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Abstract

The real connective K-homology of finite groups ko*(BG), plays a big role in the
Gromov-Lawson-Rosenberg (GLR) conjecture. In order to compute them, we can cal-
culate complex connective K -cohomology, ku*(BG), first and then follow by comput-
ing complex connective K -homology, ku.(BG), or by real connective K -cohomology,
ko*(BG). After we apply the n-Bockstein spectral sequence to ku*(BG) or the Green-
lees spectral sequence to ko*(BG), we shall get ko*(BG). In this thesis, we compute all
of them algebraically and explicitly to reduce the difficulties of geometric construction
for GLR, especially for semidehedral group of order 16, SDig, by using the methods
developed by Prof.R.R. Bruner and Prof. J.P.C. Greenlees. We also calculate some
relations at the stage of connective K -theory between SDg and its maximal subgroup,
(dihedral groups, quaternion groups and cyclic group of order 8).
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Introduction

The connective K -theory of finite groups plays evidently a big role in the investigation
of Gromov-Lawson-Rosenberg (GLR) conjecture. This conjecture involves the existence
of a positive scalar curvature metric. That is; if n > 5, M is a spin n-manifold with
m (M) = G, (we restrict our attention to the case when G is finite, because of the
results of T.Schick, [31]), then M admits positive scalar curvature metric if and only if

[M] € ker(Q2P"(BG) — kon(BG) — KO, (BG) — KO%),

[30]. There is no known counter example for finite groups yet, see more discussions in
this direction in section 2.7 of [13], especially lemma 2.7.1 in [13]. In that, we will see
that the F-page of Greenlees spectral sequence for ko,(BG) is suitable for GLR. This
is actually the principal motivation. In order to minimize the difficulties of geometric
construction for GLR conjecture, we mainly concentrate to the algebraic calculations
as much as possible.

The main stuff in this thesis is the calculation of four types of connective K-
theory of finite groups which are ku*(BG), ku.(BG), ko*(BG), ko«(BG) for semidi-
hedral groups G, by using the methods developed by Prof.R.R. Bruner and Prof. J.P.C.
Greenlees, [14] and [13], which the author calls Bruner-Greenlees methods. The reasons
for choosing semidihedral groups,

2n—1

SDon = {s,t|s =t =1,tst = sQn_Q*l}, for n > 4,

to be a case study is firstly because there is no explicit answer for them yet, secondly,
because of their structures, e.g. SDgyn-1 is not a subgroup of SDon which contrasts
with those of dihedral groups, quaternion groups and cyclic group, and finally, because
of the first hoping that this groups might be the counter example of GLR, but so far,
it does not, by [29].

The strategies of the calculation on four types of the connective K -theory, for
finite group G, due to Bruner-Greenlees methods can be displayed as in the diagram
below;

vii
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GSS

ku*(BG) ku.(BG)

ASS
H*(BG;Ts) BSS BSS
ko*(BG) GSS ko.(BG),

where ASS refer to Adams spectral sequence, BSS refer to n-Bockstein spectral se-
quence and GSS refer to Greenlees spectral sequence and all arrows in this diagram
are not maps but they merely refer to the methods of the calculation which input and
output lie in the tails and heads of the arrows respectively. From this diagram, to
obtain ko.(BG) via Bruner-Greenlees methods with the input H*(BG;F3), we can do
possibly in two ways, i.e. ASS — BSS — GSS and ASS — GSS — BSS.

However, from our experience, combining of both ways gives us more information.

§0.1 Outline

Note at first that, the prerequisites for this thesis is the standard basics from algebraic
topology, K-theory, representation theory, commutative algebra and homological alge-
bra, especially on the topic spectral sequence.

Since all four types of connective K -theories we consider are infinite dimensional
CW -complex (classifying space BG) and are in the complete world (I-adic completion
of equivariant connective K -theory, [19]), we collect some basic facts about direct limit,
inverse limit, completion and p-adic integer in the Appendix. In preliminaries chapter
we include some basic background on periodic and connective K -theory and recall the
general methods of the calculation ku*(BG) by using Adams spectral sequence from
[14]. Since all calculations by using Bruner-Greenlees methods are mainly based on
representation theory, we collect and record some facts about them. The technique
about exact sequence is often used, thus we collect some long induced exact sequences
concerning our calculation at the end of this chapter as well.

We start to calculate ku*(BG), for semidihedral group G, by using Adams spec-
tral sequence in Chapter 2. Since the representation theory (character theory) and
cohomology ring are important tools in Bruner-Greenlees methods, we provide the
explicit calculation of the character table for semidihedral groups at the start of the
chapter. For cohomology rings, we investigate the results from [16] and try to make
the explicit relations with Chern classes or Stiefel-Whitney classes (some Bockstein
operations are included). After that, we calculate H*(BSDan;F2) as a module over
the exterior algebra F(1) followed by the calculation of Es-page which we also provide
the general structures for the Es-page of Adams spectral sequence for ku*(BG). The
calculation of differentials is not too hard and can be done by using the properties of
Chern classes, Bockstein operation and the theorem of May and Milgram, [25]. Since
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the Adams spectral sequence for ku*(BG) is strongly convergent (see this discussion
in section 1.2.3), the additive structure can be read from FE. -page together with the
character table and cohomology ring. Again, the representation theory and cohomology
ring give us the multiplicative structure. Note that we make explicit the structure of
ku*(BG) only for G = SDyg and for general semidihedral group we merely say some-
thing about the relation with its periodic K -theory and cohomology ring. We end up
this chapter by comparing our result ku*(BSD1g) with ku*(BG) for dihedral groups,
quaternion groups and cyclic groups G.

In Chapter 3, we calculate ku.(BSD1g) as a module over ku*(BSDig) by using
the Greenlees spectral sequence. To do that, we recall some background about local
cohomology based on the Koszul complex (which is suitable to our purpose) at the
beginning. The main strategy for calculating ku.(BSD;jg) is common with those in
[14]. That is by considering short exact sequence

0 — TU — ku*(BSD1s) — QU — 0,

where TU is v-torsion and QU is the image of ku*(BSDig) in periodic K -theory.
This induces a long exact sequence of local cohomology and hence instead of doing cal-
culation on Hj(ku*(BSD1g)), we can do that on the TU part and the QU part which
is evidently more comfortable. For the TU part, this is embedded in the cohomology
ring and thus the calculation is not hard in local cohomology. For the QU part, we
work on the character table to make explicit the reduction to a principal ideal and in
that we try to link the generators of QU part to the Modified Rees ring, JU;, (these
generators will be used widely in this thesis). After that, we calculate H;(QU) which
is the bulk of this chapter (we provide a great deal of detail about the calculations to
avoid mistrust) by using row-column matrix operations. After finishing this calcula-
tion, we record all results in the E, 1 page. To get the Fs-page, we need to identify
the differentials coming from the long exact sequence, which can be done by using the
module structure of local cohomology and the connective property of ku. It turns out
that the FEs-page is the E-page and there is no any extension problem. Therefore,
the results is an immediately result from E.-page and the actions of ku*(BSDig)
can be read from the module structure of local cohomology. We end up this chapter
by comparing our result ku.(BSDis) with ku.(BG) for dihedral groups, quaternion
groups and cyclic groups G.

In Chapter 4, we calculate ko*(BSDig) by using the n-Bockstein spectral se-
quence with initial input ku*(BSDig). For the E;-page, this is simple by just copying
the input along the diagonal. For the FEj-page, we use the same strategies as in [13],
i.e. by considering short exact sequence of the input

0 — TU — ku*(BSD1s) — QU — 0,

as before. Next, we calculate homology of the part TU and QU where the differentials
on the two parts are given by Sq? and 147, respectively. We calculate and display the
kernel and homology (for homology we use Steenrod algebra and row-column matrix
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operations) of both parts explicitly based on cohomology ring and character table (in
term of the generator of JU;), which take a number of page for this. The calculations
of connecting differentials and ds, d3 are examined in the same time with the help of
representation theory and the properties of 1-Bockstein spectral sequence, i.e. the fact
that the spectral sequence collapses at Fj-page (since 1 = 0). After we reach to the
FE-page, there are some extension problems to consider. We solve that problem by
using the structure of the E.-page together with the help of the n-Bockstein spectral
sequence for mod 2 coefficients and the mod 2-Bockstein spectral sequence. Again, we
end up this chapter by comparing our result ko*(BSD1g) with ko*(BG) for dihedral
groups, quaternion groups and cyclic groups G.

In Chapter 5, we calculate ko.(BSDis) as a module over ko*(BSDig) by us-
ing Greenlees spectral sequence with initial input ko*(BSD16). We proceed with the
calculations in the same way as in Chapter 3 but this one has more structure. The
strategy is closely the same as before but we need to consider two short exact sequences

for ko*(BSDjs). That is, for ko.(BSDss);

0— T — ko*(BSDyg)—= Q0O — 0, and

0—7—T—T0 —0,

where QO is the image of ko.(BSD1g) in KU*(BSDsg), T is the kernel of 7, and
TO is concentrated in the zero line of the n-Bockstein spectral sequence which is a
submodule of H*(BSD;¢;F2) and 7 is the n-multiples of ko.(BSD;s). To get the Ea-
page, we need to calculate Hj(ko*(BSD;s)) but, by the induced long exact sequence
from the first short exact sequence, we can calculate Hj(T), H}(QO) and their con-
necting differentials instead. For Hj(T), we use the long exact sequence induced from
the second short exact sequence, i.e. it is enough to find H}(T'O), Hj(r) and their
connecting differentials. We take a number of page to find the radical ideal, /T, for all
of the module 7,70 and QO over ko*(BSDss). The local cohomology calculation for
TO, 7 and QO is not too hard but there is a problem concerning the connecting differ-
entials coming from the first short exact sequence. And also there are some extension
problems when we reach to F.-page. We take the bulk of this chapter to solve them.
However, some extension problems still remain and also some 7-multiple elements of
the module ko.(BSDig) are hindered by this methods. We write down some additive
structure of ko,(BSD1g) at the end of this chapter and postpone the remaining prob-
lems (precisely, in degree 8k and degree 8k+1) and n-multiple structures to Chapter 6.

In Chapter 6, we calculate ko.(BSDis) as a module over ko*(BSDig) by us-
ing the n-Bockstein spectral sequence with initial input ku.(BSDig). The strategy is
similar to Chapter 4; we consider homology calculation on even and odd degree part
of ku,(BSDis) separately. For the even degree part, we do some explicit calcula-
tions to embed the second column of the E.-page of ku.(BSDis) in Chapter 3 to
H,.(BSD1g;Fs) and then calculate differential d; on this part by using the dual of S¢?
operation, namely d; = (S¢?). For the odd degree part, this is similar to the QU
part of Chapter 3, (i.e. by using character table and local ring for the calculation)
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where the differentials are given by d; = 1 & 7. This part needs careful work which
we take a large number of page to deal with in order to prevent mistrust. To find the
differentials, it is easy now by referring to the results in Chapter 5. It turns out that
the E.-page contains more extension problems than the GSS and most of them are
non-trivial extension problems. By good fortune, in degree 8, it is a trivial extension
problem and this resolves the extension problem in degree 8k from the last chapter.
This also reveals the n-structure for ko,(BSD1g). However, both methods, BSS and
GSS, still leave the extension problem in degree 8k + 1. Fortunately, by the results of
D.Bayen [7], we can complete the calculation.

§0.2 Main results and Conclusions

Main results:

From our calculation, the main results for ku*(BSDis) are;

e The generators and relations of ku*(BSDg) are shown explicitly for both addi-
tive and multiplicative structure (Theorem 2.5.5 and Theorem 2.6.1).

e Comparing with the result of ku*(BG) where G is finite groups of p-rank > 2,
e.g. dihedral groups and elementary abelian 2-groups, the complex connective K
cohomology of them contains v-torsion in codegree 6 whereas kuS(BSDig) has
no v-torsion (Lemma 2.5.2).

® k‘u*(BSDlﬁ) is embedded in H*(BSDH;; FQ) D KU*(BSDH;) (Lemma 244(4))
e ku*(BSDsg) is embedded in ku*(BDg)@ku*(BQs)®ku*(BCs) (Theorem 2.7.2).

e ku*(BSDsig) is generated by Chern classes and then the image in periodic K-
theory is a Modified Rees ring based on the definition 2.3 in [19] by R.R. Bruner
and J.P.C. Greenlees (Theorem 2.5.5).

o ku*(BSDgn) is embedded in ku*(BDgn-1) @ ku*(BQgn-1) ® ku*(BCyn-1) (The-
orem 2.7.3).

The main results for ku.(BSDjg) are;
e The generators and relations of ku,(BSD;¢) are shown explicitly (Theorem 3.5.1)

and the action of ku*(BSD1g) on ku,(BSD1g) can be read from the table 3.4
and table 3.5 in Chapter 3.

e There is an explicit map from ku.(BSD1g) to ku.(BDg)® ku.(BQg) ® ku.(BCs)
(Proposition 3.6.2, 3.6.4, Subsection 3.6.3).

The main results for ko*(BSDis) are;

e The generators and relations of ko*(BSDig) are shown explicitly (Theorem 4.4.1).
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e There is a natural injective map from ko*(BSD1g) to H*(BSD16; F2)©KO*(BSD1)
(Corollary 4.4.2).

e There is an explicit map from ko*(BSD;s) to ko*(BDsg)® ko*(BQg) ® ko*(BCy)
which is not monomorphism (Proposition 4.5.2, 4.5.4, 4.5.6).

The main results for ko,(BSDig) are;

e The generators and relations of ko, (BSDig) are shown explicitly (Theorem 6.5.2).

e There are elements of the second column of GSS detected in H,(BSDig;F2),
namely (EZ[)% € kogp1s(BSD1g) are detected by (uyP?+1)V € Hgy g(BSDig; Fa)
(Theorem 6.5.2).

The conclusions:

The Bruner-Greenlees methods for the calculation of connective K -theory for
finite groups is a powerful tool. This machine reduces the work in homotopy theory to
algebra and can be attacked by representation theory and cohomology theory. It is no
exaggeration to say that the combining of ASS, BSS and GSS gives an excellent and
standard way to make explicit the structure of connective K -theory for finite groups.
All in all from our calculations, we can conclude that even if the methods that uses
to calculate connective K-theory are different, all of them still require representation
theory to determine their differentials, and surprisingly, they give the same answer.
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Chapter 1

Preliminaries

We collect some meaning and properties of complex connective K -theory and the
strategy to calculate ku*(BSDig) by using Adams spectral sequence from [14] in the
first section. The second section, we provide some basic knowledge of representation
theory involving to our calculation. And in the last section, we investigate some long
exact sequences concerning both real and complex connective K-theory via killing
homotopy groups.

§1.1 Periodic K-theory and connective K -theory

In this section, we collect some facts of complex periodic K -cohomology theory and
complex connective K -cohomology theory which are relevant to our purpose, i.e. for
calculation by using representation theory.

1.1.1 WHAT 1s KU*(BG) = K*(BG)?

A useful way to think about the periodic K -theory of classifying space BG, for finite
groups G is equivariant K theory. That is, by definition in [32], for a compact G-space
X,

Ke(X) = Z{n)}/(Im @ n2] = [m] + [n2]), (1.1)

where 1 is a compler G -equivariant vector bundle over X ; precisely, it is a G-map
7 : & — X so that for each x € X the fibre &, := 7~ !(z) is a complex vector space
and for each g € G, the translation g : §; — &g is linear and furthermore ¢ is locally
trivial, [18]. Note that the tensor product makes equivariant K -theory, Kg(X), to be
a ring.

This definition can extend to locally compact G-space X, i.e.,
K(X) = Kg(X 1) = ker(Kg(X ) — Ka(pt))
and

K§(X) = Ka(S' A XY),

1
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where X+ means one point compactification of X . This theory has the main properties
that ([32])

1 Kq(pt) = R(G), representation ring and by Bott periodicity, K = Kg”, we
get that
Kg(pt) = K (pt) = R(G) o, 07",

where v € KUy = KU 2 = KU(S?) is the Bott element,

2 Kq(X) = K(X/Q) if G acts freely on X.

The main theorem which relates to our purpose is the theorem of Atiyah and Segal;

Theorem 1.1.1. ([3]) The equivariant K -theory of EG is
K2(EG) = R(G)} and KAL(EG) =0,
where J =ker(R(G) — R(1) =Z).
Note that FG is a terminal free G-space in the homotopy category, i.e, for any
free G-space X, there is a G-map vy : X — EG, unique up to homotopy. In fact

EG is free and non-equivariantly contractible and BG = (EG)/G). Thus, by this fact,
properties of K above, theorem 1.1.1 and Bott-periodicity we have;

KU*(BG) = K*(BG) = K*(EG/G) = K5(EG) = R(G))v, 0™ (1.2)

Moreover, there is another useful theorem by Atiyah and D.O.Tall, ([5], III.1.1)
which is suitable for our calculation (i.e. connective K-theory of finite p-groups),
namely if G is a p-group, the J-adic and (p)-adic topology coincide on J so that

R@))=Ze Jp, (1.3)
where J = ker(R(G) — R(1) = Z), [18]. Furthermore, [18], for finite group G, J-adic
completion R(G) — R(G)’} is injective if and only if G is a p-group, [3] and [5].

1.1.2  WuAT 18 ku*(BG)?

Roughly speaking, complex connective K -cohomology theory is an associated coho-
mology of the spectrum ku which is the fibre of the killing homotopy group of the
spectrum! KU,

KU} = KU <0>— KU — KU,

ie. ku:= KUJ := KU < 0 > and more precisely

Z, if n is even and > 0;
0, otherwise.

(k) = {

! Note: spectrum KU contains a sequence of spaces KU, i€Zst. KUy, =ZxBU, KUy, ., =U,
by Bott periodicity theorem.
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Also, by Proposition 16.6 in J.F.Adams book [2],
H*(ku;F2) = A®pgq) Fa, (1.4)

where E(1) = Ap,(Qo,Q1), Qo = Sqt, Q1 = Sq'Sq? + Sq*Sq' and A is mod 2 Steen-
rod algebra.

Moreover, there is the assertion from, for example, [14], [13] and [19] that; ku*(—)
is a complex orientable cohomology theory, ku*(BU(n)) = ku*[[c1,c2, ..., cn]], where
ku* = ku*(pt) = ku.«(pt) = Z[v]; and for finite group G, ku*(BG) is a Noetherian
ring. Furthermore, there is a relation between equivariant and non-equivariant complex
connective K -theory in [19] that; for any compact Lie group G,

ku*(BG) = (kuf)?, (1.5)

where I = ker(kug, — ku*) is the augmentation ideal.

The relations between connective and periodic K -theory or connective K -theory
and ordinary cohomology theory are evidently useful for our calculation which we can
investigate them in [14], for example:

e There is a cofibre sequence ¥2ku — ku — HZ, and there is an equivalence

KU =~ ku[3].

e By lemma 1.1.1 in [14], for any space X,

k:u*(X)[%] ~ KU*(X).

e For finite groups G, E{LZ(BG(”)) is finite if n > i, where BG™ is the n-skeleton
of BG, thus the inverse system {ku*(BG(™)} is Mittag-Leffler and hence (page
31, [14])

ku*(BG) = lim ku*(BG™).

e For any representation V' of GG, the natural map

H*(BG;F,) «— ku*(BG) — KU%BG)=R(G)) sends

e (V) — V) — EUV) =vTi(V),

)

where cf{(V) = Z;':o(_l)j ( Z:‘Z ) AN (V) and ¢F(V) is the i Chern class

in cohomology theory FE.
Remark 1.1.2. To calculate N (x), where X is an character irreducible representation

V' for some V (dimension n) of a groups G, we use Newton recurrence relation and
Adams operations U* | namely, by using proposition 7.4 in [12],
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and the recurrence relation [5], U*(x) —UF=1 ()AL (x) + ...+ (=1D)F 10 (x) AF=L () +
(=1)*k AF (x) = 0, or in other words,

A = = N0 () = AP0 TP () + -+ (SRR ().
Note also that A'(x) = x and A"(V) = det(V).

To obtain ku*(BG), we can use Atiyah-Hirzebruch Spectral sequence;
Y = HP(X; (k) = ku?*9(X),
or Adams Spectral sequence, [14];
Ey" = Exty" (H*(ku; Fp), H (BG; Fp)) = ku*(BG),. (1.6)

In this thesis, by Bruner-Greenlees methods, we use Adams spectral sequence.

1.1.3 HOW TO CALCULATE ku*(BG) BY THE ADAMS SPECTRAL SEQUENCE?

By (1.4), (1.6) and the standard change of ring argument (i.e., for algebra A (flat as a
module) over aring R, Exts(A®grN, M) = Extr(N, M), where M, N are R-modules),
the Fs-page of the Adams spectral sequence is reduced to
IS EXtEa)(FPa H*(BG;Fp)),
where E(1) = Ap, (Qo, Q1), Qo = Sq', Q1 = Sq'Sq?>+5¢*>Sq' and A is mod 2 Steenrod
algebra. Moreover, if G is a discrete group, then (Theorem 2.4.11, [10]) BG ~ K(G, 1),
Eilenberg-MacLane space. Also by theorem 2.2.3 in [10], H*(G;F,) = H*(K(G,1);F,).
These facts lead the Adams spectral sequence for ku*(BG), where G is finite groups,
to be
Ey" = Exty ) (F, H'(G;F2)) = ku*(BG)j. (1.7)
The calculation of Ey-page is all homological algebra. The standard way is firstly
calculate H*(G;F2) as a module over E(1), i.e. calculate the actions of Qo and Q1
on H*(G;Fq). Secondly, take a projective resolution of Fy or an injective resolution
of H*(G;F2). Thirdly, take Hom},)(—,F2) or Homj,(F2, —) to the projective or
the injective resolution and get a long exact sequence. Finally, calculate homology of
the long exact sequence and then FEs-page follows. However, the module structure of
Es-page over Ext’g’(kl)(Fg, Fy) will play a big role for differential calculation, thus it is
worth to find out such structure, see more details in the section 2.3.1 and 2.3.2.

The convergence of Adams spectral sequence for ku*(BG)) is strong convergence.
This means that

ku*(BG)5 = lim (R/F*R),

where R = ku*(BG)) = FOR2 F'R 2 F?R D ... in which F*R/F**'R = E3**. In
fact, the strong convergence is guaranteed by J.F.Adams, [2], and J.M. Boardman, [11].
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Precisely, theorem 15.1 in [2] (applying for Y = ku, E = HFy, X = BG, Y¥ =Y\,
which all assumptions in the theorem are satisfied) yields the conditional convergence
(theorem 15.1(iii)) and theorem 7.1 in [11] gives the strong convergence.

For the calculation of Adams differentials, the theorem of May and Milgram,
[25], and representation theory are powerful tools. Knowing the additive structure from
stable splitting, (i.e. if BG ~ X VY, then we have E;*(XVY) & By (X)®Ey" (X) =
ku*(X) @ ku*(Y) and the calculations of differentials can be done separately), is also
helpful (see, for example, the calculation of ku*(BQ2n) in [14]). Moreover, knowing,
if we are lucky, the generator of cohomology ring as a characteristic class, will be very
helpful to determine differentials as well (see, for example, the calculation of ku*(BDan)
in [14]).

After we reach to E. -page, it remains to find additive and multiplicative struc-
ture. To do this the comparison of representation theory (by Atiyah and Segal theorem)
and cohomology ring will play an important role (see more details in Chapter 2). How-
ever, some relations in ku*(BG) are obtained immediately from Lemma 1.3.4 in [14],
i.e. for one dimensional representation «, 3,

M (aB) = e (a) + e (B) — vef U (a) e (B)

and Lemma 2.1.1 in [14], that if p is induced up from the trivial subgroup (e.g. regular
representation), it will be annihilated by Euler classes. Note also that the target of
the Adams spectral sequence is ku*(BG)% but we actually need to calculate ku*(BG).
However, for p-groups G, two this things are nearly the same, i.e. ku*(BG) = Z[v] &

E’L/L*(BG)Q. In other words, for p-groups G,
ku (BG)) = ku'(BG). (1.8)

This fact, (1.8), follows from (1.5) which asserts that ku*(BG) is an I-adic completion
(I = ker(kug, — ku*), the augmentation ideal) and the Atiyah theorem, [5], which
asserts that, for p-groups G, J-adic topology and p-adic topology coincide.

1.1.4 THEOREM OF MAY AND MILGRAM FOR CONNECTIVE K -THEORY

The relation between the Adams spectral sequence for ku*(BG) and the Bockstein

spectral sequence for H*(BG;Z) come from the inclusion E(0) —— E(1) . This
inclusion induces homomorphism

Exty,) (F2, H*(BG; F)) A Ext iy (F2, H*(BG; F2)) .

Note also that Bockstein spectral sequence for calculation H*(BG;Z) can adapt to be;

Ey-page = Extyi) (F, H*(BG; Fy)) = H*(BG;Z) = [BG, HZ].
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This yields the diagram below;

Ext’gfl)(IFQ, H*(BG;Fs)) = ku*(BG)
EX’GEO)(FQ,H*(BG;FQ)) - H*(BG; 7).

Hence, these two spectral sequences are related. Some relations are found by May and
Milgram, theorem of May and Milgram [25], which guarantee that the towers in each
E,.-page of both spectral sequences correspond and under this correspondence their
differentials agree.

§1.2 Representation theory for connective K -theory

In this section we collect some facts of representation theory from [13] and [1] that are
involved in our calculation. Since Chern classes and Stiefel-Whitney classes will play a
role in, at least, the calculation of differentials in Adams spectral sequence, we record
some facts about their relations as well.

1.2.1 REPRESENTATION THEORY AND REAL K -THEORY

An excellent source of representation theory for the calculation of connective K -theory
is Real connective K-theory book, [13]. However, to be easier in looking back, we
record some of definitions and propositions that concern our calculations (in Chapter
4) as below.

Definition 1.2.1. (/13]) A real representation of G is a representation V' of G over C
with a conjugate linear map J : V — V with J?> = 1. A quaternionic representation
of G is a representation V' of G over C with a conjugate linear map J : V. — V with
J? = —1. A complex representation of G is the same as a representation over C.

The criterion to separate real, complex and quaternionic representation is;

Lemma 1.2.2. ([1]) Let V' be a complex irreducible representation of a compact group

G. Then
1, if V' is real;

/ xv(g®) =% 0, if V is not self-conjugate;
9@ —1, f V is quaternionic.

In particular, for finite group G’ngG xv(g?) is replaced by |—(1;| > geG v (g?).
Proof. See [1] page 70. O

The Grothendieck groups of finite dimensional real, complex and quaternionic
representations of a groups G are denoted by RO(G), RU(G) and RSp(G) respectively.
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There are natural transformations (forgetting the structure map J)
RO(G) —= RU(G) ~ RSp(G) ,
which are both called complexification and
RO(G) ~— RU(G) —1= RSp(@) ,

where r is realification and ¢ is quaternionification (Chapter 2, [13]). There is also a
conjugation map

7: RU(G) — RU(QG).
The composites of these maps have some properties which are given by;

Lemma 1.2.3. (Lemma 2.1.5, [13])

(i) rc=2,cr =1+7.

(ii) gc =2,cq=1+71.

(iii) Every real or quaternionic representation is self-conjugate: Tc¢ = ¢ and T¢ = ¢.
Also, rT =1 and q7 = q.

Proof. See, for example, [1], proposition 3.6 page 27. O

The calculation of representation theory is more comfortable if we calculate
on character tables. The character table has meaning on complex representation.
However, we can use character table on both real and quaternionic representation
by working on their complexification. To do that, knowing the additive generator
of RO(G),RU(G) and RSp(G) is useful. Suppose {U;}icr is the list of simple real
representations, {V}, 7V} }jc s is the list of simple complex representations, and {Wj }rex
is the list of simple quaternionic representations. By the assertions from Chapter 2
(page 18-19) in [13] again, we have the additive basis of the representation groups as;

e RO(G)=Z{U;,rVj,rcWy, | iel,jeJkeK},
o RU(G) =Z{cU;,V;,7V;,eWy | iel,je ke K},
e RSp(G) =7Z{qcU;,qV;,Wy, | i€l jeJkeK}.

Thus, by these lists and Lemma 1.2.3, the calculation on character table is possible.

It is well known that the periodic real K -theory is an associated cohomology
theory of the spectrum KO = Z x BO which has period 8. Real connective K-
cohomology theory is an associated cohomology theory of the connective cover of KO.
In particular,

KO*(pt) = Z[n, o, 3, 671/ (20, 1% na, o — 4p3),
with n € KO~ !(pt), a € KO™*(pt) and 8 € KO~ 8(pt). And

ko™ (pt) = Zln, o, 5]/ (20, 1%, na, @* — 45).
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Moreover, for non negative degrees, ko*(BG) = KO*(BG) and in general, we have
evidently ko*(BG)[371] = KO*(BG), see more details about this discussion in [13].

There is also the relations between complex and real K-theory in lemma 2.2.11
in [13] which is;

Lemma 1.2.4. (Lemma 2.1.11 in [13])
Complezification KO* ——= KU* is the ring homomorphism given by c(n) = 0, c(a) =

202 and c(B) = vl Realification KU* — > KO* is the KO* -module homomorphism
given by r(1) = 2,7(v) = n?,r(v?) = a and r(v3) = 0.

The correspondence between representation theory and periodic real K -theory
is given by M.F.Atiyah and G.B.Segal in [4] which we record as;

Theorem 1.2.5. (¢f.[13]) For compact groups G,
KO*(BG) = ROY(G)}[8,67],

such that (e =0,—1,...,=7)

RO’(G) = RO(G) , RO~'(G) = RO(G)/rRU(G),

RO *(G) = RU(G)/eRSp(G) , RO™*(G) =0,
~4(G) = RSp(G) , RO™(G) = RSp(G)/qRU(G),
~%(G) = RU(G)/cRO(G) , ROT(G) =0,

where J is the augmentation ideal of RO(G), B is Bott element in KO3(pt). If,
moreover, G is a p-groups, then J-adic topology coincides with p-adic topology.

Proof. See [5] and [4]. O

1.2.2 CHERN CLASSES AND STIEFEL-WHITNEY CLASSES

The relation between Stiefel-Whitney class of real representation V' of G and reduction
mod 2 of Chern class for complexification of V', say V¢, is given by;?

Proposition 1.2.6. For an n-dimensional real representation V' and its complexifica-
tion V¢,

ci(Ve) = [wi(V))?  in H*(BG;TFy).

Proof. Let V be n-dimension real representation of a group G which is represented by
pv : G — O(n). So, V¢ can be represented by py,. : G — U(n) which py. = copy,
where ¢: O(n) — U(n) is complexification. This induces

BGY . BO(n) B¢~ BU(n) ,

2@ means reduction mod 2
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and
H*(BU(n); F2) = Fa[ey, ¢, ..., En] — H*(BO(n); F2) = Falwy, wy, ..., wn] — H*(BG; Fa),
such that (Bpy)*(w;) = w;(V) and (Bpy,)*(¢;) = ¢(Vc). So, it remains to show that

(Be)' () = w?

7

For n =1, we consider maps O(n) det O(1) and U(n) det U(1) , which induces

BOM“='B0(1) = K(Z/2,1) = RP™,

and

BUM) X =EBU(1) = K(Z,2) = CP™.

And thus, we have a commutative diagram;

H*(BU(1):Fy) 2% H#(BO(1): )

Ji J
(Bo);

H*(BU(n); F3) 2% H*(BO(n); Fy).

We see that the image of ¢, € H*(BU(1);Fq) via (Bc)) o ¢} is (Bc)*(¢1), because
ci(¢1) = e1 € H*(BU(n);Fy), which is also the image of (Be)}(¢1) = Mw? (degree of
¢1 is 2) under wj. We need to check that the image of ¢; is not zero under (Bc); i.e.,
need to check that A = 1. To do this, we use Serre spectral sequence for fibre sequence

BO(1) — BU(1) -22- BU(1)

which is simple to see that ¢; is detected by w?.

For n > 1, we use the splitting principle. Note that ¢; € H*(BU(n);Fs) is
the i*"-symmetric function on generator Zi,Zs, ..., T, , where Z; = ¢1(z;) for some 1-
dimensional complex representation z;. By case n =1, &; — t? = [w1(§;)]? for some
1-dimensional real representation &; and hence

Cc; = O’i(fl,fg, ...,fn) — Ji(t%,tg, ...,t%) = [Ui(tl,tz, ...,tn)]2 = w?,

which completes the proof. O

For Stiefel-Whitney classes of n-dimension complex representation W of a group
G and its relation with Chern classes, we have that wg;11(W) =0 and we;(W) is the
image of ¢;(W) under the coefficient homomorphism H?(BG;Z) — H?*(BG;Fs) see,
for example, proposition 3.8, page 83 in [23]. Similarly, for Pontryagin classes, see, for
example, page 94 in [23], there is an assertion that

CQZ'(V(C) = pZ(V) (1.9)
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§1.3 Killing homotopy groups

Here, we investigate some long exact sequences involving to the relations of cohomology
ring and real and complex connective K -theory. Let X be an spectrum. One can
construct X' := X(—oo,n] which is the spectrum X such that the homotopy above
degree n are killed, ie. X' = XU e"t2 U ent3 U ... Then we have a natural map

X LI Xf and thus this forms a fibration
Fibre(k) L, X LI ¢ ,

where Fibre(k) = XTTL+1 =X <n+1> is n-connected cover of X or n+ 1-connective

cover of X, which yields that m;(k) is an isomorphism for i < n and m;(l) is an
isomorphism for ¢ > n + 1. By definition, for the Eilenberg-Maclane spectrum HA,

we have N
, ifi=0;
mi(HA) = { 0, ifi#0,

and it is well know that

if m;(X) :{ 64’ gi;g’ then X ~X"HA.

By these facts, we have, for example;

1 Cofibre sequence
ku=KU] — KU — KU,

i.e. ku is a connective cover of KU,

2 Cofibre sequence
ko <1 >= (ko]) — ko — (ko)) = HZ,
3 Cofibre sequence
ko<2>—ko<1>— XHF,,

because m.ko = (%,2,2,0,7,0,0,0,%Z,2,2,0,7,0,0,0, ....), (periodicity is 8).

Txko<1>

By applying AX and 7, to the cofibre sequence 2, we obtain a long exact sequence;

— (ko <1>ANX) — m(konX) — m(HZNX) — mo(ko <1 > ANX) — -+,
(1.10)

and clearly mp(ko < 1 > AX) = 0. By applying AX (connective) and 7, to the cofibre
sequence 3, we obtain a long exact sequence

comi(ko < 2> AX) — m(ko < 1> AX) ——= 1 (SHF, A X) — 0 — 0, (1.11)
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such that 71 (ko < 2 > AX) is obviously zero and hence 7 (ko < 1 > AX) = Ho(X;F2).
Therefore, by (1.10), (1.11) and 7, (F A X) := E,(X) (definition in [2]), there is a
natural long exact sequence;

-+ — Ho(X;Z) — Ho(X;Fy) — ko1 (X) — H1(X;Z) — 0. (1.12)
Note also further that the cofibre sequence

Sko —— ko — ku,
in [13], yields the induced long exact sequence
— kop—1(BG) — ko, (BG) — ku,(BG) — (1.13)

and in particular;

-+ — kuz(BG) — ko1 (BG) — koz(BG) — kua(BG) — koo(BG) —
k‘Ol(BG) — k:ul(BG) — ko,l(BG) — k‘Oo(BG) — k‘uo(BG) — 0.

Since ko_1(BG) = 0, this exact sequence splits as
koo(BG) = kug(BG), (1.14)

and

-+ — kus(BG) — ko1 (BG) — kos(BG) — kua(BG) — koo(BG) —
ko1(BG) — kui(BG) — 0.

Remark 1.3.1. It is well known that,

e ko’(BG) = KO°(BG) = RO(G)}.

o kog(BG) = Ho(BG;Z) = Z, and in fact koo(X) = Ho(BG;Z) = Z, for any
space X .

e ku’(BG) = KU°(BG) = RU(G)%.

e KUy(BG) = HY(R(G)) =Z and KU,(BG) = HYR(G)) for finite groups G .
e Hy(BG;F,)=F,, for prime p.

e Hi(BG;Z)=G™, e.g. H(BSD1s;Z) = SD®% =7/2xZ/2.



Chapter 2

Complex connective
K-cohomology

In this chapter, we will calculate complex connective K -cohomology for semi-dihedral
group as a ring by using Adams spectral sequence with initial input H*(BSDan;F2)
or equally, H*(SDan;Fs). Actually, the Adams spectral sequence for calculation
ku*(BG), where G is finite group, is given by;

Byt = Ext%t(l)(]}?m H*(BG;Fy)) = ku~ "~ (BG)3,

where E(1) denotes the exterior algebra on the Milnor generators Qo and Q; ([14]
page 28). The experiences from the book of R.R.Bruner and J.P.C. Greenlees , see
[14], suggest that representation theory is fruitful to determine differentials, additive
generator and multiplicative structure. Therefore, it is reasonable to calculate the
character table as the first step and then followed by the calculation of Es-page, their
differentials, the additive structure and finally the multiplicative structure.

§2.1 Character table of semi-dihedral group
Presentation for semi-dihedral group of order 2", for n > 4, is given by
SDyn = {s,t|s?" =2 =1,tst = s> '}

In this section, we need to find the character table of them explicitly. To gain the
general (order 2" for n > 4) tables, it is natural to deal with the case n =4 first.

2.1.1 CHARACTER TABLE OF SD1g

In this case, the structure of SDig is represented by

SDig = <s,t|ss=t>=1tst=s>>

= {1,t,5,5% 83, 5% 55 50, 57 ts,ts? ts3 ts? 1%, 155 157}

12
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Note that any complex representation does not change under the same conjugacy
class and can identify with its character. So, it is make sense to find its conjugacy class
first. Recall that for any group G and a € G, the conjugacy class of a, say [a], consists
of b € G such that gag~! = b for some g € G. In other words, [a] = {gag~'|g € G}.
Thus the conjugacy classes of s™ and ts™, for each m € {1,2,3,...,7}, can be found
as below.

Lemma 2.1.1. The conjugacy classes of SD1g consist of 7 classes which are [1] = {1},
[s] = {s,s°}, [s*] = {s*,s"}, [s'] = {s"}, [") = {s",s7}, [] = {t,ts",ts", 25"} and
[ts] = {ts,ts3,ts", ts"}.

Proof. From the relation in SD1g, we get that:

tsf = 3¢
(Sk)— 1 _ S8—k
(tsk)fl = 5ok

for each k > 0. Thus, we have (s¥)(s™)(s¥)~! = s™ and

(ts®)(s™)(ts®) 71 = (tsP) (™) (8s7F) = (8™ HE) (857F)
(53(m+k)t)(t85k) — S3m

Then the conjugacy classes of s™ is {s™, s>} for each m € {1,2,3,...,7}. Similarly,
for conjugacy classes of ts™,

(s°)(ts™)(s") 7t = (M)(ts™)(s* ) = () (5P ) (85 F)
_ (S3m+k)(t88—k) _ (83m+k)(83(8_k)t)
= (s 2F)(ts™), for all k € {1,2,3,...,7}

and

(ts®)(ts™)(ts") 71 = (M) (8™ (t57F) = (57T (8570)
_ (83k+m)($15kt)
= %M forall ke {1,2,3,...,7}.
So, the conjugacy classes of ts™ is {(s~2F)(ts™), s?*™t | k € {1,2,3,...,7}} for each
m e {1,2,3,...,7}. O
Before doing further calculation, let us recall and collect some properties of linear

representation of finite groups involving to our computation .

Proposition 2.1.2. Let V' be a complex vector space of dimension n and G be a finite
group. If x is the character of a representation p (p: G — GL(V)) of degree n i.e.
Xp(s) =Tr(p(s)) for each s € G, we have:

(1) x(1) =n, degree of p.
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(2) x(s7') = x(s), conjugate of complex number, for all s € G.
(3) x(tst™1) = x(s) forall s€G.

(4) If ¢ is the character of a representation V , then (¢, @) is a positive integer and
we have (¢, ¢) =1 if and only if V is irreducible, where

1 -
(#:9) = 17 > d(s)e(s).

seG

(5) Two representations with the same character are isomorphic.
( Note:p = p/ & TRy, = R.T for some invertible matriz T and for all s € G,
where Rs and R, are the representation matrizes of p(s) and p'(s) respectively.)

(6) The number of irreducible representations of G (up to isomorphism) is equal to
the number of conjugacy classes of G.

(7) The degree of the irreducible representation of G divide the order of G. Further-
more, it also divides (G : C) where C' is the centre of G.

(8) The character rg of the regular representation is given by: rg(l) = |G| and
ra(s) =0 if s # 1.
h 2

(9) If the irreducible characters of G are x1,X2,...,xn then |G| = > ' n; where
n; = xi(1) and if s € G is different from 1, then we have Z?:l nixi(s) =0.

Proof. See the book of J.P. Serre ( Linear Representations of Finite Groups), [33]. O

Here, from lemma 2.1.1, SD1g has 7 conjugate classes. So, it is easy to see that
this group has only 4 irreducible representations of dimension one. Thus, by the above
proposition, it must have 3 irreducible representations of dimension 2. We define the
representation p of SDyg by setting:

hm 3hm
hiom\ _ w 0 h my _ 0 w
e = () )t e = ()

where w = ¢ and h,m € {0,1,2,3,....,7}. It is not hard to check that p" is repre-
sentation for each h € {0,1,2,3,...,7}.

o~

Moreover, we can see that p' = p?, p? = pb and p° = p” because they have
the same character. We claim that p', p? and p° are irreducible representation. This
claim can be verified easily by direct calculation as follows.
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1 _
(Xp5aXp5) = EZXpE’XpE’
rzeG

7
1 M\, . (om) («f m
= 16 z:oxps(s )X 5 (™), (since x5 (ts™) = 0,Vm € {0,1,2,3,...,7})

7
= LS @ e
16 =
T
- [2 + (wIOm + w—lOm)]
16 =
1 < omm
= — Y [2+2cos =1
16 =

So, p° is irreducible and by the same calculation, the conclusion for p! and p? follows.
Furthermore, we also see that p* is not irreducible representation because (Xpts Xpt) #
1.

Whence, we obtain the character table of SDg as below.

SDy | [1] | [s"] | [s] | (%] | [s"] | [1] | [ts]
1 1] 1 1 1 1 1|1
x2 | 1] 1 1 1 1 [ -1]-1
xs | L] 1] -1 1] -1 ]1]-1
xa | L[ 1] -1 1] -1 ][-1]1
Xp | 2] -2 V2 | 0 |—v2i| 0| 0
X2 | 2] 2 0 [ 2] 0 0] 0
X | 2| =2 —=v2i | 0 | V2 | 0| 0

Table 2.1: The character table of SD1g

Hence, from the table, we can see relations and then get the representation ring
of semi-dihedral group of order 16 as (by setting o= representation with character
Xp, 02= representation with character x,2, o3= representation with character Xps)lz

R(SD16) = Z[X27X3ax470-1,0-270-3]/R (21)

R=(3=xX=xi=1, xox3=xX4, 07 =03 =02+ X3+ X4, 05 =1+ X2+ X3+ X4,
0109 = 0203 = 01 + 03, 0103 = 02 + 1 + X2, X201 = 01, X202 = 02, X203 = 03,
X202 = X302 = X402 = 02, X301=X401 = 03, X303 = X403 = 01)

"We change the notation to avoid the double power of p’.
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2.1.2 CHARACTER TABLE OF SDy» FOR n > 5

We proceed this calculation as the case n = 4 starting with finding conjugacy classes
of SDyn first.

Lemma 2.1.3. The conjugacy classes of SDan consist of 272 + 3 classes which are
[1],[t], [ts] and [s™] for each m € C" := {1,2,3,...,2n73 2n=342 on=344  on-2 on-24
1,272 43,..,2" 2 4 (2773 — 1)}.

Proof. In SDyn, we have
tsh = s(2n_2_1)kt

)

skt = ts(2n72_1)k

I

(tsk)—l _ 452"k

By the same process as lemma 2.1.1, the conjugacy classes of SDaon are {1},

{s™,s@" =M} for each m € {1,2,3,...,2"" 1 — 1}, {ts?* | k€ {0,1,2,...,.2"2 —1}}
and {ts***1 | k€ {0,1,2,...,2772 — 1}}. To be more precise, we need to explicit the
collection of the different conjugacy classes coming from the part of s™, say C*. Note
in SDgn that s2"~' =1 then

§" =" = r; = romod 2" !
and also for each i € C' = {1,2,3,....,2" 71 — 1},
i=i(2"? - 1)mod 2" ! = i=2""2
Let C1= {1,2,3,....,2" 3}, Cy= {2" 3 + i :4 € C1}, C3= {22 4+i : i € C1}

and Cy= {2" 242" 3 +i:4 € C; — {2"3}}. By direct calculation, from the set
C=C1UCyUC3U(Cy, we see that: for each i € Cp, if ¢ is odd, then

22 -1)i = (2" 2% —4)mod2"!
2" 212" 2+4) = (2"!'—i)mod2" !
and if ¢ is even, then
2" 2 -1 = (2" ' —i)mod2"!
2212344 = (2" 2+ (2"% —i))mod 2" L.

This means that C* consists of

[si] = {si, 2" 2_Z‘} for each odd element 7 of C7,
[s%] = {s, 52%1_"} for each even element 7 of Cy,
[52"73+i] = {52"73”, 52n72+(2n73_"')} for each even element i of Cj,

and [s2" 1] = {s2"*+i 2"~} for each odd element i of C,

which completes the proof. O
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In this case, there are four 1-dimensional representations as in the case n = 4.
For 2-dimensional representations, we define

hm (2n~2-1)hm
h(.m) _ w 0 h(fom) _ 0 w
e = (" et Jand ot = (0 )

where w = e¢@"~? | h and m arein {1,2,3,...,2" 1}. But, by the equality of character,
pM = ph2 if hy and ho are the power of s in the same conjugacy class, i.e.[s"] =
{sM,s"2}  so we can say instead that h € C’.

Lemma 2.1.4. All p" where h € C" — {2"2} are irreducible representations, where
C' is the same set as in lemma 2.1.5.

Proof. Let h € C'. Consider

1
(Xpha Xph) = 27 Z Xph (x)Xph (Z’)
zeG
1 2n—1
= o Z Xpn (8™)x (™), (since x,n(ts™) = 0,¥m € {1,2,3,...,2""1})
m=1
1 2n—1
_ 27 (whm + w(2n_2—1)hm)(whm + w(2n—271)hm)
m=1
1 27L71
n—2 n—2
_ 27 [2+(w(2 )hm+w—(2 )hm)]
m=1
Thus,
132 (272 — 2)hmr
(Xphs Xpn) = on Z 2 4+ 2cos Qn—_g]-
m=1

sin((n+ % )x)

T
SIH§

By using the formula 1 4+ 2cosx + 2cos2x + 2cos 3z + ... + 2cosnx = and

sin(2m + 6) = sin(#), we obtain that

2n71

1 (272 — 2)hmm

on Z 2cos on 3 =0
m=1

i.e. (Xpns Xpn) = 1,Vh € C'—{2"7?} . In particular, it is easy to see that (X j2n-2, X j2n—2)
# 1, then /)27172 is not irreducible which completes the proof. O

Finally, we reach to the character table of SDon where n > 5. This table includes
4 one-dimensional irreducible characters and 2”2 —1 two-dimensional irreducible char-
acters which consists of x . for each h € C" — {2"=2}. For the filling any entry in the
table, it is very useful to know that (which is easy to prove by using basic identity of
trigonometry): for each n € N, natural number,

w4+ @ Dn 2isin 5755, if n is odd;
2cos 5,5, if n is even.
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So,

% = Xph(sm) — whm +w(2"*271)hm

hmm

_ 2isin22% . if hm is odd;
2 cos 5743, if hm is even.

