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Abstract 
 

The battery management system (BMS) plays a defining role in the safety and 

proper operation of any battery energy storage system (BESS). Without significant 

advances in the state-of-the-art of BMS algorithms, the future uptake of high 

power/energy density battery chemistries by consumers in safety-critical 

applications, is not feasible. Therefore, this thesis aims to provide a coherent body 

of work on the enhancement of the most important tasks performed by a modern 

BMS, that is, the estimation and monitoring of various battery states, e.g. state-of-

charge (SOC), state-of-health (SOH) and state-of-power (SOP). 

The Kalman Filter is an elegant set of robust equations that is often utilised by 

designers in modern BMS, to estimate the battery states and parameters in real time. 

A nonlinear version of the KF technique, namely the Extended Kalman Filter (EKF) 

is applied throughout this thesis to estimate the battery’s states including SOC, as 

well as the battery’s impedance parameters. To this end, a suitable model structure 

for online battery modelling and identification is selected through a comparative 

study of the most popular electrical equivalent-circuit battery models for real-time 

applications. Then, a novel improvement to the EKF-based battery parameters 

identification technique is made through a deterministic initialisation of the battery 

model parameters through a broadband system identification technique, namely the 

pseudorandom binary sequences (PRBS). In addition, a novel decentralised 

framework for the enhancement of the EKF-based SOC estimation for those lithium-

ion batteries with an inherently flat open-circuit voltage (OCV) response is 

formulated. By combining these techniques, it is possible to develop a more reliable 

battery states monitoring system, which can achieve estimation errors of less than 

1%. Finally, the proposed BMS algorithms in this thesis are embedded on a low-cost 

microprocessor hardware platform to demonstrated the usefulness of the 

developed EKF-based battery states estimator in a practical setting. This a 

significant achievement when compared to those costly BMS development 

platforms, such as those based on FPGAs (field-programmable gate arrays).  
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1  

 
 

Introduction 

 

This Chapter introduces the work carried out in this thesis and explains the motivation 

for the conducted research. It provides the reader with an overview of the current 

issues and challenges facing battery energy storage systems, and how the future 

uptake of next-generation batteries, especially of lithium-ion chemistry, in safety-

critical applications will depend on the enhancements made in the battery 

management system algorithms. Finally, an outline for the structure of the thesis is 

provided and the relevance/novelty of each chapter is stated.  

 

1.1 Motivation 

In today’s technology-driven society, secondary (or rechargeable) batteries power 

a large number of applications, ranging from low-power (milli to tens of Watts) 

portable electronic devices to high-power (kilo Watts) electric/hybrid-electric 

vehicles (EV/HEV) and the recently-emerged super-power (mega Watts) grid-tie 

battery energy storage systems (BESS). A necessity to all these applications is a 

management system, which, in simple terms, serves as the brain of the battery, 

monitoring/controlling every aspect of the operation.  

The battery management system (BMS) plays a significant role in ensuring a safe 

operating envelope, whilst maximising the battery’s energy and/or power delivery 

Chapter 
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capabilities and improving its overall service lifetime. Fig. 1.1 shows a fire-damaged 

lithium-ion battery pack out of a Boeing 787 Dreamliner, whose failure is thought to 

be strongly linked to a defective BMS which led to a thermal runaway event in some 

of the constituent cells. From this photograph, it can be seen that a reliable BMS is 

of utmost importance when it comes to safety-critical battery applications, 

especially in avionic systems, where a battery failure of the aforementioned nature 

can directly put the passenger’s lives at risk. This is also true for those battery-

powered portable electronic devices, where the consumer’s convenience and safety 

is the number one priority for battery system designers. Other benefits offered by a 

robust BMS is the prolongation of the battery’s service lifetime, by operating the 

battery under favourable conditions and avoiding operation beyond the battery’s 

manufacturer’s recommended limits. 

 

Fig. 1.1 Example of a failed lithium-ion battery in a Boeing 787 Dreamliner [1] 

The BMS is responsible for a number of hardware and software operations that keep 

the battery under a safe condition at all times. At the heart of the BMS lies a battery 

monitoring system, which is conventionally required to perform the following tasks. 



25 

 Bus voltage and current measurement; 

 String and cell voltage measurement 

 Charging control; 

 Over- and under-voltage safety control;  

 High current protection; and 

 Digital communication to/from the BMS. 

Nowadays, due to the innovations in battery technologies, such as the lithium-ion 

batteries who can provide a superior energy and power density, the modern battery 

monitoring systems need to be able to carry out a number of advanced 

functionalities; some of which are listed below [2]. 

 Active/passive cell equalisation; 

 Online battery parameter identification; 

 Online estimation of various battery states, such as state-of-charge (SOC); 

state-of-health (SOH), state-of-power (SOP) and state-of-function (SOF); 

 Prediction of remaining useful life (RUL); 

 On-board diagnosis and prognosis. 

Recognising these requirements imposed on modern battery monitoring systems, a 

trending desire has been set out by researchers from both worlds of academia and 

industry to develop advanced algorithms for the estimation of SOC, SOH, SOP and 

SOF in real time. In addition to meeting the technical necessities for realisation of 

modern BMS architectures, there is also a societal need to earn the consumer’s trust 

on the safety aspect of new battery technologies (e.g. lithium titanate battery), in 

order to increase the future uptake of such energy storage devices in a wider range 

of safety-critical applications, e.g. in EV/HEVs [3] and all-electric commercial 

aircraft [4]. Therefore, this thesis aims to expand upon the current state of the art of 

advanced BMS algorithms, by preparing a novel body of work on adaptive battery 

states estimation techniques, with a view to later implement the developed 

algorithms on a low-cost microprocessor of the kind typically employed in BMS 

applications.    
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1.2 Thesis Contributions 

This thesis offers five research chapters on online battery modelling and 

identification techniques which lead to the development of a low-cost 

microprocessor-based battery states monitoring system. The novel techniques 

presented in this thesis have been published in one journal and five conference 

proceedings, with another two journal papers in preparation. Below is a summary 

of the contributions offered by this thesis, together with a list of the relevant 

publications produced for each novel chapter.   

1. Development of a cycle-based battery SOH and RUL estimation 

technique as implemented on a low-cost microprocessor-based power 

cycler 

It is important to have an understanding of the SOH degradation pattern in a 

battery in order to be able to predict its RUL, which is a defining parameter in 

determining the battery’s end-of-service lifetime. Thus, in Chapter 3, a cycle-

based SOH and RUL estimation technique is developed and implemented on a 

low-cost self-designed battery power cycler to verify its performance. The 

techniques presented in Chapter 3 are highly beneficial to those battery-

powered systems which cannot afford to go offline due to failures stemming 

from aged cells.       

2. Experimental evaluation of most popular battery models as presented 

in literature with a proposal for a suitable model structure for online 

battery SOC and parameters estimation  

Modern BMSs employ equivalent-circuit model representation of the battery 

under operation to allow for the accurate estimation of SOC, SOP, SOH and 

other battery parameters which are vital to proper management of the 

battery’s power and energy delivery capabilities. Thus, in Chapter 4, the 

performance of a number of battery models are experimentally reviewed in 

terms of modelling accuracy and applicability to online SOC and SOP 

estimation. A resistor-capacitor (RC) network model is put forward which is 
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capable of producing a superior model representation of the battery, when 

compared to other battery model structures presented in literature. Due to its 

high modelling accuracy and relatively low complexity, the proposed RC model 

structure is highly beneficial for BMS operations on low-cost microprocessor 

platforms.  

3. Identification of a minimum order-number for an RC equivalent-circuit 

battery model, with a sensitivity analysis of the model output response 

to erroneous model parameters  

The proposed RC model structure in Chapter 4 can produce a very accurate 

representation of the battery device under operation. However, there exists a 

trade-off between desired accuracy and model complexity which needs to be 

identified. To this end, Chapter 5 presents a frequency-domain analysis on RC 

battery models of up to fifth order. It is determined that a model order of a 

second is the optimal choice for modelling lithium-ion batteries. Moreover, in 

Chapter 5, a sensitivity analysis of the candidate second-order battery model is 

undertaken. The results show that RC battery model is most sensitive to those 

resistive-element parameters, which can affect the quality of the battery state 

estimates. This sets the requirement for an accurate online battery 

identification technique to reduce the battery modelling errors.      

4. Development of a novel hybrid battery identification technique based 

on pseudorandom binary sequences (PRBS) to improve the 

performance of standard Extended Kalman Filter (EKF) for online 

battery SOP estimation  

Persistence of excitation is a fundamental requirement for almost all the online 

battery parameter identification techniques. In real battery systems, this 

condition might not be satisfied at all times, resulting in a non-convergent set 

of battery parameters and thus unreliable battery state estimates. In Chapter 

6, a novel battery parameter identification technique is proposed to overcome 

this issue. The proposed technique is based on a deterministic initialisation of 

an Extended Kalman Filter (EKF) – typically employed in online BMS estimation 
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problems – using pseudo random binary sequences (PRBS). When applied to 

any battery energy storage system (BESS), the technique guarantees a 

convergent set of battery impedance parameters which ultimately improves the 

quality of online battery SOP and SOH estimation.   

5. Improvement to EKF-based battery SOC estimation for lithium-ion 

batteries with flat OCV curves and deployment on a low-cost 

microprocessor unit for online battery states monitoring 

The SOC plays a defining role in proper energy/power management of any 

battery system. For most battery chemistries, a pre-determined relationship 

between the battery’s open-circuit voltage (OCV) and its SOC can be used to 

achieve a sufficient estimate for SOC in real time. However, for those lithium-

ion batteries with a fairly flat OCV-SOC relationship curve, it becomes extremely 

difficult to keep a robust tracking of SOC within the flat OCV region, resulting 

in a divergent SOC estimate; thus, the reliability of the BMS will be undermined. 

To overcome this technical challenge, in Chapter 7, an adaptive EKF system 

identification technique is proposed to enhance the OCV-based SOC estimation 

of lithium-ion batteries, especially those suffering from a flat OCV-SOC curve. 

Finally, Chapter 7 combines together the outcomes of every chapter presented 

in this thesis, in order to realise an online battery states monitoring system. A 

microprocessor implementation of the designed battery states monitoring 

system is also offered, which compared to its counterparts in literature, benefits 

from a simple and low-cost design, without the necessity for costly FPGAs (field-

programmable gate array). This is a significant step forward to realisation of 

a smart-cell BMS architecture for next-generation battery energy storage 

systems.       

1.3 Thesis Organisation 

This thesis is organised into several chapters, each contributing a part to the overall 

objective of the thesis. A list of publications corresponding to each chapter is made 

available in the beginning of the thesis. The chapters in this thesis are structured in 
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a linear format, where each chapter provides an expansion and improvement on the 

previous. A brief description of each chapter is provide below. 

Chapter 1 introduces the thesis and discusses the motivations behind the research 

work conducted herein. To enable the reader to form an appreciation for the 

contributions of each chapter, a breakdown of the thesis structure is provided.  

Chapter 2 reviews the state-of-the-art of battery energy storage systems as a whole, 

covering battery electrochemistry basics and the most commonly used battery 

technologies in electrical energy storage applications. The reader is also provided 

with a background of BMS algorithms that are responsible for carrying out advanced 

tasks, such as battery impedance and states estimation, while the battery system is 

operating online. Various battery modelling and identification techniques are 

discussed, with a view to later develop an adaptive battery state monitoring system, 

which can robustly adapt to variations in the battery’s operating conditions such as 

temperature and ageing. Finally, the setup and procedures for experimental control 

and verification of the proposed battery estimation techniques in this thesis is 

explained in this chapter. 

Chapter 3 discusses the importance of SOH estimation and being able to predict the 

battery’s remaining-useful life (RUL) in order to avoid undesirable battery failures. 

A novel bidirectional microprocessor-based battery power cycler, for the purpose 

of cycle-based SOH characterisation. Also in this Chapter, a method for the online 

estimation of SOH for the lithium-ion iron phosphate (LFP) cells is proposed, which 

is implemented on the AVR microprocessor (𝜇P) unit that is used in the design of 

the battery power cycler. In order to predict the cell’s RUL, an empirical model is 

also developed in chapter, whose coefficients are calculated based on the first 3-4% 

of SOH degradation.  

Chapter 4 reports on the significance of battery modelling and identification in 

online BMS problems. it is discussed that for online estimation and monitoring of 

various battery states, appropriate battery models must be employed. To this end, 

an experimental study on most commonly used battery models in both motive and 

stationary battery storage applications is undertaken in this chapter. Ten battery 
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model structures including, the combined model, Rint model, two different 

hysteresis models, Randles model, a modified Randles model, and two resistor-

capacitor (RC) network models with and without hysteresis included are studied. 

The performance of each model structure is examined under various operating 

conditions, with respect to terminal voltage, SOC and SOP estimation accuracy, with 

a view to identify a suitable model structure for adoption in the work presented in 

this thesis.  

Chapter 5 determines the minimum order-number required for an equivalent-

circuit battery model to sufficiently describe the dynamic behaviour of a battery 

under operation, without being too complex in structure. A frequency-domain 

analysis on the complex impedance data gathered for two variations of lithium-ion 

cell chemistry is carried out. Then, a sensitivity analysis on the selected second-

order model structure is carried out with respect to parameterisation error, in an 

effort to gain a better understanding of the impact of erroneous or static model 

parameters on the quality of the model-based battery state estimates such as SOC 

and SOP.  

Chapter 6 presents a novel hybrid battery identification technique which can be 

applied to any BESS to adaptively identify the impedance parameters of the battery 

in real time. The proposed technique is based on pseudorandom binary sequences 

(PRBS) excitation of the battery whilst in open-circuit mode, in order to provide the 

aforementioned EKF estimator with a correct set of initial conditions on the battery 

parameters. The result is a deterministic battery identification system, a virtue that 

is lacking in pure EKF-based battery parameter estimators. The hybrid identification 

technique is capable of producing accurate battery model parameters, even under 

varying operating conditions. 

Chapter 7 reports on a decentralised adaptive EKF framework for the enhancement 

of the battery SOC estimation. The proposed technique differs to the standard EKF 

estimator in a sense that, the SOC state filter’s process and measurement noise 

covariance are estimated in real time, accounting for the large modelling 

uncertainties that are introduced into the filter’s output by the largely nonlinear 
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function that describes the OCV-SOC relationship in the model. In addition, a 

dynamic technique for the online estimation of SOH is proposed in this chapter, 

which is more practical for motive and stationary battery applications that are 

operated with a transient current demand. Finally, the battery identification and 

state estimation techniques proposed throughout this thesis are all brought 

together and implemented on an ARM Cotex-M0 𝜇P unit, to give realisation to a low-

cost adaptive battery states monitoring system.   

Finally, Chapter 8 draws a number of conclusions and summarises the 

contributions that this thesis work has made to the state-of-the-art of battery 

management systems. The scope for the future work which can expand on this thesis 

is set out.  
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2  

 
 

Background and State-of-the-Art Review of 
Battery Management Systems 

 

Battery devices are becoming the favourite choice for electrical energy storage and 

supply in a wide range of motive and stationary power applications. Without 

significant improvements in battery technologies and battery management systems, 

the future uptake of these electrochemical energy storage devices will remain a 

challenge. Therefore, this Chapter initially aims to provide a review of the state of the 

art in battery energy storage systems (BMS), comparing various battery chemistries 

and their applications. Thereafter, a comprehensive review of the state-of-the-art of 

BMS algorithms reported in literature is undertaken. This is to provide the reader with 

an appreciation for the contributions of this thesis. Finally, the hardware setup and 

procedures adopted for training and experimental verification purposes are discussed.     

2.1 Battery Energy Storage 

This section provides a comprehensive survey of the following aspects of battery 

energy storage (BES); a brief history on electrochemical cells; common definitions 

and terminologies used in BES systems; battery electrochemistry basics; and a 

literature survey of the current battery technologies, their pros and cons, and typical 

applications. It will be shown that, lithium-ion batteries are the right candidate for 

many power applications, where high energy and power densities are necessitated.   

Chapter 
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2.1.1 History 

The emergent of first battery dates back to 250 BC during the Persian Empire period 

in Baghdad, where earthen containers have been found serving as galvanic cells. 

These containers consisted of cells formed of iron and copper electrodes, flooded 

with an organic acidic solution. Each cell was capable of supplying a current of 250 

mA at a voltage of 250 mV for about 200 hours. The primary use of these primitive 

electrochemical cells was to gild silver. 

Luigi Galvani and Alessandro Volta are two physicists of Italian decent, whose names 

are closely associated with the development of batteries and the related science of 

electrochemistry. In 1791, Galvani performed an experiment on dead frogs 

suspended from an iron hook. In that experiment, Galvani realised that the frog’s 

legs contracted when struck by different metal materials such as copper. Volta 

attributed these muscle contractions of the dead frog’s legs to the electric current 

flowing between the two metals connected in series.  

To prove his point, in 1800, Volta built and patented a voltaic ‘pile’ or the first 

battery in modern times. This structure consisted of alternating plates of silver and 

zinc interleaved with brine-soaked papers. As a result, Volta discovered the law of 

electrochemical series, which states that the electromotive force (EMF) of a galvanic 

cell consisting of a pair of metal electrodes separated by an electrolyte is the 

difference between the two electrodes’ potentials. Later on, in 1834, Michael 

Faraday derived the laws of electrochemistry based on Volta’s findings, which 

established a connection between the chemical and electrical forms of energy. 

On the basis of Volta’s work, other scientists also developed electrochemical 

batteries of various designs. However, a recurring issue associated with all of these 

batteries was gas formation at the electrodes. The released gas was part of an 

irreversible reaction, whose energy could not be recovered, thus, limiting the 

battery’s available capacity. In 1866, a French scientist named Leclanché found the 

most successful solution to this problem. He invented and patented the Leclanché 

cell [5], [6] in which he used an electrolyte solution of ammonium chloride, a 

positive electrode of manganese dioxide mixed with carbon for better conductivity, 
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and a negative electrode of zinc. This cell structure revolved around a graphite plate 

serving as a current collector. The Leclanché achieved an EMF of 1.4V per cell, which 

saw extensive usage in telegraphy, signalling, electric bells and similar applications 

of intermittent current demands. On the basis of the Leclanché cell’s 

electrochemistry, the modern primary zinc-carbon or zinc-manganese dioxide 

(ZnMnO2) batteries emerged, which still dominate the worldwide market of non-

rechargeable batteries [5]. 

Later in the 19th century, Gaston Planté constructed batteries as a sandwich of thin 

lead layers, separated by sheets of coarse cloth in a cylindrical container filled with 

diluted sulphuric acid [5], [6]. The thin layers were connected as two separate 

electrodes with a voltage difference applied between them, which charged the cell. 

By alternating this charge process with a subsequent discharge step, Planté 

eventually managed to form a positive electrode that consisted of lead-dioxide and 

a negative of finely distributed lead.  

In order to prevent the breakdown of the lead plates, Planté later used thicker plates. 

This resulted in heavier and bulkier batteries, which were used mainly for 

stationary BES applications. Nowadays, the so-called lead-acid batteries are still 

widely used in many applications, including automotive and grid-tie energy storage. 

To solve for the sulphate accumulation problem in traditional lead-acid batteries, 

advanced lead-carbon batteries have been recently developed [7]–[9].  

Waldemar Jungner in Sweden and Thomas Edison in the USA formed the 

foundations of the nickel cadmium (NiCd) and nickel iron alkaline storage battery 

industry between 1895 and 1905 [5]. The NiCd batteries are still used today in 

applications where high power density is favoured to high energy density. In late 

1980’s, while the existing battery chemistries were continuously being improved, 

new technologies also kept appearing. The commercial uptake of nickel-metal 

hydride (NiMH) in 1990 and lithium-ion batteries in 1991 revolutionised the 

portable consumer products by allowing for smaller and yet higher energy density 

solutions.  
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Apart from the continuous need for higher energy and power densities for portable 

BES applications, such as in electric vehicles (EV) and hybrid electric vehicles (HEV), 

environmental concerns regarding hazardous materials such as cadmium has led to 

a boost in the development and manufacturing of NiMH and lithium-ion batteries. In 

the next section, some of the most commonly used terminologies in BES industry are 

discussed. 

2.1.2 Battery Terminologies 

Various terminologies are used in literature to describe different characteristics of 

BES systems. Those terms relevant to this thesis are provided in this section, which 

will later help derive and develop useful equations for testing and validation of the 

proposed battery monitoring algorithms.  

2.1.2.1 Cell, Module and Pack  

The term battery is often associated with one or more secondary cell(s) connected 

in a series and/or parallel configuration in order to provide the desired voltage and 

ampere-hour rating. A ‘string’ usually consists of a number of series or parallel 

connected cells. A ‘string’ of cells connected physically and electrically together is 

called a ‘module’, whereas a number of modules connected electrically and operated 

as single unit, is called a ‘battery pack’.  

2.1.2.2 Capacity 

Battery capacity can be defined using two terms. Ampere-hour (Ah) capacity is the 

total amount of releasable charge stored in a battery under some predefined 

conditions. It is not unusual to use Watt-hour (Wh) instead of Ah to define a battery’s 

capacity. The rated Wh capacity is mathematically defined as, 

 Rated Wh Capacity = Rated Ah Capacity ⨯ Rated Nominal Voltage. (2.1) 
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2.1.2.3 C-rate 

C-rate is an arbitrary metric used to define the current rate, at which the battery will 

take approximately one hour to fully discharge under standard conditions. For 

example, a rated 3.3 Ah cell will take a current of 3.3 A to fully discharge in one hour. 

2.1.2.4 Specific Energy and Power 

Also known as the gravimetric energy density, specific energy is used to quantify the 

amount of energy a battery can store per unit mass. It is expressed in Wh/kg as, 

 Specific Energy = Rated Wh Capacity / Battery Mass. (2.2) 

Similarly, specific power represents the battery’s peak-power per unit mass, 

expressed in W/kg as, 

 Specific Power = Rated Peak Power / Battery Mass. (2.3) 

2.1.2.5 Energy and Power Density  

Also referred to as volumetric energy density, energy density is the nominal battery 

energy stored in a given space per unit volume. This is expressed in Wh/l as, 

 Energy Density = Rated Wh Capacity / Battery Volume. (2.4) 

Specific power is the term given to the peak-power per unit volume of a battery, 

expressed in W/l as, 

 Power Density = Rated Peak Power / Battery Volume. (2.5) 

2.1.2.6 Safe Operating Envelope  

The battery’s operation is usually constrained to a range of voltage, current and 

temperature limits. These limits are provided by the battery manufacturer and must 

not be violated at any time.  
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2.1.2.7 State-of-Charge (SOC)  

SOC is defined as the remaining quantity of releasable charge in a battery with 

respect to the maximum available capacity. SOC is influenced by C-rate, temperature 

and the age of the battery. 

2.1.2.8  State-of-Health (SOH)  

There are two distinct definitions for SOH in literature relating it to either a power 

or energy fade. The source/sink power capability of a battery largely depends on its 

internal resistance. As the resistance grows with ageing, the battery’s instantaneous 

available power fades away. Moreover, as the battery ages, it loses some of its 

ampere-hour capacity, leading to an energy fade. 

2.1.2.9 State-of-Power (SOP)  

SOP is a measure of the amount of electrical power that a battery can deliver under 

specified operating conditions. Factors such as, instantaneous current demand, 

operating temperature, SOC, and SOH directly affect the maximum power capability 

of a battery.  

2.1.2.10 State-of-Function (SOF) 

Various definitions of SOF have been reported in literature, which all relate to the 

battery’s power capabilities. In other words, SOF is a digital yes/no parameter 

indicating whether the battery is capable of sourcing/sinking the applied power to 

carry out a particular function.   

2.1.3 Electrochemistry Basics 

In simple words, a battery is a device capable of storing electrical energy in the form 

of chemical energy and converting it back to electrical energy when needed. The 

smallest constituent component of a battery is called the cell. As illustrated in Fig. 

2.1, a cell consists of a negative electrode (anode) and a positive electrode (cathode) 

both immersed in an ion-conducting medium called the electrolyte. The chemical 

energy is stored in the electroactive species of the two electrodes inside the cell.  
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Fig. 2.1 Representation of the internal structure of an electrochemical cell 

2.1.3.1 Electrochemical reactions 

The energy conversion or the charging and discharging of a cell is realised through 

a cyclic reduction-oxidation (redox) or charge-transfer reactions [10]–[12]. These 

reactions involve the exchange of electrons between the active species inside the 

electrodes through an external circuit to the battery. These reactions occur at the 

boundary region between the electrodes’ surfaces and the electrolyte. During the 

charge process, the cathode active material is oxidised releasing electrons to the 

external circuit, whilst the anode active material is reduced extracting electrons 

away from the external circuit. The transfer of the positively charged ions (cations) 

from the cathode to the anode through the selective membrane of a separator (i.e. 

no electron flow through the electrolyte) permits the chemical storage of electrical 

energy. Under a discharge regime, the aforementioned reactions are reversed. 

2.1.3.2 Nernst’s equation 

The energy released from the movement of ions in an electrochemical system, gives 

rise to a potential difference. The battery is said to be in a state of equilibrium when 

no external load is connected at its terminals and the reaction rates of the 

interaction of the positive and the negative electrode and the electrolyte are the 

same. The Nernst’s equation defines the relationship between the chemical energy 

released in a battery and its electric potential. The equilibrium potential (𝐸eq) of 
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each electrode can be obtained using the Nernst’s equation [10]–[12] expressed for 

the positive and negative electrodes in equations (2.6) and (2.7), respectively. 
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where 𝐸𝑖
o is the standard redox potential of electrode 𝑖 in volts, 𝑅 = 8.314 J/mol. K 

is the gas constant, 𝑇 is the temperature in degrees Kelvin, 𝑛 denotes the number of 

electrons involved in the charge-transfer reactions, 𝐹 = 96485 C/mol  is the 

Faraday’s constant and 𝑎𝑖 relates to the activity of species of electrode 𝑖. 

The activity 𝑎𝑖 has a linear relationship with its concentration, 𝑐𝑖 in mol/m3, and its 

molar amount, 𝑚𝑖, which can be given as, 

 𝑎𝑖 = 𝛾. 𝑐𝑖 =
𝛾𝑚𝑖

𝑉𝑖
. (2.8) 

In equation (2.8), 𝛾 is the dimensionless activity coefficient, often assumed to be 

unity and 𝑉𝑖 is the volume in which the species of electrode 𝑖 resides. Considering 

equations (2.6)–(2.8), the final equilibrium potential of the complete cell can be 

obtained and given as, 
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where 𝐸cell
eq

 may also refers to the cell’s electromotive force (EMF). According to 

(2.9), the value of the cells EMF is dependent on the ratio of the activities of the 

oxidised and reduced species in the positive and negative electrodes. 
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2.1.3.3 Gibbs free energy 

In a thermodynamic system, the Gibbs free energy provides a measure of the 

quantity of useful or reversible work that the system could provide at a constant 

temperature and pressure. In an electrochemical cell, the change in Gibbs free 

energy, denoted as ∆𝐺o, can be used to determine the thermodynamic potential that 

allows for an electric current to be delivered/accepted by the cell under a 

discharge/charge process. This parameter in joules per mole (J/mol) is usually 

expressed as [10], [12] 

 ∆𝐺o = −𝑛𝐹(𝐸+
o − 𝐸−

o) = −𝑛𝐹𝐸cell
o . (2.10) 

where 𝐸cell
o  is the cell’s standard electrochemical potential. Conventionally, a 

positive 𝐸cell
o  implies a spontaneous (i.e. galvanic) process and a negative 𝐸cell

o  

means that the process is nonspontaneous (i.e. electrolytic). Depending on the 

applied convention, equation (2.10) may also be found in the form of ∆𝐺o =

+𝑛𝐹𝐸cell
o . The reason behind the conflicting use of signs in literature is that ∆𝐺o 

depends on whether the reaction is an oxidation or a reduction [12]. 

2.1.3.4 Electrode overpotential 

An oxidation reaction results in a current, 𝐼ox , which corresponds to a flow of 

electrons out of an electrode and conversely a reduction reaction results in a 

current, 𝐼red , which corresponds to an electron flow into an electrode. In an 

equilibrium state, these two currents are of the same magnitude, but in opposite 

direction, resulting in a zero net current flow. However, in a non-equilibrium state, 

the magnitude of one current becomes larger than the other. Thus, the cell’s actual 

terminal voltage will no longer be equal to 𝐸cell
eq

 in equation (2.9), giving rise to a 

charge-transfer overpotential [5], [11], [12]. 

The charge-transfer overpotential (𝜂ct) is caused by the polarisation effect, which 

occurs at the boundary region between the electrode and electrolyte interface 

during operation. This parameter is derived as the difference between the actual cell 

potential 𝐸cell
act  and that at equilibrium 𝐸cell

eq
 as [5], 
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 𝜂ct = 𝐸cell
act − 𝐸cell

eq
 (2.11) 

The overpotential 𝜂ct is comprised of two parts; a kinetic overpotential (𝜂k) and a 

mass-transport phenomenon that results in a diffusion overpotential (𝜂d). In order 

to describe the relationship between these overpotential components and the 

applied current, the Butler-Volmer equation [5] is employed.    

 𝜂𝑐t = 𝜂k + 𝜂d

 

𝜂k =
𝑅𝑇

𝛼𝑛𝐹
ln(𝐼) −

𝑅𝑇

𝛼𝑛𝐹
ln(𝐼o)

 

𝜂d =
𝑅𝑇

𝑛𝐹
ln (

𝑐𝛿

𝑐𝑏
)

}
  
 

  
 

 (2.12) 

where 𝐼 = 𝐼ox − 𝐼red is the net reaction current, 𝐼o is the exchange current for the 

charge-transfer reaction between the electrodes, and 𝛼 is a dimensionless transfer 

coefficient between 0 and 1. A coefficient of 𝛼 = 0.5 implies that the electrode has a 

symmetrical charge-transfer characteristic for both charge and discharge processes, 

which is not true for most electrochemical cells.  

As the magnitude of 𝜂𝑐t increases, the value of 𝐼 in (2.11) will be dominated by either 

𝐼ox or 𝐼red. In this case, the charge-transfer current will be limited by the dominating 

electrode. Therefore, by assuming a dominant current direction (i.e. 𝐼 = 𝐼ox or 𝐼 =

𝐼red), the Tafel relation as described in [13] can be used to simplify the Butler-

Volmer equation given in  (2.25) as, 

  
𝜂 =

𝑅𝑇

𝛼𝑛𝐹
ln (

𝐼

𝐼0
). (2.13) 

Although simple, equation (2.13) assumes that the values of 𝛼 and 𝐼0 are constant 

throughout operation, which results in large modelling errors. Moreover, an 

electrochemical cell under a dynamic operation may experience other overpotential 

phenomena, which will require a more detailed analysis to understand. 
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2.1.4 Battery Technologies and Applications 

The environmental concerns over the emissions of greenhouse gases, together with 

the volatile and ever-increasing prices of fossil fuels have led to the large-scale 

adoption of battery devices in the transport and utility sectors. These motives, 

together with the recent advances in electrochemistry science and manufacturing 

techniques have resulted in numerous battery technologies, each having their own 

specific performance capabilities. In this section, a performance review of the 

current battery technologies used in BES systems and their applications is provided.  

2.1.4.1 Lead-acid batteries 

Table 2.1 General performance profile for lead-based batteries [5], [14] 

Specification VRLA 

Nominal cell voltage: Nominal: 2.1 V  

Specific Power: 75–300 W.kg-1 

Specific Energy: 30–50 Wh.kg-1 

Energy Density: 50–80 Wh.l-1 

Peak currents: Charge: 1C 

Discharge: 8C 

Operating temperatures: Charge: -40–50°C 

Discharge: -40–60°C 

Abuse tolerance: High 

Self-discharge per day: 0.1–0.3% 

Cycle life (to 80% capacity): 500–1000 

The most common types of valve-regulated lead-acid (VRLA) batteries are gel and 

absorbent glass mat (AGM). In gel batteries, the electrolyte is turned from liquid to 

a paste-like solid using a silica-based gel. On the other hand, the AGM batteries are 

constructed by replacing the ceramic or plastic stud that separates the cells in a 

stack with a glass fibre mat, which is soaked in the electrolyte. Due to the absorbent 

properties of the mat glass separator, water loss is significantly reduced, eliminating 

the need for periodic refiling of AGM batteries. Table 2.1 provides a summary of the 

performance capabilities for AGM and gel VRLA batteries [14].  
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The more recently developed lead-carbon VRLA batteries [15] offer several 

advantages over the conventional lead-acid batteries.  Essentially, by adding a 

carbon plate to the negative electrode, the battery is converted into a quasi-

asymmetric supercapacitor. As a result, these batteries can provide a higher energy 

density than AGM and gel batteries, combined with a high specific power capability, 

which has been a challenge for a long time [16].  

Although larger and heavier than other portable battery technologies, VRLA 

batteries are low-cost and have a high tolerance for abuse, in terms of capability to 

operate at high currents and/or low temperatures for short time intervals. These 

properties make them an ideal candidate for those large-scale energy storage 

applications where weight and plant size are not restricted. Other applications of 

VRLA batteries include back-up power supplies in hospitals, airports and telecom 

towers. Owing to their significantly enhanced cycle life and dynamic charge 

acceptance, the lead-carbon VRLA batteries have become an enabling technology for 

the new micro-hybrid start-stop technology in modern ICE vehicles [17]. 

2.1.4.2 Nickel-based batteries 

Table 2.2 Comparison of different nickel-based battery technologies [5], [18] 

Specification NiCd NiMH 

Nominal cell voltage: 1.2 V  1.2 V  

Specific Power: 150–300 W.kg-1 250–1,000 W.kg-1 

Specific Energy: 40–60 Wh.kg-1 50–80  Wh.kg-1 

Energy Density: 50–150 Wh.l-1 190–230 Wh.l-1 

Peak currents: Charge: 4C 

Discharge: <10C 

Charge: 4C 

Discharge: <10C 

Operating temperatures: Charge: 0–40°C 

Discharge: -20–70°C 

Charge: 0–40°C 

Discharge: -20–65°C 

Abuse tolerance: Moderate Low 

Self-discharge per day: 0.2–0.6% 0.6–1% 

Cycle life (to 80% capacity): 500–1,000 1,000+ 
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The emergence of modern sealed nickel-cadmium (NiCd) batteries in the late 40’s 

entailed several advantages for portable energy storage applications. These 

batteries consisted of a cadmium negative electrode and a nickel oxide-hydroxide 

positive electrode, submerged in an alkaline electrolyte [19]. NiCd batteries offered 

an excellent low-temperature performance, which made them a key player in the 

early days of aircraft system electrification [19]. Nowadays, NiCd batteries are used 

for applications where performance reliability under harsh conditions is a necessity. 

However, due to environmental concerns over cadmium and the appearance of new 

technologies, a decline in the future uptake of NiCd batteries is inevitable. 

The nickel metal-hydride (NiMH) battery is similar in structure to the NiCd battery, 

except for the replacement of the negative electrode with a metal hydride alloy [20]. 

With their emergence, the NiMH batteries provided an attractive and practical 

solution for the electric powertrain of early EV and plug-in HEV (PHEV) designs (e.g. 

Toyota Prius). However, due to several drawbacks such as low specific energies and 

high self-discharge rates, NiMH batteries will no longer serve in next-generation 

EV/HEVs. Table 2.2 presents the performance profile of NiCd and NiMH batteries 

for comparison.  

2.1.4.3 Sodium-based or thermal batteries 

Table 2.3 Comparison of different sodium-based battery technologies [18], [21] 

Specification NaS ZEBRA 

Nominal cell voltage: 2.1 V  2.58 V  

Specific Power: 150–230 W.kg-1 150–200 W.kg-1 

Specific Energy: 150–240 Wh.kg-1 100–120 Wh.kg-1 

Energy Density: 150–250 Wh.l-1 150–180 Wh.l-1 

Peak currents: Charge: <1C 

Discharge: <1C 

Charge: <1C 

Discharge: <1C 

Operating temperatures: 300°C~350°C 245°C~350°C 

Abuse tolerance: Moderate Moderate 

Self-discharge per day:  ~20% ~15% 

Cycle life (to 80% capacity): 2,500 2,500+ 
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Sodium-based batteries are high temperature battery technologies that use molten 

salts as the electrolyte, which remains solid and inactive at ambient temperatures. 

However, when exposed to high temperatures of 300–350°C, an ionic and thus 

electrical conductivity occurs, sourcing electrical energy to an external circuit [21]. 

There are two main classes of sodium-based batteries. In the early 80’s, the sodium-

sulphur (NaS) battery emerged as a solution for many large-scale on/off-grid energy 

storage applications.  

Later on, the sodium-nickel-chloride battery was developed by the Zeolite Battery 

Research Africa Project (ZEBRA) to replace NaS batteries [22]. The solid-state 

nature of the materials used in the positive electrode makes ZEBRA batteries less 

prone to corrosion effects [21]. Moreover, the lower operating temperatures 

required for ZEBRA batteries means that they are safer and more cost-effective than 

NaS batteries. These improvements make ZEBRA batteries a more practical solution 

for large-scale grid energy storage problems [23]. Other applications of ZEBRA 

batteries include traction of heavy EV/HEVs (e.g. Iveco EcoDaily all-electric vans) 

and railway systems. Table 2.3 provides a summary of the performance capabilities 

for the aforementioned sodium-based rechargeable battery technologies.  

2.1.4.4 Flow batteries 

In a flow battery, the electrolyte that contains the dissolved electroactive materials 

flows through an electrochemical cell, where the conversion of chemical energy into 

electrical energy takes place. Generally, the electrolyte is stored in tanks and is 

pumped through the cell(s) of the main reactor unit [16]. Flow batteries benefit from 

a faster charging time that is achieved by quick refilling of the electrolyte liquid in 

the storage tanks [16].  

There are two main types of flow batteries. The redox flow battery is a reversible 

fuel cell with active species dissolved in the electrolyte [24]. In flow batteries, energy 

is mostly related to the volume of the electrolyte or the tank size [25] and power is 

related to the electrode area or the reactor area [26]. In contrast to redox flow 

batteries, hybrid flow batteries are developed by depositing one or more 
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electroactive materials as a solid layer in the cell, decoupling the battery’s energy 

from its power capability. 

Examples of flow batteries include redox flow batteries and zinc-bromine hybrid 

flow batteries [27]. Flow batteries have the advantages of flexible/modular layout, 

due to separation of power (i.e. reactor) and energy (i.e. electrolyte tanks) 

components. Moreover, these batteries benefit from a faster response time and a 

longer cycle life, as there are no solid-solid phase changes. On the negative side, flow 

batteries require complicated instrumentation for control and thermal management 

of the reactor. Also, the energy densities provided by flow batteries is rather low 

compared to other technologies such as lithium-ion [21].   

2.1.4.5 Lithium-ion batteries 

Over the past decade, lithium-ion batteries have achieved significant penetration 

into various markets, where high specific energy and power densities are desirable 

[28]. There are several types of lithium-ion batteries in commercial use, such as, 

lithium cobalt oxide (LCO), lithium-ion iron phosphate (LFP), lithium-ion nickel 

manganese cobalt oxide (NMC), lithium nickel cobalt aluminium oxide (NCA) and 

lithium-titanate (LTO). Table 2.4 provides a summary of the performance 

capabilities for the mentioned lithium-ion battery technologies. 

Whilst LCO batteries dominate the portable consumer electronics market, LFP and 

NMC batteries are gaining popularity amongst EV/HEV designers. Fig. 2.2 depicts an 

EV example incorporating a 20 kWh LFP battery pack. Other applications of LFP and 

NMC batteries include electric unmanned-aerial vehicles (e-UAV) and the recently 

emerging smart grid technology [29]. In contradiction to LFP and NMC batteries, 

NCA batteries have a less favourable performance, especially at low temperatures 

where the power and energy capabilities are reported to be considerably lower [30].  

Due to their more stable lithium-titanate anode structures, LTO batteries are the 

safest type of lithium-ion batteries available in the market, which can achieve faster 

charge times and higher discharge currents. As a result, LTO batteries are now being 
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considered for large-scale grid-tie energy storage applications, such as, load 

balancing, peak shaving and improving the frequency response of the grid [31].    

 

Fig. 2.2 Photo of an EV design (courtesy of Chevrolet) and its LFP battery pack 

The high levels of ongoing academic and industrial research on lithium-ion 

batteries, together with the advancements in manufacturing techniques are setting 

the tone for an increasing trend in large-scale adoption of lithium-based batteries. 

Therefore, this particular chemistry is chosen as the subject of study in this thesis, 

with a view to later develop an online state monitoring system for the commercially 

available NMC and LFP cells. It is worth noting that the algorithms developed in this 

thesis are also applicable to other battery chemistries, given knowledge of certain 

battery model parameters are available at initialisation step. 

