White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Adaptive Techniques for Estimation and Online Monitoring of Battery Energy Storage Devices

Nejad, S (2016) Adaptive Techniques for Estimation and Online Monitoring of Battery Energy Storage Devices. PhD thesis, University of Sheffield.

Text (Thesis)
PhD Thesis - Shahab Nejad - Reg 120224713.pdf
Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (5Mb) | Preview


The battery management system (BMS) plays a defining role in the safety and proper operation of any battery energy storage system (BESS). Without significant advances in the state-of-the-art of BMS algorithms, the future uptake of high power/energy density battery chemistries by consumers in safety-critical applications, is not feasible. Therefore, this thesis aims to provide a coherent body of work on the enhancement of the most important tasks performed by a modern BMS, that is, the estimation and monitoring of various battery states, e.g. state-of-charge (SOC), state-of-health (SOH) and state-of-power (SOP). The Kalman Filter is an elegant set of robust equations that is often utilised by designers in modern BMS, to estimate the battery states and parameters in real time. A nonlinear version of the KF technique, namely the Extended Kalman Filter (EKF) is applied throughout this thesis to estimate the battery’s states including SOC, as well as the battery’s impedance parameters. To this end, a suitable model structure for online battery modelling and identification is selected through a comparative study of the most popular electrical equivalent-circuit battery models for real-time applications. Then, a novel improvement to the EKF-based battery parameters identification technique is made through a deterministic initialisation of the battery model parameters through a broadband system identification technique, namely the pseudorandom binary sequences (PRBS). In addition, a novel decentralised framework for the enhancement of the EKF-based SOC estimation for those lithium-ion batteries with an inherently flat open-circuit voltage (OCV) response is formulated. By combining these techniques, it is possible to develop a more reliable battery states monitoring system, which can achieve estimation errors of less than 1%. Finally, the proposed BMS algorithms in this thesis are embedded on a low-cost microprocessor hardware platform to demonstrated the usefulness of the developed EKF-based battery states estimator in a practical setting. This a significant achievement when compared to those costly BMS development platforms, such as those based on FPGAs (field-programmable gate arrays).

Item Type: Thesis (PhD)
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Electronic and Electrical Engineering (Sheffield)
Identification Number/EthosID: uk.bl.ethos.721844
Depositing User: MR S Nejad
Date Deposited: 04 Sep 2017 08:03
Last Modified: 12 Oct 2018 09:43
URI: http://etheses.whiterose.ac.uk/id/eprint/17681

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)