Whence, we obtain the character table of SDon,n > 5m € C' and h € C' —
{272} as below.

SDp [ [ 1] [ GEENGEEECEEREED
1 1 1 1 1 1 1 1 1

X2 1 1 1 1 1 -1 1

s | 1] 1 —1 1 (—1)m —1 1| -1
X4 1 1 -1 1 (=)™ —1 —1 1
Xp 2 | =2 2isin 57— 2co8 573 * —2ising7— | 0 0
X2 2 2 2cos 5—3 2co8 57— e —2cos 57— | 0 0
X3 2 -2 24 sin 2,?:?2 2 cos 22% * 24 sin 22”,’2 0 0
Xph 2 | £2 * 2 cos 22’_73 * * 0 0
X po1 2 —2 | —2isin g5 | —2¢08 53 * —2ising— | 0 0

Table 2.2: The character table of SDon,n > 5 where ag =22, a; = 3(2"73) -1

and a = 2cos 5775 .

§2.2 mod 2 cohomology ring of semi-dihedral group

2.2.1 COHOMOLOGY RING OF SEMI-DIHEDRAL GROUP

L.Evens and S.Priddy, [16], they calculated the cohomology of semi-dihedral groups,
both with integer and mod 2 coefficients. Their method for the calculation of mod 2
coeflicient is to compare with the cohomology of dihedral and quaternion groups.

Specifically, using names for generators corresponding to those for the semi-
dihedral group, SDon = Gp < s,t: 82" =12 =1,tst = s> =1 > we take

Dont =Gp<35,t]|32 " =1=t%tst=5 ">, forn >4,
which is a quotient of SDsn» and
Ds=Gp<st=1=t*tst=5"1>.

Similarly

Qs=Gp<or|ot=172=0c%r01 =071 >.
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Thus we may view Dg, Qg as subgroups of SDsn under the inclusions
®: Dg — SDon;35 +— 32n73,t — t, (2.2)
U:Qs — SDon;o — 32%3,7' — st. (2.3)
The cohomology of these groups is known [17]. In fact, we have
H*(Dyn-1;2/2) = Z/2[z,y, w3/ (+° + xy), (2.4)

where z,y are one-dimensional classes defined by < z,5 >=1,<z,t >=0, < y,t >=
1, < y,5 >=0. The class ws is the second Stiefel-Whitney class of the representation
of Dyn-1 on the plane (its first Stiefel-Whitney class is y). Similarly,

H*(Ds; Z/2) = Z/2[z, 7, ws] /(7% + 77), (2.5)

where < 2,5 >=1,< 2,t >= 0, < y,t >= 1,< y,5 >= 0 and Wy restricts to z2.
Here, the class Z is 1-dimensional class in the cohomology group of the cyclic subgroup
generated by 52. The cohomology of the quaternion group of order 8 is given by

H*(Qs;Z/2) = Z/2[%,7, P/ (&% + T§ + §°, 7% + T2), (2.6)

where 7 and y are one dimensional classes defined by < 7,0 >=1,< 7,7 >= 0 and
<y, 7 >=1,<y,0 >=0. The class P is the mod 2 reduction of the first Pontryagin
class of the natural representation of Qg on the quaternions; it restricts to z* where

Z is the one dimensional class in the cohomology of the cyclic subgroup generated by
2
o, [17].

Now Evens and Priddy approach the cohomology of SDasn by considering the
Lyndon-Hochschild-Serre spectral sequence of the central extension

(A):Z/2 < 8" >— SDgn —> Dagu1.
To gain control of it they compare it with the central extensions
(B):7Z)2 < s*>— Dy — Z/2 X L)2 < 5,t >

and
(C):Z)2<0*>— Qs — L2 X TL)2 < 0,7 >,
which are already understood.

Since we need some of the details we will run through the proof.

Proposition 2.2.1. [16] The cohomology of the semi-dihedral groups is given by the
formula

H*(SDon; Z/2) = Z/2[z, y,u, P]/(2* + zy, zu, 2°,u* + (2% + y*) P),

where |z| = |y| = 1,|u| =3 and |P| =4. Here, ®* : H*(SDon;Z/2) — H*(Ds;Z/2)
sends x,y,u, P to 0,7, w2y, w3 and ¥* : H*(SDan;Z/2) — H*(Qs;7Z/2) sends
x,y,u, P to y,vy,0, P respectively.
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We begin by identifying some key differentials in the spectral sequence of the
extension (A).

Lemma 2.2.2. [16] In the spectral sequence for (A),
doz = w+ 2%, d32? = 23, ds2* = 0,

where z is the one dimensional class in the fiber of the extension (A).

Proof. The known facts from the extension(B) in [[17], prop.VI13.1, 3.2] is doz = T2+ Ty
and

¢*(z) = 0,9 (y) = 7, ¢*(w2) = T° + 77,

where ¢ : Z/2 x Z/2 < 5,t > Dgn-1 induced by ®. By naturality of spectral
sequences between extension (A) and (B), dez = wy + ax? for some a € Z/2. On the
other hand, by [[34];5.2], for the spectral of (C), deZ = 7% + 7y + * and

V() = 9,9 (y) = 7,9 (w2) = T + 77,

where 1 : Z/2 X Z/2 < 0,7 > Dyn-1 induced by ¥. Again, by naturality of spectral
sequences between extension (A) and (C), dez = ws + 2% or dez = ws + y?. Thus
doz = wy + 22.

Now, ds and ds follow from dy and corollary 6.9 (page 189) in [27], i.e.,
d3z* = d3Sq'z = Sqtdoz = Sqt (wy + 2%) = woy = 2%y = 2®  (in the FE3-page)

and
dszt = d55¢%2% = S¢Pdsz? = S¢*a® =25 =0 (in the Ej-page).

Proof of Proposition 2.2.1:

Proof. By using Lemma 2.2.2 and noting that wy + 22 is not zero-divisor, we see that
E3(A) = Z/2[z,y)/ (@® + xy) © Z/2[2%).

Since dsz? = 2% and dsz* = 0, it is not hard now to see that the spectral sequence
collapses at F4. Accordingly,

where P = 2%, u = 2?(x +y) and R is the ideal generated by x? — 2y, zu, 23, u® — (2% +
y?)P. That is, a basis for E,, is given by

{Psaze,Psyl,Psuyl 18,0 >05e=1,2}.
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Also, by using ¢* and ¢* in the proof of lemma 2.2.2, E,,®* sends P*z¢, P*y', Psuy! to
0,247, z4 125+ and E,,U* sends them to %57, 27, 0 respectively. Then ker E o ®*N
ker B ¥* = {0} and thus

Eoo®* @ ExqU* : Exo(A) — Eso(B) & Eno(C)

is injective. This also implies that ®* @ W¥* is injective. The relations in H*(SDan;Z/2)
can be deduced simply by using the injective property of ®* @ W*. In this case,
x,y € H*(SDan;7/2) are uniquely determined i.e.,

*(y) =7, ®*(x) =0 and ¥*(z) = V*(y) =y .

For u, P, one (Evens and Priddy) chooses them to be classes in H*(SDan;Z/2) reduc-
ing to u and P in E.(A) which satisfy

®*(u) = Way mod < 7 >, ®*(P) = w3 mod < wyx?,7* >, and ¥*(u) =0 mod 73,

and the relation ¥*(P) = P is uniquely determined because H*(Qs;Z/2) has only
one generator. From here, the relations in H*(SDan;Z/2) are easy to verify and all
are the same relations in E.(A) or, in other words, H*(SDan;Z/2) = Ex(A) as an
algebra. O

2.2.2 CHARACTERISTIC CLASSES IN COHOMOLOGY RING OF SDan

From now on, to emphasize the ring structure, we intend to use Fo instead of Z/2.
Let @ denote a reduction modulo by 2 and ¢;(c), w;(r) be the i* Chern and Stiefel-
Whitney characteristic classes of complex representation ¢ and real representation r
respectively. We have;

Lemma 2.2.3. In H*(SD1¢;Fa) = Fa[z,y, u, P]/ (2% + 2y, vu, 23,4 + (2% + y?) P) and
the character table of SD1g, we have x = w1(x3),y = wi(x2) and P = ca(01) = c2(03).

Proof. From the above inclusion maps (2.2) and (2.3), as the subgroup of SDjs, Dg =
Gp < s%,t > and Qg = Gp < s%,ts®> >, we have the character table of these groups as
follows.

Ds | 1] [ [s*] | [*] | [t] | [ts]
1 [1 11 1] 1
v | 1| 1 | =1 |-1] 1
U3 | 1| 1 | 1| 1 | =1
Ya| 1| 1 | 1 |-1] -1
c|l2[-=210]0] 0

Table 2.3: The character table of Dg

where [s1] = {5}, [s?] = {s%,s%},[t] = {t,ts*} and [ts?] = {ts? ts0}.
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Qs | [1] [ [s7] | [s7] | [ts”] | [ts]
I [T 1 1] 1 |1
p2 | 1] 1 | -1 -1 | 1
ps | 1] 1 | -1 1 | -1
pa | 1] 1 | 1 | —-1]-1
v | 2 | =2 0 | 0

Table 2.4: The character table of Qg
where [s%] = {s*}, [s?] = {52, 5%}, [ts] = {ts,ts’} and [ts®] = {ts3,ts7}. So, we have
explicit restriction on representation rings
@' : Rep(SD1s) — Rep(Dg)
which sends
=1, x2a—= 4, xa— 1, xa— 4, 01— 0, 02— P2+ 93 and o3 — o,
by considering Table 2.1 and Table 2.3. Similarly, by Table 2.1 and Table 2.4,
W' : Rep(SDig) — Rep(Qs)
sends
I =1, X2 pa, X3 pa, xa—= 1, 01— v, 02— p2+p3 and o3 — v.

We note that all elements in Rep;(SD1g) are one dimensional real representations
and that w; : Rep1(SD1g) — H'(SD16;F2) is natural isomorphism. It is clear that
in H!'(SD1g;F2) has only 3 distinct non-trivial elements, namely x,y,z +y. So, these
elements must match with wj(x2),w1(x3) and wi(x4) in some order. Furthermore, by

the nature of Stiefel-Whitney classes that they commutes with natural pull-back maps
in representation theory and cohomology, we get that;

" (wi(x2)) wi (€' (x2)) = w1 (vha) #
O (wixa)) = wi(®(xa) = W1(¢4)
¢ (wi(xs)) = wi(®(x3)) =wi(l) =
Combining this results and Proposition 2.2.1 (®*(z) = 0), it turns out that x = w;(x3).

Similarly on the side of Qg, there is only wi(x2) and wi(x3) which is non zero in the
image of U*. Since U*(y) # 0 and H*(SDj¢;F2) remains just one candidate, namely

wi(x2), ¥ = wi(xz). Moreover wi(x4) = wi(x2 ® x3) = wi(x2) +wi(x3) =z +y.

Since we have P restricts to z* € H*(4;Fy), A = Z/2 < s* > it is useful to
consider commutative diagram below.

H*(SD16;Z) H*(A;Z)
mod2
H*(SD16;F2) H*(A;Fg)
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It is easy to see that Rep(A) = {1, a} with z = w;(a). By character table, only o1 and
03 restrict to a @« and hence i*(ca(01)) = i*(ca(03)). We have co(o1) € H*(SD1g; 7Z)
restricts to c1(a)? € H*(A;Z) and then reduces mod 2 to w(a)* = z*. On the other
hand, cy(0q) reduces to ca(o1) € H*(SD1g;F2) and similarly for o3. We also note that
in H*(SD1g;F2), P is the only one of the 3 generators (i.e.y?, yu, P) that restricts to
z* = wi(a)*. This means that the candidates for co(oq) or ca(o3) are P+ Ayu + uy*

for some A, € {0,1}.

To specify it, we request the injection of ®* @ V* : H*(SDan;Fy) — H*(Dg;Fa)®
H*(Qs;F3) in Proposition 2.2.1. We see that, for e =1, 3,

* ®U*(ca(oe)) =

which completes the proof. O

Remark 2.2.4. With the same notation as in the lemma above, we have;

1. By this lemma and complexification of real representation, we obtain further that
er(xe) = cilxz2) = [wilxe)]®* = y* and similarly en(x3) = =* and eg(oc) =
ca(oe) = P, where € = 1,2 and eg(«) is the Euler class of o for cohomology
Ting.

2. Generally, in H*(SDan;Fy) for n > 5, we can show in the same way as this lemma
that x,y and P are also the first Stiefel-Whitney classes of x5, x5 and second
Chern class of ol resp, where x5, x5 and o), are the representations of SDan
with character xs,x2 and Xoda in the table 2.2 respectively.

2.2.3 H*(BSDyn;Fs) AS A MODULE OVER E/(1)

In order to compute Es page of Adam spectral sequence, we need to calculate mod-
ule structure over the exterior algebra E(1) = Ay, (Qo,Q1), where Qo = Sq', Q1 =
Sq'Sq? + Sq?Sq'. The Bockstein operations also play a role in the calculation of dif-
ferential of such spectral sequence (by theorem of May and Milgram, [25]). Here, the
Steenrod actions on H*(BSDyn;Fy) are obtained by such things on H*(Dg;Zs) and
H*(Qs; Zs) provided by Sq'(ws) = way and Sqi(ﬁ) = 0 for each i = 1,2, 3. Precisely,
we have:

Proposition 2.2.5. Steenrod action on H*(SDan;Fo) is given by Sq' (z) = 2%, 5S¢ (y) =
y?, Sq'(u) = S¢'(P) =0, S¢*(u) = Px + Py +uy?, S¢*(P) = u? and the Bockstein
operation is given by [p—1(u) = P.
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Proof. The action Sq! on generator x,y is obvious from the Steenrod axiom (dimen-
sion). The remaining follows from the Proposition 2.2.1 above. More precisely, we
compute Sq',Sq? on the image of ®*®W¥* and then use the injectivity property. For in-
stant, B*GW(S¢(u)) = (Sq2(®* (u)), Se®(*(u)) = (S¢*(wzp),0) = (w3*y-+ 35", 0)
which is the image of Px 4+ Py + uy? € H°(SDan;Fy). By injectivity of ®* @ U*,
Sq¢*(u) = Pz + Py + uy?.

For the Bockstein operation, we obtain it from the calculation of 2-Bockstein
spectral sequence for H*(SDagn;7Z), where 2 has bidegree (0,1) detected by hg in
Adams spectral sequence and detected by 2 in H*(SDan;Z), ([14], page 19,31). Namely,

E}* = H*(SDgn; F9)[2] = H*(SDan; Z),

which differential d; is given by Sq' and d, is given by 3,, the higher Bockstein
operation. We found that Es-page has infinite tower on the generator {1}, {uP™ |
n >0} and {P" | n > 1}. But, corollary 1.4.9 in [14] confirms that in such Bockstein
spectral sequence Ey* = E3" and E3S° =0 for s > N where N is the exponent of |G]|.
This means that the differential 3, = 0 and (,_; must be detected by some generators
for some 1 < i <n—2. By Theorem A in L.Evens and S.Priddy paper, [16], we have

H*(SD2”aZ) - Z[ﬂué)C?V]/(2ﬁv 267277271471(752)55757772 - ﬂ3§)7

where |B| = |¢] = 2,|¢| = 4,|y] = 5. Hence our results, i.e. i = 1, follow from the
element ¢ which has order 2”1 and degree 4. O

As stated above, we need to compute H*(SDgn;Fo) = Falx,y,u, P]/(2?+2y, zu,
23, u? + (22 4+ y?)P) as a module over E(1). It is helpful to consider its structure first.
By its relations, as abelian group, H*(SDan;F9) contains additive generators which
can be written explicitly as;

[z] U [y] U [u] U[P]U [uy] U [uP] U [zP] U [yP] U [uyP],
where

[yl = {y*|k € N} 3.[u] = {u}

The identity Qo(af8) = aQo(B) + BQo(a) and Qi(af) = aQi(B) + SQ1()
are easy to verify and are so useful for computation. By using Proposition 2.2.5 and
Steenrod axiom, especially Cartan formula, we get E(1) action as below.
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Generator Image of Q) Image of Q)1
2k {xZ k=1 0k =12
0 k=2
" {yk+1 ,odd(k) Y3 odd(k)
0 ,even(k) 0 ,even(k)
U 0 2P + P = u?
P™ 0,vVm 0,vVm
N uytt | odd(k) wlyF 4+ uyt 3 odd(k)

w {0 ,even(k) u?yk ,even(k)
uP™ 0,Vm p? P2 Pl ym
akpm 2P k=1 0, vk, m

0 k=2
Jopm {kaPm ,odd(k) Yk P™ odd(k)
0 ,even(k) 0 ,even(k)
P {ukaPm ,odd(k) {uyk+3Pm oy t2pmEl odd (k)
0 ,even(k) yht+2pmtl ,even(k)

Table 2.5: The action of E(1) on H*(SDan;Fs)

Therefore, as an E(1)-module,

M = H*(SD2n7]F2) = M(l) P M(Q) b M(3) b M(4) D M(5), (27)

-Myy := H*(BCy;Fa) generated by [y].
- M(9) := the direct sum of trivial module {P™} for each m € N.

- M3y := the direct sum of free module generated by uy?k =1 Pm=1 for each k,m € N
({quk—IPm—I’ qukPm—l’ uy2k+2pm—1 4 y2k+1pm7 y2k+2pm} )

- My = the direct sum of module Lj, = {xP¥,2?P*} for each k > 0.

- M5 := the direct sum of augmentation ideal, I*"E(1) = {uP" ! uy?P" 1 + (z +
y) P, (2% + y?)P*} for each k € N.

§2.3 FE, page of Adams spectral sequence for SDon

Recall that Fy page of Adams spectral sequence for the calculation of ku*(BG) is
reduced to E3'(M) = Extgil)(Fg,M), with degree s and degree t, where M is
H*(BG;Fy) viewed as E(1)- module and E(1) acts trivially on Fy. So, the main
tasks in this section is to calculate the functor Ext which we will recall about this
functor in subsection 2.3.1 below.
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2.3.1 SOME PROPERTIES OF THE FUNCTOR Ext

First note that in the Adams spectral conventions, (category of graded left I"-modules,
rMod ), for graded module M, ¥*M = ¥_; M means decreasing codegree of module
M by t (increasing degree by t) i.e. (X'M); = M;_4, (cf. [27], page 377). The graded
version of the Hom-functor of the graded module A, B over graded algebra I' is given
by
Homk(A, B) = Hom (A, X! B) = Hom{(X 7' A4, B),
which can be though of as a group of homomorphisms from A to B that shift codegree
down by t (cf. [27], page 376-377). Note also that Hom® (A, X!B) = [Homr(A, B)]_¢,
and
Homr(A, B) = @) Homp(4, B) = @H[Homr (4, B)] ;.
tez teZ

In general, for any graded module M, N over a graded algebra I' (I" be a graded
algebra over a field k with unit € : &k — T' and augmentation n : I' — k), it is
well known that Ext?’t(M ,N) can be calculated dualistically in two ways. The first
way starts by taking projective resolution on M, say P, , applying Homk(P,, N) and
then ends with taking homology, H®(Homk(P,, N)). The second way starts by taking
injective resolution on N, say I,, applying Homk (M, I,) and then ends with taking
homology, H*(Homk(M, 1,)).

It is also well known from homological algebra that this functor is independent
of the choices of projective or injective resolution. So, we can take resolutions to be
minimal (actually, canonical free resolution). Here, by definition, a homomorphism,
f: M — N of left I'-modules is said to be minimal if f(M) C I(T') - N, where
I(T") = ker(n: ' — k). A projective resolution of a module M is said to be a minimal
resolution if every mapping in the resolution is minimal (definition from [27], page 379).

The consequence of taking projective minimal resolution is useful when N = k.
This is actually suitable to our trivial case, i.e., with M, N = k. Precisely, if P, is
minimal projective resolution, then

Ext' (M, k) = Hombh(Py, k), (2.8)

which the proof is straightforward or see, for example, Proposition 9.4 in [27].

As usual, for a short exact sequence of I"-module, 0 — C’ — C — C" — 0,
there is the induced long exact sequence;

0 — Homp(C”, N) — Homp(C, N) — Homr(C’, N) — Ext{.(C",N) — - --

- — Ext}(C",N) — Ext}(C, N) — Ext}(C’, N) — Extp (0", N) — -
(2.9)
and

0 — Homr (M, C") — Homr (M, C') — Homrp (M, C") — Exth(M,C’) — ---

- — Ext}(M, C") — Ext}(M,C) — Ext}(M,C") — ExtT (M, C") — - -
(2.10)
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Note further that Es-page of Adams spectral sequence for our interest is equipped
with multiplicative structure, namely composition product,

o : ExtP!(L, M) ® Ext®’ (M, N) — Extlret* (1, ), (2.11)

which defines for all p,q,t,t' > 0. For [f] € ExtR'(L, M) and [g] € Emt%’t/(M, N),
the composition product for [f] and [g], say [f] o [¢g] is defined as follows. First, note
that [f] and [g] are represented by f : P, — XM and g : Q, — XN for some
projective resolutions 0 «— L «— P, and 0 «— M «— @Q,. Next, using the defining
property of projective modules, lift f up the resolution to f; : P,ry — X'Q,. Finally,
suspends g to Xlg: ¥Q, — LN and let

[flolg]l = [E'go fq],

see details in Theorem 9.5 in [27] page 380.

In particular, for our case L = M = N = Fy, we get that Extg?l)(Fg,JFg) is a
graded ring via this product. Also, by applying L = M = Fy and N = H*(BG;F3) to
(2.11), we have

E3™-page = Ext’fE”(kl) (Fy, H*(BG;Fy)) is a graded module over EXtE?I)(]FQ,FQ)
(2.12)
via the composition product. This is a very useful fact for calculation of differentials
in Adams spectral sequence.

We now return to our case of interest, ExtE”(kl) (Fy, M), where M = H*(SDan;Fs).
The fact that the functor Ext commutes with direct sums makes us comfortable to cal-
culate Fo page, i.e. we can calculate Fo page for M separately by fixing calculation
to each submodule M), i € {1,2,3,4,5}. We see further that all M;)’s are the com-
positions of small modules, i.e., trivial module Fy, free module F(1), augmentation

ideal module IE(1), module Mg, = E(1)/(Qo), module Mg, = E(1)/(Q1), module

Mgqoq, = E(1)/(QoQ1) and string module My = H*(RP>®;Fy) = Fyly] — {1}, which
are displayed as figure below. We will calculate Extgzl)(lﬁ‘g, —) of them as modules
over Extz?l)(Fg,Fz) in the next subsection.
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coc}egree
8 For positive integer k, S
7 T Y* N, means moving N up by k y’
6 [} Y% N, means moving N down by k Yy
5) Y°
/N T Qo1 Qo1 Y
3l Q1 Q1 Q1 y3
2 y?
Lo, Qo Qo Qo y
(O N el SRR UNUUROURUPRRURRURRIE 48 SR I.l ........... Lo,

F, E(1) IE(1) Mo, Mg, Mg, My

Figure 2.6: Position and structure of Fy, E(1), IE(1), Mg,0,, Mg, , Mg, and
M(l) .

2.3.2 CALCULATION OF FE5-PAGE

In order to calculate Extga)(ﬂrg, H*(SDyn;F9)) as a module over Exth’zkl)(IFg, Fy), it is
enough to focus the calculation to small modules as in Figure 2.6 above. So, the first
task is showing that EXtE?l)(FQ,FQ) is a ring under composition product explicitly.
Then all remaining tasks will follow by helps of the induced long exact sequence (2.10).
We now start with Extg?l)(Fz,Fg) by taking minimal projective resolution as;

Py :0—Fo«— FPy«— P +—— Py «— P3«+—— ...

)

where, for s > 0,

1=S
P =P ¥EQ).

1=0

Since this is a minimal resolution,

Ey'(Fs) = Exty(Fa,F2)
= H*(Hom (P, F2))
= Homf,)(Ps, F2)
= P Homly (T E(1), Fa)
=0
_ Fy, ift = s+ 2i where i =0,1, ..., s;
- 0, otherwise.
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Let ho and v be non-zero generators in E," (Fy) and Ey®(Fy) respectively. To see
that E5'(Fy) = Fylho,v] as a ring under composition product, it suffices to show that
multiplying by hg or v is not zero. This is guaranteed by diagram below;

Multiplied by hg ( 0 o1 o )
€ (Qo Q1) 0 Qo @
00— Fy — E(1)~——X'E(1) ® ¥3E(1) Y2E(1) @ SAE(1)XCE(1) «—

(e,0) = hg ho,o | (1,0) O ho,1 ( (1) (1) g )
1 1 (Qo Q1) 2 4
3y STE(1)= YE(l) e X*E(1) «—
Multiplied by v ( Qo @1 0 )
€ (Q @) 3 O Q0 @y 1 6

0—Fy «— E()~—X'E(1) e X°E(1) YPE(Q) @ X*E(1)XPE(1) «—

(0,e) = vo,0 |(0,1) O vo,1 ( 8 é (1) )

(Qo Q1)

Y3y S3E(1)= YAE(1) @ XOE(1) «—

Now, it is not hard to see that h%vj € Extgr(]l)z +3J (Fg,Fy) = Fy is not zero for all
i,j > 0 and hence (cf.[14]),

Extp, (F2,F2) = Faho, v], (2.13)

where hgy € Ethzl)(FQ,Fz) and v € Extg?l)(Fg,Fg).

Next, for Extg?l)(lﬁ‘g, Mg, ), we consider short exact sequence;

O—>21F2—>MQ1%F2—>O.

This induces long exact sequence, (2.10), for each t € Z,

0 — Hom,, (Fy, S'Fa) —  Homyy,, (Fy, Mg,) — Homiy, (F2, Fy) —

17 17
)(F2,B'F2) —  Exty(F2, Mg,) —  Extg,,(F2,F2) —

)(F27 ZIFQ) — EXt%’El)(FQ’ MQ1) — EXt%il)(F%]FQ) —

0 — > Etht

(1
2.t
0 — > EXtE(l

For the third column we have Extga) (Fg,F2) = Falhg,v] and for the first column we

have Extgz‘l)(FQ, Y1IFy) =2 ¥~'Fslhg,v]. Note here that we are using diagram of Fs-
page under coordinate (s,t — s) and thus X ~!Fy[hg,v] means moving Fa[ho,v] to the

left one unit (i.e. by (0,—1)).

Once we determine differential § : Etht(IS(F27F2) — Ext® L0 R, S1F,),

) E(1)
we will obtain Extg?l)(IFg, Mg,) as

0 — X Fy[hg, v]/im(8) — EXtE?l)(FQ, Mg,) — ker(d) — 0.
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Since we have diagram;

Fo<~—E(l) =<——3X'EQ)®3E(1) «— -

A e

Fy <— Mg, YIFy «— 0
then 6(1) = X~ 'hgy and hence
Exty, (F2, Mg, ) = YR, [v]. (2.14)

Similarly, by considering on short exact sequence 0 — X3Fy — Mg, — Fo — 0,
we get that §(1) = X 3v and

Extyr)) (Fa, Mg,) & £ °Faho). (2.15)

Next, for EXtEa)(FQ, Mg,q,), we first consider short exact sequence

0 — Y3Fy — Mg, — Mg, — 0.

The first column and the third column of the induced long exact sequence have been
done. They are X 73F3[hg,v] = Falho,v] < g2 > and L7 1Fy[v] = Falv] < g1 >, where
0# g € Ext%a(FQ,MQI) and 0 # g € Ext(]ga;’(m,&) (in coordinate (s,t—s)),
respectively. It is clear that, by coordinate reason, differential 6 = 0 and hence

EXtEZ) (F2, M@,@,) = Falho,v] < g2 > GF2[v] < g1 > .

It remains to determine whether vgo = hggi. To do this, we next consider another
short exact sequence, i.e.,

0— EIFQ — Mg,q, — Mg, — 0.

By similar process as above, we have;

*

Exty) (F2, Moyq,) = Falho,v] < g1 > ©Fa[ho] < g5 >,

where 0 # g € EXt%(_S(FQ, Mg,) and 0 # ¢} € Ext%(_ﬁ (Fq,Fy).

Since g1 and g are both non-zero elements in Ext%a (F2, Mgo0,) =Fa, g1 = 9

and similarly we can conclude that go = ¢g5. The consequence is that vgs = hog1 and
thus,

EX‘DE’Z)(F% Mgyq,) = Falho,v] < g1,92 > /(vg2 — hog1), (2.16)
where |g1]| = (0,—1) and |g2| = (0,—3) in coordinate (s,t —s).
Next, for Extg(kl) (F2, IE(1)), we consider short exact sequence

0 — 2'Mg, — ITE(1) — ZFy — 0.
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Again, we need to determine differential in the induced long exact sequence
8§ : X 3Falhg, v] — L 4Fa[hg).
It is not hard to see that 6(X731) = £~*hy and hence

Exty) (F2, [E(1)) 2 X Fa[ho] /im(0) @ ker(9).

That is

Extyiy) (F2, TE(1)) 2 £71F, @ B4 Fa[ho, v, (2.17)
where =17 1Fy[hg, v] means shifting Fa[ho, v] to the left one unit and to above one unit
in coordinate (s,t —s).

Finally, for Etha)(F?’ MQ)), we filtrate M(l) as

j\Z(l) = 2o2FR2FD..,
so that

F()/F1 = EIMQOQl = Ml,

Fo/Fy = M, in which 0 — M; — My — S3Mg, — 0,
F()/F32M3 in which O—>M2 —>M3 —>25MQO —>O,
Fy/F, = M, in which 0 — M,_1 — M,, — %" Mg, — 0,

)

and lim Fy/F, & A7(1). Before doing further, note that, generator of Ext%’(kl)(lﬁ'g, M)
n—oo

is any element in M annihilated by Q¢ and (1. This is because we take minimal
projective resolution for Fy to be

0 —Fz e E(1) o S'E(1) ®@X°E(1) e -+,

which yields

0 — MM”EAM @E_3M_> S
and Ext%’a)(FQ,M) is the kernel of (Qo Q1) map. This fact and (2.16) imply that

Exty()) (F2, M1) = Falho, v][5]/ (7, 05 — hoy),

where 7 = 2 € H2(RP™;Fy).
To calculate Extg?l) (Fa, Ms), we use the same technique as (2.16), i.e., by consid-

ering 0 — My — My — ¥3Mg, — 0 and 0 — X1Mg, — My — $2M; — 0.
It is not hard to see that

Exty(), (F2, M) = Falho, v][7]/ (7", v7” — hoD).



CHAPTER 2. COMPLEX CONNECTIVE K-COHOMOLOGY 32

By the same process and induction on n, we can conclude that
Ext iy (F2, My) = Falho, v][7]/ (7", v5° — hop). (2.18)
To conclude that (2.18) is true for all n, we need to consider short exact sequences;
0— M(l) — L —YF — 0,

and __ —
0 — St Mg, — M) — E°My) — 0,

where L is the module J\Af(l) with extra generator in degree —1. That is L = lim(Lyg),

where Ly = L/ Y2*[,. By using the same technique as above and taking inverse limit,
we conclude that

Ext ) (Fa, Myy) = Falho, v][g]/ (v7* — hop). (2.19)

To be comfortable, we recollect results of (2.13)-(2.19) as;

Proposition 2.3.1. In Es-page of Adams spectral sequence for ku*(BG), we have (in
coordinate (s,t—s)):

. Extg’gl)(ﬂ?z, E(1)) = $4F,.

) Extg?l)(FQ,E(l)/(Qo,Ql)) = Fy[ho, v],where |ho| = (1,0) and |v| = (1,2).
o Exty(y(F2, E(1)/(Q1)) = SO VF;[u].

o Exty(y) (F2, E(1)/(Qo)) = SO ¥F; o).

o Exty ) (F2,1E(1)) = 2O-DF, @ $O-DF,[ho, 0]

| EXtEE)(FZaE(l)/(QOQl)) = Falho,v] < g1,92 > /(vg2 — hog1), where |g1] =
(0,—1) and |g2| = (0,-3).

o Exty) (Fo, H*(RP™;F2)) = Falho, v, 7]/ (v7*~hoy) , where § = y* € H*(RP*;Fy).

As an immediate result of this proposition, we have;

Lemma 2.3.2. Es-page of Adams spectral sequence for ku*(BSDan) is given by (with
coordinate (s,t — s) and the same notation as in (2.7));

L E;*(M(l)) = ]FQ[h(bU] 2] FQ[h()’U)g]/(UyQ - hoy) .

o EJ" (M) = @ S (Fy[ho, v]) = Falhg, v][P], a direct sum of free modules over
m>1
Falho,v] generated by P™ € H*™(SDan;F3), for each m > 1.
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* % 0,% 0, 1, 0,% 0,7 . .
o EyY (M) = Ey* (M) = E, (EB M(3j) = @ Ey (M(sj)), which is an Fo-
i,jEN i,jEN
vector space spanned by y**T2P™ ¢ HA"+4%+2(S Do Fy) for each k> 1,m > 1.

o Ey" (M) @E , which is a direct sum of free modules over Fa[v]
k>0
generated by x> P* € H¥*+2(SDon;Fy) for each k> 0.

o Ey" (M) @E* *(I*E(1)), which is a direct sum of @FQ < (2 +yH Pk >
k>1 k>1
and @D Falho,v] < WP*™' >, where [aP*~1| = (1,—(4k — 3)).
k>1

Here, as in page 54 of [14], we use @ for the non-zero element in Ext ' Bl )(Fg, M).
This is because u is the element of mod 2 cohomology that generates the tower of
Bockstein spectral sequence (see the proof of proposition 2.2.5) which that tower cor-
responds to the tower generated by w of Adams spectral sequence here, by theorem of
May and Milgram (version over E(1); see this discussion in [14] page 31-32), and hence
this will support differential.

We summarize the diagram of Fa-page in coordinate (s,t —s) of H*(SDan;F9)
in the next page.
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§2.4 Differentials and F. -page

We record at first from the last section that, in Eg’t_s term, v multiplies each tower
of codegree [ to the tower of codegree [ + 2 for all [ € Z. Also v is not zero divisor
in the filtration which is greater than 0 and is not zero divisor for all filtrations if it
multiplies on codegree which is less than or equal to 4. In other words,

v acts monomorphically on positive filtration of Ej"'~*- page for ku*(BSDan).

Since relations between connective K theory, cohomology ring and representation the-
ory are useful for the calculation of differentials, let us investigate some facts about
them first.

Here, we define the Euler classes in connective K cohomology for SDq¢ by;

a = eku(X3) S kUZBSDlﬁ
b:= eru(x2) € ku?BSD1g
d:= eku(a) € ku4BSD16
do := epy(02) € ku*BSD1g
ds := €ku(03) S ku4BSD16.

Similarly, for SDan , we define a := e, (x5), b := eru(x5) and d; = ey (0}'), see remark
2.2.4. Note that in this thesis, we intend to calculate explicitly only on SDyg. However,
for SDon, its calculation is similar to SDig until E.,-page because the initial input
for Adams spectral sequence of both SDig and SDsn are the same i.e., their Es-
page are the same, but it is different in the differential calculations. Precisely, we will
see that the Adams spectral sequence for ku*(BSD1g) collapses at Ey-page and it is
not hard to see that the Adams spectral sequence for ku*(BSDan) collapses at F,,-
page (this is because the higher Bockstein operation [3,—1(u) = P in Proposition 2.2.5
and the theorem of May and Milgram). Furthermore, when n varies, the calculation
in representation theory for ku*(BSDgan) also varies (the number of generators and
relations in ku*(BSDan)). Henceforth, we mainly focus on the case SDjg.

The relations between connective K theory and cohomology ring come from the
natural transformation, ([14] page 15-16),

ku*(BSD16) — H*(BSDlﬁ,Z) e H*(BSD16;F2),

which we have;
a— cf"(xs) — (w2 (x3))* = o,
b o (x2) — (0 (x2))* = 4" =7,
d,ds — cl% (o) — (o) = P,
dy — el (o9) — ™2 (o3) = 0.

On the other hand, the relations between connective K theory and representa-
tion theory come from the Atiyah completion theorem, [3], i.e., for finite group G,
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KU*(BG) = R(G)[v,v™1], and natural transformation, ([14] page 15-16),

ku*(BG) 5~ KU*(BG) .

From here, the Fuler classes in the representation theory is calculable easily by using
lemma 1.3.3, 1.3.6 in [14]. Namely, for an n-dimensional complex representation V',

Vg, (V) =eB(V) = AXV) =1V + A2V — - 4 (=1)"\Y(V).

Thus, in our case, the relations of Euler classes between ku theory and represen-
tation theory is given by:

A:=va=1-x3
B:=vb=1-—x9
D:=v’d=1—0y+detoy =1—01+ x4
Doy ::’1)2d2:1—02+det02:1—02+){2
Ds ::v2d3:1—03—|—det03:1—03+X4.

In computation, it is very useful to have the character table of these classes.

R(SDws) | [1] | [s"T | [s] | [s"1] [s°] | [t] ] [ts]
A 0] 0 2 0 2 0] 2
B 0] 0 0 0 0 2| 2
D 0 4 | —v2i| 2 V2i | 0| 2
Dy 0] 0 2 4 2 0] 0
D3 0| 4 V2i 2 | —v2i | 0] 2

Table 2.8: The character table of the Euler classes in R(SD1g)

We now turn to the calculation of Adams differentials. Note that differen-
tials of Adams spectral sequence are compatible with natural maps. For any com-
plex representation V on G, py : G — U(n), one has Bpy : BG — BU(n)
and (Bpy)* : ku*(BU(n)) — ku*(BG) in which ¢,(V) is defined via this maps
as ¢ (V) := (Bpv)*(cn), because ku is a complex oriented theory. Then all Chern
classes are infinite cycles in Adams spectral sequence, since there is no differentials in
ku*(BU(n)). This implies that 22,7 and P are in the kernel of any differential. In
other words, there is no non-zero differential departing from even codegree in Adams
spectral sequence for ku*(BSDan).

By Proposition 2.2.5 , (3(u) = P, and by the correspondent between tower of
Adams and Bockstein spectral sequence (theorem of May and Milgram), we get that
Es5-page = E3-page and also there is evidently non-zero differential ds detected by u
in codegree 3. It must take the form

ds3(u) = aghgP + vz

for some ag € F2 and some vz in codegree 4 and filtration 4.
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Lemma 2.4.1. ag s not zero.

Proof. By restriction to the 4 skeleton, i.e. BSDig — BSDYé) , there is no any element
lies in codegree greater than 4. So, d3(u) = aphiP. Suppose that d3(u) = 0, then hiP
is an infinite cycle and hence 16d # 0 in ku4(BSD§é)). This contradicts lemma 2.4.2
below and the fact that H”(BSDYGL);Z) is annihilated by 16, lemma 1.4.8 [14]. O

Lemma 2.4.2. ku"(X™) = H"(X™:Z), where X™ is an n skeleton of CW-
complers X .

Proof. There is a cofibre sequence %2ku — ku — HZ (Bott periodicity). Hence, for
any paracompact space Y, there is a long exact sequence

co s [V, 22 k) — [V, S ku] — [Y, S HZ] — [Y, 23 ku] — - - -

Since Y?t"ku and ¥3t"ku are n + 1 and n + 2 connected space, respectively, the
result follows by lemma below. O

Lemma 2.4.3. Let Y be d-dimensional CW-complex and Z be n-connected space, if
d<n then [Y,Z] =0.

Proof. By induction on d, it is clear for the first step, i.e. Y is O-dimensional. Suppose
this holds for dimension d and d +1 < n. We consider cofibre sequence Y@ —
Y@+ . \/. ST Thus, there is a long exact sequence

T [\/z Sd,Z] A [Y(d)7Z] — [Y(d—‘rl)?Z} — [Vz Sd+1)Z] A

Since Z is n-connected space and d+1 < n, [\/, S, Z] = [[; 7a(Z) = 0 and [\, S%*1, 7]
= [[;7a+1(Z) = 0. This yields that [Y(¥ 7Z] = [Y(@*D) 7Z]. By induction step,
VD) 7] = [Yy(@ Z] = 0 and hence the result follows. O

Note further that the generators of the tower lying on odd codegree in E5-page
are of the form v‘uP* for all ¢ € {0,1} and k > 0. Since d3 is derivation and d3
vanishes on v¢P¥ for all ¢ € {0,1} and k >0,

d3(vuP*) = v PRd3 (@) + tds (v P*) = (v P*)(hiP + vzx) # 0,
by FEs-page (precisely, v is monomorphism above zero line). Thus E; concentrates in
even degree and hence Fy = F.
Now, we have:

Lemma 2.4.4. In the Adams spectral sequence

EXtEa)(F% H*(BSDig;F2)) = ku*(BS D)y,

(1) ds(u) = h§P + v2h3P?,
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(2) E4 = E is generated over Falhg,v] by the filtration zero classes x2,y, P, detect-
ing a,b and d respectively,

(3) multiplication by v is a monomorphism in positive Adams filtration, and this holds
for all filtration if v acts on elements in codegree being less than or equal to 4,
and

(4) the natural map ku*(BSD1g) — H*(BSD16;F2) @ K*(BSDig) is a monomor-
phism.

Proof. We have just proved (2). For (3), we assume for contradiction that this is a false
statement. So, there exists 0 # [r] € Es which v[r] = 0. Thus vr = d3(z) for some
0 # Z € 5 = F3 and then

vr = z(hg P + vx) (2.20)

for some 0 # 2z € By = F3. That is v(r — z2) = z(h3P). Since h3P : Eészl’*)/(v) —
Eészl’*)/(v) is monomorphism, z = vk for some 0 # k € Ey = FE3 with d3(k) = 0,
because it is in even codegree. Substituting this result in equation (2.20), we obtain
that vr = vk(hP + vr). Since v is monomorphism on E2 page above zero lines or
all lines if it acts on codegree being less than or equal to 4, r = k(hiP + vx) =ds (k).
Hence [r] = 0, which is a contradiction.

For (4), suppose x € ku*BS D16 has image (0,0). Let Fp D F; D Fp D F32 -+,
be the filtration of FO = ku*(BSDlg)é\ Then x — 0 € H*(BSD16;IF2) 2 Fg/Fl and
hence x € Fy. From (3), F} o K* = Colim(ku* % ku* = ku* = ---). Therefore
z=0.

For(1), from the table 2.8, 16D —12D? + 10D3 — 6D* + D® = 0 in representation
theory. This is equivalent to say that v?(16d—12v%d?+10v*d? —6v%d*+-1v3d®) = 0. Since
v? acts monomorphically on ku*(BSDsg), r := 16d—12v2d?*+10v*d3 —6v5d* +v8d° = 0.
It follows that [r] = hiP + v?h2P? = 0 in filtration 4 and even codegree of Fy = Ex,
page. So, it must be detected by some elements in codegree 3 and filtration 1 which
has only one generator, i.e., u. O

Now, we reach to the main objective of this section, i.e. F.-page shown as in
figure below.
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§2.5 The additive structure of ku*(BSDig)

2.5.1 GENERATING SET OF ku*(BSDig))

Note that (see this discussion in the subsection 1.2.3) the convergence of Adams spectral
sequence for ku*(BG), finite group G,

Ext ) (F2, H*(BG; F2) = ku*(BG)3,
is strongly convergent ([2], [11]). This means that E = ku*(BG)% has filtration
E = F[) 2 F1 2 F2 2 F3 2 S.t.ﬂst =0 and G’I“(E) = @SZOFS/FS+1 = Ego
where (F,/Fyi1)n = EZ in coordinate (s,t) and will be E3 if we use coordinate
(s,t — s). In other words, for finite group G,

ku*(BG)) = lim E/F,. (2.21)

Furthermore, E. -page does give the generating set for ku*(BG)) since we have:

Proposition 2.5.1. For finite group G, if {zo} is a set of elements in ku"(BG)% such
that B := {xq + Fy(3,)} is an additive generating set, as an Fa[ho]-module, for EX",
then B := {z,} is an additive generating set for ku™(BG)5 as an Z% -module, where

f(za) is the mazimum filtration of xo plus 1, i.e., To € Fpp -1 but o & Fra,)-

Proof. Let = € ku"(BG)) = E. Then @ + Fj(y) € Fyiy1/Fy = ELY ™", So,

no
T+ Fpz) = (Z Cita;) + Fy(a),
=1

for some ¢; € Z%, 1o, € B and f(z4,) < f(z) with f(cza,) = f(z). Let 27 =

21 Cita,, then o) = & — 1 € Fy(,) which means that x = 1 € E/Fy;). We do
the same process starting with 2/, we get x5 which is in term of elements in B and
T =21+ 22 € E/Fy, where f(z2) > f(z1). By induction on f(z), we can write
r=x1+x2+23+...+2) € E/Ff(%il) such that x;’s are written in term of elements
in B, where f(zit1) > f(zi). Set a, = ZE? x;, we get that this sequence, (ay)
converges uniquely to x, (a,) — x, in the topology given by neighborhood (2-adic
topology), since (), Fs = 0, which completes the proof. O

From the last section, in our case, the additive generator, as an Fa[hg]- module,
of B -page are;

{viz?PI vk PYi .k, 1 > 0} U {(2® +4?) P 9/ PFlisk > 1,5 > 1}
U {v', 7, 0Mgli > 0,5,k > 1}

This implies, by proposition 2.5.1 above, that these elements correspond to the additive
generating set of ku*(BSD16)5 . That is, explicitly,
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{vlad’, vkd'i, j, k,1 > 0}y U {(a +b)d', b/ dF|i,k > 1,5 > 1} U {0, b9, 0%b|i > 0,5,k > 1},

generates ku*(BSD16)) as a Z4- module.

Next, to determine its structure and additive extension problem precisely, equally,
we need to find its basis generator over Zj for each codegree. A good way to do this is
to compare the generator of connective K theory with cohomology ring theory, periodic
K theory and character theory, i.e. using the injectivity of the natural homomorphism
in lemma 2.4.4(4)

k"LL*(BSDlg) — H*(BSDlﬁ;FQ) D K*(BSDH;),

which we start to do this in the next subsection.

2.5.2 ADDITIVE STRUCTURE OF ku*(BSDjs)

It is evident from F,-page and lemma 2.4.4 that, for codegree being less than or equal
—~2 —~2(n—1

to 2, multiplying by v gives an isomorphism ku n(BSDlG) > ku o )(BSDlﬁ). So, it

suffices to find additive basis for the generating set on codegree which is greater than

or equal to 2.

We now first consider in codegree grater than 2. Let £k > 1.

