the operators A,, are self-adjoint and f:R — R is Borel measur-
able, then:

f(@An) = @f(An)a

neN neN

where we are using the spectral theorem to define the self-adjoint oper-

ators f(@neN An) and f(An)

The proof of this proposition is an exercise in functional analysis (see e.g.

Reed and Simon [27] or Birman and Solomjak [9]). The proof is omitted here

for brevity.

Using this notation, we construct such extensions as follows: Given a fixed

Riemannian manifold (3, h), we shall first consider the case of constructing

a s.a.e. A of minus the Laplacian on (X', h) = (Z x £, h) from s.a.e.s (An)nez
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of minus the Laplacian on (X, h). We then show that if all the s.a.e.s A, are
acceptable, then so is A. We then give necessary and sufficient conditions
for A to be non-bounded below before giving a concrete example. We state

our results in the form of the following proposition.

Proposition 12.6. Fiz a Riemannian manifold (3,h) and define (X', h) =
(Zx%,h). Considering the Hilbert spaces L*(%, dvol,) and L*(X', dvoly) then
we have the following isomorphism:
LA(Y, dvoly,) = €D L*(X, dvoly).
nez

Define the following linear operators A and A’ on the Hilbert spaces L?(3, dvoly,)
and L2(X',dvoly) as follows: D(A) = [C(2)], Aleo] = [-On¢] for ¢ €
C(2) and similarly for A’. For simplicity, we shall treat the aforementioned

isomorphism as an identification. Then we have the following relationship
between D(A) and D(A'):
D(A") = {¢ e @ D(A) such that ¢, 0 for at most finitely many n}
nez

Now, for each n € Z, let Ag,, be a s.a.e. of A and define the operator Al =
@z Appn. Then:

1. A% is a s.a.e. of A'.

2. If for alln, Ag,, is an acceptable s.a.e. of A, then A'; is an acceptable
s.a.e. of A’

3. 0(A%) =Unez0(Agy).

Therefore, if for all n, A, is an acceptable s.a.e. of A and if Upez 0(Agy)

has no lower bound in R, then A", is a non-bounded below acceptable s.a.e.

of A’
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Remark. In the equation relating D(A) with D(A’) we are adopting the
following notation: If H = @,z H, is the countable direct sum of Hilbert
spaces, then if for each n, V,, < H, is a (not necessarily closed) subspace,
then we define:

PV, = {gb € @ H,, such that ¢ € V,, for each n}

nez nez
With this notation, note that in general: D(D,z An) # @nez D(A,) but
rather:
D(EPA,) = {(b € @ D(A,) such that Y [[A,¢n|* < oo}.
nez nez nez
Proof of Proposition 12.6. 1t follows from the previous proposition, that Ag
is a self-adjoint operator on L2?(X’, dvol,). We must first show that it is in

fact a self-adjoint extension of A’.
By definition of A%, we have:

D(A") = {(;3 € @ D(A) such that ¢, # 0 for at most finitely many n}

nez

c {qb € P D(Ag,,) such that ¢, # 0 for at most finitely many n}

nez

C {gb €@ D(Ag,,) such that Z ||AEn¢n||fl < oo}

nez n

= D(Ap)

If e D(A') = {(b € @ D(A) such that ¢, # 0 for at most finitely many n},

nez

then (Ago), = Apndn = Apy = (A'p),,. This proves Statement 1.
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Let Ag, be an acceptable s.a.e. of A for each n. Then, for all ¢ > 0:

[C5°(XN)] = D(A")

¢ € @ D(A) such that ¢, # 0 for at most finitely many n}
nez

_ | ¢€®uz Dlexp((A7,)20))
| and T,llexp((Az,) 2)dull? < o0

= D(exp((A)"?1),

where the last equality follows from Statement 7 of Proposition 12.5, which
gives: exp((A5)"2t) = @nez exp((Ag,,)'/?t). Therefore, Ay is also an ac-

ceptable s.a.e. of A’.

The last statement follows from Statement 3 of the previous proposition. [

Lemma 12.7. Let ¥ = (0,00) and pick a sequence oy, € (=5, 5] indexed by

n € Z such that for all 0 < € < 5 there exists n with a, € (=€,0). Define

Agn = Aa,. Then, the corresponding operator Ay = @z Ao, 5 a non-

bounded below acceptable s.a.e. of minus the Laplacian.

Proof. Note that the s.a.e.s A, were defined in Section 12.2 as:
D(Ay) ={p e W*2(0,0) s.t. cosa p(¢) =sina7(¢)}.
The spectra of these s.a.e.s were given by the following:

o(A,) - [0, 00) for a € [0,7/2] |
[0,00) U {-cot?’a} for ae (-7/2,0)
So, since lim, o cot? x = oo then, by Statement 3 of Proposition 12.6, o(A%},) =
Unez 0(Aq,,) has no lower bound in R, i.e. info(A%) = —oo and A%, is not
bounded below. That A’ is still an acceptable s.a.e. of minus the Laplacian

follows from the previous proposition. O
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13 Summary

We have shown the existence and uniqueness properties of solutions of the
Klein-Gordon equation on arbitrary standard static spacetimes based on “ac-
ceptable” self-adjoint extensions Ag of the symmetric linear operator A, as
defined in equation (3.3). The proof of the existence (Section 5) was based
on work by Wald [37], though differs in the following: Our treatment utilised
the more recent result of Bernal and Sanchez [6]. Also, we have shown that
the construction of solutions is valid also when the self-adjoint extension is

merely acceptable (Definition 3.2).

Separate to the work of Wald, we proved in this thesis a result concerning
the uniqueness of the Wald solutions and used this to prove a result on
their support. The stronger statement: supp¢ ¢ J(K) for K = supp (¢o) U
supp (éo), which was a condition on the dynamics in the paper by Wald and
Ishibashi on this topic [38], was seen to be false in general. In Section 12.5

we gave a simple example where supp ¢ ¢ J(K).

Also, using the uniqueness result, we defined the space of solutions in
Definition 6.5, constructed both the “energy form” and the “symplectic form”
on the space of solutions (Sections 9 and 10 respectively) and analysed some

symmetries of the space of solutions (Section 11).

In Sections 12.1 to 12.3 we considered three simple one-dimensional Rie-
mannian manifolds (S*, (0,00) and (0,a) with their usual Riemannian met-
rics), determined all the self-adjoint extensions of minus the Laplacian on
each of these spaces, found their spectra and proved the form of their resol-
vents as integral operators. This then specifies the dynamics as constructed

in this thesis as generated by each of these s.a.e.s on the standard static
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spacetimes (M, g) = (R x 3,dt? - h), as ¥ = S, (0,00) or (0,a). In Sec-
tion 12.5 we give a simple example of a standard static spacetime and a
choice of s.a.e. Ag such that the dynamics generated satisfies: supp ¢ ¢ J(K)
for some initial data (this corresponds to 1. of the second list on p.6). In
Section 12.6 we constructed an acceptable non-bounded below s.a.e. Ag of
minus the Laplacian on a particular (disconnected) Riemannian manifold
(specifically: ¥ = Z x (0,00) with the Riemannian metric induced from that
of R?). This example then shows that the extension of theory of Wald [37]
from bounded-below s.a.e.s to acceptable s.a.e.s carried out in this thesis is

non-trivial (Wald considered only positive s.a.e.s).

We shall now discuss avenues of further work on the subject of this thesis.

We list them as follows, some of which are related:

1. The well-posedness of the Cauchy problem for the Klein-Gordon equa-
tion often has a stronger meaning than that used in this thesis. The

stronger sense includes continuity of the map
CE(X)xC5e (%) - C*(M)
(0, (,1.50) - ¢.

A problem unanswered in this thesis is whether our solution to the
Cauchy problem generated by an acceptable s.a.e. is well-posed in this

sense.

2. We constructed in Section 12.6 an example of an acceptable non-bounded
below s.a.e. on a disconnected Riemannian manifold. It would be of

interest to construct examples on connected ones.

3. Once the answer to Statement 1 is known, a natural question in line

with the paper by Wald and Ishibashi [38] is whether there are necessary
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and sufficient conditions on a solution to the Cauchy problem to be
generated by an acceptable s.a.e. via this thesis. Since their paper
dealt with the case of sufficient conditions for the Cauchy problem to
be generated by a positive s.a.e. then this would be an extension of

their work to the present case.

. An important question, connected with Statement 3, is whether or not
there exists dynamics conserving the symplectic form constructed in
Section 10 (but possibly not conserving an energy form), that is not
generated by a s.a.e. via the construction in this thesis. This question

posed by Kay and Studer [17] (Appendix A.2) is still unanswered.
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Appendices

A The Linear Operators C(t, Ag) and S(t, Ag)

In the first part of this appendix we show that if the s.a.e. Ag of A is bounded
below then the linear operators C(t, Ag) and S(¢, Ag) are both bounded on
L2(3, V-1dvoly,). In the second part of the appendix we prove Proposition 3.5

concerning the strong derivatives of these linear operators.

We begin my defining a multiplication operator and stating our required
form of the Spectral Theorem. In the following, denote by £2(M,Q, 1) the
space of (real or complex valued) square-integrable measurable functions (by
measurability here we mean with respect to the o-algebra 2 on M and the
o-algebra of Borel sets on R or C as required). Denote by L?(M,, ) the
(real or complex) Hilbert space consisting of equivalence classes of elements

in L2(M, 2, p).

Definition A.1 (Multiplication Operators (see e.g. Reed and Simon [27])).
Let (M, ), 1) be a measure space (a triple consisting of a set M, a o-algebra
Q of subsets of M and measure p on Q) and f: M — R be a measurable
function. Then define the linear operator Ty on L*(M,Q, 1) by:

D(Tf) = {[¢] € Lz(M7Q7/“L) s.t f()¢() € £2(M797:u)}7
T([o]) = [f()o()] on D(T).

The following are true of the linear operator T (see Reed and Simon [27]):
e [t is a self-adjoint linear operator.

e It is bounded iff f e L>(M,Q, u).
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e It is bounded-below iff f > —M a.e. for some M € R ie. iff f~ €
Lo°( M, ).

Theorem A.2 (Multiplication Operator Version of the The Spectral Theo-
rem (See e.g. Reed and Simon [27])). Let H be a complex separable Hilbert
space and A be a self-adjoint linear operator on H. Then there exists a mea-
sure space (M, p), real-valued measurable function f on M and a unitary
operator U:H — L?>(M,Q, ) s.t. A and Ty are unitarily equivalent via U,
that is:

U(D(A)) = D(Ty)
UAU @] = [f()¢()], for all [¢] € D(T}).

In the following propositions, using the Spectral Theorem in the form
stated above, we shall show that if Ag is a bounded-below self-adjoint op-
erator, then C(t, Ag) and S(t,Ag) are bounded linear operators. We shall

then consider their strong derivatives.

Proposition A.3. Using the above definitions, let f > —M a.e. where M > 0.
Then for all t e R: C(t, f(-)) € L=(M,Q, 1) and so Tew )y 5 a bounded

self-adjoint operator by the previous proposition. In fact,
1 Te ol < 1+ cosh(M'1).

Proof. |C(t, f(m))| =]|cos(f(m)2t)| <1 for f(m) >0
|C(t, f(m))| = |cosh((—f(m))'/?t)| < cosh(M?t) for f(m) <0 as cosh is a
monotonic decreasing function on the negative reals.

Thus |C(t, f(m))] <1+ cosh(M?/2t) for all m. O

Using the last theorem we can state the properties of C(¢, Ag) for an

arbitrary bounded-below self-adjoint operator Ag:
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Lemma A.4. Let Ag be a bounded-below self-adjoint operator. Defining
C(t,x) as above then C(t,Ag) is a bounded self-adjoint operator satisfying

|C(t, Ag)|| € 1 + cosh(M?t) for all t € R.

Proposition A.5. Using the above definitions, let f > —M a.e. where M > 0.
Then S(t, f(-)) € L= (M, ) and so Tsq sy is a bounded self-adjoint oper-
ator by the previous proposition. In fact||Tsq eyl < t(1+M~12sinh(M/%t))

Proof. |S(t, £(m))| = |f(m)~2sin( f (m)20)] < t for f(m) >0

1St f(m))| = (=f(m)) 2 sinh((=f(m))"/?t)] < tM~1/? sinh(M/?t) for f(m) <
0 as z~!'sinh z monotonic decreasing function on the negative reals.

Thus [S(t, f(m))] < t(1+ M~/2sinh(M/2t)) for all m.

The result follows. O

Lemma A.6. Let Ag be a bounded-below self-adjoint operator. Defining
S(t,x) as above then S(t,Ag) is a bounded self-adjoint operator satisfying
IS(t, Ag)|| < t(1+ M~Y2sinh(M'/2t)) for all t € R.

Before we further consider the linear operators C(t, Ag) and S(t, Ag) we
make a simple proposition which allows us to quickly compare the domains
of multiplication operators, and hence also functions of self-adjoint operators

in any Hilbert space by the above version of the Spectral Theorem.

Proposition A.7. Let (M, 1) be a measure space and f: M — R be a Borel

measurable function. If g,h: R - R are continuous functions satisfying:
9(x) = O(h(x)) as |z| > co
(that is |g(x)| < Alh(z)| for all |x| > K and some A > 0), then D(Tjof) C

D(Tyor).
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Proof. Firstly let |g(x)| < Alh(z)| for all |z| > K. If [¢] € D(Thos) then:

fMlg o f(m)Plo(m)Pdu(m)
= f|fK lg o f(m)Plo(m)Pdu(m) + L . lg o £ (m)[2|é(m)Pdpu(m)

<(sup o)) [ lolm)Pdu(m) A [ (o f(m)Plo(m)du(m)

|z|<K |f1 |

< 00,

since the first term is finite as ¢ is continuous and [¢] € L2(M,Q, ;) and the
second term is finite since [¢] € D(Thof). O

Remark. The result is also true (by a similar proof) if g(x) = O(1) as x - o0
and g(x) = O(h(x)) as - —oco. Using this result we have for instance that

D(Tepy) € D(Tspy) and so D(C(t, Ag)) € D(S(t, Ag)) for all t.

Lemma A.8. Let (M, 1) and f be as in the last proposition. If g,h: R —

(0,00) are continuous functions satisfying:

‘—‘ —c¢>0 as |x] > oo,
x

then D(Tgof) = D(Thof).

This lemma follows easily from the last proposition. Similarly to the
previous remark it would be sufficient if g and h were bounded on [0, o)
and ‘%| - ¢ > 0asx > —oo. Using this result with g(z) = C(¢,z) and
h(x) = expt(2~)1? for some t > 0 results in: D(Ter,py) = D(Tospi(amyi2) and

hence D(C(t, Ag)) = D(expt(Az)Y?).

We now find the strong derivatives of the linear operators C'(t, Ag) and
S(t,Ag) (Proposition 3.5) and show that [xg] is an invariant space with

respect to both linear operators.
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Proposition A.9. Given an acceptable s.a.e. Ag of A, define:

xpi={f e C™(2) s.t. [fle D(AF) n () D(exp((Ap)'*))}

t>0

then the linear operators C(t, Ag) and S(t, Ag) satisfy the following:
C(t, Ag), S(t, Ar) : [xe] = [x&]

Also, the maps t - C(t,Ag) and t - S(t,Ag) are infinitely often strongly
differentiable on [xg], where for n e Nu {oo}:

D(A%) ={zxe D(Ag): ARz e D(Ag) for allm=1,...,n-1}.

In fact, for n € N the following strong derivatives hold on the dense subspace

[x5] of L*(X,V-'dvol):

d2n

2an Ot Ap) = (1)" ApC (¢, Ap),
d2n—1

WC(@AE) = (-1)"AES(t, AR),
d2n

o S(t Ag) = (<L) ApS (1, Ap),
d2n+1

dt2n+1 S(t’ AE) = (_1)HA%C(t7 AE)

Proof. It suffices to prove these facts for the unitarily equivalent case of T,
where f: M — R is measurable.

We show first that

TC(t,f) :Q)D(Texp((f’)l/%)) - Q}D(Texp((f*)lmt))

and then that:

Tewr D(Tyn)n D)D(Texp((f’)l/%)) - D(Tjn).
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Indeed, if ¢ € Ming D(Lop((s-y120) then:
[ IcG. fmPlexp g (m) 2t Plo(m) Pdy(m)

< [ 10 FGm)exp2f (m) 2o (m)Pdu(m)
o [ esp2f (m) 2o (m) Pdp(m)

= [, cosh £~ (m) 2 exp2f~(m) ! 2o(m) Pdu(m) + C

=5 [ e 2 O () o(m)Pdp(m)
+5 [ exp2d ) eo(m)Pdu(m)
#3200 o) du(m) + C

Secondly,

[ IFEmBC(t, £ ) Flo(m)Pdp(m)
= [ FOm)E cosh (1 (m) ) 6 om) Papa(m)
o [ IEm)Ecos(tr (m) #)Rlo(m) Fdju(m)

<5 [ WP esp2ts () o)]o(m)Pdu(m)

+3 [P Fauom)

+ }1 fM |f(m) " exp =2t f~(m)Y2t)|p(m) Pdp(m) + C
< 00.

Thus T, ry maps the subspace D(T7°)Niso D(Top((s-y120)) to itself. Again,
arguing by the Spectral Theorem, we have C(t, Ag) : [xg] = [xg] for any
s.a.e. Ag. The proof for the linear operator S(t¢, Ag) is similar. We prove

the last properties by a sequence of lemmas. O
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Lemma A.10. Let f be measurable. Then the map t — Tioses is strongly
differentiable at t on D(Ty2) with strong derivative T_fgn¢y.

Proof.