20 kWh LFP 
battery pack 

Electric 
powertrain 



 

 

Table 2.4 Comparison of different lithium-ion battery technologies [2], [5], [32] 

Specification LCO/NCA LFP NMC LMO LTO 

Nominal cell voltage: 3.6–3.7 V  3.2 V  3.65 V  3.7–3.8 V 2.3 V  

Specific Power: 1,500 W.kg-1 150–500 W.kg-1 300–1,500 W.kg-1 700–1300 W.kg-1 3,000–5,100 W.kg-1 

Specific Energy: 90–200 Wh.kg-1 100–140 Wh.kg-1 100–240 Wh.kg-1 90–120 Wh.kg-1 70 Wh.kg-1 

Energy Density: 400–640 Wh.l-1 125–250 Wh.l-1 250–640 Wh.l-1 245–430 Wh.l-1 170 Wh.l-1 

Peak currents: Charge: < 1C 

Discharge: 3C 

Charge: 1C 

Discharge: > 10C 

Charge: 1C 

Discharge: > 3C 

Charge: 1C 

Discharge: < 10C 

Charge: 5C 

Discharge: < 10C 

Operating temperatures: Charge: 0–45°C 

Discharge: -20–60°C 

Charge: 0–45°C 

Discharge: -30–60°C 

Charge: 0–45°C 

Discharge: -20–60°C 

Charge: 0–45°C 

Discharge: -40–65°C 

Charge: -20–45°C 

Discharge: -30–60°C 

Abuse tolerance: Low Low Very low Low Moderate 

Self-discharge per day:  0.1–0.3% < 0.1% < 0.2% < 0.2% 0.1–0.4% 

Cycle life (to 80% capacity):  < 1,000 1,500+ 1,000+ < 1,000 10,000+ 

4
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2.2 Battery Management System 

In most real-world applications, a single cell will not be able to generate enough 

power to complete a given task. Therefore, battery packs, consisting of many cells 

connected in series and/or parallel formations are designed to achieve specified 

power and energy outputs. In order to keep the cells within their recommended 

operating envelope, battery management systems (BMS) are usually integrated into 

the pack design, serving as the “brain” of the battery system. As a result, at first, this 

section aims to provide an overview of modern BMS architectures and some of the 

typical tasks performed. Thereafter, the focus is brought to the state-of-the-art of 

advanced battery monitoring algorithms and online battery modelling and 

identification techniques, which is the main topic of study in this thesis.     

2.2.1 Overview 

 

Fig. 2.3 General structure of a typical BMS 

Most battery technologies require a BMS to not only ensure a safe operation, but 

also to help the battery perform at its highest energy and power capabilities, without 

violating the recommended operating limits. To achieve this goal, the BMS takes on 
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a variety of responsibility, which are visualised in Fig. 2.3. The most important tasks 

performed by a BMS include the following: 

 Data acquisition; 

 Cell protection; 

 Cell balancing; 

 Thermal management; 

 Energy management; 

 Battery state monitoring. 

2.2.1.1 Data acquisition 

In BMS, data acquisition (DAQ) includes the measurement and conditioning (e.g. 

low-pass filtering) of some of the most relevant battery data, which are then fed into 

other decision-making BMS units. The most relevant measurements are the voltages 

taken from every cell in a battery pack, the current that flows in parallel modules in 

a pack and temperatures of each cell or at least some thermally-critical points in the 

pack. The voltage and current measurements must be taken at proper sampling 

frequencies in order to be able to capture the important transient effects.  

Whilst voltage measurement accuracies of less than 3 mV are achievable using low-

cost sensors, the accurate acquisition of the battery/cell current in large-scale BES 

applications with over 20,000 cells is a more challenging task. In such applications, 

battery/cell current is usually measured using a shunt resistor or a hall sensor. 

Whereas shunt resistors suffer from temperature-induced drifts, hall sensors are 

prone to offset-induced errors, requiring a regular re-calibration. Therefore, in 

literature, the attentions have been brought to more advanced model-based battery 

conditioning techniques [33] that can adaptively account for the voltage and current 

sensor-induced errors. Moreover, through appropriate modelling of the BESS, it is 

possible to reduce the total number of temperature sensors required, without 

compromising the performance of the BMS as a whole [34].  
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2.2.1.2 Cell protection 

The cell protection block involves both analogue and digital supervisory circuits that 

are responsible for ensuring that the cell will never violate the specified limits of a 

safe operating area (SOA) at any time. These limits include the lower and upper 

voltage thresholds, maximum discharge/charge current levels and the minimum 

and maximum operating temperatures that are allowable for a safe operation. For 

example, in conventional BMSs, the battery charging power is reduced to a minimum 

at low temperatures in order to prevent lithium plating in the cells and thus 

permanent damage to the battery. In more recent works (e.g. [35]–[37]), 

researchers have developed various battery protection techniques, using transistor 

switches to disconnect the current path to the faulted cells in a module. However, 

due to on-state conduction losses in semiconductor devices and the difficulty in 

predicting their behaviour under fault conditions, this method of protection may not 

be practicable large-scale safety-critical applications.  

2.2.1.3 Cell balancing 

    

Fig. 2.4 Operational limitations of series-connected cells with (a) no balancing and 

(b) proper balancing 

(a) 

(b) 

Available range Safe range 

Safe range 

Available range 

Discharge Charge 
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Cell balancing, also known as charge equalisation, is an important operational facet 

of any modern BMS. An illustration of this concept is presented in Fig. 2.4. Over the 

lifetime of a battery pack, the voltages and capacities of the series-connected cells 

may vary at different rates, which can significantly limit the overall performance of 

the battery pack. Therefore, by charge-balancing the cells in modules, it is possible 

to improve the energy and power delivery of the battery.  

 In literature, cell balancing methods are generally classified into two main 

categories of passive and active. Passive methods (e.g. [38], [39]) use electrical 

components such as resistors in order to limit the voltages of those cells that have 

higher capacities by losing the excess energy as heat. Although simple, passive 

methods suffer from large inefficiencies, making them a rather unattractive 

approach for large-scale BES applications. On the other hand, active methods (e.g. 

[40]–[42]) can achieve far better energy efficiencies by transferring the energy from 

those cells with higher capacities to the ones with reduced capacities. As depicted in 

Fig. 2.5, this is usually achieved by using DC-DC converter designs such as forward, 

full-bridge and buck-boost topologies. As a result, active methods require complex 

control algorithms with additional electronic interfaces, which can be costly. 

 

Fig. 2.5 Block schematic of typical active cell balancing in a pack  
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2.2.1.4 Thermal management 

 

Fig. 2.6 An illustration of uneven thermal distribution over adjacent cylindrical 

cells in a module 

Effective thermal management is a necessity for the optimal operation and lifetime 

extension of high-performance battery packs [43]. Moreover, as shown in Fig. 2.6, 

uneven thermal distribution in the battery pack can further exacerbate the charge 

balance in the incorporated cells, reducing the battery’s performance capabilities. 

Therefore, depending on cell geometries and application conditions, the battery 

pack is often equipped with either an active or passive thermal management system.  

The active systems are usually realised by using fans or pumps to circulate a coolant 

around the modules, extracting the heat from the battery pack. Typical coolants are 

air [44]–[46], liquid [47] or carbon dioxide [48]. In contrast, passive cooling systems 

exploit the physical properties of different coolants implanted between adjacent 

cells in a pack to absorb the heat generated during operation. These coolants are 

usually composed of phase-change materials (PCM) [49]–[51] with excellent heat 

absorption capabilities. Other methods include a recently developed thermoelectric 

cooler based on the Peltier effect [52] and a flexible hydrogen-based thermal 

management system [53].    
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2.2.1.5 Energy management 

 

Fig. 2.7 General operation of energy management unit for CESSs 

Irrespective of the constituent chemistry, a battery is considered a high energy 

density device. In most practical applications such as in EV/HEVs or grid-tie utility 

storage, in order to be able to respond quickly to fast-transient power demands, 

composite energy storage systems (CESS) are adopted [54]–[56]. These systems are 

usually comprised of high energy density batteries for long-time energy demands, 

and high power density ultra/super capacitors for short-time transient power 

requirements. Fig. 2.7 outlines the operation of a typical battery-supercapacitor 

CESS. This system, as well as any other CESS, requires a proper energy management 

system that can take care of charge balancing between multiple battery banks and 

other energy storage devices. 

There are many energy and/or power management strategies for battery batteries 

[57]–[60]. Most of these strategies are based on the current and possibly future 

predictions of the battery states (e.g. SOC, SOP and SOH) provided by the battery 

monitoring system, to calculate the difference between the demanded and available 

sink/source power. Subsequently, if the power demand exceeds the battery’s 

ratings at a given time, the energy management system will act immediately to limit 

the battery power output through the converter unit. This operation is a necessity 
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for the optimal utilisation of the battery devices, without imposing any serious 

damage on them. 

2.2.1.6 Battery state monitoring 

 

Fig. 2.8 Overview of underlying tasks performed by a battery monitoring system 

For an effective and robust energy management algorithm, various battery states 

are required to be identified online. To this end, battery state monitoring algorithms 

are developed to provide the other decision-making units (e.g. energy management 

unit) within the BMS with a reasonable estimate of the battery’s most favourite 

states (i.e. SOC, SOP and SOH). One common challenge in most battery state 

monitoring algorithms is the time-variability of the battery characteristics, 

including battery capacity and impedance parameters, due to varying operating 

conditions and battery ageing [61]. Therefore, the incorporated battery monitoring 

algorithm must be able to adaptively correct for these variations to produce an 

accurate and reliable set of battery state estimates.   

The overall structure of a battery state monitoring system is illustrated in Fig. 2.8. 

In most battery monitoring algorithms, often a dynamic model representation of the 

battery system is used to aid with the online estimation of SOC, SOP, and SOH. Every 

step in time, the algorithm attempts to make an estimation of the battery impedance 

parameters, including the series resistance and its Ah capacity. Thereafter, using the 
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dynamic model structure, a prediction for the battery’s OCV is made, which is then 

applied to either a look-up table or a predefined empirical function to estimate SOC 

in real time. Consequently, this information is processed into those algorithms 

responsible for SOP, SOF and SOH estimation, in order to realise a comprehensive 

battery monitoring system.  

2.2.2 Review of Battery SOC Estimation Algorithms 

This section reports on various approaches to battery SOC estimation. These can be 

summarised into two main categories, namely, the direct and indirect methods. The 

direct techniques include the easily implementable coulomb-counting method and 

the OCV methods. Whereas the former method suffers from sensor noise and 

initialisation-induced offsets, the latter requires a very long period of no-load 

connection to establish an accurate measurement for the battery’s OCV. 

Consequently, these two methods are often combined in practice to form the basis 

for the indirect model-based SOC estimation techniques.  

2.2.2.1 Coulomb-counting method  

Coulomb-counting is an easily implementable technique for SOC estimation, where 

given an initial value, SOC (𝑡0), the time integral of the terminal current can be taken 

as an indicator for the battery’s available charge. 

 
SOC(𝑡) = SOC(𝑡0) −

𝜂

𝑄nom
∫ 𝐼(𝜏)
𝑡

𝑡0

∙ 𝑑𝜏 (2.14) 

where 𝐼(𝜏)  is the battery current, 𝑄nom = 𝐶nom × 3600s  and 𝜂  (for charge 𝜂 < 1 

and for discharge 𝜂 = 0 ) is the battery’s coulombic efficiency. And 𝐶nom  is the 

battery’s nominal capacity in ampere-hours. Conventionally, the current direction is 

negative during charge (i.e. sign (𝐼) < 0 ) and positive during discharge (i.e. 

sign (𝐼) > 0 ). Due to the open-loop nature of the coulomb-counting method 

described by (1), the predicted SOC is prone to large sensor offset and drift errors. 

Moreover, by using the nominal capacity as the denominator in (2.14), the resultant 

SOC may be under- or over-estimated. 
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2.2.2.2 OCV-based estimation 

Additionally, SOC can be predicted based on a predefined relationship with the 

battery’s EMF or OCV, as illustrated in Fig. 2.9. However, this technique requires a 

long period of no-load connection to establish an OCV measurement, making it 

impractical for online applications. Also, it can be argued that for those cell 

chemistries with flat OCV curves (e.g. lithium-ion iron phosphate), OCV-based 

techniques can produce unstable SOC estimates. This gives rise to more advanced 

model-based estimators used in BMS applications. Such methods often employ a 

model representation of the battery’s dynamics whose parameters can be utilised 

as good indicators for various battery states, including SOC and SOH. In these 

techniques, the advantages of coulomb-counting are combined with an OCV-based 

method to realise a simple, yet efficient approach for the SOC estimation of various 

battery technologies, including lithium-ion.  

 

Fig. 2.9 A typical OCV-SOC relationship for a lithium-ion battery 

As stated above, for an accurate SOC estimation, the battery’s final EMF value must 

be established after a long period of OCV relaxation. The battery relaxation is mainly 

dominated by the internal electrochemical and thermodynamic processes that occur 

inside it. Depending on the battery’s conditions, relaxation can take up to several 

hours, particularly when imposed to high charge/discharge current levels and 

operating at low temperature and near-empty SOC conditions. 
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There are several methods proposed in literature to estimate EMF by considering 

only the initial part of the OCV relaxation curve after a load disconnection. In [62], 

the authors have used a semi-log scale to plot the OCV relaxation curve against time. 

Then by considering two asymptotes, OCV is estimated as function of log(𝑡). The 

model parameters are found using laboratory-based experiments on new batteries. 

The main drawback of this method is that, as the battery ages, the parameters used 

to model the voltage relaxation trajectory become increasingly unreliable. 

Alternatively, adaptive techniques are developed to account for the variations in 

model parameters with battery ageing. The hypothesis is to use the first few minutes 

of the OCV relaxation after a load-disconnection to determine the OCV model 

parameters; thus the battery’s EMF can be obtained and utilised for an accurate SOC 

estimation. For example, in [63], the authors have proposed an exponential function 

to relate the battery’s EMF to the OCV as, 

 𝑉OC(𝑡) = EMF − (EMF − 𝑉OC(𝑡0)) ∙ 𝑒
−𝑡/𝜏. (2.15) 

The advantage of this simple model is that, the two unknowns (i.e. EMF and 𝜏) are 

easily obtainable based on the first ten minutes of no-load connection. However, the 

work of [64] shows significant inaccuracies in the EMF prediction by this model. To 

further improve the performance of the exponential function given in (2.15), in [65], 

the authors have developed a more complex empirical model to describe the OCV 

relaxation in lithium-ion batteries. The proposed model is expressed as, 

 𝑉OC(𝑡) = EMF −
𝛾

𝑡𝛼 ∙ (log(𝑡))𝛽 
 (2.16) 

where EMF, 𝛾, 𝛼 and 𝛽 are the model parameters and are identified online using a 

least-squares method. The performance of the OCV model represented by (2.16) has 

only been tested on small 1.1 Ah lithium-ion cells and its universality across other 

lithium-ion cell chemistries remains to be judged [64]. 
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2.2.2.3 Book-keeping methods 

The book-keeping methods use look-up tables for relating various battery 

characteristics to SOC for online BMS implementations. For example, in [66] and 

[67], SOC is proposed to be estimated by measuring the battery voltage, current and 

temperature, and relating it to a predefined function SOC = 𝑓(𝑉, 𝐼, 𝑇)  that is 

parameterised while the battery is new. Although simple to realise, book-keeping 

SOC estimation methods are not practically fit for dynamic power applications. 

Moreover, the stored functions are only valid for the characterised batteries and the 

effect of ageing is not considered. 

2.2.2.4 Impedance-based estimation 

Battery impedance has been previously used as a basis for SOC estimation in lead-

acid, NiMH, NiCd and lithium-ion battery applications (e.g. [68]–[72]). This 

approach to SOC estimation is similar to the OCV-based method, except in this case, 

the OCV-SOC function/look-up table is replaced with an impedance-SOC 

relationship. However, as shown in [73] and [74], battery impedance is heavily 

affected by SOC, SOH and other operating conditions such as temperature and 

current. Thus, impedance parameters alone are unable to provide an accurate SOC 

estimate as the battery ages. Furthermore, the sensitivity of the impedance to SOC 

is shown to be much lower than that to temperature. Therefore, a highly accurate 

temperature measurement system is required to compensate for the effects of 

temperature on impedance. Moreover, due to rapid temperature variations and 

uneven thermal distribution in large battery packs, high accuracies with impedance-

based SOC estimation methods are impossible. 

2.2.2.5 Model-based estimation 

Model-based estimators (e.g. [75]–[79]), as the name suggests, employ 

deterministic model representations of the battery system in an effort to relate the 

terminal signals (i.e. voltage, current and temperature) to the battery’s SOC. 

Essentially, the measurements are considered as model inputs to compute the 

battery’s OCV while in operation. Then, the SOC-OCV relationship is used to provide 

an estimate for SOC in real time. Similar to previously mentioned OCV relaxation 
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models, the parameters of the model structures used in online SOC estimation 

algorithms vary significantly throughout the battery’s lifetime. On the other hand, 

the adaption of model parameters with respect to operating conditions and battery 

ageing is only practical for relatively simple model structures. Nevertheless, model-

based SOC estimation methods are increasingly becoming popular in applications 

where battery operation cannot be interrupted for characterisation purposes.    

2.2.2.6 Observer-based methods 

Alternatively, adaptive observers can be carefully designed to estimate various 

battery states and parameters in real time. Recently in [80], the authors have 

considered the nonlinearities and uncertainties in the OCV-SOC relationship to 

develop an improved observer-based SOC estimator. Other examples of observer-

based SOC estimators and their usefulness in lithium-ion battery applications are 

reported in [80]–[87]. These methods benefit from simplicity and reasonably high 

accuracy levels. However, battery parameter adaption due to ageing is still an issue. 

To solve this, Rahimi-Eichi et al. [88] has proposed a piecewise linear mapping of 

the OCV-SOC relationship together with a moving-window least-squares method to 

estimate SOC, as well as battery impedance parameters in real time. In another 

approach taken in [89], the battery terminal signals are observed over a short period 

of time, depending on the excitability of the input signals. Then, using a simple 

battery model consisting of an OCV and series-resistance element, and an ordinary 

least-squares method, the battery’s OCV is determined and used for SOC estimation. 

2.2.2.7 Kalman Filter (KF) based estimators 

The Kalman Filter (KF) is a recursive set of robust equations that allows for an 

stochastic identification of dynamic systems [90]. It finds applications over a wide 

range of disciplines, including the energy and power management of BES systems. 

The ordinary KF is mostly used with rather simple and linear battery model 

structures. For example, in [91] and [92] the authors apply the KF algorithm to find 

the battery’s OCV, which is then used to estimate SOC. Alternatively, to compensate 

for the nonlinearities inherent to electrochemical devices and complex battery 

models, extensions of the ordinary KF algorithm are used. 
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The Extended Kalman Filter (EKF) is the most popular version of the nonlinear KF, 

where the model states and parameters are linearised about the filter’s current 

trajectory. Examples of battery states monitoring using EKF include [93]–[100]. It 

may be argued that the EKF suffers from linearisation inaccuracies and the 

stochastic measurement noise characteristics can vary with battery and sensor 

ageing. Consequently, other advanced versions of the KF algorithm such as sigma-

point KF (SPKF) have been introduced for battery identification purposes. Examples 

of SPKF include, the unscented KF (UKF) and the central-difference KF (CDKF), 

whose applicability to battery state estimation has been validated in [101]–[107].  

The disadvantage of all KF-based estimators is that, for a proper implementation, a 

reasonable a priori knowledge of the model parameters and measurement and 

process noise covariance are required. Subsequently, inaccurate setting of the 

filter’s initial conditions can lead to either divergence or an extremely slow 

convergence. To overcome this issue in battery identification problems, researchers 

have used adaptive KF (AKF) [92], adaptive EKF (AEKF) [108]–[114] or adaptive 

SPKF (ASPKF) [115] to estimate the nonlinear model parameters and measurement 

noise covariance in real time, at the expense of additional computational power.  

Another disadvantage associated with KF estimators is that, the process and 

measurement noises are assumed to follow a Gaussian distribution with a mean 

value of zero. However, this assumption may not be true in most real battery 

applications, leading to further exacerbation of the filter’s convergence behaviour 

and overall accuracy. As a result, particle filters (PF) and unscented-particle filters 

(UPF) are employed in [116]–[119] to achieve better results compared to KFs, at a 

cost of significantly increased computational power and memory consumption. 

2.2.2.8 Machine learning techniques 

Artificial neural networks (ANNs) [120]–[124], fuzzy logic (FL) [125]–[127] and 

support vector machines (SVMs) [128]–[132] have also found usage in BMS 

applications. These approaches are similar in implementation to the model-based 

methods described previously, except that SOC is represented by, for example ANNs, 

instead of a deterministic model structure. The advantages of such approaches is 
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that a priori knowledge of the battery parameters is no longer required. However, 

due to the requirement for large training datasets of various forms, these 

approaches for SOC estimation are often precluded form online BMS applications. 

Furthermore, due to the open-loop nature of such techniques, adaption to battery 

ageing and other factors such as manufacturing variations is not possible.     

In more recent machine-learning approaches, the estimated SOC is used as one of 

the system inputs and the output, being the terminal voltage, is compared to the 

actual battery voltage to produce an error term. Then, by using an appropriate 

observer or one of the KF variants, closed-loop SOC estimation can be realised as in 

[133]–[135], which can adapt to battery parameter variations due to ageing and 

varying operating conditions; thus online training of the underlying models become 

possible. However, this brings with it some additional problems such as, 

tremendous computational power requirements and over-fitting, which precludes 

these techniques from online BMS applications that are intended to be implemented 

on low-cost microcontrollers.  

2.2.3 Review of Battery Capacity Estimation Methods  

 

Fig. 2.10 Methods presented in literature for battery capacity estimation 
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Battery capacity is a direct indicator of the amount of available energy that a battery 

can supply from a fully charged state. Due to the advancements in battery 

manufacturing techniques, capacity variations in the battery/cells of the same 

chemistry and dimensions are usually very small. However, over the lifetime of the 

battery, its rate of capacity degradation can vary, depending on the usage and 

operating conditions. Therefore, it is important to be able to predict and monitor 

such variations, which can help prevent power shortages and/or failure in more 

safety-critical power applications. In this section, a description of the various offline 

and online methods proposed in literature for battery capacity estimation is 

provided. These methods are summarised in Fig. 2.10.     

2.2.3.1 Offline approaches to capacity estimation 

A simple method for battery capacity characterisation is to impose it with a full 

charge/discharge cycle and measure the amount of charge that leaves the battery 

during the discharge half-cycle. However, this method requires for the battery to be 

‘offline’, where a full capacity measurement cycle can be performed; thus, it is not 

applicable to most BES applications (e.g. in EV/HEVs). 

Other examples of offline capacity estimation methods include incremental capacity 

analysis (ICA) and differential voltage analysis (DVA) [136]–[138]. These methods 

involve charging and discharging the battery with a low current level in incremental 

or detrimental SOC steps, in an effort to gain a better understanding of the battery 

capacity loss mechanisms. Once the battery’s OCV has reached a final equilibrium 

potential, the evolution of the incremental capacity (IC) curves as a function SOC and 

temperature are investigated to reveal the gradual changes in the underlying 

electrochemical properties of the battery. Similar to the static cycle-based method, 

ICA and DVA capacity estimation requires constant-current charging and 

discharging phases, which may not be available in certain applications. 

2.2.3.2 Online approaches to capacity estimation  

The online battery capacity estimation methods can be classified into two main 

groups; those based on a predefined OCV-SOC relationship and those based on 

adaptive estimation of electrical equivalent-circuit models. The first group methods 
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(e.g. [139]–[141]) consider the changes in the battery’s OCV, with respect to SOC 

over a specified charge/discharge period. The ampere-hour capacity is then 

calculated by re-arranging equation (2.14) and solving for 𝐶nom. Although easy to 

implement, this method requires the battery to be fully rested before an OCV 

measurement can be taken.  

The methods from the second group (e.g. [64], [142]) are similar in principle to the 

first group methods, except that the battery’s OCV is obtained from an electrical 

equivalent-circuit model. Eventually, the predicted OCV is applied to either a look-

up table with static parameters, or to a polynomial function with adaptable 

parameters to estimate SOC and battery capacity.  

Alternatively, battery capacity can be considered as a slow time-varying parameter 

of a dynamic model structure, where by applying one of the adaptive techniques 

described in section 2.2.2 for SOC estimation, battery capacity can also be obtained. 

For example, in [95], the authors have proposed a multiscale framework for the EKF 

estimation of battery SOC and capacity, whilst in [143], a joint EKF approach has 

been adopted. Other examples of adaptive battery capacity estimation methods 

include, the recursive least-squares (RLS) in [144] and [145], dual EKF in [100], 

[140], [146], dual SPKF in [106] and a combination of KF-based and subspace 

parameter estimation methods in [92] and [147]. These methods can achieve a fairly 

accurate capacity estimate, at the expense of increased computational power for 

intensive numerical operations such as inversion of large-dimensional covariance 

matrices. 

2.2.4 Review of Battery Impedance Characterisation Methods 

In modern battery monitoring systems, impedance parameters often serve as a good 

indicator and/or recalibration means for various battery states including SOC, SOH, 

SOP and SOF. During operation, the impedance parameters can vary significantly 

due to both internal and external factors. The internal factors are the battery’s SOC, 

SOH and heat generation due ohmic losses, whilst the external factors may include 

ambient temperature, current and previous history of battery usage [148]. As a 
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result, many reaches have been reported on both online and offline battery 

impedance characterisation techniques, as summarised in Fig. 2.11. 

 

Fig. 2.11 Summary of battery impedance estimation methods [61] 
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A simple method to determine the battery’s overall DC resistance is to inject it with 

a pulsed-current signal and measure the corresponding voltage response, as shown 

in Fig. 2.12, where Δ𝐼 is the amplitude and Δ𝑡 is the period of the of the injected 

current pulse. Typically, Δ𝑡 ranges from milliseconds to seconds, depending on the 

test regime applied (e.g. HPPC). Subsequently, the battery’s ohmic or series-

resistance, which is inherent to the cell’s internal composition, can be calculated 

using Ohm’s law as, 

 
𝑅s =

Δ𝑉0
Δ𝐼
. (2.17) 

The second voltage drop Δ𝑉1  occurs as a result of those elements impeding the 

transfer of charge in a battery. These elements include the short time-constant 

charge-transfer resistance and the double-layer capacitance at the electrodes. 

Moreover, due to the diffusion of the active species, a concentration gradient builds 

up, resulting in a change in the battery’s EMF [65]. Therefore, considering the 

voltage drops due to Δ𝑉1, equation (2.17) can be rewritten as, 

 
𝑅int =

Δ𝑉0 + Δ𝑉1
Δ𝐼

. (2.18) 

In most applications, equation (2.18) is considered sufficient for the purpose of 

power prediction. However, this crude approach does not fully describe the 

underlying battery dynamics. Moreover, the pulsed-current method largely depends 

on the period Δ𝑡 of the applied stimulant, and can only be performed at a single 

frequency. As a result, such direct methods are only applicable to those applications, 

where accurate battery impedance estimation is not a necessity. 

2.2.4.2 Electrochemical impedance spectroscopy (EIS) 

EIS is a widely used experimental technique for the identification of a battery’s 

internal processes occurring at different time-constants. This technique is often 

implemented either actively or passively in order to capture a battery’s charge 

transfer dynamics over a specified band of frequencies.  
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The general principle of EIS is to apply a sinusoid to the battery under test and 

measure its response from which the electrical impedance is calculated. The input 

signal can either be a voltage (potentiostatic) or current (galvanostatic) sinusoid. 

For potentiostatic EIS testing, the battery impedance is defined in (2.19).  

 
𝑍(𝜔) =

𝑈

𝐼(𝜔)
= |𝑍|∠𝜙(𝜔) (2.19) 

𝑈 is the amplitude of the voltage response; 𝐼(𝜔) is the response current, where 𝜔 =

2𝜋𝑓 is the angular frequency; 𝜙(𝜔) is the phase shift; 𝑍(𝜔) is the complex-valued 

impedance and |𝑍| is the absolute magnitude. It is also possible to express 𝑍(𝜔) in a 

Cartesian plane, with a real part 𝑍′ and an imaginary part 𝑍′′ as, 

 𝑍(𝜔) = 𝑍′ + 𝑗𝑍′′

 
𝑍′ = |𝑍| ∙ cos(𝜙)

 
𝑍′′ = |𝑍| ∙ sin(𝜙)

 

|𝑍| = √𝑍′2 + 𝑍′′2}
 
 
 

 
 
 

. (2.20) 

 

Fig. 2.13 Theoretical impedance spectrum for a lithium-ion cell 
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A theoretical impedance spectrum for a lithium-ion battery is demonstrated in Fig. 

2.13 and in this case consists of five different regions. Each region has a physical 

interpretation, which, in terms of battery dynamics, can be explained as follow: 

A) Inductive reactance caused by the battery geometry and metallic 

interconnections; 

B) Internal ohmic resistance due to the current collectors, separator and the 

movement of ions through the electrolyte; 

C) First semi-circle often associated with a solid electrolyte interface (SEI) 

film [149] formed over the surface of anode; 

D) Second semi-circle occurring due to the double-layer capacitance and 

charge transfer resistance at the electrodes; 

E) Finally, this region represents the long time-constant processes 

associated with the diffusion of active species.  

On the basis of EIS operation, many battery monitoring systems have been reported 

in literature (e.g. [150]–[152]). On the down side, these active techniques require 

complex circuitry to perform on-board signal generation and data acquisition. 

Alternatively, passive EIS methods are developed in [153]–[155] to eliminate the 

requirements for extra circuitry. Instead, these methods use the fluctuations caused 

by dynamic loads to estimate the battery’s impedance. However, due to the linear 

approximations used in such methods, the effects of current and temperature on 

battery impedance is often neglected. Moreover, the persistence of excitation 

criterion [156] might not be satisfied at all times, leading to loss of vital information 

at frequencies outside the signal’s range.   

2.2.4.3 Methods based on electrochemical modelling 

Depending on the order of the governing partial differential equations (PDE), 

electrochemical models can achieve highly accurate descriptions of the battery 

dynamics. For example, in [157]–[160], by using adaptive PDE observers and 

nonlinear least-squares methods, battery’s SOC and resistance are estimated 

simultaneously online. On the other hand, in [161], the authors have used a control-

oriented single-particle model structure in combination with a gradient-based 
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recursive method to estimate the battery’s total resistance. Another electrochemical 

model-based approach is reported in [162], where a particle filter is employed for 

SOC and impedance parameter estimation. 

A common disadvantage to all the methods discussed above is the complexity of the 

model structures and the revolutionary system identification methods that are used 

to estimate the battery impedance parameters. Moreover, the parameters identified 

for electrochemical models cannot be easily related to any physical qualities of the 

battery (e.g. SOP or SOH). As a result, electrochemical models for battery impedance 

estimation are less frequently applied in online battery monitoring systems.   

2.2.4.4 Methods based on electrical equivalent-circuit modelling 

Electrical equivalent-circuit models have been found useful in many online battery 

state and parameter estimation algorithms. Fig. 2.14 illustrates an exemplary simple 

equivalent-circuit model structure, where OCV is defined as a function of SOC, 𝑅int 

represents the battery’s total internal resistance and 𝑉T is the terminal voltage. By 

using such models, it is possible to relate the obtained battery parameters to real 

battery states, including SOP and SOH. Moreover, due to their relatively simplified 

numerical approaches, equivalent-circuit models are highly desirable for online 

BMS implementations on low-cost microcontroller platforms. 

 

Fig. 2.14 Simple electrical equivalent-circuit battery model 

There are various techniques reported in literature that can be applied to 

equivalent-circuit models to extract the battery impedance parameters in real time. 

Some of the most sighted techniques are listed below:  
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 KF-based methods; 

 Recursive-least-squares methods; 

 Non-recursive least-squares methods; 

 Other adaptive approaches. 

KF-based methods are not only useful in online battery state estimation problems, 

but can also be implemented in different formats to simultaneously identify the 

battery’s impedance parameters. For example, in [163]–[165], the authors adopt a 

joint EKF approach to real-time battery identification, where system unknowns are 

stacked up in a single EKF for simultaneous estimation of the model states and 

parameters. The disadvantage of joint EKF for online applications is the increased 

number of large matrix operations (e.g. matrix inversions) due to the high 

dimension of the augmented state model. Alternatively, the dual EKF (e.g. [140], 

[146], [166]) and the dual SPKF (e.g. [146]) are employed in BMS applications to 

separate the process of state and parameter estimation by using two individual 

filters running in parallel. Due to the recursive nature of such system identification 

methods, the requirements for storage memory is very low; therefore their 

implementations on low-cost microcontrollers is achievable. 

Least-squares techniques have also been applied to online battery parameter 

estimation problems. In [136], [137], [144], [145], [167], the authors have applied 

different variations of the least-squares method, such as, recursive least-squares 

(RLS), recursive least-mean-squares (RLMS) and weighted RLS (WRLS) to identify 

different battery model structures in real time. Compared to KF-based approaches, 

these techniques are computationally less intensive. However, they are less robust 

in cases where persistence of excitation is poorly conditioned. In [168], a moving 

window least-squares approach to battery parameter estimation was taken in an 

effort to improve the filter’s convergence. This was achieved at the expense of 

increased memory consumption for storage of battery data sampled in a ‘window’. 

Non-recursive least-squares techniques are useful in situations where the 

underlying battery model structure is either highly nonlinear [169]–[171] or 

fractional with no ideal components [172]–[175]. This technique operates based on 

the principle of measuring and storing battery data over a period of time, and 
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applying the least-squares optimisation procedure to fit a battery model of interest 

to the measured data. Due to the high computational power and storage memory 

requirements, these techniques are often implemented offline in laboratory-based 

conditions to validate the performance of the underlying battery model structure.  

In addition to KF-based and recursive least-squares methods, other adaptive 

approaches to online battery parameter identification have been reported. For 

example, in [176]–[179], a sliding-mode observer is proposed to estimate the 

battery parameters in real time. The use of evolutionary techniques for battery 

identification have also been reported in literature. These include genetic 

algorithms (e.g. [180]) and particle-swarm optimisation (e.g. [181]) methods. 

Although higher estimation accuracies are achievable compared to least-squares-

based methods, however, the requirements for tremendous computational power 

and memory consumption precludes these techniques from most online BMS 

applications.    

2.2.5 Review of Battery SOH Estimation Methods 

As stated previously, SOH is the ability of the battery to provide its rated energy over 

its lifetime. The most common understanding of SOH is that, when the battery is 

new, SOH is defined as 100%, and when its energy delivery capabilities drop to a 

predefined level, SOH is said to have reached 0%. In certain BES applications, SOH 

can also be related to the power capability of the battery (SOHpwr ), as well its 

energy-based definition (SOHenr). 

2.2.5.1 Energy- and power-based SOH estimation 

In general, as the battery ages, its capacity fades away, whilst its impedance grows 

larger. As a result, these two parameters can be used to determine the battery’s 

energy- and power-based SOH levels (i.e. SOHenr and SOHpwr), respectively. This is 

a convenient way of characterising the SOH for batteries used in EV/HEVs and large-

scale grid-tie energy storage sites, as battery’s capacity and impedance parameters 

are readily available using the methods described in sections 0 and 0.   
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SOH can also be determined without explicitly having to estimate the battery’s 

capacity and/or impedance. For example, in [70] the authors use the voltage drops 

measured for lithium-ion batteries under load conditions to obtain a DC resistance 

value; therefore the resulting SOH can be related to the battery’s SOHpwr. FL-based 

methods have also been reported in [182]–[184] for SOH estimation, where the 

model inputs consist of measured and/or calculated battery characteristics, 

including impedance parameters. The resulting SOH, however, does not reflect on a 

degradation in one particular battery characteristic, but provides a more general 

indication of the battery’s condition (e.g. new, mid-life or EOL). 

Alternative approaches to SOH estimation have been proposed in [185] and [186]. 

In these works, the authors have employed a lifetime model of a lithium-ion battery, 

and by observing various conditions (e.g. SOC, number of cycles and temperature), 

the battery’s SOH is estimated. Ultimately, the recursive ANN and SVM methods are 

applied to the battery’s lifetime model to adapt to varying operating conditions and 

improve the quality of the SOH estimate. However, these techniques require for 

extensive model-training datasets, which are almost always attained using 

accelerated ageing tests. Therefore, the validity of such SOH estimation methods 

could be reduced under real application conditions.      

 The SOH level used for determination of the battery’s end-of-life (EOL) can vary 

amongst different applications. For example in EV/HEVs, the battery is said to have 

reached its EOL when SOHenr reaches 80% of the nominal capacity, or when SOHpwr 

drops by a factor two. Whilst a battery’s SOH estimate might indicate that it has 

reached the criteria for replacement, the same battery could be perfectly fine for 

another secondary application. However, significant changes in the battery’s 

internal characteristics means that there is an increased probability of battery 

failure. Therefore, extra monitoring and protection circuitry might be required.     



 

73 

2.2.5.2 Remaining useful life (RUL) prediction 

 

Fig. 2.15 Concept of RUL prediction based battery’s SOH 

A battery’s remaining useful life (RUL) is usually defined as the remaining time or 

the number of charge/discharge cycles before it reaches 0% SOH. Fig. 2.15 presents 

the basic concept of RUL prediction, consisting of two parts. The first part involves 

the estimation of the battery’s SOH using one of the methods discussed earlier. The 

second part includes an appropriate RUL model that takes SOH and other battery 

properties as a function of either time or cycle number to predict when the battery 

will reach its EOL threshold. Recent works on such RUL prediction approaches 

include [187]–[192]. Depending on the employed algorithms (e.g. SVM in [193]), 

battery RUL prediction can be computationally intensive. Nevertheless, the main 

challenge is to try and train the underlying RUL model based on the SOH data 

obtained during the early stages of battery ageing. This is similar to a battery lifetime 

model that can be parameterised online, according to imposed the load profile.  

2.2.6 Review of Battery SOP Characterisation Methods 

For a proper operation of the energy management system discussed in section 

2.2.1.5, battery SOP prediction algorithms are employed. For instance, in EV/HEVs, 

knowledge about the available quantity of discharge power can help the energy 

management system make intelligent control decisions, preventing sudden power 

drops during acceleration and serious damage to the battery’s health.  Most battery 

energy management strategies (e.g. [194]) are reported to have a short power 
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prediction horizon. This means that the estimated battery power is only valid over 

a predefined time interval. In the following sections, the most commonly used SOP 

prediction methods by battery energy management strategies are discussed.  

2.2.6.1 Book-keeping methods 

Similar to book-keeping methods described in section 2.2.2.3 for SOC estimation, 

direct approaches to battery power prediction are also based on the 

interdependence of various battery states and parameters. In these methods, 

usually some direct relationships between, for example, battery’s SOC, voltage and 

temperature with the demanded pulse power signal are established in laboratory 

conditions, and the results are stored in a non-volatile memory unit of the BMS for 

online implementations [195]–[197].  

There are various pulse power characterisation procedures reported in [198]–[200] 

to help with the initial parameterisation of look-up tables or empirical functions for 

new batteries. However, as the battery’s characteristics change due to ageing and 

other stress factors, the SOP values predicted by these methods become very 

inaccurate; thus some level of adaption to varying operating conditions is necessary. 

Moreover, the storage of multi-dimensional look-up table or best-fit function 

parameters requires a significant amount of memory, which suggests that these 

methods may not be suitable for embedded BMS applications.    

2.2.6.2 Online model-based approaches 

To overcome the challenges in direct SOP prediction approaches, model-based 

techniques have been developed in [201]–[206]. These methods employ model 

representations of the underlying battery dynamics to produce a more accurate 

estimation of the battery’s available charge/discharge power. In order to ensure 

convergence of the battery model parameters in varying operating conditions, 

similar adaptive techniques discussed in section 2.2.4 for battery impedance 

estimation can be employed.  

Model-based SOP prediction algorithms are to date, one of the most favoured 

techniques applied in many battery energy management strategies. This is owed to 
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their reduced complexity and minimum requirements for non-volatile storage of the 

initial model parameters. However, a trade-off exists for larger BES applications (e.g. 

grid-tie applications). Some researchers (e.g. [194]) have proposed to employ a 

separate model for each individual cell in a battery pack to produce a highly-

accurate SOP estimate. The main drawback of such approach is that a significant 

amount of memory and computing power is required to identify the parameters of 

every cell model. An alternative solution to online power characterisation of larger 

battery packs was proposed in [78], where a more complex battery model is used to 

describe the dynamics of the pack as a whole.        

2.3 Setup for Experimental Verification of Battery 

Monitoring 

This section describes the experimental setup used to verify the algorithms 

hypothesised in this thesis based on a high-precision MACCOR battery tester, 

together with a Solartron EIS analyser. The tests for verification are carried out over 

a range of operating temperatures that required a bespoke thermal chamber to be 

designed and built. Furthermore, to validate the dynamic performance of the 

developed battery state and parameter estimation techniques, a set of current 

profiles are derived based on the power requirements for an EV traction battery 

under some prescribed driving cycles. The hardware and setup and the 

experimental procedures were designed for two variations of lithium-ion cell 

chemistry. The experimental setup presented in this section will be used throughout 

this thesis, unless stated otherwise. 