In codegree 4k the generator over Z) and their images are;

ku*(BSDlG) H*(BSDlﬁ,FQ) K*(BSDH;)

b2k y4k BZk

dk+1 Pk:—‘rl Dk—i—l

U2idk+1+’i 0 Dk+i i = 1’ 2’ 37

b2i+2dk—1—i y4i+4Pk—1—i BQH_QDk_l_i, i = 07 17 2’ 3’ k— 27 (k’ > 2)
v¥Hlgdktt 0 ADFE, i=0,1,2,3

In codegree 4k + 2 the generator over Z5 and their images are;

k‘u*(BSDlg) H*(BSD16,F2) K*(BSDlﬁ)

p2k+1 s B2k+1

pX- gkt 0 DFk+i i=1,2,3,..

b?i-i-ldk’—i y4i+2pk—l BQH—le—i, i=1,2,3, k= 1, (k > 2)
adk 2Pk AD*,

v¥adkt 0 ADF+ i=1,2,3,..

(a+ b)d* (2% +y*) Pk (A+ B)D*

In table 2.8, we see that in codegree 4k, k > 2 and i € {0,1,2,3, ...k — 2}

B2i+2Dk—1—i — 2/€—1+iBD — AB2i+1Dk—1—i



CHAPTER 2. COMPLEX CONNECTIVE K-COHOMOLOGY 42

which means that
b2i+2dk—1—i — (y4i+4Pk:—1—i’ 2k—1+iBD) and ab2i+1dk—1—i — (0’ 2k—1+iBD)

have the same image in K*(BSD1g). It follows that b +2gk=1=% — qp2i+1gh—1=7 hag
image (y*T*P*~17% 0) which is not zero. Thus, this element is annihilated by 2 and
v and hence

b2i+2dk—l—i _ ab2i+1dk—1—i (222)

does not generate Z4 part of ku**(BSDyg) but it generates Fy part instead. Similarly,
in codegree 4k +2, k> 2 and i € {1,2,3,...k — 1},

b2i+1dk2—i o ab2idk—i (223>

is annihilated by 2 and v and hence generates Fy part of ku***?(BSDys). Note here
that both of ab*d*~" and ab®*t1d*~1~% are actually a combination of elements in the
generating set for ku**T2(BSDyg) and ku'*(BSDsg) respectively, which we will see
clearly soon (after lemma 2.5.2 and lemma 2.5.3 below).

What next we have to concern with is the element (a + b)d* € ku***+2(BSDs)
for each k > 0. The image of this element is ((z? + y?)P*, (A + B)DF) which is not
zero in both H*(BSDg;F2) and K*(BSDqg). Furthermore, since we have

1 1 2
2(A+B)Dk _ 7Dk+4+4ADk— jDk+l _ —ODk+2—§Dk+3 7&0
9 9 9 9
in character table, thus
1 16 20 8
2(a + b)d* = §v7dk+4 + 4adt — EvdkH - §v3dk+2 — §v5dk+3 (2.24)

is not zero in positive filtration and hence (a + b)d* is not 2-torsion or v-torsion.

To guarantee that the combination of (a+b)d* and other elements in ku***+2(BSDjg)
is not 2 torsion or v-torsion, we need to check that the image of (a+b)d* € ku***2(BS D)
is not the images of some generating elements of ku***2(BSD1g) in K*(BSD1g) which
lie in positive filtration. This is confirmed by:

Lemma 2.5.2. Let k > 0. All generating elements of ku***t2(BSDig) in positive
filtration can be written as a 7% - combination of elements in

[Baya] := {b*F,ad", 2(a + b)d"*, vd* ™, v?d* 2 053}

Proof. We will calculate on its image. Let 2 be a generating element of ku***2BSDig
in positive filtration which is not in [Byk2] (otherwise it is obvious). Then im(z) will
be zero on H*(BSD;ig;F2) and we will write its image as

(0,X) = (0, [z1, 32, 23, T4, T5, T6)),

where z1 = X([s]), 22 = X([s]), 23 = X([s*]), 21 = X([s°]), w5 = X([t]), 26 =
X([ts]). (Note that we omit xg = X([1]) because this is zero for every z that we
consider). Now, we have:
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Zm(b2k+1) (kaJrl’ [0 0 0 0 22k+1 22k+1])
im(ad®) = (22P*, [0 2(—v2i)F 0 2(v/2i)k 0 2k+17)
im(2(a + b)d*) = (0, [0 4(—V2)k 0 42k 0 2k+3))
Zm( dk+1) — (0’ [4k+1 ( \/iz)k"'l 9k+1 (\/Z)k—i—l 0 2k+1])
lm( 3dk+2) (0, [4k+2 ( \/iz)k"'z 2k+2 (\/ﬁi)kz-i-z 0 2k:+2])
Zm(v5dk+3) — (0’ [4k+3 ( ﬂz)k"'?’ 9k+3 (\fz)k—i-i% 0 2k+3])
im(x) = (0, [1 T T3 T4 5 w6])

Thus z can be written as the combination of elements in [Bygyo] if

x = ny (B**T1) 4+ na(ad®) + n3(2(a + b)d*) + ng(vd*™) + ng(v3d"2) + ng(vSd"3),

i=6
where n; € Z4 for each i = 1,2,3,...,6 s.t.Zn? # 0 and n1,ne are both even. This
i=1
is equivalent to say that
0 0 0 4k+1 4k+2 4k+3 niy I
0 2<_C)k 4(—c)k (_C)k+1 (_c)k+2 (_C)k+3 no X9
0 0 0 2k+1 2k+2 ok+3 n3 | 3
0 2(C)k 4(c)k (c)k+1 (C)k+2 (C)k+3 N - o
2%+ 0 0 0 0 0 ns 5
22k+1 2k+1 2k+3 2k+1 2k+2 2k+3 ng Z6

where ¢ = v/2i. We find the solution of n;’s by using row-reduced matrix, i.e.,

0 0 0 4k+1 4k‘+2 4k+3 |331
0 2= 4(=0)F (= (=02 (=0)**? o
0 0 0 2k+1 2k+2 2k+3 |3§‘3
0 20)F  4F (L (@M (M Jay
22k+1 0 0 0 0 0 |25
22k+1 2k+1 2k+3 2k+1 2k+2 2k+3 |5136
0 0 0 0 2.4kl 3 gk t2 g 2Rl = o
0 0 0 2(—c)kHt 0 2(—c)f 3 |ag — (—1)Fay = o
N 0 0 0 2k+1 2k+2 2k+3 ‘1'3
0 2(c)k 4(0)’“ (C)Ic—i—l (c)k+2 (C)k+3 ‘354
22k+1 0 0 0 0 0 |25
0 ok+1  ok+3 0 0 0 |ze — x5 — x3 = x4
0 0 0 0 2.4k 3. 4k42 g
0 0 0 2(—c)ktt 0 2(—c)k 3 |,
0 0 0 0 oHH2 3ok gy — (S )al =

0 2(c)k 4(c)k (C)k+1 (C)k+2 (C)k+3 ]:1:4
22k+1 0 0 0 0 |5
0  2kFL ok+3 0 0 0 |
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0 0 0 0 6-4F L |pf — 2k Flgl = o
0 0 0 2(—c)ftl 0 0 l|ay— (%M = 2!
N 0 0 0 0 2k+2 0 |2 — ()2} = of
0 2(c)f 4(c) 0 0 0 |/,
22kl 0 0 0 0 |5
0 =21 0 0 0 0 |z — 2(—c)Faly = aff
0 0 0 0 0 6.4k |2
0 0 0 2(—c)** 0 0 |24
0 0 0 0 ok+2 0 |24
~ 0 0 4(c)” 0 0 0 |24 + (cgr)r =2 |
22k+1 0 0 0 0 |25
0 2k+1 0 0 0 0 |z
where
I _ (—DFH 1 " A
Ty = T4 5 2 (—c)F+2 T3 = g gk 1
1 1
Hence,
nlzﬁ%’nQZ%an3:4($#7n4:2(7xc%7n5:2k$7n6:6,171+1'

Recall that the images of generating elements in positive filtration of codegree
4k + 2 which is not in [Byg42o] are in the form AD?®, where s > k+ 1 and D® where

s > k+4. We are ready to check them now by starting with AD?®, where s > k+ 1,
first.

case AD®=[x1, 79, 23,74, 75, T6) = [0,2(—c)%,0,2(c)*, 0,257, s > k+1

We need to check that n; € Z4 for each i = 1,2,3,...,6 s.t.zzij n? # 0 and
ni,ne are both even. In this case we have z5 = 0 (ie.ny = 0), 2} = 0, 2, =

2(e)*[(=1)* — (=1)¥], 2§ = —(c)FsH((=1)* — (=1)¥), zf = 2°FL. This implies that

‘T/ll — 2k+1 (c)k+s+1[(_1)s _ (_1)k]
B +2k+2 () st if k4 5 is odd;
- 0, otherwise.

That is

s—k—1
ng = zy _ 2 32 , if k4 s is odd;
6 - 4h+1 0, otherwise,

So, ng € Z, because s >k + 1.
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Next, since we have

vy = @y —(

(_c)k+3
3. 4k+1

= 2(c)°[(=1)° = (=1)"] — ( )2 () (1) — (1))

= 201"~ (-4 - (2L () - )
= U1 - (-1,
then
2! _1\k+1 |
e I (G
_ {jﬂféw, if k + s is odd;
0, otherwise,

and hence ny € Z%. Next,

M= oy = (ah— (gap)al)/ 2
57 ok+2 3 \gk4+1/71

—_ [—QCS_k_l((—l)s _ (_1)k>]/2k+2

+9° 5 if k+ s is odd ;
0, otherwise,

which yields that ns € Z.

Before doing analysis on ns and ng, we need to find z/j first. By direct calculation

with @)y = 1 (24 + (—1)Fa) — (ﬁ)xg’, we have

;| 2¢8, if k£ + s is even;
T4 = —4¢571, if k+ s is odd.
Consequently,
_L’G/ . (/_2(_)k I)/_2k+1
"= o T e ) T
B —9s—k 1 (_1)%%2%“, if £+ s is even;
_9s—k _ (_1)%2“37“&, it £+ s is odd.
Hence ns is an even integer. For n3 = %, we have that
ﬂ—ﬂ+(1 )Jrg = (1)f—f
4 — 44 (—C)k 6 — (—C)k 6 4

(Qsi — 25, if £+ s is even;
5 T 468_1, if K+ s is odd.
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It is now not hard to conclude that ng € Z, which complete the proof for this case.
case D’=[x1,x9,x3, 24,5, 6] = [4°,(—0)*%,2%,(¢)%,0,2°], s > k + 4

In this case we have x5 = 0, 2} = 4% — 2kt gl = 5[(—1)% — (=1)¥], o} =
25 — S ((C1)" — (=1)F) and 2 = 0. So, ny = 0. Also, 2/ = 45 — 2k+s+2 4 9k .
FHsH(=1)% — (—1)¥] gives
B 1./1/ B 45 2k+s+2 2k . Ck+s+1 s k
e = 6.4k+1 — §G. 4k+1 6. 4k+L + 6. 4k+1 [(=1)* = (=1)].

. s k+
Since s > k +4, 6.2‘“1 and 2 4k+1 are in the form (3)ay and (3)ag where o, ay are

even integer. In the last part, it is zero if k + s is an even and for k 4+ s is odd,

2k . Ck+s+1 . . Ck:-i—s—i—l 1 s—k_3
W[(—l) - (=% = t R = (i§)2 2

Thus, ng = (j:%)ag € Z§ for some even integer as.
By the results of ng above and

ng — 1'/2/ _ 1'/2 o (_C>k+3 . xlll _ (_1)k+1 Cs_k_l[(—l)s—(—l)kh—?nﬁ
2(—c)ktl  2(—c)ktl 2. (—c)ktl 3. 4k+1 2 ’

then ng € Z4. It is not hard to check that spiy = 25772 — I;i? [(—1)* — (=1)¥] is
an even integer. This follows that

/" / " / /
s = 2:15-?;2 = in2 ) ,Z}c-&-l = inQ — 3ne = 2??—2 —as;
is an even integer.
Furthermore we have zff = —2(—c)*z/; which yields 2 = —2} and z) = $[1 +
(—1)k+s] — W’ then
" / s—k " 1 ; ; .
8= 43;@ - 4(:{2 B _68 (H(_l)m)_% - { (—Q)Z?“Jr ($)ns, i:iz 12 (e)jjn

Then ng € Z because ns is an even integer and s > k + 4. Finally, we have ny =

1"

% = (2(—0)’“)% = _4(4ck) = —4n3 which completes the proof. O

Now, it is clear that {b?**1 ad¥, (a + b)d*, vd* ! v3d"*+2 v5d¥+3} is linearly in-
dependent set and spans all generating elements of ku**+2(BSDg) over Z, . In par-
ticular, as we stated above, for i > 1, ab®d*~* = 2i(a + b)d* — 2'ad® which can be
written in term of generating set for ku**T2(BSDyg) by using 2.24. Moreover, we can
say that v acts monomorphically on ku‘(BSDsg) for all i < 6.

Next, we need to identify the additive basis for ku**(BSDjg). To do this, we use
the same method as in the lemma above. Since v(a + b)d* # 0 and 2v(a + b)d* # 0
in ku**(BSD1g), v(a+ b)d* will not lie in Fy parts. Actually, this will generate Z)
parts instead.
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Lemma 2.5.3. Let k > 0. All generating elements of ku**(BSD1g) in positive filtra-
tion can be written as a Z, combination of

[Buy] := {b%*,vad® v(a + b)d*, d*, v?d* L ot d" T2},

Proof. We will calculate on its image as the previous lemma. Let z be the generator
of ku**(BSD16) on positive filtration but not in [Byy]. Then we have:

)
vad®)

1

33

i
im(v(a +
k

(
(
(
(d*)
(v
(
(

s

1
1
7

333

x)

b)d")

Qdk+1)
v4dk+2)

2k

[ IN

0,
k

S

0,

)

=)

= (
= (
= (
=
=
=
=

)

o O O

k
k+1
4k+2

——— — —_— — —
ST

I

0 22k ZQkB
2(v2i)F 0 2kH)
Q(ﬁl)k 0 2k+2])
(V2o 0 2M)
(\@i)k+1 0 2k+1])
(ﬂi)k+2 0 2k+2])
Ty T5  T6))

Thus = can be written as the combination of [Byy] if

x = n1 (b*) + na(vad®) + nz(v(a + b)d*) + ny(d¥) + ns (V2 d" ) + ng(v1d*?),

where n; € Z for each i =1,2,3, ..
is equivalent to say that

0 0

0 2(—c)
0 0

0 2(c)
22k 0
22k 2k+1

0

2(=c)*

0
2(c)k
0
2k+2

6 s.t. ZZ 62 2 # 0 and ny, ng are both even. This

4k 4k+1
(o (o)

2k 2k+1
(C)k (C)k—i-l

0 0

2k 2k+1

4k+2
(_C)k+2

2k+2

(C)k+2

0
2k+2

ni il
n2 x2
n3 _ T3
ng || 74
ns Ts
ng T6

where ¢ = v/2i. We find the solution n; by using row-reduced matrix, i.e.,

S MO O O O

0 0 0 4k
0 2(=0)f 2(=0)% (=) (-
0 0 0 2k
0 2(0)f  2(e)f (o)
22k 0 0 0
22k 2k+1 2k+2 2k
0 0 0 2 -4k
0 0 0 2(—c¢)kt?
0 0 2k 2k+1
2(0)F 2(c)F (oF (!
0 0 0 0
2k+1 2k+2 0 0

4k+1
C)k+l
2k+1
(C)k—i-l

0
2k+l

3,4k+1
0
2k+2

(C)k+2
0
0

4k+2 |$1
(_C)k+2 |332
2k+2 |$3
(C)k+2 |$4
0 |x5
ok+2 |$6

|1 — 2Fz3 = o}

|22 — (=1)Fz4 = 4
|23

|z4

|z5

|zg — x5 — x3 = TY)
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0 0 0 0 0 3-4FL gl 4+ (28 PNl = 2f
0 0 0 0 2(—c)ktt 0 |2,
1o 0o 0o 22 0 0 |ag— Sgrah — ghpaf =}
0 2 2(c)F 0 0 0 EA
22k 0 0 0 0 0 |5
0 0 21 0 0 0 |z — (—c)Faly = x)
0 0 0 0 0 3.4kl
0 0 0 0 2(—c)ktt 0 |2,
0 0 0 2* 0 0 |4
1 0 20fF 0 0 0 0 |ty — ﬁx’é = ]
22k 0 0 0 0 0 |5
0 0 2¢1 0 0 0 |z
where o)y = x4 — (_i)kxg - (_12k+1x’2 - ;Z:flx’l’.
Hencea nl:;Ti,TLQZ%,n3:2£$17n4:§%,n5:2(_‘iﬁ,n6:3.4ﬁ.

Before doing further, we simplify z% and 2y as

k+1
/ c / 1

"
Ty = X3 — —Ty— ——&

= g — 2Rl okt2
1 (— (K (k2 ~
and zj = 5[rg — (=1)" 2] — (¢¥)ng — (" )ng, ie.

/
Ty 1

ka = ﬁ[le — (—1)k+1$2] — Ny —+ 271,6.

1" ! /
—_ 3 — T4 _ Ty o — — (1
Consequently, ny = 3} —2n5—4ng, ng = SOF = ot~ aFeT and n3 = 547 = (3) & —n2.

Recall that the images of generating element in positive filtration of codegree 4k
are in the form AD?, where s > k + 1 and D® where s > k + 3.

case AD®=[x1, 79,13, 24,75,76] = [0,2(—c)%,0,2(c)%,0,25TY], s > k+1

We need to show that n; € Z) for each i = 1,2,3,...,6 s.t.Zi? n? # 0 and
ni,ns are both even. In this case we have z5 = 0 (ie.ny = 0), 2} = 0, 2, =
2(c)*((—=1)* — (=1)%). This implies that z = 28+1(¢)**s=1((—1)* — (~1)¥) and hence

Ne

_ zy _ (:I:%)Qs_k_l, if s+ k is even;
3. 4k+1 0, if s + k is odd.

Thus ne € Z4 . Similarly, ns = Q(_ﬁ% €7Zie 0or +2°75 . Since 3 =0, ng is

immediately an even integer from relation above.
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!
To justify ng and nsg, it remains to show that % is an even integer because

e % € Z. Since T = g [z4—(—1)" o] —ny+2ng, it reduces to check whether
that ﬁ[m — (=1)*1xy] is an even integer. The result follows because ﬁ[u -

(—1)k+1x2] — cs—k[l _ (_1)k+s+1]'

By using above relation, previous method and the relation s > k + 3, we can
verify that v2(5=%)d  for each s > k+ 3, can be written in term of [By] over zy . O

From this lemma, we see that ab?T!'d*~=1 = 2iy(a + b)d* — 2vad® and its
explicit combination in term of the generating set of ku**(BSDys) follows by the
relation v8d**+3 = 18vad® — Yu(a + b)d* — 8d* — 2v2d**+! + 5v*d*+2 or in other words,

8 2 ) 1 4
v(a+b)d" = 2vad® — —d* — Zv?dFt 4 Sotdh - ZoSgh T3 (2.25)
9 9 9 9
Lemma 2.5.3 and this relation imply that an additive basis for Z) part of ku**(BSDjs),
for k > 1, is [By] or, by changing basis, {b%*,vad®,d* v2d*+1 vidb+2 0qk+3}.

Finally,we use the same method to find an additive basis for ku?(BSDsg). This

is also enough to find the additive basis of ku?*(BSDg) for all k < 0 because v :
~2k ~2(k—1

ku (BSDig) — ku ( )(BSD16) is an isomorphism for each k& <1.

Lemma 2.5.4. All generating elements of ku?(BSDig) in positive filtration can be
written as a Z4 combination of [Bz] := {b,a,v?(a + b)d,vd,v3d?, v>d>} .

Proof. We will calculate on its image as before. Let x be a generating element of
ku?(BSDjis) in positive filtration but not in [By]. Then we have:

im(b) =@ [0 0 0 0 2 2]
im(a) = (22, [0 2 0 2 0 2
im(v*(a+0b)d) =0, [0 2(—=v2i) 0 2(+/2i) 0 8]
im(vd) =0, [4 -2 2 V2 0 2
im(v3d?) =(0, [16 (=v2i)2 4 (V2i)? 0 4]
im(v>d?) =(0, [64 (=20 8 (V2i) 0 3]
im(x) =(0, [r1 m T3 T4 x5 wg))

Thus x can be written as the combination of [Bs] if
z = n1(b) + na(a) + n3(v?(a + b)d) + ny(vd) + ns(v3d?) + ne(v°d®),

where n; € Z for each i =1,2,3,...,6 s.t.ZZ? n? # 0 and ny,ny are both even. This
is equivalent to say that

0 2 2(—¢c) —c =2 2(c¢) ng X9
0 0 0 2 4 8 n3 I )
0 2 2(c) ¢ -2 2(—c) ng || w4
20 0 0 0 0 ns x5
2 2 8 2 4 8 Ne L6
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where ¢ = 1/2i. We find the solution n; by using row-reduced matrix, i.e.,

0 4 16 64 |n
2(—=¢c) —c =2 2(c¢) |x2

0 0
0 2
00 0 2 4 8 |z
02 206 ¢ -2 2—c) |u
20 0 0 0 0 |z
22 8 2 4 8 |
00 0 0 8 48 |zg—2z3=2a)
0 0 4(=c) 2(=¢) 0 4(c) |w2—a4=2a)
00 0 2 4 8 |
0 2 0 0 -2 0 |za+ (3)zh =1}
2.0 0 0 0 0 o
00 8 2 6 8 ‘1‘6 — I5 xﬁl = (L‘%
00 0 0 8 48 |z}
00 4(—c) 2—c) 0 4(c) |z}
00 0 2 4 8 |
02 0 0 -2 0 |z}
2.0 0 0 0 0 s
00 0 0 10 24 |2h—c-ah+a5=2a
00 0 0 —12 0 [2)—2-2f=2af
00 4=c) 0 0 0 |zh+c 25— (§)zg =25
oo o2 0 0 e (hal - (el = o
0 2 0 0 O 0 |z — (€>$/1/ =z
20 0 0 0 0 |z
00 0 0 0 24 [af+()al=ay

/
T x
Hence’ nl = 7’57 n2 = —2 N ’]’L3 = 4(_0) s n4 = 73’ n5 = 21 n6 =

We check only on AD® where s > 1, and D?® where s > 4 by using table below.

n; AD?, s is odd AD?, s is even
ny 0 0

no ns :13(28 +2- CS)
ns %(28—1 +CS_1) %(25—1 +CS_2)
n4 —?1(23—%2 + 8. CS-H) %(_25—&-2 +4 Cs)
ns 3(2°+2. 3(2° —¢%)

ng %1(2571 T Cs+1) %(2371 i 6572)
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n; D?, sis odd D?, s is even

niy 0 0

n2 ns ns + %

n4 2571 _2.n5—4-ng 2571 —2.n5—4-ng

ns %(_4371 +Cs+1) +2371 %(_4571 +csf2) + 2371

ne %(5 . 43—2 T Cs—l) _ 23—3 %(5 . 45—2 4 Cs—4) _ 25—3
E.g.

ad = %Q(a) + %@2(@ +b)d) + g(vd) + %Q(UBd?) + %(v5d3),

— -1
viad® = 1- (v*(a + b)d) + ?S(vd) + 2(v3d?) + ?(v‘r’d?’),

v7d* = —12(a) + 3(v*(a + b)d) + 8(vd) — 14(v3d?) + 7(v°d?),
vd® = —72(a) + 18(v?(a + b)d) + 32(vd) — 72(v3d?) + 32(v°d?).

Also, it is immediately from the table to conclude that n; € Z5. We now complete the
proof. O

Combining all the previous results, we reach to the additive structure of ku*(BSDig)
as:

Theorem 2.5.5. In ku*(BSDig), we have a,b € ku?(BSD1g), d € ku*(BSDjg),
where a = exy(x3),0 = exy(x2) and d = egy(0o1) s.t.

(1) if k <0, then ku®*(BSD1g) = 7 & (Z5)%, which
(258 is generated by vF{1,vb,va,v*(a + b)d, v?d, v*d? v°d},

(2) ku®(BSD1g) = (Z4)® generated by {b,a,v?(a + b)d,vd, v3d? v°d®},
(3) ku*(BSD1g) = (Z4)8 generated by {b?,vad,v(a + b)d, d,v?d?, vid®},
(4) ku®(BSD1g) = (Z5)® generated by {b3,ad, (a + b)d,vd?, v3d3,v°d*},
(5) if k> 1, then ku***2(BSD1g) = (Z5)5 @ (F2)*~1 with

(255 generated by {b***1 ad*, (a + b)d*, vd 1 v3dF 2, v3d*3) and
(Fo)k=1 generated by {b3d*—1 — ab?d*=1, 07d*=2 — ab*d*=2, ..., b**~1d — ab®*—2d},

(6) if k> 1, then ku**(BSD1g) = (Z5)% @ (Fo)k~1 with
(255 generated by {b**,vad®,v(a + b)dr, d* v2d* 1 v d* 2} and
(Fo)k=1 generated by {b?d*—' — ab*d*=1, b*d*=2 — ab3d*=2, ..., b?*~2d — ab**—3d}
and

(7) the 2 torsion is annihilated by v .

(8) v acts monomorphically on positive filtration and on non negative filtration if it
acts on codegree which s less than or equal to 6.

Next, to find the ring structure, representation theory and cohomology ring the-
ory, again, play a big role. We deal with this in the next section.
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§2.6 The multiplicative structure of ku*(BSDis)

In this section we will find all relations of the ring ku*(BSDg). The very useful tool
is the representation theory, cohomology ring theory and additive structure we have
found. In other words, we use injectivity of homomorphism

k:u*(BSD16) — H*(BSDH;;FQ) &) KU*(BSD16)

By theorem 2.5.5, we have that all 2, v-torsion are in H*(BSDi6;F2) (zero filtration),
so, if we deal with elements lying on positive filtration, then it suffices to consider only
on the representation theory side but if not, we need to consider on both sides.

Now, we start to find the relations. First, recall that ¢ and b are defined to
be Euler classes of one dimensional representation, xs and yo respectively, by lemma
1.3.4 in [14], we get immediately that

0 = exu(1) = erul((x3)?) = erul(x3) + exu(x3) — veru(x3)eru(X3)

i.e. va®? = 2a and similarly, vb?® = 2b. In fact, we can also use the relation between
characteristic class of connective K -theory and representation theory (see below) to
gain these relations. More precisely, since we have relation 3 = x3 =1 and A = va =
1 —x3, B=vb=1-xa2,

1=(x3)2%=(1-va)? = 1-2va+v%?
l=x2)2=(1—-wvb)? = 1-—2vb+ %
and hence
va? = 2a and vb? = 2b, (2.26)

because v acts monomorphically on positive filtration.

To be easier in comparing, let us recollect the representation ring we have as:
R(SD16) = Z[x2, X3, X4,01,02,03] /R

R=(3=x3=x3=1, xax3 = X4, 0} =05 =02+ X3+ X4, 05 = 1+ X2+ X3+ X4,
0102 = 0203 = 01 + 03, 0103 = 02 + 1 + X2, X201 = 01, X202 = 02, X203 = 03,
X202 = X302 = X402 = 02, X301=X401 = 03, X303 = X403 = 01 )

and
x2 = 1—wvb
x3 = 1l—wa
xa = (1—wvb)(1—wva)
o1 = 1—v3d+ (1 —wb)(1—wva)
oy = 1—1}2d2+1—’ub

o3 = 1—v2ds+ (1 —vb)(1—wva).



CHAPTER 2. COMPLEX CONNECTIVE K-COHOMOLOGY 53

And the relation between connective K theory, ku*(BSDig), and cohomology ring
theory, H*(SDi¢;F2), is given by,

a - x2,
b — Y2,
L 31/3 (2.27)
do — 0.

Now, since we have the relation (1 — x2)(1 — o1 + x4) = (1 — x3)(1 — x2),
v3bd = v2ab and because v is monomorphism at this point, thus

ab = vbd = v(a + b)d — vad. (2.28)
Similarly, by (1 — x2)(1 — o2 + x2) = 0, we have
by = 0. (2.29)

It is not hard to check that
bds = bd, (2.30)

by using (1 — x2)(1 — o3+ x4) = (1 — x2)(1 — 01 + x4) and injectivity of v. Since
x301 = 03, (1 —va)(1—v2d+ (1 —vb)(1 —va)) = 1 —v2d3 + (1 —vb)(1 —va) and hence

d3s = (1—wva)d+ ab

= d—2vad+v(a+ b)d. (2:31)
Similarly, we use o9 = 02 — (Y3 + Y4) to get
dy = 4d—v3d? — 2vad + ab (2.32)

= 4d — 3vad + v(a + b)d — v?d>.

The relation y3o; = x401 gives us the relation 2ab = v2abd and combining this with
(2.26) and the fact that v acts monomorphically on codegree 6, theorem 2.5.5(8), we
obtain

vabd = ab®. (2.33)
For regular representation, p = 1+ x2 + x3 + x4 + 2(01 + 02 + 03), we get that
p = 16 — 6va — 8vb + v2ab — 12v%d + 6v3ad 4+ 2v%d?. Since p is induced up from the
trivial subgroup and by Lemma 2.1.1 in [14],

0=dp = 16d— 6vad — 8vbd + v2abd — 12v%d? + 6v3ad® + 2v*d>
16d — 6vad — 6vbd — 12v*d* + 6v*ad? + 2v*d>.
However, we see that % € ku*(BSDis) and by cohomology ring, character table,
% — (0,0), thus
8d — 3vad — 3vbd — 6v?d* + 3v3ad® + v*d® = 0. (2.34)
The relation x3o9 = 02 give us the relation v2ady — 2a + vab = 0 then vad? =

v2a2b — 2a + vab and hence
vdad?® = 3ab — a® (2.35)
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The relation o203 = 01 + 03 give us the relation v?dads +vads = d3 — d+ 2dy and thus

8d — 6v2d? + vid® — v ad® + 3v3ad? — Hvad + 3ab = 0.

dp

Combining this relation with > = 0, we obtain

vtad® = —2ad + 6bd (2.36)
By considering on 03 = 1+ x2 + X3 + X4, we have 4ds = a® — ab + v?d3 and hence
16d — 20v2d* + 8v*d® — v8d* — 9a? + 9ab = 0 (2.37)

Furthermore, elements from 2, v-torsion part will be necessary to fulfill relations.
Here, from theorem 2.5.5, we define

7 :=b%d — abd € ku®(BSDss). (2.38)

Hence, the torsion part of ku*(BSD1g) := TU is a free module over Fa[b, d] generated
by 7, i.e.,
TU = Fob,d)] < 7> . (2.39)

The obvious relations with this element is

2r =vr =ar = 0. (2.40)
Also, from (2.28), we have abd = vbd? and hence

7 — b*d + vbd®* = 0. (2.41)

Therefore, now we have a set of the relation I’ in ku*(BSDjg) as:

I' = {(r1 :va® = 2a,7ry : vb?> = 2b,73 : ab = vbd = v(a + b)d — vad,
T4 ab?® = vabd, rs : v3ad? = 3ab — a?, rg : viad® = —2ad + 6bd,
r7 : 8d — 3vad — 3vbd — 6v%d? + 3v3ad? + vid® = 0,
78 : 16d — 2002d? + 8v*d® — v0d* — 9a? + 9ab = 0)
rg : 27 = vT = at = 0,719 : T — b%d + vbd?* = 0},

which we will see in the theorem below that I’ is a complete relation set for ku*(BS D).

Theorem 2.6.1. ku*(BSDis) = (Z[v][a,b,d,7]/I)} where |a| = |b] = 2,|d| =4 and
|7| = 8, and where J is the augmentation ideal and I is the ideal

I = (va? — 2a,vb? — 2b, ab — vbd,
ab® — vabd, v3ad?® — 3ab + a?,v*ad?® + 2ad — 6bd,
8d — 3vad — 3vbd — 6v2d? 4 3v3ad?® + vid3,
16d — 2002d? + 8v*d3 — v8d* — 94 + 9ab,
27,vT, at, T — b’d + vbd?).

The natural map ku*(BSD1g) — H*(BSD1g;F2) sends a to z%, b to y?, dy to 0
and d,ds to P.
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Proof. The final statement is an evident from (2.27). Thus, now, it remains to show
that I is the completed relation in ku*(BSDig). To show this, we need to check that
multiplying any of the additive generators of theorem 2.5.5 by a,b,d, 7 or v produces
an element which can be written in term of that additive basis by using relation from
I.

Note that multiplying by 7 can be reduced obviously to the additive basis for
ku*(BSDsg). So, we consider the elements in term of v,a,b,d. Let = € ku*(BSD;g).
It is without loss of generality to assume that z € R*™ := ku?"(BSDig) for some
integer m.

Case m = k < 0: In this case, R?* = Uzig C;, where

Co = {v*}, C1 = {WFHit2gidifi, j > 1}, Cy = {v*ibifi > 1},
C3 = {o"2d']i > 1}, Cy = {o""Ha'bl]i, j > 1}, Cs = {v**a’li > 13,
Cy = {Uk+l+2]bldj|l,j > 1}7 Cr; = {Uk+i+j+2laibjdl‘2"j’l > 1}7

and additive basis of ku?*(BSDsg) is
Boy, := {v*, " a, o* b, 08 3 (a 4 b)d, 08 2d, 0P A2 0RO d3)

For any element in C5 and Cy, it is easily reduced to the combination of elements in Boy,
via iterating of r; and 79 respectively, i.e. vF1tiat = 2=k +lg and vFtipt = 21— Lyktlp,
From 75 and r7, we have ab = }(v3ad®) + 3a? and (v3ad®) = f(v(a+b)d — 3d +
%v2d2 — %v4d3. Thus, combining these relations with r;, we get that

1 8 2 1 2
,Uk+2ab — 7(vk+3(a + b)d _ *”Uk+2d + *’Uk+4d2 - 7'l)k+6d3 + kaHa.
3 9 3 9 3
This follows that, for any element in Cy, v*+t*Jaibi = 27+7=20%+24p can reduce to the
combination of elements in By via I.

By using 73 and r4, we have v3bd = v?(vbd) = v2ab and then v°bd? = v?(v3bd)d =
v?(v2abd) = 2v%ab. So, iterating this process and using induction we can show that
v Hbd! = 277 192%ab. Then v 2bid) can reduce to 201wk (v +1pd7) = 2772k +24p
and hence Cg can be reduced to By via 1.

It is not hard now to show that the conclusion for C7 also holds by using the

previous result, i.e. v¥H1bd?, v*+t2ad and . For C;, we consider the following
process;

v"Bad = v*3(a + b)d — v 3bd
v"ad® = v*2(3ab — a?), because of 73,
= 30"2ab — 20" a
V" Tad® = 3082 (v2abd) — 205 3ad

= 60" 2ab — 20" 3ad, because of ry,

So, by induction, we can conclude that v**lad’ can reduce to the combination of
elements in By, via I and hence this holds for all elements in C7. The last task for
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this case can be done by considering step by step as above. That is

gL = vk+2(v6d4)
= 160"2d — 200" T4 @F 2 4 8P 643 — 1808 a + 9vF2ab,  because of 7,
DR v2d(vk+8d4)

= 160"1d? — 200703 + 8uFH8a* — 18v* 3 ad + 9vF T abd.

By repeating this process and using the previous result, we complete the proof for our
fist case.

Case m = 1: In this case R? = |J!=! C;, where

Cy = {viati > 0}, Co = {v'b'H1i > 0},
Cy = {U2i+1di+1|i > 0}’ Cy = {Ui+jflaibj|i’j > 1}7
Cs = {vt2-1aidifi, j > 1}, Co = {v 2 -14idi]i, j > 1},

67 — {’Ui+j+2[_1aibjdl|7:,j,l > ]_}7
and additive basis for ku?(BSD1g) is
By == {a,b,v*(a + b)d,vd, v3d?, v3d*}.

The proof for this case is very similar to the first case.

Case m = 2k, k > 1: In this case R* = U;io C;, where

C) = {Uia2k+i|i > 0}’

CQ _ {Uib%ﬂ‘i > O},

Csy = {U%dkﬂ‘i > 0},

Cy = {vI i tIpCE=DH |1 < § < 2k, 4,1 > 0},

Cs = {vIT2g2Hidk=D+1 < i < k,j,1 > 0},

Cs = {vit1H2 g2t +1g(k=0 < < k5,1 > 0Y,

Cr = {,Uj+21b2i+jd(k7i)+l’1 <i<k,jl> 0},

Cg = {vj+1+2lb2i+j+1d(k—i)+l|0 <i<kjl> 0}7

Cy = {Ul+s+2tai+lbj+sdk_%+t| i+j is even and 1 < HTJ < k,l,s,t >0},

Cho = {v”s”t*la”lbﬂsdk—%”|i—|—j is odd and 1 < % < k,l,s,t >0},

and additive basis for torsion free part of ku**(BSDy) is
By = {b% vad®, v(a + b)d*, d*, v2d* 1t vtk 2y,
and for 2, v-torsion part is (case k > 2)
TUy, := {rd*=2, 70%d"3, .., 7b**~4d}.

In this case note that reducing of Cs is obvious by ro and we will begin with C5 by
considering r7. By r7, we have that v3ad? = —§d+v(a+b)d+2v2d2 — %v4d3 and that

. . 4 1,
vdad' = —gdz_l +v(a+ b)d™t + 20%d' — §v4d2+1. (2.42)
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That is v3ad’ can be reduced to the combination of elements in Byi—yy for all ¢ > 2.
Thus, by 75 we have a? = 3ab — v3ad? and hence

a’d = 3abd — viad®
= 3vbd® + ng —v(a+ b)d? — 20%d® + %v4d4
= 2v(a+b)d* — 3vad® + ng — 20%d3 + %v4d4.
Also, it is clear that d(By; — {b*}) = Byiy1) — {b*tD}. Hence,
a?d* 1 = 2v(a + b)d* — 3vad® + gdk — 20%dk ! 4 %v4dk+2,
can be reduced to By — {b**} via I. Consider,
a'd = 2va*(a+b)d* — 3vaPd® + §a2d2 — 2?%a*d® + %v4a2d4
= §a2d2 + dabd® — dvad® + §v3ad4
= §a2d2 + dvbd® — 4vad® + §v3ad4, because of rs.

Hence, from above result a?d*~', when k = 3, a*d can be reduced to Bg — {b*} via I
and thus the conclusion holds for a*d*=2. Again,
abd = a*(a'd)
= a®[eyva® + eqv(a 4 b)d® + e3d® + egvd* + esv?d®], e; € Zh
= 2e1a’d® + 2e9a’d® + 2eqabd® + 63a2d3 + 2eqvad* + 2651}3ad5.
Hence from the previous result, a®d can be reduced to Bis — {b%} via I and thus the

conclusion holds for a®d*=2. By analogous process as above and induction, we can
conclude that a*d*~" can be written by using elements in By, via I.

Next, we consider
v?ald? = 2v3(a+b)d® — 3viad® + §UQd3 —20td* + %vﬁd5
= 203bd® — vdad® + §v2d3 —20td* + év6d5.
We concentrate on each term, for the fist term, we have
v3bd® = v?(vbd)d? = 2abd = 2bd” = 20(a + b)d? — 2vad?,

and the last term by 75, we have v%d® = 16d% — 2002d> + 8v*d* — 9ad + 9abd. Since
a’d and abd can reduced to Bg — {b*} via I, so is v?a?d?, i.e., v2a?d? can be written
in the form ejvad? + eqv(a + b)d? + e3d? + eqv?d® + esvtd*. For via’d® = v2d(v?a®d?)
can do analysis as above and we now can say that the result for v**a?d**! follows. By
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using the same process we have done, we now conclude that v%a?d’*! can be reduced
to the combination of elements in By 1) — {p2(+1Y | This follows that

VI H2L 214 gk—i)+ 97 212 gk —i)+

i a(k—i)—1/, 21 2i 71+1
27 dF=D=1 (g2 g,
i.e., C5 can be written as the combination of elements in By via [I.

For Cg, since for j > 1, vit1+2g2ititlgk=0+l — 94,+20 42147 g(k=D)+1 \which is
the case Cs, we need to consider only on v**lad**!. But this is a consequence of
(2.42) together with the fact that v®d**3 can reduce to By (by the same method as
above), hence Cg can reduce to By via I. Also, the conclusion for C3 is immediate
because multiplying by v2d on By — {b**}) can reduce to itself via I (i.e., by using
rg as Cs).

For Cy, we use r5, i.e. a® = 3ab—v3ad?. Then a® = 3a** 10— v3a®~1d%. The
seconde term is reduced by Cg. The first term is easy because

a®* 'y = a® 2 (vbd)
= bd(va?)a®**
2bda®F 3

and iterates this via r; and r3 until we get a?*~1b = 28~ Lobd* = 281 [v(a+b)d*F —vad"].
Since v'a?ktt = 21a%* | we finish C; .

For C; we first consider r1g, i.e., b®d = 7+wvbd?. It is not hard to see that b*d+~?
can reduce to TUy, U (By(iy1) — {p20+D1) via I. Precisely, by ro, 19 and iterating 71,
we have b2d! = 7d? + vbdt!, b2id = 76201 4 2i-Lypditl and thus

bQidkfi — TbQ(ifl)dkfifl + Qiflvbdk.
From here, with the help of ro, the conclusion for C7 follows.

For Cg, this is a similar situation with Cg, i.e. we need to prove only on
v H1pdRt . To prove this, we use the fact that v¥H1pd!* = 29ab via rg,ry. For
Cy4, Cg and C1g are immediately verified by the previous results and the relation 71,19
and r3.

Case m =2k + 1,k > 1: In this case R¥*+2 = Uzjo C;, where

Cy = {Uz‘a2k+1+z‘|i > O},

Cy = {vib2k+1+i’i > 0}7

Cs = {U2i+1dk+i+1|i > O},

Cy = (g HR=DH|0 < § < 2k, 4,1 > 0},

Cs = {,Uj+2la2i+1+jd(k—i)+l’0 <i<kjl> 0},

Cg = {Uj+1+2la2(i+1)+jd(k—i)+l|O <i<kjl>0},

Op = {oI P21 k=040 < j < &, j,1 > 0},

Cs = {Uj+1+2lb2(i+1)+jd(k—i)+l’0 <i<kjl> 0}7

Co = {vl“”t“cw,”ll)]”rsclk_Z;J 4] is even and 1 < % < k,l,s,t >0},

Cho = {vltst2gitHpitsgh— 5 *litjis odd and 1 < % < k,l,s,t >0},
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and the additive basis for torsion free part of ku***2(BSDsg) is
Bupyo = {0* ad®, (a + b)d*, vd" ™ v3dF 2 w53,
and for 2, v-torsion part is
TUypyo = {7bd*2, 70%d"3, ..., 70?73},

In this case note that C is reduced obviously to Byr+o by r2 and we will begin with
C5 by considering r7 which we have;

8 1
vad = §d — vbd — 20%d% + v3ad® + §v4d3
1
v2ad? = %vd2 —02bd? — 203d® + viad® + §v5d4

From 7¢ we have v*ad® = 6bd — 2ad and note that
v2bd? = vabd = ab® = (ab)b = (vbd)b = 2bd,

by 72,73 and r4. This yields that v?ad? can be reduced to Bg — {b3} via I. It is
an experience that d(Byi+2 — {b**1}) can be reduced to By(iy1)12 — {b*TVF1}. So,
v2ad™! and v2bd'*! can be written as the combination of elements in By o — {b%F1}
via I.

By rg, we have;
W9dt = 16d — 200%d? + 8v*d® — 942 + 9ab
0Td = 16ud — 2003dP T2 4+ 80P d 3 — 9uald® + vabd’
= 16vd"Tt — 2003d" 2 + 8°d' T3 — 18ab’ + 18bd".

Now, consider

Qd(adl) — U2adi+l
v2d(bd") = v?ad® = 2bd’
( dH—l) — it
( 3d2+2) — ,U5di+2
( 5dz+3) — ’U7di+3.

By using the above results, we see that v2d(By;1o—{b*!} canreduce to By;1o—{b**1}
via I and hence Cj is proved. Next, by r5 we have a?d = 3abd — v3ad®. Then
ald = 3ab’d—v3a*d®
= 6bd® — 2v%ad’.

By the results above we can conclude that a®d can reduce, via I, to Byg — {b°} and
hence, similarly for a3d*~! and for v?a?d*'*?' to By o — {b***1}. Moreover, we
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have
a’lad'] = a3d’
a2[bd’] = a?bd' = 2bd"’
a2[vdi+1] _ 2adi+1
2[3dit?Y = 22adt?
a?[Pd T3] = 2(vid)(viad™?)

Hence, a*(Byirz — {b*1} can reduce to By(;y1)42 — {b*“TV+1} via I, i.e. the conclu-
sions for a?t1dF—t are the same. This follows that Cs and Cg can be reduced as we

need (by similar process as case 4k).

For C7 and Cg, we again use ryy, which yields
b2i+1dk‘—i — TbZi—ldk—i—l + 2’Lbdk‘

So, by 73, the conclusion for C; follows. For Cg, we use r3 and r4. For Cp, we use
rs, i.e. a® = 3ab —v3ad?, which gives

a?k—l—l — 3a2kb o v3a2kd2.

The second term is reduced by Cg. The first term follows from case m = 2k which
we have a?#~1b = 28~ 1ybd* and then a®b = 2Fbd* via r4. For Cy, Cy and Cjg are
immediately verified by the previous results and the relations r1,72 and r3. We now
complete the proof for this theorem here. O

The complex connective K-theory of SDig is quite strange when we compare with
that of Dan since both of them have p-rank two but their 2,wv-torsion are different,
i.e. ku(BDan) contains 2,v-torsion whereas ku(BSDsg) is torsion free. We explore
the relationship on complex connective K-theory of SDjg and its maximal subgroups
in the next section.

§2.7 Relations with its maximal subgroups

In this section, we will relate our results, i.e., complex connective K-theory of SDqg,
ku*(BSDss), to the complex connective K-theory of its maximal subgroups ku*(BDsg),
ku*(BQs) and ku*(BCs) in [14]. To do this, it is simple to use the fact that all of
them are embedded in their sums of cohomology ring and representation ring.

First of all, we recall and record the results from [14] as;

Proposition 2.7.1. [1}], Complex connective K-theory of Dg,Qg and Cg is given by:
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1. ku*(BDs) = (ku*[a,b,d]/I)} where |a| = |b] = 2,|d| = 4 s.t. a = egu(st),b =
eru(8),d = exy(o1) and where I is the ideal

I = (v'd® —602d® + 8d,
va? — 2a, vb? — 2b, vad, 2ad,
ab — b% + vbd,
vbd — 4d 4 v?d?, 2bd — v?bd?).
The natural map ku*(BDg) — H*(BDs;F3) sends a to z3, b to x3 and d

to w?, where H*(BDg;Fs) = Fa[z1, xo, w]/(z2(x1 + 22)) 8.t. 1 = wl(ﬁ),xg =
w1(8) and w = wy(oy).

2. ku*(BQs) = (ku*[a,b,q]/I)) where |a| = |b] =2,|q| =4 s.t. a = er,(Yo—1),b=
eku(X), ¢ = eku(Y1) and where I is the ideal
I = (' — 602 + 8¢,
va?® — 2a, vb? — 2b, a® — vag, b2 — vbq,
ab — (vaq + vbq + v3¢? — 4q)).