2
lim

1
ho0 E(Tcos(ﬂ—h)f - Tcostf)¢ - T—fsintf¢

2

. 7 (cos(t +h)f(m)—costf(m)) () Pdu(m) (A1)

h=0 My f(m)sint f(m)
As t is fixed, the integrand approaches zero pointwise in M as h - 0. In
order to show that the integral converges to zero, we use the Dominated

Convergence theorem (D.C.T.). By Taylor’s theorem, for all h there exists k
such that |k| < |h| and

cos(t+h)f(m) =costf(m)—hf(m)sintf(m) - %2f(m)2 cos(t+k)f(m), so

’% (cos(t+h)f(m)—costf(m))+ f(m)sintf(m)| < @|f(m)|2.
We define g(m) = g]f(m)[*|é(m)[>.
So for |h| < 1, [+ (cos(t+h)f(m)—costf(m))+ f(m) sintf(m)]2 lp(m)|? <

g(m) e LY(M,Q, 1) as ¢ € D(T2).

Thus by the D.C.T., the RHS of (A.1) is zero. O

Lemma A.11. Letting f be measurable, then the map t — Tiosney 15 strongly
differentiable at t >0 on D(Ts2cosmi ) (for any t' >t) with strong derivative

Tt sinhtf-

Proof.
2
lim
h—0

1
E (Tcosh(t+h)f - Tcosh tf)(b - Tf sinh tf¢

2

. % (cosh(t + h)f(m) —coshtf(m))

_ |p(m)Pdp(m)  (A.2)
h=0JM | — f(m)sinhtf(m)
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For |h| <t/ - ¢ there exists k: k| < |h| such that:
cosh(t +h) f(m) = cosh () + hf (m) sinh f ()~ o f(m)? cosh(t+£) f (m).
So
- Ccosh(t-+ 1) (m) = coshtfm)) = ) sinhtf (m)
< Py cost(t + k) fm).

So we define g(m) = 1|f(m)|*|¢(m)|? cosh®t' f (m).
So for |h| < 1, [#(cosh(t + k) f(m) - cosht f(m)) - f(m) sinhtf(m)]2 |p(m)]? <
g(m) € El(MaQaﬂ) as ¢ € D(TfZCOSht'f)‘

Thus by the D.C.T., the RHS of (A.2) is zero. O

Lemma A.12. The map t — Te,y) is strongly differentiable at t > 0 on
D(Tp+) 0 D(Ty- cosnir(p-y12) (for any t' > t) with strong derivative T_pg ).
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Proof.
2

lim
h—0

. [ HC(t+ o f () = C(E ()
D] p St £m)

1
5 Tewinn = Tewn)®+ Trsend

] [@(m)[*dpu(m)

Licosh(t + h)(=F(m))/2 = cosht(—f(m))1/2 ?
- lim [h( ety i ) )]|¢(m)2du(m)
0| s () (~ F(m)) 2 simb (- F ()12
+(cos(t + h) f(m)Y? - costf(m)/? :
+ iy [h( )Tt )] 6(m)Pdu(m)
TUPO] +f(m)(f (m)) P sint(f ()2
~lim [ Heosh(t+ W)~ (m)!2 = cosha(f-(m) ) |1
w0 S| - ()12 simbt g (2
Licos(t +h) F(m)V2 = cost f+(m)1/2 ’
gy [ | R PO I ) o
POIM A f(m) 2 sint f+(m)1/2
- 0,
since: ¢ € D(Tp+) N D(Ts- coshir(f-y1/2)- 0
Note that:

m D(Tfn) N D(TC’(t,f)) c D(Tf) N D(TfC(t’,f))

n>0,t>0

< D(Tf+) n D(Tf’cosht’(f’)lm)

(All inclusions between domains of multiplication operators follow from either
Proposition A.7 or the remark thereafter.) So t - T¢(s) is also strongly

differentiable on

OD(Tfn) N D(TC’(t,f))

n>0,t>
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Thus if Ag is an acceptable s.a.e. of A then ¢t — C(t, Ag) is strongly differ-

entiable on

D(AE) n (1 D(C(t, Ap)) =[xr] € D(AR) < [C*(Z)],

t>0

where the last inclusion is the content of Theorem 3.3.
The following statements follow by similar arguments.
Lemma A.13. Again with f measurable, then the following are true:

1. The map t - Tynes is strongly differentiable at t on D(Ts2) with strong

derivative Tt costf-

2. The map t - Tgnnis is strongly differentiable at t >0 on D(Ts2gnne f)

for t' >t with strong derivative Tf coshty-
3. The map t — Ts 5y 1s strongly differentiable at t >0 on
D(T(ff)1/2 Sinhtl(ff)l/Q) N D(T(f+)1/2)
for t' >t with strong derivative Te(, gy

Using the last two lemmas we obtain the required last properties given in

Proposition A.9.
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B Klein-Gordon Solutions on Globally Hy-
perbolic Spacetimes not of Compact Sup-
port on any Cauchy surface

This section is devoted to proving an extension of Theorem 4.25. It is in-
cluded here for completeness. (See also Corollary 5, Section 3.5.3 in Ginoux’s

contribution in Bér and Fredenhagen (Eds.) [4].)

Theorem B.1 (Existence and Uniqueness of Classical Solutions on Globally
Hyperbolic Spacetimes with respect to smooth initial data:). Let (M, g) be a
globally hyperbolic spacetime with smooth, spacelike Cauchy surface S. Then
the Klein-Gordon equation has a well-posed initial value formulation, that is,

given data ¢o, o € C*=(S) then there exists a unique solution ¢ € C=(M) to:

(O, +m*)Y =0
Yls = ¢o
vnw|5 = éOa

where n is the unique unit smooth future-pointing timelike vector field on S

normal to the smooth spacelike Cauchy surface S. Moreover:
suppyp € J(K),

where K = supp ¢o U supp ¢y .

To show this, we begin by proving some basic lemmas. Throughout,
(M, g) is a globally hyperbolic spacetime and S is some smooth spacelike
Cauchy hypersurface of M. We refer the reader to O’Neill [23] for a thorough

introduction to causality theory.
Lemma B.2. D(W)¢ = J(S\W) VW c S

109



Proof. € LHS
iff 3 an inextendible causal curve that does not pass through W.

iff 3 an inextendible causal curve that passes S\IV.

iff x € RHS [
Lemma B.3. Wc D(J(W)nS) YW c M

Proof. 1f x e W take v to be an inextendible causal curve through p. As S is
a smooth Cauchy surface, v passes through S at some y € S. Soy e J(W)nX
and x € D(J(W)nS). O

Lemma B.4. K ¢ S is closed = J(K) is closed in M.

Proof. If K is closed then S\K is open in S. Thus S\K is an acausal topo-
logical hypersurface in M and, according to Theorem 4.21, D(S\K) is open
in M. But D(S\K) = J(K)® due to Lemma B.2 and so J(K) is closed. [J

(Proof of Theorem B.1). We start by proving existence of our solution. Given
any p € M, then J(p)n S is compact in S. Let f e C(S) s.t. f=1on an
open neighbourhood U of J(p) n S. Since ¢of, ¢of € CF(S), then define
¢p.s € C(M) as the solution to the Cauchy problem w.r.t compactly sup-
ported smooth data (¢of, dof), via Theorem 4.25. Now, define the function
¢: M — K as ¢(p) = ¢ps(p). We shall first show that the value ¢(p) is inde-
pendent of which function f we take. Let f,g e C§°(M) such that f=¢g=1
on an open neighbourhood U of J(p)nS. So, f—¢g=0on U and:

¢o(f=9),00(f-9)=00onU2J(p)nS.

Therefore, ¢y r—g = ¢p.f — ¢pg =0 on D(U). But pe D(J(p)nS) < D(U) by
Lemma B.4 and so ¢, £(p) = ¢p4(p). Thus ¢ is a well-defined function on M.
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Figure 6: The definition of the solution of the Cauchy problem to arbitrary

smooth data.

Figure 7: A reformulation of the defintion of the solution of the Cauchy

problem to arbitrary smooth data.

111



We must now show that it is smooth, solves the K-G equation with respect to
smooth inital data (@, ¢o). This is proven by an alternative characterisation
of the function ¢. For any precompact open subset O, let g € C$°(S) such
that ¢ = 1 on an open neighbourhood V of J(O)n S. Let ¢, € C(M) be
the solution to the Klein-Gordon equation corresponding to data (¢g, dog)
according to Theorem 4.25. It follows, from the previous argument, that for
all pe O: ¢(p) = ¢5,,(p), where ¢ was defined previously, since J(p) € J(O)
and if g =1 on an open neighbourhood of J(O) n .S, then so also on an open

neighbourhood of J(p) n S.

As ¢5 , 1s smooth and solves the Klein-Gordon equation, then so does ¢. If

p €S, then ¢ satisfies:

o(p) =¥ (p) = do(p) f(p) = do(p)
Vud(p) = VU (p) = do(p) f(p) = do(p).

So, ¢ls = do and V,d|s = ¢o.

We now check the property concerning the support of ¢. If J(K) = M
then the statement is trivially true. If p ¢ J(K'), then as K is closed and
J(p) NS compact in S, there exists an open neighbourhood U of J(p)n S
and feC(S)st. f=1onU and f=0on K. So, b0, 0 = 0 on U and
UnK = ¢ then ¢of = ¢of =0 on S. Therefore, ¢(p) = U(p) = 0 and so
p¢J(K)=¢(p)=0or {¢+#0}cJ(K) and

supp ¢ = {¢ # 0} € J(K) = J(K),
by Lemma B.4.

The proof of the uniqueness of such a solution is given by the following short

argument. Consider the following statements:
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1. We have uniqueness of the Cauchy problem w.r.t. arbitrary smooth

data.

2. If ¢ € C~(M) satisfies (O, + m?)¢ = 0, ¢|lsg = 0 and V,¢p|s = 0 then
¢ =0.

3. We have uniqueness of the Cauchy problem w.r.t. arbitrary smooth

data of compact support.

The following equivalences are easy to show, by the linearity of the Klein-
Gordon operator, the covariant derivative and the restrictions onto the sur-
face S:

l. 2. < 3.

Thus, since Statement 3. is true by Theorem 4.25, then Statement 1. is
true. u
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C Basic Metric Space Theory

In this appendix we deal with the some relatively basic results in metric space
theory needed in the proofs of Propositions 4.22 and 4.12. We include them

for completeness.

Let (X, d) be a metric space. Given K ¢ X, then we define:
d(gq, K) = inf{d(p,q)}
peK
The closed ball around K of radius ¢ is then defined as:
C(K,t):={q d(q, K) <t}.
Note its alternative characterisation:
q e C(K,t) iff for all € >0 there exists p € K such that d(p,q) <t +e.

Proposition C.1. Let (X, d) be a metric space and K € X a compact subset.
Then:

C(K,t):={q d(q,K) <t}
= {q: inf{d(p,q)} < t}
=UJ ).

peK
Note that in the last step we have used the compactness of K and the con-
tinuity of the metric. We now check that the closed ball C'(K,t) is indeed

closed.

Proposition C.2. Let (X,d) be a metric space and K € X. Then, C(K,t)

15 closed for all t > 0.
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Proof. Let q, € C(K,t) and ¢, > g € X. We want to show that

inf{d(p,q)} <t.

If this were not true, then there would exist € > 0 such that d(p,q) >t + ¢
for all p € K. But since ¢, — ¢, then d(p,q,) >t +¢/2 for all p € K and
all n > N for some N. So d(gn, K) = inf,ex{d(p,qn)} >t + €/2, which is a

contradiction. ]
We shall now prove some more simple properties of the closed ball:
Proposition C.3. Letting (X,d) be a metric space and A, B < X, then:
1. If A< B, then C(A,t) c C(B,t).
2. C(AuB,t)cC(At)uC(B,1).
3. C(C(A,t),s) cC(A,t+s).
Proof. To prove Statement 1, note that:
{d(p,q): qe A} c{d(p,q): g€ B}.
So, if pe C(A,t) then:
t>d(A,p) =inf{d(p,q): qe A} >inf{d(p,q) : g€ B} = d(B,p)
and so p € C(B,1t).
To prove Statement 2:
{d(p.q) :qe AvB} ={d(p,q) : qe A} u{d(p,q) : g € B}
and so
d(p,Au B) =inf{d(p,q) : ¢ € Au B} =min{d(p, A),d(p, B)}.
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Soif pe C(AuB,t) then d(p, Au B) <t and either d(p, A) <t or d(p, B) < t,
that is, pe C'(A,t) or pe C(B,t).

To prove Statement 3: If g e C(C(A,t),s) and € > 0, then 3r € C'(A,t) such
that d(q,r) < s + €. Additionally, Ip € A such that d(p,r) <t +e. Thus,

d(p,q) < d(p,?“) +d(q,r) <Ss+t+ 2
and so g€ C(A,t+s). ]

Remark. Note that equality in Statement & is in fact false for general metric
spaces. However, it is true in the case of interest in this thesis: when (X, h)
is a Riemannian manifold and (X, d) is the induced metric space, via Theo-
rem 4.4. This is shown in the following proposition, together with the result
that the closure of the open ball is the closed ball, another statement which

is false for general metric spaces.

Proposition C.4. Let (X, h) be a Riemannian manifold, (%,d) the induced

metric space, via Theorem 4.4, and A< Y. Then:
1. C(C(At),s)=C(A,s+t) for all s,t>0.
2. B(p,t) =C(p,t) forallpe¥ and t >0..

Proof. We start by proving Statement 7: The inclusion € was already proven
in Proposition C.3. For the converse: Let g € C(A,s+t), so d(q,A) < s+t.
If d(q,A) <t then ge LHS. So, let w.l.o.g. d(q,A) >t. Pick ~, :[0,1] - X
piecewise smooth such that v, (0) = p, € A, 7,(1) = ¢ for all n and

L(vn) N d(g,A) <s+t.

We must have L(7,) > t for all n. For each n, let s, € [0,1] such that
L(7alf0,5,1) =t and let g, = 7, (s,) € C(A,t). Then:

d(Gn,q) < L(nl(sn11) = L) =L(Vnl[0,s,1) = L(n)—t ~ d(gq, A)~t < s+t—t = s.
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Thus d(C(A,t),q) <s and so g€ C(C(A,t),s).

To prove Statement 2: The inclusion ¢ is clear. Conversely, let g € C'(p,t). If
d(p,q) <t then we are done. So, let d(p,q) =t. Let 7, : [0,1] = X piecewise
smooth such that 7,(0) =p, v,(1) = ¢ and:

L(vn) ~d(p,q) =t.

Pick s, € [0,1] such that L(vn|f0,s,]) = t(1 - 1) and set ¢, = ¥,(s,). Thus
d(p,qn) < L(nlfo.s,1) = t(1 = 3) <t and so g, € B(p,t). Finally:

d(Q7Qn) < L(7n|[sn,1]) = L(fyn) - L(’Ynl[o,sn]) = L('yn) —-t+ t/n N 0.

So ¢, - q and q € B(p,t). O

Proposition C.5. Let X be a locally compact metric space. Given K ¢ X

compact, then there exists € >0 s.t. C'(K,¢€) is compact.

Proof. As X is locally compact, for each p € X choose ¢, > 0 s.t. C(p,¢,)
is compact. Then since Upex B(p,%’) is an open cover of K. By com-
pactness of K there exists a finite collection of points (p,)i<neny in K s.t.
Urcnsy B(pn, %) is an open cover of K. Thus

Ke U B 2)e U fm2).

1<n<N 1<n<N

Let € =min{e,,: 1 <n < N} and so

€ pny €
C(K’z)go(lg%vo(p"’ 2 )’2)

€ €
C C C N Pn _)
CKQN ( (Pns 57): 5
c U (0.5, %)
1<n<N 2 2
g U C(pTL?Epn)?
1<n<N

where we have used all the properties proven in Proposition C.3. The RHS

is compact as a finite union of compact sets and so the LHS is compact. [

117



Note that the previous proposition applies to the case of (2,d) in Propo-
sition C.4, as this is locally compact, as is any (finite dimensional) smooth
manifold. We would like to prove that, if K ¢ ¥ and C(K,t) is compact
then C'(K,t+¢) is compact for small e. However this is false in general, even
for locally compact metric spaces: for example let X = R\(0,1] with the
Euclidean metric and K = {0}. Then, C'(0,1) is compact but C'(0,1 +€) is
never compact for any € > 0. However, let the (locally compact) metric space
(2,d) be induced by a Riemannian manifold (3, ). Then, by the previous
proposition, if C'(K,t) is compact then C(C(K,t),€) is compact for small e.
Then, by Proposition C.4, C(K,t+¢€) = C(C(K,t),€) is compact, which we

state in the following corollary:

Corollary C.6. Let (X, h) be a Riemannian manifold and (3,d) the induced
(locally compact) metric space. If K ¢ ¥ and C(K,t) is compact for some
t >0, then C(K,t+¢€) is compact for sufficiently small € > 0.

We apply this in the following useful proposition:

Proposition C.7. Let (X,h) be a Riemannian manifold and (X,d) the in-
duced metric space. Let K be a compact set in ¥. If C(p,t) is compact for
allpe K, then C(K,t) = Uk C(p,t) is compact in X.

Proof. Let g, € C(K,t). So, there exists a sequence p, € K s.t. d(pp,q,) <t.
By compactness, there exists a subsequence p,, - p € K. We can take
w.l.o.g. p, = p. Then, for all € > 0 there exists N| d(p,q,) <t+¢e V¥n > N.
But C(p,t) is compact implies that C'(p,t +€) is compact for some €, by the
previous corollary. So ¢, € C(p,t+¢) for all n > N. Again, by compactness
there exists a convergent subsequence g, s.t. ¢,, — ¢ € X. By the closure of

C(K,t) proved in Proposition C.2, we have q € C(K,t). ]
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D Partial Differential Operators on Manifolds

In this section we shall mainly deal with the topic of partial differential op-
erators on manifolds, but we shall find it useful to first introduce smooth
measures on manifolds as these will be needed in the later parts of this ap-
pendix. In Section D.2 we discuss the concept of partial differential operators
(p.d.o.s) on manifolds and in particular define such terms as elliptic and for-
mally self-adjoint with the view to checking that these properties do in fact
hold for our p.d.o. A first introduced on p.20 in Section 3. We will then
define the LP spaces, distributions and Sobolev spaces in Section D.3, which
are used in much of this thesis. We have tried to give a fuller account of this
material than that found in the literature. In particular we have tried to use
only global notation and definitions, motivated by the approach of Béar et al.
[3] and Nicolaescu [22]. We shall not be including all proofs of the theory
in this section for brevity, especially those already to be found in Nicolaescu

[22] and Treves [36], but give full references.