 

76 

2.3.1 Battery Testing Equipment 

2.3.1.1 Lithium-ion test cells 

 

Fig. 2.16 Cylindrical lithium-ion test cells, (a) NMC and (b) LFP 

The universality of the proposed algorithms is verified on two variations of lithium-

ion battery cells, namely the NMC and LFP, as depicted in Fig. 2.16. These cells are 

of the cylindrical 26650 type with specification outlined in Table 2.5. These two 

lithium-ion cell variants are widely used in EV traction battery packs for their 

enhanced safety characteristics and superior energy and power densities. Moreover, 

due to the rapidly growing interest in these cells for other large-scale applications 

(e.g. LFP battery packs for gird-tie storage), they are chosen as the subject of study 

in this thesis. However, the algorithms developed here are not limited to NMC and 

LFP cell types, as they can be modified for other battery chemistries as well, without 

any fundamental changes to the algorithm 

Table 2.5 Specifications for lithium-ion test cells at 25°C 

Parameter NMC LFP 

Nominal voltage (range): 

Nominal capacity: 

Impedance @ 1 kHz: 

3.65 V (2.75 – 4.2 V) 

3600 mAh 

20 mΩ 

3.2 V (2.0 – 3.65 V) 

3300 mAh 

30 mΩ 

(a) (b) 
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2.3.1.2 Experimental setup 

 

Fig. 2.17 Hardware configuration for lithium-ion cell testing in this thesis 

The experimental setup used in this thesis, as illustrated in Fig. 2.17, features a 

multi-channel MACCOR 4000-series battery tester, which is equipped with 32 test 

channels. Each channel has a maximum control and measurement rate of 10 ms at 

0-20 V and 0-10 A, with measurement accuracies of ±0.02% and ±0.05% for the 

voltage and current sensors, respectively.  

The ambient temperature is controlled through a built-in-house thermal chamber 

with ±1°C accuracy. A desktop computer is used to provide software control and 

data storage for later analysis. Since the current sensor offset of the MACCOR system 

is relatively small and the sampling rate is reasonably high, it is safe to assume that 

the integral of the throughput current over the charge/discharge period represents 

MACCOR Series-4000
Battery Tester 

Host PC

Thermal Chamber

Solartron EIS 
Measurement System

Test Cells
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a true measurement of SOC. Finally, a Solartron 1260 electrochemical interface is 

used in conjunction with a Solartron 1287 frequency response analyser to perform 

a series of EIS tests.  

2.3.2 Generation of Dataset  

 

Fig. 2.18 Sequence of cell testing procedures undertaken in this thesis 

In order to gather a comprehensive dataset, a test sequence as presented in Fig. 2.18, 

is designed and implemented. The test sequence starts with incubating the test cells 

in the thermal chamber for a period of 24 hours. The chosen dwell time is long 

enough for the small cylindrical cells to reach a thermal and electrochemical 

equilibrium prior to any characterisation test. Five temperature settings of 5, 15, 25, 

35 and 45°C are chosen to provide a better understanding of the temperature 

Start

Set temperature

Static capacity 
test

EIS test

HPPC test

Self-designed 
pulse test

OCV extraction

Multi-cycle 
dynamic test
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dependency of various battery states and parameters under both static and dynamic 

operating conditions. Throughout the tests, the thermal distribution over the test 

cells’ surfaces is assumed constant, and the internal temperature variations due to 

high charge/discharge current rates are neglected. The following sections provide a 

description for the remaining test procedures.   

2.3.2.1 Static capacity test 

Prior to any test, each cell undergoes a capacity measurement cycle, which consists 

of a 0.5 C constant-current discharge, until the end-of-discharge voltage has been 

reached. This is to remove any residual charge left in the cell. After a one-hour rest 

period the cell is re-charged using the standard constant-current constant-voltage 

(CCCV) scheme at the manufacturer’s recommend current and voltage levels. Then, 

following a one-hour rest, the cell under test is discharged at a 0.5 C current level. 

The quantity of charge removed from the cell is recorded as its maximum discharge 

capacity at the set temperature. 

2.3.2.2 EIS test procedure 

 

Fig. 2.19 EIS procedure for NMC and LFP test cells 

Upon the completion of the static capacity test, each cell is recharged to SOC =

100%  using the CCCV scheme. A zero-current relaxation period of 1 hour is allowed 

to ensure that the cell has reached a partial equilibrium, prior to each EIS test step 

in the sequence illustrated in Fig. 2.19. The relaxation period is chosen as a trade-off 

between accuracy and experiment time. The sweep bandwidth is fixed at 5 mHz to 

5 kHz, with a resolution of 15 steps per decade. The amplitude of the excitation 

sinusoidal voltage is chosen as 8 mV. This is low enough to avoid any nonlinearities 

due to charge modification, but high enough for good noise immunity. An EIS test is 
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performed at every ΔSOC = 10%, starting from SOC = 100%. A discharge current of 

0.5 C is applied to move SOC down to next step. This procedure is repeated until the 

cell reaches its lower voltage threshold (i.e. SOC = 0%.). The complex impedance 

data obtained are then used to identify a suitable order-number for a dynamic 

equivalent-circuit model and to verify the performance of the proposed battery 

impedance parameter estimation techniques in this thesis.    

2.3.2.3 Open-circuit voltage (OCV) extraction 

 

Fig. 2.20 Pulsed-current profile for cell OCV extraction 

In this thesis, the relationship between the test cells’ OCV and SOC is realised 

through a polynomial function, whose order is to be reported in Chapter 4. To this 

end, a pulsed-current and relaxation test profile, as shown in Fig. 2.20, is designed 

and implemented at different operating temperatures. The test profile begins with 

a full discharge at a constant current of 0.5 C, until the lower voltage thresholds are 

reached for both cell chemistries. Then, the cell under test is re-charged to 100% 

SOC using the CCCV charging scheme. After a relaxation period of 1 hour, the first 

OCV is recorded at SOC = 100%. Furthermore, the cells are discharged in steps of 

ΔSOC = 10% at a current level of 0.5 C for both cell chemistries, followed by one-

hour rest periods. This sequence is repeated until the cells are fully discharged. The 

OCV measurements during the charge half-cycle are also obtained using a similar 

procedure, where the cells are charged in steps of ΔSOC = 10% at a current of 0.5 C.  

Discharge 

Charge 
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2.3.2.4 Hybrid pulse power characterisation (HPPC) 

The Hybrid-Pulse-Power-Characterisation (HPPC) test is a standard procedure 

developed by the Partnership for New Generation Vehicles (PNGV) [198] and is used 

to determine the power and energy capability of a rechargeable battery under both 

discharge and regenerative charging scenarios. Fig. 2.21 illustrates a single cycle 

HPPC waveform, which consists of a 1 C current pulse of 18 s duration  

 

Fig. 2.21 A single cycle HPPC current profile [198] 

for discharge and a 0.75 C current pulse of 10 s duration for regenerative charging, 

separated by a rest period of 32 s. The complete profile starts with a preamble CCCV 

charge step. Thereafter, the HPPC pulses, are applied to the cell under test over the 

SOC range of 10% to 90%, in steps of ΔSOC = 10%. A discharge current pulse of 0.5 

C is used adjust the SOC level and a 1-hour rest period is allowed between the HPPC 

pulse repetitions. This particular current profile is used in this thesis to create a 

reference framework for verification of the SOP prediction algorithm to be reported.  

18 seconds 
discharge pulse 

10 seconds 
charge pulse 

Rest for 32 seconds 
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2.3.2.5 Self-designed pulse test 

 

Fig. 2.22 Self-designed pulsed-current profile for dynamic cell excitation 

The dynamic performance of the proposed SOC estimation algorithm in this thesis 

is verified using a self-designed pulsed-current profile. As shown in Fig. 2.22, the 

profile consists of both charge and discharge pulses of different amplitudes and 

periods, providing a dynamic excitation of the NMC and LFP test cells, whilst 

modifying the cell’s SOC using discharge/charge current pulses which gradually 

increase in amplitude. The lengths of the relaxation periods in between 

discharge/charge steps are chosen arbitrarily; though, long enough to allow for a 

recovery to occur. Note that the profile has a predominant discharge characteristic 

as to remove charge from the cell, until it is fully discharged. 

2.3.2.6 Battery power requirements for an EV design 

It is a respectable approach to test any newly developed BMS algorithm under real-

world operating conditions. The state monitoring algorithms to be reported in this 

thesis are no exception and thus require verification under current profiles that, in 

contrast to constant-current loads, are more dynamic and a better representative of 

the EV operation in real world. Therefore, a set of drive-cycle-based current profiles, 

consisting of both discharge and regenerative charge pulses need to be developed.  

Discharge 

Charge 
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Fig. 2.23 Free-body diagram illustrating the forces applied on a Nissan Leaf EV 

In this thesis, the electric power consumption for the propulsion of a battery-

powered EV is calculated and scaled accordingly for safe testing of the NMC and LFP 

cells. Without loss of generality, in this thesis, the power calculations are performed 

for an old version of the Nissan Leaf EV. The EV model is based on the mechanical 

and aerodynamic forces that must be overcome to propel the vehicle. In general, the 

acceleration of an EV is determined by a force-balanced equation, which is given by 

Newton’s second law as, 

 𝑀𝛼 = 𝐹𝑡 −∑𝐹𝑟  (2.21) 

where 𝑀 = 1521 kg is the vehicle’s overall mass, 𝛼 is the acceleration, 𝐹𝑡 is the total 

traction force provided by the powertrain and ∑𝐹𝑟 is the sum of all resistive forces 

acting on the vehicle. The resistive forces usually are comprised of the friction 

between the tires and the road surface, aerodynamic drag and a resistance due to 

the track slope. Now, considering the free-body diagram illustrated in Fig. 2.23, the 

total resistive forces can be estimated using equation (2.22) [207]. 

𝑀𝑔 
𝑀𝑔 cos(𝜃) 

𝜃 
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∑𝐹𝑟 = 𝑀𝑔𝐶𝑟𝑟 cos(𝜃) +

1

2
𝜌𝐴𝐶𝑑(𝑉 − 𝑉𝑤)

2 +𝑀𝑔 sin(𝜃) (2.22) 

where 𝑔 = 9.81 ms−2  is the gravitational acceleration, 𝐶𝑟𝑟 = 0.012  is the rolling-

resistance coefficient, 𝜌 = 1.225 kgm−3  is the ambient air density, 𝐴 = 2.27 m2  is 

the vehicle’s frontal area,  𝐶𝑑 is the aerodynamic drag coefficient, 𝑉 is the speed of 

the vehicle, 𝑉𝑤 is the speed of wind, and 𝜃 is the slope angle. Thus, by rearranging 

equations (2.21) and (2.22), the EV’s total traction force can be calculate as,  

 𝐹𝑡 =𝑀𝛼+𝑀𝑔𝐶𝑟 cos(𝜃)+
1
2
𝜌𝐴𝐶𝑑(𝑉−𝑉𝑤)2+𝑀𝑔sin(𝜃). (2.23) 

Finally, the instantaneous power required to accelerate the EV up to a demanded 

velocity, or maintain it at a given constant velocity can be expressed as, 

 
𝑃 = 𝐹𝑡𝑉 = 𝑀𝛼𝑉 +𝑀𝑔𝐶𝑟𝑉 cos(𝜃) +

1

2
𝜌𝐴𝐶𝑑𝑉(𝑉 − 𝑉𝑤)

2 +𝑀𝑔𝑉 sin(𝜃). (2.24) 

Here, the EV is assumed to be running on a relatively flat surface (i.e. 𝜃 ≈ 0°). During 

the initial stage of acceleration, the traction battery must be able to provide the 

power required to overcome mainly the rolling resistance in the tires. It should be 

noted that during deceleration, 𝛼 becomes negative. This implies that the vehicle’s 

kinetic energy can be used to overcome the resistive forces acting on it, whilst the 

excess can be converted into electrical energy and stored in the battery for later use. 

Now, considering the power equation expressed by (2.24), it is possible to 

approximate the instantaneous current C-rate required of the traction battery to 

achieve a step change in the EV’s dynamic velocity.  

Δ𝐸 = 𝑃 ∙ Δ𝑡, Δ𝑄 =
Δ𝐸

𝑉nom
, 𝐼bat =

Δ𝑄

Δ𝑡
, 𝐶rate =

𝐼bat
𝐶bat

,

𝐼cell = 𝐶rate ∙ 𝐶cell 

(2.25) 
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where Δ𝐸  is the instantaneous electrical energy required over a period of Δ𝑡 

seconds; Δ𝑄 is the resulting change in the ampere-second capacity; 𝑉nom is battery 

pack’s nominal voltage; 𝐼bat  is the amplitude of the current demanded from the 

battery pack; 𝐶bat  is the battery’s nominal capacity; 𝐶rate  is the required C-rate 

current; and 𝐼cell is the cell-level current demand based on a cell with an Ah capacity 

of 𝐶cell . Conventionally, the direction of current flow in a battery is considered 

positive for discharge and negative for charge. Also, it should be noted that, since 

the current demand profile calculated based on equation (2.25) is an approximation, 

it is safe to assume that the EV’s electrical and mechanical systems operate under a 

best-case scenario (i.e. ≈100% efficiency).   

 

Fig. 2.24 Composition of Nissan Leaf’s 24 kWh LMO battery pack [208] 

Fig. 2.24 above depicts the composition of the battery pack employed in a Nissan 

Leaf [209]. It is comprised of 48 modules in series, where each module is made up 

of 4 cells, arranged in a 2-series-2-parallel (2S2P) formation. Each cell has a nominal 

voltage of 3.75 V, with a capacity of 32.5 Ah. Therefore, by summing the cell voltages 

in series, and the capacities in parallel, 𝑉nom and 𝐶nom for the complete pack can be 

calculated as 360 V and 65 Ah, respectively. However, in practice, only 60 Ah of the 

pack’s total capacity is made available to avoid battery operation in highly non-

linear SOC regions. These two parameters are then applied to equation (2.25) to 

Cell 

Battery module 

Battery pack 
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obtain the cell-level current profile for the LFP and NMC test cells (see Table 2.5), 

when imposed to a dynamic EV drive cycle. Two standard speed profiles are used 

here; the New European Drive Cycle (NEDC) and the Artemis Motorway drive cycle. 

2.3.2.7 New European Drive Cycle (NEDC) 

 

Fig. 2.25 (a) speed and (b) C-rate profile for energy-specific NEDC drive cycle 

The NEDC is a relatively modest drive cycle that is regularly used in the European 

Union for type approval of light-duty vehicle models, including EV/HEVs [210]. As 

depicted in Fig. 2.25(a), this dynamic profile consists of periods of constant 

acceleration, deceleration or regenerative braking and speed, which is particularly 

useful when testing for the energy capability or range of an EV’s traction battery.  

Despite the unrealistic driving patterns observed in the NEDC profile, it is employed 

by many researchers to serve as a laboratory-based platform for online verification 

of different SOC estimation techniques. In this thesis, the C-rate profile derived 

(a) 

(b) 

Discharge 

Charge 

Urban Extra Urban 
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based on the NEDC drive cycle data is scaled accordingly and applied to each LFP 

and NMC test cell at a range of different operating temperatures. This is to gather a 

valuable dataset for the verification of the battery SOC and parameter estimation 

techniques to be reported under dynamic discharge conditions.  

2.3.2.8 Artemis Highway Free Urban (ArtHiUFL) drive cycle 

 

Fig. 2.26 (a) speed and (b) C-rate profile for power-specific ArtHiUFL drive cycle 

Using more than one transient profile for the verification of newly developed BMS 

algorithms is a respected approach. As a result, another European drive cycle, 

namely the ArtHiUFL (see Fig. 2.26), is adopted to generate a more realistic dataset 

for further validation of the proposed battery parameter estimation techniques. As 

can be seen in Fig. 2.26(a), the ArtHiUFL speed profile consists of short moments of 

intense acceleration and deceleration, which in terms of electrical power required 

of the traction battery can be interpreted as a high-amplitude discharge or charge 

current pulse. Therefore, the results obtained from this particular profile at various 

Discharge 

Charge 

(a) 

(b) 
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temperatures are used to investigate the dynamic performance of a proposed 

impedance-based battery power prediction algorithm.  

2.4 Chapter conclusions 

This Chapter has reported on the state-of-the-art of various battery technologies and 

their applications. It was shown that, due to their enhanced energy and power 

capabilities, lithium-ion batteries are becoming the preferred solution to many 

energy storage and supply problems. Also, it was discussed that without 

optimisation of battery monitoring algorithms, the future uptake of lithium-ion 

batteries in safety-critical applications would remain a challenge. Therefore, in this 

Chapter, a comprehensive review of the current battery state and parameter 

estimation techniques has been provided. The operational battery states of interest 

in BMS applications, and in this thesis, have been identified as SOC, SOH and SOP. 

Similarly, the battery parameters of interest are impedance and capacity. In general, 

battery states and parameter estimation methods can be categorised into inferred, 

book-keeping, model-based and filter- or observer-based groups. Model-based 

techniques are very popular for online BMS applications. This is owed to the physical 

relationship that exists between different model parameters and battery operating 

conditions, which can serve as good indicators for not only SOC, but also for SOH and 

SOP as well. Finally, the experimental setup adopted in this thesis is described; it 

offers two variants of lithium-ion cell chemistry (i.e. NMC and LFP), professional 

battery testing equipment and dynamic profiles derived based on standard EV/HEV 

drive-cycle data. These dynamic profiles are employed for online verification of the 

proposed battery identification techniques under ‘realistic’ application conditions. 
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3  

 
 

A Low-Cost μP-Based Power Cycler for Online 
Lithium-ion SOH Estimation and RUL 

Prediction 

 

Despite the many advantages of rechargeable batteries, their capacity degradation 

still remains an issue in most power applications. The SOH is a qualitative measure of 

the battery’s charge storage capability, which is a key factor in determining the 

battery’s end-of-service-life or RUL; thus, preventing unintended power shortages. 

There are many researches on battery SOH estimation algorithms, however, almost all 

of the proposed techniques in literature are verified using expensive laboratory-based 

battery testing equipment and powerful computers which may not be a practical 

choice for most applications. Therefore, in this Chapter, a low-cost microprocessor-

based battery power cycler, for the purpose of SOH characterisation is designed and 

implemented. Moreover, an online SOH estimation technique is proposed, which is 

embedded on the microprocessor unit for real-time operation. Finally, an empirically-

derived model for battery remaining-useful-life or RUL prediction is developed based 

on the first 3-4% of SOH degradation. The performance of the proposed hardware 

design and the SOH estimation technique are experimentally verified on two 3.3 Ah 

LFP cells, imposed to a series of constant-current degradation cycles at 1C current level 

and a controlled ambient temperature of 25°C.  

Chapter 
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3.1 Introduction 

One of the main issues associated with the utilisation of rechargeable batteries in 

power applications is the degradation of their ability to convert and store electrical 

energy to chemical energy and vice versa. This property is better known as SOH, 

which was discussed in Chapter 2, section 2.2.5. The SOH is an inherent 

characteristic of the electrochemical energy storage devices such as batteries, where 

the formation of the SEI layer called the solid electrolyte interphase (SEI) over the 

negative electrode causes an increase in the battery’s equivalent series resistance 

and a decrease in the maximum charge storage capability of the battery [149]. The 

SOH estimation plays an important role in the following: 

 Early diagnosis of the close-to-failure cells in a battery pack; 

 Estimating the end-of-cycle-life of a safety critical battery-powered system; 

 Improved prediction of the battery functionality in response to a particular 

power demand; 

 Optimisation of the performance of a particular BMS. 

Various SOH estimation techniques have been presented in literature with each 

having its own advantages and drawbacks. Many of these techniques estimate the 

SOH through the characterisation of the battery’s internal parameters [211][212]. 

These parameters may include the battery’s charge/discharge impedance, current 

rate, terminal voltage, temperature and SOC, each of which vary dynamically 

according to the imposed application profile. For example in [213] the author has 

used the battery’s maximum releasable capacity to estimate the SOH of Li-ion 

batteries. Gould et al. [92] have used a modified second-order Randle’s model 

together with a Kalman filter estimator for online prediction of the SOH for Li-ion 

batteries. Another SOH estimation technique for Li-ion batteries is realised in [177] 

that uses the battery’s SOC and a dual-sliding-mode observer. Micea et al. [214] have 

addressed the issue of the SOH prediction for NiMH batteries in embedded system 

applications and proposed a new SOH estimation technique based on a second-

order parabolic regression model which estimates the battery’s capacity fade online. 

In [137], an alternative approach to online estimation of the battery SOH is used 

based on a support vector regression model and the incremental capacity analysis 
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of the battery. Although the techniques presented by the authors demonstrate good 

performance, due to their computational power requirements, their integration for 

real-time applications is not practical.  

Almost all the research presented in literature on various BMS algorithms are 

validated on host personal computers (PC). This has been perceived as a motivation 

to develop a low-cost micro-processor (𝜇P) based platform for the cycling and SOH 

estimation of lithium-ion battery cells. To this end, this Chapter initially puts its 

focus on the design of a bidirectional 𝜇P -based power cycler that is capable of 

measuring and monitoring the cell’s terminal voltage, current and temperature of 

battery cells of lithium-ion chemistry. Thereafter, an online SOH estimation 

technique is proposed based on the linear approximation of the relationship 

between the cell’s terminal voltage and removed ampere-hour charge over the 

linear region of the cell’s operation. The proposed technique is then implemented 

on the 𝜇P unit and experimentally verified on two LFP cell variants of lithium-ion 

chemistry. Finally, an empirically derived mathematical function is used to predict 

the cells’ RUL. The findings of this Chapter have been presented in [215]. 

3.2 An Online SOH Estimation Technique 

As mentioned in Chapter 2, the SOH is a qualitative measure of the battery’s capacity 

fade due to the irreversible ageing process and is largely dependent on the battery’s 

SOC, operating temperature, current rate and other external stress factors [216]. In 

a typical power application, the battery’s terminal voltage and current are readily 

available to the incorporated BMS. The maximum discharge capacity or 𝑄max (i.e. 

integral of battery current over discharge time) measured in ampere-hour is a 

commonly used parameter for the estimation of battery’s SOH. A definition for SOH 

can be given in the form of, 

 
SOH(%) =

𝑄max(𝑛)

𝑄max(0)
, 𝑛 = 1,2, … ,𝑁 (3.1) 
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where 𝑄max(0) and 𝑄max(𝑛) are the maximum charge released from a completely 

new and aged batteries/cells, respectively. However, in applications such as in 

EV/HEVs, for various reasons including over- and under-voltage protection and 

linear-behavioural operation, the battery voltage is restricted to a smaller operating 

range, where the battery behaviour is fairly linear. This prohibits the battery from 

being fully charged or discharged, making 𝑄max  unattainable; thus, the online 

implementation of the SOH estimation technique based on direct measurement of 

𝑄max becomes impractical. 

As a result, an online SOH estimation technique is developed in this Chapter. The 

experimental cell ageing data on a lithium-ion cell from the NASA public database 

[217] have been adopted to verify the proposed SOH estimation technique prior to 

any experimental work on real lithium-ion cells. The public dataset consists of 168 

cycles of charge and discharge on a 2 Ah lithium-ion cell at a temperature of 24°C. 

The charging process was carried out in a constant-current (CC) mode at 1.5 A until 

the cell’s voltage reached 4.2 V and then continued in a constant-voltage (CV) mode 

until the charge current dropped to 20 mA. The discharge was then performed at a 

CC rate of 2 A until the voltage reached 2.7 V. The cell’s SOH after every successive 

cycle is then calculated using the measured discharge capacity and equation (3.1). 

Fig. 3.1(a) illustrates the relationship between the cell’s discharge capacity and 

terminal voltage as a function of SOH. Within the linear region of cell’s operation, 

(i.e. between ~10-90% SOC) the non-linear 𝑄-𝑉 relationship can be approximated 

to that of a straight line given as, 

 𝑄max
lin = 𝑎𝑉t

lin+𝑏 (3.2) 

where 𝑄max
lin  and 𝑉t

linare the battery’s maximum Ah capacity and terminal voltage, 

respectively, measured over the battery’s linear region of operation. The parameters 

𝑎 and 𝑏 are determined online by fitting (3.2) to the acquired data using a linear 

least squares method to be reported in section 3.3.3. Fig. 3.1(b) presents the 

linearised cell capacity as a function of terminal voltage for the public NASA ageing 

dataset.  
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Fig. 3.1 Relationship between cell discharge capacity and terminal voltage as a 

function of SOH, (a) measured and (b) linearised  

It is evident that as the cell’s SOH deteriorates, the slope of the linear fit declines 

with, indicating a loss in the cell’s maximum charge-storage capacity. Therefore, a 

quantitative definition for the cell’s SOH can be derived and given as, 

 
SOĤ(𝑛) =

𝑎(𝑛)

𝑎(0)
× 100% (3.3) 

where 𝑎(𝑛)  and 𝑎(0)  are the slopes for the 𝑛𝑡ℎ  cycle and that of a new cell, 

respectively.  

Fig. 3.2 presents the measured and estimated SOH results, using (3.3), which pose a 

good agreement with each other, verified against an average percentage-point error 

(a) 

(b) 
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of less than ±0.5%. Due to the temperature and load dependency of the cell terminal 

voltage, any small variations in these two variables would greatly affect the accuracy 

of the SOH model. For example, at 90th cycle, a spike in the error plot shown by Fig. 

3.2(b) is observable, which can be attributed to changes in the test cell’s conditions, 

causing such large estimation error. Thus, for applications with dynamic load 

profiles, it is advantageous to use the cell’s OCV relationship with the battery’s 

maximum releasable charge capacity when approximating the slope of the 𝑄 -𝑉 

profile. Although, the OCV must be estimated while the battery is operating online, 

which will necessitate for more advanced algorithms to solve. 

 

Fig. 3.2 Comparison of the measured and estimated SOH for the public NASA 

dataset 

(a) 

(b) 
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3.3 μP-Based Cell Power Cycler Design and 

Implementation 

The cell power cycler proposed in this thesis (see photo displayed in Fig. 3.3) 

benefits from an inexpensive design by sharing the same components for both 

charging and discharging circuitry. Fig. 3.4 shows the block diagram of the proposed 

system, consisting of an 8-bit Atmel 𝜇P unit which can be programmed to control 

the switch between the charge and discharge modes, whilst allowing for up to 

sixteen 10-bit ADC channels for data logging. The single-channel power cycler is 

rated at 10 A – 5 V. The mode switching is realised by a double-pole double-throw 

(DPDT) relay, which configures the electrical path between the cell under test and 

the charger or discharger circuitry accordingly. A second DPDT relay is also 

employed to provide a complete isolation of the cell terminals for safety purposes. 

The 𝜇P unit is sourced with a regulated 12 V power supply (VCC), whereas, the DC 

link for battery charging (𝑉dc) is provided by an external power supply at 7 V.    

 

Fig. 3.3  Photograph of the proposed lithium-ion cell cycler on test bench 
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Fig. 3.4 Block diagram for the proposed lithium-ion cell power cycler design 

The 𝜇P unit is also responsible for controlling the amount of charge being injected 

or removed from the battery cell by sampling its terminal voltage and current in 

order to create a feedback control loop. The acquired data can then be written onto 

a micro SD card for storage and sent via a serial peripheral interface (SPI) to a host 

computer for real-time monitoring and SOH estimation purposes. 

3.3.1 Hardware Configuration 

Fig. 3.5(a) and (b) show the block diagrams for the charger and discharger circuits, 

respectively. In both modes of operation, a power MOSFET is implemented as a 

linear current controller to allow a maximum charge/discharge current of 10 A 

to/from the cell under test. To drive the MOSFET, a second order low-pass filter is 

designed (with a corner frequency of 𝑓c = 1 Hz) in order to convert the digital pulse-

width-modulated (PWM) command signal from the Atmel 𝜇P  unit into a clean 

analogue reference signal for the op-amp gate driver. Therefore, by regulating the 

PWM duty cycle, the rate of charge injection or removal from the cell under test can 

be fully controlled. 
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The maximum output current for the charger is calculated as, 

 
𝐼c(max) =

𝑉ref − 𝑉c
𝑅s + 𝑅i

 (3.4) 

where 𝑉ref is the low-pass filtered input signal to the op-amp, 𝑉c is the cell’s open 

circuit voltage (OCV), 𝑅s is the shunt resistance and 𝑅i is the cell’s equivalent series 

resistance. Equation (3.4) shows that for a cell under charge, the maximum charging 

current is determined by the amplitude of the PWM signal at 100% duty cycle, and 

the shunting resistance.  

The voltage source to the charging circuit is taken from an external power supply 

whose level is calculated based on the assumption that, at maximum load current, 

the MOSFET is biased to its pinch-off point in order to avoid excessive resistive 

losses. Thus, by using Kirchhoff’s voltage law, the maximum DC voltage, 𝑉dc , 

required for constant-current charging can be given as, 

 𝑉dc = 𝐼c(max)(𝑅ds(ON) + 𝑅s + 𝑅i) + 𝑉c (3.5) 

where 𝑅ds(ON) is the MOSFET’s on-state resistance.  

The total dissipative power during the charge and discharge processes can be given 

by equations (3.6) and (3.7), respectively.   

 
𝑃diss = 𝐼c

2(𝑟ds + 𝑅s + 𝑅i) (3.6) 

 𝑃diss = 𝐼d
2(𝑟ds + 𝑅d + 𝑅i) (3.7) 

where 𝑟ds is the series-resistance of the MOSFET operating in its linear region as 

given by (3.8). In the discharge mode, 𝑅d  is the shunt resistance and 𝐼d  is the 

controlled discharging current as per (3.9). 
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Fig. 3.5 Schematic diagrams for (a) charge and (b) discharge modes of operation 

 
𝑟ds = (

𝑉c
𝐼d
) − (𝑅i + 𝑅d) (3.8) 

 
𝐼d =

𝑉ref
𝑅d
. 

(3.9) 

Due to the electrochemical nature of batteries, it is vital to keep them within their 

safe operating conditions to prevent fire and explosion. The 𝜇P is responsible for 

protecting the device under test (DUT) from over- or under-charge conditions. For 

(a) 

(b) 
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additional safety, an analogue watchdog circuit is also added to act in case of a 𝜇P or 

ADC failure.  

 

Fig. 3.6 Analogue cell protection circuit diagram 

As shown in Fig. 3.6, the protection circuit consists of two comparators which 

continuously measure and compare the cell voltage against the minimum (𝑉c(min)) 

and maximum (𝑉c(max))  reference values. In the event of an over- or under-voltage, 

the respective comparator will force the transistor 𝑆1  to close to isolate the cell 

terminals completely. The system is also fused at 10 A to protect the cell from over-

currents. Finally, Table 3.1 is provided to summarise the chosen design parameters. 

Table 3.1 Summary of design parameters  

Parameter Value 

𝑉dc 

𝐼c(max), 𝐼d(max) 

𝑅s, 𝑅d 

𝑅ds(ON) 

𝑅1, 𝑅4, 𝑅6 

𝑅3 

𝑅2, 𝑅8 

𝑅5, 𝑅7 

7 V 

10 A 

100 mΩ 

20 mΩ 

1 kΩ 

10 Ω 

10 kΩ 

100 kΩ 
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3.3.2 Control Software 

 

Fig. 3.7 Software flowchart showing procedure for one charge and discharge cycle 

A software program for the 8-bit 𝜇P unit is developed, as depicted in Fig. 3.7. On 

start-up, the battery parameters (charge and discharge currents, safe ambient 

Start

Mode selection

Mode of 
operation?

Acquire
V, I, T

Acquire
V, I, T

Charge Discharge

Safe 
operation?

Safe 
operation?

Stop

CCCV charge 

YES

CC discharge

YES

Write data to SD 
card

Write data to SD 
card

Fully 
discharged?

Fully 
charged?

NO NO

NO

Mode: 
Discharge

YES

End of cycle Rest for 1 hour

YES

Mode: Charge

NO
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operating temperature ranges, end-of-charge and end-of-discharge voltage 

thresholds, etc.) are read directly from the SD card. Upon the completion of 

initialisation, the controller starts by charging the DUT under a constant-current 

constant-voltage (CCCV) scheme.  

During the constant-current (CC) charging mode, the PWM duty cycle is regulated 

accordingly to yield the commanded charge current. As the cell reaches its end-of-

charge voltage, the controller switches to constant-voltage (CV) charging mode until 

the charge current drops to the cut-off threshold. Once the cell is fully charged, a 

zero-current relaxation period is allowed before changing to the discharge mode. 

Similar to the CC charging, under the CC discharge regime the PWM duty cycle is 

controlled to source the demanded current. The cell is then discharged until its 

terminal voltage reaches its end-of-discharge value. Throughout each cycle, relevant 

parameters (i.e. terminal voltage, current and temperature) are stored on an 8GB 

SD memory card. 

3.3.3 Linear Least-Squares Method for 𝝁𝐏 Implementation 

In order to obtain the parameters for the 𝑄-𝑉 model given by (3.2) online using the 

8-bit 𝜇P unit, a linear least-squares method, as described in [218] is adopted in this 

Chapter. First, the straight-line fitting problem over a set of 𝑁 data points (𝑥𝑖, 𝑦𝑖) is 

defined in a general form as, 

 𝑦(𝑥; 𝑎, 𝑏) = 𝑎 + 𝑏𝑥 (3.10) 

where 𝑦 is the linearised cell capacity (i.e. 𝑄max
lin ), 𝑥 is the terminal voltage (i.e. 𝑉t

lin), 

and 𝑎 and 𝑏 are the model parameters in (3.2). Now, assuming the uncertainty 𝜎𝑖  

associated with each measurement 𝑦𝑖 is unknown (i.e. unweighted data 𝜎𝑖 = 1), and 

that 𝑥𝑖 is known, the chi-square merit function given by (3.11) can be used to assess 

the resulting fit quality over the measured 𝑄-𝑉 data. 
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𝜒2(𝑎, 𝑏) =∑(

𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖
𝜎𝑖

)
2𝑁

𝑖=1

 (3.11) 

where, assuming the current and voltage measurement errors are normally 

distributed, (3.11) will yield a maximum likelihood parameter estimation of 𝑎 and 

𝑏. It should be noted that, if the measurement errors are not normally distributed, 

then a maximum likelihood estimate might not be achievable; though, they may still 

be useful in a practical sense. Subsequently, to obtain a maximum likelihood 

estimate of the parameters 𝑎  and 𝑏 , the chi-square function (3.11) must be 

minimised. This occurs when the derivatives of 𝜒2(𝑎, 𝑏) with respect to  𝑎 and 𝑏 are 

equal to zero. 

 
0 =

𝜕𝜒2

𝜕𝑎
= −2∑

𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖

𝜎𝑖
2

𝑁

𝑖=1

 

0 =
𝜕𝜒2

𝜕𝑏
= −2∑

𝑥𝑖(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖)

𝜎𝑖
2

𝑁

𝑖=1

. 

(3.12) 

These two conditions may be re-written in a suitable form for online 

implementation on any 𝜇P such that,  

 
𝑆 ≡∑

1

𝜎𝑖
2

𝑁

𝑖=1

, 𝑆𝑥 ≡∑
𝑥𝑖

𝜎𝑖
2

𝑁

𝑖=1

, 𝑆𝑦 ≡∑
𝑦𝑖

𝜎𝑖
2

𝑁

𝑖=1

, 𝑆𝑥𝑥 ≡∑
𝑥𝑖
2

𝜎𝑖
2

𝑁

𝑖=1

,

𝑆𝑥𝑦 ≡∑
𝑦𝑖𝑥𝑖

𝜎𝑖
2

𝑁

𝑖=1

 

(3.13) 

 Rewriting (3.12) in terms of the sums defined in (3.13) yields, 

 𝑎𝑆 + 𝑏𝑆𝑥 = 𝑆𝑦 

𝑎𝑆𝑥 + 𝑏𝑆𝑥𝑥 = 𝑆𝑥𝑦. 
(3.14) 

Therefore, the solution for the equation above with two unknowns (i.e. 𝑎 and 𝑏) can 

be calculated as, 
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 ∆≡ 𝑆𝑆𝑥𝑥 − (𝑆𝑥)
2 

𝑎 =
𝑆𝑥𝑥𝑆𝑦 − 𝑆𝑥𝑆𝑥𝑦

Δ
 

𝑏 =
𝑆𝑆𝑥𝑦 − 𝑆𝑥𝑆𝑦

Δ
. 

(3.15) 

Using equation (3.15), the best-fit parameters 𝑎 and 𝑏 (in a least-squares sense) for 

the linearised 𝑄 -𝑉  function (3.2) are computed. Thus, battery’s SOH after every 

cycle can be estimated online using the definition given by (3.3). 

3.4 Experimental Validation 

 

Fig. 3.8 Example of a degradation cycle, current and voltage waveforms 

In order to validate the performance of the cell power cycler, together with the 

proposed SOH estimation method, and its application to battery RUL prediction, 

three new 3.3 Ah LFP cells (see Table 2.5 for test cell specifications) have been 

subjected to a series of degradation cycles, as presented in Fig. 3.8. Each cycle begins 

with a CCCV charging scheme at 3.3 A (1C) until the terminal voltage of the cell under 

test reaches 3.65 V and then continued in a CV mode until a current level of 300 mA 

is reached. Once the cell is fully charged, a zero-current relaxation period of 1 hour 

is allowed to ensure that the cell’s internal state has reached a stable condition. Then 

CC-CV  
Charge 

Zero-current 
Relaxation 

CC 
Discharge 
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the cell is further applied with a CC discharge current of 3.3 A (1C) until its voltage 

drops to a cut-off value of 2.0 V. 

Whilst the cell under test is being discharged, the measured terminal voltage and 

current are used to estimate the amount of charge being removed from the cell for 

the 𝑄-𝑉 function generation. Thereafter, based on the generated 𝑄-𝑉  dataset, the 

slope of the linear fit given in (3.2) is estimated for each cycle using the linear least-

squares method described previously. Throughout the whole experiment, the test 

cells were kept in a thermally-controlled chamber at 25°C; thus, the validity of the 

SOH estimation technique proposed here at other operating temperatures requires 

further investigation which is outside of the scope of this Chapter. 

The estimated SOH for the two candidate LFP cells using the SOH model developed 

in previous section are compared with that obtained from maximum discharge 

capacity measurements using (3.1); LFP cell 1 completed 200 charge/discharge 

cycles, while, LFP cell 2 went through 250 cycles. The results are presented in Fig. 

3.9 and Fig. 3.10. During the first 100 cycles, LFP 1 experiences a SOH degradation 

of 2.5%, whereas for LFP 2, a degradation of around 4% is observed. It can be seen 

that the SOH estimated for the two test cells over the first 100 cycles have been 

estimated with an absolute error of less than 1 percentage point. This gives 

confidence to the performance capability of the proposed SOH model as 

implemented on the 𝜇P-based cell power-cycler.  

As discussed in Chapter 2, section 2.2.5.2, RUL prediction is of necessity for a proper 

battery prognostic and health management [219]. Thus, an exponential RUL model 

is proposed herein, which is given as a function of cycle number, 𝑛, to predict the 

battery’s RUL as a percentage of its maximum deliverable amp-hour capacity. 

 
RUL =

exp(𝑛𝛼)

(𝑛𝛽 − 𝜁)
× 100% (3.16) 

where the parameters 𝛼 and 𝛽 are rate-determining factors, while 𝜁 is an offset, all 

to be identified offline, using a nonlinear least-squares method in MATLAB 
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(Levenberg-Marquardt algorithm). Notice that the estimated SOH quantities by the 

AVR 𝜇P unit are saved on the SD card and transferred to a host PC over the USB serial 

port for offline data-processing purposes.  

The identified RUL model parameters for both LFP test cells, based on the SOH levels 

estimated for the first 100 cycles using the SOH model of (3.3) are presented in 

Error! Reference source not found.. As can be seen in Fig. 3.9 and Fig. 3.10, the 

measured SOH results for the LFP 1 appear to be more spread than those of the LFP 

2. This can be attributed to the fact that the cells were tested in separate enclosures 

filled with sand for safety purposes, and stacked on top of each other, thus, causing 

an uneven temperature and capacity variation in the two LFP cells.  

The parameters of the RUL model given by (3.16) are identified based on the first 

100 power cycles (SOH estimates to the left of the dash line) and employed to train 

and identify the RUL model of (3.16). The results demonstrate excellent fit for both 

LFP test cells. According to the RUL prediction results attained at 100th cycle, LFP 1 

was predicted to reach a SOH level of 96.77% after 197 cycles, whereas the actual 

SOH level at the 197th cycle was measured at 96.96%. Similarly, for LFP 2, it was 

predicted to reach a SOH level 94.54% after 250 cycles, whereas the actual SOH was 

measured at 94.68%.  