The natural map ku*(BQg) — H*(BQs;F2) sends a to z%, b to 23 and q to
p1, where H*(BQg; Fa) = Falz1, x0, p1]/ (2] + x122 + 23, 2122(21 + 22)).

3. ku*(BCs)= Z][[yll/(yp = (1 (1 —vy)®)/v), where y = eyu() € ku?(BCs).
The natural map ku*(BCg) — H*(BCs;Fs) sends y to y € H*>(BCs;Fy), where
H*(BCs;Fa) = Fa[z,y]/(2%) where |2| =1, |y| = 2.

The relation is given by;

Theorem 2.7.2. With the same notations as in Theorem 2.6.1 and Proposition 2.7.1
above, we have a natural monomorphism;

ku* (BSDlG) — ku* (BDg) D k‘u*(BQg) D ku* (BCg)
a — 0 , b ,dy — 6oy + 4oy — o3yt )
b — a , b , 0
d — d , q ) 3y? — 3vy + v2yt ).

Proof. Note first that, for G = SDyg, Ds, Qs and Cg, the natural map ku*(BG) —
H*(BG;Fy) ® KU*(BG) = R(G))[v,v™!] is a monomorphism. Thus it is enough to

find the relations of them via cohomology ring theory and representation ring theory.

For Dg, with the notation of representations in [14] and in the proof of lemma
2.2.3, we have st <> o4, § @3, 01 < 0 and S+ 1 < g + ¢3. Also, in cohomology
ring H*(BDg;F2) on both sources are related by T = x2,7 = x1,wW2 = w. The
restriction of R(SDis) — R(Dsg), recall from the proof of lemma 2.2.3, is given by
1 1,x2— Yg,x3 — 1,xX4 — Y4,01 — 0,09 — 2 + 3 and o3 — o. This implies



CHAPTER 2. COMPLEX CONNECTIVE K-COHOMOLOGY 62

that, in periodic K -theory,

KUY(BSDyg)sva=1—x3 — 1—1=0¢ KU%BDs)
KUY(BSDg)2vb=1—-x2 +— 1—14=uvae KUY(BDg)
KU%BSDg)3v?d=1—-014+x4 +— 1—0+s=1v’de KU(BDg).

Combining this fact with Proposition 2.2.1, we finish the proof for Dg.

For Qg, we concentrate only on periodic K -theory since there is no 2, v-torsion
element in ku*(BQs). The relation of the notation of representations in [14] and in the
proof of lemma 2.2.3 is 1 — 1 = p e pa, x = J < pa, 1 < 0,82 = ] + pj < pa + pa.
The restriction of R(SDis) — R(Qg), recall from the proof of lemma 2.2.3, is given
by 1+ 1,x2 +— p4, X3 — p4,Xxa — 1,01 — v,09 — pa + p3 and o3 — v. This implies
that, in periodic K -theory,

KU%BSDyg)2va=1—x3 — 1—py=uvbe KU"(BQg)
KUY(BSDyg) 2vb=1—x2 — 1—ps=uvbe KUBQg)
KU%BSDig) 2v*d=1—01+x4 +— 2—11=2—v=0vqe KU"(BQs),

which completes the proof for Qg.

Finally, for Cg =< s|s® = 1 >, we need to check the relation only on periodic
K -theory. Note that R(Cg) = Z[a]/(a® — 1), where o¥(s) = ¥, ¢ = @(1 +1). It is
not hard to see that the restriction of R(SDis) — R(Cs) is given by 1 +— 1,x2 —
1,x3 — o, xa— at, 01— a+a? 09— a® +ab and o3 — o® + 7. This implies that

va=1-x3 — l—a*=1-(1—-wy)*ec KU°(BQs)
vb=1—xy — 1—1=0¢e KU"(BQx)

= 1—(a+a®) +at

= 1= (1= vy) + (1— o)) + (1 - vy)* € KU(BQs),

v2d:1—01+X4

which completes the proof. O

Moreover, note that at Fo-page of Adams spectral sequence for ku*(BSDig)
and ku*(BSDgan) are nearly the same. That is v acts monomorphically above the
zero line at Fs-page and by similar argument as in the proof of lemma 2.4.4, v acts
monomorphically above the zero line at E, -page for ku*(BSDan). This means that
the natural map

is a monomorphism. So, by using the same idea as above, we have;
Theorem 2.7.3. In general for n > 5, we have a natural monomorphism

ku*(BSDan) »— ku*(BDgn-1) ® ku*(BQon—1) @ ku* (BCan-1).



CHAPTER 2. COMPLEX CONNECTIVE K-COHOMOLOGY 63

Proof. Tt is not hard to see that SDan = Don—1 U Qgn-1 U Con—1 via the inclusion map

® : Dyn-1 —> SDoyn, which sends s — s2, tit,

U : Qon-1 —> SDon, which sends o+ s2, t— st,

T :Cyn1 —> SDon, which sends s+ s,

where ,
Don1 =Gp < s,t|s?  =1=t*tst =51 >, forn>5,

Qon-1 =Gp < o,7| o2 =1 = t2tst =s 1 >, forn > 5,
Con—1=Gp < s | 2" =1 >, for n > 5.

This implies that the natural map
R(SDQ") — R(DQn—l) @ R(QZn—l) @ R(Czn—l) (244)

is a monomorphism. Precisely, if p € R(SDan) is sent to (0,0,0), then p(z]) = 0 for
every conjugacy classes of Don—1,Qon-1,Cyn—1 which are the conjugacy classes of S Dan
and thus p = 0.

On the other hand, we have (see Proposition 2.2.1 or Jon F. Carlson’s homepage,
[15]) the restriction map

H*(BSDgn;Fy) — H*(BDgn-1;F2) & H*(BQqn-1;F3) & H*(BCyn-1;Fs)  (2.45)

is a monomorphism. Hence, combining all informations we have so far with the fact
that

ku*(BG) — H*(BG;Fy) & KU*(BG) = R(G)}[v,v™!]
is a monomorphism for each G = SDan, Dyn-1,Q9n-1,Con—1, we complete the proof.

O]

We investigate complex connective k-homology theory of SDig, ku.(BSDig), as
a module over ku*(BSDjg) in the next chapter.



Chapter 3

Complex connective K-homology
for SD16

In this chapter, we will calculate ku.(BSD1g) as a module over ku*(BSD1g). In order
to do this, we will use Greenlees spectral sequence applied to ku*(BSDjs). That is,
[14];

E2, = Hy*(ku*(BSDs)); = kus+(BSDie)

S

where differential d" : Ef, — E{_.,,,. ; and I = ker(ku*(BSD1g) — ku*) = (a,b,d),
ideal generated by the Euler classes a,b and d with codegree 2,2 and 4 respectively,
(Theorem 2.6.1).

Here, the main task is the calculation of local cohomology for R = ku*(BSDsg),
Hj}(R). Before of that, let us recollect local cohomology of Greenlees spectral sequence
for ku.(BSDsg) first.

§3.1 Local cohomology and strategy
The definition of local cohomology which is suitable to our calculation is defined via
stable Koszul complex.

Definition 3.1.1. For a commutative ring (with unity) R and its ideal I = (x1, 2, ..., Tr),
the stable Koszul complex of R at I is

K (1,22, ....2n; R) = K(z1; R) @r K°(29; R) ®R ... ®r K°(xn; R)

the tensor of cochain complex, where K (z;; R) is the cochain complex (R — R[x%]) ,
(r—— 1), foreachi e {1,2,...,n}. For amodule M over the ring R, local cohomology
of M at I is

Hi(R; M) := H(K*(z1,22,...,xn; R) @r M)

where H*(C) is the homology of a chain complex C'. In particular, we define

64
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H}(R) := H}(R; R).

It is clear from the definition that HY(R; M) =0 for i > n.
Remark 3.1.2. Let R be a ring and () be an ideal of R. The chain complex K*°(x) =

(R — R[L]) give a natural map e : K*=(x) — R. Precisely, there is a commutative
diagram;
K>*(z) = (R—=R[}])

Pl

R (R——0).

Hence, for any ideal I = (x1,22,...,%y) and J = (y1,Y2,...,yn) of R, there exists a
map of chain complexes

1@e" : K*¥(I+J)=K*I)®r K*(J) — K®({)=K>()®gr R.
After applying @M , M is a module over R, and taking homology, we obtain the map
n: Hiy (R M) — Hf(R; M).

Example 3.1.3. For R =7 and I = (2), we have K®(2;Z) = (Z — Z[}]). The
map in this cochain complex is clearly monomorphism and also the cokernel is easy to
calculate. That is

H(Q)(Z) _{ 0, otherwise,

where 7./2%° is the set of rational numbers which are not integers whose denominators
are a power of 2.

Example 3.1.4. For R = k[z], polynomial ring over field k with indeterminate x of
degree v and I = (z), we have K> (z;k[z]) = (k[z] — k[z][2]). The calculation is
easier if we look at the picture below.

R - R[3]
I ,‘mﬁ
22h o ___ -~ z2
O S —tz
N 1

Figure 3.1: Koszul complex of k[z] at (z).

This means the kernel of i is zero and the cokenel of i is klx,z~']/k[x] which
is X_,(k[x]V), dual vector space of klz] shifted degree down by r, where k[z]V =
Homy, (k[x], k). It follows that
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H(Z:C)(k:[x]) :{ (X]i—r(k[x]\/) = k[x’xil]/k‘[:ﬁ], Zﬁ}ie:rlw;:se'

Example 3.1.5. For R = k[z,y]|, polynomial ring over a field k with indeterminate
x,y of degree r,s and I = (z,y), we have

K®(I;R) = K*(z;R)®r K™(y; R)
YR

1
= (R—R[JoR[]— Rl

As the previous example, we illustrate the picture of Koszul complex for this ring as
below.

{i7 Z} <1,—1>
1 1 1
R - R e RIY - R
Y Y
y3 yB
y2 y2
Y Yy
- > - 1 >
m% m% 1 o a® X :I.L3 1% H . z 22 o8 €z
o o o Z .
@ o o o ;17
A o o o y‘lg
3

<

<
(8]

‘ﬁw‘H ‘“M‘H el =

Figure 3.2: Koszul complez of k[z,y] at (z,y).

From this figure, it is easy to see that this cochain complex is exact at the first
and second term. Thus, HY(R) and Hi(R) are zero. For the third term, the cokernel
of < i,—i > map is all the circle point in the third quadrant, which is isomorphic to
Y _(r4s)(RY). Hence,

0, if i=0;

i o 0, Zf 'L.:_l;

HI(R) - E—(r+s)(Rv)a Zf 7]':2;
0, otherwise.

For a module M over a commutative ring R (with unity) with ideal I, we have
other definitions of local cohomology which is defined by using functor I';(—). Here,
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I'y(M)={xeM: I"t =0 for some n € N }.

And Hi() is defined to be the " right derived functor of Ty, i.e, taking injective
resolution of M, applying I'; and taking cohomology. It is simple to show that I'y is
left exact functor and thus

H}(M) =Tr(M).
One can show that this definition and the previous definition agree for a module over

Noetherian ring (see, for example, [21], page 7).
Remark 3.1.6. For R module M, Hjf(M) = Hj(R; M) and Hj(R) = Hj(R; R).
Since our work involve to Noetherian ring, ku*(BG) is Noetherian ring for any

finite group G, we recollect some properties relating to our calculation of local coho-
mology for a module over such a ring as following.

Proposition 3.1.7. Let R be a commutaring Noetherian ring (with unity), I <R and
M a module over R.

1. If L and N are R module such that 0 — L — M — N — 0 is a short ezxact
sequence, then we have an induced long eract sequence

0 — HY(L) — HYM) — HY(N) — H}(L) — H}(M) — H}(N) — ...

2. For J is an ideal of R, if V'J =1 then H{(M) = H%(M) for all i.

3. For a Noetherian ring S, ¢ : R — S a ring homomorphism and N an S module,
Hi{(N) = Hig(N) for each i as S module.

4. Let A be a directed set and {My}ren a direct system of R module.
Then liI&lH}(M)\) = H}(liI&l My).

5. If S is flat over R, then Hi(M)®p S = Hig(M ®g S).

6. If (R, m) is local, then H: (M) = Hinﬁ(ﬁ“ ®@pr M) which is isomorphic to H:nﬁ(]\//f)
if M is finitely generated.
Proof. See, for example, [21] or [26]. O

The strategy we will use is decomposing the input of Greenlees spectral sequence,
ku*(BSDsg), as a short exact sequence

0— TU -~ ku*(BSDi) "> QU —0 (3.1)

where TU is 2,v-torsion of ku*(BSDis) and QU is the image of ku*(BSDig) in
KU*(BSDsg). This short exact sequence induces long exact sequence
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0 — HY(TU) — H(ku*(BSD1s)) — HY(QU) —>~
HYTU) — H}(ku*(BSDyg)) — HYQU) —2~
H}(TU) — H}(ku*(BSDig)) — H}(QU) —~

H3(TU) — H}(ku*(BSD1s)) — HH(QU) — > -

From here, instead of doing calculation of Hj(ku*(BSDis)) directly, we prefer to do
calculation on Hj(TU) and H;(QU). After determining differential, we obtain F»-
page, i.e., Hj(ku*(BSDg)) as original requirement.

§3.2 Local cohomology for v-torsion part of ku*(BSD;g)

Let R = ku*(BSDjs). Recall from Theorem 2.5.5 that for each k > 1, the v- torsion
of

1 ku***2(BSDyg) is F5 ! generated by {(b*d—abd)bd*~2, (b*d—abd)b?>d* =2, ..., (b*d—
abd)b**~3} and

9 ku**(BSDyg) is Fi~! generated by {(b2d—abd)d*—2, (bd—abd)b?d*=3, ..., (b2d —
abd)b?—11 .

In other words, setting 7 = b%d — abd,
TUypro = {7bd*=2, 702d* =3, ... 7p?F=3)
TUy, = {rd*=2, 702d" 3, .., 7b?k 44},
The monomorphism

ku*(BSD16) — H*(BSD16; Fg) @ KU*(BSDlﬁ)

sending a — (22, A), b — (y*, B) and d +—— (P, D) implies that ar = 0 and b,d
act freely on TU. Hence, we have;

Lemma 3.2.1. v-torsion part of ku*(BSDsg), TU, is a free module over PC :=
Folb,d] generated by T, where (codegree) |T| =8 and a-TU = 0.

Note that TU can be identified to be a subring of H*(BSDi;F2), i.e. a :=
22,b:=y? and d := P. In fact, it is a Ch*(BSD1g;F2)-module, where Ch*(BG;F>)
is the Chern subring of H*(BG;F2). Moreover, we have a commutative diagram
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ku* (BSDlﬁ)

l \
n
H*(BSDiy; Z) —22> H*(BSD1; F3),

where 7 is a natural map, p2 is modulo by 2 map and ¢ = py on and thus TU is an
R module via ¢. Then

H;(TU) — HEka,b,d) (R7TU)
= H;(a,b,d)(Ch*(BSDlﬁ;Fg);TU)
= HEsz,yQ,P)(Ch*(BSDw;FQ);TU)
= Ha,?’P)(Ch*(BSDlG;]FQ);TU), [\/W _ (:L’Q,yQ,P),',' (562)2 _ 0]
= H},4(PC,PC)-7,[-TU = PC - 7]
= Hp(PC)-,
where I' := (b,d).

By example 3.1.5, we get immediately that
Lemma 3.2.2. Local cohomology of TU at I = (a,b,d) is

0, if 1 =0;
Hy(PC) - 7 = Xs(H},(PC)) = O’2<<F2[b, d)), j.jﬁi - ;?
0, if i > 3.

§3.3 Local cohomology for the image of ku*(BSDis) in KU*(BSD;g)

For H;(QU), we consider the additive basis of QU by recalling from Theorem 2.5.5
which asserts that, for £ > 0,
QU)o = Z] ® 2 < o(v*{vb,va,v(a + b)d, v2d, vid? v°d3}) >,
= Z] 97, < B,A,(A+ B)D,D,D? D? >:= Ry,
(QU)_y = Zh < o({b,a,v*(a + b)d,vd,v3d* v°d>}) >,
= 7Y <B,A,(A+B)D,D,D? D3 >,
7y < o({b?,vad, v(a + b)d, d, v2d?, v*d®}) >,
) < B* AD,(A+ B)D,D,D? D? >,
< o({b3, ad, (a + b)d, vd?, v3d®,v5d*}) >,
75 < B3, AD, (A + B)D, D? D3 D* >,
QU)_ry = Zh < o({b**,vad®, v(a+b)d*,d*, v2d" ! vidFt2}) >,
= 7)< B%* AD*. (A_i_B)Dk’Dk’Dk—H,Dk—&-Q >
(QU)_(aryey = Zp < o({p** ™, ad", (a +b)d~, v, v3d" 2 05dF3}) >
= Zy < B**' AD* (A+ B)DF, DFt! D2 D3 >

(QU) 4

1
N N
N> 0

(QU)-6
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Here, QU is a module over R via ¢. That is

Hi(QU) = Hpq)(1;QU)
H y.0,0)(QU; QU)
— HL(QU)

where I" := o(a,b,d), the image of ¢ in KU*(BSDsg). Since QU; for all i < —1
are generated by Chern classes of at most 2 dimension complex representation, i.e.
X25 X3: X4, 01,02, 03, we get that;

Lemma 3.3.1. For each © € Z,

0, if i is odd.

Ro, ifi>0 and iis even;
(QU)i = (QU)™ = ¢ JUL, ifi=-2

JUq, ifi=—4;

JUy, ifi=—2k,

where JUp is the augmentation ideal of QU generated by first Chern classes, JUs is
generated by JU12 and second Chern classes, and JU, = JU1JUg_1 + JUsJUy_o for
k>3 and JU, = (JU,))) for all r.

3.3.1 QU anND HY(R)

By lemma 3.3.1, we, instead of computing H7,(QU) directly, prefer to study from JU i
(Modified Rees ring), which is more tidy than QU_;. However, we keep the trace of

such isomorphism for ¢ = 1,...,5 which JUs,...,JUs will play an important role for
our calculation. By definition and direct calculation, we see that

JU1 = Zé\ < C{{(X2)7C{%(X3)7C{Z(X4)vC{%(Ul)ac{z(oé)?C{%(O_?)) >
Zé\ < 1_X231_X371_X4a2_01a2_0272_03 >
> 7y <T,Yy, 71,0, U, W >

where

T = ci(x2)=B

— R R R 2 1 8 2 o 1 4

1 = c(xs3) —e(xa) +a (X2)=§A+§(A+B)D—§D+§D —§D

2 Riv) =B+ 2A—~(A+BD+3D-2p4 Lp?

z = C = —_ [ — — E— —_

1 1 X4 3 3 9 3 9

_ 5 2 4 5 4

1 = cB(oy) =l =SA-Z(A+BD+-D+=-D*--D3

1 cy'(02) — c1'(xa) 3 3( + B) +9 +3 9

_ R R R R 5.1 14 5 5, 4 4

Ul = Cl (Ul)+cl (0'3)—61 (02)_01 (X4):_§A—§(A+B)D+§D—§D +§D
1 1

w = o) —cf(oy) =—-A— D - D>+ =D

3 3
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On the other hand, we have A =%, -7, 4+7,, B=71, (A+B)D = —2w; —u; —
t1+2y,, D=1 —w,, D> =20, — 21+t + 71 — 7, and D> = 2wy + Tuy + 3t; — 37, .
Also, the images of Z1,¥y, Z1, t1, U1, w1 in H*(BSD1g;Fa) are 32,0, 22 + 2, 22, 22, 2
respectively. Again we represent all generators of (QU)_o = JU 1 as the image of
character omitting the image of identity, because all such generators have image zero

at the identity.

Z7:[ 00 0 0 22|
7,:[00 0 0 0 4 ]
o] mi[ 02 0 2 20 ] s
(QU)‘Q—JU1Z2<1:[00 4 0 0 2 ] Le= V20
wm: 80 0 0 0 2 |
wi:[ 4 ¢ =2 — 0 0 ]

Next, JU 2. This is, by definition JUs :=
af for each a,3 € JU;, together with clt(o
calculation, we get

JUZ + cft(0), an ideal consisting of all
1), ci(o ) and cf(03). Again by direct

T:[ 0 0 0 0 0 4]
To:[ 00 0 0 4 0 ]
—~ ] Z:[ 0 0 8 0 00 ]
JUQ_Z2<t2:[024 2 00}>’
T:[ 0 22 0 —2¢ 0 0 |
w2:[ 4 ¢ 2 —c 0 2 ]

e Tt — 7. — fo7T 5 s . I 7. _ R -
where ngxltl—xlul —tlul, Yo = T121, 2’2——t1wl, tQ—CQ(O'Q), Uy =

cB(o3) — cl(o1), and Wy = cl¥(03). It is not hard to see that

7o = (A+B)D— AD B2 = To+7,

¥y = B?—(A+B)D+ AD AD = Ty — T

Zo = (A+B)D—-4AD+¥D-1D3 (A+B)D = 27—

ta = (A+B)D - 3AD+4D D2 "D = Uy — W

Uy = (A+B)D-2AD D? = 6uy + 4wy — To — ty

wy = D+ (A+ B)D—2AD D3 = 25Uy + 16wy — 672 — 372,

and the images of T, 7y, Za, t2, U, W2 in H*(BSD1g;F2) are 0,4*,0,0,0, P respectively.

Next, JU3. This is, by definition JUs := JUy JUs + JUsJU; = JU,JUs, an ideal
consisting of all a8 for each o € JU; and 8 € JU;. Again by direct calculation, we
get

Tz3:[ 0 0 0 0 0 4 ]
73: 0 0 0 0 8 0 |
—~ ./ Z:[ 0 0 8 0 00 |
JU3_Z2<t3:[ 0 4 0 4 00/
Uz:[ 16 =2 —4 -2 0 0 |
w3:[ 0 2¢ 0 —=2¢ 0 0 ]
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where Ty = T1w2, Y3 = T1Yg = Z1Y9, 23 = L1We — T3, 13 = —WiUx = Z1tl2, U3 = W1W2,
and w3 = Z7wy. It is not hard to see that

¥3 = B?—-2(A+ B)D+2AD

Z3 = (A+B)D—4AD - 3D?+3D% - 3D*
t3 = —2(A+B)D+4AD - §D*+2D3 — iD*
us = D? — T3 — 23

w3 = (A+B)D—2AD.

On the other hand, B3 = 75+2%3, AD = T3—ws3, (A+B)D = 223—ws3, D? = U3+73,
D3 = W3 — 73 + 2t3 + 373 + 4u3 and D* = 16u3 + 10Z3 — 623 + 9%3 and the images
of T3,7s, 23, t3, U3, W3 in H*(BSD1g;F2) are y2P,y°, (2% 4+ y?)P,0,22P, (x® + y?)P re-
spectively.

Next, JU,. By definition JUy := JUJUs 4+ JUyJUs = JU2JUs + JUZ, since
JU12 C JU,, JU12JU2 C JU3JUy and hence JUy = JU22. This is an ideal consisting of
all af for each a, 3 € JUy. Again by direct calculation, we get

Ty: 00 0 0 0 8 ]
7,0 0 0 0 0 16 0 ]
—~ ] Z:[ 0 0 16 0 0 0 ]
JU4_Z?<t4:[0 4 0 4 0 0]/
W[ 16 —2 4 -2 0 4 ]
wi:] 0 2 8 —2¢ 0 0 ]

where T4 = Towo, Yy = YgYs, 24 = 29W2, L4 = —UW3, Us = WaW3, and wy = towsy. It
is not hard to see that

Ty = (A+B)D?- AD?

Yy = B*-2(A+ B)D?+2AD?

Zy = (A+B)D?>—4AD*+18D? - 1D*
ty, = (A+B)D?-2AD?

Uy = D?

wy = 3$D?*+D3-1D'— AD?

On the other hand, Bt = Yy + 274, AD? = Ty — 4, (A + B)D = 2Ty — 14, D? = Uy,
D3 = 4y — Z4 + Wy — Ty + 2ty and D* = 16Ty — 6T4 — 374 + 94 and the images of
T4, Uy, 24, La, Ug, Wy in H*(BSD1g;Fs) are 0,y8,0,0, P?,0 respectively.

Next, j(\f5. By definition JU5 = JU1JU4 + JUQJU3 = JUlJU22 + JUQZJUl =
JU1JU22 = JU;JUy, this is an ideal consisting of all a3 for each a € JU; and 8 € JUy.
Again by direct calculation, we get
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Zs:[ 0 0 0 0 0 8 ]
gs:[ 0 0 0 0 320 |
—~ ./ Z:[ 0 0 16 0 0 0]
JU5_Z2<t5:[ 0 -4 0 -4 0 0}>’
Ws:| 64 —2¢ -8 2¢ 0 0 ]
ws:[ 0 4¢ 0 —4¢ 0 0 |

where Ts = T1U4, U5 = T1Yy = 21Uy, 25 = LiUs — Ts, s = Z1U4, Us = W1l4, and
Ws = Z1Wy4. It is not hard to see that

Ts = (A+B)D?>— AD?

Y5 = B®—4(A+ B)D?+4AD?

Zs = —5(A+ B)D?+8AD? — 3D3+3D* - 2D°
s = —(A+B)D?+2AD?

u; = 2(A+B)D?-3AD?-1iD3-D'+1iD°

W5 = 2(A+B)D?>-4AD?+ D% —2D* + 1D5.

On the other hand, B® = 7j; + 475, AD? = t5 + @5, (A+ B)D = 275 + t5, D =
Us + W5 + 25, D* = 4us + 325 + 2ws — t5 — 2T5 and D° = 16T5 — 12%5 + 1025 + 7Tws and
the images of Ts,¥s, Zs, t5, Us, w5 in H*(BSDg;Fa) are y2P? y'0 (22 + y?)P?, (22 +
y?)P?, (22 4+ y?) P20 respectively.

Slmllarly, we record JU6,JU7,JU8 and JUg as;

JU6 = JUQ JUQJU4 generated by JU7 = JU1JU6 generated by

Zg:[ 0 0 O O O 16 ] Tr:[ O 0 0 0 0 16 |
s:] 0 0 0 0 64 0 | g 0 0 0 0 128 0 ]
Ze:[ 0 0 32 0 0 0 | zZr:[ 0 0 32 0 0 0 ]
te:[ 0O -4 16 -4 0 O ]’ t:[ 0 -8 0 -8 0 0 |
ug:[ 0 —4c 0 4c 0 0 ] uy:[ 256 4 —-16 4 0 0 |
we:[ 64 —2¢ 8 2¢ 0 8 ] wr:[ 0 —4 0 4 0 0 |
jﬁg JU2 JUQJU6 generated by j\Ug = jBlj-fjg generated by

Tg:[ O 0 0 0 0 32 ] To:[ 0 O 0 0 0 32 ]
ys:[ O 0 0 0 256 0 | Yo:[ 0 0 0 0 22 0 ]
Zs:| O 0 64 0 0 0 ] Zo:[ 0O O 64 0 0 0 |
ts:[ 0 -8 0 -8 0 0 ]’ t:[ 0 8 0 8 0 0 |
us:[ 256 4 16 4 0 16 ] Ug:[ 4° 4c =32 —4c 0 0 ]
wg:[ 0 —4c 32 4 0 0 ] wg:[ 0 -8 0O 8& 0 0 ]

By induction, we see that JUQk = JU2 = JU2JU21€ 5 and JngH = JU1JU2k and
for k£ > 2 we have JU4k+2, JU4k+3, JU4k+4 respectively as ;
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Tak42 - [ 0 0 0
Yary2 © [ 0 0 0
ZA< Zuo:| O 0 8-4%
2\ tagao:[ O 2(—2)k 4.4k
U2 0 2e(=2)* 0
Wakgo: | 4-16F c(=2)F 2.4F
Tak+3 - [ 0 0 0
Yakts * | 0 0 0
ZA< Zagz [ 0 0 8- 4"
2\ fapgs 0 4(-2)" 0
Tgpys s [ 16-16F —2(—=2)F —4.4F
Waks3 | 0 2c(—2)F 0
Tak44 - [ 0 0 0
Yaka [ 0 0 0
Z/\< ?4k+41[ 0 0 16 - 4%
2 ¥41€+4 : [ 0 4(—2)k 0
Ugpra | 16-16F —2(—2)F 4.4F
Wagsd © | 0 2c(—2)F  8.4*
and j\U4k+5 as
Tak+5 - [ 0 0 0
Yakts * | 0 0 0
A Zag+5 ¢ | 0 0 16 - 4%
2 t4k+5 : [ 0 —4(—2)k 0
Ugpys @ | 64168 —2c(—2)F —8.4F
Wak+5 - [ 0 46( 2)k 0

0 0 4-4F ]
0 4-16F 0 ]
0 0 0 ]
2(—2)* 0 0 ]
—2¢(=2)F 0 0 ]
c(—2)F 0 2-4F ]
0 0 4.4k
0 816 0
0 0 0
4(—2)k 0 0
—2(-2) 0 0
—2¢(-2) 0 0
0 0 8- 4F
0 16-16F 0
0 0 0
4(—2)k 0 0
—2(-2) 0 4. 4F
—2¢(—2) 0 0
0 0 8- 4F
0 32-16F 0
0 0 0
—4(—2)* 0 0
2c(—2)F 0 0
—4c(—2)* 0 0

So far, we have seen the pattern of relations among JU ;'S as

~

JU; 5

~

JUs 5>
j?]4 %
JUs 5

where p is defined as follows.

T0s —— -
TO7

~

TU -

~

j(\fg%“'

JUspr2 5 =

JU sz 5

JUspra 35—

o~ o~

JUypys 5 >

p

74
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Definition 3.3.2. Define p € (QU)® = JU4 to be
p = o(d®+b*— (2v(a+ b)d2 — 2vad?))
= D?+ B*—(2(A+ B)D? - 24D?)
= [ o) »(s) p(s) »(s°]) p(s°) () p(ts]) |
— [0 16 -2 4 —2 16 4 |

where [1], [s%], [s], [s°], [t] and [ts] are conjugacy classes of SDig.

Now, it is simple to see that o(a*) = o(v®ad?)-p—o(v?a?)-p € ( ), principal ideal
generated by p, o(b°) = o(vad?)-p+o(a®)-p+p(b?)-p € (p) and o(d*) = o(d) p € (p).
This means the radical of (p) is I”, \/(p) = I"” and hence

H} (QU) 2 Hy, (QU). (32)

Therefore H:,(QU) = 0 for i > 2, H}(R) =0 for i > 3 and the long exact sequence
from (3.1) splits as;

0 — HYR) — H(Op)(QU) —0

0 HNR) — HL(QU) = H2(PC) .+ — HAR) —0. O

The immediate result from this sequences is;

Lemma 3.3.3. Let p be a reqular representation, p = 16 - 1 — 6va — Svb + vZab —
1202d + 6v3ad + 2v*d?.

Z-p, if iis non-negative even integer;

0 o
(Hy(R)): _{ 0, otherwise.
Moreover, HY(R) = ker§, H?(R) = coker§ and HY(R) =0 for i > 3.

Proof. The last statement is obvious from the second exact sequence in (3.3). Here
we have o(p) = p = [ 16 0 0 0 0 0 0 ]. Since Hj (QU) = T',)(QU),

H?p)(QU) ={x € QU : (p)"x = 0,3In € N}. Thus, the only p0881ble element in QU

satisfying (p)"z = 0 for some n € N is p € Ry and hence all n-p for all n € Z. By
lemma 3.3.1 and the first short exact sequence in (3.3), HY(R) & H ?p)(QU ), the result
follows. 0

3.3.2 E'3- pacE

The main task in this section is to find H ! (QU ) from the short exact sequence;

0 — HP(QU) — QU — QU[L] — H|, (QU) —
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Since QU is graded, so is QU[ ] and H1 (QU) We calculate H (QU)t as coker(QUy —
(QU[%])t). Note that

lim( QU L QUi-s L QUi L) =(y) QUL

(where =(y) means isomorphism given by the natural map, say f), and this direct

system is eventually constant at QU_4 = JU2 or QU_G = JU3 or QU_g JU4 or
QU_1p = JU5 By proposition A.0.4, JU. (QU[ )¢ for which € € {2,3,4,5} and

hence H1 (QU)t = coker( QU L JU ) for i = % € Z. Now, it is obvious that
(p)(QU)t =0 for t < —4 or t is odd. For t > —2, we have

H(lp)(QU)—2 = jﬁ5/17 JUL H(lp)(QU>2(4k—5) = jﬁ&s/Pk - Ro

H{\ (QU)o = JUsfp-Ro Hi, (QU)aag—a) = JU4/p" - Ro
HL (QU)2 2= JUs/p-Ro , H (QU)sns3) = JUs/p" - Ry
H},\(QU)s = JUs/p-Ro Hi, (QU)auar—2) = JUs/p" - Ry

for each k£ > 2. The isomorphism f sending (q1, g2, g3, ---; gm, 0,0,0, ...) to ql—i—%—i—Z—%—i—
...+p3:11 and the isomorphism in the proposition A.0.4, yield explicitly the isomorphism
g as g(@.) = aﬁ for i = t+26 € Z. This implies that @, + p' - QU; in j\UE/pi - QU can
be identified by 0‘5 + QU,: in H (QU)

Lemma 3.3.4. For each o € {x,y,z,t,u,w} and for e =2,3,4 let a_1 = % JU
Qs —i—p'jfjl, Qe = %—FEO = Q. —l—pi‘Ro for all i > 1, and let 624j_5 = ;Jf’—i-ﬁ
as +p’ - Ry, for all j > 2, we have

IIZ

° p)(QU) 90 =7Z/2 < T > with 1 =y-1 = 2.1, t1 = T_1—Yy_1 and
u 1—w 1—0

° H(lp)(QU)0:Z/2<§o> with Wy = Yo and 550:50:150:%:0.

° H(lp)(QU)Q = Z/2 < I > @ Z/2 <z > @ Z/4 < gl > with W, = :271,
ﬂ1+36/1+51+2§1:0251.

e H, (QU)y =Z/2 <Tp> & Z/8 <2 > & L/16 < Wy > with Z; = 8y,

?2+§2:4(62+g2) and Uz + 8wy = 0.
(p)(QU)G—Z/2<t3> @ Z/A<z3> @ Z/16 <ys > & Z/16 < uz > with

Ws — 83 =0 and t3 + 25 = 273 + 83 + 473
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. H(lp)(QU)S =Z/A<Ty> D L/A<Wy—8us> B Z/32<7yy> D Z/64 < Uy >
with Z4 + 2W4 = 0 and ty 4+ 234 — 2W4 + 1674 + 1604 = 0.

o H \(QU)ig = Z/2 < @5 + 1605 > & Z/4 < %+ 8l > © Z/8 < T5 > &
Z/64 <55 > © 7/64 < TUs > with ts5 + 475 + 3275 + 275 + 16U5 = 0.

o HL\(QU)io = Z/2 < i + 64 > & Z/8 < T > & Z/8 < ls + 160 > &
7)128 < g > @ 7./256 < Wg > with Zg + 4T + 6476 + 2t + 64w = 0.

In general for n > 3,

o Hi (QU)oun—s) =Z/2" L/ 2 OL/2- 4" L/ ©LZ/16" ©Z/16"!

generated by tay—5+(—2)" " Tan—5—(—2)""2Zan—5+(—8)" " un—5+4(—8)" 2ty s,
Wan—5+(—2)"" Zan—5, Zan—s+(4) " Man—5, Tan—s5, Yan—5 and Ua,—5 respectively.

o H (QU)sun-a) =Z/2" @ L/2" 2 G LA @ L/4" ©L/2-16" D Z/4-
16n_1 genemted by ;471,4 + (*2)71_2(25471,4 + 5471,4) — 2(*8)71_1 (?7471,4 + ﬂ4n,4) ,
Zan—4—2Wan—4—4(—=8)" Llyy g, Wan—a+2-4" Vg4, Tan—a, Yan—a and Un—4
respectively.

o Hl \(QU)gun—3) = Z/2”~‘2 L2V Z/A T @ Z/2 -4V @ Z/4 - 1671
7./4 16" generated by tyn—3+ (—2)"Zan—3 — 4(—=8)" g3 — (—=2)" 1 Z4p_3 —
2(—8)"Mn—3, Wan—3—(—2)""Zu4n—3, Zan-3+2-4" Map_3, Tan—3, Yan—3 and
Ugn—3 respectively.

o HL (QU)sun—z) = Z/2" 20Z/2" ' ©Z/2- 4" ©Z/2-4" ©Z/8-16" S Z/16"

genemted by 24,172 — (:2)”%47172 — (—8)"@47172 — (—8)"@4n72 - (2 + (—2)n)g4n72 )
Uan—2 + (—8)"Wan—2, tan—2 + 4" Wan—2, Tan—2, Yan—2 and Wa,—2 respectively.

Proof. Recall from the previous subsection that p - JU \ =75 <p-T1,p Y1, Z1,D
fl,p‘ﬂl,p‘ﬁl > and jf]5 = Zé\ < f5,§5,§5,f5,ﬂ5,@5 >, we get that p- 1 =75 + s,
p-Yy = 2T, prZ1 = Y5 +t5, prty =T5+7Z5, p-U = 2Us + W5+ 25 +T5 and p-w1 = Us.
Hence, we represent matrix for the computation of JU 5/p- JU 1 as

Ts Uy Z5 ls Us Ws
p-T:l 1 1 0 0 0 0 |
Pyl 2 0 0 0O 0 0 |
p-z:l 01 0 1 0 0 |
p-t1:] 1 0 1 0 0 0 |
pm:] 1 0 1 0 2 1 |
p-w;:] 0 0 0 0O 1 0 |

which we do row operations as
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Ts s Zs ts Us Ws Ts T Zs ts Us Ws

Ci1 €2 C3 C4 Cs Ce i C2 €3 €4 Cp (&5
ml 1 1 0 0 0 0 | ml 1 1 0 0 0 0 |
pl 20 0.0 00 | ool 20000 0 | g
sl 001 0 1 0 0 | rl 0 1 0 1 0 0 |V
rqf 1 0 1 0 0 0 | rf 1 0 1 0 0 0 |
sl 10 1 0 2 1 | 0 0 0 0 0 1 |
gl 00 0 0 1 0 | gl 00 0 0 1 0 |

where 7§ = r5 —ry — 2r¢ and (Step *) means the last step of our row operations; after
doing column operations, we get the required result. Then we do column operations
and get

new generator — g1 g2 93 g4 g5 Ge

column operation — ¢ ¢ ¢ <, & ¢
il 001 0 0 0 0 |
w2 0 0 0 0 0 |
sl 00 0 1 0 0 |
ml 00 1 0 0 0 |
0 0 0 0 0 1 |
sl 00 0 0 1 0 |

where ¢f =c¢1 —ca+ca—c3, ¢y =ca —cq and ¢, = ¢; for i = 3,4,5,6. Note that row
operations do not change the basis of JU 5/p - JU 1 but column operations will effect
such a basis i.e. changing basis. More precisely, let ¢ be an element in (Step *) which
q = aTs + by + ¢z5 + dts + eus + fws where a,b,c,d,e, f € Z5. Then after column
operations we get ¢ = (a —b—c+d)g1 + (b — d)g2 + cgs + dgs + egs + fgs and hence

a(Ts—g1)+b(Us+91—g2)+c(Zs+91—9g3)+d(ts— g1 —ga+g2) +e(us —g5)+ f (Ws —gs) = 0.

If ¢ = r¢ then g5 = U5 and if ¢ = r} then gg = Ws.
If ¢ =19 then g1 =75 and if ¢ =7y then g2 =75 + 5.
If g =r3 then g3 =75 + %5 and if ¢ =7y then g4 = t5 — T5 + U5.

That is 555/])- JU, =74 /27% = 7./2 generated by g1 + p - JU, =T5+p- JU,
and Us, Wy, Ts + Y5, Ts + Z5,t5 — Ts + Y5 € p- JU1 and hence H(lp)(QU)_g follows.

The rest of this proof relies on p* - Ry for k > 0 which is

pF-1:]  16* (—2)k 4* (—2)k 6% 4k ]
pP-A 0 2(—2)k 0 2(—2)* 0 2-4F ]
P-B:[ 0 0 0 0 2-16F 2.4% ]

Z§< pF-D:[ 4-16F —c(=2)F 2.4  ¢(—2)F 0 2-4% ] >
p*-(A+B)D: | 0 —2¢(=2)F 0 2¢(—2)F 0  8-4% ]
pb-D2:[ 16-16F —2(—2)F 4.4k —(—2)k 0 4.4k ]
pF-D3:[ 64-16F 2c(—2)F 8-4F —2¢(-2)F 0  8-4F ]
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Here, we change this basis to

pb-1:[  16* (—2)* 4k (—2)k 16% 4k ]
pFozy [0 0 0 0 0 L4k ]
pF o[ 0 0 0 0 2.16F 0 ]
Z§< PPz 0 —2(-2 0 —2(-2F o0 0 ]>,
Pty 4-16F 0 0 0 0 0 ]
pFTe:[ 0 0 4 - 4F 0 0 0 ]
pfwo: [ 0 —c(=2)F 2-4F ¢(-2)F 0 0 ]
where
2 2 8 7 1
pPremy = SpFD4pt D= Sph D - pF el opfA— pf (A4 B)D
9 9 3 3 3
4
9. B
+3P
k = —_ kB*z L
P Y% = P 3P Ty
_ 7Tk _
oz = gpk_xa_pk A
N 6
pk-ti) = 4pF 14205 720 —pF oy — F B—i-?pk i

6
PPy = 8pF1—4pFA—2pF D4 pF. (A—i—B)D—?pk 7

T
P w = p"”-D—p’“-to—gp"” (.-

We can change this basis further by

p" - mp — pb T = 3p" - my — 120" 1 6p" -y — 3" — 6p* -z - 3p" -1

and
Pty =By — 412tz 0 - 20 g - 20 T = 0.

Now the basis for p* - Ry for k > 0 is reduced to

pF1:[ 168 (=2)F 4k (—2)* 6% 4k ]
pkTo:[ 0 0 0 0 0 2-4F ]
ZA<pk~y0:[ 0 0 0 0 2.16F 0 ] >
2\ PPz 0 —=2(=2F 0 —2(-2)* 0 0 ]
pFTp:[ 0 0 4.4k 0 0 0 ]
pFwg:[ 0 —e(=2)F 2-4F  c(-2)F 0 0o

For the calculation of H ! (QU )o = JU /p-Ro, we use the same method as above

which we can represent matrlx for the calculation of JU, /p- Ry as
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Ty Yy Za ta Uy Wy
p-1:] 0 1 0 0 1 0 |ro
pTo:] 1 0 0 0 0 0 |m
PYo:] O 2 0 0 0 0 |r
p-Zo:] 0 0O O 1 0 0 |rs
p-u:l 0 0 1 0 0 0 |Jryg
p-wp:| 0 0 O O O 1 |[rs.
After column operations, we have
91 92 93 94 95 Yo
Aoy d oo ¢
rg] 0 0 0 0 1 0 |
711 0 0 0 0 0 |
3] 0 2 0 0 0 0 |
r3 0 0 0 1 0 0 |
il 0 0 1 0 0 0 |
sl 0 0 0 0 0 1 |

where ¢4 = ¢3 — ¢5 and ¢ = ¢ for ¢ # 2. Thus, j@l;/p - Ry = 7Z/2 generated by
g2 +p-Ro and g; € p- Ry for all i # 3. By the same process as the case H(lp) (QU)_2,

we get that g1 =24, g2 =Yy, 93 = Za, g1 =14, g5 = Us + 4 and ge¢ = Wy and hence
the result for H (lp)(QU)g follows.

For H (1p)(QU )o X JUs /p - Ry, we can represent matrix for the calculation of
JU 3/p- Ro as

T3 Ys 23 t3 U3 W3
p-1:] 1 2 1 0 1 0 |ro
p-To:] 2 0 0 0 0 0 |r
PYo:] O 4 0 0 0 0 |r
p-Zo:] 0 0O O 1 0 0 |rs
p-u:l 0 0 2 0 0 0 |rg
p-wo:| 0 0 1 0 0 1 |[rs.
After column operations, we have
g1 92 93 94 G5 Yo
& &y dyod oo
rg] 0 0 0 0 1 0 |
i1 2 0 0 0 0 0 |
3] 0 4 0 0 0 0 |
r3 0 0 0 1 0 0 |
5] 0 0 2 0 0 0 |
el 0 0 0 0 0 1 |
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where ) =¢; —¢5, ¢y =co—2¢5, 5 =c3 —c5 — ¢ and ¢, = ¢; for i =4,5,6. Thus,
JUs/p- Ry = 7/2®Z)2 ® 74

generated by g1 +p- Ro, g3 +p-Ro and go + p- Ry respectively, and g; € p- Rq for all
1 =4,5,6. By the same process as the case H(lp)(QU),Q, we get that g1 = T3, g2 =73,

g3 = Z3, g4 = t3, g5 = U3 + T3 + 2y5 + z3 and gs = w3 + z3 and hence the result for
H(lp)(QU)g follows.