D.1 Smooth Measures on Smooth Manifolds

In thus section we wish to give an account of the construction of smooth
measures on manifolds from volume elements (special types of densities), in
particular from pseudo-Riemannian metrics. This is well known and covered
in many books (e.g. Nicolaescu [22]), however one usually constructs a func-
tional on the space of test-functions and then invokes Riesz Representation
Theorem (Theorem 12.31 Driver [12]) to construct the measure if desired.
However, for completeness we would like to give here a more self-contained

and direct approach to constructing a measure.
We start by defining densities, not via giving the transition maps and
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invoking the Existence Theorem of Vector Bundles (Steenrod [33]), but by
giving its explicit construction (p.107 Nicolaescu [22]). We shall then define
volume elements, as certain types of densities, show how pseudo-Riemannian
metrics generate volume elements and subsequently show how volume ele-

ments generate smooth measures.

We first define densities on an n-dimensional manifold. Given a smooth

manifold M, let:

A | VoA - &
" st VoOey) = AV, (e,) for all e, € An(T,M)

where A"(T,M) is the n-th exterior product of the vector space T,M. Thus

|A|, is a 1-dimensional vector space. Now define:

A= U (. Al)-

peM

A density is then a map
VM- [A
p=Vy
s.t. V, e|Al, Vpe M.
Note that if w, € A»Ty M then define |w|, € [A|, by: |wp|(ep) = |wp(ep)|, which

makes sense since wy, € A"Tx M = (A"(T,M))*.

If (Uy, ¢o) is an atlas then we can write V' locally as: V =V, |dzl A...Adz?,
where z}, ..., 27 are the coordinates of ¢, and V,, : U, - R. We then define a

density to be smooth if V,, e C>~(U,) for all a.

Using these definitions we show here the transformation law for the co-

ordinates of a density. Given local coordinates z!, ..., 2" and y!, ..., y", then:
V =vldat A .oadz"| =0 |dyt A A dy".
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But as dy* = %dﬂ, then:

oyt . oy"
_ J
V=v aledxl/\.../\axjn

=’ |det (3_3/) dx' A ... Adz™
OxJ

o oy’
=0 det(axj)

v" and v’ = ’det (%)

oy’

dzI™

ldz' A ... Ada",

.

_ oy’
and so v = |det (%)

Definition D.1. A volume element on a smooth manifold M is a smooth
density such that given an atlas (Uy, o), then vy, > 0 for all a. Equivalently,
a smooth density V' is a volume element if for all p e M, V, : A*(T,M) —
(0,00).

Note that a pseudo-Riemannian metric (and a symplectic form) generate

a volume element. To see this note that the components of a metric transform

as: g, = g—g%@?glm. Thus:
oxl Oz™
det ¢/, = det - ——
Oxi\?
=det (ay]) det(gl])

So: |det g/,|'/? = ‘det(gz)

component of a density. Thus V, := |det(g;;)['/?|dz! A ... A dz™| is a (global)

|det(gi;)['/? and |det(g;;)|*/? transforms as the

volume element on M. Since on every manifold can be defined a Riemannian

metric then on every manifold there exists a volume element.

Before we state a theorem on the existence of a Borel measure w.r.t. any
volume element V', we prove a statement regarding Borel sets on the manifold.
Remember, that on any topological space (M, 7), the Borel o-algebra o(7) is

defined as the smallest o-algebra containing all open sets in the topology 7.
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Proposition D.2. Let (M, 1) be a topological space and U, be a countable
open cover of M. Given U € M, then:

1. For alln, o(my,) ={UnU,, Ueo(r)}
2. Ueo(r) iff UnU, €o(my,) for all n,
where Ty, s the induced topology of T on U,.
Proof. To prove 1: By definition of the induced topology, we know that if

U c M then:
Uer it UnU, €Ty, for all n.

We now prove that U € o(7) = UnU, € o(7y,). This then proves RHS ¢
LHS of Statement 1 and LHS = RHS of Statement 2. To do this consider:

[I:={UcMst. UnU,eo(my,) for all n}.

We check that II is in fact a o-algebra on M that clearly contains 7:
(i) ¢, M €Il

(ii)) Ue M=UnU,eo(my,) and so UcnU, =U,\(UnU,) € o(1y,) and so
Ueell.

(i) Uy, eI =U,,nU, €o(my,) for all m,n. Thus (U,, Un) nU, = U (Upnn
U,) € o(1y,) and so U,, Up, € I1.

Thus, if U € 7 then U nU, € 1y, € o(7y,) for all n and U € II. So we have
7 ¢ I1, which implies o(7) 11, i.e.

Ueo(r)=UnU,co(my,) for all n.

Now, let IT,, :={U nU, : U €o(7)}. We shall check that for all n, II,, is

a o-algebra on U, which contains the topology 7y .
(i) =, U, €ll,
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(ii) Ueo(r) = U\UnU,) =UnU, where U¢ € (7). So: U,\(UnU,) e
I1,,.
(iti) Upeo(7) = (UpnUn)nU, =Un(UnnU,) €Il,.
In particular we have that 7y, ¢ II,, and so o(7y,) ¢ II,, for all n. Thus
the remaining direction of 1 is proven. Now to prove that LHS < RHS of

Statement 2, let U € M and U nU, € o(7y,) for all n. Then by 1 we have
for each n: UnU, =V, nU, for V,, e o(7). Then:

U=UnU,)

n>1

=lJVunU,)

n>1

€o(7) (since U, € 7y S o(1y)).
[

The following definition is taken from p.332 of Folland [14], the definition

of a smooth measure on a manifold.

Definition D.3. A smooth measure on a manifold M is a Borel measure
w such that on any chart (U,¢) on M, du = fo;'(dN), where f e C(U),
f>0 and ¢;1(dN) is the push-forward of the Lebesque measure d\ to U along
¢t

Theorem D.4. Given a smooth manifold M with a volume element V', then

there exists a unique smooth measure p on M such that if (U, ¢,) is a

countable atlas of M then for all n € N:

plo, = vn (@)« (dN),

where v, € C*(U,) is the component of V in the local basis of densities

induced by the chart (Uy, ¢).
Furthermore, the following are true of p:
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1. Given any locally finite atlas (U, ¢n) and any partition of unity { f, :
fn€ C=(M)} subordinate to (U,), then for U eo(7), n(U) is given by:

u(m:;[¢

2. The measure p is Radon and regular.

: fuo dntvn 0 @yldN

n (UNUy,

3. The null sets w.r.t. p are independent of the volume element V. FEx-
plicitly, N € M is null iff there exists a countable atlas (U, ¢y) s.t. for

each n: ¢,(N nU,) is null w.r.t. the Lebesgue measure.

4. Bvery smooth measure on M arises in this way from some volume ele-

ment.

Note that according to Statement 3, the set of Lebesgue sets in M w.r.t.
i (the completion of o(7) w.r.t. ) is independent of the volume element

used to define pu.

We begin with a Lemma:

Lemma D.5. Given volume element V', charts (U,, ¢,) and (Up,, dm), f €
Cg (M) of compact support in U, nU,, and U ¢ U, nU,, Borel, then:

[ redtuesian= [ fogilunoqlax
on(U)

dm (U)

Proof.
[ Festusestan
on(U)
=f( )foaﬁ;f-vno¢>;1-|detD(¢mo¢;1)|*1ldetD(¢>mo¢;1)|dA
on (U
= [ Fodlumo gt det D(gm o6, ldA
on(U)
=f Fod L odldx
dm (U)
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Proof of Theorem D.4. We first prove uniqueness. As (U,) is a countable
cover of M then define V,, =U!'_, U, and Wy = V; and W,, = V,,\V},_; for n > 2.
So (W,,) is a countable cover of M by pairwise disjoint measurable sets. As

W, ¢ U, so pu is uniquely determined on each W, and so also on M.

In order to prove the remaining properties we shall first find an alternative
expression for our proposed Borel measure p. If p is a Borel measure on M
satisfying the condition, then if U ¢ M is Borel, (U,, ¢,) is a locally finite
atlas and {f, : f, € C®(M)} is a partition of unity subordinate to (U,),
then:

“(U)=fM]lUdu

= [ F)-1udn

=;fon.]lUdu

= ;fU fuLydu

D R EEACHNCY
—;fwn wo 8t Ly 0 9l 0 91N
:;fnwnmn(mf 295 n o 9
=2 gy om0l

We must show that if we take this final expression to define p, then it is

indeed a measure. So we are defining, for U € o(7):

TEEDY f Lo ¢l d

n(UnnU)
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If U =U,,U,, is a disjoint union of Borel sets in M, then:

=3 [

n(Unn(Um Um))

i zn: /n(umwnmUm)) In
) ; [Jm(¢n(UnﬂUm)) f"
) ; ;: '/n(UnﬁUm) f

%: Zn: _/H(UnmUm)
ZN(Um)

m

-1
n oo,
o ¢!
o ¢!

° ¢y,

0o by

U 0 Gt
v 0 ¢ tdA

U 0 ¢ 1dA

n © Gt dA

0 © Gt dA

So p is countably additive. Clearly we also have: p(¢) = ¢. Thus p is a Borel

measure on M. If U c U,, then:

=% [

(UnnU)

fno ¢t v, op td)

= / (Ul fnodnt vy o ¢ td) (using the Lemma)
=X [y o bntv o grldA
=f > fn o G U 0 frtdX

m(U) 7

- f V0 $-1dA
om(U)

Thus the main statement of the theorem and Statement 1 are proven.

Now to prove the remaining properties of .

To prove Statement 2, take a compact subset K of M. We will show

that u(K) < oo. Firstly, given any countable locally finite atlas (U, ¢,)

then as K is compact then K is covered by U,,, ...,

of unity {fy :

U, . Pick any partition

k = 1...N} of the submanifold U U,, subordinate to (Up,,).
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So fr € C~(M) with supp fr € U,,. Similarly to the previous parts of the
theorem, then u(K') is given by:

N . .
K)= E o .V, od d\
H( ) k:l'/d’ fk ank ng ¢nk

ng, (Uny NK)

N
>/ oo Gt Vi o Gt

k=1 (bnk(Unk )ﬁ¢nk (Kﬂsupp (fnk))

A
8

as each term is finite since ¢, (K nsupp (f,,)) is compact in ¢,, (U,, ) and
Je o ¢t Vi, 0 ¢p1d) is a Radon measure since d) is and all functions are
smooth. Thus p is Radon. That all Radon measures on a locally compact,
Hausdorff, second countable topological space are regular is a consequence

of Theorem 12.32 in Driver [12].

Property 3 regarding null sets follows easily from the above description

of u.

Property 4 follows from the Change of Variables Theorem (Theorem 21.1
of Driver [12]).
O

Thus according to the previous theorem, the set of smooth measures on
a manifold M can be identified with the set of volume elements on M. As
an aside, note that since the set of densities is the set of sections of a vector
bundle, so it can be given the structure of a Fréchet space. The set of volume
elements is then given the induced topology and the set of smooth measures
on a manifold will thus inherit a topology from the set of volume elements.
We conclude this section by defining some notation which is used in much of

the thesis.
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Definition D.6. If g is a pseudo-Riemannian metric on a manifold M, we
know that V, = |det(gi;)|"?|dzt A ... Adz™| is a volume element on M. Using

Theorem D.4, define dvoly as the Borel measure on M generated by V.

Note that most authors do not distinguish in notation between volume
elements and smooth measures. We do so here for clarity. In the next section
we shall define partial differential operators (p.d.o.s) and analyse the p.d.o.
A used throughout this thesis.

D.2 Partial Differential Operators and an Analysis of A

In this appendix we introduce the concept of a partial differential operator
(p.d.o.) on a smooth manifold M, following Chapter 10 of Nicolaescu [22].

Given two vector bundles E and F over M, define
Op(E,F) = L(T'(E),I'(F)),

that is, the space of linear maps from the vector space of smooth sections of

the vector bundle E to that of the vector bundle F'.

We shall now define the set of partial differential operators of order
at most n, PDOM(E,F). Firstly, define PDO(E,F) = T'(Hom(E, F)),
where Hom(E, F') is the homomorphism bundle between E and F. Re-
member that Hom(FE, F') is a vector bundle over M whose fibre at z € M
iss Hom(E,F), = L(E,,F,). Note that if T € I'(Hom(E,F)) and f «
['(E) then define T'f € I'(F) by: (Tf)(x) = T(x)f(z). Thus we view
TelL(I'(E),I'(F))=0p(E,F) and T'(Hom(E,F)) c Op(E, F).

Given f e C*~(M), define ad(f): Op(E,F) - Op(E,F) by ad(f)(T) =
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To f— foT and then set:
PDO™(E, F)
= ker ad™™!

={T e Op(E, F): ad(f1)ad(fs)...ad(fns1)T =0 for all fi,...fo41 € C(M)}
We define
PDO®(E,F):= PDO™ (E, F)\PDO" ) (E, F),
the set of partial differential operators between E and F' of order n.

In order to define the concept of an elliptic p.d.o. we first introduce the
principal symbol of a partial differential operator. It is covered in full detail
on p.430 of Nicolaescu [22]. If P e PDO™ (E, F) then for fi,..., f, € C°(M)
by definition ad(f1)ad(fs)...ad(f,)P € PDO°(E,F) = T'(Hom(E,F)). Tt
can be shown that for xy € M, the linear map ad(f1)ad(fs)...ad(f,)P|s, €
L(E,,, F,,) depends only on the values df;(zo) of the functions f;. Using the
fact that [ad(f),ad(g)] =0 for all f,g e C>(M), then we have a symmetric

multilinear map:
o(P)(xo): Ty M x ...xT; M —» L(E,,, Fy,)
1
(&1, &n) = —ad(fr)ad(f2)...ad(fu) Plao,

where df;(z9) = &. As shown on p.312 of Nicolaescu [22], as for any sym-

metric multilinear map, o(P)(x) is completely determined by its values on

{(&,....8): £eTy M},

Define 0,(P)(x0,&) = o(P)(x0)(&,...,£). Then for each (x¢,&) € T*M
and A € R:

Un(P)(x07£) € L(Ezana:o)
on(P) (20, A§) = "0 (P) (0, §)
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In fact,
o, (P)el(rm*Hom(E, F)) 2T (Hom(r*E,7*F)) = PDO’(n*E,7*F),

where 7*(E) of a vector bundle E over M is the pullback bundle (also called
the induced bundle) along the bundle map 7 : T*M — M, that is, it is a
vector bundle with base space T*M and its fibre at (zo,§) € T*M is E,,.
Additionally “¥” denotes a vector space isomorphism between the respec-
tive spaces of sections between isomorphic bundles (the induced bundle is

constructed on p.47 of Steenrod [33]).

It is important to note that if E, F, G are all vector bundles over the same
manifold M and P € PDO™)(F,G) and Q € PDO™(E,F) then Po(Q €
PDO™)(E G) (see p.428 of Nicolaescu [22]). With this notation then we
also have: 0,4, (P o Q) =0, (P)o0,(Q).

We shall now consider an alternative definition of PDO"(E, F') and define

an elliptic p.d.o..

Recalling that P € PDOM(E,F) then P € PDO"(E,F) iff 3fy,.., fa €
C>=(M) s.t. ad(fr)..ad(f,)P # 0. Since o(P) is reconstructible from o,(P)
then if one is zero then so is the other. Thus P € PDO"(E, F) iff 0,(P) #
Oe'(Hom(m*E,m*F)).

Definition D.7. The operator P € PDO"(E,F) is said to be elliptic if
on(P)(20,8): Eyy — Fy, is a linear isomorphism for all zog € M and § €

Ty MA{0}.

Remark. Clearly if P e PDO(E,F) is an elliptic operator then rank(E) =
rank(F).
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We shall now introduce some common partial differential operators be-
tween certain bundles, consider their principal symbols, recall the partial
differential operator A of interest to us in this thesis and show that it is of

second order and elliptic.

Given a pseudo-Riemannian manifold (M,g) (called semi-
Riemannian by O’Neill [23]), we define the partial differential operator div, €
PDOYTM,M). Here we denote by M the trivial bundle and by T'M the
tangent bundle. For the vector field X on M:

div (X)) :=trace(VX).

Note that V is the covariant derivative induced by g and so VX is a rank

(1,1) tensor. In fact div, is of order 1. Thus:
divy: I'(TM) - C=(M).
We will show that div, € PDOYTM,R x M). It is easily shown that
div,(fX) = fdiv,X + X(f). From this it follows:
dng(flfQX) = fldivg(sz) + fgdng(le) - flfgdngX
and hence ad( f1)ad(f2)(div,) =0 for all fi, fo e C>(M).
Thus div, € PDOM(TM,R x M).

To calculate the principal symbol of div, let f e C* with df (x) =& # 0.
Then:

o1(divg)(zo,§) = [ad(f)divg“xo
= [divgo f~ fodiv,]ls,
= df|$0
=T, - R

#0

131



Thus divy e PDOYTM,R x M).