It is evident that based on the first 100 cycles (~3-4% SOH degradation), the 

proposed battery RUL model, together with the online 𝜇P-based SOH estimation 

technique, is capable of producing a fairly accurate prediction for the degradation of 

the two LFP test cells. Despite the excellent performance of the proposed battery 

RUL prediction technique, its validity is limited to the number of completed cycles 

on each test cell. Further degradation cycles are required to verify the test cells’ end-

of-life cycle numbers, when their SOH level reaches 80%.  
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Fig. 3.9 SOH estimation and RUL prediction results for test cell LFP 1 

Table 3.2 Identified RUL model parameters for the two LFP test cells 

Test cell 𝜶 𝜷 𝜻 

LFP 1 

LFP 2 

-0.06658 

-0.08172 

-0.1938 

-0.2393 

-1.729 

-1.733 

 

 

(a) 

(b) 

SOH Estimation RUL Prediction 
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Fig. 3.10 SOH estimation and RUL prediction results for test cell LFP 2 

3.5 Chapter Conclusions 

In this Chapter 2, it was discussed that the SOH and RUL metrics play an imperative 

role in prognostics, and, thus, determining the end-of-service life of battery energy 

storage device to avoid any undesirable power shortages. The problem with most 

battery SOH estimation techniques proposed in literature is that they require for 

expensive lab-based testing equipment and powerful computers. As a result, this 

Chapter, at first, aimed to develop a low-cost 𝜇P-based lithium-ion cell power cycler 

(a) 

(b) 

SOH Estimation RUL Prediction 
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as a platform for the implementation of an online SOH estimation technique. The 

proposed technique included the linearisation of the relationship between the 

battery’s terminal voltage and the released ampere-hour capacity during the linear 

region of battery operation. A direct relationship between the slope of the fitted 

straight line with the battery’s age has been identified and demonstrated on a set of 

lithium-ion battery ageing dataset from NASA’s public database. Moreover, the 

performance of the designed 𝜇P-based cell power cycler and the proposed SOH 

estimation technique has been experimentally verified on two new 3.3 Ah LFP cells. 

an excellent agreement between the measured and estimated SOH levels for the two 

cells has been observed, with an absolute percentage-point error of less than 1%. 

Finally, an empirically-derived model for the prediction of the test cells’ remaining-

useful-life or RUL has been developed. The RUL model parameters were identified 

offline based on the first 3-4% of SOH degradation (i.e. after 100 cycles for both LFP 

cells). According to the RUL model fitted using the SOH estimates obtained for the 

first 100 cycles, both cells’ SOH at the end of 197th cycle for LFP1 and 250th cycle for 

LFP2 were predicted within ±0.5% percentage-point error, which is a significant 

achievement.  
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4  

 
 

An Experimental Study on Electrical 
Equivalent-Circuit Models for Real-Time 

Battery States Estimation   

 

In Chapter 2, it was concluded that for online management of battery/cells, 

appropriate battery models, in terms of complexity and accuracy, are required. As a 

result, this Chapter reports on an experimental comparative study carried out on the 

most commonly used battery models in both motive and stationary BES applications. 

The models of interest include, the combined model, Rint model, two different 

hysteresis models, Randles model, a modified Randles model, and two resistor-

capacitor (RC) network models with and without hysteresis included. To investigate 

the universality of the mentioned model structures, two lithium-ion cell variants of LFP 

and NMC are examined. For those models requiring a mathematical function to 

describe the OCV-SOC relationship, a polynomial function, whose order is empirically 

determined, is employed. Thereafter, a dual-EKF is designed to serve as an online cell 

model states (including SOC) and parameters estimator. The noise covariance 

matrices for the incorporated EKFs are estimated using an expectation maximisation 

(EM) method. Finally, the dynamic performance of the candidate models is 

experimentally verified. Analysis results on the ten cell models show that, both RC 

model structures provide the best dynamic performance with respect to terminal 

voltage, SOC and SOP estimation accuracy.  

Chapter 
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4.1 Introduction 

As discussed in Chapter 2, a key function of the BMS is to assess and monitor the 

performance of the battery, through accurate characterisation of various battery 

states in real time. These states include the SOC, SOH, SOP and SOF. Whilst direct 

measurement techniques, such as coulomb-counting, are easy to implement for SOC 

estimation, they suffer largely from erroneous initialisation of SOC, drifts caused by 

current sensor noise, and battery capacity variations due to temperature and ageing. 

Moreover, the direct measurement of the other battery states of interest (i.e. SOH, 

SOP and SOF) for real-time applications is practically not possible.  

Hence, battery models are often utilised within the BMS to indirectly infer and 

monitor the battery’s various states through the measurement of its terminal 

voltage, current and surface temperature. In addition to the accurate 

characterisation of the battery states, a candidate model is also desired to be 

computationally efficient. In other words, there should be a balance between model 

accuracy and complexity so that it can easily be embedded on a simple and 

inexpensive microprocessor unit (MCU), similar to those found in EV/HEV BMS.  

In literature, there are no studies that compare the accuracy and universality of the 

reported battery models for real-time estimation of SOC and SOP together. 

Therefore, this Chapter aims to carry out a systematic study on a number of selected 

electrical equivalent-circuit battery models for two variants on lithium-ion cell 

chemistry (i.e. LFP and NMC). The models of interest include the combined model, 

Rint model, one-state hysteresis model by Plett, Huria et al. hysteresis model, one- 

and two-RC models and one- and two-RC models combined with the hysteresis 

model proposed by Huria et al [220]. These models are nominated based on the 

number of their appearances in literature. The model parameters are then identified 

recursively using the nonlinear dual-EKF algorithm. It should be noted that the 

experimental results in this Chapter have been produced using the MACCOR battery 

tester as described in section 2.3.1.2. 
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4.2 Types of Battery Models 

In general, the battery models presented in literature fall into one of the following 

categories: 

1. Electrochemical or physics-based models; 

2. Empirical or data-based models; 

3. Equivalent electrical-circuit based models. 

Electrochemical models (e.g. [221]–[225]) that aim to capture the dynamic 

behaviour of battery cells on a macroscopic scale often can achieve high accuracies. 

These models are defined by a high number of partial differential equations (PDEs) 

that must be solved simultaneously. The complexity of any electrochemical model is 

directly related to the number and order of the governing PDEs, which can lead to 

tremendous requirements for memory and computational power. Another issue 

that often precludes these models from real-time applications is that due to the large 

number of unknown variables, they are likely to run into over-fitting problems, 

increasing the uncertainty in the model’s output. Alternatively, these models can be 

represented by a lower number of reduced order PDEs and by substituting 

boundary conditions and discretisation, real-time applications may become 

achievable (e.g. [226]–[228]). However, this comes at the expense of reduced SOC 

accuracy and yet the computational burden on the MCU remains questionable.  

Data-based models (e.g. [229]–[231]) often adopt empirically derived equations 

from experimental data fittings to infer relationships between various battery 

parameters such as the terminal voltage, throughput current, surface temperature 

and SOC. Although these models benefit from simplicity and ease of implementation, 

they often suffer from inaccuracies of 5-20% [232], mainly due to the highly non-

linear behaviour of a battery under a dynamic load profile. In [125], [233], the 

authors took a multiple-model approach to battery modelling using the local model 

networks (LMN). This technique interpolates between different local linear models 

to capture the battery’s non-linearity due to SOC variations, relaxation, hysteresis, 

temperature and the battery current effects. One downside of the LMN modelling 

approach is the excessive requirements for different experiments to train the model 
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in first place. Generally, the data-based model parameters are not physically 

interpretable, which drops their popularity for in situ estimation and tracking of 

SOH and SOP. Furthermore, a large cell sample of the same chemistry is required to 

create a dataset for identification and training of data-based models. 

In [146], [234], [235], Plett used a series of models including the combined, simple, 

zero-state hysteresis, one-state hysteresis and a non-linear enhanced self-correcting 

(ESC) model to adaptively estimate the battery’s SOC. The latter model took into 

consideration the effects of the current direction, the SOC dependency of OCV 

hysteresis and the relaxation or the charge-recovery effect to improve the model 

accuracy for dynamic load profiles. In an attempt to model the OCV hysteresis 

behaviour together with the charge recovery effects, Roscher et al. [236] developed 

an empirical model whose parameters required off-line identification. In [220], 

Huria et al. proposed a mathematical model to describe the dynamics of the large 

hysteresis levels that exist amongst high-power lithium-ion cells. Further on in the 

Chapter, this model structure will be referred to as the adaptive hysteresis model. 

The electrical equivalent-circuit models have gained a lot of interest amongst for 

real-time battery state estimation and power management purposes. This is due to 

their simplified mathematical and numerical approaches that minimise the 

necessity for computationally intensive procedures. Furthermore, there is often a 

strong physical relation between the constituent model parameters and the 

underlying electrochemical processes that occur within the battery cells. These 

models use passive electrical components, such as resistors and capacitors, to mimic 

the behavioural response of a battery. The simplest equivalent circuit model is in 

the form of an ideal voltage source in series with a resistor [76]. This model assumes 

that the demand current has no physical influence on the battery, i.e. no core 

temperature variations or undesired transition effects. To account for temperature 

variations, Howe et al. [237] proposed a sensor-less thermal-impedance battery 

model. More complicated equivalent models include parallel-connected resistor-

capacitor (RC) branches with different time constants. Depending on the dynamics 

of the load profile and the required modelling accuracy, the number RC branches 
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may vary from one (e.g. [70], [232], [238], [239]) to two (e.g. [92], [169], [240]). 

Models of up to a fifth-order have also been proposed in literature (e.g. [241]).  

4.3 Candidate Models for Online Implementation 

The candidate battery model structures for the purpose of this comparative study 

are summarised in Table 4.1. These models form the basis for many real-time SOC, 

SOH, SOP and SOF estimation algorithms that appear in lithium-ion BMS 

applications. In this section, each model structure is described in terms of its 

constituent parameters, and using Kirchhoff’s circuit laws, the input-output 

equations for each model structure is derived.   

Table 4.1 Candidate battery models for online BMS implementations 

Model Description Parameters 

1. Combined model, Equation (4.1) 𝐾0, 𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝑅s 

2. Rint model, (4.2) 𝑅s  

3. Huria et al. Hysteresis model, equation (4.3) 𝑅s,𝑚 

4. Plett Hysteresis model, Equation (4.6) 𝑅s, ℎ 

5. Randles’ model, Equation (4.7) 𝑅s, 𝑅d, 𝑅t, 𝐶b, 𝐶s 

6. Modified Randles’ model, Equation (4.9) 𝑅s, 𝑅p, 𝑅n, 𝐶p, 𝐶n 

7. One-RC model without Hysteresis, Equation (4.10) 𝑅s, 𝑅1, 𝐶1 

8. Two-RC model without Hysteresis, Equation (4.10) 𝑅s, 𝑅1, 𝑅2, 𝐶1, 𝐶2 

9. One-RC model with Hysteresis, Equations (4.10) + (4.3) 𝑅s, 𝑅1, 𝐶1,𝑚 

10. Two-RC model with Hysteresis, Equations (4.10) + (4.3) 𝑅s, 𝑅1, 𝑅2, 𝐶1, 𝐶2,𝑚 

4.3.1 The Combined Model 

The combined model [235] provides a very crude approximation of the battery’s 

dynamics. As the name suggests, this model structure is a combination of the 

Shepherd model [230], Unnewehr and Nasar universal model [242] and the Nernst 

model [5]. The combination of these models results in a mathematical equation, 

which can be expressed as, 
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𝑉𝑘 = 𝐾0 −
𝐾1
SOC𝑘

− 𝐾2SOC𝑘 + 𝐾3 ln(SOC𝑘) + 𝐾4 ln(1 − SOC𝑘) − 𝐼𝑘𝑅s 

   VOC = 𝑓(SOC) 

(4.1) 

where 𝑉𝑘  is the battery’s terminal voltage and 𝐼𝑘  is the throughput current. The 

battery’s internal series-resistance is described by 𝑅s  and is a function of 

temperature and SOC. The constants 𝐾0, 𝐾1, 𝐾2, 𝐾3 and 𝐾4 are used to describe the 

battery’s OCV dependency on SOC. This model benefits from being linear in 

parameters and thus simplifies the identification procedure. 

4.3.2 The Rint Model 

 

Fig. 4.1 Equivalent-circuit diagram for Rint model 

The internal resistance or Rint model, as illustrated in Fig. 4.1, is comprised of an 

ideal voltage source 𝑉OC to represent the battery’s OCV as a function of SOC and a 

series resistor 𝑅s  that describes the internal ohmic losses [243]. This model 

structure is also linear in parameters and is very ‘simple’ to implement in real time. 

However, the model’s output equation expressed by (4.2) is only a crude estimate of 

the battery’s actual terminal voltage, which can result in large uncertainties in other 

model-based battery states (e.g. SOC and SOP). 

 𝑉𝑘 = 𝑉OC(SOC𝑘) − 𝐼𝑘𝑅s. (4.2) 

ikRs

VOC Vk

IkRs
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4.3.3 The Hysteresis Models 

The OCV extraction test procedure, as discussed in Chapter 2, was used to establish 

an OCV-SOC relationship for the two cell chemistries of interest to this thesis. The 

results are presented in Fig. 4.2. It can be noted that, the OCV curve obtained for the 

LFP cell has a relatively small rate of decent with respect to SOC than that observed 

for the NMC variant. This virtue makes LFP cells more appealing to those BES 

systems that require a fairly constant power over a wider operational SOC range.   

Furthermore, the OCV obtained after a charge step for both LFP and NMC cells has a 

higher value than that of a discharge. In literature, this phenomenon is referred to 

as OCV hysteresis. In [220], the authors have shown that for high-power LFP cells, 

the hysteresis level decreases with increasing rest period which is allowed 

immediately after a charge or discharge step. This can be attributed to the 

thermodynamic origins of hysteresis [244] and requires for a long period of rest 

interval, in order for the cell to reach a final equilibrium potential.  

The hysteresis levels obtained after a one-hour rest period for the two cell 

chemistries under study are presented in Fig. 4.2(b) and (d) respectively. It is 

apparent that the hysteresis level for the LFP chemistry is considerably higher than 

that obtained for the NMC chemistry. Moreover, within a conventional/conservative 

SOC range of 20% to 80%, the OCV curve for the LFP chemistry is fairly flat. This 

implies that for those OCV-based SOC estimators, even a small error in the voltage 

measurement within this region can result in a large deviation from the actual SOC 

value. Thus, for a more reliable SOC estimation, a model representation of the cell’s 

hysteresis behaviour is of necessity. 

To overcome the effects of hysteresis, different modelling approaches have been 

reported in literature (e.g. [245]). For those battery chemistries that pose a 

relatively small hysteresis level (e.g. NMC), often a direct approach is adopted [235]. 

This technique can be achieved either by evaluating the arithmetic mean or 

minimising the global squared-error between the charge and discharge OCV points 

attained separately for the same SOC level. However, for those chemistries with 

larger hysteresis levels (e.g. LFP), direct methods for hysteresis modelling would 
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lead to large uncertainties in the SOC estimates. Therefore, more comprehensive 

models can be employed to reduce such hysteresis-related uncertainties. 

 

Fig. 4.2 Illustrating OCV and hysteresis level for (a)-(b) LFP and (c)-(d) NMC cell 

chemistries at 25°C 

In [236], the authors develop an empirically-derived hysteresis model for LFP cells 

comprising of two parts; first part captures the dynamics of the OCV hysteresis as a 

function of  SOC and an identifiable hysteresis factor that determines the position of 

the OCV curve with respect to the charge and discharge OCV curves, and the second 

part considers the SOC-dependent recovery effects (i.e. the time taken for the cell to 

reach a final equilibrium potential after a current interruption at a given SOC). This 

results in a comprehensive representation of the cell’s OCV during operation. 

However, due to the empirical nature of the model structure, a training dataset is 

required to identify the model parameters off-line.  

(a) (b) 

(c) (d) 
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For the purpose of this study, we put the focus on the hysteresis models presented 

in [235] and [220], whose parameters can possibly be identified recursively in real 

time, without the necessity for various training datasets. Another example of online 

OCV hysteresis treatment can be found in [117]. The first hysteresis model is 

developed based on an algorithm presented by Huria et al. [220] and is defined as, 

 

∇𝑉OC =
d𝑉OC
dSOC

= {

d𝑉OC,ch
dSOC

+𝑚(𝑉OC,ch − 𝑉OC), for 
dSOC

d𝑡
≥ 0

d𝑉OC,dis
dSOC

+𝑚(𝑉OC,dis − 𝑉OC), for 
dSOC

d𝑡
< 0

. (4.3) 

which determines the gradient of 𝑉OC = 𝑓(SOC) as a function of the rate-of-change 

of SOC and its distance away from the major hysteresis loop formed by the 

charge,𝑉OC,ch, and discharge, 𝑉OC,dis , OCV curves. The dimensionless coefficient 𝑚 

determines how fast 𝑉OC  transitions towards 𝑉OC,ch  or 𝑉OC,dis  after a preceding 

charge or discharge current pulse respectively. In order to compare the 

performance of the two hysteresis models discussed in this section, algorithm (4.3) 

is combined with the Rint model (4.2) to give,  

 𝑉𝑘 = 𝑉OC(SOC𝑘) + ∇𝑉OC,k − 𝐼𝑘𝑅s (4.4) 

where ∇𝑉OC,k is the 𝑉OC derivative attained at time step 𝑘. 

In [235], Plett developed a model to describe the hysteresis effects using a 

differential equation in both time and SOC such as, 

 dℎ(SOC, 𝑡)

dSOC
= 𝛾sgn(SOĊ ) (𝐻(SOC, SOĊ ) − ℎ(SOC, 𝑡)) (4.5) 

where ℎ(SOC, 𝑡)  is a function to describe the hysteresis voltage, 𝐻(SOC, SOĊ ) 

defines the maximum positive and negative hysteresis as a function of SOC and rate-

of-change of SOC,  𝛾 is a tuneable factor to control the rate-of-decay of hysteresis 

towards the major loop and SOĊ = dSOC d𝑡⁄  is the rate-of-change of SOC. Now, using 
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the SOC definition given by equation (2.14) in Chapter 2 and rearranging (4.5) as a 

differential equation in time only, the cell model’s state-space equations become, 

ℎ𝑘+1 = exp (− |
𝜂𝐼𝑘𝛾Δ𝑡

𝑄nom
|) ℎ𝑘 + (1 − exp (− |

𝜂𝐼𝑘𝛾Δ𝑡

𝑄nom
|))𝐻(SOC, SOĊ ) 

𝑉𝑘 = 𝑉OC(SOC𝑘) − 𝐼𝑘𝑅s + ℎ𝑘 . 

(4.6) 

4.3.4 The Randles Model 

 

Fig. 4.3 Equivalent-circuit diagram for Randles model  

The Randles model was originally developed for lead-acid batteries [96], [135], 

[216]. However, in recent years their utilisation in lithium-ion battery modelling has 

been sighted as well [246]. Fig. 4.3 shows the Randles’ equivalent-circuit diagram 

for a typical lithium-ion cell, where 𝑅s is the series resistance, 𝑅d models the cell’s 

no-load self-discharge (typically ~70k Ω), 𝐶b represents the bulk charge storage of 

the cell, 𝐶s  represents the electrodes’ double-layer effect and 𝑅t  is the charge-

transfer resistance. The voltage 𝑉Cb across 𝐶b is analogous to the cell’s OCV and the 

model’s output response can be expressed as, 
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[

VCb𝑘+1
 

VCs𝑘+1

] = [𝑒
−Δ𝑡
𝑅d𝐶b 0

0 𝑒
−Δ𝑡
𝑅t𝐶s

] [

VCb𝑘
 

VCs𝑘

] +

[
 
 
 
 𝑅d (1 − 𝑒

−Δ𝑡
𝑅d𝐶b) 0

0 𝑅t (1 − 𝑒
−Δ𝑡
𝑅t𝐶s)

]
 
 
 
 

𝐼𝑘

 
𝑉𝑘 = VCb,𝑘 − VCs,𝑘 − 𝐼𝑘𝑅s.

 

(4.7) 

Gould et al. [92] developed a new battery model through the star-delta 

transformation of the original Randles’ circuit. This particular model, as shown in 

Fig. 4.4, consists of the same number of parameters as the Randles model with a 

slight modification in the way the transient states are represented.  

In [92], it is shown that when applied with real-time state observers such as the 

Utkin and Kalman Filter, the parallel reconfiguration of the Randles’ model states 

can yield a better SOC estimate. Thus, the adaptability of this model structure for 

online SOC and SOP estimation will be evaluated in this study. Consequently, 

mapping the Randles’ model parameters as per (4.8) and solving for the output 

equation in discrete form, results in equation (4.9). 

 

Fig. 4.4 Equivalent-circuit diagram for modified Randles model 

 𝐶n = 𝐶b
2 (𝐶b + 𝐶s)⁄ , 𝐶p = 𝐶p𝐶s (𝐶b + 𝐶s),⁄  

𝑅n = 𝑅t(𝐶b + 𝐶s)
2 𝐶b

2⁄ , 𝑅p = 𝑅d + 𝑅t 
(4.8) 
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[

VCp𝑘+1
 

VCn𝑘+1

] =

[
 
 
 
 𝑒

−Δ𝑡
𝜏p

𝑅T
𝑅n
(1 − 𝑒

−Δ𝑡
𝜏p )

(1 − 𝑒
−Δ𝑡
𝜏n ) 𝑒

−Δ𝑡
𝜏n

]
 
 
 
 

[

VCp𝑘
 

VCn𝑘

] + [𝑅T (𝑒
−Δ𝑡
𝜏p − 1) 0

0 0

] 𝐼𝑘

 
𝑉𝑘 = 𝑉Cp,𝑘 − 𝐼𝑘𝑅s

 

(4.9) 

where 𝑅T = 𝑅p𝑅n (𝑅p + 𝑅n)⁄ , 𝜏n = 𝑅n𝐶n and 𝜏p = 𝑅T𝐶p. 

4.3.5 The Resistor-Capacitor (RC) Network Model 

 

Fig. 4.5 Equivalent-circuit diagram for 𝒏-RC network model 

The resistor-capacitor (RC) or the Thevenin equivalent-circuit model, as shown in 

Fig. 4.5, is a modification of the Rint model. This model is comprised of an ideal 

voltage source to represent the cell’s OCV at partial equilibrium as a function of SOC, 

a series ohmic-resistance 𝑅s  and 𝑛  number of series-connected parallel RC 

branches. Depending on the dynamics of the intended application, the number of the 

RC branches may vary. For most power applications, one RC branch is adequate (e.g. 

[168], [247], [248]) to describe the long time-constant reactions associated with the 

diffusion of active species into the electrolyte.  

Considering applications with faster transients, the short time-constant reactions 

associated with the charge-transfer and the double-layer effect of the electrodes can 

be modelled with additional RC branches (e.g. [74], [249]–[251]). Without loss of 
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generality, the electrical behaviour of an 𝑛-th order RC model in its discrete form 

can be expressed as,  

[

𝑉RC1𝑘+1
⋮

𝑉RC𝑛𝑘+1

] = [
𝑒
−Δ𝑡
𝑅1𝐶1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝑒
−Δ𝑡
𝑅𝑛𝐶𝑛

] [

𝑉RC1𝑘
⋮

𝑉RC𝑛𝑘

] +

[
 
 
 
 
 𝑅1 (1 − 𝑒

−Δ𝑡
𝑅1𝐶1) ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝑅𝑛 (1 − 𝑒
−Δ𝑡
𝑅𝑛𝐶𝑛)

]
 
 
 
 
 

𝐼𝑘 

𝑉𝑘 = 𝑉OC(SOC𝑘) − 𝑉RC1𝑘 −⋯− 𝑉RC𝑛𝑘 − 𝐼𝑘𝑅s. 

(4.10) 

4.4 Formulation of Cell States Equations 

In order to estimate lithium-ion cell states (i.e. SOC and SOP) using the model 

structures defined by equations (4.1) to (4.10), a set of equations in the discrete 

form is required. Subsequently, this section provides a description on the 

development of an empirically-deduced OCV function, which relates to the cell’s SOC 

at discrete time intervals. Furthermore, in order to include SOC as an estimable state 

in the cell models’ state-space equations, the coulomb-counting equation given in 

(2.14) is converted into a discrete form. Finally, a definition for the cells SOP is 

inferred based on the estimated cell’s OCV and resistance parameters identified at a 

particular SOC value.    

4.4.1 Inference of OCV-SOC Relationship 

Upon the completion of the OCV extraction test procedure described in Chapter 2, 

section 2.3.2.3, the OCV values at ΔSOC = 10% steps, over the entire SOC range, were 

extracted. Fig. 4.6 presents the results obtained for both LFP and NMC reference test 

cells. The effect of hysteresis is often reported to be large for lithium-ion cells [220]. 

However, as can be observed, the test cells used here do not pose the typical 

hysteresis behaviour. Thus, by ignoring the hysteresis effect, in this thesis, the 

average of the OCV values obtained during both charge and discharge cycles are 

used to establish an OCV-SOC relationship for the two lithium-ion test cell variants. 
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As discussed in Chapter 2, for a reliable model-based cell state and parameter 

estimation, a sufficiently accurate function that relates the cell’s OCV to its SOC is 

required. Various solutions have been proposed in literature. For example, in [168], 

Rahimi-Eichi et al. report on a piecewise linear OCV-SOC function, whose 

parameters are identified recursively using a reduced-order observer. Despite the 

simplicity offered by such OCV modelling approaches, they suffer largely from 

errors induced by the highly nonlinear OCV-SOC relationships, especially when SOC 

is either less than 10% or more than 90%. 

 

Fig. 4.6 OCV-SOC relationship for (a) LFP and (b) NMC reference cells at 25°C 

(a) 

(b) 
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Therefore, in this thesis, a nonlinear polynomial function is employed to accurately 

describe the OCV-SOC relationship.  

 𝑉OC(SOC) = 𝑎𝑖SOC𝑘
𝑛 +⋯+ 𝑎1SOC𝑘 + 𝑎0 (4.11) 

where the coefficients 𝑎𝑖 to 𝑎0 are empirically determined, by curve-fitting the OCV-

SOC data recorded at 10% SOC granularity and applying a nonlinear least-squares 

method in MATLAB. According to the work carried out in [142], ageing has a 

negligible effect on lithium-ion cells’ OCV behaviour. Thus, the OCV coefficients 

identified for the LFP and NMC test cells here are stored in a look-up table for online 

implementations and need not to be updated recursively. This reduces the 

computational burden on low-cost MCUs that are typically found in motive and 

large-scale BES applications. 

In order to determine a sufficient order-number for the OCV function given in (4.11), 

a statistical analysis is conducted. Polynomials of up to eighth order are fitted to the 

OCV-SOC data recorded for the two reference LFP and NMC cells, over their entire 

SOC range and at all test temperatures. Then, the residual norm, ‖𝑒‖ , for each 

polynomial is calculated using (4.12) and is used as a goodness-of-fit indicator.   

 
‖𝑒‖ = √∑(𝑈𝑖 − 𝑈̂𝑖)

2

𝑖

 (4.12) 

where 𝑈𝑖 is the measured and 𝑈̂𝑖 is the estimated OCV. The results are presented in  

Fig. 4.7. As can be noted, there exists an exponential trend line, which decays with 

increasing polynomial order-number and approaches a horizontal asymptote when 

order number is eight. Subsequently, an eighth-order polynomial is chosen herein 

as a sufficient order-number for the OCV function given in (4.11), to accurately 

describe the OCV-SOC relationship for both LFP and NMC cells.   
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Fig. 4.7 Average residual norms obtained from curve-fitting high-order 

polynomials to OCV-SOC data measured for (a) LFP and (b) NMC cells 

The fitted OCV curves at various temperatures are presented in Fig. 4.8. As can be 

seen, during the operational SOC range of both battery chemistries (i.e. 20% ≤ SOC 

≤ 80%), the OCV-SOC relationship is almost independent of the operating 

temperature. This finding implies that for practical purposes, one can safely rely on 

only an OCV curve obtained at a reasonable temperature (e.g. at 25°C). However, to 

keep the modelling uncertainties at a minimum, in this Chapter, separate functions 

are fitted to represent the OCV-SOC relationship at each test temperature. 

4.4.2 Discrete SOC Equation 

In order to include SOC as an estimable state in the battery models’ state-space 

equations (4.1) to (4.10), the coulomb-counter equation stated in (2.14) needs to be 

converted into a discrete form. Thus, assuming a small sampling period (in this case, 

Δ𝑡 = 100 ms) and using a rectangular approximation yields, 

 
SOC𝑘+1 = SOC𝑘 − (

𝜂 ∙ Δ𝑡

𝑄nom
) 𝐼𝑘. (4.13) 

 

(a) (b) 
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Fig. 4.8  Fitted average OCV curves for (a) LFP and (b) NMC cells, presented as a 

function of SOC and temperature 

4.4.3 A Mathematical SOP Definition 

Various quantitative definitions for SOP exist in literature (e.g. [194], [203], [252]), 

which are all associated with the battery’s power capabilities. In this paper, we 

define SOP as the available source or sink power over a short period of Δ𝑡. Using 

𝑉OC = 𝑓(SOC) as defined in (2.25), the instantaneous discharge or charge power at 

time step 𝑘 can be respectively calculated as,  

 
𝑃dis,𝑘 =

𝑉min(𝑉OC,𝑘  − 𝑉min)

𝑅̂eq
 

(4.14) 

(a) 

(b) 
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𝑃ch,𝑘 =

𝑉max(𝑉max − 𝑉OC,𝑘)

𝑅̂eq
 

(4.15) 

where 𝑉min  and 𝑉max  are the minimum and maximum threshold voltages 

recommended by the manufacturer for a safe operation and 𝑅̂eq is an estimate for 

the cell’s series-equivalent resistance.  

Note that the value of 𝑅̂eq in (4.14) and (4.15) can be approximated by applying the 

Thevenin’s Theorem to the equivalent-circuit model under study. Alternatively, the 

voltage and current waveforms obtained for a sequence of HPPC pulses at every SOC 

value can be used to calculate a value for the cell’s discharge or charge resistance as, 

 
𝑅dis =

𝑉0 − 𝑉1
𝐼dis

, 𝑅ch =
𝑉3 − 𝑉2
𝐼ch

. (4.16) 

In equation (4.16),  𝑉0 and 𝑉1 are the cell voltages measured respectively at the start 

and end of a discharge current pulse, 𝐼dis, of duration Δ𝑡 seconds. Similarly, 𝑉2 and 

𝑉3 are the voltage measurements taken for a charge current pulse 𝐼ch of duration Δ𝑡 

seconds. The resulting resistances are analogous to the cell’s internal resistances 

and can reflect on the power capability of a cell under operation. Consequently, any 

variations in the cell’s internal resistance as a function of SOC and temperature can 

affect the quality of the SOP estimate at any time. 

4.5 Dual-EKF System Identification 

In Chapter 2, section 2.2.2.7, it was discussed that EKF is an ad hoc solution for the 

identification of non-linear time-varying systems, such as electrochemical cells. 

Using the EKF system identification method, the non-linear battery model 

describing the underlying dynamics of the system is linearised using the Taylor 

series expansion around the filter’s current estimated trajectory. In order to 

simultaneously estimate both model states and parameters, the dual-EKF algorithm 

is adopted here. It should be noted that the ultimate goal of this Chapter is to review 

the online performance of the battery model structures presented in Table 4.1 and 
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not the online estimator. Therefore, the dual-EKF framework is chosen, as it is one 

of the most robust online system identification techniques applied in the battery 

energy and/or power management systems to overcome a wide range of problems 

(e.g. [118], [119], [165], [253]). 

4.5.1 Underlying Theory 

With the assumption that the cell terminal current 𝐼𝑘  and voltage 𝑉𝑘  are the only 

measurable quantities, the EKF state filter can be designed such that,   

 𝐱𝑘+1 = 𝑓(𝐱𝑘, 𝐮𝑘 , 𝛉𝑘) + 𝐰𝑘 

𝐲𝑘 = ℎ(𝐱𝑘, 𝐮𝑘, 𝛉𝑘) + 𝐯𝑘 

𝐰𝑘 ~ 𝑁(0, 𝐐
x), 𝐯𝑘  ~ 𝑁(0, 𝐑

x) 

(4.17) 

where 𝐱𝑘 ∈ ℝ
𝑛 is a vector containing the model states to be predicted in a minimum 

variance sense, 𝛉𝑘 ∈ ℝ
𝑞   contains the time-varying model parameters, 𝐮𝑘 ∈ ℝ

𝑝  is 

the exogenous model input, 𝐲𝑘 ∈ ℝ
𝑚  is the output and 𝐰𝑘 ∈ ℝ

𝑛  and 𝐯𝑘 ∈ ℝ
𝑚  are 

the zero-mean process and measurement noises of covariance 𝐐x  and 𝐑x 

respectively. The nonlinear function 𝑓(∙,∙,∙) relates the states estimated at discrete 

time-step 𝑘 − 1 to the states at the current time step 𝑘 and ℎ(∙,∙,∙) maps the updated 

states to the measurements at time-step 𝑘 . Assuming that the parameters vary 

slowly over time (i.e. minutes to hours), the weight EKF can be designed to 

adaptively provide an estimate of the true model parameters. Thus, the state-space 

model for the weight filter is given as, 

 𝛉𝑘+1 = 𝛉𝑘 + 𝐫𝑘 

𝐝𝑘 = ℎ(𝐱𝑘, 𝐮𝑘, 𝛉𝑘) + 𝐞𝑘 

𝐫𝑘 ~ 𝑁(0, 𝐐
θ), 𝐞𝑘 ~ 𝑁(0, 𝐑

θ) 

(4.18) 

where the dynamics of changes in 𝛉𝑘 are attributed to a small imaginary white noise 

𝐫𝑘 ∈ ℝ
𝑝  of covariance 𝐐θ  that evolves the parameters over time. The output 
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equation 𝐝𝑘 ∈ ℝ
𝑚  is given as a measurable function of 𝛉𝑘  and a white noise 𝐞𝑘 ∈

ℝ𝑚 of covariance 𝐑θ to account for the sensor noise and modelling uncertainties.  

Due to the time-variability of the model parameters, it is imperative that the actual 

input/output cell data (e.g. voltage, current, etc.) convey continual information on 

the parameters to be estimated. This condition is referred to in system identification 

literature as the “persistence of excitation” (PE) [90].  

In many real-time battery state estimation problems, the load-current profile may 

not fully satisfy the PE criterion. For those observer-based SOC estimators such as 

the extended Luenberger observer, sliding mode or adaptive observers, if the PE 

condition is not sufficiently satisfied, the gains tend to approach infinity and severe 

divergence occurs [90]. Nevertheless, the EKF algorithm seems to operate well 

under such conditions without any divergence (e.g. in [95], [130], [186], [254]).  

A summary of the dual-EKF algorithm is presented in Table 4.2. Note that the 

algorithm is initialised by assuming a prior knowledge of the model states and 

parameters are available. However, in practice, initial system information are 

usually unknown. Thus, the states and the parameters are set to their best guess 

values at 𝑘 = 0 so that 𝛉̂0
+ = 𝐸[𝛉0] and 𝐱̂0

+ = 𝐸[𝐱0].  

Each time step, the algorithm first updates the state and parameter estimates 𝐱̂𝑘
− and 

𝛉̂𝑘
−  and their error covariance 𝐏x̃,𝑘

−  and 𝐏θ̃,𝑘
−  respectively, by propagating them 

forward in time. Note that for the parameter time-update equation (4.22), the new 

parameter estimate 𝛉̂𝑘
− is equal to the previous estimate 𝛉̂𝑘−1

+  with an increase in its 

uncertainty due to the presence of the white process noise 𝐫𝑘.  

After a measurement has been taken at time step 𝑘 , both filters take this 

measurement into consideration to update the state and parameter estimates 𝐱̂𝑘
+ 

and 𝛉̂𝑘
+ and their corresponding uncertainties as 𝐏x̃,𝑘

+  and 𝐏θ̃,𝑘
+  respectively. In (4.23) 

and (4.24), the measurement-update error covariance matrices 𝐏x̃,𝑘
+  and 𝐏θ̃,𝑘

+  are 

given in their Joseph forms to ensure a numerically robust algorithm [255]. It is 

noted that for the weight filter’s measurement-update equations given in (4.24), the 
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total-differential 𝐇𝑘
θ of the model output equation ℎ(∙,∙,∙) with respect to parameters 

𝛉𝑘  is required. Therefore, by decomposing the total-derivative into partial-

derivatives, 𝐇𝑘
θ is computed recursively as the following set of equations, 

 
𝐇𝑘
θ =

dℎ(𝐱̂𝑘
−, 𝐮𝑘, 𝛉𝑘)

d𝛉𝑘
|
𝛉𝑘=𝛉̂𝑘

−

 

dℎ(𝐱̂𝑘
−, 𝐮𝑘, 𝛉̂𝑘

−)

d𝛉̂𝑘
−

=
∂ℎ(𝐱̂𝑘

−, 𝐮𝑘, 𝛉̂𝑘
−)

∂𝛉̂𝑘
−

+
∂ℎ(𝐱̂𝑘

−, 𝐮𝑘 , 𝛉̂𝑘
−)

∂𝐱̂𝑘
− ∙

d𝐱̂𝑘
−

d𝛉̂𝑘
−

 

d𝐱̂𝑘
−

d𝛉̂𝑘
−
=
𝜕𝑓(𝐱̂𝑘−1

+ , 𝐮𝑘−1, 𝛉̂𝑘
−)

𝜕𝛉̂𝑘
−

+
𝜕𝑓(𝐱̂𝑘−1

+ , 𝐮𝑘−1, 𝛉̂𝑘
−)

𝜕𝐱̂𝑘−1
+ ∙

d𝐱̂𝑘−1
+

d𝛉̂𝑘
−

 

d𝐱̂𝑘−1
+

d𝛉̂𝑘
−
=
d𝐱̂𝑘−1

−

d𝛉̂𝑘−1
+

− 𝐋𝑘−1
x

dℎ(𝐱̂𝑘−1
− , 𝐮𝑘−1, 𝛉̂𝑘−1

+ )

d𝛉̂𝑘−1
+

. 

(4.19) 

Since 𝐋𝑘−1
x  is weakly related to the parameter estimates 𝛉𝑘, it can be safely neglected 

in (4.19) to improve the computation efficiency of the weight filter. Furthermore,  

d𝐱̂𝑘−1
+ /d𝛉̂𝑘

−  is set to zero at 𝑘 = 0  and the three total-derivatives are updated 

recursively.  

4.5.2 Estimation of EKF Noise Statistics 

The convergence and tracking performance of any KF-based system identification 

technique is largely dependent on the process and measurement noise statistics 

initialised at time-step 𝑘 = 0 . In most researches conducted on battery system 

identification using KF-based algorithms, these two statistical parameters are either 

tuned manually, which can be a tedious task, or set by experience. In this thesis, the 

expectation maximisation (EM) algorithm is employed to provide an iterative 

maximum-likelihood estimate for the filters’ process and measurement noise 

statistical parameters (i.e. 𝐐x and 𝐑x for the state EKF and 𝐐θ and 𝐑θ for the weight 

EKF).  
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Table 4.2 Summary of the dual-EKF algorithm for battery model state and 

parameters estimation 

Initialisation: 

𝛉̂0
+ = 𝐸[𝛉0], 𝐏θ,0

+ = 𝐸 [(𝛉 − 𝛉̂0
+)(𝛉 − 𝛉̂0

+)
𝑇
] 

𝐱̂0
+ = 𝐸[𝐱0], 𝐏x,0

+ = 𝐸[(𝐱 − 𝐱̂0
+)(𝐱 − 𝐱̂0

+)𝑇] 
(4.20) 

Time-update equations for state filter: 

𝐱̂𝑘
− = 𝑓(𝐱̂𝑘−1

+ , 𝐮𝑘−1, 𝛉̂𝑘
−)  

𝐏x̃,𝑘
− = 𝐅𝑘−1𝐏x̃,𝑘−1

+ 𝐅𝑘−1
𝑇 +𝐐𝑘

x  

(4.21) 

Time-update equations for weight filter: 

𝛉̂𝑘
− = 𝛉̂𝑘−1

+  

𝐏θ̃,𝑘
− = 𝐏θ̃,𝑘−1

+ + 𝐐𝑘
θ 

(4.22) 

Measurement-update equations for state filter: 

𝐋𝑘
x = 𝐏x̃,𝑘

− (𝐇𝑘
x)𝑇[𝐇𝑘

x𝐏x̃,𝑘
− (𝐇𝑘

x)𝑇 + 𝐑𝑘
x ]
−1

 

𝐱̂𝑘
+ = 𝐱̂𝑘

− + 𝐋𝑘
x [𝐲𝑘 − ℎ(𝐱̂𝑘

−, 𝐮𝑘 , 𝛉̂𝑘
−)] 

𝐏x̃,𝑘
+ = (𝑰 − 𝐋𝑘

x𝐇𝑘
x)𝐏x̃,𝑘

− (𝑰 − 𝐋𝑘
x𝐇𝑘

x)𝑇 + 𝐋𝑘
x𝐑𝑘

x (𝐋𝑘
x )𝑇 

(4.23) 

Measurement-update equations for weight filter: 

𝐋𝑘
θ = 𝐏θ̃,𝑘

− (𝐇𝑘
θ)
𝑇
[𝐇𝑘

θ𝐏θ̃,𝑘
− (𝐇𝑘

θ)
𝑇
+𝐑𝑘

θ]
−1

 

𝛉̂𝑘
+ = 𝛉̂𝑘

− + 𝐋𝑘
θ [𝐝𝑘 − ℎ(𝐱̂𝑘

−, 𝐮𝑘 , 𝛉̂𝑘
−)] 

𝐏θ̃,𝑘
+ = (𝑰 − 𝐋𝑘

θ𝐇𝑘
θ)𝐏θ̃,𝑘

− (𝑰 − 𝐋𝑘
θ𝐇𝑘

θ)
𝑇
+ 𝐋𝑘

θ𝐑𝑘
θ(𝐋𝑘

θ)
𝑇

 

(4.24) 

Where, 

𝐅𝑘−1 =
𝜕𝑓(𝐱𝑘−1, 𝐮𝑘−1, 𝛉̂𝑘

−)

𝜕𝐱𝑘−1
|
𝐱𝑘−1=𝐱̂𝑘−1

+

, 𝐇𝑘
x =

𝜕ℎ(𝐱𝑘 , 𝐮𝑘 , 𝛉̂𝑘
−)

𝜕𝐱𝑘
|
𝐱𝑘=𝐱̂𝑘

−

, 

𝐇𝑘
θ =

dℎ(𝐱̂𝑘
−, 𝐮𝑘 , 𝛉𝑘)

d𝛉𝑘
|
𝛉k=𝛉̂𝑘

−

. 
(4.25) 
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In general, for a nonlinear joint-optimisation problem, where both model states and 

parameters are unknown, the EM algorithm performs a joint maximisation of the 

conditional probability density functions for both the states vector 𝐱𝑘  and the 

parameters vector 𝛉𝑘. The resulting algorithm can, thus, be used as an alternative to 

the dual-EKF estimator for online BES identification problems. However, this comes 

at an increased computational cost, which is a subject of study in its own merits. 