For H (1p) (QU)y = JUs /p - Ry, we can represent matrix for the calculation of
JU 2/p- Ry as

Ty Yy Z2 lo Uz W2
p-1:] =1 4 0 -1 -2 4 |rg
pTo:l 2 0 0 0 0 0 |
PY:| 0 8 0 0 0 0 |Jre
pZo:] 0 0 -1 2 0 0 |
p-uw:l 0 0 2 0 0 0 |rg
pW:| 0 0 1 0 1 0 |

Now, we do row operations by

ro — [rg =ro—2ri+ri], ri=r], ro =1}

ry — [rh =13+ 2rg —ro +r1] — [r§ = r§ + 4rk — 2r]],

ry — [y =ra+2r3] — [r] =rj+dro—2ry+2r] — [r) =] —2rl] — [r} =
ry +2r3],

rs — [rg =15 +13] — [l =1L+ 2r0 —ro+ 11| — [rE =1 — 1],

and then we obtain (Step ) and the required result as

Ty Yo Zo Lo Uy Wo g1 92 93 94 95 Yo

c1 ¢ c3 ¢4 5 Co & &y d o o
-1 4 0 -1 0 4 | w00 0 -10 0 |
2 0 0 0 0 0 | _ 7 20 0 0 0 0 |
(Step#)="21 9 s 0 0 0 0 ]~ 08 0 0 0 0 |
0 0 -1 0 0 8 | 70 0 -1 0 0 0 |
0 0 0 0 0 16 | 0 0 0 0 0 16 |
0 0 0 0 1 8 | 200 0 0 1 0 |

where ¢} = ¢ —ca, ¢y =co+4ca, ¢ = ce+4ca +8cz —8¢s and ¢, = ¢; for i = 3,4,5.
Thus, - B

JUs/p- Ry =2 7/2®7Z/8DZ]16
generated by g1 +p- Ro, g2 +p- Ro and gg + p- Ro respectively, and g; € p- Rq for all
i = 3,4,5. By the same process as the case H(lp)(QU)_Q, we get that g1 = T2, g2 = U,

g3 = Zo — 8Wa, g4 = to + To — 4(Wa2 + Yy), g5 = Uz + 8wz and g = Wz and hence the
result for H (1p) (QU)4 follows.
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For H (lp)(QU Jo = JU 5/p? - Ry, we can represent matrix for the calculation of
JU 5/p° - Ro as

Ts Ys 25 t5 U5 Ws
p?-1:] 2 8 3 —1 4 2 |ro
p>To:| 4 0 0 0O 0O 0 |n
P> 7y:| 0O 16 0 0 0 0 |r
p>Zo:|] 0 0 0O 2 0 0 |rs
p>up:| 0 0 4 0 0 0 |rg
p>wo:] 0 0 2 0 0 -1 |rs.
Now, we do row operations by
ro — [y =710+ 2rs —2r4], r1 =71}, ro =13, r3 =71}
ry — [} =ra +4r§ + 2r5 — 2r] — 2r3],
rs — [rE =715+ 2r§ +ri — 1] — 13,
and then we obtain (Step *) and the required result as
Ts Us Zs Iy Us Ws g1 92 93 94 95 96
c1 ¢ c3 c4 C5 G dody oy d
gl 2 8 -1 -1 4 0 | ] 0 0 -1 0 0 0 |
rfl 4 0 0 O O O | o ] 4 0 0 0 0 O |
(Step*):r>21*| 016 0 0 0 0 | 7 0 16 0 0 0 0 |
rs 0 0 0 2 0 O | 75 0 0 O 2 0 0 |
r/ 0 0 0O O 16 O | ri] O 0O O O 16 0 |
rsl 0 0 0 0 8 -1 | ¥l 0 0 0 0 0 -1 |

where Cll = +263’ C/2 = €2 +8C37 C,B = (3, cil = C4 — C3, C/E) = Cs +4.C3 +8CG and
¢t = c¢. Thus,

JUs/p* Ry 2 Z/2® L[4 & 7/16 & Z/16
generated by g4 + p? - Ro, g1 +p* - Ry, g2 + p*> - Ry and g5 + p? - Ry respectively, and
g3, 96 € p* - Ry. By the same process as the case H(lp)(QU),Q, we get that g1 = 75,

92 =Ys5, g3 = 55—255—8@5%—%5 —4ﬂ5, g4 = f5, g5 = Us and g6 = Ws — 8us and hence
the result for H (lp)(QU)G follows.

For H gp)(QU )s = JU4/p* - Ry, we can represent matrix for the calculation of
JU 4/P? - Ry as

Tg Yy Z4a Ta Us Wy
p?-1:] =6 16 =3 9 16 0 |rg
p>To:] 4 0 0 0 0 0 |m
P To:] 0 32 0 0 0 0 |r
P> Z:] 0 0 0 -2 0 0 |r3
pup:] 0 0 4 0 0 0 |rg
p>-wo:| O O 3 0 0 —2 |rs.
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Now, we do row operations by

rog — [rg =ro+2r1 +r5 +4r3], ri =71}, ro=r;3,

ry — [ry =3+ 25 —r] — 15| — [r§ = —r3]

ra — [y = ra+4r3] — [r] = —(r}) — 2r3)],

rs — [ =15 —T4],

and then we obtain (Step ) and the required result as

Ty Yy Za g TUg Wy g1 g2 93 94 G5 G6

€1 € €3 €1 C5 Cg oy o d & o
w2 160 1 16 -2 | 0 0 0 1 0 0 |
74 0 0 0 0 0 | ] 40 0 0 0 0|
0 32 0 0 0 0 | 5 032 0 0 0 0 |
0 0 0 0 —32 4 | sl 00 0 0 0 4 |
0 0 0 0 64 0 | 0 0 0 0 64 0 |
72l 00 -1 0 0 -2 | 7l 00 -1 0 0 0 |

where ¢f = ¢1 — 2¢4, ¢y = ¢ — 16¢cy4, ¢ = ¢3, ¢ = ¢4, 5 = ¢5 + 8¢ — 16¢3 and
¢t = ¢6 + 2¢4 — 2c3. Thus,

JU4/p* Ry 2 Z/ASLIAGZ/32 @ 7./64

generated by g1 + p? - Ro, g6 +p° - Ro, g2 + p*> - Ry and gs + p? - Ry respectively, and
93,94 € p* - Ry. By the same process as the case H(lp)(QU)_g, we get that g1 = 74,
92 =Ty, 93 = 24+ 2Wy, g4 = t4+2T4 + 1674 — 2wy + 167y, g5 = Uy and ge = Wy — 8y

and hence the result for H (lp) (QU)g follows.

For H (lp)(QU)lo ~ JU 3/p? - Rg, we can represent matrix for the calculation of
JU 3/p? - Ry as

T3 Y3 Z3 13 uz w3
p?-1:| 4 32 10 9 16 0 |rg
p>-To:] 8 0 0 0 0 0 |r
P Yo O 64 0 0 0 0 |ro
pP-Z:] 0 0 0 -2 0 0 |r3
p>TU:| 0 0 8 0 0 0 |ry
p>-wo:| 0 0 4 0 0 -2 |rs.

Now, we do row operations by

ro — [y =10 —ra+4r3], ri =71}, ro =1},

rg — [r3 =r3+2r§ —r] —r5 — 5]

ry — 1} =14 —2r5 — 213],

rs — [ri =15+ 13,

and then we obtain (Step ) and the required result as
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Ty T3 Z3 13 Uz W3 g1 92 93 94 G5 Y6

€] Ccy C3 c4 C5 Cg dody & od o o
ril 4 032 2 1 16 0 | 0 0 0 1 0 0 |
78 00 0 0 0 | o] 8 0 00 0 0
75 0 64 0 0 0 0 | 75 0640 0 0 0 |
isl0 0 0 0 32 2 | #0000 0 2 |
0 0 0 0 —64 0 | 0 0 0 0 —64 0 |
7l 00 4 0 32 0 | 0 0 4 0 0 0 |

where ¢] = ¢1 —4ey, = o —32¢4, ¢y =3 —2¢4, ¢ =cy, 5 = c5 — 8¢z + 16¢ and
¢t = c¢. Thus,

JU3/p* Ro = Z)20L/ADL/S S L/64 7/64
generated by gg + p? 'Ro,gg +p2- Ry, g1 +p>- Ro, go+p?- Ry and g5 + p? - Ry
respectively, and g4 € p? - Ry. By the same process as the case H (1p)(QU )—2, we get

that g1 =3, g2 = Y3, g3 = 23 + 8us, g4 ng + 473 +32@3 + 2z3 + 16us, g5 = us and
g¢ = W3 + 16u3 and hence the result for H (1p)(QU) 10 follows.

For H (1p)(QU)12 ~ JU,/p? - Ry, we can represent matrix for the calculation of
JU>» /p®- Ry as

To Yo Z2 ta U2 W3

p?>-1:| —28 64 —15 2 32 64 |rg
p>T:] 8 0O 0 0 0 0 |n
P>y, 0 128 0 0 0 0 |ro
p?-Zo:| O 0 2 -4 0 0 |r3
pP>u:| 0 0 8 0 0 0 |y
p>-wo:| 0O 0 4 0 -2 0 |rs
Now, we do row operations by
ro — [r§ =ro +4r1 + 2ry + 8r4], r1

ry — [rh =13 —2ri + i + 13 — [r}

ry — [ry =14 — 2r5] — [r} =1} +2ri],

rs — [rk =15 — drl 4+ 2rT + 215 — rf] — [rf = —rl],

and then we obtain (Step ) and the required result as

Ty Ty Z2 to Uz W g1 92 93 94 G5 96

€1 ¢ c3 c4 C5 Cg & dy oy d & o
il 4 64 1 2 0 64 | 0 0 1 0 0 0 |
78 0 0 0 0 0 | _ 8 0 00 0 0 |
75l 0 1286 0 0 0 0 | 13 0 128 0 0 0 0 |
sl 0 0 0 8 0 12| /[ 0 0 0 8 0 0 |
0 0 0 0 0 256 | 0 0 0 0 0 256 |
7l 0 0 0 0 2 128 | s 0 0 0 0 2 0 |
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where ¢ = ¢; —4des, ¢y = ca — 64es, y = ¢z, ) = ¢4 — 2¢3, ¢ = ¢5 and ¢ =
cg — 16¢c4 — 64c5 — 32¢3. Thus,

TU2/p* Ro =720 L/8 B L/S D T)128 & T,/256

generated by g5 +p®- Ro, g1 +p* - Ro, ga+p°- Ro, g2 +p* - Ry and g + p* - Ry re-
spectively, and g3 € p? - Ry. By the same process as the case H gp)(QU )—2, we get that

g1 = T2, g2 = Vs, g3 = Z2 + 4Tz + 647, + 2lo + 64W2, g4 = b + 16w, g5 = U + 64w
and gg = wo and hence the result for H (1p)(QU )12 follows.

Now, we are going to prove the general case which separates to 4 types. Let
n=>3,r=p"-1, rn =p"-To, rg =p"- Yy, r3 = p"-Z0, ra = p"- U and
r5 = p" - Wp. Beginning with H(lp)(QU)Q(4n_5) =~ JUs5/p"™ - Ry, we can represent matrix

for the calculation of JU 5/p" - Ry as

T5 Ys Z5 ls Us Ws
24772 8.16"72 2.16"244"72 —(=2)"% 4.16"2 2.16"2
qr—1 0 0 0 0 0

0 1671 0 0 0 0

0 0 0 —(=2)*1 0 0

0 0 gn—1 0 0 0

0 0 2. 4n—2 0 0 —(—2)"2

Now, we do row operations by

ro— [rg=ro—2-4"3ry), ri=7rF, ro =713, r5 =1

T3 — [rh =13+ 2ry — 17 — 13 — [rh =15 + 4(=8)"2rg — 2(—8)" 21y
ra — [rj = —(ra = 2r3)],

and then we obtain (Step ) and the required result as

5 Ys Z5 ts Us Wy
C1 (&) C3 Cq4 Cy Cg
ré| 2-4772 8.16"2 42 —(=2)"72 4.16"2 2-16"2% |
ri|  4nt 0 0 0 0 0 |~
5 0 16t 0 0 0 0 |
T 0 0 2. 402 0 81672 0 \
h 0 0 0 0 167t 0 |
i 0 0 2. 4n—2 0 0 —(=2)"2 |
9 g2 g3 94 95 g6
ch A s c s %
rel 0 0 0 —(=2)"2 0 0 |
ri 4t 0 0 0 0 0 |
sl 0 167! 0 0 0 0 |
il 0 0 2.472 0 0 0 y
il 0 0 0 0 167t 0 |
ri 0 0 0 0 0 —(=2)"2 |,
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where
= ¢ +2(=2)"2
ch= ca+8(— )n
= cg—(=2)" 166 + [(—2)"72 + 4(16)"2]ey
A= ¢
cg = 5 —4""leg 4+ (—8)”*166 — 43n—de,
6,6 = ¢+ 2(—8)n_204.
Thus,

JUs/p" - Ro = Z/2" 20 Z)2" 2@ 7)2 - 4" 2@ Z/4" " ©7/16" ! @ 7/16"

generated by ga +p" - Ro, g6 +p" - Ro, g3+ D" - Ro, g1 +p" - Ro, g2 +p" - Ry and
g5 + p" - Ry respectively. By the same process as the case H( )(QU) 2, we get that

G =75, g2 =75, g3 = 25 + 4" U5, g5 = Us, g6 = W5 + (—2)

n=lz. and

g1 =15+ (=2)"1Z5 + (=8)" g, — (—2)" 225 — 2(—8)" w5 + 4(—8)"*us.
Note that 2(—8)" %5 is zero and hence the result for H1 (QU) 2(4n—5) follows.

Next, H (QU) 2(4n—4) ~ JU, /p" R, we can represent matrix for the calculation
of JU4 /p" R(] as

T4 Yy Z4 t4 Uy Wy
e 1671 4qn=2 _ 4. 1672 l 16m1 0
gn—1 0 0 0 0 0
0 2-16"1 0 0 0 0 ,
0 0 0 (-2t 0 0
0 0 gt 0 0 0
0 0 2-4"72 4 (=2)n2 0 0 (=21

where e =2-4""2-8.16""2 and | = (—2)" 2 +8-16"2. Now, we do row operations

[ré =ro+2- 4" 20 447 2py 4+ 4(— 8)”_2 3], m =17, T2 =713,

r3 — [y =13+ 2r5 — 7} —r3] — [} =5+ (=2)" g+ (=2)" )]
[ri = —(ra = 2r3)],

rs — [rg =15 — 2r§ +r] + 15 —13] — [rE =1L + 1},

and then we obtain (Step ) and the required result as

Ty Yy Z4 iy U4 Wy

c1 C2 C3 Cy Cy Ce
T6| 9. 4n—2 16n—1 4n—2 (_2)n—2 16n—1 0 ‘
ril 4nl 0 0 0 0 0 .
5 0 2.16""1 0 0 0 0 |
5| 0 0 0 0 2-16"1  4n-l
1 0 0 0 0 41671 0 \
¥ 0 0 (—2)n—2 0 2-16"1 (—2)n1 |
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91 92 93 94 95 96
cy A c cy s %
sl 0 0 0 (—2)n—2 0 0 |
ri| 4nt 0 0 0 0 0 |
sl 0 2-16"71 0 0 0 0 |
il 0 0 0 0 0 gn—1
il 0 0 0 0 4-16"1 0 |
ri 0 0 (—2)n—2 0 0 0 |
where
C’l = 1+ ( )
C/Q = 2+ 2( 8)
= c3—(=2)""
= ¢
k= c5+ (4(—=8)"t —dM)eg +2-16" ey — 2 4" g
C% = cg+ 2c3+ (—Q)n_lc4.
Thus,

JULp" - Roy = Z/2" 20 Z)2" 2 @ Z/A" ' @ Z/4" 9 Z/2- 16" @ Z/4 - 16"

generated by g3 +p™ - Ro, ga +p" - Ro, g1 +p" - Ro, g6 +p" - Ro, g2 +p" - Ro and
g5 + p" - Ry respectively. By the same process as the case H (QU) 2, we get that

g1 =24, g2 = Y4, 93 = 24 —2w4—4(—8)

1 1z
" u495—u4,96—w4+2 4"y,

g1 =Ta+ (=2)"72(2T4 + Z4) — 2(=8)" ' (74 + W),

and hence the result for H, ! (QU )2(4n—a) follows.

Next, H (QU )o(an—3) = ~ JU 3/p™ - Ry, we can represent matrix for the calcula-
tion of JUg/p - Ry as

3 Y3 Z3 t3 us w3
4n71 2. 161171 2. 4n72 + 8. 16n72 24n75 + (_2)n72 16n71 0
2. 4n—1 0 0 0 0 0
0 4-16"1 0 0 0 0
0 0 0 (—2)n-t 0 0
0 0 2. 4n—1 0 0 0

0 0 gn—1 0 0 (—2)nt

Now, we do row operations by

ro — [rg =ro — 4" 2ry + 4(=8)" 23], r1 =1}, ro =1},
rg — [r3 =r3+ 2rj —rj —r]

e — [} = ra = 2r5) — [r = —r}.

rs — [rf =r5 — 2r§ + 1]

and then we obtain (Step ) and the required result as
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T3 Y3 Z3 t3 U3 w3
c1 Cco c3 C4 cs5 Cg
rel 4vt o 2.16n7t 2.4n72 (—2)n72 et 0 |
ri] 2477t 0 0 0 0 0 |~
73 0 4161 0 0 0 0 | —
] 0 0 4n—1 0 2-16"1 0 |
i 0 0 0 0 4-16m"1 0 |
rE 0 0 —4n—1 0 0 (=2)n=t |
g1 92 g3 94 g5 g6
d e A cy L A
I 0 0 0 (-2)n2 0 0 |
r¥| 24771 0 0 0 0 0 \
75| 0 4-16"1 0 0 0 0 |
3| 0 0 gn-t 0 0 0 \
i 0 0 0 0 4-1671 0 |
¥ 0 0 0 0 0 (=2)" 1 |,
where
A= c—(-2)"cy
ch= co+4(-8)""tey
= c3+(=2)" ey + (—2)" e
=«
k= c5—8-4""2c3 —2(—8)"l¢g
= Cg.
Thus,

JUs/p" - Ro 2 Z/2" 29 Z)2" ' @ Z/A"  $ Z/2- 4" G Z/4- 16" G Z/4 - 16"

generated by g4 +p" - Ro, g6 +p" - Ro, g3 +p" - Ro, g1 +p" - Ro, g2 +p" - Ro and
gs + p" - Ry respectively. By the same process as the case H (lp)(QU )—2, we get that
91=T3, g2 =Yz, g3 =23 +2-4"" U3, g5 = U3, go = w3z — (—2)" " 'z3,

g1 =Tz + (=2)"T3 — 4(=8)" g5 — (—2)" " 'z5 — 2(=8)"'u,

and hence the result for H (lp)(QU )2(4n—3) follows.

Finally, H gp)(QU)Q(M_Q) ~ JU 2/p™ - Rg, we can represent matrix for the calcu-
lation of j?]g/p" - Ry as

9 Yo Z9 to Uu9 wa
gn=t —2.16""1 4.16""1 h —(=2)n~t —2.16""t 4.1677!
2. 4n—1 0 0 0 0 0
0 81671 0 0 0 0 ,
0 0 —(=2)"t 2(—2)n ! 0 0
0 0 2. 4n-1 0 0 0
0 0 4n—t 0 (—2)n—t 0
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where h = 2472 —16"~! — (-2)"2. Now, we do row operations by

ro — [y =10+ 4"t 4247 2y — (=2)" 2rg — (=8)" ], ry =1F, ra =13,
ry — 15 =713+ 2r5 —ri — 3]

ry — [ry =1y —2r5] — [y =1y + 2rf],

rs — [r5 =15+ 4(=2)" g + (=2)" (1] +13) — (L= (=2)" ril,

and then we obtain (Step *) and the required result as;

To Yo Z9 %2 u9 wo
Cc1 Cco c3 Cq4 Cs Cg
7“3‘ 4n—1 4 - 16n—1 _(_2)71—2 4n—1 _ (_2)n—1 0 4 16n—1 |
ri| 24771 0 0 0 0 0 |~
75| 0 8. 16" 1 0 0 0 0 |
¥ 0 0 0 2. 4n-1 0 816"t |
i 0 0 0 0 0 —16" |
¥ 0 0 0 0 (-=2)n~t —g.16"" ! |
g1 g2 g3 g4 g5 ge
d c h c c 6
el 0 0 —(—2)"2 0 0 0 |
ri| 24771 0 0 0 0 0 |
5 0 8. 1671 0 0 0 0 |
rh 0 0 0 2. 4n—1 0 0 |
i 0 0 0 0 0 —16" |
i 0 0 0 0 (=2t o0 |
where
A= ca+(-2)"c
ch= ca+ (—8)"cs
= c3
A= e+ 24 (-2)")cs
= cs
= c6—2-4"czg — (—8)"c5s — 4"¢y.
Thus,

JUo/p" Ro = Z/2" 20 Z)2" ' @ Z)2 - 4" '@ Z/2- 4" ©7/8 16" @ Z/16"

generated by g3 +p" - Ro, g5 +p" - Ro, g1 +p" - Ro, g4 +p" - Ro, g2 +p" - Ro and
ge + p" - Ry respectively. By the same process as the case H (lp)(QU )—2, we get that

g1 =7T2, g2 =Ty, g4 =to + 4" W2, g5 = Uz + (—8)" W2, g6 = W2,
g3 =722 — (—2)"Ta — (—8)"7p — (—8)"w2 — (2 + (—2)")l2,

and hence the result for H (lp) (QU)a(an—2) follows. O
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Accordingly, we reach to the E' -page of Greenlees spectral sequence as;

degree(t)
: : : : 19
0 |20 <6 [2][4] @ [16] @ [32] & [1024] & [1024] Z-p 18
0 0 0 0 17
0 |25 <6 [2]9[2]@[16] @ [16] @ [512] & [1024] Z-p 16
0 0 0 0 15
0 25 167 2] [2] B [8] @ [16] @ [256] & [256] Z-p 14
0 0 0 0 13
0 |2 ~+d 2] & [8] @ [8] & [128] & [256] Z-p 12
0 0 0 0 11
0 |2 ~1565 [2] @ [4] @ [8] @ [64] D [64] Z-p 10
0 0 0 0 9
0 23«14y [4] @ [4] @ [32] & [64] Z-p 8
0 0 0 0 7
0 |2 «——+143 [2] @ [4] @ [16] & [16] Z-p 6
0 0 0 0 5
0 |22 <16 [2] @ [8] @ [16] Z-p 4
0 0 0 0 3
0 |22 «—t6 2] @ 2] @ [4] Z-p 2
0 0 0 0 1
0 2 <+t d 2] Z - p 0
0 0 0 0 -1
0 2 «~—td 2] 0 -2
0 0 0 0 -3
0 0 0 0 -4
HEZY(R) HY(PC) -7 O L, (QU) HY(R)
where[n] := cyclic group of order n, 2":= elementary abelian group of rank r.

Figure 3.3: The Elé—page of Greenlees spectral sequence for ku.(BSDig)

§3.4 FE’-page

The purpose here is to find Hi(R) and H?(R) which is equivalent to find ker(§) and
coker(§) respectively. Recall from lemma 3.2.2 that HZ, (PC)-7 = (F3[b, d])" -7 on which
b,d act freely and a acts as zero, where the degree of a, b, d are —2, —2, —4 respectively.
For v € M, we write it image in MY by 1. Since H?(PC) -7 is annihilated by 2,a
and J is a module homomorphism over R, the restriction of § to 2(H(1p)(QU)) is a
zero map. Note that the structure of (H#(PC) 7)Y is simpler than the undual one, so
instead of calculating R-module homomorphism § : H (1p)(QU ) — H%(PC)-7 directly,
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we will do on the opposite side first, i.e. Fa[b, d]-module homomorphism
(3)" : (H3(PC) - 7)Y — [HL (QU)/2(H) (QU)))".

Moreover, we note that ku, is a connective spectrum and then ku;(BSDig) = 0
for all t < 0. It follows, by Elé-page, that §_1 and &g are isomorphism and 7 is
surjective. Thus

(6-1)" (%) = 54 and (50)(5) = 5

T 0

8

So as to identify all (§;)V, it suffices to find the structure of [H(lp)(QU)/2(H(1p) QU
as a module over [Fa[b, d], i.e. how do b and d act? To do this, we simply use the char-
acter table of JU, for € € {2,3,4,5} and lemma 3.3.4 in the last section. Here we also

record the action of v and a because this will be used in the calculation of R action
on ku*(BSD16) .

Generator | Image of a Image of b | Image of d where (k > 0)
~ CAL'J,L',l, .Afl',l, ,AIJZ',Q, 1 is Odd;
i { 2§i—17 { QEZ‘_l, { fi_g, { 1 is even.
Yi 0 Yi—1 0 for all 4.
Z 0 0 Zi_o for all 3.
i1 — 21, | (0O, (@, i = 4k — 5,
7 —~2t7_1, 0, Ui—2, i =4k — 4;
’ 2ti_1, 0, —@-,2, 1 =4k — 3;
tio1, 0, | Zimo — Wi—a, i=d4k — 2.
Ui-1, 0, Ui + ti2, i =4k — 5;
= Ti—1 +tio1, Ti-1, Wi—9 — Uj—2, 1 = 4k — 4;
! —ti—1, 0, Uj—o + Wi—9, i =4k — 3;
2Wi_1, 0, \ tio, i=4dk — 2.
( —2u;_q, (0, ( —ti_2, 1 =4k — 5;
- Wi-1, 0, Zi2 — tia, i =4k — 4;
! 2W;_1 — Zi—1, 0, —ti—2, 1 =4k — 3;
Tio1 + Wi-1, \ Ti-1, Ui—o + tio, [ =4k —2.

Table 3.4 : The action of a,b and d on H(lp)(QU).
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Generator | Image of v, k>0
~ { Tir1, if 7 is odd;
Z; ~ ep .
2%;41, if i is even.
gi 25[//,‘4_1 for all 4 > —1.
- { Zit1, ifdis odd;
Zi ~ ep e
2ziy1, if 4 is even.
—tl'Jrl, if 1 = 4]{}—5;
’ 2tiy1 — Ziy1, if i =4k —3;
tiv1 + Zig1, ifi=4k—2.
i1 + 2t — Wig1 — Zig1 — 2Ti41, if @ =4k = 5;
= Uit1 — Zit1 — Tit1, it i =4k — 4;
’ Wity — Uiy — Zit1 — tiy1 — 2Ti41, if i =4k —3;
= if i =4k — 2.
( 27:52'_;,_1 — fZVH_l, if i =4k — 5;
& Wit1 + Zig1, if i =4k — 4;
i Uit if i = 4k — 3:
Uil + Zip1 + Tigr, ifi=4k 2.

Table 3.5 : The action of v on H(lp) (QU).

Note that we can view H(lp)(QU)t/QH(lp)(QU)t for each ¢, as a vector space over Fy

and b,d as a linear transformation among them. Hereby, the module structure of
[H(lp)(QU)/ZH(lp)(QU))]V := MY over Fyb,d] given by

b [z]=[b"(5)] and d-[5] = [d"(5;)]

1
i i %) i

for each [4] € MY, can be done by Table 3.4 and the fact that;
Lemma 3.4.1. Let V and W be an finite vector space over a field k and T be a linear
transformation, T : V. — W . If T is represented by a matriz A, then TV : WV —
V'V is represented by transpose of matriz A.

Proof. Suppose {v1,...,v,} and {wy,...,w,,} are an basis for V' and W respectively.
The natural basis for VV and WV are {v],...,v:} and {w],...,w}}, where v} (v;) = d;;
and wj(w;) = 0;5, Kronecker delta function. Let A be a matrix representing for T,
ie. T(vi) =3 Ajjw;, and B for TV, i.e.TV(w;) = 3 Bjjvi. Hence, Bjj = (Bivi +
e+ BinU:L)(Uj) = T\/(w;‘)(v]) = w;‘ o T(Uj) = w;‘(Ajlwl + ...+ A]mwm) = A]z L]

Now, by setting o = [&%] for each a = x,y, 2, t,u, w, we get that, as an abelian
group;

-(M?")9 is generated by z*; with z*, = y*; = 2*,, t*;, = 2*, — 2", and
ut, =wr; =0
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Hence, by Table 3.4 and lemma 3.4.1, i.e. b-a* = b"(«

0 is generated by y; with uj =y and xf = 2§ =
2 is generated by z7,y7, 2] with wi =27, t] =0 and u] + 2] + 27 =0
4 is generated by z3,y5, w5 with t5 =25 and 25 =u5 =0
¢ is generated by x3,y3,t§,u3 with w3 =0 and t3 = 23
g is generated by xj,y),uy, wy with 2§ =¢; =0
10 is generated by x%, v, z5, uz, wi with t5 =0
12 is generated by x§, v, tg, ug, wg with 25 =0 and
on 1s generated by z, vy, z

vt uy,wr for n > 6.

we obtain the structure of M"Y over Fy[b,d] as;

ty=wy =0

*) and d-o* = dY(«

93

)

Generator Image of b, (i > 0) Image of d
Y0, if k= —1; i+ zf, ifk=—1;

* w§i+1, if k = 21; x3 +uz, ifk=1;

k wy, ifk=4i-1; o+ wy, if k=2

Yi ?/Z+17Vk 0,Vk
ul + 1, if k=1
25 +ws, if k=3;

2y 0,Vk 23515 ifk=2i—1,i>2;
Zyi_og Fthio, fk=4i—4,i>2;
2y + wy;, ifk=4i—2,i>2.
uk + 13, if k= 1;
Wy, ifk=41—2,1>1;

iy 0,Vk Whi i1 ifk=4i—1,1>1;
Wyz T W3, ifk=4i+1i>1.
U313, iftk=2i+1,79>0;
uy;, ifk=4i—2,1>0;

j 0, vk fiire: k= 46,4 0;
thivs ifk=4i+1,7>0;

Table 3.6: The module structure of [H1 (QU)/2H(p)(QU))]v over Fa[b, d].

Consequently, we have:

Lemma 3.4.2. The module map over Fa[b, d],

s given by gv(q) =7, gv(dq) =7 + 27, 5

5 [HE(TU)Y
(4

— [H (QU)/2H} (QU)]

q) =T +t5 and
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gv(biQ) = Y, foralli>1

a(dz&l@ = Thip T Wi+ 2 for alli>1

év(d%q) = Ty 1+ tzklz':vl + 2 for alli > 2

5 (bd*lq) = wi ,and § (bd*q) =}, foralli>1
bd

and 0 if otherwise, where q = °=.
Accordingly, by using lemma 3.4.1 applying on 3\/7 we can find ker(d) = H}(R)
and coker(8) = H?(R) as:

Lemma 3.4.3. As an abelian group, H}(R)Z =0 for i <2 ori is odd, and

e HY(R)s = Z/2 < Z1+2 > ® Z/2 < 21 > with w1 +2 = 0 = t1, and
171+(51+31)+2ﬂ1:0.

° H}(R)4 = Z/2 < Ty > P Z/4 < 2@2 > © Z/S < 2wy > with zp = 8@2,
to + Ty = 4(’&72 +§2) and us + 8wg = 0.
e H{(R)s=Z/A<T3+13> @ Z/8< 23> & Z/16 < Uz > with W3 — 8tz = 0

and t3 + z3 = 2x3 + 8ys + 4us.

e HY(R)s=Z/A<Zy> ® L4 <wy—8Us > ® Z/16 < 2yy > & Z/32 < 2uy >

with z4 + 2ws = 0 and %:; 4274 — 2wy + 16&4 + 16wy = 0.
o Hi(R)io="27/4<Z5+Ws + 2405 > @ L/8 < T5+ 25 +8us > @ Z/32 < 25 >
@ Z/64 < us > with ts + 425 + 32y5 + 225 + 16us = 0.

e Hi(Rh2 = Z/2 < g + 64w > & Z/8 < Tg > & Z/8 < i + 16w > &
7)64 < 2ys > @ Z/128 < 2wg > with zg + 476 + 64ys + 2t + 64ws = 0.

o HY(R)14 = Z)2 < w7 +427 > ® Z/8 < ijy + 27 + 16ur > @& Z/16 < T7 +
§7 + 16ur > ® Z/128 < 2y; > @ 7Z/256 < uy > with 2n; = 0 where n; =
tr + 4x7 + 2z7 + 32y7 — 32uy .

In general,

o forn>4, H (R)yun—sy = Z/2" > ®L/2" > BL/2-4" *QL/A" 1 ®Z/8-16" 2 &
Z.J16™ generated by 2[tan—5+ (—2)" 1Tan—5 — (—2)" 2Zapn—5 + (—8)" an—s —
4(—8)" 2gn—5), Wan—5+(—2)" " Zan—s5, Fan—5+(4)" gn_5|+[Ean—5+(—2)" " Tan_5—
(—2)" 22405+ (—8)" up—54+4(—8)" 2 Uan—s), Tan—5+{[Zan—5+(4)" " an_s], 201n—s
and Ugn_5 TESpectively.

o for n >3, H{(R)yun—ay = Z/2" 2@ L/2" > @ L/4" ' @ Z/4" ' @ /16" &
Z/Q 1671 generated by ;471_4 + (—2)”72(254,1_4 + 3471_4) — 2(—8)”71(51]4”_4 +
Usp—1), Zan—a — 2Wap—a — 4(—8)" M Uan—a, Wan—a+2 4" sy, Tan-a, 2Yan—s
and 2Uyy_4 respectively.
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) fOT’ n > 3, H}(R)2(4n_3) f Z/2n72 @Z/anQ @Z/Z}n*l @Z/Q .47171 @Z/Q . 16”71@
Z/4 1671 generated by tyn—3+ (—2)”.%4n_3 — 4(—8)”71374”_3 — (—2)”*154%3 —
2(—8)"Mgn—3, 2[Wan-3 — (—2)" " 'Zap_3

(_2>n7154n—3

1, [Ban—s + 2 - 4" Yy 3] + [Wan—3 —

|, Tan—s + [Fan—3 +2 - 4" YNy, _3], 20an—3 and tUg,_3 respectively.

o forn >3, H(R)yun—2) = Z/2" 2@L/2" ' ®L/2-A" 1 &Z/2-4" @ Z/4-16" &
Z/8 1671 generated by Z4n—9 — (—2)”5471_2 — (—8)n§4n_2 — (—8)”1:64n_2 — (2 +
(=2)")tan—2, Uan—2 + (—8)"Wan—2, tan—2 +4"Wan—2, Tan—2, 2Yan—2 and 2Wip—2

respectively.

H?(R) = (Fa[b,d))V (v), where v = s

b3d? -

So far, we reach to the E?-page shown as below.

degree(t)
: : : : 19
0 24 2] ® [2] ® [16] @ [32] @ [512] @ [1024] Z-p 18
0 0 0 0 17
0 23 2] © [2] © [16] @ [16] @ [256] @ [512] Z-p 16
0 0 0 0 15
0 23 [2] @ [8] @ [16] @ [128] b [256] Z-p 14
0 0 0 0 13
0 22 [2] @ [8] @ [8] @ [64] @ [128] Z-p 12
0 0 0 0 11
0 22 [4] @ [8] @ [32] & [64] Z-p 10
0 0 0 0 9
0 2 [4] @ [4] @ [16] @ [32] Z-p 8
0 0 0 0 7
0 | 2 [4] @ [8] @ [16] Z p 6
0 0 0 0 5
0 0 2] ® [4] @ [8] Z-p 4
0 0 0 0 3
0 0 2] ® [2] Z-p 2
0 0 0 0 1
0 0 0 Z-p 0
0 0 0 0 -1
0 0 0 0 -2
0 0 0 0 -3
0 0 0 0 -4
H{**(R) H}(R) H}(R) HY(R)
where [n] := cyclic group of order n, 2":= elementary abelian group of rank r.

Figure 3.7: The E?-page of Greenlees spectral sequence for ku,(BSD1g).
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Note that ku.(BG) = ku.(pt) ® ke, (BG). In our case, ku.(pt) = Z[v] = H(R). This
means that there is no non-zero differential detecting on E?-page and hence E? = E>.
Since this spectral sequence converges to ku.(BSD1g), there is a filtration

ku,(BSDys) = F* D F! D F2 D0,

which FO/F}! = E§S, Fl/F? =~ E> 41 and F? = E%5 4o It is clear that there is
no additive extension problem and thus ku.(BSD1g) can be read from E* = E?-page

and the main required result follows as;

Theorem 3.5.1. As a module over ku*(BSDig), kus(BSDig) = ktepen(BSD1g) ®
kuoqq(BSD1g) such that

(1) Kktepen(BSD16) = Zv] < p > @XoH?(R) = Z[v] < p > &XoFa[b,d))Y (v), where
p=16-1—6va — 8vb + v2ab — 120%d + 6v3ad + 2v*d? and v =
. ~ 0, ifi=0,1;
Additively, kug;(BSDig) = { (2/2)L(%)’ ifi>1. )
where L(r):= least integer which is greater than or equal to r.

(2) kuoda(BSD16) = @51 ku2i—1(BSD16) = @1 Hi (R)2i

b3d?

More precisely,

-kui1(BSD1g) = [2] ® [2] generated by x1,y1, with z1 =t1 = w1 =u; +x1 +y; =0.
-kug(BSDis) = [2] ® [4] @ [8] generated by x2,y2,wa resp., with zo = dws, ty =
2(wg +y2) and uz + 4ws = 0.

-kus(BSD1g) = [4] @ [8] @ [16] generated by x3,ys,us resp., with wy = 8ugz, z3 =
2x3 + 4dys + 4us and t3 =0.

-ku7(BSD1g) = [4] @ [4] @ [16] @ [32] generated by wy, T4, ya, us resp., with z4+ 2wy +
8us =0 and t4 + 2x4 + 24 + 8ys + 8uyg = 0.

-kug(BSD1g) = [4]® 8] ®[32]® [64] generated by zs5, x5, Y5, us resp., with ws = 0 and
ts + das — 225 + 16y5 — 24us = 0.

-ku11(BSDig) = [2] @ [8] @ [8] @ [64] @ [128] generated by e, ts, 6, Yo, we TESP., With
26 + 4xg + 32yg + 2tg + 16wg = 0.

-ku13(BSD1g) = [2] @ [8] @ [16] & [128] @ [256] generated by wy, z7,x7,y7, ur, with
tr=0.
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In general,

kugn_n(BSDlﬁ)
generated by
k‘ugn_g(BSDm)
generated by
kugn—7(BSD16)
generated by
k"u,gn,g)(BSDle,)
generated by

where

T
n
21
ty
Uy
w1

Ty =
Ys
z5 =
t5
Us
ws =

such that N7 = tr + 437 + 227 + 64y7 — 32u7 and in general,

Yan—5
Z4n—5
7547175

Won—-5 =

Tan—4
Yan—a
Z4n—4
lan—4
Udn—4
Win—4

1

2" Fle 2" e 24" o 4" e 8- 16" @ [16™71],

tan—5, Win—5, Z4n—5, Tdn—5, Yan—5, Udn—5 T€SP., N > 3.

I

2"l 2" e 4 e 4 e 16" e 21677,

tan—4, Z4n—4, Wan—4, Tdn—4, Yan—4, Udn—4 T€SP., 1 > 2.

I

e e e -4 e 216" e 416",

t4n—3, Win—3, 24n—3, Tdn—3, Yan—3, Udn—3 T€SP., N > 2.

12

2 e e2- 4" e 24" a4 16" e [8-16"71],

Z4n—2, Udn—2, tan—2, Tan—2, Yan—2, Wan—2 T€SP., N > 2,

= T1+2z1, w9

= 2y, Yo
= Zgl, Z9
= f, to
= Uy, U2

= w1+ 21, ws

Ts + z5 + 8us,
2ys,

Z5 + ws + 24us,

t57
Uus,

2(i5 + 161s),

= @Iy, x3 = I3+13,

= 22, y3 = 23,

= 2, z3 = Z3+1s,

= o, ts = 2ts,

= uz, uz = us,

= 2w, w3z = ws,
Te = fﬁ, T
Y6 = 2Ys, Y7
26 = 26, 27
tg = % + 16@6, tr
ug = ug + 64wg, U7
We = 2’@6, wr

5471,—5 + [5471—5 + 4n_1ﬂ4n—5]’
2g4n—57
[z4~n—5 + 4n_1a4n—5] + %t4n—57

2[t4n75 + (72)71—154”75 -

17/477,—57
~ 1~
Whn—5 + (_2)n Z4n—>5,

54n747
2Yan—a,

n—17y

Zap—4 — 2Wap—y — 4(—8)" Uan—4,
tan—a + (=2)""2(2Z4p—a + Zan—a) — 2(=8)"  (Jan—4 + Udn—_4),

2U4n—4,

~ 1~
Wan—4 + 2 - 4" Ugp_4,

T4
Ya
24
t4
Uy
Wy

- «71747

= 2ya,

= Z,

— t4a

= 2y,

= w4 — 8y,

T7 + z7 + 167,
2y7,

Z7 + 16u7 + 77,
217,

ur,

wy + 4z7,

(—=2)" 2 Z4n—5 + (—8)" Wup—5 + 4(—8)" 2tspn—s5

B
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Tan-3 = Tan—3+ [Zan—3+ 24" My 3],
Yan—3 = 2Yan—3,
Zan—3 = [Zan—3+ 2 4" Mgy_3] + [Wan—3 — (—2)" Zan_3),
tan-z = tan—g+ (—2)"Tan—3 — 4(—8)" Wun—3 — (—2)" 1Z4n_5 — 2(—8)" M3,
Usp—-3 = Udn-3,
Win—3 = 2[Wap—3— (—2)" 1 Z4p_3],
Ton—-2 = 547172
Yin—2 = 2Yin—2 N
Zan—2 = Zan—2 — (=2)"Tan—2 — (=8)"Yan—2 = (=8)"Wan—2 — (2 + (=2)")lan—2
tan—2 = tap—2 +4 W4y 2
Usp—2 = Udn—2 + (—8)"Wap—2
Wip—2 = 2Win_2,

For the action, b,d act freely on E{LZi(BSDlﬁ) whereas a acts as zero and the ku*(BS D)
action on ku,qq(BSD1g) can be read from Table 2.4 and Table 2.5 with the definition
above.

Proof. This is the immediate result from E°°-page and lemma 3.4.3. O

Next we investigate some relations of kuy(BSDi6) and kus(BG) for G = Dg, Qs
and Cg in the section below.

§3.6 Relations with its maximal subgroups

In this section we aim to explicit the natural corestriction maps from ku.(BSDig) to
ku.(BG) for G = Dg, Qg and Cy.

3.6.1 ]{,‘u*(BSle;) AND k‘u*(BDg)

We first recollect the results of ku.(BDg) from theorem 3.5.1 in [14] as;

Proposition 3.6.1. ([14]) As an R' := ku*(BDs) module, ku.(BDs) = kuodaq(BDs)®
kteyen(BDs) where kueyen(BDg) = Z[v] < p' > @®kueyen(BDs) with p = 8 — dva —
20%d — v3bd and

1 Ktiyen(BDg) = S2H2(R') = S2PV | where P = Fy[a,b,d)/(ab+b?). Additively,
ktieven(BDs) = (Z,/2)".

2 kuoqq(BDg) = E_IH} (R'), with additive generators a;, b;, ¢; and d; in kug;—1(BDg)
fori>0.
2.1 kuy(BDg) = (Z/2)? =< a1 > © < by >, with di = a; and c; = 0.
2.2 kuz(BDg) = (Z/4)? =< az > ® < by > ® < da > and cy = 2ay + 2ds.
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2.8 kus(BDg) = (Z/8)® =< a3 > ® < by > @ < d3 > and c3 = dag + 4ds.
2.4 For i > 4, kug; 1(BDg) = (Z/2)3 @ Ay 1 =< a; > O < b; > D < d; >
®Agi_1, where
o Ay 1=7)2""1 =< cop + 2™(agn + dan) >,
o Agypi1 = Z/Qn_l =< Cop+1 t+ 2”+1(a2n+1 + d2n+1) >.

The R'-module structure is given by

v a b d
a; 20441 a1 bi—1—2¢;i1 0
bi | 2(biy1 — €i41Ci41) | bic1 — 2¢i—1 | bi—1 + 2€¢i—1 | 2¢i-2
Ci 2¢i41 0 (1 + Gi)ci—l Ci—2
d; 2d;y1 — €;Cit1 0 Ci—1 di—2

where €2; =0 and €341 = 1.

We can also explicit the generator name for E{Leven(BDg) =Y2H}(R') =x?PV
by doing calculation on local cohomology of TU = Fsla,b,d]/(ab + b?) < ad > at
I =(a,b,d) =+/(a,d). Indeed, H{(TU) =0 if i # 2 and
11, 7b 7
H}(TU) =TFq=, =] < —, —

(1Y) 2[a’d]< ad’ad
where 7/ = ad. After determining differentials 4 : [H}(QU)]. — [H?(TU)]., we get

that
11 ol T

o d < e e
Also, the explicit name for HLeven(BSDlﬁ) ~ ZQHIQ(kU*(BSDlﬁ)) is given by

H?(ku*(BDg)) = Fy > . (3.4)

11 T

b g] < B >, (3.5)

H?(ku*(BSD1g)) = s

where 7 = b%d — abd.

The rest of this subsection is devoted to prove the following property.

Proposition 3.6.2. The natural corestriction map from ku,(BSD1g) to ku.(BDg) is
as follows;

1 kteyen(BSD1g) is embedded in kueyen(BDg), explicitly,

,7_/

/
pr= 20 and Ea = i

2 kuogd(BSD1g) — kueqa(BDg) is given by

r1+—c, Yy1— a1, 21+—2c, t1—0, wu+—d —c, w—c,
22— 0, yo2r>ag, 22+ 2c2, larcy uz— 0, wy > da,
LU3'—>O, Y3 — a3z, 23+ C3, t3'—>0, U3'—>d3—03, w3|—>0,
z4— 0, ygr—aq, 24+ 2c4, tg— 0, ug+dy, Wy — cq — 4dy,
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x5 — 8ds — Tcs, xg +— 0, x7 +— 16d7 — 15¢7,
Y5 — as, Y6 — ag, Yyr — ary,
z5 — 24ds — 23cs5, zg — 2cg, z7 — 19¢7 — 16d7 + 32a7,
ts — 0, tg — cg + 8dg, ty — 68cy + 64a7 — 64d~,
us — ds — ¢, ug — 32dg, uy — dr — ¢,
Wy — 32d5 — 3205, We — d6, wy — 467.

In general,

for n >4,

Tan-s5 — (1 —4"Vegy5+ 4" dyy s,

Yan—-5 >  Q4n-5,

Rin—5 [1 - (_2)n—2 — 4l — 4(_8)71—2]04”75 + [471—1 + 4(_8)n_2]d4n75
_4(_8)11—2@4”_57

tan—s = [(=2)" 1+ (=8)" Yean—s5 — (—8)" dun—s5 + (—8)" Lagy_s,
Ugn—5 > dapn_5 — Can_s,
Win-s5 — (=2)"leanos,
forn >3,
Tagn—g +— 0,
Yan—4 > Q4n—4,
Zan—a  +—  —2(—8)"ldy,_4,
tan—a = —(=2)"Legpg — (=8)" rdyp—g — (—8)" Lagy_4,
Udp—4 >  dan—s,
Wan—5 +— Can—a + 4" Ly,
forn >3,
Tap—g +— (1=2-4"Veay g+ 24" Tdyy, 3,
Yan—-3 > Q4p-3,
Zan—g 1= (=2)" 1 =2-4" ey 542 4" My, 3,
tan—s  — —2(=8)"lasn-3 —2(—8)" dan—3 + [2(—=8)""" — (=2)" ean-3,
Ugn—3 > d4p—3 — Can—3,
Win-3 +— (=2)"can-3,
forn >3,
Tyn—2 +— 0,
Yan—2 F—  Q4n-2,
Zan—o  — —(=2)"can—2 +4(—8)"Lasy—o + 4(—8)"'dun_2,
tan—2 > Can—o+ 24" 1dyy, o,
Ugn—2 +—  —4(—8)"Ldyn_a,
Win—2 >  dap—2.

Proof. Since both ku,(BSD1g) and ku.(BDg) are isomorphic to their E*°-page and
we choose their elements to be the elements in E°°-page, it is enough to consider
their relations at E*-stage, i.e. consider H}(ku*(BSDsg)) and H}(ku*(BDsg)) for
1 =0,1,2. Thus this proposition is an immediate result from Theorem 2.7.2 in the last
chapter. Precisely, to prove p — 2p’, we use the fact that a +— 0,b+— a,d — d and the
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relation v?d? = 4d — vbd in ku*(BDg), i.e.
p = 16-1—6va — 8vb+ v2ab — 12v%d + 6v3ad + 2v*d>
— 16 — 8va — 120%d 4 2v"d?
= 16 — Sva — 12v%d + 2(4v*d — v>bd)
= 2[8 — 4wva — 2v%d — v3bd] = 20
Also,

T ad ad 7!