We also define the p.d.o. grad, € PDOY(R x M,TM), also of order 1.
Given feC>(M):
grad . f = df|",
where #:T(T*M) - T'(T'M) is the “index-raising” map induced by the met-
ric g. Thus:
grad ;: C°(M) - T'(T'M)

Le. grad ; € Op(Rx M, TM). We now show that grad , € PDOM (RxM,TM).
It is easy to show that grad ,(f1f2) = figrad ,(f2) + fograd ,(f1), from which
it follows that

Jifogrady f3 = figrad fofs — fograd  f1f3 +grad g fifaf3 =0

for all f3 e C(M). Thus grad, is a p.d.o. of order at most 1. The principal
symbol of grad 4 is:

o1(grad ¢)(zo,&) = [ad([f)grad 4]z,
= [grad o f - fgrad ]|,
= grad , f (o)
oy
0,

where f e C~(M) satisfies df (x¢) = £ # 0. Thus grad , e PDOY (R x M, T'M).

Recall that the Laplace-Beltrami operator is the composition of these two

operators:

O, =div,ograd,;: C*(M) - C*(M).

We have [, € PDO®) (R x M,R x M), where R x M is the trivial real vector
bundle over M of rank 1.
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Remark. Note that, for the sake of definiteness, one can let C*(M) :=
C*(M,R), the space of real-valued smooth functions on M. We can also
define [, to act on C~(M,C), instead. One can either define it to act on
real and imaginary parts separately, or, in line with the above treatment, one
can first define grad , € PDOY(C x M, TMc) and div, € PDOY (T M¢,Cx M,
where Cx M is the trivial complex vector bundle over M and T'M( is the com-
plexified tangent bundle. Then [, = div, o grad,: C~(M,C) - C>~(M,C).

In this thesis, of fundamental importance is the partial differential oper-
ator:

A =-Vdiv,Vgrad), + m*V?% C®(X) - C*(%),

where (2, h) is a Riemannian manifold and V e C>~ (%, V' > 0.

Here we check that the p.d.o. A = -Vdiv,Vgrad,+m?V? on a Riemannian
manifold (X, ) used in this thesis is of second order, elliptic and formally
self-adjoint w.r.t. V-1dvol;,. The consequences of this last property is that the
linear operator A generated by this p.d.o. with the domain D(A) = [C5°(2)]
on the Hilbert space L2(X,V-1dvoly,) is symmetric.

First, by composition of p.d.o.s, again we know that A € PDO®) (X, Y).
To show that A is in fact of second order, we calculate its principal symbol

o9(A). Given f e C>~(X) with df (x¢) =& # 0, then:

02(A)(0,§) = —00(V) (w0, §) © 01(div ) (20, &) 0 00(V) (20, &) © 1 (grad ) (2o, €)
= =V (0)&V (o) &*
= =V (20)%(€7)
==V (wo)?llé]7: R > R

# 0,
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where |- |, is the inner product induced on each cotangent space T,,% by the
Riemannian metric h. Since V' > 0 and as h is Riemannian then & # 0 =

Il # 0. Thus A is an elliptic partial differential operator of order 2.

We shall now show that the p.d.o. A is also formally self-adjoint with
respect to the smooth measure V-ldvol,. We shall define here what we
mean by this (Nicolaescu [22]) but first give the definition of a (Riemannian

or Hermitian) metric on a (real or complex) vector bundle.

Definition D.8. (see e.g. p.167 of Bir et al. [3]) Given a real vector bundle
E over M, a Riemannian metric on E is a smooth choice of inner prod-
uct (-, (on a real vector space this is a positive definite symmetric bilinear
form) on each fibre E, for x € M. The choice is smooth if for all smooth
sections u,v € I'(E), the map x — (u(z),v(x)), is smooth. If E is a com-
plex vector bundle then a Hermitian metric on E is a smooth choice of
inner product (-,-), on E, for all x (on a complex vector space this means
a positive definite conjugate-symmetric sesquilinear form). The condition of

smoothness is as before.

Given a partial differential operator P ¢ PDO(E, F'), between vector
bundles F and F' (both with Riemannian metrics if real and Hermitian met-
rics if complex vector bundles) over a manifold M with smooth measure u,
then the formal adjoint P* of P w.r.t. u is a partial differential operator
P* e PDO(F, E), defined uniquely by:

[ (0 Po)ed= [ (P.6)pdn

for all p e I'(F) and ¢ € I'(F) s.t. supp ¢ nsupp® is compact in M.

Any p.d.o. P € PDO(E, F) between vector bundles F and F over M (with

Hermitian or Riemannian metrics) has, with respect to any smooth measure
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pon M, a unique formal adjoint P* € PDO(F, E). The proof of this for the
case when p = dvol, and M is oriented is the content of Proposition 10.1.30 in
Nicolaescu [22]. His proof generalises to the case of nonorientable manifolds.
Lastly, fixing a Riemannian metric g, any smooth measure p can be written
p = fdvoly for some smooth function f > 0. Denoting P the formal adjoint
of P w.r.t. g then it is shown: P* = f~1Px o f. Note that the formal adjoint
P* does depend on the choice of smooth measure ;1 although for brevity we

are omitting it from the notation.

If P is a p.d.o. from the vector bundle E' (with Riemannian or Hermitian
metric) to itself (i.e. P € PDO(E, E)), then P is called formally self-adjoint
w.r.t. the smooth measure g on M if £ = E*. In order to show that the p.d.o.

A is in fact formally self-adjoint w.r.t. V-1dvol;, we first need the following;:

Proposition D.9. Let (3,h) be a (not necessarily orientable) Riemannian
manifold. Denote by dvol, the smooth measure on ¥ generated by the metric

h (Section D.1). Then the following holds:

f df (X)dvoly = - f Fdivn(X)dvol,
b >

for all f e C(X) and all X € T'o(T'M), the space of compactly supported

smooth vector fields on M.

Proof. This results from an application of Gauss Theorem (Theorem E.4)
to the Riemannian case (here the manifold has no boundary: M = ¢) and

df (X) = div (£ X) - fdiv,X. O

The following proposition is therefore sufficient to show that A is formally

self-adjoint w.r.t. V-tdvoly,.
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Proposition D.10. Let A = -V div,V grad;, + m?V?, where (X, h) is a Rie-
mannian manifold and Ve C*(X), V >0. Then:

]£c4fhﬂ/*dvdh=Jéf(Agn/4dvdh

for all f,ge C(X).

Proof.

fZ(Af)gV_ldvolh:v/E—Vdivh(Vgradhf)gV_ldth+v/2m2v2fgv_1dV01h
:L@mew@mﬁémwmmm
:[EVdg(gradhf)olvolh+[EmZVfgdvol;Z
:/EVg(df,dg)dvolh+fEm2Vfng01h
=wawm@mm+Lmemm
=Ldf(Vgradhg)dvolh+_/Em2Vfng01h
_ /E — fdiv,,(Verad hg)dvol, + [; m2V fgdvol,

:LfM@VWmm
0

Thus the linear operator A on the real Hilbert space L?(X,V~tdvoly,) as
defined in Section 3 is symmetric, that is:
D(A) = [C5(2)]
A[¢] = [(-V D'V D; + m*V?)¢].
Additionally, consider now the case of the linear operator A on the complex

Hilbert space L2(%,V-tdvoly,) (the space of equivalence classes of complex-

valued square-integrable measurable functions). Since the partial differential
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operator A commutes with complex conjugation, that is: Af = Af for f €

C* (%) smooth and complex valued, then:

Amgv_ldvolh=—/E?(Ag)V_1dvolh

for all f,g € C§°(¥) complex-valued. Therefore, the linear operator A now

defined on the complex Hilbert space is also symmetric.

D.3 Definitions of L? spaces, Distributions and Sobolev

spaces on Manifolds

In this section, given any manifold M with smooth measure y and a vector
bundle 7 : E - M (with Riemannian metric if F is real and a Hermitian
metric if a complex vector bundle), we define the spaces LP(M, E, i) and the
Sobolev spaces W P (M, 1i). In order to give our preferred definitions we refer
to various constructions found in Nicolaescu [22], Bér et el. [3] and Treves
[36]. We adopt the approach of [3] in defining the spaces of distributions, and
apply this method to define the Sobolev spaces, globally and not via taking
the abstract completion of a normed vector space (c.f. Hebey [16]). Thus
we aim here to give a more intrinsic definition of the Sobolev spaces than
that found in Hebey [16]. Our treatment differs from Nicolaescu [22], who
in Section 10.2.4 defines Sobolev spaces on oriented Riemannian manifolds.
The manifolds we shall consider here may be nonorientable and have a both
a smooth measure (Section D.1) and Riemannian metric defined on them

(they are not necessary related).

We remind the reader that any pseudo-Riemannian metric g defines a
smooth measure vol,. This in turn defines a regular Borel measure on the

manifold M, also often denoted vol, (see Section D.1). Before we define
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the LP spaces we define the space of Borel measurable sections of the vector

bundle E:
I'gor(E) = {u: M - E Borel measurable s.t. u(x) € E, a.e.},

where FE, = 771(x) is the fibre of x € M and 7 : E - M is the bundle map.
Note that here “a.e.” refers to any smooth measure on M but is independent
of which smooth measure we take. Given a manifold M with a smooth
measure g and a vector bundle 7 : £ - M with a Riemannian metric (or

with Hermitian metric), then define the following spaces:

IP(M,E, 1) = {u Tpon(B) st [ u@)lly, du(x) < oo}/ .
L=(M,E) ={uelpy(F) st. 3C € R with |[u(x)||g, <C a.e. }/~
I’ (M.E) = {uerBor(E) st VK € Mo [ (o)l dp(e) < oo} / .

uelpy(E)st. VK. M 3CeR s.t. /

Lige(M, E) =
lu(x)||g, < C a.e. in K
Note the following:
1. The expression K €. M denotes that K is a compact subset of M.

2. || - ||z, denotes the norm on the fibre E, defined by the Riemannian

metric on the vector bundle F.

3. In each case, ~ denotes the equivalence relation on I'g,.(F): u ~ v iff
u = v a.e.. Thus each of the spaces just defined consists of equivalence

classes of Borel measurable sections of F.

4. If we set E to be the trivial bundle R x M then the above defines
LP(M, ) ete..

5. Of the above spaces only LP(M, E, 1) depends on the choice of smooth

measure p on M as the notation might suggest. This follows from the
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following lemma. In spite of this, we shall sometimes include a smooth
measure in the expressions for the remaining spaces, e.g. L (M, E, 1),

loc

when we are dealing with a particular choice of smooth measure p on

M.

6. For p € [1,00], LP(M, E,p) is a Banach space while L} (M, E) is a

Fréchet space.

Lemma D.11. Let p and \ be smooth measures on a smooth manifold M.

If K c. M, then there exists A,B >0 s.t. Au< A< Bpu on K.

Proof. Let h be a Riemannian metric on M. Let u = f dvol, and A = g dvol,,.
So f,g > 0 are smooth functions on M. Let A = minK% and B = maxg %.
So,
Ap = m}}n (%) f dvoly, = m}}n(g) dvoly, < g dvoly, = A\

and similarly for the remaining inequality. O]

Before we define the Sobolev spaces, we first describe some necessary
constructions from Bér et al. ([3] Section 1.1.2). We start with a different
but related definition of the formal adjoint of a p.d.o. from that given in
Section D.2. Given a partial differential operator P € PDO(FE, F') between
vector bundles E and F' over a manifold M with smooth measure p, then

the formal adjoint P* of P w.r.t. i is a partial differential operator P* €

PDO(F*, E*), defined uniquely by:
[ vtpsldu= [ (P)lsldu
for all p e 'o(F) and ¢ € To(F™).

The proof of existence is based on the proof of the corresponding con-

struction in Section D.2. Equip the vector bundles £ and F' with Hermitian
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metrics and denote I : T'(E) - I'(E*) and Ip : I'(F') - T'(F*) be the in-
duced isomorphisms. Note Ip € PDO°(E,E*) and Ir € PDO°(F,F*). It's
then shown that, denoting P}, the formal adjoint of P with respect to the
metrics just defined using the definition of Section D.2, P* = Igo P} o Il is
a formal adjoint of P. Uniqueness follows then by showing that if § € T'o( E*)
and [, 0[¢]dp =0 for all ¢ € Ty(E) then 6 = 0, which is proven by assuming
the contrary, picking a local frame of E, and corresponding coordinates of 6,
choosing an appropriate ¢ using a bump function and reaching a contradic-

tion.

We also need to define the spaces of distributions over a vector bundle
E. As ever, the analogy should always be with the construction of distribu-
tions on R, where they are defined as the continuous dual to the space of
test functions. Thus we must first define the space of compactly supported

smooth sections of the bundle E denoted:

[o(F)={uel(F) s.t. suppuc. M},

where suppu = {x € M:u(z) # 0 € E,}. We define a Fréchet topology on I'( )
(see Section 1.1.1 Bér et al. [3]). T'o(£), the space of smooth sections of E
of compact support is given a LF topology (see Chapter 13 in Treves [36]).
The dual to a LF space is a locally convex topological vector space, when

given either the strong or the weak topology.

We then define the space of distributions in E, denoted D'(M, F), as
the continuous dual to I'g(E*):

D'(M, E) = To(E*)’

The reason for the perhaps surprising occurrence of the dual bundle E*

in the definition is to ensure that if we pick out a smooth measure p on M,
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then we have the continuous linear injection ¢ : I'(E) - D'(M, E), given by

(i0)(8) = [,, 0(6)dp for ¢ € T(E) and 0 e To(E*).

The definitions of a p.d.o. guarantee that a p.d.o. is “local” (see Lemma
10.1.3 in Nicolaescu [22]) and the map P :I'(E) - I'(F) is linear and con-
tinuous, where I'(E) and T'(F") are given the Fréchet topologies previously
described. Restricted to compact sections we have: P : T'o(E) — I'o(F) is

then also continuous, where this time both spaces are LF' spaces.

Using this we extend (using the Corollary following Proposition 19.5
in Treves [36]) this map to the continuous linear operator P:D'(M,E) —
D'(M, F) by:

P(W)(¢) = W(P9),

for all W e D'(M, E) and ¢ € T'o(F'). In other words, we extend a p.d.o. P by
taking the transpose (in the sense of the transpose of a continuous linear map
between Fréchet spaces, e.g. Treves [36]) of the p.d.o. P* € PDO(F*, E*) (the
formal adjoint p.d.o. of P). We apply this construction to the k-th covariant
derivative V¥ € PDOF(K x M,T*M®*), where K =R or C. (See Definition
3.17 in O’Neill [23] and Example 10.1.19 in Nicolaescu [22] for the covariant
derivative and then compose it repeatedly with itself. Also see p.457 in [22].)
We will then find the extension V*: D'(M) — D'(M,T*M®*).

We first note that for any vector bundle £ (with Riemannian or Hermitian
metric) over the Riemannian manifold M, we have the following continuous

linear injections for all k£ € Nj:
LP(M, B, 1) 5 L, (M, E, 1) 3 D'(M, E)

given by: i1(u) = u and i(v)(¢) = [y, ¢(x)(v(x))dp(z) for u e LP(M, E, ),

1
vel,,

(M, E, ) and ¢ € ['y(£*). Since 1 is a smooth measure then according
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to Section D.1 it is also Radon and so the map i; is well-defined. Note that
both maps i, and i, are continuous linear injections though are not necessarily

embeddings.

Now we finally define for any Riemannian manifold M, equipped with a

smooth measure p, and for every p e [1,00] and k € Ny the Sobolev space
WHrP(M, 1) = {F € LP(M,p) s.t. V1< j <k integer: V/F € LP(M,T*M®j,,LL)}.

Note that if we had instead started with the k-th covariant derivative
vk e PDO*((Rx M) ® E,T*M® @ E), where E is a Riemannian vector

bundle over M, then we would have obtained the generalised Sobolev spaces

FelLP(M,E, 1) s.t. Y0<j <k integer:
ViF e LP(M,T*M® ® E, 1)

WHhP(M,E, 1) =

However, in this thesis we shall only need the usual Sobolev spaces W*?( M, p1).

Note that as usual, the Sobolev spaces are Banach Spaces with the norm:
k .
1FN = DIV Fllzo oz vrei oy
=0
for F e WHkP(M, ). Letting p = 2, one usually defines H¥ (M, p) := Wk2(M, u),
which is a Hilbert space with the (equivalent) norm:
b 1/2
||F|| = ZHV]FH%%M,T*M@a‘,m
=0
and the corresponding inner-product. Note that for all p € [1,00] and k € Ny,
we have the inclusion [C§*(M)] c WkP(M, ) (where [C5°(M)] is the set of

equivalence classes of test functions) and so we can define:

WP (M, ) =[G (M))],
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where we are closing [C5°(M)] in the topology of W*»(M, ) defined by
the norm || -|| just given. Thus, as a closed subspace of a Banach space,

WPP(M, 1) is itself a Banach space.

We shall also need to define the local Sobolev spaces W'ZIZCP(M ,1t). They
are defined very similarly to Sobolev spaces WkP(M, ) treated above. Fix
a Riemannian manifold M equipped with a smooth measure . Then, for

every p € [1,00] and k € Ny, the local Sobolev space is defined as :

k Fe Lfoc
Wil(Mp) =1
ViFel?

loc

(M, ) s.t. Y1 <j <k integer:
(M, T*M® 1)

We could then, similarly to above, define the generalised local Sobolev space,
but again, this is not needed in this thesis. Actually, we shall only need the
case of M = Q ¢ RV (an open subset) with the usual metric and Lebesgue

measure. For simplicity we shall denote the corresponding Sobolev space by

Wk»(Q) and the local Sobolev space by W)(Q).

Remark. The spaces W*r(Q) and W,2(Q) are also defined in p.50-51 in
Reed and Simon [28]. The defintions there agree with those here but not
the notation. The space W™2(IR") corresponds to the expression W,, used
there. Our term W;"»*(Q) corresponds to their expression W,,(Q). (In their
notation be aware that W,,(R") # W,, since the first expression is a local
Sobolev space and the second is not). In addition, note that the definitions
there extend the cases of W#»(Q) and I/Vl]f)f(Q) from integer k to arbitary
real k. For definitions more similar to our approach see Definition 10.2.33 in

Nicolaescu [22].