Alternatively, assuming the initial model states and parameters are known at time 

step 𝑘 = 0 (e.g. from manufacturer’s datasheet or through offline parameterisation 

techniques), the extended EM method, as reported in [256], can be applied to 

recursively identify 𝐐 and 𝐑 for a set of persistently-exciting input/output data.  

4.5.1.1 Estimation of process noise covariance Q 

For a measurement vector, 𝐲𝑁, of sample size 𝑁, the covariance 𝐐 of the zero-mean 

white process noise 𝐰𝑘~𝑁(0, 𝐐) can be defined as,  

 
𝐐 =

1

𝑁
∑𝐸[𝐰𝑘𝐰𝑘

T|𝒚𝑁]

𝑁

𝑘=1

. (4.26) 

Then, considering the state-space equations given in (4.17), the process noise, 𝐰𝑘, 

for a dual-EKF can be approximated using the first-order Taylor series expansion. 

 𝐰𝑘 ≈ 𝐱𝑘 − 𝑓(𝐱𝑘−1|𝑁 , 𝐮𝑘−1, 𝛉𝑘−1|𝑁) − 𝐅𝑘−1|𝑁𝐱̃𝑘−1|𝑁 
(4.27) 

where 𝐅𝑘−1|𝑁  is the Jacobian of the nonlinear function 𝑓(∙)  and 𝐱̃𝑘−1|𝑁 = 𝐱𝑘−1 −

𝐱𝑘−1|𝑁. Subsequently, using (4.27), the outer product of 𝐰𝑘, as required in (4.26), 

can be expressed as, 
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𝐰𝑘𝐰𝑘
T = 𝐱𝑘𝐱𝑘

T − 𝐱𝑘𝑓(𝐱𝑘−1|𝑁 , 𝐮𝑘−1, 𝛉𝑘−1|𝑁)
T
− 𝑓(𝐱𝑘−1|𝑁 , 𝐮𝑘−1, 𝛉𝑘−1|𝑁)𝐱𝑘

T

+ 𝑓(𝐱𝑘−1|𝑁 , 𝐮𝑘−1, 𝛉𝑘−1|𝑁)𝑓(𝐱𝑘−1|𝑁 , 𝐮𝑘−1, 𝛉𝑘−1|𝑁)
T

− 𝐱𝑘𝐱̃𝑘−1|𝑁
T 𝐅𝑘−1|𝑁

T + 𝑓(𝐱𝑘−1|𝑁 , 𝐮𝑘−1, 𝛉𝑘−1|𝑁)𝐱̃𝑘−1|𝑁
T 𝐅𝑘−1|𝑁

T

− 𝐅𝑘−1|𝑁𝐱̃𝑘−1|𝑁𝐱𝑘
T + 𝐅𝑘−1|𝑁𝐱̃𝑘−1|𝑁𝑓(𝐱𝑘−1|𝑁 , 𝐮𝑘−1, 𝛉𝑘−1|𝑁)

T

+ 𝐅𝑘−1|𝑁𝐱̃𝑘−1|𝑁𝐱̃𝑘−1|𝑁
T 𝐅𝑘−1|𝑁

T . 

(4.28) 

Now, according to Bayes’ rules [255], the conditional expectation for a state vector 

𝐱𝑘 to be estimated, given measurements of up to and including 𝐲𝑁 are available, can 

be expressed as, 

 
𝐸[𝐱𝑘𝐱𝑘

T|𝐲𝑁] = 𝐱𝑘|𝑁𝐱𝑘|𝑁
T + 𝐏𝑘|𝑁

 
𝐸[𝐱𝑘𝐱𝑘−1

T |𝐲𝑁] = 𝐱𝑘|𝑁𝐱𝑘−1|𝑁
T + 𝐏𝑘,𝑘−1|𝑁

 (4.29) 

where the lagged covariance 𝐏𝑘,𝑘−1|𝑁 is defined by, 

 𝐏𝑘,𝑘−1|𝑁 = 𝐸 [(𝐱𝑘 − 𝐱𝑘|𝑁)(𝐱𝑘−1 − 𝐱𝑘−1|𝑁)
T
] 

= 𝐏𝑘|𝑘𝐋𝑘−1|𝑁
T + 𝐋𝑘|𝑁(𝐏𝑘+1,𝑘|𝑁 − 𝐅𝑘𝐏𝑘|𝑘)𝐋𝑘−1|𝑁

T . 

(4.30) 

Subsequently, by rearranging equations (4.28) to (4.30), the conditional expectation 

defined in (4.26) can be given as, 

𝐸[𝐰𝑘𝐰𝑘
T|𝒚𝑁] = 𝐱𝑘|𝑁𝐱𝑘|𝑁

T + 𝐏𝑘|𝑁 + 𝐱𝑘|𝑁𝑓(𝐱𝑘−1|𝑁 , 𝐮𝑘−1, 𝛉𝑘−1|𝑁)
T

− 𝑓(𝐱𝑘−1|𝑁 , 𝐮𝑘−1, 𝛉𝑘−1|𝑁)𝐱𝑘|𝑁
T

+ 𝑓(𝐱𝑘−1|𝑁 , 𝐮𝑘−1, 𝛉𝑘−1|𝑁)𝑓(𝐱𝑘−1|𝑁 , 𝐮𝑘−1, 𝛉𝑘−1|𝑁)
T
− 𝐏𝑘,𝑘−1|𝑁𝐅𝑘−1|𝑁

T

− 𝐏𝑘,𝑘−1|𝑁
T 𝐅𝑘−1|𝑁 + 𝐅𝑘−1|𝑁𝐏𝑘−1|𝑘−1𝐅𝑘−1|𝑁

T . 

(4.31) 

Finally, substituting (4.31) into (4.26) yields, 
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𝐐 =
1

𝑁
∑(𝐰𝑘|𝑁𝐰𝑘|𝑁

T + 𝐏𝑘|𝑁 + 𝐅𝑘−1|𝑁𝐏𝑘−1|𝑁𝐅𝑘−1|𝑁
T − 𝐏𝑘,𝑘−1|𝑁𝐅𝑘−1|𝑁

T

𝑁

𝑘=1

− 𝐏𝑘,𝑘−1|𝑁
T 𝐅𝑘−1|𝑁) 

(4.32) 

where 𝐰𝑘|𝑁 = 𝐱𝑘|𝑁 − 𝑓(𝐱𝑘−1|𝑁 , 𝐮𝑘−1, 𝛉𝑘−1|𝑁). 

4.5.1.2 Estimation of measurement noise covariance R 

Similar to 𝐐  estiamtion, for the same sample of size 𝑁 , the measurement noise 

covariance 𝐑 can be defined as,  

 𝐑 =
1

𝑁
∑𝐸[𝐯𝑘𝐯𝑘

T|𝒚𝑁]

𝑁

𝑘=1

 (4.33) 

where 𝐯𝑘~𝑁(0, 𝐑) is the zero-mean white-colour noise introduced by the current 

and voltage sensors. Then, using 𝐯𝑘 = 𝐲𝑘 − ℎ(𝐱𝑘, 𝐮𝑘, 𝛉𝑘)  as per (4.17), the 

measurement noise, 𝐯𝑘 , can be approximated using the first-order Taylor series 

expansion and given as, 

 𝐯𝑘 ≈ 𝐲𝑘 − ℎ(𝐱𝑘|𝑁 , 𝐮𝑘 , 𝛉𝑘|𝑁) − 𝐇𝑘|𝑁𝐱̃𝑘|𝑁  (4.34) 

where 𝐇𝑘|𝑁  is the Jacobian of the nonlinear function ℎ(∙)  and 𝐱̃𝑘|𝑁 = 𝐱𝑘 − 𝐱𝑘|𝑁 . 

Subsequently, using (4.34), the outer product of 𝐯𝑘 , as required in (4.33), can be 

expressed as, 

𝐯𝑘𝐯𝑘
T = 𝐲𝑘𝐲𝑘

T − 𝐲𝑘ℎ(𝐱𝑘|𝑁 , 𝐮𝑘 , 𝛉𝑘|𝑁)
T
− 𝐲𝑘𝐱̃𝑘|𝑁𝐇𝑘|𝑁

T − ℎ(𝐱𝑘|𝑁 , 𝐮𝑘, 𝛉𝑘|𝑁)𝐲𝑘
T

+ ℎ(𝐱𝑘|𝑁 , 𝐮𝑘, 𝛉𝑘|𝑁)ℎ(𝐱𝑘|𝑁 , 𝐮𝑘, 𝛉𝑘|𝑁)
T
+ ℎ(𝐱𝑘|𝑁 , 𝐮𝑘, 𝛉𝑘|𝑁)𝐱̃𝑘|𝑁

T 𝐇𝑘|𝑁
T

− 𝐇𝑘|𝑁𝐱̃𝑘|𝑁𝐲𝑘
T + 𝐇𝑘|𝑁𝐱̃𝑘|𝑁ℎ(𝐱𝑘|𝑁 , 𝐮𝑘, 𝛉𝑘|𝑁)

T
+ 𝐇𝑘|𝑁𝐱̃𝑘|𝑁𝐱̃𝑘|𝑁

T 𝐇𝑘|𝑁
T . 

(4.35) 
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For a normally-distributed measurement noise, it is known that, 𝐸[𝐱̃𝑘|𝑁] =

𝐸[𝐱𝑘 − 𝐱𝑘|𝑁] = 0  and 𝐸[𝐱̃𝑘|𝑁𝐱̃𝑘|𝑁
T ] = 𝐸 [(𝐱𝑘 − 𝐱𝑘|𝑁)(𝐱𝑘 − 𝐱𝑘|𝑁)

T
] = 𝐏𝑘|𝑁 . Hence, 

the conditional expectation defined in (4.33) can be derived and given as, 

𝐸[𝐯𝑘𝐯𝑘
T|𝒚𝑁] = 𝐲𝑘𝐲𝑘

T − 𝐲𝑘ℎ(𝐱𝑘|𝑁 , 𝐮𝑘 , 𝛉𝑘|𝑁)
T
− ℎ(𝐱𝑘|𝑁 , 𝐮𝑘, 𝛉𝑘|𝑁)𝐲𝑘

T

+ ℎ(𝐱𝑘|𝑁 , 𝐮𝑘, 𝛉𝑘|𝑁)ℎ(𝐱𝑘|𝑁 , 𝐮𝑘, 𝛉𝑘|𝑁)
T
+ 𝐇𝑘|𝑁𝐏𝑘|𝑁𝐇𝑘|𝑁

T  

(4.36) 

Finally, by substituting (4.36) into (4.33), 𝐑 can be estimated as, 

 
𝐑 =

1

𝑁
∑(𝐯𝑘|𝑁𝐯𝑘|𝑁

T + 𝐇𝑘|𝑁𝐏𝑘|𝑁𝐇𝑘|𝑁
T )

𝑁

𝑘=1

 (4.37) 

where 𝐯𝑘|𝑁 = 𝐲𝑘 − ℎ(𝐱𝑘|𝑁 , 𝐮𝑘 , 𝛉𝑘|𝑁). 

4.5.1.3 Initialised 𝑸 and 𝑹 Values 

Using the input/output data obtained for the reference LFP and NMC cells under the 

self-designed pulsed-current test, and a sample size of 𝑁 = 1000, equations (4.32) 

and (4.37) were applied to the dual-EKF algorithm to estimate the state and weight 

filters’ noise covariance. The chosen sample size implies that for the sampling period 

of Δ𝑡 = 100 ms used here, there will be 100 seconds of data in every window. This 

allows for those model parameters with slow transients to be assumed steady over 

the period of 100 seconds. Finally, by taking the arithmetic mean of 𝐐 and 𝐑 values 

obtained for both LFP and NMC cells, the process and measurement noise 

covariance for both EKFs are initialised as per (4.38). The filter parameters are kept 

the same for both LFP and NMC cells. This is to ensure a fair assessment on the cell 

model’s performance for the two lithium-ion cell variants. 
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𝐐0
x = diag𝑛{1 × 10

−6}, 𝐏x̃,0
+ = diag𝑛{10}, 𝐑0

x = diag𝑚{10} 

𝐐0
θ = diag𝑞{1 × 10

−8}, 𝐏θ̃,0
+ = diag𝑞{10}, 𝐑0

θ = diag𝑚{10} 

(4.38) 

where diag{∙} is a diagonal matrix of size 𝑛 × 𝑛 for 𝐐0
x and 𝐏x̃,0

+ , 𝑞 × 𝑞 for 𝐐0
θ and 𝐏θ̃,0

+ , 

and 𝑚 ×𝑚  for 𝐑0
x  and 𝐑0

θ  matrices, respectively. Note that the error covariance 

matrices 𝐏x̃,0
+  and 𝐏θ̃,0

+  are set to a large value at the initialisation time-step 𝑘 = 0 in 

order to account for any uncertainties in the filters’ initial conditions. 

4.6 Experimental Results and Discussion 

This section provides a description of the test procedures used in this Chapter, for 

the purpose of model training and validation. The dynamic performance and 

generality of each model structure is verified using two sets of lithium-ion cells. An 

analysis on the ten model structures is conducted with respect to SOC and SOP 

estimation, with different initial conditions.    

4.6.1 Test Procedures  

The generality of the battery models given in Table 4.1 is demonstrated using three 

identical cells of LFP and NMC chemistries. The specifications for the test cells are 

presented in Chapter 2, Table 2.5. The datasets for model training and validation are 

generated using the sequence outlined in Chapter 2, Fig. 2.18. The data obtained for 

one of each cell-chemistry is used for model training purposes, whereas the data 

gathered for the other four cells are utilised for verification of the identified model 

parameters and their dynamic performances.  

As for any electrochemical device, the energy storage capacity of batteries is greatly 

influenced by the ambient temperature in which they operate at. For practical 

reasons, most coulomb counters are normalised using the battery’s nameplate or 

nominal capacity, which can lead to erroneous SOC estimates at different operating 

temperatures.  Therefore, the test cells here are initially treated with a capacity 
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measurement cycle (see Chapter 2, section 2.3.2.1), replacing 𝑄nom  in the SOC 

equation given by Error! Reference source not found. with the cells’ actual 

capacities at the test temperatures. 

In order to verify the EKF-identified equivalent cell resistances, each cell is 

characterised using the EIS method (see Chapter 2, section 2.3.2.2) and the results 

are compared. Thereafter, the two LFP and NMC reference cells are applied with an 

OCV extraction test (see Chapter 2, section 2.3.2.3), in order to establish a 

polynomial function to describe their OCV-SOC relationships. The derived functions 

are then included in the output equations of those models whose OCVs are 

expressed as a function of SOC.  

The dependency of available cell power with respect to ambient temperature and 

SOC is experimentally demonstrated here by using the HPPC procedure as 

prescribed in Chapter 2, section 2.3.2.4. Finally, the results from the self-designed 

pulsed-current test and a multi-cycle NEDC are used to verify the dynamic 

performance of the ten model structures under study, with respect to voltage, SOC 

and SOP accuracy.  

The self-designed test (see Fig. 4.9) is performed over the full SOC range of 100% to 

0%. The multi-cycle NEDC profile (see Fig. 4.10) is carried out over the SOC range of 

90% to 10% and consists of 14 consecutive NEDC repetitions, separated by 15-

minute rest periods. Note that prior to any of the aforementioned tests, a discharge-

charge cycle is performed to ensure the cells are at an initial SOC of 100%. For the 

NEDC test, the SOC range of 90% to 10% is chosen in order to avoid the highly 

nonlinear regions of cell operation, above and below these limits respectively. 

Subsequently, a 0.5C current rate is used to discharge the cell under test from 100% 

to 90% SOC, followed by a one-hour rest period.  

4.6.2 Measured Cell Capacities 

The measured capacities for all six test cells at 0.5C current rate, over the 

temperature range of 5°C to 45°C, are presented in Fig. 4.11. As for any battery 

chemistry, cold temperatures can have a drastic effect on LFP and NMC cells. At low 



 

137 

temperatures, lithium-ion cells experience an increase in their internal resistances, 

due to the strong dependency of the kinetic and ionic transport properties on close-

to-zero and sub-zero temperatures [257]. As a result, a significant capacity loss is 

observed at 5°C for both LFP and NMC cells. Conversely, at high temperatures, the 

rate of the electrochemical reactions that occur inside the cells are increased, 

resulting in a higher quantity of releasable energy; thus, improving the cell capacity. 

However, continuous operation at elevated temperatures will cause an accelerated 

deterioration of the cell’s SOH. 
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Fig. 4.9 Voltage and current waveforms for (a) one LFP cell and (b) one NMC cell 

under the self-designed pulsed-current test at 25°C 

(a) 

(b) 
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Fig. 4.10 Voltage and current waveforms for (a) one LFP cell and (b) one NMC cell 

under the multi-cycle NEDC test at 25°C 

(a) 

(b) 
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Fig. 4.11 Experimentally determined capacities for (a) LFP and (b) NMC test cells, 

measured at 0.5C current rate (discharge) 

4.6.3 Voltage Estimation 

A statistical analysis of the test results was performed. Fig. 4.12 presents the average 

root-mean-squared-error (RMSE) voltage for each set of LFP and NMC cells for the 

self-designed pulse test results. In order to mitigate the SOC dependency of the OCV 

functions, the true SOC values obtained using the coulomb-counting technique were 

used to compute the RMSE values for each model structure. It is evident that the Rint 

model has the largest error for both lithium-ion cell chemistries. This is due to the 

absence of any transient states as to capture the underlying dynamics of the 

electrochemical and thermodynamic processes.  

(a) 

(b) 
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Fig. 4.12 Average modelling error on models of Table 4.1 for the self-designed test 

for (a) LFP and (b) NMC set of cells over the temperature range of 5 to 45°C  

The hysteresis models perform consistently better compared to the simple Rint 

model. This improvement is attributed to the fact that there exists a hysteresis level 

for both LFP and NMC cell chemistries, which needs considering for more accurate 

cell modelling. Although similar results are achieved by the two hysteresis models 

(structures 3 and 4), the model structure proposed by Huria et al. [220] is 

comparatively more favourable in real-time applications, as it only has one 

identifiable parameter to be estimated online. This further reduces the 

(a) 

(b) 
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computational burden on the BMS. The Randles and the modified Randles models 

both have two capacitors to include the OCV and the transients associated with the 

diffusion effects respectively. However, a large error is induced due to the 

instabilities in the battery model states.  

Compared to other structures, the one- and two-RC models both demonstrate 

excellent modelling capabilities. These two models have a separate empirical 

function as to describe the cell’s OCV as a function of SOC. It is observable that by 

including the OCV hysteresis as one of the EKF states, an even better modelling 

result in terms of RMSE is achievable. 

In order to study the SOC estimation and tracking capability of each model structure, 

the results for the multi-cycle NEDC test over the SOC range of 10-90% were used. 

The dual-EKF algorithm was initialised with the best-guess values for the model 

parameters and the SOC state was set to its true value. Fig. 4.13 presents the 

estimated cell voltage for one NEDC cycle at SOC = 64% for one of the LFP test cells. 

The results obtained for the NMC cells pose a similar behaviour. It can be noted that 

the two-RC model structure with hysteresis included has the closest fit to the true 

cell voltage.   

4.6.4 SOC Estimation 

Fig. 4.14 illustrates the resulting model-based SOC estimation errors obtained for 

the multi-cycle NEDC current profile, over the temperature range of 5°C to 45°C. The 

average SOC errors for the three LFP set of cells are shown in Fig. 4.14(a) and those 

for the NMC set of cells are shown in Fig. 4.14(b). The EKF SOC state for all models 

was correctly initialised to 90% and the filter and hysteresis states were set to zero. 

It can be noted that at low operating temperatures, the induced SOC error is the 

largest. This is due to the fact that at low temperatures, the inherent electrochemical 

reactions are significantly slower. Thus, it becomes more difficult to model the 

underlying cell dynamics, leading to a larger modelling and SOC error.  
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Fig. 4.13 Estimated voltage from one NEDC drive cycle for (a) Rint model, (b) one-

state Hysteresis model, (c) modified Randles model, and (d) two-RC model with 

hysteresis for one LFP cell at 25°C 

The average SOC errors in Fig. 4.14 show that, the one- and two-RC model structures 

pose a considerably better performance for SOC estimation in real time for both test 

cell chemistries. This can be attributed to the enhanced characterisation of the 

charge-transfer and diffusion effects by the model states. Moreover, by including the 

hysteresis effects in the RC-network model structures, a further improvement in the 

SOC estimate can be achieved.  

Thus far, the SOC estimation results presented have been obtained using correct 

initialisation for the EKF’s SOC state. In practice, the EKF would be initialised with a 

best-guess value for SOC, which is usually realised based on OCV measurements 

prior to a load connection and/or using the cell’s most recent history of usage. Either 

way, it is important to understand the SOC filter’s behaviour with respect to 

erroneous initial conditions.  

(a) 

(c) 

(b) 

(d) 
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Fig. 4.14 Average SOC estimation error on models of Table 4.1 for the multi-cycle 

NEDC profile for (a) LFP and (b) NMC cells over the temperature range of 5 to 45°C 

Using the measurements recorded for the pulsed-current test profile at 25 °C, SOC 

was estimated for all the LFP and NMC test cells under three different EKF 

initialisation scenarios. Firstly, the SOC state was correctly initialised to 100%. The 

results are presented in Table 4.3. As can be seen, all of the model structures are 

able to achieve a SOC estimate that is within the standard ±5% error bounds, given 

a correct initialisation of the SOC state is provided. Secondly, the SOC state was 

intentionally initialised to 80% instead of 100% to verify the filter’s convergence. 

(a) 

(b) 
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The results are presented in Table 4.4. It is evident that compared to other model 

structures, both RC models with and without the hysteresis included achieved 

outstanding SOC estimation errors. Finally, the SOC state was incorrectly set to 60% 

instead of 100%. Similar results are obtainable as presented in Table 4.5. It should 

be noted that the SOC error statistics for the three SOC initialisation cases given here 

were computed by excluding the first hour of the SOC data. This allowed for a 

reasonable convergence towards the actual SOC to be established for all of the model 

structures, before the RMSE for each SOC case was calculated.  

As presented in Table 4.4 and Table 4.5, the best SOC estimation results with 

incorrectly initialised filter states are realised with the hysteresis model ‘3’ and the 

one- and two-RC models ‘7’ and ‘8’ respectively. It is apparent that including the 

transient effects in a cell model not only improves the characterisation of a cell 

under load conditions in real time (see Fig. 4.12), but also results in a more robust 

SOC estimator. Furthermore, to reduce the uncertainties in the SOC estimate, the 

hysteresis functions can possibly be merged with the RC models resulting in a better 

SOC convergence. 

Table 4.3 SOC estimation results for the self-designed pulsed-current test profile 

at 25°C with correct initialisation of 100% 

Model 

LFP NMC 

Average 
Error 
(%) 

Maximum 
Error (%) 

Standard 
deviation 
of error 

Average 
Error 
(%) 

Maximum 
Error (%) 

Standard 
Deviation 
of Error 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

3.93 

2.13 

3.17 

2.73 

3.88 

3.03 

2.66 

2.65 

1.39 

1.44 

5.27 

9.63 

14.35 

8.93 

5.86 

6.02 

10.74 

10.64 

8.58 

6.78 

1.53e-4 

1.94e-3 

1.10e-3 

3.22e-3 

2.61e-3 

7.21e-4 

1.05e-3 

1.06e-3 

6.56e-4 

1.35e-3 

5.24 

3.09 

2.80 

4.95 

6.47 

2.20 

2.15 

2.15 

2.89 

2.15 

6.80 

11.11 

9.78 

14.76 

16.32 

5.21 

7.98 

7.78 

9.69 

7.96 

1.46e-3 

6.08e-3 

7.77e-3 

1.46e-2 

3.78e-3 

8.43e-3 

5.95e-3 

5.99e-3 

6.55e-3 

5.99e-3 
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Table 4.4 SOC estimation results for the self-designed pulsed-current test profile 

at 25°C with incorrect initialisation of 80%, when actual SOC = 100% 

Model 

LFP NMC 

Average 
Error 
(%) 

Maximum 
Error (%) 

Standard 
deviation 
of error 

Average 
Error 
(%) 

Maximum 
Error (%) 

Standard 
Deviation 
of Error 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

13.19 

6.33 

3.40 

6.96 

3.62 

5.07 

3.03 

3.02 

2.28 

2.01 

14.82 

11.39 

14.65 

13.67 

6.47 

9.46 

11.18 

11.06 

11.03 

8.37 

5.6e-4 

6.5e-3 

1.6e-3 

1.1e-2 

3.5e-3 

2.9e-4 

8.5e-4 

9.0e-4 

6.8e-4 

1.4e-3 

5.23 

3.09 

2.80 

4.95 

6.47 

2.20 

2.15 

2.14 

2.89 

2.15 

7.17 

10.91 

9.79 

16.16 

15.72 

6.79 

8.03 

8.01 

9.69 

8.01 

2.06e-3 

4.2e-3 

6.2e-3 

1.0e-2 

3.41e-3 

2.70e-3 

5.16e-3 

5.16e-3 

7.05e-3 

5.11e-3 

 

Table 4.5 SOC estimation results for the self-designed pulsed-current test profile 

at 25°C with incorrect initialisation of 60%, when actual SOC = 100% 

Model 

LFP NMC 

Average 
Error 
(%) 

Maximum 
Error (%) 

Standard 
deviation 
of error 

Average 
Error 
(%) 

Maximum 
Error (%) 

Standard 
Deviation 
of Error 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

13.45 

19.58 

3.72 

16.20 

8.61 

11.42 

3.12 

3.12 

2.47 

2.34 

14.82 

35.74 

14.70 

31.63 

16.98 

21.17 

11.25 

11.12 

11.17 

8.80 

4.57e-3 

6.24e-4 

2.35e-3 

2.86e-3 

2.87e-3 

4.93e-4 

8.50e-4 

8.50e-4 

3.21e-4 

5.69e-4 

10.00 

3.54 

3.27 

6.56 

6.60 

2.55 

2.33 

2.32 

2.78 

2.34 

10.78 

10.94 

9.80 

16.52 

15.98 

5.97 

8.07 

8.05 

9.69 

8.06 

1.05e-3 

2.97e-3 

5.28e-3 

1.03e-2 

3.15e-3 

1.95e-3 

4.55e-3 

4.50e-3 

7.35e-3 

4.40e-3 
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4.6.5 SOP Characterisation 

Using the HPPC and the DC resistance identification method described in Chapter 2, 

section 2.2.4.1, the cells’ internal resistances and their available discharge powers 

(i.e. SOP), over the SOC range of 90% to 10%, are obtained. The averaged resistance 

and SOP results for the two sets of LFP and NMC cells are presented in Fig. 4.15 and 

Fig. 4.16, respectively.  

 

Fig. 4.15 Comparison of average internal resistances for (a) LFP and (b) NMC test 

cells, obtained using the HPPC method  

(a) 

(b) 
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Fig. 4.16 Comparison of calculated discharge power using the HPPC method for (a) 

LFP and (b) NMC cells 

Whereas Fig. 4.15(a) and Fig. 4.15(b) demonstrate the variation of the discharge cell 

resistance, Fig. 4.16(a) and Fig. 4.16(b) display how the cells’ SOP values for a fixed 

current-pulse duration (in this case 18 seconds) may vary with respect to SOC and 

temperature for the LFP and NMC cells respectively. It can be noted that at high 

temperature and SOC values, the cell resistance is smallest for both chemistries, 

resulting in a larger quantity of power being available for discharge. Moreover, at 

(a) 

(b) 
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high SOC values, the corresponding OCV is also larger, which further improves the 

cell’s capability to source power, without violating the safe operating voltage 

thresholds.  

As defined by (4.14) and (4.15), the quality of the estimated instantaneous discharge 

or charge power largely depends on the accuracy of the identified cell resistance 

under various operating scenarios. Using the EKF-identified model parameters 

obtained for each test cell under a single HPPC repetition at 25 °C and SOC = 90%, 

the Thevenin equivalent circuit resistance, 𝑅eq , for every model structure is 

calculated. The obtained model-based cell resistances for each set of chemistries are 

then averaged and compared to the average of the resistances calculated by 

equation (2.18) for the same HPPC profile. The results are presented in Table 4.6. It 

is evident that the two-RC model and the one-RC with adaptive hysteresis model 

provide the best estimates for the cell’s equivalent resistance, which can be used to 

improve the quality of the model-based SOP estimate. Additionally, the EKF 

identified 𝑅eq parameter for SOP predictions is shown to have a very low mean error 

for all model structures.  

In order to further demonstrate the reliability of the dual-EKF algorithm for battery 

model identification, the EIS method is implemented as described in Chapter 2, 

section 2.3.2.2 in order to identify the 2-RC model parameters for one NMC test cell 

as a function of SOC. The results are compared against those attained using the dual-

EKF algorithm at 20% and 80% SOC levels and are presented in Table 4.7 and Table 

4.8 respectively. It is apparent that despite the lack of persistent excitation of the 

NEDC current profile, the EKF algorithm is capable of tracking the SOC-dependent 

variations in the battery model parameters. This is true, if and only if a sufficiently 

accurate a priori knowledge of the model parameters is available at the initialisation 

step. Otherwise, the input signal is required to completely satisfy the persistent 

excitation criterion [258].   

Note that for a reliable SOP assessment, an accurate SOC estimate is also required, 

which in turn reflects on the accuracy of the cell’s predicted OCV in (4.14) and (4.15). 

Thus, the two-RC model structure can be nominated as an optimum choice, with only 
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two estimable states and five identifiable parameters, for an accurate cell dynamic 

modelling and joint SOC and SOP estimation. Alternatively, for cell chemistries with 

large inherent hysteresis levels, the one-RC with hysteresis model is preferred.    

Table 4.6 Comparison of EKF-identified 𝑅eq with those calculated for the LFP and 

NMC cells for a single HPPC repetition at 25°C and SOC = 100% 

Model 

LFP NMC 

EKF 
Identified 
𝑹𝐞𝐪 (mΩ) 

Mean Error 
(mΩ) 

EKF 
Identified 
𝑹𝐞𝐪 (mΩ) 

Mean Error 
(mΩ) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

35.5 

38.4 

45.6 

38.4 

37.9 

36.4 

48.2 

47.0 

46.0 

47.3 

8.1 

5.2 

2.0 

5.2 

5.7 

7.2 

4.6 

3.4 

2.4 

3.7 

26.5 

28.3 

46.4 

28.3 

29.4 

27.8 

29.5 

30.2 

32.7 

36.6 

7.8 

6.0 

12.1 

6.0 

4.9 

6.5 

4.8 

4.1 

1.6 

2.3 

 

Table 4.7 Comparison of identified parameters for two-RC model structure using 

the accurate EIS method against the dual-EKF method for LFP cell at SOC = 20% 

Parameter 
EIS 

Identified 
EKF 

Identified 
Absolute 

Error 

𝑹𝐬 (𝐦𝛀) 

𝑹𝟏 (𝐦𝛀) 

𝑪𝟏 (𝐅) 

𝑹𝟐 (𝐦𝛀) 

𝑪𝟐 (𝐅) 

25.47 

13.30 

1424 

13.83 

6.2 

25.55 

10.35 

1561 

12.41 

6.8 

0.08 

2.95 

137 

1.42 

0.60 
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Table 4.8 Comparison of identified parameters for two-RC model structure using 

the precise EIS method against the dual-EKF method for LFP cell at SOC = 80% 

Parameter 
EIS 

Identified 
EKF 

Identified 
Absolute 

Error 

𝑹𝐬 (𝐦𝛀) 

𝑹𝟏 (𝐦𝛀) 

𝑪𝟏 (𝐅) 

𝑹𝟐 (𝐦𝛀) 

𝑪𝟐 (𝐅) 

24.02 

13.63 

1355 

9.39 

5.9 

24.09 

13.92 

1293 

9.64 

5.8 

0.07 

0.29 

62 

0.25 

0.10 

 

4.7 Chapter Conclusions 

This Chapter has systematically reviewed the most common lumped-parameter 

equivalent circuit models used in lithium-ion battery energy storage applications 

based on their number of appearances in literature. The merits for comparison were 

modelling accuracy in terms of average root-mean-squared-error for two sets of 

lithium-ion cells of different electrode chemistries, namely the LFP and NMC. The 

generality of each model structure was examined over a temperature range of 5°C 

to 45°C. The battery models’ parameters and states were recursively estimated 

using a nonlinear system identification technique based on the dual-EKF algorithm. 

Furthermore, the dynamic performance of each model structure for joint estimation 

of SOC and SOP were discussed. The results suggested that the two-RC model 

structure, with two estimable states and five identifiable parameters, is an optimum 

choice for implementation of most battery energy and power management 

strategies. Alternatively, for cell chemistries with large inherent hysteresis levels, 

the one-RC model with hysteresis included is preferred without an increase in 

complexity.  
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5  

 
 

Sensitivity of Equivalent-Circuit RC Model to 
Battery Parameterisation Error 

 

In Chapter 4, it was determined that an RC network model structure provides the 

highest level of accuracy when compared to other electrical equivalent-circuit battery 

models. It was also discussed that the identified battery parameters are prone to 

changes due to different operating conditions such as temperature, C-rate, SOC and 

SOH. Hence, when estimating various battery states based on an equivalent-circuit 

model, it is of utmost importance to update the model parameters in real time. 

Otherwise, misleading information regarding the battery’s performance might be 

produced by the BMS algorithm. Consequently, in this Chapter, a frequency-domain 

analysis on the EIS-obtained impedance data for the NMC and LFP cell chemistries is 

performed, in order to establish the minimum order-number required to accurately 

model the underlying cell dynamics. Thereafter, a sensitivity analysis is carried out on 

the chosen RC model order with respect to the constituent model parameters. This 

allows for a better understanding of the impact that erroneous or static model 

parameters can have on the quality of the model-based battery states estimates such 

as SOC, SOP and SOH.  

  

Chapter 
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5.1 Introduction 

In Chapter 4, it was observed that, modern BMS algorithms employ accurate battery 

models to estimate various battery states, such as SOC, SOH and SOP in real time. It 

also was deduced that, for LFP and NMC cell chemistries, the RC-network electrical 

equivalent-circuit model, as depicted in Fig. 4.5, can achieve high accuracy 

depending on the chosen model order. Generally, as the order of the employed 

model structure increases, so does the number of identifiable parameters; thus, 

more computational power and memory is required to implement the BMS 

algorithm online. Therefore, there is a trade-off between required modelling 

accuracy and the number of incorporated RC branches, which will be explored for 

the LFP and NMC cells. 

In contrast to electrochemical and empirically-associated battery models, the 

parameters in an RC-network model usually have a physical interpretation to them, 

which can be particularly useful in SOP and SOH estimation. However, as for any 

other battery model structure, the parameters of an RC model are prone to 

variations that are caused by the conditions under which the battery is operating. 

These conditions include the battery’s SOC, temperature and age [61]. Failing to 

account for these induced parameter deviations can result in erroneous battery 

state estimates, which is a common problem in those BMS algorithms that use static 

battery parameters. Thus, it is imperative to gain an understanding of the battery’s 

sensitivity to these external stress factors.   

In this Chapter, upon the identification of a suitable order number for the RC 

network model structure given in Fig. 4.5, its response sensitivity with respect to 

the constituent model parameters is both theoretically and experimentally 

analysed. The initial model parameters in this sensitivity study are accurately 

identified using the offline EIS technique and a nonlinear least-squares method. 

Then, each parameter is manually varied in steps of ±10% of its obtained best-fit 

value, up to a maximum of ±50% deviation, and the corresponding model response 

is simulated for analysis purposes. 
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5.2 RC-Network Equivalent-Circuit Battery Model 

As explored in Chapter 4, depending on the desired accuracy and the dynamics of 

the intended application, different battery models have been developed by 

researchers. Amongst them, the RC-network electrical equivalent-circuit model is 

found to be the most effective in describing the underlying dynamics of LFP and 

NMC lithium-ion cells.  

In most battery management problems, including in EV/HEVs, often one or two RC 

branches are used to describe the battery’s dynamic response in real time. However, 

the model order-number in the reported works is chosen arbitrarily. Therefore, 

prior to conducting a sensitivity analysis on the RC battery model, this section puts 

its focus on the identification of a minimum order-number for the 𝑛 -RC model 

structure given in Fig. 4.5. 

5.2.1 EIS Analysis of LFP and NMC cells 

The impedance spectra and the resulting Bode plots obtained for two of the test cells 

at a temperature of 25°C and 80% SOC are respectively presented in Fig. 5.1(a) and 

Fig. 5.1 (b). As can be seen, the spectra for both test cells cross the real axis at point 

𝛼. This high-frequency impedance element relates to the cell’s series resistance and 

is usually obtained around 1 kHz.  

Between 𝛼 and 𝛽, the spectrum for the NMC cell shows a depressed semi-circle that 

is associated with the growth of SEI layer [61] as a function of SOH. However, for the 

LFP test cell, the effect of the SEI is so small that it is not visible in the obtained 

spectrum. Thus, only one depressed semi-circle is observable between 𝛼  and 𝛾 , 

which is due to the combination of the SEI film, and the charge-transfer resistance 

and double-layer effect of the electrodes.  
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Fig. 5.1 Exemplary Nyquist plots (a)–(b) and Bode plots (c)–(d) obtained at 25°C 

and 80% SOC for an NMC and LFP test cell, respectively 

Towards the low end of the spectrum (i.e. beyond point 𝛾), a diffusional impedance 

is observed [259]. Modelling this low-frequency impedance element can be 

accurately achieved by the use of non-ideal electrical components, such as the 

diffusion Warburg impedance element (𝑍W) or the constant-phase-element (CPE) 

[241]. These elements are defined as electrically imperfect resistors and capacitors, 

whose parameter identification in real time can lead to prohibitive requirements for 

memory and computational power. Furthermore, due the lack of physical meaning, 

these non-ideal elements are often precluded from online BMS applications. 

Therefore, equivalent-circuit RC models with ideal circuit elements are often 

adopted to represent the battery’s impedance response in online applications.  

(a) 

(c) 

(b) 

(d) 
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Fig. 5.2 Variation of impedance magnitudes with respect to cell ageing for (a) NMC 

and (b) LFP cells 

Fig. 5.2 demonstrates the effect of ageing on the magnitude of the measured 

impedance for the NMC and LFP cells at 25°C and 80% SOC. In both cases, an 

increasing trend between the cell’s age and the measured impedance can be 

observed. This effect is most profound towards the lower end of the frequency 

spectrum, where diffusional impedance occurs. This particular impedance element 

conveys vital information on the main charge storage capacity of the cell and can 

serve as a good indicator for SOH and SOP. 