B2 B2 2 22

To prove the corestrictions in odd degree, we use the set of relations in QUp,
(lemma 3.5.2, [14]) which is {ad = 0,va? = 2a,vb? = 2b,vbd = b*>—ab,v?d? = 4d—vbd},
and definition of element’s in ku,qq(BDg) ([14], page 73-74) which is;

2 2b2 vbd _ 2
agn = yanH b2n = gl Con = Tl d2n = yntt (3 6)
2a3 263 2bd vd? :
aan—1 = yna:‘,-l b2n—1 = ynTT Con—-1 = yntT d2n—1 = gt

where p = d? + b* — 2vbd? — d? + a* — 2vad® = (d + a?)? = y? (because 2vad® = 0).

Indeed, we have (see section 2.3) the restriction of JUs, JUs, JUy and JUs of
QUsp,, to QUpy as;

To9 — wvad=0 T3 +— ad=0
Uy +— a?—vad=0 U3 +— a®—2ad=a’
Zo o+ vad+ ¥d— vt =20bd  Z3 —  ad— jud® + 303d — 20Pd* = 2bd
ta  — wvad+4d — v?d® = vbd Tty +— —2ad — %UCP +203d3 — %v5d4 =0
Uy — vad =0 g+ vd® —im(T3) — im(z3) = vd® — 2bd
Wy +— wvad+d=d w3 — ad=0

Ts +— ad’>=0
Z, +— wvad’=0 s +— a®—4dad®=dd
7y +— a*—2vad® =a* Zs +—  —bad? — Jud® + 3v3d! — 2vPdP
zZy o+ vad®+ Pd? — $vtd* = 20bd? = 2bd>
ty — wvad®2=0 Tty — —2ad®>=0
- d? s — 2ad® — fodd — v3dt + LoPdP
Wy +— §d2 +v3d3 — %v4d4 = vbd? = vd?® — 2bd?

W5 +— 2ad®+ %vd?’ — 2v3d* 4+ %v5d5 =0
Combining this facts with cg_. = % for 4 > 1 and dy_5 = % for ¢ > 2, where
e=2,3,4 and «a € {x,y,z,t,u,w}, we get that;

Tgi2 +— 0 Tgi-3 — 0

Ysi—2 ;TQ Yai-3 ;23

Zyi—2 2;2‘1 Z4i-3 Zg(zi

tai—o ng ’ tyiey — 0

Ugi—z +— 0 Ugi—3 Z(f zgd
Waimn — % Wai—3 +— 0O
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Tgi—4 +— O Tgis +— O
Ysi—a ;241 = y2622—1 Ysis ;251 = y2%3—1
244 U;gf = ygzbiil Zai-5 252%2 = yg?fil
taica = 0 ’ tyies +— 0
Ugi—g 5221 = y27ld71 Ugi_y Z%f - 2;72(112 = yg%d_zl - yg?i
Wyi—g + U;ﬁlf = ygf’iil wai—5 +— 0.
Hence by (3.6) and definition in Theorem 3.5.1, we complete the proof. O

3.6.2 ku*(BSDlg) AND ku*(BQg)

We proceed this subsection as in the last subsection by firstly recalling ku.(BQg) from
[14], page 69-70 as;

Proposition 3.6.3. (¢f.[14]) As a module over R" := ku*(BQs),
Fuy (BQs) = Zlo] - " & Kutoaa(BQs),

where p’ = vig? — 6v3q + 8 and ku,qa(BQs) = S1HH(R"), HH(R") = cok(R" —
R”[%]), which can be shown explicitly as;

o kui(BQg) =Z/2@ZL[2=<e1>® < fi1 >, with g1 = h1 =0.
o kus(BQs) =Z/2BZ/2D7)8 =<e3>D < fo>D < gg >, with hg =0.
o kus(BQg) =Z/ABL/ABL/8=<e3>D < f3 > < g3 >, with hg =0.

In general for k > 2,

o kugy_1(BQg) =Z/2"0Z/2" D7 /2P @ Z)2F 1 =< eg, > B < forp > D < gop >
® < hoj + (281 — 4) gy, >,

o kuy1(BQs) =Z/2" 1 @ Z/2M @ 2/2%H @ 7/2F 1 =< egpi1 > D < fory1 >
B < gopr1 > B < hopr + (28 — 4)gop1 >,

where , , )
€k = qlg+17 for = qllc)+17 9ok = ngua ha = ;)kgu
_ a _ b _ _vg _ v
€2k+1 = L f2k+1 = 9o2k+1 = pEsE h2k+l = gL
The ku*(BQsg) action is given by
v a b q
€2; 2e9i 41 2e; 1 Koi | €2i—2
€2i+1 €2i+2 €24 K2i+1 €2i—1
fai 2f2i41 K2i | 2f2i-1 | fai2
Joit1 Joiv2 K2i+1 foi | faica
9i git1 €i—1 Ji-1 | gi—2
hao; hait1 2e9;-1 | 2f2i-1 | h2i2
92i+1 | 6hojio —8goiio | 2ey; 2fo; | h2i1
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where Ko; = 2e2;—1 + 2fai—1 — 4g2i—1 + h2i—1 and K241 = e2; + fai — 4g2i + hoi.

Note in this proposition that we have used relation

v2(n+1)qn+2 — (2 4™ 2”)’02(]2 + (271-1—2 _ 4n+1)q

obtained by relation v*¢® = 6v2¢?> — 8¢ and recurrence relation method.

Some relations between ku.(BSD1g) and ku.(BQg) are;

103

Proposition 3.6.4. The natural corestriction map from ku,(BSDig) to ku.(BQg) is

as follows;

1 p'_)2p//

2 kuodd(BSD1g) — kuoaa(BQs) is given by

1‘1'—>—f1, y1|—>0, Zli—>0, t1'—>0, up—>0, ’w1'—>0,
$2Hf27

xr3 — f37
ys3 — 0,

y2— 0, 220, tor— —fo+4g2, uz— 0, wzr 2g9,

T4 fa, x5 — — f5 + Ths — 20gs,
ys — 0, ys — 0,

23— —2f3 + 493, 24— —2f1+8gs —2hy, 25— —2f5+ 23hs — 68¢s5,

ts — 0,

uz — f3 — 393, uq — 2ga,
w3 — Oa

In general,

forn >4,

T4n—5
Yan—5
Z4n—5

t4n—5

Ugn—5
W4n—5

—

—

—

11

ty — 0, ts — 0,
us +— f5 — 395 + hs,
wy — —fi — (ha +4g4), ws — 32(f5 — 3g5 + hs),

6 — f6, x7 +— 15f7 — 4497 + 15h~,
ye — 0, y7 +— 0,

26 — —2f¢ + 8gs — 2hg, 27— —18f7 + 60g7 — 19h7,
tg — —f6 + 20g¢ — hg, tr — —64f7 + 208¢g7 — 68h7,
ug — 6496, ur — fr— 397+ hr,

wg — 24, wy +— —8f7 + 1697 — 4h7.

|-—'O/\

4n—1 - 1)f4n75 + (4 -3 4n_1)g4n75 + (471—1 - 1)h4n75a

L(—8)"2 4 471 — (<2 = 2y + [~12(—8)" 2 — 5 47
(=2)" + 4]gan—s + [4(=8)" 2 + 4771 + (=2)""? — 1]han_s5,
—(=8)" " fun— s+[3( 8)" 1 — (=2)""gan—s

—[(=2)"" 4+ (=8)" ] han—s,

fan—5 — 3gan—s5 + han—s,

(_

2)" fan—s + (—2)" " gan_5 — (—2)" T hyp_s,
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forn >3,

Tan—4
Yan—a
Z4n—4
lan—a
U4n—4

W4n—5

1T T111

for n >3,

T4n—3
Yan—3
Z4n—3

tan—3

Ugn—3

W4n—3

—
—
—

11

for n >3,

T4n—2
Yan—2
Z4n—2
tan—2

U4n—2

W4n—2

111111

f4n747
0

A8 g,

[8(=2)""% = 2(=8)" gan—a + (=2)" ' han_4,
294n—4,

~fan—a+(2- 4"+ D gun—g — han_a,

(24" — D) fap3+(4—6-4"Ygy_s+ (2-4"1 — 1) hay_s3,

0,
(241 — (=2)" = 2) fap—g + [—6 - 471 — (=2)" + 4] g4y, 3
+(2 . 4n—l + (—2)"'_1 — 1)h4n_3,

—2(=8)"" fun—3 4+ [6(=8)""" = (=2)""]gan—3

+[=2(=8)""1 + (=2)" Ay s,

fan—-3 — 39an—3 + han_3,

(=2)" fapg 4+ (=2)" 2 gap—5 — (—2)"hap—3,

fan—2,

07

[—4(=8)" — (=2)""?]gan—2 + (—2)" hap—2,
— fan—2 + (4 +4™)gan—2 — han—2,
(—8)”9471—27

2g4n72-
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Proof. As in the proof of Proposition 3.6.2, we consider relations on local cohomology.
For p — 2p”, we use the fact that a — b,b — b,d — ¢ and the set of relations in
ku*(BQg) (Theorem 2.4.6, [14]) which is {v%¢® = 6v%¢® — 8¢, va® = 2a,vb? = 2b,vaq =
a?,vbqg = b2, ab = vaq + vbq + v2¢® — 4q}, i.e.

p

= 16-1— 6va — 8vb + vab — 120%d + 6v3ad + 2v*d?

— 16 — 6vb — 8ub + v2b? — 120°%¢ + 6v3bg + 20>
= 16 — 14vb + (20b) — 12v%q + 6(2vd) + 2v*¢?
= 2[8 —6viq —vi¢?] = 20",

To prove the corestrictions in odd degree, we again use the set of relations in ku*(BQs)
and definition of element’s in ku,qqi(BQs). Indeed, we have (see section 2.3) the re-
striction of JUs, JUs, JUs and JUs of QUsp,, to ku*(BQsg) as;

x2
Yo
Z2

to

U2
wo

—

—

—

11

vbg = b? _
bq
b2 —wvbg =0 rso
Cubg 18 Ly s B =200 =0
3 3 Z3 — —2bg — 3vg® + 303> — 2v0¢*

—vbg + 4q — v2¢? -

|

—26% 4+ 8¢ — 202> 7°
8¢~ 2v7g = —2bq + 4vg® — v3¢3

f%v(f -+ 21)3q3 — %v5q4 =
v3¢3 — 3vg? + bg
0

—b% + 4q — v%¢?

&
111
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T4 — vbg® =b%q Ts +— bg?

Yy > bt —2ubg? = Us > b —4bg®> =0

zZy — —20bg? + Lg? — Lvig Zs — —2b¢ — Ju¢ + 03¢t — 20°¢°
= —2ubq? + 8¢* — 2v%¢? = —2b¢® + 4vg® — v3¢?

tas — 0 "ty — 0

Us +— ¢° Us +— bg? — %vq?’ — 3¢t + %v5q5

wy +— %qz + vzqg - %v4q4 — qu2 = qu — 3vq3 + v3q4
= 4q¢®> — v2¢% — b?q Wy +— %vq?’ — 2v3q4 + %v5q5 =0.

Also, we have p = d? + b* — 20bd?> — ¢* + bf — 2ubg®> = ¢*. Combining these
facts with au;_. = % for i« > 1 and ay;_5 = ‘;—? for ¢« > 2, where ¢ = 2,3,4 and
a € {x,y,z,t,u,w}, we get that;

~ b2 ~ b
T4i—2 & T45-3 +— i1
Ysi—2 +— 0O Ysi-z +— 0
Zai 24 184 —2UL Zui p R U
24i—-2 ‘= el + e zqzi 24i—-3 ‘— = i1 + preTs T
~ 2 2 9 g
tyio +— — 4L - taiy  — 0
N q q q - b vgq v3q?
Ugi—o +— 0 Ugi—3 +— &1 3q21*1 %1
Wiz Wyi—3 — 0
~ b2 ~ b
T4i—4 i1 LT4i—5 g2
Ysi—a +— 0 Ysi—s +— 0
= b2 q vig? I~ b vq v3¢g?
341'—4 = _2(12@'71 + 8(121'71 - 2q2i71 7 f4z'—5 = _2q2i72 + 4q2i72 T2
tgi—a — O tgis +— 0
oy 9 0] b v, 4 5
Udi—4 7 31 ) Udi—5 " mimm 3q2i72 %2
~ b2 q vg o
Wyi—g = —meT TAmeT — @i wyi—5 +— 0.

Hence by definition in Proposition 3.6.3 and definition in Theorem 3.5.1, we complete
the proof. 0

3.6.3 kuy(BSD1) AND ku.(BCy)

To see the relation between ku.(BSDig) and ku,(BCjg) as in the previous subsection,
we need to explicit ku.(BCg). To do that, it is simple to use the same method as
ku.(BSDqg), i.e. by using Greenlees spectral sequence. It is enough to calculate kernel

and cokernel of the map R" := ku*(BCs) — R’”[%], where y = =2 := ¢; and

o® = 1. However, to be simple in comparing with ku.,(BSDjs), we intend to use
y' = ¢y + c3 — ¢4, where '
1—-ao

C; 1=

v
for ¢ > 1 with cgrre = ¢ (since cg = 0). This is possible (i.e. multiplying by 7/
gives an isomorphism R”, = R",._o for all k > 1) by Lemma 3.4.1 in [14] and
changing basis.
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The kernel of the map is Z[v] < p” > which is contributed to Kueyen(BCs),
where p"" =1+ a+a?+ ...+ a’. For ku,qq(BCs), we need to calculate the quotient
groups

[,y (R = R/ ()" RS,
for all n > 0, where R", = Z) < c¢1,c9,...,c7 >, R) =75 < a,a?,...,a” > ®Z and
b =o"Ry'. It is not hard to see that the basis of (y/)"T'Rj! is reduced to
{(y/)n+1,una7 (y/)n+1,unoé2’ s (y/)n+1,una7}’

and thus we do need to explicit (y')*v*~1ad in term of ¢;’s in ku?(BCs).

By direct calculation, we have some useful properties for our calculation which

are; '
CZ'CVJ = Ci_;,_j — Cj
VCiCj = Ci+Cj — Ciyj
v[eges — 0405] = c1tez3—cyg=1 (3.7)
yol = —¢jt et s =G
vy'cy = ¢+ c3—ca+ Ch— Chy1 — Chp3 + Chpa.

By using equation 4 and 5 in (3.7), we also have;
(y’)2vaj = —2Cj + 20j+1 — Cj+2 + 26j+3 — 4Cj+4 + 20j+5 — Cj+6 + 20j+7
(y/)?’v?’aj = —1OC]' + 7Cj+1 — 60j+2 + 7Cj+3 — 1OCj+4 + 9Cj_|_5 — 60j+6 + 96j+7.

Repeating this process, observing the pattern and using inductive proof, we get that;

() lad = —(2-16F 1 45— (=2)F e, 4+ 2.16F ey
—(2 S16F-1 — 4k_1)6j+2 + 2. 16k_10j+3 (3 8)
—(2-16F 7L 4kl (—2)k Doy + 20168 e '
—(2- 16871 — 4k, 16 + 2168 1¢jyr

(y) kel = —(8-16F 1 +2-45 e, 4+ (8-16F1 — (=2)F )y
—(8-16Ft —2. 4D,y + (8-16F71 — (=2)F )44
—(8-16F 1424k Dy + (816514 (=2)F)ejis
—(8-16" —2- 4" N)ej6 + (8-16F1 4 (=2)" N)ejir

(3.9)

The results of ku,(BCy) follow as;

Proposition 3.6.5. With the same symbols as above, ku,(BCs) = kueyen(BCs) @
kuoga(BCs), where kueyen(BCgs) = Z[v] < p" > and, for k > 1, kuegq(BCs) =
kugp—3(BCs) @ kugr—1(BCy) such that

o kug_3(BCs)=7Z/2* oz tan/ b e/ ton/2 e n/4ab 922 4,
generated by

L. crok—1+ ((=2)" + Desop—1 — crop—1 + (4F — 1)cs op-1,

2. coop—1+ (2481 — (=2)M)cp o1 — ((=2)F + Degan—1 + 3(—2) ez op1
=3(=2)*terop—1 — (4% + (—2)%)c5 261,

3. caok-1+Cook-1— Cook—1— (2+5(=2)FNezop_1 +5(—2)Fcr k1
+(4% + (=2)%)e5 261,

4. czop-1 — cron—1 + (—2)%e5 011,
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k
5. crak—1 — (—2)%cs5 00—1,
6. c59k-1+ Co2k—1

7. C52k-1,

respectively and

o kug_1(BCs)=7Z/2* oz Lozt 0 2/4 9 2)2 -4 @ 2)2 - 4F,

k+1 k+1

generated by cq o — 3.2k — C5.2k +(—2)" " ok +C7.2K, C2.2k—Ca2k —Co 26+ (—2)
€32k, Ca2k, C52k, Co2k and cyop respectively, where

C7 2k,

Ci — Cq
Ci2k—1 = (52 and ¢; o = )P
fori=1,2,...,7.

Proof. Tt remains to do row and column operations on matrix obtained by (3.9) and

(3.8) of both odd case and even case. It is not hard to see that [H(ly,)(R’”)]o =0.

For [H(ly,)(R”’)]4k = R",/(y ) LR | we set r; := (y/)*ad, for j =1,2,...,7,
and we do row operations by:

Lom o [ = =] = =] — [ = 2] — =
A 28] — [ = k],

2. mp = [rg =mp —we] s [y =y o 2rg 4 75] s Iy = 715 + (2(=2)F = Drg’] —
[y =5+ (=2 +2(=2)")r{] — [r3 =3 + 2(=2)* — D],

3. rs — lrh=rs il — [ =vh i) — [ = v —r¥] — [rh = v 7] —

[r5 = 7“§‘ + 73],

4oy — [y =ra—rel — [r] = v} — (=2Frg] — [ = 1] — 1)) — [Ti‘ =i +

2(=2)%rg] — [rd =i —2(=2)"r7] — [r§ =] — 2(=2)"r5] — [rf = 1§ + 3],

515 — [r5 =15 — 7] — [rf =15 — (=] — [rg' =g +27] — [r§ =

= 228k — ] — [rS = rd (4 — 28] — S = 134 (241
2(=8))r{"] — [rg =r8 — (2+ 10 - 4F1)rf],

6. o — [rh = o + 1] — [l = 1 — (<25 'r + (<2 r] — [l = rf — 1] —
[ = o+ 48] — g = v — 2 45 g] — g = v+ (200 + (-8)br),

Trr— [ = 1] — [ = v+ A(=8)F g — A(-B) N — (~2)Frg) — [ =
M) — [ = 2 4 g [ = (8],
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We now get;
c1 (&) C3 Cq Cy Cg C7
ri| 0 0 0 0 —4F 0 0 |
r3| 0 0 0 0 0 —2-4F 0 y
73| 0 0 0 —(—2)* 0 0 0 |
7 0 0 —(—2)* 0 0 0 0 y
ri| 0 0 0 0 0 0 2-4F |
il (=20 (=R 0 (=2 a2
7 0 —(=2)k1 0 (—2)k—1 0 (—2)k1 —4k |.

After doing some column operations, the results for kuyx_1(BCs) follow.

For [H(ly/)(R///)]4k_2 =R",/(y )R _,, weset rj = (y/)*ad, for j=1,2,..,7,
and we do row operations by:

Lor—[r = = 5] — [7"/1;: 7”’16+ 2rg) = [75°'1" :77“’1/7L (2F - 1)7"é]l—> 6[7"11 =
n " * —
i +2(=2)"r] — [y =r{ +2r3] — [rY =1y = 2rj] — [r] = TF3(9)F ril,

2. 1y — [ry =12 —716] — [ry =15 +2rg] — [y =15+ (2(=2)"1 - 4] —

[ry =r) + (1 + (=2)F =241 4 4(=8)F )] — [P =1+ (1 + (—2)F +2-
0] — [r§ =3 = (2] — [] = 8+ (-2 + 4(=8)"")rf] —
[ = r]+12(=8)*"1ri],

3. rg — [ry=r3—r7] — [rf =15+ 27“‘71] — [y =1rf — (—2)’“_17“’1” — rg} — [7‘§ =
rg' + (48 + Drg] — [rg =g + 48],

4. ry — [ry=ry—rg] — [r] =71} +2rf] — [rf =] — 3],

5. 15— [r5 =75 — 7] — [rg =5+ (2" ] — [ =15 + 73],

6. 16— [r§ =r6+r7] — g =1 — (=2)" i) — [rg’ =g — (=2)" "1}

g — (Z2)krs] — [r = rd — 3],

7. — rh=rr—2- 4k_1r’6] — [r] =1} — 2(—8)k_lré +2- 4k_lrg] — [r] =
=4 I 2(—8) 1 () — [rd = o — (245 2(8) ) —
[r2 = rd +4k=lpr 4 (=2)F1pd] — P8 = 72 4 2. 408 4 4kl — [ =
r? -2 4’“*17@ + 4’“*1@].

We now get;
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1 c2 C3 Cq
¥ 0 0 0 0
75| 0 0 0 0
] 0 0 0 0
T‘Z| 2. 4k—1 _(_2)k’—1 (_Q)k: 2. 4k—1 (_2)k:—1
ri| —(—2)k1 0 (—2)k=1 4 2. 4kl 0
ri] 2.4kl 2(-g)k-1 (—2)k-1 0 0
7| 0 0 —(—2)k1 0
Cs Ce (6rd
2 -4k 0 0 |
—4k —4k 0 |
4" 0 (—2)F |
—9. 4]{71 ( 2)k71 9. 4]4:71 |
(—2)k1 0 (=2)F 1 4241
6(_8)k—1 —9. 4k—1 (_Q)k:—l —9. 4k—1 0 |
2. 4kt 0 (—2)k-1 |.
After doing column operations by;
g = o+ (2(=2)F 1 —2.4k )y — 2.4k ¢y,
C’g = c2 + ¢y,
dho= (L4+2(=2)F Ve + [2(=2)F 1 + 241 — 4(=8)F ey
ez 4[24+ 2(=2)F 1 — 2.4k 4(—8)F ¢y,
Cﬁl = (4,
b = c5—co+ (—=2)kcr + (81681 —4(=8)F 1 +2(=2)F 1 — 1)en
(14 (=2)F —4F)ep + (2-4F — (—2)F + 4(=8)F 1 +8-16F )¢y,
cg = c6+ L+ (=2)")ez + (=2)Fcy,
b= crte3+ (2= (=2)F)er + (2 —4F —4(=8)F ey
+(2 — 2F)(2(=2)F 71 — 2. 4k 1)y,
the results for kugx_3(BCs) follow. O

The corestriction of ku.(BSDig) to ku.(BCs) is not hard since we have that

and also by (3.7), we have that

e

1111

2c1 — co 4 2c3 — 4eyq + 2¢5 — co + 2¢7

Tc1 — 6¢cg + Teg — 10¢y + 9¢5 — 6¢9 + 97

32¢1 — 28co + 32¢3 — 34cy + 32¢5 — 28¢o + 32¢7
130c¢; — 120¢o 4+ 130c3 — 136¢4 + 126¢5 — 120co + 126¢7.

(3.10)

(3.11)



CHAPTER 3. COMPLEX CONNECTIVE K-HOMOLOGY FOR 5D 110

By, again, direct calculation, observing the pattern and inductive proof, we have;

ng(y/)gk _ [2 . 16k-1 + 4k—1 _ (_2)k—1]1 — 92.16F1

(6
+[2- 16571 — 4k 112 - 2-16F1a3 (3.12)
+[2-16F 4 abl 4 (—2)F et — 2.16F 7108 '
+[2- 16571 — 4k=1]05 — 2-16F1a7
and

V()2 = 81681 2. 4k 1)1 81681 — (=2)"1]a
+[8- 16" — 2. 4k1]q? [8- 16" — (—2)*1]a? (3.13)
_|_[8 .16F-1 1+ 9. 4k—1]a4 [8 16F—1 + (—Q)k_l]a5 .
+[8 i 16k—1 —9. 4k—1]a6 { 16k‘—1 + (—Q)k_l]a7

Thus, if we set a* := v"™(y')" = Zzzg a;y 10’ for any m > 0, then the action of o* on
c¢j’s is given by
7

7
* J—
cja’ = E ai+10j+i*(g aiy16;).
i1

i=0
The corestriction in even degree is given by p — 2p”. Indeed,
p = 16-1—6va— 8vb+ viab— 120vd + 6v3ad + 2v*d?
2 Y s Y 1Y \2
— 16 — 6vey — 1207(=) + 6v°ca (=) + 20 (=)
v v v

= 16—2v[ci+ca+e3+ca+oes+cs+cq], (by(3.11))
= 2l+a+a®+..+a7)=20".

And in odd degree the corestriction can be read by definition in Theorem 3.5.1 and
the restrictions below (which the proof is simple by using the explicit generators of
JUs, JUs, JUys, JUs and (3.10), (3.11), (3.12), (3.13) and o* action.)

Degree 8 — 5, 1 > 1.

Tai—2 +— 0
Yai—2 +— 0 .
s = [F3ve(%) + R(5) — $u(B)Y) (ko)
,U2i—1 N2i—1
= [“Bveay’ + ¥y — 502y )P (i)
- [2( C4+06)}W
= 4coai—2 — caai—2 + C64i—2)]
fumz = [F2vea() +4(%) — v2(4) (0)
i—1

2t

(/4
)z

2vcgy’ + 4y — v(y)? ](71)

(v
3c1 +co — 3c3 + 3¢c4 + Cﬁ)]

(
( /
)

[-

[-

- (y/)‘“ !

(=6 161 + (=2)" ey g0+ (616771 — 457 N)eg 4 o

(616" + (=2)" ez aio 4+ (61671 + 477+ 3(—2) N)egqi0

+(=6-16""1 — (=2)" N)esaio + (6161 — 416 459
+(—=6-16""1 — (=2)" V)7 4590
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[—vea( >15 )
[—vesy/) (i)
a g

(c1+c3—c5 —c7)] T
—(—2)cyqi-9

Ugi—2 +—

Wai—2 [(‘%) - ’004(%/)](”7
— ! ! &
= [y —vea/( )T

[¢5 + 7 — cal iy

= 47 lepui0 — 3(=2)" 4 eaio + 47 o002

Degree 8 —7, 1 > 1.

Tgi-3 +— 0
Yai—g +— 0O
Zics = [=3e( ’w% (L) +303(L)? — 2o5(L)Y (L)
= [-Bveay/ — §u(y)? + 30%(y')° §v3<y>41<i2}y§z)” )
= [-6c1 + 202 — 6c3 — 2¢q4 + 6¢5 + 2¢6 + 607]( i
= —6-(=2)"Yerai-3 + 3.4i-3 — c54i—3] + 247 easio3 — caai—3 + C6.4i—3]
T = [2e0(%) = Jo(5)? + 203 ()P — JoP (L)L)

[ ( v

U2i—2 IN21—2
= [2uay — %U(y’)2 +20%(y')3 — %vg(y')4](w,§+)_2)
[204]%

P hE) -

tgi-3 —  [v(¥ im(Tai—3) — im(Zai-3)

1\41
,021'—2 7
()2 () — im(Zais)

[201 — 9+ 2c3 —4cy + 2¢5 — cg + 267]@?% — im(54i_3)
( 8¢1,4i—3 — 3¢2.4i—3 + 8¢3.4i—3 — 2¢4.4i—3 — 4C5 4i—3 — 3C6 4i—3 — 4C7 4i—3,
ifi=1;
(28162 — 4" —11(=2)" ?)er a3 + (=28 - 162 — 471 — (=2)"?)cp 43
+(28- 1672 + 472 +6(—2)" ez aia + (—28-16"2 +3- 472 — (=2)" Nea i3
(281672 =472 +11(=2)"?)epai-3 + (=28 - 1672 = 3- 472 + (=2)"?)cp4i-3
[ +(28-16772 + 4172 — 6(—2)"Y)er g, ifi>2.

Wy5—-3

[~c < (ki)
[—vegy/] (%)
-

( )4i 2
(01 + 3 — 65 — o)l gy
—(=2)"" 1[01,47;—3 + €3.4i-3 — C5.4i—3 — C7,4i—3)



CHAPTER 3. COMPLEX CONNECTIVE K-HOMOLOGY FOR 5D

Degree 8 — 9, ¢ > 2.
Tgi—4 +— 0
Yai—a +— 0
— / 21 N\ 21
Zaima > [—3vey(L)? +136<‘%) % 4(%)4]( (y(}ﬂ)z )
21 2 I 29—2
= [3veyy +13Gy, l 2(y")?] (% (y§4yz —)
= [202 - 264 + QCG]W
24" ey 4ig — canima + coai-a]
~ / 24 (,,/\27
taica [—vm(%)z](v(;};z& )
_ / U2i72(y/)2i72
= [—U04y](w) )
= [Flat+e—o—oalgins
= —(=2)""Ye1,4i—a + C34i—4 — C5ai—4 — C7 4i—4]
Ugi—g [(%)2](1)2(;(%2121)
21—2(, /\21—2
= [y/](v (ylggiZS )
[c1 +c3 — 04](yl?ﬁ
Clai—4 + C34i—4 — Ca4i—g, ifi=1; '
(816" — (=2)"?)crgi—a + (=8 -16"> +2-4"%)co 454
= { (B 1672 —(=2) )eg g+ (=8 16772 — 247 )y y
(8162 + (=2)"*)cs54i-a + (=8 - 1672 +2- 4" 2)cg4i 4
( 6Z 2+( 2)Z 2)0742 4, 1fi22.
— / / ’ 21 21
Tua = v+ 35+ — St (TR

TY5—

C2 —

[
[—veay’ + ;‘y’ +o(y)? - %02(9/)3](1}2@W
[

— 1\21—2
(') )

204 + 66] (,y ?47,
477 ey giq — (A7 + (=2) Yegai—a + 47 eg i)

Degree 8 — 11, i > 2.

5

3741’—5

Z4i—

5

t4i—5

I 11

/ / 028 (y")20
o(5)° +30° () = 3 (]
2

in—Q(y/)Zi—Q

[~3cs — 3y + 3v(y')? — 3v (y/)g](w)

—Tcy + 06](1/?%

4 eggi5 — (471 +6(=2)""")eamis + 4" cois)

41

2 (UQi(yl)Q
-2

S

)

112
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Tis o [mea(B)2 - By — o)+ dod (L))
= [—e— 3y —v(y)? + SR )
= [- C2+C5—CG+C7](y/)*¢_4
(41672 =472 — (=2)"2)er g5 + (—4- 16772 =472 — (=2)"?)ca 455
B (4-16"2 44772 4+ (=2)"2)cz 45+ (—4- 162 =4 ey gy 5
- (4-16"2 =472 4 (=2)" s gi-5 + (=4 1672 =472 + (=2)"?)c6 455
(4-1672 + 472 — (=2)""2)c7 45
~ / / 29 (,,1\21
@iy = [2e(h > + 505 = 20%(5)" + 5P (4 ()
2 2

*

[
= [2¢ —|— —20(y")? + %U (y’)?’](v(y,ﬁ)
lc1 +c3 —c5 — 07]@/?%

= ( ) [61,41'75 + C3,4i—5 — C54i—5 — C7,4i75]

We finish this chapter here and next we will investigate real connective cohomol-
ogy of semidihedral group of order 16, ko*(BSD;jg), by using n—Bockstein spectral
sequence.



Chapter 4

Real connective K-cohomology

In this chapter, we will calculate ko*(BSDi6) as a ring by using 7n-Bockstein spectral
sequence (1-BSS, for short) with input ku*(BSD;g) and output ko*(BSDsg), i.e.

EF* = ku*(BG)[f] = ko*(BG),

where 77 has bidegree (1,1) and differential d, : E5* — EST"1 [13]. Since 7® =0
in ko*(pt), this spectral sequence collapses at FEj-page. Thus the main task is the
calculation of FEs-page, differential do and ds which can be done by the fact that all
entries above the 2-line are all zero at E4— page together with, again, the help of
representation theory (Atiyah-Segal Theorem for the real case).

§4.1 Bockstein spectral sequence for ko*(BG) and strategy

In theory (for the tools), the Bockstein spectral sequence that we use here originally
comes from the cofibre sequence

Yko ! ko —=

r

ku Y2ko ,

where ¢ is complexification and wvr is realification, see more details about how to
construct this tools in [13]. In practices (for the using tools), roughly speaking, to
calculate ko*(BG) for finite group G by n-BSS, we proceed by using the facts and
methods from [13];

1 For E;-page, we can fill ku*(BG) in the bottom row (i.e. the 0-line) degree by
degree and then copy them along the diagonal line via 7.

2 For Es-page, we need to determine differential d; (see details below) and put its
kernel on the 0-line and its homology on the 1-line and then copy the latter along
the diagonal line via 7.

3 7 is an infinite cycle and corresponds to n € ko~ }(BG).

4 Since 1 = 0 in ko*(pt), d, = 0 for k > 4 and hence Ey = F,.

114
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5 For do and dz, we use the fact that all entries above the 2-line are zero and
representation theory.

6 At E..—page, all entries in column 4 contribute to ko~*(BG).

For example, in the simple case,

By = ku*(pt)[7] = Z[v, 7] = ko™ (pt) = Z[n, o, B/ (20,77, nev, ® — 453),

where [ is the degree 8 Bott element, « is of degree 4, and 7 is the image of the Hopf
map in degree 1. Note that 7 —">0, a—">=92y2 and B —"= ¢y in ku*(pt) = Z[v]
(where ¢ is complexification, a ring map), see details in lemma 2.2.11 in [13].

The strategy for Es-page is firstly decomposing R := ku*(BG) as v-torsion part
(TU) and torsion free part (QU ), i.e. considering the short exact sequence

0 —TU — ku"(BG) — QU — 0

which we can view as a short exact sequence of chain complex and thus, there is an
induced long exact sequence

0 — ZTU — ZR — ZQU —°

5 (4.1)
HTU — HR — HQU —~ HTU — ...

So, instead of calculating the kernel and homology of d; on ku*(BG) directly, we will
do that on TU and QU part and after determining differentials §’s we will get ZR
and HR as we need. This is because we have a very useful tool from [13] which deal
with differentials in TU part and QU part as following.

Lemma 4.1.1. (¢f.[13]) Denote: T = complex conjugation, we have

1 di— 147, ifdy departs from QUyg42;
Y7\ 1—=7, ifdy departs from QUy,.

2 dy =Sq? on TU.

3 ker(l1+7: RU — RU) = (1 —7)RU, RU = Z{p;} where p; := simple repre-
sentation.

Proof. To clarify the d; differential of Bockstein spectral sequence on both parts,
QU — KU and TU — HF5, we go back to the origin of the cofibre sequence by
starting with (exact couple);

(%) sL11, g0 C(n) 52

w
53— 1, g2 $20(n)

where C(n) is a cone of Hopf map n : $% ~ S(C?) — CP! ~ S? with cofibre CP?
given by (w,z) — [w,z]. From this diagram, we smash () with KO, ko and HF,




CHAPTER 4. REAL CONNECTIVE K-COHOMOLOGY 116

and using the fact from [2] (Wood’s theorem, page 206) that KO A C(n) ~ KU and
koA C(n) ~ ku, [13] i.e.,
smash with KO;

(%) Ago KO: SKO—L-KO KU $2K0
I VY.
S3KO . S2KO—=32KU,

smash with ko;

(%) Ago ko: Sko —Lsko ku ¥2ko

\Nd’l
ko — 1+ ¥2ko Y2k

and smash with HFs5;

(%) Ago HFy: SHFy— HFy —HFy A C(n)——X2HF5ko

i Y
Y3 HFy—1 +

S2HFy——=HF, A $2C ().

Moreover, by the associativity of the smash product, note that
() Ago HFFg =~ () Ago ko Ao HF3.

That is smashing with HIFs factors through ko. This guarantees that differentials on
TU agree with differentials on HFFo. Now, we are ready to prove this lemma.

Proof of 1:
To do this, it is useful to consider diagram (from diagram smashed with KO);

Y2KU
T
KUZE o s2K0
di=1A dll
Y2KO0 S2KU

C

From this diagram, we see that d; = co R and hence dy : RU £ KU — YW KU 2
v~ !RU (whenever we are dealing with classifying space for a group G, BG) is given
by

di(z) = coR(x)
= c(rv )
= (1+7)(v'2)

= w1 -7)()
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since er = 1+ 7 and 7(v™!) = —v7!, by lemma 2.1.5 and lemma 2.2.10 in [13].
Similarly, we can show that dy : v*» RU — v*~1RU is given by

dl(vkx) = vk*1(1 + (—1)’“*17')(3;)

for all x € RU. Combining this facts with the isomorphism v*RU = RU for each
integer k, the results follow. (Note: degree of v is 2 i.e., QU C RU concentrate in
even degree.)

Proof of 2:
This follows because 7 is detected by Sq? in HF5. Precisely, by diagram smashed with
HIFy above, we get

HFy A C(n) —2%—~ HF, A X2C(n)
=| sw :l SW

S2F(C(n), HFy) Nl SR (C (), HEF,)

where SW is Spanier- Whitehead duality. After apply 7o = [S2, —] to this diagram, we
get

Hy(C(n), Fs) —2C— Ho(C(n), F2)
H(C(n),Fy) —2— H(C(n),F2).

Here Sq? # 0 because C(n) ~ CP? and H*(CP%;Fy) = Fa[z]/(23) s.t. codegree of x
is 2 and hence S¢?(z) = 2%. We complete the proof of 2.

Remark 4.1.2. For gn+k L>Sk — C(f"), if there exist cohomology operation
a: HF — H"WHL st a#0 on H*(C(f)), we say that o detects f.

Proof of 3:
We can show in general for any space X which is finite Q)-set where @ is a group of

order 2 that

zx - zx T zx

is exact. This is true because X can be viewed as the disjoint union of () fixed point
and non-fixed point one, i.e,

X = X9 QXY ={21,22, eey T, Y1, TYL, Y2, TY2, +vy Yy TYn }-

So, ker(1 4 7) is free over Z on generator y; — TY1,Y2 — TY2, ..., Yn — TYn which is
(1 — 7)ZX as required. In particular, X = {simple complex representations} then
ZX = RU and @ = Gp <7 > and hence ker(1+7: RU — RU)=(1—-7)RU. O

§4.2 [Ey-page for ko*(BSD;g)

The FE;-page can be filled in easily by copying both wv-torsion part and torsion free
part along the diagonal by 7. To get Fs-page of ku*(BSDig), we need to calculate
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the differential d; on both parts first and then calculate connecting homomorphism ¢
in (4.1).

4.2.1 BOCKSTEIN SPECTRAL SEQUENCE FOR v-TORSION PART OF ku*(BSD;)
Recall that for v-torsion part in ku*(BSDss),
TU = PC -7, where PC = F3[b,d] and 7 = b?d — abd.

Moreover, we note from theorem 2.6.1 that TU is embedded in H*(BSDi¢;F2) as
a— 2%, b—y?, d— P and 7 — y*P — 2%y?P = y*P.
Furthermore, d; = Sq?. The action on each element of TU is given by S¢*(a) =
S¢*(x%) = a* = 0, S¢*(b) = S¢*(y*) = y* = b* and S¢*(d) = S¢*(P) = v* =
(22 + y*)P = ad + bd and thus S¢*(7) = b*d = br. Moreover, Sq¢*(d) = 0 and
Sq'(b) = 0 then Sq'(d’) = 0 and Sq¢'(b') = 0 for all 4,5. By using this information

and Cartan formula, we have

; bdiT, if jis even;
2 9 — ) 9
* S¢(d'T) { 0,  ifjis odd.

, btlr, if 4 is even;

2(10 _ ) 3

* 54 (bT)_{ 0,  ifiisodd.
- VHldir, if i+ jis even;
2(1t 17 — ) )
* S¢(V'd'T) {0, if i + j is odd.

To find the kernel and image of d; = S¢?, we will show its action on TU in the
diagram below for small degree and then observe the pattern:



CHAPTER 4. REAL CONNECTIVE K-COHOMOLOGY 119

Codegree Generator of TU
8 T
10 £7'
12 v’ dr
14 b3 bdr
16 vir  bidr  dir
18 £5T bdr  bd’t
20 vor  bldr vd:r  dPr
22 £7T bdr b3d?r bd3T
24 bdr  bodr brd?r b d3t dr
26 V1 bldr vd:r  bd3r  bdir
28 b0 B8dr bod?r brd3r b2dir d>r
30 £117' vodr Vid?’r B3t it bdPT
32 bi2r £10d7' vid?r £6d37‘ vrdir £2d57' dot
34 £13T vldr  Vd2r bddr vdir b3dPr bdSt
36 bir b2dr bOd2r B8d3r bodtr brdor b2dSt bd"T

| | | |

Diagram 4.1: The d; = S¢?(:=]) action on TU.

This diagram suggests that the kernel and homology of d; = Sq? are Fa[b?, d?] <
br,dr > and Fa[d?] < dr > respectively. This can be proved easily from the information
above and induction. We record these results as:

Lemma 4.2.1. With the same notation as above,

1) The Sq*—homology of TU is concentrated in degrees —12,—20,—28, 36, ... being
represented by Fa[d?] < dr >.

2) The module of Sq*— cycles of TU is Fa[b?,d?] < br,dr >.



CHAPTER 4. REAL CONNECTIVE K-COHOMOLOGY 120

4.2.2 BOCKSTEIN SPECTRAL SEQUENCE FOR TORSION FREE PART OF ku*(BSDjig)

Now we consider the QU part starting by filling in the zero-line of E,1-page, i.e. the
2

kernel of differential d;’s first and then follows by filling in the positive line, i.e., ho-

mology of dy’s.

Filling in the zero-line of QU -part:
For ker(1 — 7 : QUy, — QUyi—2) := ZQUy, we calculate them directly but for
ker(147 : QUykr2 — QUyy) := ZQUyk 12 we will use lemma 4.1.1(3), i.e., ZQUyj 12 =
(1 = 7)QUuk4-

By lemma 3.3.1 and the character table, it is not hard to see that

ZQU4k+2 = Zé\ <0 >, (4.2)
for all £ > 0, where
4 1 16 4 2
0=D—-7(D) = ——A+-(A+B)D+—D—-D*>+ D3
(D) 34+ 3(A+B)D+ 37 1y
= [0,-2¢,0,2¢,0,0].

For ZQU_ (442), we calculate on JUy, = QU_ gy that is ZQU_ 442y = (1-7)JUs(41)
and we obtain the results as

ZQU,(4]€+2) = Zé\ < Oy >, (4.3)
where 0} = 2L(3)9 and L(r) := greatest integer which is less than or equal to 7.
Again by lemma 3.3.1 and character table, for £ > 0,

ZQUy, =7 < v** > &(Z))° < A,B,C,D?* D* >, (4.4)

where C' = (A+ B)D — 2D and D3 = D3 4 2D. For negative degree,

ZQU_y = (Zé\)g) < T2,§2,§2,§2,ﬂg — 2wy >,
ZQU_g = (29)5 < T4,Yy, 24,4, Ug > .
In general,
ZQU_gk—s = (Z5)° < Tahs2, Yakror Zak+2, Lakt2, Ushg2 — 2Wapsa >, 45
ZQU. = (Z5)° < Tuk, Yapr Zak Lk, (4:5)
QU_sr = (Z5)° < Ta, Yag Zak- tak, Uar > -

Filling in the positive line of QU -part:
We calculate H(QU) only one case which is H(QU )4 = ZQU4r/(1 + 7)QUyp42. For
H(QU) 442, this is zero for all k, since H(QU) g2 = ZQUyp12/(1 — 7)QUy+4 and
ZQU4k+2 = (1 - T)QU4k+4 by lemma, 411(3)
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In non-negative degree, as in chapter 3, we represent ZQUy and (1+ 7)QUyg2
as character table below; ZQUy, = Z @ (Z4)® generated by

QW=

(

[\

D=
D3 .

1
0
0
0

1

0

0
-8

0 16
0 72

O O N

—2
0

1
0
0
—4

4
12

and (14 7)QUykr2 = Z & (Z4)® generated by

(I4+7)1:
(I+71)A:
(1+7)B:
(1+7)D:

(1+7)D?:
(1+7)D3:

for all £ > 0. Note that

[
[
[
[
[
[

OO OO OoON

0 = O O N

O O N =
S O o N O =
[ N R R

==
C o Ok oW
00 B A R N

—_
(@)

16 2
(1+7)(A+B)D = [0,0,0,0,0,0,16] = 4(1—|—7‘)A—§(1+T)D—|-4(1—I—7')D2—§(1+T)D3.

Now, the representing matrix for the calculation of H(QU )4 can be found as;

OO O OO N

w‘goowmo N O

After several row operations, we obtain

S OO OO N

S O O oo

coco oo ol

corr oo o0

oON O O OO

co oo oW

Moo oo o

wivoullo o o Q

D? D3
0 0 |T‘1
0 0 |re
0 0 |7"3
t R I
2 0 |T5
|71
|72
73
7
75

r6 = re + 214

where 7 = (=3)[r4 — 21y — 215 + $14]. Hence, for k >0,

H(QU)y, = (Z/2)° generated by (1], [A], [B], [D?], [D?], (4.6)
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or more precisely by v2* v2ktlg 2kt1p 2k+4q2 2k+6g3 4 9y2k+2g

In negative degree, for k > 1, H(QU)_y4, = ker(1 — 7 : JUg — JUsp41)/(1 +
7)JUs,—1 and this can be calculated by using the character table of JU; in Chapter 3.
The representing matrix for H(QU)_4 can be found as;

Ta Yy Z2 lo uh
l1+7nz:] 1 1 0 0 0 |rm
I+7m)yg,:| 2 0 0 0 0 |r
1+7)z:] 0 1 -1 2 0 |ry,
(1 + 7')%1 : | 1 0 1 0 O |T'4
1+7nu:|] -1 0 =1 0 =2 |rs
1+7nw:] -1 0 =1 0 —1 |rg
where uh = Uy — 2wy = [-8,0,—4,0,0, —4].
Now, using row operations, we obtain
Ty Yy Z2 to ub
| 1 1 0 0 0 |m
| 2 0 0 0 0 |r
| O 0 0 2 O |’I"3 +rg—rr
| 1 0 1 0 0 |rg
| 0 0 0 0 0 |r5s+rs+2rg
| 0 0 0 0 1 |rg=1r6—15

By doing column operation, i.e., changing ¢; to ¢; —cs —c3 and using the same method
in Chapter 3, it is not hard to see that

H(QU)_4 = (Z/2)?* generated by [¥2] and [fo], (4.7)

with [T2] = [y,] = [Z2] and [u}] = 0, where [@2] = @2+ (147)JU; for a € {z,y, z,t, u*}.

For H(QU)_g = ker(r : JUy — JUs)/(1 + 7)JUs, the representing matrix for
H(QU)_g can be found as;

T4 Yy 24 th Uy
I+7m)zz:] 1 0 0 0 0 |
(1 + T)@3 : ‘ 0 1 0 0 O ’7“2
(I+7)z3:] 0 O 1 0 0 |rg,
(1 + T)Zg ‘ 0 0 0 2 0 ’?"4
(1 + T)U3 ‘ -1 0 -1 0 2 |’I”5
(1 + T)lU3 | 0 0 0 0 0 |’I"6

Again, row operations give
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Ty Yy Za ta W
| 1 0 0 0 0 |m
0 1 0 0 0 |r
| 0 0 1 0 0 |r3
0 0 0 2 0 |rg
| 0 0 0 0 2 |rs+ri+rs
0 0 0 0 0 |rg
Hence,
H(QU)_g = (Z/2)?* generated by [t4] and [t4], (4.8)

with [Z4] = [74] = [Z4] = 0 where [ay] =@y + (1 + 7)JUs for « € {z,y,2,t,u}.