We wish to quote for completeness two theorems on Sobolev theory, which

were needed in the proof of Theorem 3.3.
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The first is an elliptic regularity theorem. It is Theorem 10.3.6 in Nico-
laescu [22].

Theorem D.12 (Elliptic Regularity Theorem). Let p € (0,00) and let P €
PDO™(E,E) be an elliptic p.d.o. from the vector bundle E (with Rieman-
nian or Hermitian metric) to itself, where E is over the Riemannian manifold
M. Fix a smooth measure p on M (for instance p = dvol,). Remember that
P can be extended to act: P: D'(M,E) - D'(M,E). Ifue L] (M,E,pn)
and Pu=ve W} (M,E, p), then ue W"P(M,E, ).

loc oc

The second theorem to be quoted is Theorem IX.24 in Reed and Si-
mon [28].

Theorem D.13 (Sobolev’s Lemma). If Q € RN is open and let T € I/Vle(Q)

oc

for non-negative integer k > N[2. Then, if | is a non-negative integer satis-

fying l <k —=N/2, then T is equal to a C' function.
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E Construction of Energy/Symplectic Forms

In this section we shall introduce the energy-momentum tensor associated
with a smooth function on a spacetime satisfying the Klein-Gordon equa-
tion. We shall then specialise this to a standard static spacetime. The
expression obtained shall be shown to agree with the energy-form introduced

in Section 9. Indeed this is why this form was chosen by Wald.

Given a spacetime (M, g), then a smooth function ¢ € C* (M) satisfies
the Klein-Gordon equation iff

(d, + m?)¢ = 0.

As can be found using Noether’s theorem, the associated Energy-Momentum
Tensor T[¢] is a rank (0,2) tensor, T[¢] e T'(T*M ® T*M), given in compo-
nents by:

1 * 1 * 1 (oa * *
T,uu[(b] = §vu¢ vu(b + §vu¢ vu¢ - §gmx(v (b VO'¢ - m2¢ ¢)
In coordinate independent form this is:

T[6] = 5 V6" 8 Vo + 190076 - 2g[V((V6")#) - m*6"],

where V: C*(M) — I'(T*M) is the covariant derivative generated by the
Levi-Civita connection of the metric g and #:T(T*M) - T'(TM) is the

“index-raising” map induced by the metric.

It is known from Noether’s theorem that the Energy-Momentum Tensor
T[¢] satisfies: v, T*[¢] = 0. For sake of completeness we now show this

directly, in coordinates.
[24 1#*1/ 11/>+u l,uzz T L% 2 1%
TH[P] = 5VH V" d+ SV P VIS = S g (V9 Vod —m 9" ¢)
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and
2 1 * 1% 1 * 1% 1 12 *
v, T [¢] = §vuv“¢ v ¢+§v“¢ YAV, ¢+§vuv O*V'o

1 1
+ iv”gb*v#v“gb - §gﬂ”vu(v”¢*va¢ - m2¢* )

1 1 1
= —§m2¢*v”¢ + §v“¢*vuv”¢ + §VMV”¢*V“¢

- %mQV”gb*qb - %g“”vuv”gzﬁ*vaqb - %gﬂ”w*vuw
1
- 59“”(—m2w¢>*¢ - m*¢*V,.¢)
- %V“WV#V@ n %VMVV¢*v/—"¢
~ %g"”vuv"qﬁ*vm - %ngw*v#m
— %VM¢*VMV”¢ n %VMV”QTV’@
- %v“v%*wd) - %V“WV”V,@
= %v”qﬁ*v#v”gﬁ + %vw%*v“cﬁ
- %v”v,@*v“q& - %v%*v”vuqﬁ
=0

Note that in the first equality we used the fact that we are dealing with
the covariant derivative defined by a metric connection and so Vg = 0 and
also V,g"” = 0. In the last equality we have used that V*V,¢ = V,V"¢ = 0
for all smooth functions ¢. This itself follows from the symmetry of the
covariant Hessian (Lemma 3.49 in O’Neill [23]) for the covariant derivative
of a symmetric connection and a second use of the fact Vg = 0. In particular
this is true for the covariant derivative defined by the Levi-Civita connection

of our metric.

The Energy-Momentum tensor is of most use when there exists on the

spacetime a Killing vector field &, since the field given in components as 77,
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will then be a divergence-free smooth vector field as:

Vu(&TH) = (Vu&)TH + &, (V,TH)

(
(V&) T +&,(V, ) (as TH = T)
0

’

since the first term V(,§,y is zero as a consequence of § being a Killing vector

field and Vv, T"" = 0 as shown above.

We shall next use Gauss’ Divergence Theorem. Before we state it we
mention here a well-known result that on the boundary OM of a smooth
pseudo-Riemannian manifold with boundary M such that g|gas is nondegen-
erate there exists a unique outward-pointing unit normal vector field N along
OM. Gauss’ divergence theorem is expressed in terms of this vector field. (In

this section we shall only require the Lorentzian case.)

Proposition E.1 (Existence of Normal to Boundary of a pseudo-Rieman-
nian Manifold with Boundary). Given a smooth pseudo-Riemannian mani-
fold with boundary (M,gq) such that gloas is nondegenerate at all points in
OM, then there exists a unique outward-pointing smooth unit vector field N

along OM such that N, is normal to T,,(OM) for all pe OM.

Remark. Thus N is a smooth map N:OM — T'M (between smooth manifolds
with boundary) such that mo N =id where m:T'M — M is the smooth bundle
map. By a unit vector X, we mean that |g,(X,, X,)| = 1 and similarly for a
unit vector field.

Note that even if M is connected OM need not be. Note that the metric
¢ has the same signature on each connected component of 9M (by the conti-
nuity of the signature which follows from Lemma E.3 and the fact that g|gas

is nondegenerate).
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The content of the proposition may at first sight be surprising since we
haven’t assumed the orientability of M or its boundary dM. However it
is precisely the concept of outward-pointing vectors on the boundary which
gives the preferred direction with which we define the normal vector field
N. Although this result is well known, for completeness sake and since it
cannot be found easily in the literature, we give a proof similar to that of
the proof of the existence of local pseudo-orthonormal frames in O’Neill [23]
(see after Corollary 3.46). It should be noted that the Riemannian version
of this proposition is given in Proposition 10.39 of Lee [18].

We begin by stating a proposition.

Proposition E.2. Let P be an m-dimensional smoothly embedded subman-
ifold of a pseudo-Riemannian manifold M (with or without boundary) such
that g|p is nondegenerate (dimM = mn). Then for all p € P there exists an
open neighbourhood U of p in P and n smooth pseudo-orthonormal vector

fields {X1,..., X,,} in M along U such that X, ..., X,, are tangent to P.

Proof. Given p € P, choose a pseudo-orthonormal set of vectors

{(Xl)m 3] (Xn)p}

in T,(M) such that
(X1)psees (Xon)p € T, (P).

(This is possible by for example Bishop and Goldberg [10] (Theorem 2.21.1).)
Pick a normal neighbourhood U € P with respect to the metric g|p. Define
the vector fields { X, ..., X;,} on U by parallel transporting in P along the
unique minimal geodesics in U between p and the other points in U. Define
{Xm+1, .-, Xy} by parallel transporting via the normal connection (see e.g.

Lemma 4.40 p.119 in O’Neill [23]). All the resulting vector fields are smooth

148



by the same argument as in O'Neill ([23] after Corallary 3.46). The vector
fields are pseudo-orthonormal as parallel transporting always preserves the

metric. L]

Proof of Proposition E.1. We first show uniqueness of such a vector field V.
From the following proof of the local existence of n will then follow its global

existence.

Since the boundary OM of M is a hypersurface (i.e. dimdM = dim M -
1) then for every point p € oM, T,(OM)* is one-dimensional. As g|sps is
nondegenerate, then g|r, o). is non-zero and we can pick N, such that
9p(Np, Np) = £1. Demanding that N, is also outward-pointing determines

it uniquely.

To show the local existence, apply the previous proposition to the embed-
ded hypersurface M in M. Since w.l.o.g. U is connected then the smooth
vector field X, is either inward-pointing or outward pointing. Switching the

sign of X, if necessary we then set N = X,,. O]

Lemma E.3 (The signature of a pseudo-Riemannian metric is locally con-
stant). Let M be a smooth manifold. Let g be a smooth symmetric nonde-
generate (0,2) tensor field (also called a pseudo-Riemannian metric). Define
the following function f on M. For p e M let f(p) be the number of diag-
onal elements that are +1 in the matriz representation of g in any pseudo-
orthonormal basis of T,(M). Then f is locally constant. The same result is
true if f gives instead the number of =1 terms. In particular the signature of

g 1s also locally constant and constant if M is connected.

Proof (O’Neill [23] (see after Corollary 3.46)). Note first that f is well-

defined as the number of +1 terms is independent of the pseudo-orthonormal
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basis. See for example Bishop and Goldberg [10] (Theorem 2.21.1)). Given
p € M construct a local pseudo-orthonormal frame as follows: Let U ¢
M be a normal neighbourhood of p and pick a pseudo-orthonormal ba-
sis {(X1)p,---(Xn)p} of T,(M). Extend these vectors to smooth pseudo-
orthonormal vector fields { X7, ... X, } by parallel transporting along the unique
minimal geodesics in U to points in U. If {Y7,...Y,} is another pseudo-
orthonormal frame on U then the number of fields Y; such that g(Y;,Y;) =1
equals the number of fields X; with g(X;, X;) = 1 since the both equal the
number of +1 terms in the matrix representation of g, for any point p € U.

Thus f is constant on U. O

Remark. Note that the content of this lemma is false if we relax the condition
of non-degeneracy of g. For instance multiplying any pseudo-Riemannian
metric by a bump function f in M yields a somewhere degenerate symmetric

(0,2) tensor field whose signature is not constant.

We shall need here and elsewhere in this thesis the following important
and well-known theorem. The oriented Riemannian case is probably the
most common (e.g. Lee [19]), though as we shall need both the nonorientable
Riemannian and Lorentzian case we shall quote here the yet more general
case for a nonorientable pseudo-Riemannian manifold. The statement of the
Lorentzian case is found in Theorem 1.3.16 of Bér et al. [3]. The general
nonorientable pseudo-Riemannian case is reached by application of Theo-
rem 7.2.15 in Abraham et al. [1] (the nonorientable Stokes” Theorem) and a

mimicking of Theorem 7.2.9 and Corollary 7.2.10 in Abraham et al..

Theorem E.4 (Gauss’ Divergence Theorem). Given a smooth pseudo-
Riemannian manifold with boundary (M,g) such that gloys is nondegener-

ate at all points in OM , then for all compactly supported smooth vector fields
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X in M:
fM div4(X) dvol, = '/aM eng(X, N) dvoly,,,,

where dvol, and dvol, are respectively the induced measures on M and

lonm
OM induced from the metrics g and glons. N is the unique outward-pointing
smooth unit vector field N along OM orthogonal to OM given in Proposi-

tion E.1 and ex = g(N,N) e C>°(0M) is locally constant with |ey| = 1.

Now returning to the construction of the Energy form we know that 717,
are the components of smooth vector field in M where € is a particular Killing
vector field on M. Specialising now to the class of spacetimes of interest here,
standard static spacetimes (M, g) = Rx X, V2dt?—h), then £ = % is the static
vector field and so in particular Killing. We shall consider the case where
the scalar field ¢ obeying the Klein-Gordon equation in M is compactly
supported. Thus the corresponding Energy-Momentum tensor T[¢] also has
compact support as also the vector field with components £¥T%. We shall now
apply the Divergence Theorem to this vector field and the smooth embedded
manifold with boundary [¢1,%2] x . With the induced metric, this forms a
Lorentzian manifold with boundary and the metric is clearly nondegenerate
on the boundary as it is negative-definite there. The boundary clearly has
two connected components: {t;} x ¥ and {to} x X. The outward pointing
unit normal N is Ny = V=12 on the former and Ny = =V-12 on the latter

ot ot

connected component of the boundary. Both vector fields are timelike so

EN; T EN, = 1.

Inserting all this into the Divergence Theorem, we obtain:

2

0= g(X, Ny)dvol,, + f{
t

g(Xa NQ)dVOlh7
{t1}xZ IxZ

or:

0 )
X, )V dvol :f X, =)V "tdvol,.
‘/{;l}ng( ’(‘%)V dvoly {tg}ng( 7&)‘/ dvoly,
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In components:

0 0
g(X, &) = (a HéVTuV[(b] = TOO[Qﬂ
1

= S06' 06+ SVIDIG Dig + SV,

and thus:

1 1 1
f (20,6060 + ~V2D'¢* Dy + ~m2V26* 6]V "dvol,,
(hyes 2 5 5

= 1 * 1 2718 4% ). 1 27 2 1% _1
- f{tg}xE[zat(b at(b—'_ 2V D ¢ DZ¢+ 2m V (b ¢]V dVOlh.

Thus if we define for each ¢t € R: E(¢, ¢)(t) = (s, d)s, + (01, Ady)s,
A = -V DV D;+m?V? and we are working in L?(%;, V~1dvol,) for each ¢, then

where

we have shown that E(¢,)(t) is independent of time when ¢ is a smooth

compactly supported solution of the Klein-Gordon equation.

It follows however by the polarization identity that defining E(¢, ¢')(t) =
(e, D)5, + (e, Adl)s, then E(¢, ¢')(t) is also independent of time. Replacing

A by Ag gives us the energy form as given in Section 9.

We shall now justify the expression of the symplectic form as given in Sec-
tion 10. Given two compactly supported smooth solutions ¢, ¢’ to the Klein-
Gordon equation define the smooth vector field X given by components: X# =
GVHP' — ¢'VF¢. In coordinate free notation this is: X = ¢(Ve')# — ¢'(Vo)7.
Then:

VuXH =V, 0V e + ¢V, V' =V, ' Vi)~ ¢’V VH o
= pVuVHY = ¢V, VY

= —m2pd +
=0.
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Since X is also compactly supported we can again then apply the Diver-

gence Theorem to the submanifold with boundary [t1,%2] x ¥: Again using:

0 0
x 2 ‘1d1:/ X. L yvdvol
f{mngx gV dvol= [ g(X, v vl

we have
[{n}xz[(bq‘y B qﬁlé]v_ldVOlh - f{tz}xz[¢<25/ - (b/QﬂV_ldvolh
and so
o, ¢")(t) = [¢¢’ - ¢’¢]V_1dvolh
{t}x2

= (¢t, $£>Zt - (ét, ¢£)Et

is independent of time (where the brackets refer to the inner-product in
L2(%:,V-tdvoly)). This is the form of the symplectic map as used in Sec-
tion 10 and also in Theorem 5.4, the important step in proving the existence

of the Wald solutions.

Proposition E.5. Let (M, g) be a spacetime and let X be a smooth timelike
vector field on M defining the time-orientation. If S € M is a smooth space-
like hypersurface in M then there exists a unique smooth timelike f.p. unit

normal vector field n along S.

Remark. Again, we haven’t the orientability of either M or S. Here, it is the

fact that (M, g) is time-oriented that allows us to construct n.

Proof. We first show the uniqueness of a tangent vector n, for p € S time-
like f.p. unit vector orthogonal to 7,,(S). Uniqueness of the vector field n
will then follow. If p € S then T,(S)* is one-dimensional in 7,(M). The
conditions of being unit and future-pointing determine a unique vector in

T,(5)"
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Existence is next to be proven. Given p e S let {Z1,.., Z,_1} be a pseudo-
orthonormal frame of (S, ¢g|s) defined on U < S open, with p € U. Thus
9(Z;, Z;) = —6;; as smooth functions on U. (Such a frame is easily defin-
able from any coordinate frame using the Gram-Schmidt orthogonalisation

procedure since g|s is negative definite as S spacelike.)

Define n on U by: n= X + Y1 g(Zi, X)Z;. So n is a smooth vector field

along U, such that n, is orthogonal to T,(s) for each p € U since:

9(n, Z;) = 9(X, Z;) + 3 9(Zi, X)9(Zi, Z;)
- 9(X.2;) - Y o(Z. X)d,
- 0.

n is a timelike vector field because:

g(n,n) = 9(X, X) + 3, 9(Z, X)9(Z5, X)9(Zi, Z;) + 2 3, 9(Zi, X)g(Zi, X)

=g(X,X) - ZQ(Zi,X)Q(Zz',X) +229(Zi,X)9(Zi,X)
=g(X, X) +2,9(Z:, X)g(Z:, X)
> g(X, X)

>0,

and n is also future-pointing as:
n—-1
9(n, X) = g(X, X) + 3 9(Zi, X)g(Zi, X) 2 g(X, X) > 0.
i=1
After normalising n, then it has all the desired properties. Thus we have
proven local existence. As usual, this together with uniqueness at every p € S

proves the global existence.
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Alternatively, if {Y},..Y,,_1} is another pseudo-orthonormal frame defined
onV ¢ S, then g(Y;,Yj) = —51']' and Zz = AUY] where 147414@]€ = A]ZA]% = Ojk-

The two frames produce the vector fields nz, ny along UnV. Then

ny =X +9(Z, X)Z
=X +g(A;;Y;, X)AiYs
=X +9(Y;, X)A;; Ay
=X +9(Y;, X)dYs
= X +9(Y;, X)Y;

=Ny.
Thus n is well-defined on all S. OJ

Proposition E.6. Let (M,g) be a Lorentzian manifold and X a smooth
timelike vector field on M. Then W (p) = {X,}* defines a smooth distribution
in M and around any point p there exists a pseudo-orthonormal basis of the

distribution.

Proof. Firstly, w.l.o.g. let g(X,X) = 1. Given p € M, let U € M be open
and {X1,...X,,} be a pseudo-orthonormal basis on U. So g(Xi,X;) = 1,
g(XZ,X]) = _5ij7 g(leXz) = O fOl" Z,j > 2

As X and X; are both timelike then g(X, X;) never vanishes in U. So

X =3, f;X; where f; are smooth functions on U with f; never vanishing.