Fig. 5.3(a)–(b) illustrate the variation in the measured impedance for the NMC3 and 

LFP3 test cells, as a function of SOC. It is evident that as the SOC level drops, the cell 

impedance grows. This is due to the build-up of a potential gradient between the 

two cell electrodes. As the cell is further discharged, it becomes increasingly more 

difficult for the positive active species to push against this potential gradient and 

migrate from one electrode to another. Similar to ageing, the effect of varying SOC 

on impedance is stronger at lower frequencies. 

(a) 

(b) 
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Fig. 5.3 Variation of cell impedance with respect to SOC for (a) NMC and (b) LFP 

cells obtained at 25°C 

As well as low SOC, cold temperatures can also have a drastic effect on NMC and LFP 

cell impedances. This is demonstrated in Fig. 5.4. This effect occurs because at low 

temperatures, the boundary region between the cell electrodes and the electrolyte 

solidifies, exacerbating the cell’s charge- and power-transfer capabilities. On the 

other hand, as the operating temperature increases, the cell impedance drops, 

resulting in a boost in the cell’s power capabilities. However, operating lithium-ion 

cells at high temperatures can speed up the formation of the SEI layer and thus 

deteriorate the cells’ lifetime faster. Nonetheless, to realise a more accurate model-

based battery states monitoring system, it is vital to adapt to these SOC- and 

temperature-induced nonlinearities in the battery/cell impedance parameters.  

(a) 

(b) 
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Fig. 5.4 Variation of cell impedance with respect to ambient temperature for (a) 

NMC and (b) LFP cells obtained at 80% SOC 

5.2.2 Model Transfer Function 

At its simplest, EIS is a pure sine-swept method which involves the injection of a 

voltage or a current sinusoid into the system, whilst measuring the amplitude and 

the phase of the resulting current or voltage response. There are two types of 

systems that can be characterised using the EIS technique; one-port and two-port 

networks. As depicted in Fig. 5.5, in a one-port network, the voltage and current are 

measured at the same port, allowing for the self-impedance of the system to be 

calculated. Whereas, in a two-port system, the voltage and current measurements 

are taken from different ports. 

(a) 

(b) 
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Fig. 5.5 Difference between a one- and two-port system for a sine-swept 

impedance characterisation using the EIS technique  

In this case, the battery is a one-port system where using the potentiostatic EIS 

method (refer to Chapter 2, section 2.2.4.2 for more details on EIS), a voltage 

sinusoid is applied at the battery terminals and the sine-wave response current is 

measured at the same terminals. Thus, using equation (2.19), the battery’s self-

impedance can be expressed in the frequency domain as 

 
𝑍bat(𝜔) =

𝑉

𝐼(𝜔)
= |𝑍bat(𝜔)|∠𝜙bat(𝜔) (5.1) 

where 𝑉 is the sinusoid voltage injected into the battery during EIS testing; 𝐼(𝜔) is 

the measured response current at angular frequency 𝜔; 𝜙bat(𝜔) is the phase angle 

between the input voltage and the response current; and 𝑍bat(𝜔) is the battery’s 

complex impedance.  

A continuous transfer-function representation of the 𝑛-RC battery model is required 

to be able to curve-fit the RC models of different order to the EIS-attained battery 

impedance data, and to perform a sensitivity analysis on the chosen model order. To 

this end, the battery model’s output equation in the time domain is first derived by 

applying the Kirchhoff’s voltage law to the circuit diagram in Fig. 4.5.  

 𝑉o(𝑡) = 𝑉OC(SOC) − [𝑉RC1(𝑡) + ⋯+ 𝑉RC𝑛(𝑡)] − 𝐼i(𝑡) ∙ 𝑅s (5.2) 

where 𝑉o(𝑡) is the time-domain output voltage, 𝐼i(𝑡) is the input current, 𝐼i(𝑡) ∙ 𝑅s is 

the series voltage drop, and 𝑉RC𝑛(𝑡) is the transient voltage drop across the 𝑛-th RC 

branch. Then, using Kirchhoff’s current law, an equation for 𝑉RC𝑛(𝑡) is derived. 

One-port 
System~ V 

I

Two-port 
System~ V 

I
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𝐼i(𝑡) = 𝑖R𝑛(𝑡) + 𝑖RC𝑛(𝑡) =

𝑉RC𝑛(𝑡)

𝑅𝑛
+ 𝐶𝑛

𝑑𝑉RC𝑛
𝑑𝑡

 

∴ 𝑉RC𝑛(𝑡) = 𝐼i(𝑡) ∙ 𝑅𝑛 − 𝑅𝑛𝐶𝑛
𝑑𝑉RC𝑛
𝑑𝑡

. 

(5.3) 

Replacing 𝑉RC1→𝑛  in (5.2) with (5.3) and taking the Laplace transform of the 

resulting differential equation yields 

 𝑉o(𝑠) = ℒ[𝑉o(𝑡)] = 𝑉OC(SOC) − ℒ[𝑉RC1 +⋯+ 𝑉RC𝑛 + 𝐼i(𝑡) ∙ 𝑅s] 

= 𝑉OC(SOC) − ℒ[𝑉RC1] − ⋯− ℒ[𝑉RC𝑛] − ℒ[𝐼i(𝑡) ∙ 𝑅s]. 

(5.4) 

where 𝑉OC(SOC)  is a SOC-dependent DC bias due to the battery’s OCV and it is 

assumed to be in a steady-state condition. Given the time-domain definition of 

𝑉RC𝑛(𝑡)  in (5.3), and using the linearity, superposition and the differentiation 

properties of the Laplace transform, the battery model’s output equation in the 𝑠-

domain is obtained and expressed as,  

 𝑉o(𝑠) = 𝑉OC(SOC)

− 𝐼i(𝑠) [𝑅s + (
𝑅1

𝑅1 ∙ 𝑠𝐶1 + 1
) +⋯+ (

𝑅𝑛
𝑅𝑛 ∙ 𝑠𝐶𝑛 + 1

)]. 
(5.5) 

Subsequently, by rearranging (5.5), the self-impedance or transfer function of the 𝑛-

RC battery model can be obtained. 

 
𝑍mdl(𝑠) =

𝑉OC(SOC) − 𝑉o(𝑠)

𝐼i(𝑠)

= 𝑅s + (
𝑅1

𝑅1 ∙ 𝑠𝐶1 + 1
) +⋯+ (

𝑅𝑛
𝑅𝑛 ∙ 𝑠𝐶𝑛 + 1

) 

(5.6) 

Finally, direct mapping of 𝑠 → j𝜔  allows for the magnitude and the phase of the 

battery model’s frequency response to be calculated using equation (5.7). 
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 𝑍mdl(𝑠) = 𝑍mdl(j𝜔) = |𝑍mdl(𝜔)|∠𝜙mdl(𝜔) (5.7) 

where |𝑍mdl(𝜔)| is the magnitude and 𝜙mdl(𝜔) is the resulting phase angle of the 

model’s frequency response as a function of angular frequency. 

5.2.3 Minimum RC Model Order Selection 

Most BMS algorithms are designed to run at frequencies below 10 Hz. This is due to 

the imposed hardware limitations such as cost, memory and processing power of 

the incorporated 𝜇P  unit. As a result, it is not possible to properly reveal the 

battery’s dynamics at higher frequencies using embedded system identification 

techniques. This is particularly pertinent as those impedance elements occurring at 

the lower end of the spectrum (i.e. beyond 𝛾  in Fig. 5.1) contain more useful 

information on the battery’s current conditions with respect to SOH, SOC and 

temperature. 

Therefore, in this thesis, the cell dynamics are modelled over a reduced frequency 

band of 5 mHz to 5 Hz. In order to properly capture the cell’s diffusional impedance 

elements within the defined frequency band, an optimum order (in terms of 

accuracy and complexity) must be chosen for the equivalent-circuit RC model. An 

analysis is therefore carried out to investigate the performance of several RC model 

structures of up to fifth order (i.e. 𝑛 = 1, 2, 3, 5). 

Using the EIS-obtained complex impedance, the RC model parameters (i.e. 𝑅s, 𝑅1, 𝐶1, 

etc.) are identified using the (offline nonlinear least-squares method) Levenberg-

Marquardt algorithm [260]. Subsequently, the model parameters are identified via 

the minimisation of an error term, defined as 

 

|𝜖|2 = (ln|𝑍bat(𝜔)| − ln|𝑍mdl(𝜔)|)

2

+ (𝜙bat(𝜔)−𝜙mdl(𝜔))

2

 (5.8) 
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where |𝜖|2 is the square error between the logarithmic moduli and the phases of the 

transfer function defined by (5.6) and those obtained through EIS testing. 

Upon the completion of parameter identification for the NMC and LFP test cells, the 

response of the RC model structures under study were simulated.  Fig. 5.6 compares 

the actual EIS complex data obtained at 25°C and 80% SOC over the desired 

frequency bandwidth of 5 mHz to 5 Hz to that presented by the RC model structures 

of up to fifth order. In both cases, the 1-RC model yields the poorest performance 

due to the lack of modelling capabilities to fully capture the non-ideal impedance 

elements at low frequencies. Note that as the RC model order increases, so does the 

goodness of the fitted impedance spectrum. However, a trade-off must be made 

between accuracy and complexity. 

The model complexity is assessed based on the number of identifiable model 

parameters and the amount of time taken to estimate them. In order to achieve a fair 

assessment, the maximum number of iterations allowed for the optimisation 

algorithm is set at 600 per model parameter. Furthermore, the bounds on the same 

parameters for different model orders are all set to ℝ>0 = {𝑥 ∈ ℝ | 𝑥 > 0} . The 

analysis is performed on datasets generated using all the six lithium-ion cells given.  

Finally, the model accuracy is measured by the average of the RMSE values obtained 

between the magnitude of the EIS datasets at several SOC and temperature settings 

and the output from the RC models under study. This is defined as, 

 

RMSE = √
1

𝜔1 − 𝜔0 
∫ (|𝑍bat(𝜔)| − |𝑍mdl(𝜔)|)

2
𝜔1

𝜔0

∙ 𝑑𝜔 (5.9) 

where 𝜔1 = 2𝜋 × 5 rads
−1  and 𝜔0 = 2𝜋 × 0.005 rads−1  are, respectively, the 

maximum and minimum angular frequencies measured by the ESI system (refer to 

setup shown in Fig. 2.19). The impedance magnitudes, both measured and 

simulated, are presented in a logarithmic scale.  
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Fig. 5.6 Comparison of EIS data obtained for (a) NMC and (b) LFP test cells and 

fitted RC models of up to fifth order at 25°C and 80% SOC over the frequency range 

of 5 mHz to 5 Hz 

 

(a) 

(b) 
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A relationship between RC model order, accuracy and complexity is established and 

the results are presented in Fig. 5.7. It is evident that the average RMSE for both NMC 

and LFP cell variations decreases exponentially with the increasing model order 

number. However, with increased order-number, the model complexity increases 

and the duration of the identification process becomes disadvantageous.  

 

Fig. 5.7 Comparison of model accuracy and elapsed time for parameters 

identification of RC models for (a) NMC and (b) LFP test cells 

Therefore, considering the trade-off crossover point between the two curves of 

model complexity (i.e. average identification time) and accuracy (i.e. average RMSE) 

in Fig. 5.7, it is determined that a minimum order number of 𝑛 = 2 is required to 

properly capture the low-frequency dynamics of an NMC or LFP lithium-ion cell. It 

should be noted that the optimum model order number indicated by crossover point 

is not realisable per se. Thus, a 2-RC battery model structure is chosen in this thesis 

(a) 

(b) 
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for battery modelling and identification purposes. In this case, 𝑅1 and 𝐶1 are used to 

approximate the battery’s diffusional impedance and 𝑅2  and 𝐶2  are used to 

represent the short time-constant transients associated with the charge-transfer 

resistance and the double-layer capacitance, respectively. 

5.3 Mathematical Analysis 

Partial derivatives can be used to conduct sensitivity analyses in a computationally 

efficient way [261]. Using this approach for the 2-RC battery model in hand, a 

dimensionless sensitivity coefficient 𝑆𝜌(𝑠) can be mathematically defined for every 

model parameter by calculating the partial derivative of the transfer function (5.6) 

with respect to a parameter 𝜌. 

 
𝑆𝜌(𝑠) = lim

Δ𝜌→0
(
Δ𝑍mdl(𝑠) 𝑍mdl(𝑠)⁄

Δ𝜌 𝜌⁄
) =

𝜕𝑍mdl(𝑠)

𝜕𝜌
∙ (

𝜌

𝑍mdl(𝑠)
) (5.10) 

where Δ𝑍mdl(𝑠) is a change in model output caused by a change Δ𝜌 in the parameter 

𝜌. The factor 𝜌 𝑍mdl(𝑠)⁄  is used to normalise 𝑆𝜌(𝑠) by removing the effect of units. 

Subsequently, the coefficients for each model parameter can be achieved as follows. 

For 𝑅s: 

 
𝑆𝑅s(𝑠) =

𝑅s
𝑍mdl(𝑠)

∙
𝜕𝑍mdl(𝑠)

𝜕𝑅s
 (5.11) 

 𝜕𝑍mdl(𝑠)

𝜕𝑅s
= 1 (5.12) 

𝑅s
𝑍mdl(𝑠)

=
(𝐶1𝐶2𝑅1𝑅2𝑅s)𝑠

2 + (𝐶1𝑅1𝑅s + 𝐶2𝑅2𝑅s)𝑠 + 𝑅s
(𝐶1𝐶2𝑅1𝑅2𝑅s)𝑠2 + (𝐶1𝑅1𝑅2 + 𝐶2𝑅1𝑅2 + 𝐶1𝑅1𝑅s + 𝐶2𝑅2𝑅s)𝑠 + 𝑅1 + 𝑅2 + 𝑅𝑠

. 

(5.13) 
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For 𝑅1: 

 
𝑆𝑅1(𝑠) =

𝑅1
𝑍mdl(𝑠)

∙
𝜕𝑍mdl(𝑠)

𝜕𝑅1
 (5.14) 

 𝜕𝑍mdl(𝑠)

𝜕𝑅1
=

1

(𝐶1
2𝑅1

2)𝑠2 + (2𝑅1𝐶1)𝑠 + 1
 (5.15) 

𝑅1
𝑍mdl(𝑠)

=
(𝐶1𝐶2𝑅1

2𝑅2)𝑠
2 + (𝐶1𝑅1

2 + 𝐶2𝑅2𝑅1)𝑠 + 𝑅1
(𝐶1𝐶2𝑅1𝑅2𝑅s)𝑠

2 + (𝐶1𝑅1𝑅2 + 𝐶2𝑅1𝑅2 + 𝐶1𝑅1𝑅s + 𝐶2𝑅2𝑅s)𝑠 + 𝑅1 + 𝑅2 + 𝑅s
. 

(5.16) 

For 𝐶1: 

 
𝑆𝐶1(𝑠) =

𝐶1
𝑍mdl(𝑠)

∙
𝜕𝑍mdl(𝑠)

𝜕𝐶1
 (5.17) 

 𝜕𝑍mdl(𝑠)

𝜕𝐶1
= −

𝑅1
2𝑠

(𝑅1𝐶1𝑠 + 1)2
 (5.18) 

𝐶1
𝑍mdl(𝑠)

=
(𝐶1

2𝐶2𝑅1𝑅2)𝑠
2 + (𝑅1𝐶1

2 + 𝐶2𝑅2𝐶1)𝑠 + 𝐶1
(𝐶1𝐶2𝑅1𝑅2𝑅s)𝑠2 + (𝐶1𝑅1𝑅2 + 𝐶2𝑅1𝑅2 + 𝐶1𝑅1𝑅s + 𝐶2𝑅2𝑅s)𝑠 + 𝑅1 + 𝑅2 + 𝑅s

. 

(5.19) 

For 𝑅2: 

 
𝑆𝑅2(𝑠) =

𝑅2
𝑍mdl(𝑠)

∙
𝜕𝑍mdl(𝑠)

𝜕𝑅2
 (5.20) 
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 𝜕𝑍mdl(𝑠)

𝜕𝑅2
=

1

(𝐶2𝑅2𝑠 + 1)
−

𝐶2𝑅2𝑠

(𝐶2𝑅2𝑠 + 1)2
 (5.21) 

𝑅2
𝑍mdl(𝑠)

=
(𝐶1𝐶2𝑅1𝑅2

2)𝑠2 + (𝐶2𝑅2
2 + 𝐶1𝑅1𝑅2)𝑠 + 𝑅2

(𝐶1𝐶2𝑅1𝑅2𝑅s)𝑠2 + (𝐶1𝑅1𝑅2 + 𝐶2𝑅1𝑅2 + 𝐶1𝑅1𝑅s + 𝐶2𝑅2𝑅s)𝑠 + 𝑅1 + 𝑅2 + 𝑅s
. 

(5.22) 

For 𝐶2: 

 
𝑆𝐶2(𝑠) =

𝐶2
𝑍mdl(𝑠)

∙
𝜕𝑍mdl(𝑠)

𝜕𝐶2
 (5.23) 

 𝜕𝑍mdl(𝑠)

𝜕𝐶2
= −

𝑅2
2𝑠

(𝐶2𝑅2𝑠 + 1)2
 (5.24) 

𝐶2
𝑍mdl(𝑠)

=
(𝐶1𝐶2

2𝑅1𝑅2)𝑠
2 + (𝑅2𝐶2

2 + 𝐶1𝑅1𝐶2)𝑠 + 𝐶2
(𝐶1𝐶2𝑅1𝑅2𝑅s)𝑠

2 + (𝐶1𝑅1𝑅2 + 𝐶2𝑅1𝑅2 + 𝐶1𝑅1𝑅s + 𝐶2𝑅2𝑅s)𝑠 + 𝑅1 + 𝑅2 + 𝑅s
. 

(5.25) 

Note that the sensitivity coefficients given by equations (5.11), (5.14), (5.17), (5.20) 

and (5.23) are expressed as a function of complex frequency ‘𝑠’. Hence, to be able to 

compare the coefficients of different parameters over the entire frequency range of 

interest, the geometric mean of the magnitude of 𝑆𝜌(𝑠)  for each parameter is 

calculated using equation (5.26) [262], where |𝑆𝜌(𝜔𝑖)| ∈ [0,1] and 𝑛𝑠 is sample size.  

 

𝑆𝜌̅ = (∏|𝑆𝜌(𝜔𝑖)|

𝑛s

𝑖=1

)

1
𝑛s

= √|𝑆𝜌(𝜔1)| ∙ |𝑆𝜌(𝜔2)|⋯ |𝑆𝜌(𝜔𝑛s)|
𝑛s

. (5.26) 
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Consequently, the model parameters identified at 25°C and averaged over the entire 

SOC range of 0% to 100% as given per Table 5.1, are applied to equations (5.11)-

(5.25) in order to conduct a sensitivity analysis on the 2-RC battery model. The 

results for the NMC and LFP cells are presented in Fig. 5.8(a) and (b) respectively. 

Table 5.1 Average 2-RC model parameters for the entire SOC range obtained using 

the EIS method at 25°C 

Cell 𝑹̅𝐬 (𝐦𝛀) 𝑹̅𝟏 (𝐦𝛀) 𝑪̅𝟏 (𝐅) 𝑹̅𝟐 (𝐦𝛀) 𝑪̅𝟐 (𝐅) 

NMC 

LFP 

24.5 

32.8 

18.4 

8.55 

1700 

984 

11.4 

5.8 

8.094 

162 

 

Fig. 5.8 Theoretical sensitivity of the 2-RC battery model to its constituent 

parameters for (a) NMC and (b) LFP cells 

(a) 

(b) 
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As can be seen, the 2-RC model’s sensitivity with respect to 𝑅s is greatest for both 

NMC and LFP cells. This is in accordance with the outcome of equation (5.12), which 

implies that any deviations in the model response caused by variations in 𝑅s  is 

almost instantaneous, unlike any other RC parameter. For both cell chemistries, the 

effect of diffusional resistance 𝑅1 is mathematically found to be smallest. However, 

variations exist amongst the same RC parameters, when curve-fitted to different cell 

chemistry data.  

In the NMC case, the effect of short time-constant transients (i.e. 𝑅2  and 𝐶2 ) on 

model sensitivity is evidently larger when compared to that of the long time-

constant diffusional transients (i.e. 𝑅1  and 𝐶1 ). On the other hand, the model 

sensitivity calculated for the LFP cell with respect to 𝐶1  is found to be largest, in 

comparison to other RC parameters. This is due to the fact that for the LFP cell, as 

demonstrated in Fig. 5.1(d), there is a large phase-change at the lower end of 

spectrum, which means that the cell’s diffusional impedance is mostly caused by a 

capacitive reactance (i.e. 𝐶1).  

The theoretical sensitivity results presented imply that, for an accurate battery 

modelling and state estimation in an online application, model parameters must be 

identified in real time. This will ensure that any variations in the parameters with 

respect to SOC, temperature and any other external stress factors are accounted for 

during identification to result in a better model-based estimate of certain battery 

states such as SOP.  

5.4 Significance of Model Sensitivity to SOP Estimate 

As discussed in Chapter 2, battery impedance can serve as a good indicator for SOP. 

This means that for a reliable BMS algorithm incorporating SOP estimation, any 

variations in the model-based impedance parameters can result in an erroneous 

SOP estimate. Hence, it is imperative to gain an understanding of the SOP sensitivity 

with respect to the battery’s impedance. To this end, assuming steady-state 

conditions, the discharge and charge SOP definitions given by (4.14) and (4.15), 

respectively, can be expressed as a function of angular frequency. 



 

170 

 
SOPdis(𝜔) =

𝑉min(𝑉OC  − 𝑉min)

|𝑍bat(𝜔)|
 

(5.27) 

 
SOPch(𝜔) =

𝑉max(𝑉max − 𝑉OC)

|𝑍bat(𝜔)|
 

(5.28) 

where  𝑉min and 𝑉max are the minimum and maximum battery voltage thresholds, 

𝑉OC  is the battery’s OCV and |𝑍bat(𝜔)| is the magnitude of the battery’s complex 

impedance. Now, due to the presence of |𝑍bat(𝜔)| in (4.14) and (4.15), the value of 

SOP given is frequency dependent and therefore, to obtain a geometric average of 

the maximum deliverable power by the battery over the frequency band of interest, 

SOP can be re-defined as, 

 
SOP̅̅ ̅̅

d̅is =
𝑉min(𝑉OC − 𝑉min)

𝑍̅bat
 (5.29) 

 
SOP̅̅ ̅̅

c̅h =
𝑉max(𝑉max − 𝑉OC)

𝑍̅bat
 (5.30) 

 

𝑍̅bat = (∏|𝑍bat(𝜔𝑖)|

𝑛s

𝑖=1

)

1
𝑛s

= √|𝑍bat(𝜔1)| ∙ |𝑍bat(𝜔2)|⋯ |𝑍bat(𝜔𝑛s)|
𝑛s

 

(5.31) 

where 𝑍̅bat is the geometric mean of the battery impedance magnitudes measured 

over the frequency band of 𝜔0 = 2𝜋 × 0.005 rads
−1  to 𝜔1 = 2𝜋 × 5 rads−1 . It 

should be noted that for an 𝑛-RC battery model with a good fit, 𝑍̅bat can be replaced 

by 𝑍̅mdl . Therefore, the sensitivity of SOP estimate with respect to the battery 

impedance modelled by the 2-RC model can be expressed as,  

 
ΔSOP̅̅ ̅̅

d̅is =
𝑉min(𝑉OC − 𝑉min)

Δ𝑍̅mdl
 

(5.32) 
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ΔSOP̅̅ ̅̅

c̅h =
𝑉max(𝑉max − 𝑉OC)

Δ𝑍̅mdl
 (5.33) 

 
∴ ΔSOP̅̅ ̅̅ ̅ ∝

1

Δ𝑍̅mdl
. (5.34) 

Using equation (5.34), it can be determined that for the same input signal, changes 

in SOP are inversely proportional to changes in the transfer-function response given 

by (5.6) with 𝑛 = 2. Now, considering this relationship, the average magnitudes of 

the 2-RC model responses obtained at 50% SOC for the NMC and LFP cells are used 

to conduct a sensitivity analysis with respect to parameters {𝑅s, 𝑅1, 𝐶1, 𝑅2, 𝐶2}.   

To capture the effect of each model parameter on the impedance response of the 2-

RC model, the parameter under study is varied from -50% to +50% of its best-fit 

value in steps of Δ10%. Thereafter, a quantitative assessment of the induced 

modelling errors is performed using the RMSE equation defined in (5.9) as, 

 

RMSE = √
1

𝜔1 − 𝜔0 
∫ (|𝑍𝜌0

mdl(𝜔)| − |𝑍𝜌𝑖
mdl(𝜔)|)

2
𝜔1

𝜔0

∙ 𝑑𝜔 (5.35) 

where the error term is calculated between the impedance magnitude simulated 

using the best-fit model parameter, |𝑍𝜌0
mdl(𝜔)|, and that obtained as a result of a 

parameter swing, |𝑍𝜌𝑖
mdl(𝜔)|.  

Fig. 5.9 presents the sensitivity of the 2-RC model’s impedance response to 

erroneous model parameters. The results shown here are averaged over the cell’s 

entire SOC range of 0% to 100% to provide a global relationship between the 

incorporated model parameters and the response given by transfer-function (5.6). 

As expected by the mathematical analysis conducted previously, the effect of 

parameter 𝑅s is most dominant for both NMC and LFP cells. For example, a change 

of ∆𝑅s = +50%  has resulted in a deviation of 12 mΩ and 16 mΩ in the impedance 

magnitudes simulated for the NMC and LFP cells, respectively. This equates to a 
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deviation error of 25% (percentage-point) for the NMC cell and 30% (percentage-

point) for the LFP cell, when using equations (5.32) and (5.33) to estimate SOP.  

 

Fig. 5.9 Sensitivity of the 2-RC model-based battery impedance response to 

erroneous model parameters, simulated for (a) NMC and (b) LFP lithium-ion cells  

From Fig. 5.9, it can be determined that 𝑅1 is the least influential parameter in terms 

of model sensitivity in both cell chemistries, where a change of ∆𝑅1 = +50% results 

in only a small SOP deviation of 1.7% for the NMC and 2.4% for the LFP cell. 

However, variations exist between the same parameters identified for the two 

variations of lithium-ion cells. Comparatively, the model-based impedance 

(b) 

-50%←Best-fit parameter→+50% 

(a) 
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magnitude for the LFP cell poses a greater sensitivity to swings in the diffusional 

capacitance parameter (i.e. 𝐶1 ), whereas in the NMC cell, the impact of charge-

transfer resistance (i.e. 𝑅2) is more pronounced. 

5.5 Chapter Conclusions 

This Chapter has provided an analytical determination of a suitable order-number 

for the RC network battery model. To this end, a frequency-domain analysis on the 

EIS-attained impedance data for the two test cells of NMC and LFP chemistries has 

been performed. The results implied that a minimum order-number of two is 

required to accurately model the battery dynamics, without over-complicating the 

model structure. Through a partial-derivative approach, a comparable 

dimensionless coefficient representing the model’s sensitivity with respect to its 

constituent elements has been carried out. In addition, the sensitivity of the battery’s 

instantaneous available power (i.e. SOP) with respect to the impedance parameters 

has been analysed. Overall, the results suggest that for an accurate model-based SOP 

estimate in an online application, a robust system identification technique is 

required which accounts for parameter variations due to changing operating 

conditions such as temperature, SOC and SOH. 
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6  

 
 

Dual-EKF Initialisation Using PRBS for 
Adaptive Battery Parameters Identification  

 

In Chapter 5, it was discussed that the 2-RC battery model response is fairly sensitive 

to parameterisation error, which could result in misleading information on the 

battery’s performance capabilities, especially the SOP. This necessitates for an online 

battery identification method which can adapt to those parameter variations induced 

by varying operating conditions. Thus, in this Chapter, at first, the convergence and 

tracking capabilities of the dual-EKF algorithm for battery SOC and model parameters 

is investigated with respect to unknown initial conditions. Thereafter, a hybrid battery 

identification technique is put forward to reduce the uncertainties in the model 

estimates produced by the dual-EKF algorithm. The proposed technique is comprised 

of a carefully designed pseudorandom binary sequences (PRBS), used to properly 

excite the cells over a prescribed frequency band. The 2-RC battery model parameters 

are then extracted using a nonlinear least-squares method, in an effort to correctly 

initialise the dual-EKF algorithm. The performance of the proposed hybrid battery 

identification technique is experimentally verified against a more accurate impedance 

spectroscopy (i.e. the EIS) method. The model parameter/variables estimated using 

the PRBS-initialised dual-EKF algorithm are then used to obtain an online estimate for 

the battery’s charge/discharge power capability, i.e. the SOP.  

Chapter 
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6.1 Introduction  

In the previous Chapter, it was discussed that for an accurate model-based battery 

state estimation, especially for SOP, it is crucial to consider the time-variability of 

the incorporated battery parameters in a 2-RC equivalent-circuit model. The 

nonlinear Kalman filter system identification technique introduced in Chapter 4 

achieves this through a robust set of recursive equations, given the filters’ statistical 

parameters are initialised correctly. To this end, an expectation-maximisation 

method was adopted to provide an accurate set of noise statistical parameters for 

both state and weight filters in the dual-EKF algorithm. However, when it comes to 

the initialisation of the model states and parameters themselves, the filters’ 

response becomes very sensitive to erroneous initial conditions.  

In order to initialise the dual-EKF algorithm for the real-time estimation of both 

battery states and parameters, a sufficient knowledge of the unknown parameters 

to be estimated is often a necessity. In case of erroneous initial battery states, such 

as SOC, depending on the dynamic structure of the employed battery model, 

convergence of the battery states is achievable. Although, the rate of convergence 

can vary for different conditions. Difficulty arises when there exists a large 

uncertainty in the initial model parameters, i.e. in 𝛉𝑘 = {𝑅s, 𝑅1, 𝐶1, 𝑅2, 𝐶2}. This is 

due to the fact that, although the 2-RC network model representation of the battery 

dynamics is linear in states, the relationship between the incorporated parameters 

is heavily nonlinear. As a result, convergence towards the expected parameter 

values might not be possible under erroneous initial parameter settings.  

Furthermore, due to the time-variability of the modelled battery parameters, the 

input/output signal (i.e. terminal current/voltage signal) must be persistently 

exciting at all times [156]. This pre-condition is a necessity for any online parameter 

identification technique to be able to properly reveal the contents of the battery’s 

dynamics, whilst running in real time. However, in many real battery systems (e.g. 

in EVs), the current signal may not be sufficiently exciting at all times (e.g. during 

open-circuit or static charge/discharge periods). In practice, the dual-EKF 

algorithm, as opposed to those observer-based estimators as discussed in Chapter 2 

(e.g. sliding-mode observer), seems to operate well without any divergence [90]. 
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This is true, if and only if, a sufficient knowledge of the model parameters is available 

at the initialisation step [258]. Otherwise, convergence might never be achieved; 

even though the error covariance matrices for the weight filter in the dual-EKF could 

be approaching zero. In most dual-EKF-based BMS algorithms, the battery model 

parameters are often initialised/calibrated through an offline process, such as EIS, 

which can be impractical in certain motive and intermittent BESS applications. 

Therefore, in most cases, the initial parameters are either set arbitrarily based on 

experience, or they are approximated by using the information provided in the 

manufacturer’s datasheet. It is also possible to identify the battery model 

parameters using various time-domain techniques (e.g. the HPPC method [198]). 

However, the obtained results will only be valid at a single frequency, which is 

directly dependent on the period of the injected signal.  

As a result, at first, this Chapter investigates the performance of the dual-EKF 

algorithm for battery SOC and parameter estimation under erroneous initial 

conditions. Thereafter, a new hybrid battery identification technique is introduced 

which revolves around pseudorandom binary sequences (PRBS) for battery 

excitation whilst in open-circuit mode, which allows for accurate initialisation of the 

parameters vector in the dual-EKF estimator. It should be noted that the 

experimental results in this Chapter have been produced using the MACCOR battery 

tester as described in section 2.3.1.2. 

6.2 Dual-EKF Performance Under Incorrect Initial 

Conditions 

In this section, the performance of the dual-EKF algorithm with respect to erroneous 

initial conditions is investigated, with a view to later develop a hybrid battery 

identification technique which not only improves the quality of the online-identified 

battery parameters, but also improves the accuracy of battery SOP. This is a 

significant achievement, especially for those batteries nearing their end-of-life 

threshold (e.g. 20% power degradation in EVs) whereby accurate monitoring of 

SOP, the battery’s degraded power capabilities can be taken into account when 

responding to a particular load profile. 
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6.2.1 Formulation of State-Space Equations 

In Chapter 4, the state-space representation of the 𝑛-RC battery model was given as 

per equation (4.10). In this Chapter, the state-space equations required for the 

selected RC model order of 𝑛 = 2 are derived from first principles.  

 

Fig. 6.1 Equivalent-circuit diagram for the 2-RC network battery model 

Considering the single RC branch depicted in Fig. 6.1, the transient voltage-drop 

across 𝑉RC across the resistor 𝑅 and the capacitor 𝐶 with respect to input current 𝐼 

can be realised. Now, according to Kirchhoff’s current law, the amount of current 

flowing into the branch must be equal to that leaving it. Thus, 

  
𝐼 =

𝑉RC
𝑅
+ 𝐶

𝑑𝑉RC
𝑑𝑡

 (6.1) 

Rearranging equation (6.1) leads to a first-order differential equation which can be 

solved by using the technique of separable variables.  

𝑉RC − 𝐼𝑅 = −𝑅𝐶
𝑑𝑉RC
𝑑𝑡

 ⟺ ∫
1

𝑉RC − 𝐼𝑅
∙ 𝑑𝑉RC

𝑉RC(𝑡1)

𝑉RC(𝑡0)

= −
1

𝑅𝐶
∫ 1 ∙ 𝑑𝑡

𝑡1

𝑡0

 

⟺ ln(

𝑠

𝑉RC − 𝐼𝑅
𝑠

)|
𝑉RC(𝑡0)

𝑉RC(𝑡1)

= −
𝑡

𝑅𝐶
|
𝑡0

𝑡1

 

⟺ ln[𝑉RC(𝑡1) − 𝐼𝑅] − ln[𝑉RC(𝑡0) − 𝐼𝑅] = −
(t1 − t0) = Δ𝑡

𝑅𝐶
 

(6.2) 

VRC

R

I
C
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∴ 𝑉RC(𝑡1) = [𝑉RC(𝑡0) − 𝐼𝑅]𝑒
−
Δ𝑡
𝑅𝐶 + 𝐼𝑅 

where 𝑉RC(𝑡0) is the initial voltage across the RC branch at discrete time-step 𝑘 , 

𝑉RC(𝑡1) is the voltage across the same branch at discrete time-step 𝑘 + 1 and Δ𝑡 is 

the sampling period; note that 𝑡1 > 𝑡0. Subsequently, an expression for the transient 

voltage-drop across each branch of the 2-RC battery model given in Fig. 4.5 can be 

deduced in discrete form and given as, 

 
𝑉RC1𝑘+1 = (𝑉RC1k − 𝐼𝑘𝑅1)𝑒

−
Δ𝑡
𝑅1𝐶1 − 𝐼𝑘𝑅1

 

𝑉RC2𝑘+1 = (𝑉RC2k − 𝐼𝑘𝑅2)𝑒
−
Δ𝑡
𝑅2𝐶2 − 𝐼𝑘𝑅2}

 

 

 (6.3) 

Finally, by applying the superposition theorem to the 2-RC equivalent-circuit model, 

the state-space equations in discrete time required for the dual-EKF algorithm can 

be realised and expressed as, 

 

𝒇(∙) = [

𝑥𝟏
𝑥𝟐
𝑥𝟑
] = [

SOC𝑘+1
𝑉RC1𝑘+1
𝑉RC2𝑘+1

]

= [

1 0 0

0 𝑒
−Δ𝑡
𝜏1 0

0 0 𝑒
−Δ𝑡
𝜏2

] [

SOC𝑘
𝑉RC1𝑘
𝑉RC2𝑘

]

+

[
 
 
 
 
 
 −

𝜂Δ𝑡

𝑄actual
0 0

0 𝑅1 (1 − 𝑒
−Δ𝑡
𝜏1 ) 0

0 0 𝑅2 (1 − 𝑒
−Δ𝑡
𝜏2 )

]
 
 
 
 
 
 

𝐼𝑘 

𝛉𝑘 = [𝑅s, 𝑅1, 𝜏1, 𝑅2, 𝜏2]
T 

𝒉(∙) = 𝑉𝑘 = 𝑉OC(SOC𝑘) − 𝑉RC1𝑘 − 𝑉RC2𝑘 − 𝐼𝑘𝑅s 

(6.4) 
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where 𝒇(∙)  and 𝒉(∙)  are the nonlinear state transition and observation models 

respectively and 𝜏1 = 𝑅1𝐶1  and 𝜏2 = 𝑅2𝐶2  are long and short transient time-

constants respectively. Now, assuming the state-filter gain 𝐋𝑘
x  is weakly related to 

the parameters vector 𝛉𝑘, the Jacobian matrices required for the recursive dual-EKF 

algorithm presented in Table 4.2 can be computed as,   

 

𝐅𝑘−1 =
𝜕𝒇(∙)

𝜕𝐱𝑘
|
𝐱𝑘=𝐱̂𝑘−1

+

= [

1 0 0

0 𝑒
−Δ𝑡
𝜏1 0

0 0 𝑒
−Δ𝑡
𝜏2

] (6.5) 

 
𝐇𝑘
θ =

dℎ(∙)

d𝛉𝑘
|
𝛉𝑘=𝛉̂𝑘

−

=
𝜕𝒉(∙)

𝜕𝛉̂𝑘
−
+
𝜕𝒉(∙)

𝜕𝐱̂𝑘
− ∙

d𝐱̂𝑘
−

d𝛉̂𝑘
−

𝑠
d𝐱̂𝑘

−

d𝛉̂𝑘
−
=
𝜕𝒇(∙)

𝜕𝛉̂𝑘
−
+
𝜕𝒇(∙)

𝜕𝐱̂𝑘−1
+ ∙

d𝐱̂𝑘−1
+

d𝛉̂𝑘
−

𝑠
𝜕𝒉(∙)

𝜕𝛉̂𝑘
−
= [−𝐼𝑘−1 0 0 0 0]

𝑠

d𝐱̂𝑘
−

d𝛉̂𝑘
−
= [

0 0 0 0 0
0 𝑎2,2 𝑎2,3 0 0

0 0 0 𝑎3,4 𝑎3,5

]

   

}
 
 
 
 
 
 

 
 
 
 
 
 

 (6.6) 

where,  

 𝑎2,2 = −𝐼𝑘−1 ∙ (exp(Δ𝑡/𝜏1
2) − 1);  

 𝑎2,3 = (Δ𝑡/𝜏1
2 ) ∙ (𝑥̂2,𝑘

− − 𝑅1𝐼𝑘−1) exp(−Δ𝑡/𝜏1);  

 𝑎3,4 = −𝐼𝑘−1 ∙ (exp(Δ𝑡/𝜏2
2) − 1); and 

 𝑎3,5 = (Δ𝑡/𝜏2
2 ) ∙ (𝑥̂3,𝑘

− − 𝑅2𝐼𝑘−1) exp(−Δ𝑡/𝜏2). 

6.2.2 A Steady-State Definition for SOP  

As discussed previously, battery impedance parameters play a crucial role in the 

determination of the battery’s instantaneous power capabilities. According to 

equations (5.32) and (5.33), for the estimation of battery SOP in real time, the 

impedance magnitude of the 2-RC equivalent-circuit model is required. Now, 
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considering the transfer function given by (5.6), under steady-state conditions, as 

𝑠 → 0, battery model impedance reduces to, 

 

[
𝑠

𝑍mdl(𝑠)
𝑠

]

𝑠=0

= [

𝑠

𝑅s + (
𝑅1

𝑅1 ∙ 𝑠𝐶1 + 1
) + (

𝑅2
𝑅2 ∙ 𝑠𝐶2 + 1

)

𝑠

]

𝑠=0

 

𝑍mdl
𝑠→0 = 𝑅s + 𝑅1 + 𝑅2. 

(6.7) 

Equation (6.7) implies that for the online estimation of battery SOP using the 2-RC 

model and the dual-EKF algorithm, the effects of the parameters 𝐶1  and 𝐶2  are 

negligible under steady-state conditions. Therefore, by substituting 𝑍mdl
𝑠→0  into 

equations (5.32) and (5.33), the steady-state SOP definitions for discharge and 

charge can be obtained. 

SOPdis =
𝑉min(𝑉OC − 𝑉min)

𝑅s + 𝑅1 + 𝑅2
 (6.8) 

SOPch =
𝑉max(𝑉max − 𝑉OC)

𝑅s + 𝑅1 + 𝑅2
. (6.9) 

From equations (6.8) and (6.9), it can be deduced that for an accurate and reliable 

SOP estimate, the dual-EKF estimator must be able to produce a convergent estimate 

for the resistive elements of the 2-RC equivalent-circuit battery model.  