In general, for k£ > 1, H(QU)_gk—4 = ker(1 — 7 : JUypyo — JUsrss)/(1 +
T)JUyk+1, the representing matrix for H(QU)_gi_4 can be found as;

Takt2 Yakto Zak+2  lakt2 Upgyo

(1+ 7)Tgps1 : | 1 0 0 0 0 |71
(L+7)Zap1:| O 0 1 0 0 |rs,
(1+7T)tgyr:] O 0 -1 2 0 |rg
(1—|—7’)ﬂ4k+1 : ‘ -1 0 -1 0 -1 |7’5
(L+7)Wap1:] 0 0 0 0 0 |re
Hence, for k£ > 1,
H(QU)_gg—q = 72 generated by [tar12], (4.9)
with [Tato] = [Wapro] = [Fakee) = [@ o] = 0 where ), = [-8-16F,0,—4
4k,0,0, —4 - 4k] = Uypto — 2Wypyo and [a4k+2] = Q442 + (1 + T)JU4k+1 for o €

{z,y,2z,t,u*}.

For k > 2, H(QU)_gk = ker(l — 71 JUy, — JU4k+1)/(1 + T)JU4k_1, the
representing matrix for H(QU)_g can be found as;

Tap Yar Zak lak Uak

(1+T)f4k_1 | 1 0 0 0 0 |T1

(1+7)Yy—y:] O 1 0 0 0 |ro

(1+7’)E4k_1 | 0 0 1 0 0 |T3 ,

(1 + T)E4k,1 : ‘ 0 0 0 2 0 ‘7’4

(1+T)ﬂ4k_1 : | -1 0 -1 0 2 |T5
(1 + T)@4k,1 : ‘ 0 0 0 0 0 ‘TG

Hence, for k£ > 2,
H(QU)_s) = (Z/2)* generated by [f4] and [ta], (4.10)

with [Zx] = [Jar] = [Zax] = 0 where [aur] = qur + (1 4+ 7)JUsp—1 for a € {z,y, z,t,u}.

Summarizing from (4.2) to (4.10), we may display the FE,1-page of the Bockstein
2
spectral sequence for ko*(BSDig) as;
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Figure 4.2: E»(TU) @ E2(QU) := E|1(ku*(BSD:s))-page

1
2

2 2
2 Ro2 2 Ro2 22 \25 5
2 2
2 Ro2 2 Ro2 22 Ros 2% | 4
2 ~ \|d 2 ~ \d ~ \d
- 3 - 3 - 3
2 \22 \ 2 \22 \ 22 \25 2° 3
2 =~ \|dg \? =~ \lds =~ \lds
2 2?2 2 2?2 22 25 25 2
2 onto \d3 \? onto \d3 \ onto \d3 \
2 22 2 22 22 2° 25 1
22 | 51 \22 2 2 & 50 \2 \ \
7' 7! 7' 7’/ 7' 7! 7’9 VA 7' 7! 7! VA 7’ 7! 7'% 0
-20 -18 -16 .14 .12 -10 -8 -6 -4 -2 0 2 4 6 8 —t

Notation: 7' = Z), Z/° = (24)>, 7/° = Z & (2})5, 2 = 72
and 2’s come from TU part otherwise come from QU part.

To obtain the FEs-page we need to determine the connecting homomorphisms,
d’s, in (4.1). In order to do this, the representation theory will be very useful.

4.2.3 REPRESENTATION THEORY AND DIFFERENTIALS

The aim of this subsection is to prove lemma 4.2.2 below.

Lemma 4.2.2. Connecting homomorphisms,di’s, are all zero in Bockstein spectral

sequence for ko*(BSD1g) and thus E,1(ku*(BSD1g))-page is Eo(ku*(BSDig))-page.
2

Furthermore the ds’s leaving the 8k + 4 column are as illustrated in Figure 4.2.

To prove this, the representation theory plays an important role. The details
of representation theory involved in the computation of real connective K-cohomlogy
theory can be found in [13] chapter 2. By lemma 1.2.2 and the character table of
SDig, we see that 1, x2,x3, x4 and oo are real representation whereas o; and o3 are
not self-conjugate, i.e., complex representation. In fact, 701 = 3. Thus, we have;

RO(SD16) = Z{l,XQ,Xg,X4,0'2,TO'1},
RU(SD1s) = 7Z{cl,cxz,cxs,cX4, 01,03}, (4.11)
RSp(SD1s) = 7Z{qcl,qcxa, qexs, qexa, 4o}

By Atiyah-Segal theorem for the real case, we have;

Lemma 4.2.3. Periodic real K -theory KO*(BSDsg) is given by

KO®¥(BSDyg) = RO(SDsg))y = (24)S,

KO®*=Y(BSD16) = RO(SDsg)y/rRU(SD16)s = (Z./2)5,

KO¥=2(BSDys) = RU(SD1)) /ERSp(SDis)) = (Z/2)° ® 74,
KO®=3(BSDsg) = 0,
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Il

o KOB*4(BSDss) = RSp(SD1s))y = (Z5)S,

I

RSp(SDi6);/qRU(SD16)’y = 0,

12

(

o KO®5(BSDys
( RU(SD16)9/6R0(5D16)9 = Zé\,
(

)
)
o KOB8k—6 BSDlﬁ)
)

e KO®T(BSDsg) =0,
where k € Z.
Proof. This is an immediate result from (4.11) and lemma 2.1.5 in [13]. O

Now, we are ready to prove lemma 4.2.2.

Proof. To get Eq(ku*(BSD;g))-page, it suffices to calculate
Ok 1 (ZQU ) _10—sx — (HTU)_12_gk

for each k£ > 0. Since all entries in E,1-page are contained in even degree, do = 0 and
2

then FEs-page is equal to E3-page. Moreover, by using the fact that this spectral must
collapse at F4-page together with lemma 4.2.3, d3 must be surjective and isomorphism
above the zero-line shown as in picture above. In particular, at degree —12 — 8k,
ds : (Z)2)? — (Z/2)? must be an isomorphism. If §;, is not zero, then rank of domain
of d3 must less than 2 and this implies that d3 can not be isomorphism. Hence, J
must be zero for all k. O

There is one family of differentials still to be determined and we will deal with
this in the next section.

§4.3 FE-page and additive extension problems for ko*(BSDsg)

4.3.1 FE-PAGE

So as to get Foo-page, we need to determine differential departing from the zero-line
at degree 8k + 4 for all k, i.e.,

ds : Z(TU)8k+4 D Z(QU)8k+4 — H(TU)gk D H(QU)gk

Here, ker d3 can be calculated by lemma below.

Lemma 4.3.1. Kernel of d3 : Z(TU )4 @ Z(QU)gpra — H(TU)gr ® H(QU )sy)
tllustrated in Figure 4.2 is

S¢*TUspt6 @ (1 + 7)QUskr6

for all k.
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Proof. This follows from the commutative diagram below;

o~

H(TU)gx © H(QU sy,

nH(TU)sy. @ nH(QU sk
d3 onto dé =

Z(TU)gk4a ® Z(QU )gk+4 !l H(TU)gk+a © H(QU)gk+4

where 77* is a projective map modulo by S¢*TUsi.6 @ (1 4+ 7)QUsk16- O

Now, it is easy to see that, by this lemma and character table in Chapter 3, for
k>0,

ESSF — ker(ds) = Z & (Z))® generated by 202% and 24,2B,D,2D?, D3, (4.12)

which are the image of 1 and A, B, D, D?, D3 under 147, respectively. Here, LQIC, A, B,D?
have the same character table as before and the character table for D and D3 is rep-
resented by [8,0,4,0,0,4] and [128,0, 16,0, 0, 16] respectively.

For negative k, EotF = Sq*TUgj6 @ (1 + 7)JU_(4x43) and again these can
be read from S¢? action in diagram of subsection 4.2.1 and JU; in Chapter 3 easily.
Explicitly,

e BNt = (1 +7)JU; = (Z3)® generated by {%s + Uz, 2Ta, U + Z2 + 202, T +
Zo, —To — Za — u¥a}.

° Egé_u = (1 -+ T)JU5 = (ZQ)S generated by {fﬁ,?ﬁ,f& 2¥6 —Z6, —Tg — 26 _Wﬁ}.

o For k < =3, EX™* = $¢*TUgs6 ® (1 + 7)JUse_1y 11 = (Z/2)F2 @ (24)°
generated by {p*IFI=2=0g2+17 |4 =0,1,2,..., |k| — 3} and {Tatk—1)+2: Ya(h—1)425

Za(k—1)42> 2ba(k—1)42 — Za(k—1)425 ~Ta(k—1)+2 — Z4(k—1)+2 — U a(h—1)42] -
Now, we reach the E.,-page.

Figure 4.3: E. (ku*(BSDs))-page

22 22 2° 2
22 22 25 1

2 22 2 2 2
7' 7! 7' z’! 7’9 7! 7' VA 7' 7! 7! VA 7 7! 7'% 0
-20 -18 -16 -14 .12 -10 -8 -6 -4 -2 0 2 4 6 8 —t

Notation: 7' = Z), Z/° = (24>, 7/° = Z & (2})°, 2 = 72
and 2’s come from T'U part otherwise come from QU part.
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4.3.2 ADDITIVE EXTENSION PROBLEMS

The next task is the extension problems. Here, each column of the E;{t—page, con-
tributes to each ko!(BSDjg). Precisely, ko'(BSDig) has filtration

ko'(BSD1g) = F, D F{ D FL D Fi =0

with FL/Fl = EX™, FI/F = Ey7" and Ff = E%7". In this case, the only extension
problems come from codegree 8k — 2 for k > 2. For codegree 8k + 6, for £ < 0, these
short exact sequences split because they end with Z.

We claim that all this short exact sequences split. We consider firstly on codegree
14 which has two candidates, i.e, split one and non-split one. Precisely, additively,
ko'*(BSD1g) can be Z, @ (Z/2)% or Z5 ®7Z/4®7Z/2 but can not be Zj ®7/8, because
it reduces to two 7-multiple generators at E., . If we can show that this codegree
split, then all exact sequences will also split. This is because;

Lemma 4.3.2. If the short exact sequence for ko'*(BSD1g) splits, then the short exact
sequence for ko®*=2(BSD1g), for each k >3, split.

Proof. 1t is clear that n-multiple elements have order 2. So, it remains to identify
elements in ko®*~2(BSDg) which reduce to elements in TU at E.. By assump-
tion, b7 in ko' (BSD1g) reducing to b37 in E, has order 2. So, 2r - bt = 0 for
all r € ko*(BSDsg). Recall that, for k > 1, ko®*(BSDs) = (Z4)° generated by
{T4k,g4k,§4k,i4k,ﬂ4k} which Yak and uy; send to (b4k, B — 2(A + B)DQk + 2AD2k)
and (d%¢, D) in H*(BSD16;Z/2) ® R(SDsg)} respectively. Furthermore, note that

_ _ =k =
gk =Ty and dy = dyy,.
Let {b**=5=4q%ir | § = 0,1,2,....k — 3} C ko®* 2(BSD1g) reduce to (same
notation!) {p*=5-4q%r |;=0,1,2,....k -3} C E% D It is clear that
b4k7574id2i7_ —_ (b4)k727i(d2)i(b37_)

for all k, which are the multiples of element b7 in ko'*(BSDg) and (b*)F—2-%(d?)! =
r € ko®* 1 (BSDg). Therefore, they are annihilated by 2 and then we complete the
proof. O

4.3.3 1n- BOCKSTEIN SPECTRAL SEQUENCE FOR MOD 2 COEFFICIENT

In order to solve the extension problems, we will investigate 77- Bockstein spectral
sequence for mod 2 coefficient. That is,

E7" = ku*(BG;Z/2)[] = ko*(BG;Z/2)
which comes from the cofibre sequence

Sko/2 X ko/2 S ku/2—>¥2ko/2.
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For calculation of mod 2 coefficient connective K -theory, we use universal coeffi-
cient theorem for spectrum E with finite generated coefficient G (Proposition 6.6(i)
page 201, [2]), i.e.,

0 — E"(X)®G — (EG)"(X) — TorZ(E""(X),G) — 0.

In this case G = Z/2 and E = ku and thus this short exact sequence splits. That is
E}"-page can be calculated by

ku™(BG;7/2) = ku(BG) ® 7./2 ® Tork (ku" ™ (BG), Z/2).

Note that the identity Tor(Z* @ (Z/2),Z/2) = (Z/2)® is often used in our case.
Also, the part TorZ(ku"t'(BG),Z/2) for G = SDg comes from v-torsion part TU.
Thus, all differentials from integral n-Bockstein spectral sequence are applied for mod
2 coefficient by dividing by 2. Precisely, in torsion free parts,

g — (1 — 1)mod2, if it departs from QUy, ® Z/2;
P71 (14 1)mod2, if it departs from QUyp o ® Z/2,

and in v torsion parts are the same, i.e., di = S¢?>. Note that, however, in lemma
4.1.1 (3) can not applied for mod 2 coefficient case. That is ker(1 +7: RU ® Z/2 —
RU ® Z/2) can not compute from (1 — 7)RU ® Z/2.

So, to find Es-page is similar to the integral case but we need to consider kernel
and image of differential carefully. Here is the F1-page of n-Bockstein spectral sequence
mod 2 coefficient:

Figure 4.4: The E;-page of n-Bockstein spectral sequence for mod 2

coefficient
S
2t 4 2 3 23 3 2 9 2 NE 2
26] 27| 26| 27| 26| 27| 26| 27| 26| 27| 26| 2 | 26| 2 | 26 26 26 27 27 5
2 4 Py 3 3 3 2 5 2 5|2 2
26| 27| 26| 27 | 20| 27| 26| 27| 26| 27| 26| 2 | 26| 2 | 26 26 20 27 27 27 | 4
2 1 2 3 3 5 2 ) 2 NE: 2
26] 27| 26| 27| 26 27 | 26| 27| 26| 27| 26| 2 | 26| 2 | 26 26 26 27 27 27 3
2 4 23 3 2 3 2 ) 2 NE 2
26] 27| 26| 27| 26| 27| 26| 27| 26| 27| 26| 2 | 26| 2 | 26 26 26 27 27 27 27 | 2
4 : 2 2
2|, P 3 S 2] o2 4|2 2
20 27| 26| 27| 26| 27| 26| 27| 26| 27| 26 26| 2 | 26 26 26 27 27 27 27 1
2t 4 2 3 2 3 2 ) 2 o2 2
26] 27| 26| 27| 26| 27| 26| 27| 26| 27| 26| 2 | 26| 2 | 26 26 26 27 27 27 27 27| 0
-20 -18 -16 .14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 —t

Notation: 2’s come from TU otherwise come from QU ® Z/2.

To find the FEy-page around codegree 14, we calculate Z(QU, ®Z/2), H(QU, ®
Z)2), Z(TU,®Z/2) and H(TU,®Z/2) for n > —20. This is, again, a direct calculation
from character table of QU; in chapter 3 and Sq? action of TU; in lemma 4.2.1 which
we record as; (with the same notation in the integral case)
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e For n>0, Z(QUy, ® Z)2) = (Z/2)® generated by {v*", A, B,C, D%, D3}.

e For n >0, Z(QUyp2®7/2) = (Z/2)8 generated by {v?", A, B, (A+B)D, D? D3} .
e For n>0, H(QUy, ® Z)2) = (Z/2)® generated by {[v2"+1],[A],[B], [D?],[D?}.
e For n >0, H(QUyp12®7Z/2) = (Z/2)° generated by {[v*"1], [A], [B], [D?], [D?]}.
o Z(QU_o®7/2) = (Z)2)® generated by {7,,t1 +Z1 +Z1,u1 +11}.

o HQU 5 ®7/2) = (Z/2)? generated by {[7,], [t1 + =1 + Z1]}.

e For n>1, Z(QU_4, ® Z/2) = (Z/2)> generated by {Tan, Yoy, Zon, ton, Uzn } -

e For n =1,2,4, H(QU_4, ® Z/2) = (Z/2)? generated by {[t2,], [ti2n]}-

e For n > 1, HQU_4_g, ® Z/2) = 7/2 generated by {[tant2]}.

e For n >0, Z(QU_¢_g, ® Z/2) = (Z/2)3 generated by {tin+3, Wint3, Udnis +

Tant3 + Zan+3} -
e For n >0, HQU_¢_8, ®7Z/2) = (Z/2)? generated by {[tan+3], [Want3 + Tants +
24n+3}} :

o For n>1, Z(QU-2-8, ® Z/2) = (Z/2)? generated by {fan+1 + Zan+1, Wan+1}-
e For n>1, HQU_2_g, ® Z/2) = 7Z/2 generated by {[tan+1 + Zan+1]}-

For Z(TU;) and H(TU;) part, this can be read easily from diagram 4.1.

So as to identify differentials, knowing some results, i.e., ko"(BSD1g;Z/2) for
some 7, is fruitful. This is possible because all codegree n with n # 8k +6 (k > 0),
E of integral n-Bockstein spectral sequence split (see Figure 4.3). Thus we can
identify ko™(BSDig) for all codegree n with n # 8k +6 (k > 0). Also, since most of
non-zero generators in ko*(BSD;jg) are in even degree, most of the additive structure
of ko*(BSD¢;7Z/2) can be identified explicitly. After direct calculation, we record all
information to find the E,-page of n-Bockstein spectral sequence for mod 2 coefficient
as;

Figure 4.5: The FE,:-page of n-Bockstein spectral sequence for mod 2
2

coefficient
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Notation: 2’s come from TU otherwise come from QU ® Z/2. On the Target
(ko*(BSD1g;Z/2)) line, 28 means merely the order.

Description of Figure 4.5

It is obvious that there is no connecting homomorphism and ds departing from de-
gree which is greater than -8. Since ko~ 2(BSD1¢;Z/2) =(Z/2)'* and ko=3(BSD14;Z/2)
=(Z/2)® and dj’s commute with 7 multiple elements, there is no non-zero differentials
departing from diagonal starting from degree 0. Then ds departing from degree 4 and
6 in the zero-line are rank 5 and above the zero-line are isomorphisms. From a similar
description, there is no non-zero differentials departing from degree -8,-6 and hence ds
departing from degree -4 and -2 in the zero-line are rank 2 and above the zero-line are
isomorphisms.

Now, we are reaching to the main point in codegree 14. Again, ko'®(BSD14;7/2) =
(Z/2)3 and dj’s commute with 1 multiple elements, no-non zero differentials depart-
ing from diagonal starting from codegree 16. Then ds departing from diagonal line
in codegree 12 must have rank 2. Consequently, connecting homomorphisms §y must
be 0. The dimension of ko''(BSD1g;Z/2) being 0 give us the rank 1 differential dy
from codegree 11. Also there is no non-zero differtial depart from degree 14 since there
must be at least rank one differential depart from diagonal line in degree 18. Hence all
differentials illustrated in Figure 4.5 are determined. At this point, we have proved;

Lemma 4.3.3. The dimension of ko'*(BSD16;7Z/2) is 3 and the order of
ko'*(BSD14;Z/2) is 25.

Now, we are going to determine the extension problem for ko'*(BSD1s). To do
this, we use mod 2 Bockstein spectral sequence with input ko*(BG;Z/2) and output
ko*(BG). We deal with this in the next subsection.

4.3.4 MOD 2 - BOCKSTEIN SPECTRAL SEQUENCE FOR REAL CONNECTIVE K THEORY

The cofibre sequence ko —2> ko — ko/2 give us the mod 2 - Bockstein spectral
sequence: N
E! = ko' (BG;7/2)[2] = ko'(BG).

Since degree of 2 is (1,0), Ei-page can be done similarly as the case of ) but all entries
in the above zero line are obtained by copying along the column (not diagonal).

In this case, we need to investigate in codegree 14 but the input in codegree 11 is
zero and all differentials get back by one degree, so it is enough to consider on codegree
11 to codegree 16. By lemma 4.3.3, we have the E7-page of mod2 - Bockstein spectral
sequence as;
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Figure 4.6: The F;-page of mod2-Bockstein spectral sequence for

ko*(BSDqg)

Target: z5)> @z/2  (2/2)2 5 @77 0 (z)® 0 S
) ) ) ) ) ) !

LLLLLQ 2 23 |22 2 222222 11111 0 5
ARSI NN N o N A4S I
LN b 1N, [, ]
AEETN DN N NV A I
AREETN NN N > N AR I
LD b b, [HE] L, ]

-16 -15 -14 -13 -12 11 — ¢

Notation: ’s are differential d; and 2’s are kernel of d; and
2—-2—=2—=2— .. ::Zé\.

The precise structure of ko'*(BSDis;Z/2), ko'>(BSDis;Z/2) and all differen-
tials illustrated in Figure 4.6 above are obtained clearly from the target ko*(BSDig).
Thus, ko'*(BSDis) = Z & (Z/2)*.

Corollary 4.3.4. Additive extension problems of n-Bockstein spectral sequence for
ko*(BSDg) are trivial.

Proof. This follows by the result above and lemma 4.3.2. O

§4.4 Results for ko*(BSDs)

Since there is no additive extensions in the Bockstein spectral sequence for ko*(BSD1s),
the results (additively) can be read from E..-page directly, i.e., ko'(BSD1g) = Bt

Theorem 4.4.1. Additively,

" >
kon(BSD16) n S 0, (k 2 0) ko (BSDIG) n > 0
0 —8k—T7< —T 0 8k—7>1
/N _8k—6<—6 Ziy & (Z)2)%! 8k—6>2
0 8k —5< —5 0 8k—5>3
IS Z/\)S 4
A\D o _4< ( A
- éZQ) —Sz - ;L < —g ’ (2455 @ (Z/2)F2 | 8k—4>12 |
< 0 8k—3>5
7h ®(Z)2)° | —8k —2< —2 ) >
2 (Z/(2)/5 ) 8k —1< -1 7y ® (Z/2)? @2<Z/2)k 1| 8k—2>6
Lo (Zy) —8k <0 (2/2) 8k—1>7
2 - (Z4)° @ (Z/2)"! 8k > 8
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Generator description:
Let A = cfY(x3),B = W (x2) and D = cfY(oy) which has character table as
[0,2,0,2,0,2],[0,0,0,0,2,2] and [4,—¢,2,c,0,2] respectively, where ¢ = V/2i. More
over, let C = (A+B)D —2D and D3 = D3+2D. Then the generator of ko™ (BSD;e)
for each codegree n are;

Non - positive codegree:, for k> 0;

o ko 8 6(BSD) = 7y < B*v30 >, where

4 1 16 4 2
=D —71(D) = —§A+§(A+B)D+—D—7D2+7D3

9 3 9
= [0,—2¢,0,2¢c,0,0]

o ko ¥ =4(BSDs) 2 7Z < p*20? > @ (Z))® < 2A,2B,D, 2D? D3 > v2(% where

— 4 1., 4 2 ~
D = -A--C+-D*-2D3
3473973 9
= [8,0,4,0,0,4]
— 8 2. 8 22 ~
D3 = ——A+ZC--D*+ D3
341303 g

= [128,0,16,0,0,16]

o ko ®2(BSDig) = Zj < 50 > @ (Z/2)° < 7’[1],7°[AL 7 (B, 7[D?], P [D?] >
g,

o ko SFY(BSDig) = (2/2)° < (1], Al Al B, 7D, 7D > B~

o ko ®¥(BSDy) =7 < % > @ (Z4)° < A, B,C,D? D? > .

Notation: [z] = z 4+ (1 + 7)(QUgk42) s.t. x € ker(l — 7 : QUsxy, — QUsi—2) and
n[1] «=n € ko Y (pt), 2-v? « a € ko~*(pt) and B € ko=3(pt).

Positive codegree:

e ko?(BSD1g) = Z§ < 01 >, where 01 = v=10 =uy — 1, — 2w .

o k0¥ O(BSDg) = Zh < 0, > @ (Z/2)F ! < b**=1=0=3¢2%7; = 0,1, ...,k —2 >,
where k> 2, T = b2d — abd and

0, = ﬂ:(l — 7')(@4(;6_1)) = :|:2k_11}_k91.

Here, wy4,_1) € JUyp—1) and other notations below which does not state are
elements of JU]s in Chapter 3.
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° k04(BSD16) = (ZQ)E’ < To + Yy, 272, 2te — Zo + Yo, 22 + T2, —u*y — Ty — 29 > S.L.

To+7y, = (1+71)(71)=10,0,0,0,4,4]
2ty = (1+7)(y;)=10,0,0,0,0,8]
20 —Z2+7Y, = (147)(z1) =10,4,0,4,4,0]
Zo+Ty = (1+47)(t1)=10,0,8,0,0,4]
—u*y —Ty —Z2 = (L+7)(w1)=[8,0,-4,0,0,0],

where u*y = Uy — 2wy = [—8,0,—4,0,0, —4].

o ko Y (BSDie) = (24)® < Tag—2, Yap—2: Zak—2, 28ak—2 — Zak—2, —U*ak—2 — Tap—2 —
Zapo > @ (Z)2)F2 < pHE-2-0 @24 )5 = 0,1,...,k — 3> s.t.

Tap—s = (1+7)(Tgp—s) =1[0,0,0,0,0,4 - 451
Uspo = (L+7)(a_3)=10,0,0,0,4-16""",0]
Zapa = (147)(Zan-3) = [0,0,8-4*71,0,0,0]
2gh—o — Zah— = (14 7)(tar—s) =[0,4(=2)"" 1’0,4(— )*71,0,0]
— U gp_g — Tah—o — Zah—z = (14 7)(Uap_3) = [8-16*71,0,—4-410,0,0],
where k > 2, b0dr = 0 and u*gp_o = TUgp_o — 2Wap_o = [ - 16F71,0, —4 -

4F=10, —4 - 4F1].

° k‘OSk_2(BSD16) = Zé\ < 92 > D (Z/2)2

. ! < Pltar), Plua) > @ (Z/2)F! <
pAE=1=0-1 g% = 0,1, ...,k — 2 >, where k > 1

0 = (1—7)(W2) =ws
0, = +(1—7)(Wy_o) = +£2"1a].
and [@Wag) = War +im(1 4+ 7 : JUgp—1 — JUyg) for w =1t,u.
o ko®*"1(BSD1g) = (Z/2)% < 7j[tar], N[tiar] >, where k> 1.
o ko®*(BSD1g) = (Z4)° < Tak, Yuss Zak, bak, Uag > ® (Z/2)F 1 < pHk—1=0=2g2H1 7| =

0,1,....k — 2>, where k> 1.

Proof. This is an immediate results from E.,-page, corollary 4.3.4, and character table.
O

Corollary 4.4.2. The natural homomorphism (3* : ko*(BSDg) — H*(BSD14;F2) ®
KO*(BSDsg) is a monomorphism.

Proof. Since ku*(BSDig) — H*(BSDi6;F2) ® KU*(BSD1s) and E-page has been
calculated with the initial input ku*(BSDig) s.t. there is no n-multiples coming from

TU part and also ko*(BSDsg) is additively isomorphic to F,-page, the result follows.
O

We investigate the restriction map ko*(BSDis) — ko*(BG) for each maximal
subgroup G of SDjg in the next section.
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§4.5 Relations with its maximal subgroups

As the previous chapter, we will make explicit only the map at E,-stage because all of
ko*(BG), for G = SDsg, Dg, Qs,Cs, are isomorphic to their Ey-page. So, the job is
giving the generator names for ko*(BG)’s and relating them by using Theorem 2.7.2.

4.5.1 k?O*(BSle;) AND k‘O*(BDg)

By the results of ko*(BDg) in [13], we can explicit the generator name for ko*(BDs)
by using the same symbols as in Theorem 2.5.5 in [14] (and in Proposition 2.7.1) as
follows.

Proposition 4.5.1. (¢f. [13]) The additive structure of real connective K-cohomology
of Dg is isomorphically given by;

n ko™(BDsg) Generators
—8k -7 0 0
—8k —6 0 0
—8k—5 0 0
—8k — 4 Z® (Z4H)* BF202, BF20%{va, vb, v2d, v:ds}
—8k —3 0 0
—8k — 2 [2]° s {[1], [val, [vb], [v*d], [v*da]}
—8k—1 [2]° A {[1], [val, [vb], [v*d], [v*da]}
—8k Z & (ZH)* B*, B¥{va, vb, v2d, v3ds}
1 0 0
2 0 0
3 0 0
4 (Z4)* a®,b?,2d, 2ds
5 0 0
6 2] &2 n*[d?], ad
7 2] 7ld?]
8 (Zé\)‘1 a*, bt d?, dds
8k—72>9 0 0
8k — 6> 10 92k—2 a4(l<:—z'—1)—1d2i—‘,—17 a4(k—i—1)—2bd2i+17 i=0,..,k—2
8k —5>11 0 0
a4k—2’ b4k—27 2d2k—1, d2k_2d2,
8k —4>12 | (Zh)* @ 223 @t h—i=)=2g2i42 1 — 0k —2
qdk—i=2)=3pq2itd ; —(  f—3
8k —3>13 0 0
8k—2>14 | [2]@2% ! Pd?F], o F—=DH R =0,k —1
atb—i=Dpg2itl G =0 . k—2
8k—1>15 2] nd*]
8k > 16 (Zé\)4 D 92k—2 a4k, b4k, d2k, d2k’71d27
A=) q2i42  Ak—i=1) =1y 22 () 2
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where [n] and 2™ are referred to be a cyclic group of order n and elementary abelian
2-group of rank m as usual and dy = 4d — v2d?.

Now, the map is quickly calculated, by using Theorem 2.7.2, Proposition 4.5.1
and relations in ku*(BDg), which we record as;

Proposition 4.5.2. The canonical map from ko*(BSDig) to ko*(BDsg) is explicitly
given by

1 For k>0, ko 8=6(BSDys) +— 0.
2 For k>0, ko 84(BSD1g) — ko 8*=4(BDg) is given by;
Bk202 — BE202, BFu22D? s 4(pF201d) — (BF2utdy),
BEv22A4 — 0, Bkv2D — BF20vd,
BFv22B — F20%a, [Fv?D3 — 16(6F2v%d) — 6(8520v%dy).
3 For k>0 , ko 8=2(BSD1g) — ko 32(BDg) is given by;

3500 — 0, FRRP e AR, BER2[A] 0,
BR2(B] v BEiPlva), BFP(D?) - BRP[v3do], BFP(D] - 0.

4 For k>0, ko 81 (BSD1g) — ko 8¥~1(BDg) is given by;

GH1) o B, BRIA] O, i
BEN[B] = Bfval,  B*ID?] — BFlvPda],  BFRID?] 0.
5 For k>0, ko8 (BSD1g) — ko 3¢(BDsg) is given by;

A1 B4, B A0, BB frva,
B D? s BF(40%d — v2dy), BFC — —2p%0%d, BFD3 — 0.
6 For k> 1, ko®*6(BSD1g) — ko®*5(BDg) is given by;

e k=1, ko?>(BSDg) — 0,
o k>2,0,—0, bhimD)=3g2ip, , gd(k—i=1) 2+ fori=0,....k—2.

7 For k> 1, ko®*=4(BSD1) — ko®*~*(BDg) is given by;

o k-1 Ty + 7y a®, 2Ty 0, 2ty —Z2 + 7o — @,
T Zo+To o 2dy, —Us — Ty — Zo — 2d — 2dy,
Tap—2 — 0, 24— — Zap—2 — 0,

o k>2, Yy_o— a2 — Wy, o — Tap—o — Zap—2 — 2d°FT — 242k =2d,y,
Z4k—92 2d2k—2d2,

and for k>3, bAk—i=2)q2itle  qAh—i=1)=242i42 for. j — 0, .k — 3.
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8 For k> 1, ko®~2(BSD1g) — ko®*~2(BDg) is given by;
00, P[] =0, Pl — 72[d2], b1 o gdkeis D g2
fori=0,..,k—2.

9 For k> 1, ko®* 1 (BSD1s) — ko®* Y (BDg) is given by;
Mtar] =0, Aluag] — 9ld**].
10 For k> 1, ko®*(BSD1s) — ko®*(BDg) is given by;
Tap — 0, Tuyp — a**, Zgp = 242Ny, Ty — 0, Ty — d2F,

and for k> 2, bAk—im)=2g2ip  , qAk—i=D) 242 for ;= .k — 2.

4.5.2 k‘O*(BSle‘) AND kO*(BQg)

By the results of ko*(BQsg) in Theorem 6.4.2 in [13], we can make explicit the gener-
ator name for ko*(B@s) by working on representation theory only. To do this, it is
simply to work out on character table of RU(Qgs) which is shown in the proof of lemma
2.2.3 (i.e., we have that 1, pa, p3,ps are real representations and v is a quoternionic
representation).

Precisely, with the same symbols in Theorem 2.4.6 in [14], we have character
table of va = 1 — p3,vb = 1 — py,v%q = 2—v (note that 1— py = 4v%q —vq® —va —vd)
as;

] | [s*] | [s°] | [¢s”] | [ts]

va | 0 0 2 0 2

vb 0 0 0 2 2

v¥qg | 0 | 4 2 2 2

and character table of cRSp(Qsg) as;

cRSp(Qs) | [1] | [s7] | [s°] | [ts”] | [ts]
cqel 2 2 2 2 2
cqcpa 2 2 | =2 =2 2
cqeps 2 2 | =2 2 -2
cqepy 2 2 2 -2 | =2
cv 2 | =2 0 0 0

because ¢q = 1 + 7, where ¢ is complexification from RSp to RU. From here, we get
character table of JSp'(Qg) as;

JSp'(Qs) | [1] | [s'] | [s*] | [ts”] | [ts]
Ji 01 0 271 o |2/ !
Joi 0| o |2+ |21 | 0
Jai 0] 0 | 0 |20+ ) 214t
Jai 0 | 4 2! 2! 2




CHAPTER 4. REAL CONNECTIVE K-COHOMOLOGY 137

After relating these character tables to the symbols v, a, b, q, we have;

Proposition 4.5.3. (c¢f. [13]) The additive structure of real connective K-cohomology
of Qs 1is isomorphically given by;

n ko™(BQs) Generators
-8k -7 0 0
sk-6 | 2 FiPlut)
—8k —5 2] A nlvq)
—8k—4 | Za® (ZhH)* | BF20?, pFv?{2va, 2vb, v?q, 2vq?}
-8k —3 0 0
k-2 | [ (1], [oa], [ob], [o*¢7]}
—8k —1 [2]* pF{[1], [val, [0b], [v*q?]}
—8k 7 (ZH)* B, B {va, vb, v?2q, vi¢®}
8k—T72>1 0 0
Sk-6>2 [ g1
8k —5>3 0 ol
8k—4>4 (Z))* vag2 1 ubg2h g2k—1 9p2q2%
8k—3>5 0 0
Si-2>6| [2 710%)
Sb—1>7| [ g™
Sk > 8 (Zé\)4 anQk,quzk, qQk" 2v2q2k+1

Now, the map is quickly calculated, by using Theorem 2.7.2, Proposition 4.5.3
and relations in ku*(BQsg), which we record as;

Proposition 4.5.4. The canonical map from ko*(BSDis) to ko*(BQs) is explicitly
given by

1 For k>0, ko8 =5(BSDyg) — 0.

2 For k>0, ko8 4(BSD1s) — ko 8*~4(BQg) is given by;

k202 — BF202, BM?2A = R20%h,  BFu?2B — 35203,

ﬂk7)22D2 — 514:21}6q27 Bkv2ﬁ — 261{?04(17 ﬂkU2D3 — 6(6k2v6q2) _ 16(ﬁkv4q).
3 For k>0, ko ®=2(BSD1g) — ko ®*=2(BQg) is given by;

3E00 — 0, BER2(1] — BF2(1], BRR2[A] - SRR [0d),
BER2(B] — BRRb], BFP[D?) - B [vie?], BFRPD%] - .

4 For k>0, ko %~Y(BSDs) — ko 8F1(BQg) is given by;

BRI - BRI, BRLA] — BRI, 3
BTB) — FF7eb], I v B, BF(DY) .
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5 For k>0 , ko 8 (BSD1g) — ko8 (BQg) is given by;

A1 = B4, BF A BFub, 3" B B*ub,
IBkDQ —s ﬂk 4 2 ﬁkc — 4ub — 2ﬁkv2q, ﬁkD3 N 6Bkv4q2 _ 65k02q_

6 For k> 1, ko®*=6(BSDg) — 0.
7 For k> 1, ko®**4(BSD1g) — ko**~4(BQg) is given by;

To + Yo > vbq, 2T +— 20bq, 2ty —Zo + Yy — 0,

e k=1, Zy + T — —vbq + 8¢ — 2¢2, —W5 — Ty — Fy — vbq — 6 + 202¢>
o k>2,

Tah—g = vbg® 1 2y o — Zap 2 0,

Yag—2 — 0, —Why_g — Tak— — Zak—2 — vbg®* 1 — 6% + 202¢°F,

Zak_o _2qu2k—l 4 8q2k—l _ 2U2q2k

and for k>3, b¥k—i=2)q2itle .0 for i =0,...,k — 3.
8 For k>1, ko®*2(BSD1g) — ko®*~2(BQg) is given by;

0, — 0, Wfta] — 0, P[] — 73], pikmimDo1g
0,....k—2.

T 0, for i =

9 For k> 1, ko®*1(BSD1g) — ko®*1(BQg) is given by;

nltax) — 0, Mtar] — 7lg**].

10 For k> 1, ko®*(BSD1) — ko®*(BQs) is given by;

Tap > 00g®*, Yy 0, Zap > 8¢%F — 2(vbg®* + 02, Tup 0, Ty — ¢

and for k> 2, b**—i=D=2g2r\ . 0 for i =0,...,k — 2.

4.5.3 ]{]O*(BSDH;) AND kO*(BC§;)

Recall that real connective K- cohomology on non-positive codegree is obtained directly
by representation theory. For ko*(BCg), we will write out the generator of ko’(BCg)
for 4 < 0 by using such theory, and for ¢ > 0 we will use the results from Theorem 6.3.1
n [13]. For the restriction map ko*(BSDi5) — ko*(BCs), we explicit such a map on
non-negative codegree and for positive codegree, we merely investigate the kernel.

Recall that, for i > 0, k:u_i( Cs) = RU(Cg)y < v > and RU(Cg) = [a]/(ozs—

1), where af(s/) =¥ st. c=ed = ‘2[( +1). It is not hard to see that 1,a* are real
representations and the remaining are complex representations. So, by representation
theory and Theorem 6.3.1 in [13] we have;

Proposition 4.5.5. (c¢f. [13]) The additive structure of real connective K-cohomology
of Cs on non-positive codegree is isomorphically given by;
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n ko™(BCy)

—8k — 7 0
—8k —6 Zh e, a?,a3,0%,a8, ") /(a +a”,a? + b, a® + o)
—8k —5 0
—8k —4 7Z<2>0(7H)* <20, a+a",a?+aba® +a® >
—8k —3 0
—8k —2 | [2]? < *[1], 7] > @ZL e, a?, a3, 0%, a8, a"]/(a + a”,a? + ab, a® + o?)
—8k—1 2> < 7(1],7la’] >

—8k RO(Cs)) =Z <1>a(Zy)* <a*,a+a",a? +aba® +a® >

The additive structure of real connective K-cohomology of Cg on positive codegree is
isomorphically given by ([13]);

e ko' (BCs) = (p1)'RO(Cy)b
° k,04i+2(Bc’8) = (pl)iRUasc(CS)é\y

for all i > 1, where p1 = p1(a) = ci(a)ei(ta) = (1 —a)(1 —a7) and RU,s.(Cs)y =
(Z5)? <a—a",a? —aba® —a® >,

Now, it is not hard to see that;

Proposition 4.5.6. The canonical map from ko*(BSDig) to ko*(BCs) on non-negative
degree is explicitly given by

1 For k>0, ko 8 =6(BSD1g) — ko 8¥=5(BCs) is given by;
BF30 = —(a— ) — (a3 — ).
2 For k>0, ko8 4(BSD1g) — ko 8*=4(BCj) is given by;
G202 — 2, BFu224 — 2 — 2a%, [Fu?2B — 0,

BFv22D?% i 4 — 4(a+ a7) + 2(a? + ab) — 4(a® + a®) + 8a,

D = 2 — (a4 ) — (a3 + a°) + 204,

BFv2D3 - 20 — 16(a + a”) + 12(a? + ab) — 16(a® + ) + 20a*.
3 For k>0, ko 8~2(BSD1g) — ko 3=2(BCs) is given by;

BFvf — —(a—a7) — (a® —a®), B — 721, BFPA] — 3?[1] — 7Plad],
B*7%[B] — 0, BRP[D?] =0,  BFP[D3] 0.

4 For k>0, ko ®=1(BSD1g) — ko 8*1(BCs) is given by;

AR = all, BFLA] a1 = flet], N
gFn[B] — 0,  BFD?] — 0, B*5[D3] 0.
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5 For k>0 , ko 8 (BSD1g) — ko 8% (BCj) is given by;

k11— 1, BFA—1—0a*, p*B—0,
BFD? - 2 — 2(a+a”) + (a? + ab) — 2(a® + o®) + 40,
BFC — =24 (a+a7) + (a® + a°) — 2a?,
BED3 12 — 9(ar + a7) + 6(a2 + ab) — 9(a® + aF) + 12a*.

For positive codegree, we found that (with the help of (3.12));

1 For k>1, ko®*=6(BSD1g) — ko®*=6(BCy), is monomorphism.

2 For k > 1, ko®*4(BSDyg) — ko®*~4(BQg) has kernel generated by Tu;_»,
Taio and b*F=1=2) @24 r for i =0, ... k—3.

8 Fork > 1, ko®*=2(BSD1g) — ko®*~2(BCy) has kernel generated by 72 [tar], 72 [Ua]
and b*E—i=D=1q2ir for j =0, ... k—2.

4 For k>1, ko® 1 (BSDy) — 0.

5 For k > 1, ko®*(BSDyg) — ko®*(BQsg) has kernel generated by Tk, Ty, and
for k> 2, bMk—i=D)=2q2i for =0, . k—2.

Accordingly, we observe from proposition 4.5.2, 4.5.4 and 4.5.6 that the canonical
map from ko*(BSDig) to ko*(BDs) @ ko*(BQg) @ ko*(BCsg) is not a monomorphism,
e.g., n[ts] — (0,0,0).

We investigate the real connective K homology for SDig in the next chapter.



Chapter 5

Real connective K-homology

In this chapter, we will calculate ko.(BSDi¢) as a module over ko*(BSDig) by using
the Greenlees spectral sequence with input ko*(BSDi6) and output ko.(BSD1g). That
is by using

Ey' = Hy*(ko*(BG); = kosy1)(BG),

where [ is the augmentation ideal of ko*(BG).

§5.1 Strategy of input for ko.(BSDis) of Greenlees spectral sequence

5.1.1 GENERAL STRATEGY

Strategy we have used in Chapter 3 still plays a big role in this chapter but we need
more work to do. Here, for input, we consider two short exact sequences. That is

0 — ST — ko*(BG) == Q0 — 0 (5.1)
and
0— T — ko*(BG) ™00 — 0 (5.2)

where QO is the image of ko*(BG) in KO*(BG) and QO is the image of ko*(BG) in
KU*(BG) s.t. ST is the (-torsion part of ko*(BG) and T is the ker7*. Here, QO
and QO are module over R := ko*(BG) via 7° and 7% respectively.

Moreover, let @7 be the ker(i : QO — QO). By snake lemma, Q7 = coker (i’ :
ST — T) or in other words, we have a short exact sequence

0— ST —T— Qr — 0. (5.3)

Generally, T will be 2- torsion part.

141
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Thus, to find Hj(ko*(BG)), it is convenient to calculate from the long exact
sequence induced by (5.2) together with the long exact sequence induced by (5.3). Nor-
mally, Q7 C 7 := n-multiple, since only n € KO* = Z[a,n, 3, (8)71]/(n?, 20, na, o —
43) is sent to 0 € KU*. Hence, if there is no n-multiple obtained from TU, v-torsion
part, then QT = 7.

5.1.2 STRATEGY FOR G = SDqg

In this case, by FEo-page, ST contains only elements that lie on the zero-line, i.e.
ST = TO, where TO, by definition in [13], consists of Bockstein oco-cycles in ZTU .
Furthermore those elements come from the v-torsion part, i.e., 7O C H*(BSDq4;F2).
On the other hand, 7 is n-multiples coming from the torsion free part which TON7 =0
and TO 4+ 7 = T. Therefore, as a 2-torsion part,

T=Z70TO
and hence there is also a short exact sequence
0—7—T—T0—0. (5.4)

Note that 7 is a module over R := ko*(BSDjs) via n° and T'O is a module over R
via ¢ of commutative diagram below;

kO*(BSDlﬁ) (5.5)
ldj* \
H*(BSD16; Z) — > H*(BSD1; Fa),
where ¢* is induced by ¢ : ko — HZ. Then, we can viewed T being a module over

R as a direct sum of module 7 and TO over R.

Hence, in order to calculate Hj(ko*(BSD;s)), we will use two short exact se-
quences (5.2) and (5.4). The reason to choose (5.4) instead of (5.3) will become clear
later. We will start with the calculation of Hj(R;T) in the next section.

§5.2 Local cohomology of 2-torsion T

To calculate Hj(R;T'), it is enough to calculate HY (p(R); TO), Ho (m°(R);T) and
connecting homomorphism induced by short exact sequence (5.4), where throughout
this section, R denotes ko*(BSDg).
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5.2.1 LOCAL COHOMOLOGY OF TO

In case of G' = SD1g, note that, by theorem 4.4.1, TO = p, TO?, where

(Z)2)F1, i =8k —6>2;

(Z)2)F2, i=8k—4>12;
TO' ={ (Z/2)F1, i=8k—2>6;

(Z)2)FY, i =8k >8;

0, otherwise.

In other words, we have a short exact sequence
0 — TO — ker(S¢?) —% H*(TU; S¢?) — 0 (5.6)

where ker(Sq?) = Fa[b?, d?]{br,d7} and H*(TU;Sq?) = F3[d?*]{dr} and all are module
over R via ¢. Note in this subsection that 7 = b*d — abd € TU .

Before doing further calculation, we need to identify the ideal I<1R of each module
explicitly. To deal with this we use the fact that Hj(R; M) = H;,(R/anngr(M); M).
Let M; = ker(Sq?) and My = H*(TU; Sq?). For M., ¢ = 1,2, we calculate

H7, (p(R)/anng gy (Mc); M) (5.7)

by working explicitly on p(R)/ann,g (M) = ¢(R)/{r € ¢(R)[rm = 0,Ym € M.}
first.

Lemma 5.2.1. We have,
Ry = w(R)/annv(R)(Ml) = Fz[b2, dz]{l, br, dT}/FQ[dQ]{dT}
and

Ry := ¢(R)/ann,g)(M2) = Fo[d?]{1, dr}.