Thus, since

Xi=fr'X - fit ) fiXi

122

Xi=(Xi-9(X, X)) X)+9(X, X;)X  fori>2,
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each element in one of the following sets is in the span of the other set:

{X1,Xs,..., X, }

{X7X2 _g(XaXZ)Xa“'7Xn _g(XaXn)X}

As the former set is a local basis of M then so is the latter set of vector fields.
Define Y; = X; - (X, X;)X i > 2. These vector fields satisfy: ¢(X,Y;) =
9g(X, X;) - 9(X, X:)g(X,X) = 0. Thus {Ys,...,Y,} is a local basis of the
distribution W. As also g is negative definite on W (p) = {X (p)}* then we
can apply the Gram-Schmidt orthonormalisation procedure to {Y3,..., Y, } to
form the vector fields {Zs, ..., Z,} with g(Z;, Z;) = —0;;. O
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F Green’s Function for the Closure of minus
the Laplacian on S!

We showed in Section 12.1 that in the case ¥ =S', V=1, m=0, Ais es.a.
and

D(A) = W22(SY) = {p e LX(S") st ¢/, ¢ € LX(SV))},
A([#]) = —[¢"] for [¢] € W22(S'). We wish to directly determine the spec-

trum of A by stating its eigenvalues, eigenvectors and determining its resol-

vents.

Proposition F.1. The spectrum of A is given by:
0(A) = 04is.(A) = {n*n e Ny}
We are using the chart: ¢:U = SY\{1} — (0,27), ¢~1(0) = expif, define the

function h:U x U x C\Z - C by:

2cos z(0 - @)
exp(—2miz) -1

h(0,¢;z) = ;—Z expiz|d — ¢| +
As {1} € St is clearly null, h generates a well-defined integral kernel.

Then h(6,¢;z) = h(B,¢:-z) and g(6,¢;\) = h(,¢:/\) is the Green’s
function for X € p(A) = C\{n%n € Ny} and g does not depend on the choice

of square root of A used to define it.

The eigenspace corresponding to the eigenvalue n?, (n € Ny) is spanned
by the vectors [¢Z], where ¢p£(0) = exp(xind). So dim Ey = 1 and dim E,,2 = 2
forneN.

Proof. Firstly check that

1 1
+ =
exp(-2miz) -1 exp(2miz) -1

_1’
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for all z € C\Z. Then:
0=expiz(f—¢)+exp—iz(6-¢)

1 1
+2cos z(0 - @) lexp(_Qm'z) 17 exp(2miz) - 1]

= expiz|f — ¢| + exp —iz|f - §)|

1 1
2 0~
+2cos z(0 - ¢) lexp(—%iz) i exp(2miz) — 1] ;

SO:

0—
expiz|d - ¢| + ef{;(()igfriz)qi)l = - [exp —iz|0 - ¢| +
2cosz(0 - o) ]

exp(—2miz) - 1

2cosz(0 - o)
exp(2miz) - 1

QL expiz|d — ¢| + S lexp—iz|6’—¢|+
Z p—

2cos z(0 - @)
2z ’

exp(2miz) - 1
and

h(ev ¢; Z) = h’(97 ¢; _Z)'

Thus, we are setting:

]

2V

Since for each fixed A € C\{n%n € N}, ¢, viewed as a function on (0, 27) x

g(0,¢;\) =

|:expi\/X|6 - P+ 2c0s VA(O ~ ¢) ]

exp(-2miv/A) - 1

(0,27), has a continuous extension to [0, 27 ]x[0, 27 ] then, for each A, g(-,+; \)
is bounded on U x U. Also, since S is of finite measure, then for each fixed
A, g(+,+; A) is a Hilbert-Schmidt integral kernel. (It can be shown that in fact
g(+,5;A\) is a continuous function of St x S for each A € C\{n?:n € N} and is
even smooth on ST x SY\{(p,p): p e S'}.) In particular G, defines a bounded

linear map (even compact) from L2?(S?) to itself as follows:
G L*(S") - L*(Sh)

(DO = [ 9(0,6:0)5(6)do
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(Clearly we are being sloppy here. We actually mean:

=1 90,6:0)/(6)ds].

We shall however adopt this same notation for all the examples here in the

appendix for the sake of brevity.)

We must now show that this is indeed the resolvent for A. So:

2VAGKNO) = [ expivA@-6) 1o+ [ expiv/A(6- 007 ()i

2 21
’ exp —2miv A - 1 fO o \/X(Q ~O @)

It not at first clear that we can differentiate this expression. We can
however evaluate its distributional derivative. We shall follow this procedure

in all the other examples too without further mention. We have

2AG) () = [ (VR expiv/A(0 - 6)1(0)do + 166
o [T VR esp VA -0 f(9)do - 68

9 or
S (N [ sin VA - 6) f(6)do
and
~2ivVAGA(f)"(0) = f09 ~NexpiVA(0 - ¢) f($)do +iV N[ (6)
+ j;% - expi\/X((/ﬁ - 0)f(d)de + z\/Xf(@)
2\ 2
exp-2miv/A - 1 fo o3 VX0 =) 1 (9)d0,

GA(f)"(0) = (-AGA(f) + 21 AVN)(6).

Note that we have shown that G\(f),G\(f) and GY(f) (viewed a priori
as distributions) are elements of L2(S'). And so Gy: L2(S!) » W22(S?) =
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D(A). Additionally:

—GA(f)"=AGA(f) = f
(A=-N(GA() = f
(A=) oG,y =id on L*(SY) for all A e C\{n*n eNy}

Therefore G is a right-inverse of A\ for A e C\{n2:n € Ny}. Now, to check

that it is also a left-inverse:
Let f e D(A) = W22(S!), then:

NG fo (0.6 \) f(0)do
= [ expi/AO - 6) 1 ()i + [ expiv/A(G - 6)1(6)do
), @

2 27 .
Ly, o [ cosVA@-0)f"(9)ds

= ["NexpivA® - ) f(9)do
+ [expiv/ M0 = ¢) /() + iV AexpivVA(6 - 6) (61§
o [T AepivAs - 0)1(0)s
+ [expiv/A(¢-0) /() =iV AexpivVA(6 - 0) ()17

2 2m
" exp —2mivA - 1 /0 oS \/X(e B
2

+
exp —2miv A -1

[cos V(O - @) f'(¢) - VAsin VA(O - ¢) f(6) ]2
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Thus:

/3 [ (0,605 (0o

=23 [ g(0.6:0)7(6)ds
+ £1(0) +iVAL(0) — expiv/ A0 (0) — iv/Aexp i/ A £ (0)
+expivVA(2m - 0) f/(27) — iV Aexp iV A (2 - 0) f(27)
SHOENIO)

. 2 cos V(O = 27) f'(27) =V Asin VA(6 - 27) f(27)
exp-2mivA = 1| —cos /A £7(0) + v Asin VIO F(0)

The boundary terms can be collected together and using the fact that f(0) =
#(2r) and f(0) = f(2m).

The coefficient of the f(0) term is proportional to:

(exp(=2miv/X) = 1) (=iv/ Xexpiv/ A — iv/ X expiv/ A (2 — 6)
+2(=iv/ Asin V(0 - 27) + VAsin VA9)

= —expiVA(0 - 27) — exp(=ivV/ M) + exp iv/ A0
+exp iV A(2m — 0) + 2isin VA(H - 27) — 2isin VM0

=0.
The coefficient of the f/(0) term is proportional to:

(exp(=2miv/X) = 1) (= exp iV A0 + expiv/A(2m — 6)
+2(cos VA(O - 27) — cos VA\0)

= —expiVA(0 - 27) — exp(=ivV/ M) + exp iv/ A0
—exp iV A(2m —0) +2cos VA(H - 27) — 2 cos VNI

=0
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Thus:
[T o060 @)0= 2 [ 9(0.6:0)£(0)do - 10)
[ 0.6 0= ) (@)do = 1)

Gro (A=X)(f) = [ for f e D(A)
Gyo(A-))=idon D(A)
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G The Self-Adjoint Extensions of minus the
Laplacian on (0,00) and Spectral Analysis

Consider the linear operator given by minus the Laplacian on the Riemannian

manifold (0, 00). More precisely, let:

D(A) = [C2(0, 00)] € L2(0, 00)
A([¢]) =-[¢"] Yo e C5 (0, 00)

This linear operator is symmetric on the Hilbert space L2(0,00), that is:
(¢, AB) = (Ap,0) Yo,0 € D(A). We also have that

1. The adjoint of A is: D(A*) = W?22(0, 00)

J— - W22 oo
2. The closure of A is: D(A) = WZ?(0, 00):= [C5(0, oo)]W © ), that is,

the closure of the domain of A in the norm of W?22(0, c0).

These last two statements are not trivial from the definitions of the closure
and adjoint of linear operators. It does follow from the definitions that:
D(A*) ={¢p e L?(0,00) s.t. ¢" € L2(0, 00)}, where the derivative is as usual in
the sense of distributions. However, W22(0,00) = {¢ € L?(0,00) s.t. ¢',¢" €
L2%(0,00)}. That ¢, ¢" € L2(0, 00) implies that ¢’ € L?(0, 00) also follows from
a more general theorem in Lions and Magenes [20]. Indeed, more is true:
¢ — ¢ is continuous as a linear map from D(A*) to L%(0, c0) (where D(A*)
is given the graph norm: [|¢|J%. = [|¢|]* + ||A*¢|* = ||9]|> +||¢”|]?). Thus in fact
|¢]|.ax and \/|@2 + [|¢||2 +[|¢”||* are equivalent norms on D(A*).

Statement (2) follows from the following. If A is a symmetric linear

— ——D(A*
operator on a Hilbert space, then D(A) = D(A)D( . (the last expression
denotes the closure of D(A) in the graph norm on D(A*)). The result then

follows from the previous discussion of equivalent norms on D(A*).
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We now follow the method of Reed and Simon [28] to construct all the
self-adjoint extensions of this linear operator. We start by constructing ex-

plicitly the form of the deficiency spaces H* =ker(A* ¥ I) ¢ D(A*).

By eclementary analysis, H* = ({[¢*]}) where ¢*(z) = 21 exp( (_%)x).

Now, since n* = dimH* = dimH~ = n~, then the self-adjoint extensions are

labelled by the group U(1) = {ueC: |u|=1}.

Given a unitary map U: H* — H~ we define the self-adjoint extension Ay
by the domain:
D(Ay)=D(A)+ (I +U)H".

Given v e C,|u| = 1, let U(u)(Ap*) = ul¢™ and thus let A,:= Ay(y. So:

D(A,) = {¢o + Xo* + Augp™: ¢g e D(A),\eC}
Au(o + Ap* + Mug™) = Ap +idd* —idug™.

Now we have an expression for the domains of our extensions we wish to
re-express them more familiarly in terms of their boundary behaviour. This

is the content of the following proposition:

Proposition G.1. Define the bijection {u € C: |u| =1} —» (-7/2,7/2] given

by u — a(u) where:

o) = cot~ [2-1/2 0 lu) - fyp gy 2 1
foru=-1

Then, in terms of this map:

D(Apy) = {¢ € W**(0, 00): cosa(u) ¢(0) =sina(u) ¢'(0)}.
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Proof. Letting ¢ = ¢g + Ap* + Aug~ € D(A,), then:
B(0) = A2 +ur21 = 21 \(u + 1),
F(0) = (1= w)i =1~ u).
Eliminating \ we get:
214/ (0)(u+1) = p(0)27 (L~ u)i~ 1 - u)

and so
V26" (0)(u+1) = p(0)((1 —u)i-1-u).

If w+ -1 then

#(0) =2 LT )

(1-uw)i-1-u
u+1

where ~ = 271/2 =~*. Using the fact that u* = u~! it is easy to show

that v € R. Reformulating this condition we have:

¢'(0)  ~v9(0)
(L+92)12 (1+A2)1

which can then be put into the form

cosa ¢(0) =sina ¢'(0),

where o € (=1/2,7/2], cotav =y = 2-V/202ELw 1g — 1 then 0 = ¢(0)(26)

u+1

so ¢(0) =0 and cosa ¢(0) = sina ¢'(0) is satisfied as a(-1) = 0.

We have shown one direction of the inclusion. For the other: if u = -1
and ¢ € RHS, then let A = —i273/¢/(0) and 6 = ¢ — (I + U)(\¢*). An easy
computation shows that #(0) = 6’(0) = 0 and so by Theorem 12.2, then
0 € W22(0,00) = D(A) and ¢ € LHS.

If u+-1and ¢ € RHS then let A = 27/4(1 +u)"'¢(0) and 6 = ¢ — (I +
U)(A¢*). Again it is seen that 0 € W?22(0,00) = D(A*) and 6(0) = 6'(0) = 0.
Thus by Theorem 12.2 6 € D(A) and ¢ € LHS. O
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Conclusion: the self-adjoint extensions of the linear operator A are in-

dexed by U(1). Given a € (-7/2,7/2]:
D(Ay) ={p e W*2(0,00): cosa ¢(0) = sina ¢'(0)}.

Now, given the precise form of the self-adjoint extensions A, we determine

their spectra and resolvents.

Define p(A,) = C\o(A,), where:
U(Aa):{ [0, 00), o € [0,7/2].
[0, o) u{-cot*a}, ae(-7/2,0).

We define 0 (A, ) and p(A,) in this way for brevity. We show in the following
that they are the spectrum and resolvent set of A, respectively. For fixed
a € (-m/2,7/2], define the Green’s function, g:(0,00) x (0,00) x p(A,) - C
by:

g(x,&,N) = A[cosasin(\/X:Q) + /\sinacos(\/X:Q)] exp(z'\/X:z:>),

where A = [V A(cosa - iv/Asina)]™!, o, = max{z,&}, 2. = min{z,&} and
VA = a+bi, b>0 is the unique square root of A in the upper-half plane
(possible since A ¢ [0,00)). This function is given on p.487 of Stakgold [32].
Alternatively to the methods applied there we shall check directly that this

defines the resolvent of A,.

Fix a € (-7/2,7/2] and X € p(A,). Given a function f € £(0,00), define
Ga(f): (0,00) - C by:

(D@ = [ 9@ e N F(©)de.

We will show that this function G,(f) is the resolvent for the linear

operator A,. However first we discuss some relevant functional analysis,
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that is, the definition of a Holmgren kernel, after which we show that the

function g defined above is such a kernel.

Definition G.2. (See Stakgold [32] p.324) Given a measure space (M, 2, 1)
then a Holmgren kernel is a measurable function k: MxM — C s.t.: 3C € R
s.t. for allme M:

[ e [ dali(a.©)lk(m) < C

Proposition G.3. A Holmgren kernel defines a bounded linear map K: L2(M) —
L2(M) according to the prescription:

K@) = [ k@ Ou(@)de.

It generates a bounded linear map K': L*(M) - L*(M) via K'([u]) =
[K(u)]

Proof. We first must show that Ku: M — C is a measurable function and
that if uy,us: M — C are measurable functions almost everywhere equal then
K (uy) = K(uy) almost everywhere. In fact it will be sufficient to show that
if w =0 a.e. then K(u) = 0 everywhere, which itself follows from standard

properties of Lebesgue integration.

We now show that K maps £? functions to £2 functions and in fact is a
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bounded linear map of the semi-normed space £2(M) to itself:

/de|(Ku)(x)|2:fdx fMdék(a:,Ou(é)
< [ an| [ de e 1Pl 1 Pu(e)|
< [ do [ dclk@ol [ dnlrGe.m)lutn)iay
- [ dnluo)? [ de [ do k(@ Ok, m)

<C fM dn lu(n)P?
= C|ln|>

2

Thus K generates a bounded linear map from L?(M) to itself. O

Lemma G.4. A sufficient condition that a measurable function k: M x M —

C is a Holmgren kernel is that it satisfies:

fMdg k(2, )| < C for all e M

/de |k(z,8)| < C for all € € M.

Proof.

[, € [ de k@ Olknl = [ delkGem) [ d k.6
<C [ do k()
<C?

]

Thus for instance if k satisfies [, d¢ |k(z,&)| < C VYo e M and k(z,§) =
k(&,x) Vax,& then k is a Holmgren kernel. It is this case that will be of use

to us in determining the spectra of the self-adjoint extensions A, of A.
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Proposition G.5 (The Green’s function is a Holmgren kernel). Recalling

the Green’s function:
g(x,&N) = A[cos asin(VAz.) + VAsina cos(V Az ) ] exp(iVAz,).
Then g is a Holmgren kernel.

Proof. We have already seen that g(x,&;\) = g(&,x,;\)) Va,€ € (0,00), thus

we only have one integral to evaluate:

JANENNE
= |A| fooo [cos asin(vVAz.) + VAsin a cos(V Az )] exp(iv/ Az, )|de
= |A| /Ox I[cos asin(VAE) + vV Asin a cos(VAE) ] exp(iv/ Az )|dE
+|A] foo [cos asin(vVAz) + VAsin o cos(VAz)] exp(ivVAE)|de
= | 4| fox [[cosasin((a +b)E) + (a +ib) sinacos((a +ib)&) | exp(i(a + ib)x)|dE
+|A| /oo [[cosasin((a +ib)z) + (a +ib) sinacos((a +ib)x) ] exp(i(a + ib)&)|dE
< |Ale™|cos o f " sin((a + ib)6)|dE + |Alet|(a + ib) sin al / " cos((a + ib)E)|de
0 0
+|Al| cos asin(a + ib)z| f exp(—b&)d¢
0
+|A||(a +1ib) sin cos(a + ib) x| / exp(—b&)d¢
~ |AJe™*| cos a [ " sin((a + ib)E)|dE + |Ale™|(a + ib) sin o f " cos((a + ib)E)|de
0 0

+ |Al| cos asin(a + z’b)x% exp(=bx) + | Al|(a + ib) sin & cos(a + z’b)x% exp(—-bz)

< |A||cosoz|g +|A]|(a +ib) Sina|g + |A||COSO¢|% +|A]||(a +ib) Sinoz|1
e e

b
V2

gﬂ(—+|a+ib|£+1+|a+ib|)
b e e

V2

e

V2

e

_ 14 .
—7(1+ )(1 + |a+1ib])

_@ + + 1/2
=1 21 ),
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where we have used the four inequalities of the following lemma.