6.2.3 EFK Response to Unknown Initial Battery Parameters  

In order to gain a better understanding of the dual-EKF algorithm’s performance 

capabilities for battery parameter identification under unknown initial conditions, 

the experimental results obtained for an NMC cell under a dynamic load profile 

based on the ArtHiUFL drive cycle, as described in Chapter 2, section 2.3.2.8, are 

used here. Ultimately, the aim of the ArtHiUFL test profile is to provide a realistic 

and dynamic operating condition for the validation of the proposed hybrid battery 

identification technique in this Chapter.  
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It should be noted that, a rather conservative operating SOC range of 80% to 20% is 

assumed here. Fig. 6.2 presents the current and voltage waveforms measured for 

the NMC cell under test; 28 consecutive ArtHiUFL cycles have been applied to 

discharge it from an initial SOC of ~80% down to 20%.  

 

Fig. 6.2 The (a) current and (b) voltage waveforms obtained for the multi-

ArtHiUFL drive cycle when applied to an NMC test cell at 25°C 

The chosen SOC range has been employed by many researchers previously as a safe 

range for battery operation, without extension into the nonlinear regions of the 

battery’s operating envelope [10]. Moreover, due to the regenerative nature of the 

current demands in motive and intermittent BESS applications (e.g. in EVs and grid-

tie storages), the battery is usually charged up to 80% nominal capacity, enabling a 

better charge acceptance in cases of regenerative currents. Similarly, operating or 

keeping the battery at low SOC values can have an adverse effect on the battery’s 

lifetime in the long run.  

80-20%  
SOC range 

(a) 

(b) 
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In the following sub-sections, the dual-EKF’s performance capability in terms of 

voltage, SOC and parameter estimation errors is explored for two cases; case 1, dual-

EKF initialised with best-guess RC model parameters taken from the cell datasheet, 

and, case 2, dual-EKF initialised with a priori knowledge of the RC model 

parameters, through curve fitting of the EIS-attained complex impedance data at 

25°C and 80% SOC.  

Table 6.1 Initial RC model parameters for dual-EKF battery identification 

Parameters 𝑹𝐬 (𝐦𝛀) 𝑹𝟏 (𝐦𝛀) 𝑪𝟏 (𝐅) 𝑹𝟐 (𝐦𝛀) 𝑪𝟐 (𝐅) 

From datasheet 

EIS-attained 

20 

26.95 

10 

12.6 

1000 

1853 

10 

3.2 

100 

17.08 

Table 6.1 provides the RC model parameters for the two filter initialisation 

scenarios. It should be noted that for both cases, the initial SOC state is intentionally 

set to 20% instead of true 79.12%. This is to demonstrate the convergence and 

robustness of the EKF SOC estimator, even under datasheet initialisation of the RC 

model parameters. The state and weight filters in the dual-EKF algorithm are 

initialised according to (6.10). 

𝐱0 = [

SOC0
𝑉RC1,0
𝑉RC2,0

] = [
0.2
0
0
] , 𝛉0 = [𝑅𝑠, 𝑅1, 𝜏1, 𝑅2, 𝜏2]

T 

𝐐0
x = diag𝑛{1 × 10

−8}, 𝐏x̃,0
+ = diag𝑛{10}, 𝐑0

x = diag𝑚{0.1} 

𝐐0
θ = diag𝑞{1 × 10

−12}, 𝐏θ̃,0
+ = diag𝑞{10}, 𝐑0

θ = diag𝑚{10} 

(6.10) 

where diag{∙} is a diagonal matrix of size 3 × 3 for 𝐐0
x and 𝐏x̃,0

+ , 5 × 5 for 𝐐0
θ and 𝐏θ̃,0

+ , 

and 1 × 1  for 𝐑0
x  and 𝐑0

θ  matrices, respectively. Note that the error covariance 

matrices 𝐏x̃,0
+  and 𝐏θ̃,0

+  are set to a large value at initialisation. This is to account for 

any uncertainties in both EKFs’ initial conditions. However, for the EIS-obtained 
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initial parameters, since the weight EKF is initialised with a prior knowledge, the 

initial error covariance is set to a small value, in this case 𝐏θ̃,0
+ = diag5{1}. 

6.2.1.1 EKF terminal voltage response 

 

Fig. 6.3 Voltage reponse of the dual-EKF algorithm with respect to correct and 

erroeneous initial RC model parameters, (a) complete and (b) single repetition of 

Artemis-based test profile 

Fig. 6.3 compares the response of the dual-EKF algorithm when initialised with and 

without a priori knowledge of the RC battery model parameters. As can be seen, 

despite the erroneous initial parameters for the latter case, the filter provides a very 

good estimate of the cell’s terminal voltage. This is due to the fact that cell voltage is 

(a) 

(b) 

80% 20% SOC 
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directly available to the filer as one of its observable quantities; thus, it is easier to 

minimise the error between prediction and observation, yielding an accurate 

estimate for the cell’s terminal voltage.  

Table 6.2 RMSE performance of the dual-EKF estimator for battery parameters 

identification, with and without a sufficient knowledge of initial RC parameters 

Initial condition RMSE (mV) 

Without a priori knowledge of RC parameters 

With a priori knowledge of RC parameters  

1.7 

0.89 

Table 6.2 presents the voltage RMSE values calculated for the dual-EKF initialised 

with the aforementioned model parameters. Note that the RMSE has been calculated 

from the time that voltage estimate satisfied a 5% error bound with respect to the 

measured signal. This ensured that large errors in the model states during the 

convergence phase did not skew the results. From the presented RMSE results, it 

can be said that, the dual-EKF algorithm’s performance in battery terminal voltage 

estimation is not significantly improved by correctly initialising the model 

parameters, rather than using some generic datasheet parameters. 

6.2.1.2 SOC estimation performance 

Similar to the voltage estimates, the SOC estimates obtained for the two filter 

initialisation scenarios were plotted on a same graph, as shown in Fig. 6.4. Despite 

the large errors in the initial SOC sate and the battery model parameters, the state 

EKF delivers a satisfactory performance by converging to the reference SOC 

(denoted as Ref. SOC in Fig. 6.4) within the first 15 minutes of filter initialisation. 

This is owed to the fairly accurate OCV-SOC relationship that has been empirically 

derived for the NMC test cell in Chapter 4. Although, for the case with a priori 

knowledge of the RC model parameters, the convergence rate of the state filter has 

improved by approximately a factor of a half.   
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Fig. 6.4 The SOC estimation performance of the dual-EKF algorithm with respect to 

correct and erroeneous initial model parameters, (a) complete and (b) zoom view 

Finally, Table 6.3 presents the RMSE values calculated for the SOC estimates, from 

the moment that the 5% error-bound criterion has been met. Evidently, under both 

scenarios of dual-EKF weight-filter initialisation, the state filter produces a SOC 

estimate with less than 1% error. This outcome demonstrates the robustness of the 

dual-EKF algorithm, regardless of the accuracy of the initial model parameters.    

(a) 

(b) 
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Table 6.3 RMSE performance of the dual-EKF estimator for battery SOC 

estimation, with and without a sufficient knowledge of initial RC parameters 

Initial condition  
RMSE SOC 

(%) 

Without a priori knowledge of RC parameters 

With a priori knowledge of RC parameters  

0.88 

0.49 

 

6.2.1.3 EKF battery parameter identification performance 

Fig. 6.5 compares the parameter estimation capability of the dual-EKF algorithm for 

both correct and incorrect initial conditions. It is evident that, despite its excellent 

SOC state estimation performance, the dual-EKF is significantly affected by incorrect 

initial battery parameters, resulting in a non-convergent estimator for online 

battery parameter identification. This can be attributed to two facts; lack of 

persistence of excitation of the input current signal, and, very slow time-variability 

of the battery parameters. Both of which can have a detrimental effect on the 

performance of the weight filter in the dual-EKF algorithm. 

Therefore, by having a priori knowledge of the battery parameters when initialising 

the weight filter in the dual-EKF algorithm, it is possible to achieve a true estimate 

for the resistive-element RC model parameters in real time, which is key to proper 

operation of various battery power management strategies. As a result, in this 

Chapter, a hybrid battery identification technique is put forward. The proposed 

technique involves the application of an online impedance spectroscopy whilst the 

battery is in open-circuit mode. This is to realise a correct initialisation of the weight 

EKF at the current battery conditions, and once in closed-circuit mode, the dual-EKF 

algorithm is implemented to identify the model parameters in real time. A more 

detailed description of the concept is provided in the next section.   
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Fig. 6.5 Comparison of resistive-element 2-RC battery model parameters identified 

with and without a priori knowledge of the initial conditions through EIS 

(a) 

(b) 

(c) 

80% 20% SOC 
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6.3 A Hybrid Battery Identification Technique 

The proposed hybrid battery identification technique revolves around an online 

impedance spectroscopy method, namely the pseudorandom binary sequences 

(PRBS), which is essentially a band-limited white-noise-alike random signal that 

allows for the realisation of a proper battery excitation over a prescribed frequency 

band. The PRBS excitation is conducted while the battery is in the open-circuit mode 

(i.e. zero-current relaxation mode). Once in the closed-circuit mode (i.e. under load 

conditions), the dual-EKF is initialised with the PRBS-attained 2-RC model 

parameters and implemented recursively to yield an adaptive estimate for the RC 

parameters in real time. 

6.3.1 Concept  

Fig. 6.6 demonstrates the concept of the of the proposed hybrid battery parameter 

identification. The sequence of the procedures undertaken is summarised as 

follows. Whilst the battery is in the open-circuit mode (i.e. zero load-current), a 

carefully designed PRBS excitation signal is injected into the battery. The period of 

the PRBS signal designed for excitation of the NMC and LFP cells used in this thesis 

is 102 seconds. This means that the proposed technique can be conveniently applied 

to a motive BESS while resting (e.g. after a full charge in an EV) to serve two 

purposes; 1) to provide an online diagnosis tool for the detection of early 

cell/battery failures; 2) to better utilise the dual-EKF algorithm for not only the 

estimation of SOC, but also for the estimation of other battery states, such as SOP 

and SOF, whose realisation relies largely on accurate battery impedance 

parameters. 

In order to ensure a steady-state condition prior to PRBS excitation, the cells under 

test are required to relax for a period of 30 minutes. This time-limit is chosen as a 

result of an investigation carried out on the cells’ OCV hysteresis behaviour with 

respect to zero-current rest period. Fig. 6.7 and Fig. 6.8 present the charge and 

discharge OCV measurements with their resulting hysteresis levels as a function of 

SOC and rest time, gathered for the NMC and LFP cells, respectively. From these two 
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figures, it is evident that for both cell types, the OCV hysteresis level achieved after 

a 30-minute rest is very close to that measured after a 1-hour rest period. Thus, it 

can be safely assumed that a steady-state condition can be reached by the test cells 

after the chosen rest period of 30 minutes, prior to conducting the online PRBS 

excitation test.  

 

Fig. 6.6 Block diagram demonstrating the concept of the proposed hybrid battery 

parameter identification  
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Fig. 6.7 OCV measurements as a function of SOC obtained for the NMC cell after a 

15-minute, 30-minute and 1-hour rest period at 10% SOC intervals and 25°C 

(a) 

(b) 
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Fig. 6.8 OCV measurements as a function of SOC obtained for the LFP cell after a 

15-minute, 30-minute and 1-hour rest period at 10% SOC intervals and 25°C 

Upon the completion of the PRBS excitation, the nonlinear least-squares 

identification method described in Chapter 5 is applied to the obtained complex 

impedance data. The identified parameters are then fed forward to the weight EKF 

in the dual-EKF algorithm. Thereafter, the RC model parameters are recursively 

(a) 

(b) 
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updated through the dual-EKF algorithm [166] to account for any SOC- and/or 

temperature-induced variations in real time.  

Should the battery experience a severe change in its operating conditions, such as 

changes in the ambient temperature or returning to open-circuit mode after 

supplying/sourcing a harsh load demand, the PRBS identification method can be 

repeated to accomplish 1) an online diagnosis of the internal status of the battery, 

and, 2) re-initialisation of the RC model parameters in the weight EKF to avoid 

divergence. In case the PRBS excitation procedure is interrupted due unpredictable 

consumer behaviour, the parameters vector in the dual-EKF algorithm is provided 

with ‘best-guess’ values (e.g. datasheet parameters) at the time of initialisation. Next 

section puts its focus on the theoretical design and practical implementation of a 10-

bit 10 Hz PRBS signal for the excitation of the LFP and NMC test cells.  

6.3.2 PRBS Generation for Online Initialisation of EKF 

PRBS is a special type of random signal that finds usage over a wide range of 

identification problems (e.g. [263]). This particular technique, as opposed to costly 

and time-consuming sine-swept methods, provides a simple and inexpensive 

alternative for the identification of dynamic systems.  

A typical PRBS sequence is comprised of binary ‘zeros’ and ‘ones’ that are switched 

at a pre-determined pattern. The outcome is a perturbation signal that resembles 

properties akin to a band-limited white noise [264]. The most commonly-used 

PRBS’s are those based on maximum-length sequences. These sequences are often 

generated in either hardware or software environments, using a number of linear-

feedback shift registers (LFSR) with modulo-two (XOR) feedback taken from some 

pre-determined tap positions [264]. 

When designing a PRBS signal, there are two base parameters that must be carefully 

selected. These include the source clock frequency (𝑓clk) and the number of shift 

registers (𝑛), which in turn define the PRBS frequency bandwidth and the test 

duration. 
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Fig. 6.9 Example of a 4-bit 10 Hz PRBS generator showing (a) configuration of 

LFSRs with feedback tap positions and (b) time-domain bit stream of one complete 

sequence 

Therefore, a theoretical analysis is conducted herein to determine 𝑓clk and 𝑛 for the 

battery identification problem in hand. Fig. 6.9 depicts the register configuration 

and resulting pulses for an exemplary PRBS with 𝑛 = 4 and 𝑓clk = 10 Hz. Note that 

the PRBS is in bipolar form, shifting between −𝑎 for a ‘zero’ and +𝑎 for a ‘one’. This 

leads to a relatively balanced perturbation signal that will charge and discharge the 

battery in a way, so that the net quantity of stored energy stays unaffected. 

For a maximum-length PRBS, the test duration 𝑇prbs can be defined as, 

 
𝑇prbs =

𝑁

𝑓clk
 (6.11) 

clk

D Q
1
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D Q
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where 𝑁 = 2𝑙 − 1 is the sequence length and 𝑙 is the PRBS bit-length. In [265] and 

[266] the authors have shown that by analysing the signal power spectral density 

(PSD), the bandwidth over which the PRBS data is useable can be established. Fig. 

6.10 presents the PSD for the 4-bit 10 Hz PRBS exemplary sequence given in Fig. 6.9, 

where the power spectrum is represented by discrete power points separated by 

𝑓clk/𝑁. As can be observed, the corresponding PSD has a sinc function characteristic, 

which can be described by (6.12). 

 

Fig. 6.10 Normalised PSD for the simulated 4-bit 10 Hz PRBS 

 
𝑆xx(𝑓) =

𝑎2(𝑁 + 1)

𝑁 ∙ 𝑓clk
[
sin(𝑓𝜋/𝑓clk)

𝑓𝜋/𝑓clk
]
2

. (6.12) 

The band-limit of a PRBS is defined by the frequency at which its power is attenuated 

by -3 dB (i.e. power drops by half). This event occurs when, 

 
[
sin(𝑓𝜋/𝑓clk)

𝑓𝜋/𝑓clk
]
2

= 0.5 ⇒ 𝑓max ≈
𝑓clk
2.25

. (6.13) 

−3 dB bandwidth 

𝑓clk 

𝑓clk
𝑁

 

𝑎2
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∙ (
𝑁 + 1

𝑁
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Now, considering the lower band-limit as 𝑓min = 𝑓clk 𝑁⁄   and using 𝑓max from (6.13), 

the theoretical frequency band (𝑓band) over which the PRBS information are useful 

can be given as, 

 
𝑓band = 𝑓clk (

1

2.25
−
1

𝑁
)  

𝑓norm =
𝑓band
𝑓max

= 1 −
2.25

𝑁
 

(6.14) 

where 𝑓norm is the normalised frequency band. 

From the comprehensive frequency-domain analysis conducted earlier in Chapter 

5, it was determined that for lithium-ion cells of LFP and NMC types, the impedance 

is most useful over the low end of the attained spectrum (i.e.5 mHz ≤ 𝑓 ≤ 5 Hz ). 

Now, according to (6.14), a PRBS clock frequency of 𝑓clk = 11.25 Hz  should be 

sufficient to capture the battery dynamics over the frequency band of interest. 

However, to be able to use the MACCOR battery tester (see Fig. 2.17) as a PRBS 

excitation and acquisition device, a clock frequency of 𝑓clk = 10 Hz is chosen herein, 

yielding a maximum frequency band-limit of 4.44 Hz.  

In order to maintain the white-noise-like properties of the generated PRBS and to 

avoid spectral leakage during analysis, the sequence must be captured as a whole. 

This leads to the consideration for the required number of shift registers (i.e. bit-

length), which in turn dictates the duration of the test as given by (6.11) and the 

amount of data that must be acquired. Fig. 6.11 illustrates the effect of increasing 

PRBS bit-length on test bandwidth (𝑓nom) and duration (𝑇prbs). 

As can be seen, the normalised bandwidth increases exponentially with increasing 

PRBS bit-length. However, the exponential increase in test duration becomes 

disadvantageous. It follows that there exists a trade-off, which appears to be 

between 𝑙 = 8  and 𝑙 = 14 . H, a bit-length of 𝑙 = 10  is chosen, leading to a PRBS 

perturbation signal that is conveniently less than two minutes long and covers a 

theoretical frequency range of 0.01 Hz ≤ 𝑓 ≤ 4.44 Hz. This range is low enough to 
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properly stimulate the lower-frequency dynamics of the lithium-ion battery cells 

used in this paper. Finally, to achieve a maximum-length sequence with a 10-bit 

PRBS, XOR feedback must be taken from the seventh and the tenth shift registers 

[264]. 

 

Fig. 6.11 Relationship between PRBS bit-length, normalised bandwidth and 

resulting test duration 

Since battery current is the easiest variable to adjust, it is chosen here as the 

controllable input signal and the terminal voltage represents the output. Extracts of 

the acquired voltage and current for an NMC cell is given in Fig. 6.12. In order to 

compute the complex impedance of the battery system, a conversion of the signals 

in time-domain to frequency-domain is required. This is often realised by taking the 

discrete Fourier transform (DFT) of the acquired input/out data [267]. Thus, the 

impedance transfer function of the battery system under test can be identified as, 

 
𝑍𝑘(𝑓) =

ℱ{𝑉𝑘}

ℱ{𝐼𝑘}
;   𝑓 = 𝑘

𝑓𝑠
𝑛𝑠
;   𝑛s = 𝑁 (

𝑓s
𝑓clk

) ; ∀ 𝑘 ≤ 𝑛𝑠 − 1 (6.15) 

where ℱ{∙}  denotes the Fourier transform, 𝑓s  is the sampling rate and 𝑛s  is the 

number of samples in a dataset. According to Nyquist-Shannon sampling theorem, 

the chosen sampling rate must be at least twice the highest frequency (i.e. 𝑓s ≥ 2 ×

𝑙 

Selected PRBS 
bit length 𝑙 = 10 
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𝑓clk). However, in this thesis, a practical sampling rate of 𝑓s = 10 × 𝑓clk = 100 Hz is 

used to further reduce the risk of spectral leakage during the DFT operation. 

 

Fig. 6.12 Extracts of the acquired (a) input current and (b) response voltage for an 

NMC test cell  

6.4 Application to Online Battery SOP Estimation 

In order to verify the performance of the proposed hybrid battery identification 

technique, both in open- and short-circuit modes, two tests have been devised and 

implemented on the 3.5 Ah NMC and 3.3 Ah LFP test cells. 

First, a modified HPPC test, as depicted in Fig. 6.13 for the NMC cell, has been 

designed. As shown in Fig. 6.14, this test consists of a standard HPPC test, as 

described in Chapter 2, section 2.3.2.4, followed by a 10-bit 10 Hz PRBS excitation 

signal. This profile has been repeated over the SOC range of 90% to 10%. The 

amplitudes of the current pulses were scaled to ±0.4C for both cell variants, in order 

to achieve a proper excitation of the cells under test without inducing a large SOC 

deviation.  

(a) 

(b) 
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Fig. 6.13 The (a) current and (b) voltage waveforms obtained for the modified 

HPPC test when applied to an NMC cell at 25°C 

Fig. 6.15(a) and (b) present the SOC results for the NMC and LFP test cells, when 

applied with ±0.4C pulses over one complete PRBS sequence, respectively. As can be 

seen, the chosen pulse amplitude has resulted in a maximum SOC deviation of only 

0.05 percentage-point for the NMC cell, and 0.06 percentage-point for the LFP cell. 

Moreover, the SOC state immediately before and after the PRBS injection are the 

same, confirming a balanced excitation signal. In addition, a 10-minute relaxation 

period has also been allowed between the HPPC test and PRBS injection to a steady-

state condition has been reached.  

It should be noted that, due to the white-noise-alike properties of the PRBS signal 

(i.e. having a flat spectrum over the entire frequency band), the overall state of the 

system under test is not affected greatly, i.e. the PRBS is balanced. This can be 

evidently observed in Fig. 6.16, where the voltages measured immediately before 

and after the PRBS injection for the NMC cell follow the same trajectory of OCV 

relaxation. 

90-10%  
SOC range 

(a) 

(b) 
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Fig. 6.14 Excerpt of the modified HPPC test profile, (a) current and (b) voltage 

A similar behaviour is observable for the LFP cell, as demonstrated by Table 6.4. This 

finding validates two points; 1) the chosen current amplitude of ±0.4C used for PRBS 

excitation of the NMC and LFP cells is sufficiently large, without causing an overall 

change in the cells’ dynamics, and, 2) the cells under test can be considered as a 

linear time-invariant (LTI) system over the period of PRBS excitation, which implies 

that the cells’ impedances will be correctly estimated.  

 

 

HPPC 

30-minute rest 

PRBS 

10-minute rest 

0.5C discharge 

HPPC 
PRBS 

OCV-relaxation 
trajectory 

(a) 

(b) 
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Fig. 6.15 (a) NMC and (b) LFP cell SOC deviation when applied with ±0.4C pulses, 

over one complete 10-bit 10 Hz PRBS sequence  

Second, the ArtHiUFL dynamic test profile of section 2.3.2.8 has been used to 

provide a realistic operating condition for the validation of the proposed hybrid 

battery parameter identification technique and its application to battery SOP 

estimation in real time. At time-step 𝑘 = 0, the parameters vector 𝛉𝒌 in the weight 

EKF (see Table 4.2 for the state and weight EKF equations) is initialised with the 

PRBS-obtained parameters at SOC = 80%. Moreover, the state EKF is incorrectly 

initialised at SOC = 20%, whilst true SOC = 80%. This is to demonstrate the SOC 

convergence capability of the states EKF, even under erroneous initial conditions.  

(a) 

(b) 
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Fig. 6.16 Trajectory of OCV relaxation for the NMC cell, showing a balanced PRBS 

Table 6.4 Cell OCV measurements taken for the NMC and LFP cells before and 

after PRBS injection 

 

 

Fig. 6.17 and Fig. 6.18 present the magnitudes of the complex impedances obtained 

for the NMC and LFP test cells using, the EIS technique and the proposed PRBS 

excitation method over the selected frequency band of 5 mHz to 5 Hz. Generally, a 

good agreement between the EIS and PRBS results can be observed at 5°C, 25°C and 

45°C ambient temperatures.  

SOC 

Cell OCV (V) 

NMC LFP 

Before PRBS After PRBS Before PRBS After PRBS 
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0.9 
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4.047 
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Fig. 6.17 NMC Cell impedance magnitudes obtained at 80% SOC and at (a) 5°C, (b) 

25°C and (c) 45°C, using the EIS and proposed PRBS identification method 

At low frequency, the two methods pose excellent agreement for both variations of 

lithium-ion cells. However, towards the high end of the spectrum, the cell 

impedances obtained using the PRBS technique become more prone to 

measurement noise. This is due to the hardware low-pass filtering of the voltage and 

current signals acquired by the MACCOR battery tester, which can result in out-of-

phase measurements. Nevertheless, the cell impedances obtained from the PRBS 

technique can be safely applied to the dual-EKF estimator for robust initialisation. 

(a) 

(b) 

(c) 
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Fig. 6.18 LFP Cell impedance magnitudes obtained at 80% SOC and at (a) 5°C, (b) 

25°C and (c) 45°C, using the EIS and proposed PRBS identification method 

Using the nonlinear least-squares method described in Chapter 2, the parameters of 

the 2-RC model structure are extracted from the EIS and PRBS complex impedances. 

After correct initialisation of the weight EKF using the PRBS-attained battery 

parameters at SOC = 80%, the dual-EKF algorithm is then implemented recursively 

to effectively capture and adapt to those SOC-induced variations in the constituent 

RC elements.  

(a) 

(b) 

(c) 



 

204 

Fig. 6.19 and Fig. 6.20 present the 2-RC model parameters identified as a function of 

SOC using the EIS, PRBS and the PRBS-initialised dual-EKF estimator. It should be 

noted that the SOC state has been allowed to fully converge (i.e. enter and stay 

within ±5% error band), before the first set of estimated parameters were used for 

absolute error calculations with respect to the EIS measurements; thus, the results 

for the hybrid dual-EKF estimator are displayed over the SOC range of 70% to 20% 

instead of 80% to 20%. The performance of each technique is quantified by 

calculating the mean-absolute-error (MAE) between the PRBS- and EKF-identified 

model parameters with those obtained from the accurate sine-swept EIS method. 

 
MAE (%) = (

1

𝑑
∑

|𝜌̂𝑖 − 𝜌𝑖|

𝜌𝑖

𝑑

𝑖=1

) × 100 (6.16) 

where 𝜌̂𝑖  is the estimated parameter (i.e. PRBS- or EKF-attained), 𝜌𝑖  is the EIS-

attained parameter and 𝑑 is the number of SOC steps at which the parameters are 

identified. Table 6.5 and Table 6.6 provide the resulting MAE for the NMC and LFP 

cells respectively. It is evident that the low-cost PRBS identification technique is 

capable of producing a fairly accurate set of model parameters for both variations 

of lithium-ion cells studied in this thesis. By correctly initialising the weight filter in 

the dual-EKF algorithm with the RC parameters obtained at SOC = 80% using PRBS, 

the error between the estimated and EIS-attained parameters are further reduced; 

this is a significant contribution related to the proposed hybrid battery 

identification technique.   
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Fig. 6.19 Comparison of 2-RC model parameters identified using EIS, PRBS and the 

proposed hybrid dual-EKF method for the NMC cell at 25°C 

Table 6.5 MAE assessment of the proposed PRBS and hybrid dual-EKF 

identification methods, when compared with the EIS results for the NMC cell 

NMC  
MAE (%) 

𝑹𝐬 𝑹𝟏 𝑪𝟏 𝑹𝟐 𝑪𝟐 

PRBS 

Hybrid dual-EKF 

2.14 

0.29 

0.142 

0.123 

5.36 

8.26 

3.61 

1.32 

24.93 

18.45 

(a) 

(e) 

(b) 

(c) (d) 
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Fig. 6.20 Comparison of 2-RC model parameters identified using EIS, PRBS and the 

proposed hybrid dual-EKF method for the LFP cell at 25°C 

Table 6.6 MAE assessment of the proposed PRBS and hybrid dual-EKF 

identification methods, when compared with the EIS results for the LFP cell  

LFP 
MAE (%) 

𝑹𝐬 𝑹𝟏 𝑪𝟏 𝑹𝟐 𝑪𝟐 

PRBS 

Hybrid dual-EKF 

0.387 

0.129 

10.42 

4.09 

13.20 

12.35 

14.36 

4.76 

24.03 

21.68 

(a) 

(e) 

(b) 

(c) (d) 
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In Chapter 6, it was shown that under steady-state conditions, only the resistive-

element parameters of the 2-RC battery model (i.e. 𝑅s, 𝑅1 and 𝑅2) are required in 

order to produce an accurate SOP estimate. Therefore, by PRBS extraction of the 

aforementioned model parameters, in addition to correct initialisation of the dual-

EKF estimator, it is also possible to achieve a priori knowledge of the battery’s power 

capability at the current time, before sourcing/sinking a particular load profile. 

Thus, to analyse the performance of the PRBS battery identification technique for 

battery SOP estimation, the resistive-element parameters identified over the SOC 

range of 10% to 90%, in 10% steps, are applied to equations (6.8) and (6.9) for the 

test cells’ discharge and charge SOP levels, respectively. Moreover, the standard 

HPPC method (refer to Chapter 2, section 2.3.2.4 for more details) is used here as a 

reference framework for the verification of the estimated cell power capabilities.  

The results obtained for the NMC and LFP cells at 5°C, 25°C and 45°C are presented 

in Fig. 6.21 and Fig. 6.22, respectively. For all the three temperatures, there exists a 

good agreement between the EIS-, PRBS- and HPP-estimated battery powers for 

both charge and discharge. Additionally, a drop in both cells’ power capabilities with 

temperature can be observed as expected. This can be attributed to the fact that, at 

low temperatures, the cell’s impedance grows due to the solidification of the active 

materials, reducing the charge-acceptance and, thus, the power capability of the cell 

[10]. An opposite effect is true at high temperatures, where the cell’s impedance 

drops, resulting in a higher source/sink power capability.  

When comparing the performance of an SOP estimator against the standard HPPC, 

one should note that the estimated power extracted from the HPPC data is mainly 

dependent on the duration of the applied current pulse and the initial battery 

condition. In other words, if the battery is not well-rested or is applied with a 

discharge pulse for a longer duration than the HPPC’s (i.e. 18 seconds), the voltage 

drop at the end of the pulse will be higher, resulting in a decrease in the estimated 

power capability. On the other hand, as discussed in Chapter 6, the power definitions 

given by (6.8) and (6.9) reflect on the battery’s steady-state power capabilities. 

However, comparing two separate approaches of estimation for the same quantity 

is a respected way of checking the validity of the proposed method. 
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Fig. 6.21 Comparison of PRBS- and EIS-based SOP estimates with the standard 

HPPC results for the NMC cell, obtained over the SOC range of 10% to 90% at 5°C, 

25°C and 45°C  

(a) (d) 

(b) (e) 

(c) (f) 
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Fig. 6.22 Comparison of PRBS- and EIS-based SOP estimates with the standard 

HPPC results for the LFP cell, obtained over the SOC range of 10% to 90% at 5°C, 

25°C and 45°C 

 

 

(a) (d) 

(b) (e) 

(c) (f) 
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Fig. 6.23 Block diagram illustrating the structure of the online EKF-based battery 

SOP estimator 

In general, the accuracy of an online SOP estimate obtained using equations (6.8) 

and (6.9) depends on the quality of 𝑅̂s, 𝑅̂1, 𝑅̂2 and 𝑉̂OC used in the battery model. In 

Chapter 6, section 6.2.3, it was shown that, if initialised with correct battery model 

parameters at time-step 𝑘 = 0, the dual-EKF estimator can robustly track any slowly 

time-varying deviations in the identified model parameters caused by the battery’s 

operating conditions.  

In this thesis, an EKF-based battery SOP estimator is developed for an improved 

battery power characterisation, whose structure is illustrated in Fig. 6.23. The 

parameter estimates 𝑅̂s, 𝑅̂1 and 𝑅̂2are provided by the dual-EKF at each time step 𝑘. 

Note that for online SOP estimation, 𝑉̂OC  is predicted based on the EKF-estimated 

SOC and the eighth-order OCV-SOC polynomial function derived in Chapter 4, 

section 4.4.1. On the other hand, for the HPPC method, 𝑉̂OC is derived from the zero-

current rested cell voltages prior to HPPC pulse injection. Finally, the performance 

of the proposed EKF-based SOP estimator is verified on the ArtHiUFL dynamic test 

profile of section 2.3.2.8, conducted at 25°C and over the SOC range of 80% to 20%. 

States EKF 
{SOC, 𝑉RC1, 𝑉RC2} 

Weight EKF 
{𝑅s, 𝑅1, 𝜏1, 𝑅2, 𝜏2} 

Dual-EKF Estimator 

𝐱̂𝑘
+ 𝛉̂𝑘

+ 

SOPdis =
𝑉min(𝑉̂OC − 𝑉min)

𝑅̂s + 𝑅̂1 + 𝑅̂2
 

SOPch =
𝑉max(𝑉max − 𝑉̂OC)

𝑅̂s + 𝑅̂1 + 𝑅̂2
 

𝐼𝑘 

𝑉𝑘 

Initialised with  
PRBS 

SOPdis 

SOPch 

𝑉̂OC 

൛𝑅̂s, 𝑅̂1, 𝑅̂2ൟ 



 

211 

 

Fig. 6.24 SOP estimation results for (a) NMC and (b) LFP cells, comparing the 

performance of the online EKF-based method and the standard HPPC method 

Fig. 6.24 compares the online SOP estimates obtained for the NMC and LFP cells 

using the PRBS-initialised dual-EKF estimator and the HPPC method. It can be seen 

that, as SOC moves down towards 20%, the EKF-based discharge SOP for both cells 

shows a decreasing trend, while the charge SOP estimate poses the opposite trend, 

indicating a higher sink power capability at low SOC levels. This behaviour is verified 

(a) 

(b) 
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against the standard HPPC results, where a similar trend in the predicted 

charge/discharge powers can be observed. For example, at SOC = 70%, the NMC 

(LFP) cell’s EKF-estimated discharge and charge power is 82 W (44 W) and 25 W 

(21 W), whilst for the HPP method, the cell’s power is predicted at 85 W (44 W) and 

29 W (18 W) for discharge and charge respectively. Similarly, at the lower end of 

SOC range, the EFK-estimated NMC (LFP) cell power is 52 W (32 W) and 49 W (20 

W), whilst the HPP predicted power levels are 54 W (30 W) and 47 W (20 W) for 

discharge and charge respectively. Despite the fact that HPPC and the proposed 

battery power SOP estimation techniques differ in implementation, a good 

agreement between the two methods can be observed, which adds further 

confidence to the proposed hybrid battery identification technique.   

6.5 Chapter Conclusions 

It was discussed that, in order to realise a proper identification of the battery 

parameters using the dual-EKF estimator, the weight EKF needs to be initialised 

with a sufficient a priori knowledge of the unknown model parameters. Of course in 

practice, such information might not be available to the BMS or the EKF’s 

input/output signal may not be persistently exciting at all times for the convergence 

to occur; thus a hybrid battery identification technique has been proposed in this 

Chapter. The technique consisted of a carefully designed PRBS excitation signal for 

the characterisation of the battery’s impedance, given an open-circuit rest period of 

at least 30 minutes is allowed. The parameters for a 2-RC battery model were then 

extracted using a nonlinear least-squares approach and used for the correct 

initialisation of the weight EKF in the dual-EKF algorithm. Thereafter, the dual-EKF 

algorithm was implemented recursively to adapt the model parameters with respect 

to those disturbances caused by varying operating conditions (e.g. SOC). The 

proposed technique was then applied to battery SOP estimation for an EV-based 

dynamic load profile. The performance capability of the proposed EKF-based 

battery SOP estimator has been experimentally verified against the well-known 

HPPC method; the results showed a good agreement, giving confidence to the 

proposed hybrid battery identification technique. 
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7  

 
 

On-Chip Monitoring of Critical Battery States 
Through a Decentralised EKF Framework 

 

In Chapter 6, the importance of an accurate battery parameter identification 

technique for correct characterisation of battery available power, or SOP, has been 

considered. Based on the steady-state SOP definitions given in that Chapter, it was seen 

that, as well as a true set of battery resistive-element parameters, an estimate for the 

battery’s OCV in real time is also required, making SOP a SOC-dependent metric. Thus 

far in this thesis, the dual-EKF algorithm has been used in conjunction with a pre-

determined OCV-SOC relationship to provide an online estimate of SOC for both NMC 

and LFP variants of lithium-ion battery chemistry. However, for the LFP batteries, the 

OCV curve obtained over the battery’s linear operating voltage range is fairly flat, 

which means that even the smallest error in the OCV estimate can lead to a divergence 

in battery’s SOC, and thus, SOP. As a remedy, this Chapter proposes a decentralised EKF 

framework for adaptive estimation of SOC for those lithium-ion batteries which suffer 

from a flat OCV-SOC relationship. In addition, a dynamic SOH estimation technique 

based on the battery’s SOC and the transferred coulombic charge is proposed herein 

that is suitable for real-time applications. Finally, the BMS algorithms developed 

throughout this thesis are all brought together and implemented on a low-cost ARM-

based micro-processor unit, to give realisation to an online battery states monitoring 

system with the lowest number of components possible. 

Chapter 
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7.1 Introduction 

Thus far, in this thesis, the importance of an accurate dynamic battery model, such 

as the 2-RC equivalent-circuit model, in proper characterisation of a battery device 

for in situ applications has been discussed. Moreover, it has been shown that for a 

reliable SOP estimate, it is necessary to account for the time-variability of the battery 

impedance parameters while the battery is in operation. This lead to the 

development of the hybrid battery identification technique proposed in Chapter 6. 

However, in order to fulfil the ultimate objective of this thesis, that is, the 

development of an adaptive battery monitoring system, an accurate estimate of 

battery states other than SOP, such as SOH and SOC, is required.  

In Chapter 3, a cycle-based SOH estimation technique has been developed, suitable 

for 𝜇P  implementation. Despite the satisfactory performance of the online SOH 

estimator, the proposed technique required the battery to be charged and 

discharged between 20% to 80% SOC, covering the entire linear voltage range in 

order to be able to establish a 𝑄-𝑉 relationship, and, thus the battery’s SOH. This 

condition might not be met under certain dynamic applications (e.g. EV/HEVs) 

where the consumer’s psychological attitude towards battery charging and usage is 

unpredictable.  

Therefore, in this Chapter, at first, a dynamic SOH estimation technique based on 

SOC and coulomb-counting is developed. Thereafter, a decentralised adaptive EKF 

framework is proposed for the enhancement of the OCV-based SOC estimate 

produced by the dual-EKF (DEKF) estimator in Chapter 4. The proposed technique 

benefits from real-time assessment of the filter noise statistical parameters, in an 

effort to reduce those modelling uncertainties that arise as a result of poorly 

modelled OCV-SOC relationship. This attribution is of special interest to those 

batteries with a fairly flat OCV curves, especially the LFP power cells, where even a 

small error in the model-based OCV estimate can result in intolerable SOC 

inaccuracies.   

At last, this Chapter reports on the 𝜇P implementation of the proposed EKF-based 

battery states monitoring algorithm in this thesis. The proposed system features an 
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NXP 𝜇P  unit, which is utilised as a standalone platform for the decentralised 

adaptive EKF algorithm to perform an online SOC, SOP, and SOH estimation. Finally, 

the experimental results obtained using the high-precision MACCOR battery tester 

and processed offline on PC are used to verify the convergence and tracking 

performance of the developed battery states monitoring system. 

7.2 A Dynamic SOH Estimation Method 

As mentioned in Chapter 2, section 2.2.5, there are two distinct definitions for SOH, 

relating it to either a power or energy fade. The source/sink power capability of a 

battery largely depends on its internal resistance. As the resistance grows with 

ageing, the battery’s instantaneous available power fades away. Moreover, as the 

battery ages, it loses some of its ampere-hour capacity, leading to an energy fade.  

Thus, to establish a comprehensive battery state monitoring system, in this thesis, 

both definitions of SOH as given by (7.1) and (7.2) are considered.  

 
SOHpwr = 1 − (

𝑅now
s − 𝑅0

s

𝑅0
s ) × 100% (7.1) 

 
SOHenr =

𝐶now
Ah

𝐶0
Ah

× 100% 
(7.2) 

where SOHpwr is the power-based definition, relating the battery’s current series 

resistance 𝑅now
s  to that of a reference value 𝑅0

s , and SOHenr  is the energy-based 

definition, which is the ratio of the battery’s current capacity 𝐶now
Ah  in ampere-hour 

to that of a reference value 𝐶0
Ah. It should be noted that, equation (7.1) is only valid 

if  𝑅now
s ≤ 2𝑅0

s . The reference quantities 𝑅0
s  and 𝐶0

Ah  can either be determined 

experimentally at the beginning of the battery’s life at a reasonable temperature, or 

they can be exported from the manufacture’s datasheet. In this case, both have been 

determined experimentally at 25 °C when the cells first arrived at the lab, using the 

test setup described in Chapter 2, section 2.3.1.  



 

216 

In order to predict 𝐶now
Ah  without performing a full charge/discharge cycle, a new 

method is proposed. During a charge/discharge cycle, the quantity of coulombic 

charge in the battery is modified according to (7.3). 

