White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

The connective K theory of semidihedral groups

Rodtes, Kijti (2010) The connective K theory of semidihedral groups. PhD thesis, University of Sheffield.

[img] Text
Available under License Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales.

Download (1153Kb)


The real connective K-homology of finite groups ko¤(BG), plays a big role in the Gromov-Lawson-Rosenberg (GLR) conjecture. In order to compute them, we can calculate complex connective K-cohomology, ku¤(BG), first and then follow by computing complex connective K-homology, ku¤(BG), or by real connective K-cohomology,ko¤(BG). After we apply the eta-Bockstein spectral sequence to ku¤(BG) or the Greenlees spectral sequence to ko¤(BG), we shall get ko¤(BG). In this thesis, we compute all of them algebraically and explicitly to reduce the di±culties of geometric construction for GLR, especially for semidehedral group of order 16, SD16 , by using the methods developed by Prof.R.R. Bruner and Prof. J.P.C. Greenlees. We also calculate some relations at the stage of connective K-theory between SD16 and its maximal subgroup, (dihedral groups, quaternion groups and cyclic group of order 8).

Item Type: Thesis (PhD)
Keywords: Connective K theory, semidihedral groups
Academic Units: The University of Sheffield > Faculty of Science (Sheffield) > School of Mathematics and Statistics (Sheffield)
Identification Number/EthosID: uk.bl.ethos.538013
Depositing User: Mr. Kijti Rodtes
Date Deposited: 25 Nov 2010 10:29
Last Modified: 27 Apr 2016 14:09
URI: http://etheses.whiterose.ac.uk/id/eprint/1103

Actions (repository staff only: login required)