Lemma G.6. The following are true for all z,b> 0:
1. ePe|sin((a +if)z)| < 1.
2. 7| cos((a +iB)z)| < 1.
3. e [ |sin[(a +iB)¢]|dE
4. e [ cos[ (o +iB)¢]|dE

2

s 56

2

IN

Proof. For the first inequality, we have

e 2| sin((a +iB)x)|* = e 2*|sin(ax) cosh(Bx) + i cos(ax) sinh(Bx)|?
= 727 [sin? () cosh?(B2) + cos? (o) sinh?(Bx)]

_ o2 (1-cos?(ax))(1+ sinhQ(ﬁx))

+cos?(ax) sinh? ()

= ¢727[1 4 sinh?(Bz) - cos?(ax)]

1 1 1
< -2Bx 1+ = 2Bz + = -2z _ —
| 1€ 1° 2]

1 1 2Bx 1 -4Bx
4 26 46
<1.
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Similarly for the second inequality. Now, for the third inequality:

e Jlsnl(as i8)Edg = e [[7(14simh(5) - cos?(a))
< e P fox(2 +sinh?(B¢)) Y2
<ehr [0 "(V2+ sinh(8¢))
=PV (e

= e P [Vor + ieﬁz + ie_ﬁx - l]

2/ 2f B
1 1 1
= \/ﬁze‘&” b — 4 —e 2P _ _ B
26 26 B

V2 1 1 1

“Be 23728 B
2
-2

Where we have used the simple inequality (a? +b2)'/2<a+b Va,b>0. The

fourth inequality follows similarly. ]
We now show that:

Proposition G.7. For each a € (-7/2,7/2], the Green’s function for A, is
the function g:(0,00) x (0,00) x p(A,) = C defined above as:

g(x,&,)) = Alcos asin(V Az ) + VAsin o cos(V Az )] exp(iv/ Az ),

where A = [V A(cosar — iv/Asina)]!, z, = max{z, &}, z. = min{z,&} and
VA = a+bi, b> 0 is the unique square root of \ in the upper-half plane
(possible since A ¢ [0, 00)).

Proof. Recalling,

Ga(f)(x)=A /m[cosasin(\/X:r<)+\/Xsinacos(\/X@)] exp(ivVAxs) f(€)dE
0

we show here that (Aq = AI) o G = I12(0,00)-
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Note first that for fixed x, the term in the square brackets is a bounded
function of ¢ and the remaining two terms are square integrable. Thus the

integral converges absolutely for all x € (0, c0).

GA(f)(0) = AV Asina [ exp(iv/A) f(€)dE

Gr(f)(x)=A '/Ox [cosozsin(\/XS) + \/Xsinacos(ﬁﬁ)] exp(ivAz) f(€)de
+A fxoo [cosasin(\/Xm) + )\Sinacos(\/Xx)] exp(ivVAE) f(€)dE

ATGL(f) (2)

—iv/X [ [cosasin(V/AE) + VAsinacos(VAE) | exp(ivAw) £(€)de
n :Cosasin(\/Xx) + Asmacos(\/Xx)] exp(ivAz) f(z)
+[VXeosacos(vAz) - Asinarsin(vAz) | / " exp(iVAE) F(€)de

- :cosozsin V) + )\sinacos(\/Xx)] exp(ivV\x) f(x)
= ivVA fox [Cosasin(\/Xf) + /\sinacos(\/XS)] exp(ivx) f(€)de
+ i\/Xcosacos(\/Xa:) - Asinasin(\/Xz)] [:O eXp(i\/Xf)f(f)dS

Thus in particular: G(f)’(0) = A\/XCOSO(]OOO exp(ivVAE) f(€)d€ and so

cosaG(f)(0) =sinaG(f)(0).

Thus Gy: L2(0,00) - D(A,) for A € p(A,). We now show that G is actually

the Green’s function of A,. Differentiating again we have:

A7) () = A /O [cosasin(vA€) + VAsinarcos(vVAE) | exp(iv/Ax) £ (€)de
+iv/X[cosasin(vAz) + VAsina cos(VAr) | exp(ivAz) f ()
+[Acosasin(vAr) - AV Asinacos(vVAz) / " exp(iVAE) F(€)de
— [VAcosacos(vVAx) - Asinasin(vVAx) | exp(iv/Ax) £ (x).
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Thus:

—GA(f)"(x) = AGA(f)(z)

4 iﬁ(cosasin(\/xx)+\/X‘sinofcos(\/xt)) exp (/o) £ ()
| - A cos avcos(VAz) + Asin asin(vVAx)

VA cos a(-cos(vVAz) +isin(vAz)) .
- exco(iv/3e) f(x
i +Asin (i COS(\/X];) i Sin(\/Xx) ] p( ) f(x)

=-A :— X\ cos avexp(—ivAz) + Asin qi exp(—i\/X:L’)] exp(ivVAz) f(x)

=-A :— )\cosa+)\isina]f(:l:)
:A\/X[cosoz—i )\Sina]f(x)
:f(l’),

and s0 (Ao = AI)(GA(f)) = =GA(f)"(2) = AGA(f) = f V[ e L2(0, ).
Now, to prove that G o (Ay = AI) = Ip(a,). Let ¢ € D(A,), then

GA(Au9)()
-a " 92,60 (Aad) (€)dE
A fo " (@, € N8 (€)de
=-A [ [eosausin(vw) + Vsinacos(VAw) |exp(iv/Ae )" (€)dé

And:
~AT G (An0) ()
= fox [cosasin(ﬁf) + \/Xsinacos(\/Xf)] exp(ivVAz)¢" (€)de
+ fxoo [cos&sin(\/Xx) + )\sinacos(\/Xx)] exp(z’\/Xf)d’(f)dg

We shall proceed by integrating by parts so as to convert the ¢” term into

¢. Doing so will produce various ‘boundary terms’, some of which will can-
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cel, whereas others will cancel upon imposition of the boundary conditions.
We shall consider the two terms in the right-hand-side of the last expression

separately at first for simplicity.

Thus the first term is proportional to:

fo [cosasin(vA€) + VAsinacos(VAE)| ¢ (€)de
= [(cosasin(v/A¢) + VAsinacos(VAE)#'(€) ||
- [0 " [VXcosacos(VAE) - Asinasin(vAE)] (€)dé

= (cos asin(VAz) + VAsina cos(VAz) ' (z) = VAsin ag’(0)
- [(VAcosacos(vAg) - Asinasin(VA)6(€) |
. [0 “[Acosasin(vAE) - X2 sin a cos(VAE) | 6(€)de

= (cosasin(vVAz) + VAsin o cos(VAz) ¢ () - VAsinag’ (0)
~VXcosacos(VAz) + Asinasin(vVAz) ¢ (z) + VA cos ag(0)
A fo [cosasin(vA€) + VAsinacos(VAE)| 4(6)de

The second term is proportional to:

| eplivaee )

~[exp (VA (O] = iVA [ exp(iVAH ()
= - exp(iVA2)¢'(2) VA [exp(VAO)HO)]T = [ expivAE)(€)de
- - exp(iVA2)¢'(2) + VA exp(iVAD)B(r) = A [ exp(iVAEH(€)d
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Combining these terms we find:
~ AT GA(Aud) (2)

(cosasin(VAz) + VAsinacos(v/Az)) ¢/ (z) - v Asinag’(0)
= exp(iVAz) | —v/Xcosacos(vVAx)(z) + Asinasin(vVAz)é(x) + VA cos ag(0)
A Jy [cos asin(vVAE) + VAsina cos(VAE) | p(€)dE
+ (cosasin(v/Az) + VAsina cos(VAz))x
|- exp(ivAn)s (@) + iV Rexp(vA)o(a) - A [ exp(ivAQo(€)de]
Cancelling, we therefore get that
~AT G (Aad) (2) =

cos asi )¢ (z) + VAsin x)¢'(x)

—cosasi T ¢'(IB)—W

exp(iVAz) | =V Acosacos(vVAz)d(z) + Asinasin(v/Az)d(z) + VA cos ap(0)
+iv/Acos asin(VAz)(x) + iv/Asin a cos(v Az ) p(x)

I —VAsinag’ cos ag(0)

-A [OI [cosozsin(\/Xf) +VAsina cos(\/XS)] exp(ivAz)¢" (€)de
-A /;O [cosasin(\/X:v) + )\sinozcos(\/Xx)] exp(iVAE) " (€)de

- exp(iv/a) l —/X.cos a(cos(VAz) —@sm(\/Xx))gb(x)
+isin a(cos(VAz) —isin(vz))o(z)

)Y fo " [cosasin(vAx.) + VAsina cos(VAxo) | exp(iv/Ar )¢ (€)d
= [-VAcos ag(x) + irsinag(x) | - NATLGA () ()
= -A7p(2) - NATIGA(¢) (v)
Consequently, G (Aa0)(x) = ¢(z) + A(Gx(¢))(2) and so
GA((Aa = A)9) = GA(Aad = AD) = Gi(Aad) = AGA(9) = ¢ V€ D(A,).
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Therefore (G is the inverse of A, — A as required. It follows from Proposition

G.5 and Proposition G.3 that GG is a bounded linear operator. O

Having proven that G is the Green’s function for A, at \ € p(A,), we
shall show that p(A,), defined earlier, is contained in the resolvent set for
A,. We shall then proceed to prove that [0,00) C 0eont(As), the continuous
spectrum of A,, for all « € (-7/2,7/2] and that for a € (-7/2,0), we have
{-cot?a} € 0,,(A,). Combining all these together yields:

0,00), ae|0,m/2].
PR ACES 0,7/2
[0,00)u{-cot?’a}, ace(-7/2,0).
and
1. 0eont(As) = [0, 00) for all .
2. If a€f0,%]: 0(Aa) = 0cont(Aa) = [0, 00).

3. If ae(=5,0): 0pp(As) = 0aisc(An) = {-cot?a}.

We first remind the reader of the decomposition of the spectrum being
used, before proving these statements. Let A be a closed linear operator A

on a Hilbert space H and A € C. Then we define

Aeo(A)iff A- X is not invertible (to a bounded linear operator H — H).
A€oy, (A)iff A-Xis not injective: 3p € D(A)\{0}: Ap = Ao.
A € Oeont(A) iff A= X is injective and Im(A - \) is a proper dense subspace of H.

A €0,e5(A) iff A— X injective and Im(A - ) is not dense in H.

o(A), 0pp(A), 0eont(A) and 0,..5(A) are respectively called the spectrum, pure

point spectrum, continuous spectrum and residual spectrum of A. Note:

0(A) =0pp(A) Udeont(A) Uores(A)
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A necessary and sufficient condition for A € o.:(A) is that A— )\ is injective
and Ac >0 s.t. [|[(A-N)z|| > c||z|| Yoe D(A). This is clear as the continuity
of the inverse would contradict this statement. Thus if A — A is injective,
then \ € o.ons(A) iff there exists a sequence (uy,)n»1 in D(A)\{0} with:
(A = Nun]
[

Proposition G.8. [0,00) € 0oni(As) for all ae (-m/2,m/2].

—>0asn— o

Proof. (We shall be using the methods of Stakgold [32]). Given A >0, we de-
fine u, as follows. Pick F'e C2[0,1] s.t. F(0) =/ Asin o, F’(0) =V Acos a
and F(1) = F’(1) = 0, where /A > 0. Define the sequence of functions

cos asin VAz +VAsin acos Vzr, 0<z<l,
un(r) =4 F(x-1,), ln<x<l,+1

0, z>1,+1

It is readily seen that u, € D(A,) for all n and:

Ay, 0<x<l,
Agun(z) =1 -F"(z-1,), l,<x<l,+1
0, xz>1,+1.

Thus:

ln In+1
||un||? = / (cos asin VAz +VAsin acos VAz)2dz + [ F(x-1,)%dx
0

In
L Ly -
= —cos”al,, + =Asin aln+f Fedx
2 2 0

and:

1(Aw = N | = [ll"”(-F"(x 1) - AF(z-1,))dz

n

= —/Ol(F"(x) + AF(x))%dw
=C
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Thus
[(Aa = Nua* C

= —
[lwnll? L(cos?a + Asin2a)l, + [, F2dx

as m — oo.
We show similarly that 0 € 0o (Ay) for all a:

Let F,G € C?[0,1] satisfy: F(0) = F'(0) = G(0) = 1, F(1) = F'(1) =
G'(0) =G(1) =G'(1) =0. Then define

T cos a+sin «, 0<x<n
un(x) =1 ncos aF(E2) +sin aG(E2), n<z<2n
0, x22n

It follows that w, € D(A,) for all n and:

n? cos® a (3 + IS F2dz) + n?sin 2o (fol FGdx +1/2)

O
+n sin a(l + Gde)

and:

1 rl
| Aqun|* = = f [n?cos? aF" +sin? aG" + nsin 2o F"G"dx.

n Jo

[Aqun|?

[l

1 . 1 . 1
n?cos? o [, F'dx + sin Jy G"dz +nsin2a [, F"G"dx

 nicos? a3+ [01 F2dz) +n3sin Za(fo1 FGdx +1/2) +n2sin® a1 + fol G2dxr)

— (0 as n - oo.

Note that we can check the last statement in the two cases: « # 7/2 and

a=T7/2. O

The previous statement, regarding the pure point spectrum of A, for

a € (-m/2,0) is easily proven as follows:
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Lemma G.9. For a € (-m/2,0), we have —cot* a € 0,,(Aq).

Proof. Fixing a € (-7/2,0), let ¢,(x) = exp(zcota). Then as cota < 0,
we know [¢n] € L?(0,00). Clearly [¢p,] € W22(0,00) and cosa ¢, (0)
cosa = sinacota = sina@! (0). So, [¢a] € D(A,) and A,[da] = —[¢"]
—cot?a [Pa]. O
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H The Self-Adjoint Extensions of minus the
Laplacian on (0,a) and Spectral Analysis

Given 611,05 € R, 015 € C denote the self-adjoint 2 x 2 complex matrix

g = fll 912 '
012 6)22

The domain of the extension D(Ay) is defined as those elements ¢ € W22(0,a)
such that:

0110(0) = ¢'(0) + 126(a) =0
0120(0) + O326(a) + ¢'(a) =0

Proposition H.1. The Green’s function for the s.a.e. of the first kind for
A€ p(Ag)\{0} is given by the following.

9(x,y; A)
A\ cos \/X(a - 5)cos VAz< + 0397/ N sin \/X(a — T )Ccos vz
= A| +0;,V\cos \/X(a — x5 )sin VAZ < + 011609 sin \/X(a — x5 )sin Vz.
+0122sin VA (25 — a) sin vz + C(,y) (12)VAsin vV (z. - )

where:
PR, 0117/ A cos vV Aa + O/ A cos VAa - Asin v Aa
+911822 sin \/XCL - |012|2 sin \/Xa + 2%(912)\/X
and for k e C:
k if x <y.
C(x,y)(k) =1 _
k if x> y.

Remark. We have not specified which square root /A to take as it can be
seen that the expression for ¢ is invariant under replacing VA with —v/\.
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Proof. We first show that, for each § and X € p(Ay), Ga: L?(0,a) - D(Ay).
By definition:
AN = [ gy Ny,

and so

GA(f)(0)
=f0ag(0,y;k)f(y)dy
= A‘/Oa [)\cos VA(a-1y) + 0V Asin VA(a - y) - 0157/ Asin \/Xy] f(y)dy.

Similarly:

ar(N@ = [ glay: )iy
= A'/OG [)\cos V Ay + 611V Asin \/Xy+9_12\/Xsin\/X(y—a)] f(y)dy

We have the following “boundary values”:
011 cos \/X(a -y)+ 011059\ \ sin \/X(a -v)

+612]2V/Asin VA(y — a) + 012X cos V Ay

—922)\ COS \/Xy - «911922\/Xsin \/Xy
+|912|2\/Xsin VA = B2\ cos \/X(y -a)

() =4 [ ]f(y)dy

(Y (@)=4 [ ]f(y)dy

Using this we check that G,(f) € D(Ayp):

011G (£)(0) + 012G (f)(a)

911)\ COS \/X(CL - y) + (911922\/X8i1'1 \/X(a - y)
=A /(: —011912\/Xsin \/Xy + 012\ cos \/Xy f(y)dy
+011612V/ Asin V Ay + |012*V Asin VA(y - a)

=G\(f)'(0)
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and

012G (f)(0) + 022GA(f)(a)
012X cos VA(a —y) + 01209/ Asin VA (a — y)

=A [0 —|0122V/ Asin v/ Ay + a9\ cos v/ Ay f(y)dy
+011029\/ X sin VY + 0120207/ A sin \/X(y -a)
=-G\(f) (a).

In order to show that ¢ is the Green’s function and to greatly simplify the

calculations we analyse the effect of each of the terms in g at first separately.

Consider the following
g~ [=GA(f)" = AGA(f)](2)

We summarise here this map for the following integral kernels:

cos VA(a - x5) cos VAz. - —VAsin vV af(z)
sin VA(a - x) cos V Az - VA cos VAaf ()
cos VA (a - z5)sin vV Az > VAcosVaf(z)
sin VA(a - 5 ) sin V Az - VAsin Vaf(z)
C(x,y)(012) sin V(2 — 1) = 2V AR(612) f ().