 

𝑄mod = 𝑄𝛼 − 𝑄𝛽 = 𝑄𝛼 −∑ 𝐼𝑘 ∙ Δ𝑡

𝛽

𝑘=𝛼

 (7.3) 

where 𝑄𝛼  is the initial charge at discrete time-step 𝑘 = 𝛼 ; 𝑄𝛽  is the final charge 

value at 𝑘 = 𝛽 ; and Δ𝑡  is the sampling period in seconds. For intervals of short 

charge/discharge durations (i.e. minutes to hours), 𝑄𝛽 can be calculated using the 

integral of the current-sensor measurements. This is also referred to as coulomb 

counting. During the charge modification interval, the SOC is also modified as,  

 
SOCmod = SOC𝛼 − SOC𝛽 =

𝑄mod
𝑄nom = 𝐶nowAh × 3600

. (7.4) 

Now, considering the definition of SOC given in equation (7.4), and assuming an 

accurate estimate for SOCmod is available during the charge modification period (i.e. 

𝛼 ≤ 𝑡 ≤ 𝛽) via an online estimator, the battery’s ampere-hour capacity, 𝐶̂now
Ah , can be 

predicted as, 

 
𝐶̂now
Ah =

𝑄mod
3600 × SOCmod

. (7.5) 

7.3 Enhanced Real-Time SOC Estimation 

Whilst many real-time SOC estimation techniques for other chemistries of the 

lithium-ion battery family have been presented (e.g. [88], [97], [250], [254], [268]), 

those for the LFP variation are less frequently reported. The LFP cells are regarded 

as the preferred choice of battery chemistry for many power applications [32]. 

Difficulty arises in relating the SOC to the OCV curves obtained for these cells.  
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As discussed previously in this thesis, the OCV-SOC relationship for most battery 

chemistries often provides a good estimate of SOC. However, for the LFP variation 

of the lithium-ion cell chemistry, the OCV curve is fairly flat over the linear SOC 

range. The OCV curve as a function of SOC at different temperatures for a typical LFP 

cell is shown in Fig. 7.1. Note that within the linear SOC range of 20-80%, the OCV 

curves obtained are fairly flat, even at low operating temperatures where 

nonlinearities are usually most apparent. This implies that even a small error in the 

model-based OCV obtained within this region can result in a large deviation from 

the actual SOC value. 

 

Fig. 7.1 The OCV curves measured as a function of SOC and temperature for an LFP 

cell, showing the fairly flat OCV region between 20% to 80% SOC 

Therefore, as a remedy, this Chapter proposes a decentralised framework for the 

adaptive EKF estimation of SOC for both LFP and NMC cells, with real-time process 

and measurement covariance assessment. Essentially, the adaptive EKF estimator is 

employed to treat those OCV-induced modelling uncertainties that are introduced 

into the SOC estimate, caused by the cell’s flat OCV-SOC relationship. Consequently, 

problems such as divergence and large estimation errors that occur around the 

linear SOC range of LFP cells can be remedied. The proposed technique will also be 

Fairly flat OCV region 

ΔOCV

ΔSOC
= 0.153 𝑉 
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verified on an NMC cell to demonstrate its performance on those lithium-ion cell 

chemistries whose OCV curves are not as severely flat as LFP cells. 

7.3.1 Dual-EKF Response to Flat OCV curves 

In order to demonstrate the effect of a flat OCV curve on the SOC estimate obtained 

using the standard DEKF, the algorithm was run on the dataset gathered for an LFP 

cell, using the self-designed pulsed-current test profile described in Chapter 2, 

section 2.3.2.5. For details on recursive DEKF estimation of battery SOC, the reader 

is referred to Chapter 4, section 4.5.   

 

Fig. 7.2 DEKF estimation of SOC for an LFP cell, showing the impact of a flat OCV 

curve 

Fig. 7.2 compares the SOC estimated using the standard DEKF estimator with that 

measured by the coulomb-counting method (denoted as Ref. SOC). Despite the 

reasonable RMSE of less than 5% obtained over the SOC range of 0-100%, at ~60% 

SOC, the DEKF-based SOC estimate starts to drift away from the reference SOC (black 

line), resulting in an estimation error of up to 13 percentage point. This error is 

largely caused by the modelling uncertainties introduced into the filter’s output 

equation, as a result of the inherently flat OCV-SOC relationships observed for LFP 

power cells. 
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7.3.2 A Decentralised Adaptive EKF Framework 

In order to account for the flatness of the OCV-SOC curve for LFP cells, as discussed 

previously, and to produce an accurate OCV estimate for the SOP calculations using 

the steady-state definitions given by equations (6.8) and (6.9), a decentralised EKF 

framework is proposed.  

 

Fig. 7.3 Block diagram illustrating the structure of the proposed decentralised-

AEKF framework for enhanced SOC estimation of LFP power cells 

As illustrated in Fig. 7.3, the proposed technique is comprised of two ordinary EKFs 

implemented in a dual/parallel formation (refer to Chapter 4, section 4.5 for more 

details on dual-EKF algorithm) to estimate the 2-RC battery model parameters (i.e. 

𝑅𝑠 , 𝑅1 , 𝜏1 , 𝑅2  and 𝜏2) and states (i.e. 𝑉RC1  and 𝑉RC2). Thereafter, assuming a zero 

correlation exists between the process and measurement noise covariance, an 

additional EKF is designed to decentralise the SOC estimation from the standard 

dual-EKF algorithm’s states filter. Thereafter, the process and measurement noise 

statistics for the decentralised SOC filter are predicted in real time, resulting in an 

adaptive EKF (AEKF) algorithm for the enhancement of the SOC estimate, ẑ𝑘 , 

obtained for LFP power cells.  
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The update procedure of the 2-RC model states and parameters by EKFx and EKFθ 

estimators in Fig. 7.3 is realised through the standard DEKF equations given in Table 

4.2 of Chapter 4. Moreover, assuming that the cell voltage and current are the only 

measurable quantities available at time step 𝑘 , the state-space equations for the 

decentralised AEKF estimator can be derived.  

 z𝑘 = 𝑓(z𝑘−1, u𝑘) + w𝑘
z  

y𝑘 = ℎ(z𝑘, u𝑘) + v𝑘
z  

w𝑘 
z ~ 𝑁(0,Q𝑘

z) 

v𝑘
z  ~ 𝑁(0,R𝑘

z) 

(7.6) 

where z𝑘  is the SOC estimate and y𝑘 is the model-based terminal voltage estimate at 

time-step 𝑘 ; 𝑓(z𝑘−1, u𝑘) = z𝑘−1 − (𝜂Δ𝑡 𝑄nom⁄ ) ∙ 𝐼𝑘  is the state transition model; 

ℎ(z𝑘, u𝑘) = 𝑉OC(z𝑘) − 𝑉RC1𝑘 − 𝑉RC2𝑘 − 𝐼𝑘𝑅s is the nonlinear observation model; and, 

w𝑘 
z and v𝑘 

z are the filter’s process and measurement Gaussian noises of covariance 

Q𝑘
z  and R𝑘

z , respectively. 

Similar to the DEKF algorithm in Chapter 4, the SOC AEKF proposed here also 

performs three steps to compute an estimate for the battery’s SOC. 

A) Initialisation. 

At time-step 𝑘 = 0, the SOC state and the associated error covariance matrix are set 

to their best-guess values as per (7.7). 

 ẑ0
+ = 𝐸[z0], Pz̃,0

+ = 𝐸[(z − ẑ0
+)(z − ẑ0

+)𝑇] (7.7) 

B) Time-update equations. 

At this step, the filter updates the a priori SOC state ẑ𝑘
− and the corresponding error 

covariance Pz̃,𝑘
− . The subsequent time-update equation for the adaptive SOC filter 

becomes, 



 

221 

 
ẑ𝑘
− = ẑ𝑘−1

+ − [
𝜂Δ𝑡

𝑄cell
] ∙ 𝐼𝑘  

Pz̃,𝑘
− = F𝑘−1Pz̃,𝑘−1

+ F𝑘−1
𝑇 + Q𝑘

z  

(7.8) 

where 𝑄cell = 𝐶0
Ah × 3600 is the cell’s coulombic capacity; 𝜂 is the cell’s coulombic 

efficiency and is assumed to be unity; Δ𝑡 = 100 ms is the sampling period;  ẑ𝑘−1
+  is a 

posteriori estimate of the SOC state at time-step 𝑘 − 1, F𝑘−1 = 𝜕ẑ𝑘
− 𝜕ẑ𝑘−1

+⁄ = 1; and 

Q𝑘
z  is the process noise covariance for the SOC filter to be estimated adaptively. 

C) Measurement-update equations 

After a voltage and current measurement has been taken at time step 𝑘, the AEKF 

estimator takes this into consideration in order to compute the Kalman gain L𝑘
z  and 

to update the SOC state ẑ𝑘
+ and its corresponding error covariance as Pz̃,𝑘

+ . 

 L𝑘
z = Pz̃,𝑘

− (H𝑘
z)𝑇[H𝑘

zPz̃,𝑘
− (H𝑘

z)𝑇 + R𝑘
z ]
−1

 

ẑ𝑘
+ = ẑ𝑘

− + L𝑘
z [y𝑘 − ℎ(ẑ𝑘

−, u𝑘)] 

Pz̃,𝑘
+ = (𝐼 − L𝑘

zH𝑘
z)Pz̃,𝑘

− (𝐼 − L𝑘
zH𝑘

z)𝑇 + L𝑘
z R𝑘

z (L𝑘
z )𝑇 

(7.9) 

where H𝑘
z = 𝜕ℎ(ẑ𝑘

−, u𝑘) 𝜕⁄ ẑ𝑘
− = 𝜕𝑉OC(ẑ𝑘

−) 𝜕⁄ ẑ𝑘
−  is the linearised observation model 

that maps the time-updated SOC state into the observed space. Note that, due to the 

scalar property of the state vector for the AEKF-based SOC estimator given by (7.8) 

and (6.4), the computational power and/or memory required of the 𝜇P  unit for 

calculating the Kalman gain L𝑘
z  of the decentralised SOC filter is comparatively lower 

than calculating the Kalman gain for an adaptive DEKF algorithm with SOC as one of 

its estimable states. This is owed to the fact that for the latter case, the inverse of a 

3-by-3 matrix would be required to compute the Kalman gain, 𝐋𝑘
x , for the DEKF 

estimator as per (4.23), whereas for the proposed decentralised SOC filter, this 

inverse operation only applies to a 1-by-1 matrix. 

Finally, in order to account for those modelling errors associated with the flatness 

of the OCV curves for LFP power cells, the process and measurement noise 
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covariance Q𝑘
z  and R𝑘

z , respectively, are predicted online, using an index weighted 

method as explored in [254]. Accordingly, Q𝑘
z  and R𝑘

z  can be recursively updated for 

the decentralised SOC EKF as, 

 

Q𝑘
z = (1 − 𝛿𝑘−1)Q𝑘−1

z + 𝛿𝑘−1(∑ [L𝑖
z𝑦̃𝑖𝑦̃𝑖

𝑇(L𝑖
z)T + Pz̃,𝑖

+ − Pz̃,𝑖
− ]

𝑁𝑠−1

𝑖=0

) 

R𝑘
z = (1 − 𝛿𝑘−1)R𝑘−1

z + 𝛿𝑘−1(∑ [𝑦̃𝑖𝑦̃𝑖
𝑇 − Pz̃,𝑖

− ]

𝑁𝑠−1

𝑖=0

) 

(7.10) 

where 𝑁s = 30  is the observation sample size; 𝛿𝑘−1 = (1 − 𝜆) (1 − 𝜆
𝑘)⁄  is a 

weighting factor and 𝜆 = 0.95 is the forgetting factor; and 𝑦̃𝑖 = y𝑖 − ℎ(ẑ𝑖
−, u𝑖) is the 

measurement innovation. In order to ensure all the error covariance matrices are 

non-singular, Q𝑘
z and R𝑘

z  must be positive-semidefinite and positive-definite 

respectively. Thus, to meet these conditions, a conservative approach is undertaken 

here, where the diagonal elements of Q𝑘
z  and R𝑘

z  are forced to their absolute values 

at every iteration.  

 

Fig. 7.4 Enhanced AEKF estimation of SOC for an LFP cell 
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Fig. 7.4 compares the resulting SOC estimates obtained for the same LFP cell as 

shown in Fig. 7.2. For analysis purposes, the self-designed pulsed-current profile, as 

derived in Chapter 2, section 2.3.2.5 has been used herein. It is evident that the 

proposed decentralised AEKF method has resulted in a much better SOC tracking 

performance than the standard DEKF method. To further verify the performance of 

the AEKF SOC estimator, the initial SOC state has been intentionally set to two 

erroneous conditions of 80% and 40%, while the actual SOC was at 100%. Fig. 7.5 

demonstrates the excellent convergence of the proposed SOC estimator, in spite of 

the large offset error present at the initialisation step.   

 

Fig. 7.5 AKEF SOC estimation performance with respect to erroneous initial 

conditions 

7.4 Battery Monitoring System Development 

In order to realise an embedded battery states monitoring system, the online DEKF 

battery parameters identification method explored in Chapter 4, together with the 

decentralised AEKF SOC estimation method proposed in this Chapter, are converted 

into a C++ script, suitable for deployment on the ARM-based 𝜇P unit of interest here. 

For the verification tests, the MACCOR battery tester is used as the experimental rig 

to control the cell charge/discharge current, whilst the developed battery 

monitoring system is connected to the cell terminals.   
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7.4.1 Reduced-Order OCV-SOC Polynomial 

 

Fig. 7.6 OCV-SOC relationship for (a) NMC and (b) LFP lithium-ion cells, showing 

adequacy of a third-order polynomial fit over the linear SOC range 

In order to estimate SOC using the proposed decentralised AEKF method to estimate 

SOC in real time, a mathematical relationship between the battery’s OCV and SOC is 

required. In Chapter 4, section 4.4.1, the OCV-SOC relationship over the entire SOC 

range was modelled using an eighth-order polynomial function. However, in Fig. 7.6, 

it can be seen that over an operational SOC range of 20-80%, for both LFP and NMC 

cell types, the OCV-SOC relationship can be described using a third-order 

Linear SOC range 

Fairly flat OCV curve 

(a) 

(b) 



 

225 

polynomial, without loss of accuracy. In terms of memory usage, the reduced-order 

OCV function offers a better performance, when implemented on a low-cost 𝜇P unit. 

 𝑉OC(SOC) = 𝑝3 × SOC
3 + 𝑝2 × SOC

2 + 𝑝1 × SOC + 𝑝0 (7.11) 

where coefficients 𝑝0→3  are experimentally determined. As reported in [91] and 

[269], the variation of the OCV coefficients with ageing and temperature is 

negligible. Thus, the OCV coefficients established at one practical temperature (e.g. 

at 25°C) can be stored on the 𝜇P’s flash memory for real-time SOC estimation.  

7.4.2 Hardware Configuration 

 

Fig. 7.7 Hardware configuration for embedded battery monitoring system 

As depicted in Fig. 7.7, the developed battery monitoring system is comprised of an 

ARM Cortex-M0 processor, namely NXP KL25z128, with six embedded 16-bit 

analogue-to-digital-converters (ADCs). Battery current is measured using a 

bidirectional Hall-effect sensor, namely Allegro ACS712-20A, as depicted in Fig. 7.8.  
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Fig. 7.8 Photograph of the 20 A Hall-effect current sensor 

The current sensor generates a proportional 0-5 V analogue voltage cantered at 2.5 

V, for current flows in both directions. The battery surface temperature is measured 

using a 10 kΩ thermistor, which is calibrated using a three-point method and the 

Steinhart-Hart equation [270]. The data acquisition is performed at 10 Hz. Prior to 

digital conversion of the analogue voltage and current signals, they are conditioned 

accordingly; this involves an intermediate amplification stage that ensures the input 

signals are within the 𝜇P’s operating voltage range of 0-3.3 V; and a low-pass filter 

stage (𝑓corner = 1 kHz) is added to remove any high-frequency noise contents from 

the digital circuitry on-board the 𝜇P unit. 

7.4.3 Software Configuration 

The process flow-chart for the developed battery monitoring system is illustrated in 

Fig. 7.9. It starts by initialising the DEKF battery impedance parameters estimator 

and the decentralised AEKF SOC estimator, using the PRBS identification method 

developed in Chapter 6.  

Thereafter, battery terminal data (i.e. voltage, current) are acquired and fed into the 

DEKF and the AEKF estimators every Δ𝑡 seconds. Upon the completion of DEKF and 

AEKF measurement-update at time-step 𝑘, SOC, OCV and RC model parameters are 

estimated. Then, the updated estimates are applied to equations (7.12)-(7.14) to 

obtain an online estimate for the cell's SOP and SOF, respectively. 

𝐼cell 

5 V 

GND 
𝑉out 

Hall-effect 
current sensor  
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Fig. 7.9 Flow chart showing the software structure of the real-time battery states 

monitoring system 

 
𝑃𝑘
dis =

𝑉min(𝑉̂OC,𝑘 − 𝑉min)

𝑅̂s + 𝑅̂1 + 𝑅̂2
 (7.12) 

 
𝑃𝑘
ch =

𝑉max(𝑉max − 𝑉̂OC,𝑘)

𝑅̂s + 𝑅̂1 + 𝑅̂2
 

(7.13) 

where 𝑉min and 𝑉max are the minimum and maximum battery threshold voltages, as 

specified in Table 2.5, for a safe operation of the LFP and NMC test cells. 𝑅̂s, 𝑅̂1 and 

𝑅̂2 are the estimates of the resistive-element RC model parameters, and 𝑉̂OC is an 

estimate of the battery’s OCV at time-step 𝑘. Consequently, using (7.12) and (7.13), 

a power-based definition for the battery’s functionality or, SOF, is developed. 
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SOF = {

1, for 𝑃𝑘
ch ≥ 𝑃req

ch  and 𝑃𝑘
dis ≥ 𝑃req

dis

0, for 𝑃𝑘
ch < 𝑃req

ch  and 𝑃𝑘
dis < 𝑃req

dis
 (7.14) 

where 𝑃req
ch = 𝐼req

ch × 𝑉max  and 𝑃req
dis = 𝐼req

dis × 𝑉min  are, respectively, the quantities of 

required charge or discharge power, in order to fulfil a particular task. To verify the 

quality of the charge and discharge SOP estimates given by (7.12) and (7.13), 

respectively, a similar approach to Chapter 6 is taken, where the HPPC method [198] 

is adopted as a means of reference framework.  

Since cell capacity 𝐶now
Ah  is a very slow time-varying parameter, it is predicted every 

10 minutes. The capacity estimate is then applied to equation (7.2) in order to 

predict the cell’s energy-based SOH (i.e. SOHenr) at the current time step.  

7.4.4 𝝁𝐏 Programming 

 

Fig. 7.10 Evolution of software code for 𝝁𝐏 programming 

ARM Cortex-M0 chip 

MATLAB 
Embedded Coder 

Kinetis Design 
Studio 
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MATLAB script 

C code  
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Serial data transfer 
Python 
script 

MATLAB Simulink subsystem 
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The developed algorithm is initially simulated using a MATLAB Simulink function 

block, as show in Fig. 7.10. Thereafter, the MATLAB Embedded Coder wizard is used 

to convert the MATLAB script into a C code, for deployment on the 𝜇P unit. The 

software used for transferring the C code onto the NXP 𝜇P  unit was the Kinetis 

Design Studio.  This software allows for the deployment of the generated BMS code 

onto the ARM Cortex-M0 processor. A script written in Python enabled to establish 

a serial communication between the 𝜇P unit and the host PC, for data storage and 

visual interface.  

7.5 Experimental Results 

In order to verify the performance of the battery monitoring system developed in 

this Chapter, the LFP and NMC test cells are applied with a dynamic EV-based 

Artemis drive cycle, using the multi-channel MACCOR battery tester. The resulting 

test profile, as presented in Fig. 7.11 is similar to that reported in Chapter 6.  

 

Fig. 7.11 Experimental C-rate profile employed for the verification of the 

developed battery states monitoring system on LFP and NMC cells 

The test profile is comprised of a full charge and discharge cycle to measure the test 

cells’ actual capacities and to calibrate the coulomb-counter used for the reference 

SOC (Ref. SOC) calculation. Then, using a 0.5 C discharge current, the cells are 

discharged from 100% to 80% SOC, which is a typical starting SOC level in 

applications with regenerative currents (e.g. in EVs). Once discharged to 80% SOC, 

a 30-minute rest period is allowed for the cells to reach a steady-state condition. 

Verification interval Coulomb-counting 
calibration 
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Thereafter, each test cell is applied with approximately 28 repetitions of the 

Artemis-based c-rate profile derived in Chapter 6, in order to dynamically discharge 

the cells from 80% to 20% SOC.  

Fig. 7.12(a) and (b) present the cell terminal voltages measured using the MACCOR 

system, the EKF-estimated voltages using the developed 𝜇P-based platform, and the 

predicted OCVs for the NMC and LFP test cells, respectively. A zoomed-in view of the 

filter’s performance over a single cycle is presented in Fig. 7.13. Table 7.1 provides 

the voltage estimation error results for the two test cells. In both cases, a satisfactory 

absolute error performance has been accomplished by the proposed AEKF 

estimator ran on the NXP 𝜇P unit. 

 

Fig. 7.12 Comparison of measured and AEKF-estimated terminal voltage and 

predicted OCV for the (a) NMC and (b) LFP test cells 

(a) 

(b) 
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Fig. 7.13 Zoomed-in views of measured and AEKF-estimated terminal voltages for 

(a) NMC and (b) LFP test cells  

Table 7.1 AEKF cell terminal voltage estimation performance 

Cell 
Max absolute 

error (mV) 
Mean absolute 

error (mV) 

NMC 

LFP  

20.9 

19.2 

1.3 

5.2 

 

Fig. 7.14 displays the EKF-identified resistive-element RC model parameters 𝑅s, 𝑅1 

and 𝑅2  and their variations with respect to SOC for both NMC and LFP cells. 

Generally, as SOC decreases, the over-potential gradient between the positive and 

negative electrodes grows.  

(a) 

(b) 
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Fig. 7.14 EKF-identified resistive-element RC model parameters 𝑹𝐬, 𝑹𝟏 and 𝑹𝟐 for 

(a) NMC and (b) LFP test cells 

This explains the increasing trend of 𝑅s as observed in Fig. 7.14(a) and (b). During 

the first 30 minutes, whilst the cells are in open-circuit mode, the EKF produces 

unrealistic estimates. This is due to the lack of persistence of excitation of the input 

signal. However, as soon as the load is engaged (i.e. at 𝑡 = 1800  seconds), the 

algorithm starts to converge towards the ‘true’ estimates. It should be noted that the 

EKF responsible for cell parameters estimation has been initialised with the PRBS-

attained RC parameters identified at SOC = 80%. For details on PRBS battery 

identification, the reader is referred to Chapter 6. 

To verify the convergence of the proposed SOC estimator, the initial SOC for both 

cells has been intentionally set to an incorrect value of 20%, whilst the true SOC was 

79.57% for the NMC cell and 80% for the LFP cell. Fig. 7.15 presents the estimation 

results for the NMC cell, whereas Table 7.2 provides the obtained error 

performance. As observed, the SOC given by the coulomb-counting method 

(a) 

(b) 
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gradually drifts away from the true ‘Ref. SOC’. This is due to the accumulation of 

sensor noise during the test period. As a result, the final SOC reported by the 

coulomb-counting method is measured at 14%, whilst the actual SOC is at 19.47%. 

On the other hand, despite the noisy current measurements provided by the low-

cost Hall-effect sensor (see Fig. 7.8) and the incorrect initialisation of the SOC state, 

the proposed AEKF estimator is capable of realising an excellent tracking of the cell’s 

SOC. This is a significant achievement over the conventional coulomb-counting 

method for SOC determination in dynamic applications.   

The performance of the decentralised AEKF estimator for the OCV-based SOC 

estimation of LFP cells is demonstrated in Fig. 7.16. Similar to the NMC case, the SOC 

state for the LFP filter was incorrectly initialised at 20%, whilst the true SOC was 

experimentally determined to be at 80%. From Fig. 7.16, it is observable that the 

standard DEKF algorithm fails to keep a track of the true SOC within the region of 

70% to 30% SOC. Nevertheless, by updating the filter process and measurement 

noise statistics, the AEKF has been able to adapt to those OCV-based modelling 

uncertainties. This has resulted in a significant improvement in the SOC estimated 

online for this particular lithium-ion power cell which suffers from an inherently flat 

OCV curve within its linear operating voltage range (i.e. ~20-80% SOC). 

 

Fig. 7.15 SOC obtained for the NMC cell using the coulomb-counting and the 

proposed AEKF method, showing the effect of current-sensor error accumulation 
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Table 7.2 SOC estimation error performance for the NMC cell 

Method Max absolute error Mean absolute error 

Coulomb-counting 

AEKF estimator  

0.0606 

0.0111 

0.0269 

0.0039 

 

 

Fig. 7.16 SOC estimation results for the LFP cell, comparing the performance of the 

proposed AEKF method with that of the standard DEKF method 

Table 7.3 SOC estimation error performance for the LFP cell 

Method Max absolute error Mean absolute error 

Standard DEKF  

Proposed AEKF  

0.0499 

0.0099 

0.0224 

0.0036 

In order to quantify and compare the performance of the two SOC estimation 

methods, a statistical analysis of SOC error has been conducted and the results are 

listed in Table 7.3. The errors were calculated after both filters had converged and 

entered an error bound of ±0.5% SOC for the first time, with respect to ‘Ref. SOC’ in 

Fig. 7.16. Respectively, the DEKF estimator has resulted in a maximum absolute SOC 

error of around 5%, where that calculated for the AEKF method is only 1%. 

Furthermore, over the SOC range of 20-80%, the AEKF method produced a SOC 
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estimate with a mean absolute error of less than 0.5%. Compared to the 2% mean 

error obtained using the standard DEKF method, this is a significant improvement 

of the OCV-based SOC estimation for the LFP cells. 

Similar to Chapter 6, here, the HPPC method has been employed as a reference 

framework for the validation of the charge and discharge power estimates obtained 

online using the 𝜇P-based platform. Fig. 7.17 presents the cell power estimation 

results obtained for both the NMC and LFP cells, using the steady-state SOP 

definitions given by (7.12) and (7.13). For both lithium-ion cell types, the power 

values estimated online using the PRBS-initialised DEKF algorithm, together with 

the improved OCV estimates produced by the proposed decentralised AKEF method 

demonstrate an excellent agreement with the HPPC predictions obtained over the 

same SOC range. This further validates the performance of the developed battery 

states monitoring system for online SOP estimation of both NMC and LFP cells.  

In order to estimate the test cells’ current SOH levels using the definitions given in 

(7.1) and (7.2), the initial cell capacity and series-resistance values have been 

experimentally determined as 𝐶0
Ah = 3.718 Ah and 𝑅0

s = 0.028 Ω for the NMC cell, 

and, 𝐶0
Ah = 3.037 Ah and 𝑅0

s = 0.031 Ω for the LFP cell. It should be noted that the 

initial cell capacity was measured using the static capacity test procedure described 

in Chapter 2, section 2.3.2.1, whereas, the initial cell resistance was determined 

using the EIS method outlined in Chapter 2, section 2.3.2.2. Subsequently, using the 

accurately estimated SOC using the decentralised AEKF method, and the transferred 

coulombic charge measured using the low-cost Hall-effect current sensor during 10-

minute window intervals, the capacities for both cells are predicted according to 

equations (7.3)-(7.5).  
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Fig. 7.17 SOP estimation results gathered online for (a) NMC and (b) LFP test cells 

Fig. 7.18 presents the online capacity prediction results obtained using the 𝜇P-based 

platform for both NMC and LFP test cells. Note that, since cell capacity is a very 

slowly time-varying parameter, the algorithm takes around 90 minutes to converge 

to within ±5% of the actual Ah capacity for both cell types. Thus, by taking the 

arithmetic mean of the capacity estimates obtained after 90 minutes of operation, 

the capacity of the NMC cell has been estimated at 𝐶now
Ah = 3.627 Ah, whereas the 

actual cell capacity after a full charge/discharge cycle has been determined to be at 

3.642 Ah. Similarly, for the LFP cell, the ampere-hour capacity has been estimated 

at 𝐶now
Ah = 2.371 Ah, while the actual capacity has been experimentally determined 

to be at 2.391 Ah. 

(a) 

(b) 
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In addition to the capacity estimates, the series resistances identified by the DEKF 

algorithm for both NMC and LFP cells, as presented in Fig. 7.14(a) and (b) 

respectively, are used to produce a power-based SOH estimate. Subsequently, by 

taking the arithmetic mean of the series-resistance values, 𝑅now
s  is determined to be 

at 0.029 Ω for the NMC cell and 0.038 Ω for the LFP cell.  

 

Fig. 7.18 Online capacity prediction results for SOH estimation, obtained for (a) 

NMC and (b) LFP test cells 

Finally, by using the energy- and power-based SOH definitions given by (7.1) and 

(7.2), respectively, the cells’ current SOH levels can be predicted. The results for 

both NMC and LFP test cells are presented in Table 7.4. In both cases, the predicted 

energy- and power-based SOH metrics very closely match the actual SOH levels 

calculated using the cell capacities obtained from a static capacity test. This gives 

further confidence to the performance capabilities of the developed low-cost battery 

states monitoring system for NMC and LFP variants of lithium-ion cell chemistry. 

(a) 

(b) 
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Table 7.4 SOH estimation results for the NMC and LFP test cells 

Cell Actual SOH (%) Predicted 𝐒𝐎𝐇𝐞𝐧𝐫 (%) Predicted 𝐒𝐎𝐇𝐩𝐰𝐫 (%) 

NMC 

LFP  

97.94% 

78.72% 

97.55% 

78.07% 

96.43% 

77.42% 

 

7.6 Chapter Conclusions 

This Chapter reported on the development of a low-cost 𝜇P-based battery states 

monitoring system. The developed system consisted of an ARM Cortex-M0 

processor with embedded ADCs for data acquisition and processing. The battery 

states of interest in this Chapter included SOC, SOP and SOH, for which two 

definitions were given; SOHenr, which related to the energy storage capacity of the 

cell, and, SOHpwr , which related to a fade in the battery’s power capabilities. 

Subsequently, a technique for online prediction of battery capacity for 

SOHenrcharacterisation has been proposed. the proposed technique required an 

accurate estimate of the battery’s SOC in real time. As a result, a decentralised AEKF 

method for the adaptive estimation of SOC has been proposed in this Chapter. The 

adaptive technique is mainly beneficial to the LFP cells, whose OCV response is fairly 

flat within their linear operating voltage range, whereby separating the SOC state 

from the ordinary DEKF estimator and designing a third EKF for SOC estimation 

with real-time process and measurement noise covariance (i.e. Qz  and Rz), those 

OCV-induced modelling uncertainties can be accounted for, yielding an enhanced 

SOC estimate for the LFP power cells. Finally, the developed system has been 

experimentally verified on an NMC and LFP cell. Despite the large current sensor-

drift and incorrect initialisation of the SOC state, the decentralised EKF-based 

estimator has posed excellent SOC, SOP and SOH tracking capabilities. This 

attribution is of particular interest to those applications which necessitate for an 

accurate knowledge of the battery’s states to be available for the proper execution 

of various battery energy and power management strategies. Further, to prolong the 

battery’s lifetime, the proposed system can also be utilised as a low-cost platform to 

perform the necessary control actions required for a safe battery operation.  
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8  

 
 

Conclusions and Future Work 

 

This Chapter provides a summary of the work carried out in this thesis, discussing the 

role of each chapter in achieving the main objective of the thesis and the contributions 

made to the body of knowledge as a whole. An overall conclusion is then drawn and 

the scope for the future work which expand on this thesis is also set out. 

8.1 Summary  

The main objective of this thesis was to develop and optimise an online monitoring 

system for lithium-ion batteries which could adapt to changes imposed by varying 

operating conditions.  

As set out in Chapter 1, the motivation for the work carried out in this thesis is to 

increase the future uptake of lithium-ion battery energy storage devices in safety-

critical applications, such as in electric/hybrid-electric vehicles (EV/HEVs), 

unmanned aerial vehicles (UAVs) and the rapidly evolving smart grid. The battery 

management system BMS and its incorporated estimation algorithms is identified 

as one the main areas of research for improving the future adoption of these delicate 

energy storage devices in a wider range of power applications. Hence, this thesis 

puts its focus on developing a novel battery states monitoring system, whereby 

optimising the embedded BMS algorithms, not only the safety aspect of the battery 

Chapter 
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system will be improved through close monitoring of the battery’s electrical and 

thermal performance, but also a better utilisation of the battery in terms of power 

and energy delivery can be realised. 

Subsequently, to complete a coherent piece of research, the state-of-the-art of 

battery energy storage systems, including a comparative study of different battery 

chemistries and the employed BMS structures, as presented in literature, is 

reviewed in Chapter 2. At first, to familiarise the reader with the common battery 

terminologies used in literature, a list of those terms relevant to this thesis are 

provided. Then, the basic electrochemistry of battery energy storage devices is 

explained. Various battery technologies and their applications are discussed. 

Thereafter, to provide the reader with appreciation for the attributions of each 

chapter, a comprehensive review of the battery states of interest to a BMS, such as 

state-of-charge (SOC), state-of-health (SOH), state-of-power (SOP) and state-of-

function (SOF) is undertaken. Various methods for direct and model-based 

characterisation of battery impedance parameters and the aforementioned states 

are discussed. Finally, the setup and procedures for experimental control and 

verification of the proposed battery estimation techniques in this thesis is explained. 

Chapter 3 discusses the importance of SOH estimation in battery-powered 

applications. Subsequently, a bespoke bidirectional microprocessor-based battery 

power cycler, for the purpose of cycle-based SOH characterisation, is developed. 

Also in this Chapter, a method for the online estimation of SOH for the lithium-ion 

iron phosphate (LFP) cells is proposed, which is implemented on an AVR 

microprocessor (𝜇P) unit. In addition, an empirical model for battery remaining-

useful-life (RUL) prediction is developed, whose coefficients are calculated based on 

the first 3-4% of SOH degradation. 

For online estimation and monitoring of various battery states (e.g. SOC), 

appropriate battery models must be employed. To this end, an experimental study 

on most commonly used battery models in both motive and stationary battery 

storage applications is undertaken in Chapter 4. Ten battery model structures 

including, the combined model, Rint model, two different hysteresis models, 
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Randles model, a modified Randles model, and two resistor-capacitor (RC) network 

models with and without hysteresis included are studied. The performance of each 

model structure is examined under various operating conditions, with respect to 

terminal voltage, SOC and SOP estimation accuracy. The results obtained in this 

Chapter suggest that an RC network model structure can provide the highest level 

of accuracy for the purpose of online battery states monitoring, when compared to 

other electrical equivalent-circuit battery models.  

To identify the minimum order number for the chosen RC network battery model, a 

frequency-domain analysis on the complex impedance data gathered for a nickel 

manganese cobalt oxide (NMC) and LFP cell is conducted in Chapter 5. The results 

show that a 2-RC model structure, with two dynamic states and five identifiable 

parameters is an optimum choice in terms of both modelling accuracy and 

complexity. Then, a sensitivity analysis on the selected 2-RC model structure is 

carried out with respect to parameterisation error, in an effort to gain a better 

understanding of the impact of erroneous or static model parameters on the quality 

of the model-based battery state estimates such as SOC and SOP. The results for the 

sensitivity analysis conducted in this Chapter imply that for accurate model-based 

SOP estimates, model parameters need to be identified in real time, in parallel to the 

battery’s SOC. This is to ensure that any changes in the battery parameters caused 

by varying operating conditions (e.g. ambient temperature) are accounted for. 

In Chapter 6, a novel hybrid battery identification technique is proposed to identify 

the parameters of the selected 2-RC network battery model, in an adaptive 

deterministic fashion. The proposed technique is comprised of a carefully designed 

pseudorandom binary sequences (PRBS), which is used to properly excite the 

battery under test over a prescribed frequency band. The 2-RC battery model 

parameters are then extracted form from the measured complex impedance data 

using a nonlinear least-squares method. The identified parameters are then used to 

correctly and deterministically initialise a Dual Extended Kalman Filter (DEKF) 

algorithm, in an effort to capture any variations imposed on the battery under real-

time operation, due to SOC modification and/or varying operating conditions such 

as the ambient temperature. The proposed hybrid battery identification technique 
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is then applied to online SOP estimation for both NMC and LFP test cells used in this 

thesis. The standard hybrid-pulse-power-characterisation (HPPC) test is used as a 

reference framework for the verification of the online battery SOP estimation 

technique.  

The battery’s open-circuit voltage (OCV) forms the basis for many real-time battery 

SOC estimation algorithms. For most battery chemistries, a pre-determined OCV-

SOC relationship can be employed to provide a good estimate of the battery’s SOC. 

However, for the LFP cell chemistry, the OCV curve obtained over the battery’s linear 

operating voltage range is fairly flat, which makes it difficult to realise an accurate 

SOC estimate for this particular lithium-ion cell variant. Thus, as result, a 

decentralised EKF framework is put forward in Chapter 7 to adaptively estimate 

SOC by predicting the filter’s process and measurement noise covariance in real 

time. in addition, a dynamic battery SOH estimation technique is also proposed in 

this Chapter, which is computationally light and unlike the method developed in 

Chapter 3, the SOH obtained using this method is directly related to the battery’s 

ampere-hour capacity fade. Finally, the battery SOC, SOH and SOP estimation 

techniques developed throughout this thesis are all brought together and 

implemented on an ARM Cotex-M0 𝜇P unit, to give realisation to a low-cost adaptive 

battery states monitoring system.   

8.2 Thesis Conclusions 

This thesis aimed to develop an adaptive battery monitoring system to increase the 

future uptake of battery energy storage devices for safety-critical applications (e.g. 

EV/HEVs and UAVs), and also to make lithium-ion batteries a safer and more 

appealing choice for a wider range of battery-powered applications. As a result, a 

range of online techniques for adaptive estimation of battery states, such as SOC, 

SOP and SOH were developed to improve upon the state-of-the-art of BMS 

algorithms presented in literature and to achieve the aforementioned objectives. 

This thesis contributed to the body of knowledge through the advancement of the 

standard dual-EKF method, which is commonly used in modern BMS algorithms for 

online battery impedance parameters and SOC estimation. Subsequently, a hybrid 

battery parameters identification technique based on the PRBS-initialisation of the 
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dual-EKF estimator was developed. In addition, a decentralised adaptive EKF 

framework was proposed for the enhancement of SOC estimation for those battery 

chemistries (e.g. LFP) whose OCV-SOC relationships are inherently flat. Although the 

techniques developed in this thesis were only tested on two cylindrical variants of 

lithium-ion battery chemistry (i.e. NMC and LFP), the governing equations are 

generic and non-specific to any particular battery chemistry. Therefore, with a few 

minor modifications to certain chemistry-specific model parameters, such as the 

coefficients of the OCV-SOC polynomial function, the techniques presented herein 

can be applied to other battery designs/chemistries.  

Collectively, the proposed techniques in this thesis will allow for a better utilisation 

of lithium-ion batteries by continuously monitoring their health and the power 

capabilities, without the need for laborious and time-consuming characterisation 

tests which are non-ideal in a practical sense. Ultimately, the future uptake of 

lithium-ion batteries in applications where battery and consumer safety are of main 

priority can be improved. This is facilitated by the enhanced estimation of SOC and 

battery impedance parameters, which are vital to correct characterisation of 

available battery power, or SOP, in real time. In situations where the battery is likely 

to experience an over-charge or discharge condition due to lack of knowledge of the 

internal battery parameters, the proposed techniques in this thesis will allow the 

BMS to take a more rational control decision, preventing the battery from an 

internal permanent damage, whilst delivering its maximum power; thus, improving 

the battery’s overall performance and possibly its service lifetime in the long run.   

8.3 Scope for Future Work 

Although a conclusive body of work has been presented herein and benefits offered 

over the state of the art, there are areas which this thesis can expand on. Moreover, 

the techniques presented in this thesis can be employed to answer some of the 

research questions raised in other electrical energy storage problems, especially in 

the rapidly-evolving smart grid and vehicle-to-grid (V2G) technologies [271]. The 

list below summarises the scope for future work which can lead on from this thesis.  



 

244 

 Application of the developed battery states monitoring system to series 

and/or parallel connected cells in the form of a large battery pack; 

 Application of the hybrid system identification technique to other 

electrochemical energy storage devices, e.g. supercapacitors; 

 Application of the proposed adaptive system identification technique to 

sensor-less estimation of constituent cells in large-scale grid-tie battery 

energy storage systems 

 Application of the developed battery impedance identification technique 

to sensor-less thermal characterisation of large-scale battery energy 

storage systems; 

 Feasibility of a smart cell architecture for distributed energy/power 

management of large-scale battery energy storage systems using the 

developed on-chip battery monitoring system 
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