White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Pervaporation Using Graphene Oxide Membranes

Paulauskas, Mindaugas (2015) Pervaporation Using Graphene Oxide Membranes. PhD thesis, University of Leeds.

Pervaporation Using Graphene Oxide Membranes.pdf - Final eThesis - complete (pdf)
Available under License Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales.

Download (4Mb) | Preview


Pervaporation is a perspective fluid separation technology. Membranes are widely recognised for their energy and capital cost savings. Currently, most of the research is focused on developing new membrane material that are stable in a wide range of temperatures in a presence of organic solvents. This research is focused on a graphene oxide, a novel and highly selective membrane material. Graphene oxide has attracted a lot of academic research attention. Many researchers have demonstrated selective water removal using this material, however moving forward the data lack the scope and depth of understanding of the material performance at different process conditions and fluid systems. Previous research has not addressed graphene oxide stability and performance in a wide range of conditions which are crucial for assessing the material’s potential as a water selective membrane material for industrial applications. The purpose of this work is to investigate graphene oxide membrane pervaporation permeation flux and selectivity using common aqueous organic solvent solutions. Three industrial case studies are also investigated to determine whether the material is ready to be applied on a larger scale and has a potential to replace distillation. Previous research has also missed graphene oxide low price advantage, which stems from the cheap starting materials. This has been brought up and discussed in the final results chapter of the thesis. The key outcome of this research is a demonstration of the graphene oxide pervaporation flux drop at elevated temperatures and the behaviour deviation from the solution-diffusion model. The membrane has also been rapidly fouled when exposed to aqueous peptide solutions. This research brings a large amount of experimental and analytical data, which points in a direction of the research avenues to be pursued in order to improve graphene oxide as a selective membrane material.

Item Type: Thesis (PhD)
Academic Units: The University of Leeds > Faculty of Maths and Physical Sciences (Leeds)
The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) > School of Chemistry (Leeds)
Identification Number/EthosID: uk.bl.ethos.682260
Depositing User: Mr Mindaugas Paulauskas
Date Deposited: 12 Apr 2016 15:23
Last Modified: 26 Apr 2016 15:45
URI: http://etheses.whiterose.ac.uk/id/eprint/12282

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)