Adding all these terms together gives the function [-G(f)"” — AGA(f)](x)

for the candidate Green’s function:

[=GA(f)" = AGA(f)](2)

AVX 011V cos VA + Oaa/ A cos vV Aa — Asin v a

f(x)
+Q11922 sin \/XCL - |912|2 sin \/X(l + 2%(912)\/X

= f(x)
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Thus (Ag - )\)(G)\(f)) = —G)\(f)" - )\G)\(f) = f and (A9 - )\) o G)\ on D(Ag)
for X € p(A4p)\{0}. So G, is the left-inverse of Ay — A\. We now show that it

is also the right-inverse:

Denoting g — [-GA(f") = A\GA(f)](z), we summarise the action of this

map acting on the following integral kernels:

cos VA (a - z5) cos vV Az —

~VAsinVaf(z) +cos VA(a-z) f'(0) - cos Vazf'(a)
sin VA(a - 25) cos vV Az —

VAcos Vaaf(x) +sinvVA(a—x)f(0) = VAcos VAzf(a)
cos VA (a - zs) sin vV Az -

VAcosvVaf(x) = VAcos VA(a - ) f(0) - sin vV Az f'(a)
sin VA(a - ) sin V Az -

VsinVaaf(z) = VAsinVA(a - z) £(0) = VAsin V Az f(a)

C(x,y)(012) sin VA (we - ) ~
IWAR(012) f () = O1a5in VA2 f(0) = 107/ A cos V Az £ (0)
— 1o sin VA(z — a) f'(a) - 012V A cos VA (x - a) f(a).

Adding all these terms together gives the function [-G\(f") —= AGA(f)](x)
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for the candidate Green’s function:

[GA(f") = AGA(f)](z)

[ A\ cos V(@ —-x)f(0) = AeosvVAzf(a)

+029V/ Asin VA (a - z) f(0) = O\ cos vV Az f(a)

~013 X cos VA(a—-2)f(0) - 011V Asin vV Az f(a)

= f(x) + Al =6110007 Xsin VX(a - ) f(0) = 011020V Asin vV Az f(a)
+0122V/Asin VA (a - ) £(0) + 0122V Asin vV Az f (a)
015V Asin vV Az f7(0) = G2 cos vV Az £(0)

| —010V/ Asin VA (z - a) f'(a) = 61X cos VA (z - a) f(a) |
[ Acos M@ - 2)[/(0) - 011 £(0) - 012 (0)]
VAsinVA(a — 2)[~022"(0) = 011095 F(0) + 122 £ (0) + 610f" ()]
~Acos VAz[f'(a) + O f(a) +012f(0)]

| —VAsinVAz[011f'(a) + 0162 f (a) ~ 6122 f(a) + 012f7(0)]

=f(z)+A

= f(x),

where the cancellations all follow from the condition that f e D(Ayp).

Thus GA((Ag = A)(f)) = =GA(f") = AGA(f) = |
and G)\O(Ag—)\)zid on D(Ag) ]

Proposition H.2. If 0 € p(Ay), the Green’s function for the s.a.e. of the
first kind at A =0 s given by the following integral kernel:

(a - ZC>)5L’<|912|2 - Oz + (ZU> - a):c<911922

+(xs —a)l — 1+ C(x,y)(012) (x> — 22)

g(x,y,0)=A

where

Al = a|6’12|2 — 011 — ab1099 — Oay — 2R(012)

Proof. Again, we first show that Go: L?(0,a) > D(Ag). From the Green’s
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function, we can find the following boundary values of Go(f):

Go(/)(0) = A [ " [(y =)z = 1+ 012] ()

Go(/)(@)= A [ " [~1y =1+ Prala= )] S (9)dy

Go(f)'(0)=A/ [(a=y)|612* = 011 + (y = a)011622 - O12] f(y)dy
-

Go(f) (a)=A f y|912|2 + 011622 + O + 912] f(y)dy.

Thus to check that Go(f) € D(Ag) we evaluate:

011Go(f)(0) +012Go(f)(a)

_Af (y Cl 911922 - 011 + 011137
M o + |912|2(a y)

= Go(f)"(0)

}f( )dy

and

012Go(£)(0) + 022Go(f)(a)
a — @)B12025 — 012 + |012]?
:Af (y=e)rs02 i+| 12/%y
0 —011922y - 912 +W

= ~Gol/)'(a).

]f(y)dy

Now we show that (G is indeed the Green’s function for Ay.
We first list the effect of the map g - -Gy (f)”(x) on the following integral

kernels:

(a-2.)>1 2.->1 (xs-a)r.—>-a

(zs-a)—>-1 1-0 C(z,y)(012)(xs — ) > -R(012).

Summing these terms yields: —Go(f)"(z) = A[a|612|? = 011 — ab11022 — G2 -
297(012)]f () = f ().
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Thus Ago Gy =id on L?(0,a) and Gy is the right-inverse of Ayg. Now to show

that it is also the left-inverse:

Again we list the effect of the map g - -Gy (f")(x) on each of the terms:

(a-z) = f(x) +(a-2)f(0) - f(a)
ze~ f(z) = f(0) -z f(a)
(2> —a)zc > —af(x) + (a-2)f(0) +x f(a)
(2> —a) > —f(x) + (= a)f'(0) + f(a)
1— f(0) - f'(a)
C(z,y)(0r2) (x5 —2) ~
= 2R(612) f () + 0122 f'(0) = 012 (0) = b1a(a - 2) f'(a) + b12f (a)

Adding these terms together after multiplying by a constant as it appears in
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our proposed Green’s function we obtain:

—Gg(f”)(l’) = Af(a:)[a|912|2 - ‘911 - a911922 - 022 - 2%(912)]

~|0h2f*(a = %) f(0) - |012x f (a)
+611£(0) + 0112 f'(a)
+011022(a — ) f(0) — 0110202 f (a)
+ Al +0x(z - a) f/(0) + Oan f(a)
~P(0) + (a)
Ora2f7(0) + 012£(0)
| —tha(a-2)f'(a) +012f(a)
[611.(0) = f/(0) + 612/ (a)]
+[022f(a) + f'(a) + 012 (0)]

=f(z)+A
+(CL - x)[—|912|2f(0) + 911922f(0) - 922]”(0) - 912f’(a)]
| +x[—|912|2f(a) + 911f’(a) + 911922f(a) +§12f'(0)]
= f(2)
Thus Go(Ae(f)) =-Go(f") = f and Ggo Ag =id on D(Ay). O

Now, we do the same for the s.a.e.s of the second kind. Remembering

that the domain of this extension is defined as:

ws6(0) - w1 p(a) = 0 }

D(Awywyp) = {gb e W22(0,a) s.t.: B .
w1 (09(0) - ¢'(0)) +w2(0¢(a) + ¢'(a)) =0

where wy,wsy € C, |w|?> + |wy|?> = 1 and 6 € R. We shall prove the following:

Proposition H.3. The Green’s function for the s.a.e. of the second kind for
X € p(Apwng)\{0} is given by:
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For X € p(Aw,w,0)\{0}:

9(x,y; \)
w12V Asin VA(z5 — a) cos vV Az + VAC (2, y) (wy@7) sin vV (z. - z5)
+0sin V(x5 — a) sin vV Az, — |wa2V/ A cos V(25 — a) sin vV Az,

where

A=V [—\/Xcos Va + 2R (w0, W7) VA - Osin \/Xa]

Remark. We have not specified which square root /A to take as it can be

seen that the expression for ¢ is invariant under replacing VA with —v/\.

Proof. Again, we first check that Gy: L%(0,a) - D( Ay w,0). Following the

previous method we can find the following boundary values of G\(f):

G,\(f)(O)=AfO |w1|2\/_sm\/_(y a) - VAw s sin VA f(y)dy
GA(f)(O):Afo Wi ws )\Sln\/_(y a) - \/_|w2|281n\/_y f(y)dy

Gy () =4 [ ATUTAﬁf{ y+)@f Xsinv/A(y - a)]
—|ws]? A cos y-a
~a)

)\]w1|2\/XCOS\/_y )\wleCOS\/_
+0v/ \sin vV \y

(' (@=4 [

}f (y)dy

We can see from inspection that weG,(f)(0) = w1GA(f)(a). Furthermore:

wi(0GA(£)(0) - GA(f)'(0))
0wt w1 |2V A sin VA(y - a) — 0/ Nwy 2wz sin V Ay
=A foa —Aw [2W5 cos v/ Ay — 0w/ Asin VA(y - a) f(y)dy
¥ Jws|2A cos VA(y - a)
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and

w3 (0GA(f)(a) = GA(f) (a))
01 [ws |/ Asin VA(y = a) = 0/ Nw w5 sin v Ay
= Afoa +A|wi [2w3 cos vV Ay f(y)dy,
—wr|ws|?Acos VA(y - a) + 0wz Asin vV Ay

from which we see that

wir(0GA(f)(0) = GA(f)'(0)) +wa(0GA(f)(a) = GA(f) (a)) =0

and so G\(f) € D(Aw,uw,0). We now show that G is indeed the resolvent of
Auwywe0- Using the first table of integral kernels in Proposition H.1, by the

same argument we have:

[=GA(f)" = AGA(f)](2)
—|wy|*A cos Va + 20R (w1 wz)
—6v/Xsin vV Aa — [wy]2 A cos vV Aa

= Af(2)[-Xcos VAa + 220R (w,W3) - 0V Asin vV Aa]
= f(x)

= Af(z)

Thus Ay, w,e © Gy =id on L2(0,a) for A € p(Aw w0)-
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Using the second table of integral kernels in Proposition H.1, we have:

[=GA(f") = AGA()]()

[ —Jwi 2V AsinvVA(a - ) f/(0) + [wi|2A cos vV Az f (a)
—/ Nrws sin VAz f7(0) = Mpw, cos vV Az f(0)

= f(x) + Al -V dwyw@zsin VA (z - a) f'(a) - Aw 3 cos VA(z - a) f(a)
+0v/ Asin vV \(a - 2) f(0) + 0/ Asin vV Az f(a)

| +wal?Acos V(@ —2)f(0) + |wa 27/ Asin vV Az f'(a)
[ XsinVA(a - 2)[-fun[2£(0) + wis () +0£(0)]
Acos vV Az[|wi [ f (a) = @rws f(0)]

+VAsin VAz[-wrws f'(0) + 0 f (a) + [wal*'(a)]

| +Acos VA(a —2)[~wiwzf(a) + |wsl? f(0)]

=f(x)+A

= f(z)

Thus GA((Awywse = A)(f)) = =Ga([") = AGA(f) = f
and G)\ o (Aw1w20 - )\) =1d on D(AwleQ). ]

Proposition H.4. If 0 € p(Ay,w,0) then the Green’s function for the s.a.e.
of the second kind at \ =0 is:

9(z,y;0) = Al0(a -z, )2z + C(2,y) (wi1wz) (> — ) + |w1|2(a —T,) + |w2|2x<],

where

Al = af - 2R (wwy) + 1

Proof. As before, we first check that Go: L2(0,a) = D(Aw,w,e). The follow-
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ing boundary values can be calculated:

Go(/)(0) = A [ " [ty + wnP(a = )] S () dy
Go(f)@ =4 [
GolfY (=4 [

Go(f) (@) = A [ [0y + s - us ] £ (v)dy

wiws(a —y) + [wa*y] f(y)dy

0(a—y) - wiws + lwal*] f(y)dy

[
[
[
[

It can be seen that we already have: wsGo(f)(0) = w1 Go(f)(a). Addition-

ally:
w1 (0Go(f)(0) = Go(f)'(0))
a| OlwiPway + Owr|wi*(a - y)
:Afo i . 2}f(y)dy
wi(a—y) + [wi|*wz - wri|w,|
and:
W (0Go(f)(a) - Go(f) (a))
_ /a 6|U}2|2U}_1(6L—y) +«9w_2|w2|2y f(y)dy

0 | Ty + w7 - Wl |

whence:

wi(0Go(f)(0) = Go(f)'(0)) +w2(0Go(f)(a) - Go(f) (a))
) 0w, [Pwpy + 0w (a ~ y)
=A /(; ~0wi(a - y) + 0ws|we|?y | f(y)dy
—0wsy

=0.

Thus Go(f) € D(Aw,wy0). We now show that Gy is indeed the resolvent of
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Awywye- Using the first table of integral kernels in Proposition H.2:

~Go(f)"(x) = Alaf = 2R (w1 w3) + [wr|? + Jwal*] f ()
= Alaf - 2R(wwz) + 1] f(x)
= f(x).

Thus Ay, © Go =id on L2(0,a).

Now we prove that Gy is also the left-inverse of A, .,9. Using the second

table of integral kernels in Proposition H.2, we have:

~ Go(f")(x)

0(z - a) f(0) - bz f(a)

+0122f7(0) + 012 £(0) = O1a(a —2) f'(a) + 012 f (a)
~lwn 2 (a) + [wi[2(a - ) £(0)

| —Junl2 £(0) - [wsf22f"(a)

[ 012£(0) + 612/ (a) w12 (a) - [wa]2 £ (0)

= f(2)+ A| +(x - a)[0£(0) + b1z f"(a) — lun2f/(0)]

| +a[-0f(a) + 1o f'(0) ~ w2 f"(a)]

= f(x)+A

Thus GO(Aw1w29(f)) = _GU(f”) = f
and Go o Ay e = 1d on D( Ay wmg)- O

192



References

1]

[9]

[10]

R. Abraham, J.E. Marsden and T. Ratiu, Manifolds, Tensor Analysis,
and Applications (2001) Springer

N.I. Akhiezer and .M. Glazman, Theory of Linear Operators in Hilbert
Space (1993) Dover

C. Béar, N. Ginoux and F. Pfaffle, Wave Equations on Lorentzian Man-
ifolds and Quantisation (2007) European Mathematical Society

C. Bér and K. Fredenhagen (Eds.), Quantum Field Theory on Curved
Spacetimes: Concepts and Mathematical Foundations (2009) Springer

J.K. Beem, P.E. Ehrlich and K.L. Easley, Global Lorentzian Geometry
(1996) CRC Press

AN. Bernal and M. Sanchez, Further results on the smoothability
of Cauchy hypersurfaces and Cauchy time functions, 2007, arXiv:gr-
qc/0512095v1

A.N. Bernal and M. Sanchez, Globally hyperbolic spacetimes can
be defined as “causal” instead of “strongly causal”, 2006, arXiv:gr-

qc/0611138/v1

A.N. Bernal and M. Sanchez, On Smooth Cauchy Hypersurfaces and
Geroch’s Splitting Theorem, Communications in Mathematical Physics,

(2003) 243, 3, 461-470

M.S. Birman and M.Z. Solomjak, Spectral Theory of Self-Adjoint Op-
erators in Hilbert Space (1987) D.Reidel Publishing Company

R.L. Bishop and S.I. Goldberg, Tensor Analysis on Manifolds (1980)

Dover

193



[11]

[12]

[13]

[14]

[15]

[16]

[17]

22]

23]

H.O. Cordes, Self-Adjointness of Powers of Elliptic Operators, Mathe-
matische Annalen 195 (1972) 257-272

B. Driver, Analysis Tools with Applications, http://www.math.ucsd.

edu/~bdriver/231-02-03/lecture_notes.htm

N. Dunford and J.T. Schwartz, Linear Operators Part I: General Theory
(1958) Interscience Publishers

G.B Folland, Real Analysis, Modern Techniques and Their Applications
(1984) Wiley

G. Grubb, A characterisation of the non local boundary value prob-
lems associated with an elliptic operator, Annali della Scuola Normale

Superiore di Pisa, Classe di Scienze 3,22,3 (1968) 425-513
E. Hebey, Sobolev Spaces on Riemannian Manifolds (1991) Springer

B.S. Kay and U.M. Studer, Boundary Conditions for Quantum Me-
chanics on Cones and Fields Around Cosmic Strings, Communications

in Mathematical Physics 139, 103-139 (1991)
J.M. Lee, Introduction to Smooth Manifolds (2003) Springer

J.M. Lee, Riemannian Manifolds: An Introduction to Curvature (1991)
Springer

J.L Lions and E. Magenes, Non-Homogeneous Boundary Value Problems
and Applications (1972) Springer

C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation (1973) W.H.

Freeman and Company

L.I. Nicolaescu, Lectures on the Geometry of Manifolds (2007) World
Scientific Publishing

B. O’Neill, Semi-Riemannian Geometry (1983) Academic Press

194



[24]

[25]

[26]

[27]

[29]

[30]

[31]

32]

[37]

R. Penrose, Techniques of Differential Topology in Relativity (1972)
Society for Industrial and Applied Mathematics

P. Petersen, Riemannian Geometry (2006) Springer

A. Posilicano, Self-adjoint Extensions of Restrictions, 2008, arXiv:math-

ph/0703078

M. Reed and B. Simon, Methods of Modern Mathematical Physics, I:
Functional Analysis (1980) Academic Press

M. Reed and B. Simon, Methods of Modern Mathematical Physics, II:
Fourier Analysis, Self-Adjointness (1975) Academic Press

R.K. Sachs and H. Wu, General Relativity for Mathematicians (1983)
Springer

M. Sanchez, On the Geometry of Static Spacetimes, 2004,
arXiv:math/0406332v2

I. Seggev, Dynamics in stationary, non-globally hyperbolic spacetimes,

Classical Quantum Gravity 21 (2004) 2651-2668

[. Stakgold, Green’s Functions and Boundary Value Problems (1998)
Wiley

N. Steenrod, The Topology of Fibre Bundles (1951) Princeton University

Press
M.E. Taylor, Partial Differential Equations I (1996) Springer
M.E. Taylor, Partial Differential Equations II (1996) Springer

F. Treves, Topological Vector Spaces, Distributions and Kernels (1967)

Academic Press

R.M. Wald, Dynamics in nonglobally hyperbolic, static space-times,
1980, Journal of Mathematical Physics 21(12) 2802

195



[38] R.M. Wald and A. Ishibashi, Dynamics in non-globally-hyperbolic static
spacetimes: II. General analysis of prescriptions for dynamics, Class.

Quantum Grav. 20 (2003) 3815-3826

[39] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups
(1983) Springer

196