Proof. It is clear that the image of R* for each codegree k < 0, 2R and n-multiples un-
der ¢ are all zero, since ¢(v), ¢(2) and ¢(n) are zero in H*(BSD1s;F2). Then ¢(RF),
for k£ <0, p(2R) and ¢(n-multiples) are all subset of annggy(Me). Furthermore, by
using

e explicit generators of R* in Theorem 4.4.1,

e explicit relations of generators in JU;,7 = 1,2,3,4,5 in terms of Chern classes in
Chapter 3,

e the fact that JUg,. = p*~1JU. where £ = 2,3,4,5 in which p(p) = P2 +¢® :=
d? + v,

e o := z2 annihilates TU and

o o(TO)=TO C M,
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we can conclude that
1 @(R8* =6\ TO® ) and o(R®* 2\ TO®2) are subsets of ann,g) (M) for cach
k>1,
2 ¢(generators of R*) =0, except ¢(Ta + Uy) = @(2t2 — 22 + 7p) = b2,

3 (generators of torsion free part of R¥~4) = 0, except ¢(7_o) = b*~2 for
k> 2 and

4 p(generators of torsion free part of R%*) = 0, except ¢(7y,) = b** and () =
d?* for k> 1.

Hence, Ry = TO UFy[b?,d?]. Since b* and br annihilate My, Ry = Fo[d?|{1,d7} as
required. O

Note that ¢(Ta + ¥y) = b%, p(us) = d*> and TO are in ¢(I) where I =
ker(ko*(BSDyg) — ko*). And note further that, (b7)?2 = 0°d%> € (b?,d?) and
(d7)? = b*d* € (b*,d?). Thus, by lemma 5.2.1 above,

If = /(b?,d?) and I}, = \/(d?).
Consequently,
;(I)(@(R%Ml) = H(*b2’d2)(R1,M1) (58)
and
o0 (P(R), M2) = H (2 (Ra, M3). (5.9)
Recall from definition 3.1.1 that Hj(R; M) := H*(K*(I) ®r M). Here, M, is a
ring and also a module over R, in which x € R and x= € M., then
1 1
Re - Me = Me -1 5.10
=) @n, =) (5.10)
Therefore,
H;(I)(RI;MI) = bz a2y (M)
b2 ) (Ea?, ) {br, dr})
Hyp o) (Fa[b®, d°]) - bT & Hyp o) (Fa[b?,d]) - dr
~ { 2 (Fo[0%, d%))Y D(Fo[0®, d%))Y, i =2;
0,

otherwise,

12

12

where the last equation comes from Example 3.1.5 and

HY ) (Ro; Ma) = Hip)(Mo)
)(FQ [d2]{d7 )
= Hip(Fald]) - d

53 HFold?))Y, Q=1
o 0, otherwise,

1
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where the last equation comes from Example 3.1.4. Now, we reach to the main goal of
this subsection;

Lemma 5.2.2. Local cohomology of TO part of ko*(BSDsg) is given by

HI(TO) = { i“(IFQ[dQ])V © S (Fs[b?, d?)Y @ (Falb?, d2))Y, i =2;

otherwise.

Proof. This follows by the long exact sequence induced by (5.6) and the results above
which yields the short exact sequence

0 — B4 (Fy[d?])Y — HF(TO) — T 3(Fa[b?,d?))" @ (Fo[b?,d*])" — 0.
This short exact sequence split because Hj(T'O) is mod 2 vector space. O

Next, we need to compute Hj(7) which we are going to do this in the next
subsection.

5.2.2 LOCAL COHOMOLOGY OF 7)-MULTIPLES PART

Recall from Theorem 4.4.1 for n-multiples part,7, that
7 = Z/ 240 [k, 7 [Ear]), 7 B 1), 7 B AL, 7 5" [ B), 7 B[ D7), 718" [D?]},
where e = 1,2,k > 1,n > 0. As the previous subsection,
H (7) = Hiapy(x°(R); 7) = Hj (R 7),

where R' = 7°(R)/ann o(gy(T) and I' 9 R'. So, the first task is to find VI explicitly.
To do this, we need to consider ann o R)(T). Obviously, it contains at least

e 7°(TO), since this is zero via 7°;

e All stuff of degree n which is not congruent to 0 or 1 modulo 8, since there is no
n-multiple on degree congruent to 0,3,4,5,6,7 modulo &;

e 27°(R), since 7 is annihilated by 2.

Now, we only need to consider degrees congruent to 0 or 1 modulo 8. However,
whether elements in degree n = 1mod 8 are in I’ or not, these elements will not be
generator of it radical, since they are all n-multiples which the power three of them are
all zero. This means that it is enough to consider merely on degree divided by 8 which
we have the results as;

Lemma 5.2.3. In codegree divided by 8, only T, tar, 81, B A, "B, " D? and ﬁ”]_N)S
for each k > 1 and n >0, are contained in R’ := n°(R)/ann o(r)(T).
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Proof. From the character table of JU; in Chapter 3, we see that
ﬂ4kﬂ4 — [16]€+17 (_2)]€+174k+17 (_2)]64’1,0,4]64’1]7

which is not in (1+47)JUy 1)1 for all k > 1, since the entry in the last coordinate in
character table of every element of (1+7)JUy 3 are divisible by 2-4*+1 | This means
Uy Uy # 0 and hence wy, € R’ for all k> 1. Similarly for Z4, this is in R’ because
they can not kill at least 77us. To conclude that "1, 3" A, "B, f"D? and ﬁ”f)?’ for
each n > 0, are in R’, we multiply them with the element §"7j[1], which yields that
they are not lie in (1+ 7)RU or (14 7)JUs, i.e., they are not zero.

In order to conclude that there are only these elements which are in R/, we need
to show that Tuy, ¥y, Zar and C are in anngo(py(7) for every k& > 1. This means we
need to check that they kill exactly every element in 7. Precisely, need to show that;

® uk[Van) € (1 + 7)JUsggn)—1 for each k,n > 1,0 € {z,y,2} and v € {t,u},

o aylf] € (1 + 7)QUg(—p)42 for each k > 1, n > 0, a € {z,y,2} and 0 €
{671, 8" A, 3" B, " D?, " D},

e C[Hu,) € (14 7)JUsy—1 for each n > 1 and for all v € {t,u},

o Cl] € (1+7)RU for all 6 € {1,A, B, D? D3}.

This is a routine work which we can read from the character table of JU; and RU in
Chapter 3. O

By this lemma, note that, as a set, I’ C Z/2 < 1, t4m, Usm, 8"A, 8B, "D, 3" D3 >

Ut for m > 1. Claim that
V() =TI (5.11)

To prove this claim, we need to check only that X* € (us) = {rtiy | r € R’} for some
k>0 and for all X € {4, Uam, B"A, BB, "D, f"D3}. Since gy = (g)™, Udm €
(ug). It is easy to see that, by character table, fi = (£2D%)1y and ty, = (L] ?)y
for m > 2. Then t4, € (u4) for all m > 1. By character table again, we have
(B"A)? = 232" A, (B"B)? = 26" B, 3"D? = 3"(3 - 1)u4 and

(B"D*)? = —3608%" A — 360" D? + 16252" D> 4 903%"C.

This means (87A)2, (3"B)2 and (8"(D?))? are zero in R, because R’ is annihilated
by 2 and thus we have proved (5.11). By the same argument as (5.10), we can conclude
that

H(7) = Hiyy (7).

Therefore,
Hi (1) = Hiy,y (1) ® Hg,) (7). (5.12)

Now, we are ready to compute Hj(7) by starting with HO )(7-) o F(m)(T) ={z €

(Ta

7| (@g)*xr = 0,3k > 1}. It is not hard to see that multiplied by 74 is an isomorphism
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on negative degree, i.e., UsT[Usr] = 7 [Us(p41)] and Wan[tar] = 7 [E4(k+1)] - This implies
that
[HY(7)], = 0, for all negative n.

In positive degrees, we start to investigate elements of
Z/2{G5 8" 1, 7° 8" A, 7 8" [B], 78" [D°], 78" [D°]},
for e =1,2,k > 1,n > 0, by checking only whether that u,T, for
T e = 2/2{[1),[A},[B, [D?], [D¥]},

are zero or not, since multiplied by w4 is an isomorphism on negative degree as stated
above. To do this, we need to judge that wsT', for each T' € 7/, lies in (14 7)JU3 or
not. To be more convenient, we record (14 7)JUs3 as;

I+7m)zzs:[ 0 0 O 0 0 8 ]

1+7)75:[ 0 0 0 0 16 0 ]

— ] (1+m)z:[ 0 0 16 0 0 0]
(1+7)JUs = 2 (1+r)%§:[ 0 8 0 8 0 0 ]>‘

(I+7)az:[ 32 -4 -8 —4 0 0 ]

1+7)@s:[ 0 0 0 0 0 0 ]

Now it is simple to see that ws[1] = [w4], u4[A] = [t4], ws[D?] = [t4], (In fact,
Uy D? = 4(1+7)uz+2(1+7)t3+3(1+7)2Z3+%4 ) and uy[B] and u4[D?] arein (147)JU3.
Thus,
[H? (D] = (2/2)° < 0°[BL i [D°], i ([A] + [D?]) >,

where ¢ =1, 2.

Next, we consider elements of Tsye- In this case, we need to check that whether
(w4)*T, for each T € 7/, are in (1+7)JU3 or not. This can be read from the character
table above easily which we have;

[H] (7)]s.e = (Z/2)* <7 BIAL 7 B[B), 761D, 77 BD°] >,
where € =1, 2.
Again, for elements of 7g;+. where k > 2. In this case, we need to check that

whether (74)**1T, for each T € 7/, are in (1 + 7)JU3 or not. This can be read from
character table above easily which we have;

[P (P)]skre = (Z/2)° < 7 B[], 77 B5 AL, 5785 [ B], i B[ D2, i B[ D?] >,

where e = 1,2 and k£ > 2.
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For [H}(7)]«, it is now easy to determine by considering the short exact sequence;

0 — Hig, (1) — 7 —=7lg;] — Hig,(r) — 0. (5:13)
Here, note that,
1 . . u
Te+8n[{] = lim( Te+8n = Te+8(n—1) S Te4+8(n—2) e )
4 g
Te—8

(Z/2)% <7 [l (@a)"*, 7 [fa] / (@a)" ™ >
where € = 1,2, by Proposition A.0.4.

Since for all negative n, i is an isomorphism on those degrees, [H}(7)], = 0, for
all negative n as well. Furthermore, since [HY(7)]gkt+e = (Z/2)° for k > 2, i is zero
map on those degrees and hence

[H}(7)shre = (2/2)% <0 [@a)/ (@)™, 7/ (@a) " > .

Now, it remains to calculate on degree ¢ and € + 8 which is simple to see that
[Hj(7)]e = 0 and [H}(7)]s1e = Z/2 < i[0a] /(@a)* >.

We summarize these results in the lemma below;

Lemma 5.2.4. Local cohomology of n-multiples in ko*(BSD1g) at I = (uy) consists
of two parts H(Om)(T) and H(, )( 7). Ezplicitly,

(Z/2)* < 77 [B]. 7 (D, 7 ([A] + [D?]) >
[HY (7)]esn = (z/2)* <nﬂ[A] 7°ABl, 1 BID, 7 B D?] > _
@R (2)2)° < 7B, i BF AL 7 85 [B), 7 BF [ D2, 77 ¥ [ D?] >
07

where e = 1,2 and n =0,8,8k, k > 2 and otherwise respectively. And,

Z]2 < 1 [ug]/ (Us)? >,
[Higy(Mletn = (Z/2)% < 7ua) /(@) 7 [Ea] / (@a) "+ >,
0,

where e = 1,2 and n = 8,8k, k > 2 and otherwise respectively.

Consequently, by lemma 5.2.2, 5.2.4 and the long exact sequence induced by (5.4),
we have;

Corollary 5.2.5. Local cohomology of the 2-torsion part T in ko*(BSDsg) is given
by
HY(7), ifn=0;
Hi(r), ifn=1;
n — I ’ ’
H (T) = H?(TO), ifn=2;
0, otherwise.
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Note here that, if we use the long exact sequence induced by (5.3), then we will
have more work to determine connecting differential 6 : Hi(7) — H?(TO). Hence,
this is the answer to the question that why we prefer to use (5.4) instead of (5.3).

§5.3 Local cohomology of torsion free part

As in the previous process, the first thing we need to do before calculating local coho-
mology of QO is to determine the radical of its ideal explicitly.

5.3.1 RADICAL IDEAL FOR TORSION FREE PART AND H?(QO)

In the case of QO of ko*(BSD1g), we have;
Lemma 5.3.1. H}(QO) = He, (QO), where q = (T4 + Yy) € T(ko®(BSD1g)).

Proof. To find the radical of ideal I'<7"(R), we use the same trick as in the case of TO
and 7, i.e. investigating R := 7"(R)/ann u(g)(QO). By theorem 4.4.1 and character
table, it is clear that 70 and n-multiples parts kill QO, then we need only to consider
on the torsion free part. Again, in this case it is not hard to see that multiplying by

q=[16,-2,4,-2,16,4] = 7" (t4 +7,) € 7 (ko®(BSDss))

gives an isomorphism, for each k& > 1; @_(8k+2) ~ ¢*QO_,, @—(81@—&-6) ~ ¢*QO _g,
@,(8k+8) ~ ¢*QO_g and m—(slﬂru) >~ ¢*QO_1,. Note that multiplied by ¢ on
@4 is not isomorphic to QO_;, because Tg can not write in term of elements in

qQO_y4.

Now, it remains to show that there exist n € N such that (QO,)" and (QO~)"
are in (¢), where ¢ = —2, —4, —6, —8, —12. Since (QO.)* C QO,. and by isomorphism
above (i.e., multiplied by ¢ in negative degree) for which k is big enough, the results
follows in negative degree. For non-negative degree, it suffices to consider degrees 0, 2, 4
and 6. By the character table again, we have;

0> = 0q
At = (24)? = (AD? - A?)q
B®=(2B)> = (AD?+ A% 4+ B%)yq
c*= (D) = 16Dq

(D** = (D* +2D)* = (DY +8D® +24D% + 32D* + 16D?)q.
This shows that /(¢) contains @20 and hence \/@ = /I’ as required. O

The consequence of this lemma is that H}(QO) = H (Oq) (QO)® H (1q) (QO). Recall
that all elements of QO can be represented by character table. The character table
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of ¢ is not zero except in the first coordinate, i.e., conjugacy class of identity. This
suggests that each entry in character table of elements in H ?q) (QO) = Ly (QO) must
be zero, except for the first coordinate. Such elements exist possibly in non-negative
degree which is divisible by 4, i.e., on degree containing 3*[1] and 3¥[2v?%]. Precisely,
we have;

Lemma 5.3.2. For k >0 and QO = Im(7" : ko*(BSDys) — KU*(BSDs)),
7 <v¥*[p] >, ifi=8k;

[HY(QO); =< Z < v*[ap] >, ifi=8k+4;
0, otherwise,
where
p = [16,0,0,0,0,0,0]
28 13 4 5~
= 16-1—-[—A+8B—- —C+-D*>--D?
[ 34T 3¢ 73 9 }
and
ap = [32,0,0,0,0,0,0]
92 T—
= 16-a—[-8(24) +8(2B) — 16(2D?) + 3D+ §D3},

such thati, A, B,C,D?, 53} and {a = 2v%,2A,2B, D, QDQ,ﬁ} are the set of gener-
ator for QO and QO, respectively (see theorem 4.4.1).

Proof. This results follows by inspection of the character table. O

532 H}QO)

Next, we calculate H (1q) (QO) as the coker(QO — @[%D by using the fact that

—~—1 e T = 4 A q

(QO[Q])t =lim(QO;, — QO; g —— QO o5 — ).

Note from the proof of lemma 5.3.1 that multiplying by ¢ is eventually constant at
degree —2, —6,—8 and —12. This implies that

[H(lq) (QO)); =0 , for all i < —4 and

H ,2Q0_15/qQ0_, and for k>1

Ho = Q0_3/qQ0, , Hg, = Q0_g/q""Q0g;

H; 2 Q0_4/qQ0, , Hgrya = Q0_/¢" " Q0g,4»

H;=Q0_15/¢*Q0_4; , Hgipa 2 Q0_15/¢"?Q0g; 14
Hs =2 Q0 _,/qQ04 . Hsire 2 Q0_y/q" 1 Q0g; 4,

where H denotes H (1q) (QO). The rest of this subsection will devote to the proof of;
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Lemma 5.3.3. As abelian groups;

° F_4 =7Z/2<T_9> with T_9 =y_o9 = g_gf %7_2 and ’lle_ﬁ =0, where a_g =
%—FQO_H for each a € {x,y,z,t',u'} and t'¢ = 2t —Z¢, u's = —u*s —T6 — 26,

o Hoy=7/2 < 5o > with To=20=1to=0 and Jo = Uy, where &0:%+@_8
for each o € {x,y,z,t,u},

° F4 =7Z/2 < Z > @ Z]4 < Ty > @7Z/87< 7,7’2 > @ Z/16 < yo > with
t'o—2To—8ys—2zo—4u'y = 0, where ag = %—FQOAQ for each o € {z,y,z,t',u'},

e For k>0, F8k+2 = Z/2k+l < Wapy1 >, where Wy = q?% + Q0 _g,

e For k>0, Hgprg = Z/2k+1 < 7;’4k+3 >, where 1;’4k+3 = qfi}l +QO_, such that

W1:91 :ﬂ1—51—2@1,

o For k > 1, ng+4 = Z/Qk < ?419—&—2 > @ Z/2-4k < Zggpro > P Z/4k+1 <
E4k+2 > © Z/S -16% < 7?4k+2 > D Z/16k+1 < ?74/]3+g > with ak+2 = 7?/4k+2 +
(=2)" T gpro+ (—=8)F Par2 — (—2)*Zapq0 — 4(—=8) U/ yjt2 , where dgpyo = %Jr
QO_yy for each o € {m,y,2,t' u'},

o For k>1, Hy, =Z/2" 1 <ty > @ Z/2 41 < Zy + 40y, > @ 7/4F <
Tge > ® L/2-16% < gy > @ Z/4-16% < g > with Ly = typ — (—2)FTg —
2(—8) gy 4+ (—2)F 12y — 2(—8)*lygr, where gy = q,?% + QO_g for each a €
{z,y,2z,t,u}.

The H;’s which are not mentioned above are all zero.

Proof. As in Chapter 3, we do calculation by using row and column operation on gen-
erators.

For H_, , we can represent matrix for the calculation of QO _1,/qQ0O_, as

Te Y 26 t'e us
qZ2+7):[ 1 1 0 0 0 |n
q2z2):| 2 0 0 0 0 |ro
q2ta —Z2+7):] 0O 1 0 1 0 |rg’
q(EQ + 52) | 1 0 1 0 0 |T4
q(—mz — T9 — 22) : | 0 0 O 0 1 |7"5

After doing column operations, we get
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@)
=
¢
o~
Q
w
o
N
o
ot

il 01 0 0 0 |
il 2 0 0 0 0 |,
rg:] 0 0O O 1 0 |
ra:l 00 1 0 0|
rs:] 0 0 0O 0 1 |

where c/1 =1 —cy+cg—cg and c/2 =co9—c4. By using the same methgd as in Chapter
3, we get g1 = T6,92 = Te + Yg, 93 = T6 + 26,94 = t'6 + Yg and gs = /¢ and then the
results follow.

For Hy , we can represent matrix for the calculation of QO _g/qQ0, as

Ty Yg Z4a U4 U
gl:] 0 1 0 0 1 |
gA:| 1 0 0 -1 0 |r
gB:| 1 2 0 0 0 |rg.
oC:| 6 0 1 —4 -8 |ry
qD?>:] -6 0 -3 9 16 |r5
gD3:| =30 0 —15 36 72 |rg

Now, we do row operations by changing;

ri=ry, ro — [ry = —r}],

ry — [ =r3 —ro + 17|,

ry — [y = ra = 6ro] — [r] =7} —r5 + 73],

rs — [rf =15+ 6ro + 31| — [ri =1l + 8r1 — 4r3 — r{],

re — [r5 =16 + 30re + 1567 — [rf = 1§ — 6rf] — [r§ = rf — 6r%].
Then, we get Step(*) [cf. Chapter3] and the required results as

Ty Yy Za a4 W 91 92 g3 91 G5

Ccl1 C2 C3 C4 Cs Cl C2—Cy C3 Cq4 Cs
] 0 1 0 0 1 | i) 0 0 0 0 1 |
rs:] 10 0 0 0 | o rh:| 1 0 0 0 0 |
50 2 0 0 0 | ] 0 02 0 0 0 |-
el 0 0 1 0 0| el 00 1 0 0 |
il 0 0 0 -1 0 | i) 0 0 0 -1 0 |
el 00 0 0 0 | ré:] 0 0 0 0 0 |

By using the same method as in Chapter 3, we get g1 = T4, 92 = Uy, 93 = 24,94 = 14
and g5 = u4 + Y, and then the results follow.

For H,4 , we can represent matrix for the calculation of QO _,5/¢*Q0, as
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Ts Yg 26 te us
P:| 2 8 3 -1 4 |n
P?RA):| 4 0 0 -2 0 |re
?@2B):| 4 16 0 0 0 |r3.
@2(2D%):| 8 0 36 2 64 |y
¢?D:| 4 0 10 0 16 |rs
@?D3:| 16 0 136 0 256 |rg
Now, we do row operations by changing;
r—[rf=nr —|—7“§],
re — [r3 =T — 2r] — 15 + 73],
ry — [1§ =13 —1—7"4]
ry — [ry =ry+ 1o —Ars] — [} = 1) — 2rf — 1g],
r5 — [rs =15 — 4r1 4 219 + 2r3] — [rf =L + 3r}],

re — [rg =16 — 1615 — 61| — [r§ = 1§ — 61}
Then, we get Step(*) and the required results as;

Te Ys 26 t'e u's g1 92 93 94 G5

C1 (&) C3 Cyq Cs C’l 0/2 0/3 Cq 6/5
ri:] 2 8 1 -1 4 | ri:] 0 0 0 -1 0 |
r5:/ 0 0 O O -8 | _ r:[ 0 0 0 0 =8 |
ry:| 0 16 0 0 o |  ri:] 0O 16 O 0 0o |’
i -4 0 0 0 0 | rp:] -4 0 0 0 0 |
rg:] 0 0 -2 0 0 | rg:] 0 0 -2 0 0 |
ré:] 0 0 0 0 0 | ré:] 0 0 0 0 0 |

where ¢} = ¢1 +2¢4, ¢y = ca +8c4, ¢ =c3+cs and ¢ = 5+ 4cs. By using the same
method as in Chapter 3, we get g1 = T¢, g2 = Y, 93 = Z6, 94 = t'6 —2T6 — 8Yg — 26 —4us
and g5 = u'¢ and then the results follow.

For Hgjy4, k > 1, we can represent matrix for the calculation of QO _15/¢*2Q0,

as
6 Yo 26 s g

2 (a) | 2-4F 8-16F 4F + 2. 16F —(=2)F  4.16F |n

" T2(24) 1| 4-4F 0 0 —2(—2)* 0 |72
¢*2(2B) ;| 4-4% 16-16* 0 0 0 Irs .

¢"*t2(2D?) ;| 8-4F 0 4-4F +32-16F  2(-2)F  64-16F |ry

¢"?D | 4-4F 0 2-4F 4816~ 0 1616 |rs

¢*t?D3 ;| 16-4F 0 8.4k 4128 - 16F 0 256 - 168 |rg

Now, we do row operations by changing;
r— [rt =7y + 4kr2],
rg — [ry =1y — 217 —ri 41y +1}],
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rs — [7’; =15 —4ry + 2ro + 2r3 + 37’2],
re — [rg =16 — 16r5 — 121y — [r§ = r{ + 12r%].

Then, we get Step(*) and the required results as;

[N

Ys Z6
C9 C3
8- 16F 4k
0 0
16 - 16" 0
0 0
0 —2. 4k
0 0
92 g3
A h
0 0
0 0
16 - 16" 0
0 0
0 —2. 4k
0 0

t 6 u’6
Cyq Cs
—(=2)F  4.16*
0 —8-16"
0 0
0 0
0 0
0 0
94 g5
c4 ck
—(=2)* 0
0 —8-16"
0 0
0 0
0 0
0 0

I

)

154

where ¢} = c1+2(—2)kcy, ch = co+8(—8)Fcy, ¢ = c3+(—2)Fcy and ¢k = c5+4(—8)kcy.
By using the same method as in Chapter 3, we get g1 = Tg,92 = Ys, 93 = Z6,94 =

t,6 + (—2)k+1f6 4 (—8)k+1§6 _

follow.

(—2)Fz6 — 4(—8)*u/ and g5 = /¢ and then the results

For Hgy,k > 1 , we can represent matrix for the calculation of QO_g/qQOx;, as

qk—l-ll
qk+1A
qk—HB
qk+1C
qk+1D2
gkt D3

T4
ai
4k
4k
a2
as
G4

Ya
16"
0
2. 16"
0
0

0

Z4 f4
4k—1 —4. 16k—1 (_2)k—1 4 8. 16k—1
0 —(—2)k
0 0
2.16% — 4k —4.16*
4k — 4. 16F (—2)F +8-16*
3-4F — 18- 16" 36 - 16*

Uy
16~
0
0
—8.-16F
16 - 16*
72 - 16*

8!
72
73
|74
75
76

where a; = 2-4F1-8.16%"1, a9y = 2-45+4.16F, a3 = 2-4¥—8.16* and a4 = 6-4F—36-16".
Now, we do row operations by changing;

ry— [rf =
rog — 7"22

[
[r3
ry — 1) =
[rs
/
6

r+2- 4’“_11“3K + 4k= 1yt

—A(-8) ey,

ra = 18] — 5 = 1 — 200 + 1} 4 73],

:T3_Tg]7

T4+ 8r1 — drs — drg] — [r] =l + 2rf] — [} =] + 23],
rs +2ra] — [r5 =15+ 712 + 1y — [r5 =15 — 2],

=1e+9ry] — [rf =1+ 61y —2rl] — [r§ =rf — 2rf].
Then, we get Step(*) and the required results as
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T4 Yy Z4 ty U4
C1 C2 C3 C4 Cs
rio| 241 16k 4k=1 (—2)F1 16" |
T 0 0 2. 4k—1 0 —2-16F | _
5 0 2. 16" 0 0 0 |
i 0 0 0 0 —4-16%F |
i 4k 0 0 0 0 |
e 0 0 0 0 0 |
g1 g2 g3 ga gs
4 4 c 4 s
rii] 0 0 0 —2)k-1 0 y
r5i] 0 0 2. 4kt 0 0 y
ri:] 0 2-16% 0 0 0 |
i 0 0 0 0 —4-16%F |
ric] 4k 0 0 0 0 |
rés] 0 0 0 0 0 y

where ¢} = c1+(=2)Fcs, ¢y = ca+2(=8)Fes, ¢y = c3— (=2)"tey and o = 5 — 4 ey,
By using the same method as in Chapter 3, we get g1 = %4,92 = Yy,93 = Z4 +
4k+lﬁ4,g4 =14 — (—Q)kf4 - 2(—8)k?4 + (—2)k_1§4 - 2(—8)kﬂ4 and g5 = u4 and then
the results follow.

Eoof of Hgpo and Hgyyg for all k > 0 are easy because Q70—2>Q70—67@8k+2
and (QOg, ¢ are free abelian group with one generator and furthermore, " T1Q0g; e =
+2M1Q0 ¢, for £ =2,6. The final statement in the lemma 5.3.3 is obvious. O

§5.4 FE’-page

In this section, we will calculz}te the E?-page by using the similar process as in Chapter
3. That is by considering E'2 -page as a combination of H}(T) and H;(QO) and then
determine the connecting homomorphism.

5.4.1 CONNECTING HOMOMORPHISM 6

To get the E*-page, i.e., Hf(R), where R = ko*(BSDsg), we need to determine the
connecting homomorphism in the long exact sequence induced by (5.2);

0 — HY(T) — HY)(R) — HY(QO) "~ HNT) — H}(R) —

H}QO) -~ HX(T) — H3(R) — 0,

since Hi(T) and H} *(QO) are zero for i > 3.



CHAPTER 5. REAL CONNECTIVE K-HOMOLOGY 156

Determining 6" in our case is not hard. It is actually a zero map. This is because
H}(T) = H}(r) which concentrate in degree n = 1,2mod 8, by corollary 5.2.5 and
lemma 5.2.4, whereas HY(QO) concentrate in degree n = 4mod 8, by lemma 5.3.2.
This gives two exact sequences;

0 — H)(T) — HY(R) — H)(QO) — 0 (5.14)
and
0 — H}(T) — H}R) — H}QO) -~ H}T) — H}(R) —0.  (5.15)

The short exact sequence (5.14) splits because HY(QO) is free abelian group over Z,
by lemma 5.3.2, and hence

HY(R) = H)(T) & HY(QO). (5.16)

It is clear that H:(R) =0 for all i > 3. To determine H}(R) and H?(R), we need to
investigate connecting homomorphism §'. If 6! is determined then we will get;

0 — H}(T) — H}(R) — ker(6') — 0 (5.17)

and

H?(R) = coker(d"). (5.18)
Now, the main task is the calculation of ker(6') and coker(§'). Before doing further
calculation, it is useful to collect the results together, Elé-page.

542 E'3-PAGE

Elé—page here is the immediate results of the previous two sections. The purpose of
displaying this diagram is to provide all information involved in the calculation of the
E?-page. Precisely, need to show the motivation of using some facts of ko.(BSD1s) to
determine connecting homomorphism §.
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degree(t)
: : : : 27
0 | 2* «—1 22 @ [16] 25 26
0 0 22 2° 25
0 |24 <16 [4a32e64®[2-16% @ [4- 163 Z 24
0 0 0 0 23
0 |2 «——d [8] 0 22
0 0 0 0 21
0 |2 61, [4] @ [32] @ [64] @ [2048] & [4096] 7 20
0 0 0 0 19
0 |23 «—t4 22 & [8] 25 18
0 0 22 25 17
0 |23 «—t48 [2] @ [8] & [16] & [512] & [1024] Z 16
0 0 0 0 15
0 |22 «—¢4 [4] 0 14
0 0 0 0 13
0 |23 «—+é [2] & [8] @ [16] & [128] ¢ [256] Z 12
0 0 0 0 11
0 |22 «—46k 2D [4] 24 10
0 0 2 24 9
0 22 —1 4} 2] @ [4] @ [32] & [64] Z 8
0 0 0 7
0 |2 <~—4 2] 0 6
0 0 0 0 5
0 |22 «——4 (2] @ [4] @ [8] @ [16] Z 4
0 0 0 0 3
0 2 01 2] 23 2
0 0 0 23 1
0 2 <+ 44 2] Z 0
0 0 0 0 -1
0 0 0 0 -2
0 0 0 0 -3
0 2 <tk 2] 0 -4
HEZYR) H3(T) O H}(T) e H}(QO) HY(R)
where[n] := cyclic group of order n, 2":= elementary abelian group of rank r.

Figure 5.1: The Elé—page of Greenlees spectral sequence for ko.(BSDig).
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5.4.3 SOME STRUCTURES OF H?(T) AND H}(QO)

So as to investigate the connecting homomorphism §1: HH(QO) — HZ(T), it is useful
to understand the module structure of H}(QO) and H#(T) over R := ko*(BSDjs).
Recall, however, from lemma 5.2.5 and lemma, 5.2.2 that,

H}(T) = H{(TO) = X4 (Fa[d?))Y @ 72(F2[0?, &%) @ (F2[0?, d*))".
Here, HZ(T) is a module over Fo[b? d?]. Then 2[H}(QO)] C ker(é6'). Thus, it is

enough (in order to investigate 6') to consider H}(QO)/2[H}(QO)] :== M as a module
over Fo[b?, d?] as well. To do this, we need to see how b%, d? act on both H#(T') and M.

In HIZ(T), we can write its elements explicitly (see, discussion before lemma
5.2.2) as;

Diagram 5.2: Explicit elements of HZ(T)

—4 -2 0 2 4 6 8 10 12 14 16 18 20 22 ...« degree
2 ) a bd b d b bd b d b bd b d b
Hf (D)n: 7 ™ ™ PR e el SR S~ S o7 S S ()
Lbd Lbd b Lbd . bd Lbd .
b2 b4 b4 b2d2 242 342 pdd2 242 244
Lbd Lbd b L bd b
b6 b8 b8 b642 642
Lbd
10
: . . 2 d . Td bd . Td b. Tb
Notation: 7 := b°d — abd, T = 2 T = 2aZ and 7° := 2242

The b%,d? action on H?(T) is given by;

9 d 2 bd bd 2 b b
b* - dTTJ - 07 b= szidzj - b2i7;2d2j> b= bQZ—de - b2iz—2d2j (5'19)
and
2 7% _ _rd 2 rbd rbd 2 Tt b
d Td27 T d2i—2» d= - b2id27 — p2ig2i—2 d= - b2id2i — p2ig2i—2 (5-20)

where 7, j > 0. This action is clear from the additive structure of H?(T') in the diagram
above.

In M = H}(QO)/2[H}(QO)], the action of b*(= [0,0,0,0,4,4]) and d*(=
[16,—2,4,—2,0,4]) are obtained easily by calculation on character table of lemma 5.3.3,
which we have;

® b2M_4 =0 and dQM_4 = 0,

o ngo = 5_2 and d2M0 =0
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o V2 = Jio, b2F2 = 25 = 0 = b?% = b?t'y = b*u/y and d?dy = G_» = T_» for each

a € {x,y,2,t'} whereas d?u/s =u/ 5 =0,
o VMg =0 and d?Mg =0 since M_o =0,

o For k> 1, b*Zyp = 2Tap—2 = 0, b*Yup = Yan—2, b*Zax = bty = 0,0%Ugp = Tap—2
and d%ayy, = Qy(p—1) for each a € {z,y, z,t,u},

e For k> 1, b2M8k+2 =0 and d212)’4k+1 = ZZ4(/§_1)+1,

o For k> 1, b*Tupyo = 2Tar, = 0, V*Yapr2 = Yak, b*Zanpp = bt apqo = Du/apo =
0 and d?qup2 = dup_o for each a € {w,y,2}, d*d/4p12 = /4o for each
a € {t,u},

e For k > 1, bQMngrG =0 and d21;,4k+3 = 1;’4(k_1)+3.

As we have done in Chapter 3, instead of finding 6! directly, we prefer to consider
(61" [HF(T)]Y — [H](QO)].

Here, [H#(T)]Y and MV are also module over Fo[b? d?]. For the b? d? action on
them can be obtain easily from the structure of H?(T)] and M together with the
help of lemma 3.4.1. However, we need to determine &', : M_y — [H?(T)]-4,
88+ My — [H3(T))o and 61 : My — [HZ(T)]2, see Elé-page, first. We are going to
deal with this in the next subsection.

5.4.4 ko (BG) AND DIFFERENTIAL

Recall from Elé—page that §1, and §} are homomorphisms from Z/2 to itself. These
maps are actually isomorphisms because of the connectivity of ko,(BG), precisely,
ko,(BG) = 0 for all n < 0. For §i, we need more work to do. First, note that
koo(BG) = Hy(BG;Z) since BG is a connected space. Indeed, this isomorphism
comes from the long exact sequence induced by the cofibre sequence (killing homotopy
group)
ko<1>— ko — ko(f = ko(—00,0] = HZ,

smashing with BG and applying m, together with the fact that mo(ko <1 > ABG) =
0 = m_1(ko < 1 > ABG) and my(ko A BG) := koo(BG) and mo(HZ N BG) :=
Hy(BG;Z), where ko < 1 > is 1-connected cover of spectrum ko. This implies that

kOO(BSDlﬁ) =7

and hence 5% can be possibly only a zero map or an isomorphism map. It depends on
whether do : [HY(R)]; — [H?(T))2 is a zero map or not.

By using the fact that 512 and (55 are isomorphisms, (i.e., 5£2(§_2) =74 and

6¢(@o) = 7 ), and Fa[b?, d?]-module structure of H?(T) and H}(QO), we can con-
clude that &3 is surjective. This implies that

koo(BSD1g) = (Z./2)° < #2[B], 7*[D%), i*([A] + [D?]) >, (5.21)
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which contains eight elements of order two. Fortunately, we have;

Proposition 5.4.1. For G = SDig, the natural map n, : ko1 (BG) — koa2(BG) is
an epimorphism.

Proof. The cofibre sequence Y ko "+ ko —> ku induces the long exact sequence;
- — kop—1(BG) — kon(BG) — kun(BG) — koy—2(BG) — kop—1(BG) — - -
In particular, for G = SD1g and n = 2, we have

Tx

— koi(BG) = koy(BG) —> kug(BG) 2> kog(BG) — koy(BG) — -+ .
Since kug(BSD1g) = Z (by Theorem 3.5.1), koa(BSD;g) is finite generate (by (5.21))

and 7, is homomorphism, r, is a zero map. Therefore 7, is an epimorphism. O

The consequence of this lemma is that;

Corollary 5.4.2. 81 is an isomorphism.

Proof. Suppose 1 is a zero map. Then dy is an isomorphism and hence EY =
(Z/2)?. Consider the commutative diagram of the natural map 7, : koj(BSD1g) —
koa(BSD1g) below;

0—=E?=2/2 —>koi(BSDys) — E%' =(2/2)2 —0

J{n’*:O i”* ini’

0——>pxd =0 —koa(BSDws) — g% —(z/2p "

This diagram treats that 7. can not be epimorphism which contradicts to the Propo-
sition 5.4.1. Hence, 6% is an isomorphism as required. ]

Now, we already have the explicit maps
(0L)V(r=) = (@-2)7", (6)" (") = (o) " and (6})"(77") = (w1)~'.  (5.22)

Here 77¢,77% and 77% denote the dual of 7¢,7%¢ and 7° respectively and sim-
ilarly for (&;)~! denote the dual of &;. We use the same process as in Chapter 3 to
determine the module structure of [H#(T')]" and [H}(QO)]" over Fa[b?, d?]. Then 5.22

and module structure yield all (6})¥ which we record as;

(™) = @)+ @)+ () (5.23)
YY) = () (5.24)
(HVHEr70 = 0,¥i>1,7>0 (5.25)

OO (@) = () 4 () TV > 1 (5.26)

OV (@) = (@)Y =1 (5.27)

(§H)Y (p*FD g2ty = ()L VE> 2,k > i >0 (5.28)
(Y)Y (D=2 by — (g )T VE> 2k >0 >0 (5.29)
()@ = (Fago2) ™+ @ag-2) "+ [@ag-2) " + (Fay-2)'(5.30)
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where the last equation applies for j > 2.

Finally, after applying lemma 3.4.1 on (61)¥, we can find ker(d') and coker(d') =

H?(R) as:

Lemma 5.4.3. As an abelian group, [ker(61)]; =0 for i <4 or i is odd, and

[ker(01))s = Z/ADZ/8 B Z/8 generated by o + %2, u's and 2§ respectively.
[ker(6%)]g = Z/2 generated by w's.

[ker(61)]s = Z/2®Z/ADZL/16 DZ/32 generated by Zy + 4ty , T4, 204 and iy
respectively.

[ker(61)]10 = Z/2 generated by 2ws .

[ker(61)]12 = Z/8 B Z/16 B Z/128 B Z/128 generated by %+ tg, %6+ ¢, ' and
2ye respectively.

For k> 2, [ker(6Y)|sr, = Z/2 1 @ 2/2-4* o Z/4F © 7./16% © Z/2-16% generated
by tar, Zan + A Uk, Ta, 20ae and Uy respectively.
For k> 2, [ker(6Y)]spro = Z/2F generated by 2Wapy 1 -

For k > 2, [ker(6Y)|gpya = Z/2F @ Z/2 - 4k @ Z/4AF 9 Z/8 - 16 © Z/8 - 16F
generated by 2tapyo,tapt2 +Zakt2, Takr2+2akt2, Wakyo and 2yspi2 respectively.

For k> 1, ker(6)]sprs = Z/25 generated by w'spys.

Furthermore, as an abelian group, [H?(R)]; =0 for i <6 or i is odd, and

[H?(R)]e = Z/2 generated by Z—;,
[HF(R)]s =0,

[H%(R)|10 = Z/2 generated by g—:,
[H?(R))12 = Z/2 generated by Z—? + %,

[H?(R))14 = (Z/2)? generated by Z—: and %,

d

[H?(R)|16 = Z/2 generated by %d + %,

b

For k> 2, [H?(R)|sk+2 = (Z/2)* generated by gm0 <i <k -1},

Tbd bd

For k > 2, [HIZ(R)]%—H = (Z/2)* generated by {b4(k7i)+2d2i + b4(k—i7;r)+2d2(i+1) 0 <
i<k-—1},

For k> 2, [H?(R)|skve = (Z/2)**1 generated by {WM\O <i<k},
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bd

bd
o for k > 3, [H?(R)]8k+8 = (2/2)k generated by {b4(kj'+1)d2¢ + b4<k;)d2(i+1) 0 <
i<k-—1},

Now, we reach to E2-page. Here, E2?-page denotes the E?-page as normal but
with the assumption that the short exact sequence (5.17) split (i.e., up to the additive
extension problems). The notation @* refers to the direct sum of groups as normal but
it comes with the assumption that the extension problems associated to the groups are
trivial which we will determine them later.

degree(t)
: : : : 27
0 23 22 o* [§] 25 26
0 0 22 25 25
0 22 [4] @ [32] @ [64] & [163] & [2 - 16] Z 24
0 0 0 0 23
0 23 8] 0 22
0 0 0 0 21
0 22 [2] @ [32] @ [64] B [2048] & [2048] Z 20
0 0 0 0 19
0 22 22 o* [4] 25 18
0 0 22 20 17
0 2 [2] @ [8] @ [16] @ [256] @ [512] Z 16
0 0 0 0 15
0 22 [4] 0 14
0 0 0 0 13
0 2 [8] @ [16] @ [128] @ [128] Z 12
0 0 0 0 11
0 2 24" 2] 24 10
0 0 2 24 9
0 0 2] @ [4] @ [16] @ [32] Z 8
0 0 0 0 7
0 2 2] 0 6
0 0 0 0 5
0 0 [4] @ [8] @ [8] zZ 4
0 0 0 0 3
0 0 0 23 2
0 0 0 23 1
0 0 0 Z 0
Hy=*(R) H}(R) H}(T) & ker(5") HY(R)
where [n] := cyclic group of order n, 2":= elementary abelian group of rank r.

Figure 5.3: The E2-page of Greenlees spectral sequence for ko,(BSD1g).
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5.4.5 EXTENSION PROBLEMS AND E2 - PAGE

In order to get the E?-page, we need to solve the extension problems which occur in
degree 2 + 8k, k > 1, of the second column in the E2-page; viz:

0 — [H}(T))assr — [H (R)]aysr — [ker(6")]2gx — 0. (5.31)

The strategy to solve this problems is using the action of some elements in R, precisely
the action of B € Rg and Uy € R_g over [H}(T)]24+sr and [ker(6')]o4sk. Recall from
lemma 5.2.5, lemma 5.2.4 and lemma 5.4.3 that

[ 7Z)2 < P[]/ (us)? >, if k=1,
N sk = | (2 oo e Ty ot 2 >, i

and [ker(0')]oysr = Z/2F generated by 2ty 1 = qf% + QO _g for all k > 1.

It is not hard to see that

B+ (2Wap11) = v (2Waps1) = £2[2Wa (1)1 (5.32)
and
B [ad/(@a)? = 167°[@a]/(@a)® + 97 [{a] / (@a)* = 37°[24)/ (Wa)? — 37%[Za] / (@a)°
= 7P[ta]/(ma)?,
B-Pltal/(Wa)® = —2-7[ta]/(ua)® = 0,
and also in general we have;
B nP[a /(@) = 7P [Ea) /(@) *+? (5.33)
B[t/ (@) =0 (5.34)

for each k> 1.

We firstly consider on [H}(R)]1o and [H}(R)])1s that whether they split or not
by using the action of 3. There are four candidates to investigate, i.e., all split, all are
non-split, [H1(R)]1o split but [H}(R)]1s is non-split and [H}(R)]1s split but [H}(R)]1o
is non-split. We claim that the two latter cases can not be possible by considering on
the commutative diagrams below;

degree 10: 0 —> Z/2—%7/207/2 —%7/2 ——0: split  (5.35)

N

degree 18: 0 —— (2/2)24212/2@2/8 £>Z/4 —— 0 : non-split

and
degree 10: 0 —= 7Z/2— = 7/4 — " 7/2 — 0 non-split
| & |
degree 18: 0 —> (7/2)2 —2 (2/2)? @ 7/4 —>7/4 ——0: split
(5.36)
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In diagram (5.35), 49 € Z/8 must be detected by is and [, where g is the
generator of Z/8. This means ps(4g) = 0 whereas 3" (p1(3 '(4g))) # 0, since 3"
is injective, by (5.32). Thus these two facts lead to the contradiction by commutative
property of the diagram and hence diagram (5.35) can not happen. For diagram (5.36),
the injectivity of 3’ and 3" yields the injectivity of 4. Under this monomorphism, for
generator ¢’ € Z/4 of degree 10, p2(8(¢’)) has order 4 whereas (3" (p1(g’)) has order 2
which contradicts to the commutative property of the diagram. So, our claim is true.

Nonetheless, in higher degree k£ > 2, if [H}(R)]2+gk is non-split, then we can
not conclude about [H}(R)]2+8(k+1) by using only the action of 3 because ( is not
monomorphism (since /' is not injective in high degree, by (5.34)). However, for k > 2,

2+8k: 0—— (2/2)2 —2(z/22 o 7/28 — (z/2)

lﬂ/ i[@ lﬂ//
24+8(k+1): 0—— (7/2)2 2 7.2 @ 7,)2++2 2 7,/2k+1 —— 0 : non-split
(5.37)
still can not be possible, by similarly reason as the case £ = 1. Precisely, the generator
g € Z/2F in degree 2 4 8k must not be zero via 3" o p; because ” is injective. By
commutative diagram, 3(g) # 0 € Z/2F+1. Tt follows that 3(g) = 4h where h is the

generator of Z/2¥+1 by homomorphism property. Thus 2¥~1g is zero via py o 3 but
not zero via (3" o p; which is a contradiction.

0 : split

Next, we use the action of 4. It is not hard to see that
Uy - 77 [wa]/ (a) 7 [a]/ (wa) (5.38)
Uy P[]/ (@) 2 = P[]/ () (5.39)

In other words, Uy : [H} (T)]o4s(k+1) — [H](T)]24sk is an isomorphism for all k > 2.
This implies that, for k > 2,

[H}(R)]24+s8x and [H}(R)]24s(k+1) can not be both non-split. (5.40)
This is because if both of them are non-split, we have the commutative diagram as;

248(k+1): 0— (2/2)2 —27/2®2/2"+2 —2(Z/2)!1 —0 : non-split

=/ — =11
iuzl \LU4 \Luzl

2+8k: 0 —— (7/2)? _ 7.)2 @ 7)2k+1 P 7)ok = 0 : non-split
(5.41)
and then 0 = ker(igou)) = ker(ugoiy) = ker(us) N (Z/2)? # 0, which is a contradiction.

By using the impossibility of the diagram (5.35), (5.36), (5.37) and the fact (5.4
we can conclude that the short exact sequence for [H}(R)]24sk split for each k >
More precisely,

0),
3.

if the short exact sequence for [H}(R)|1o splits, then all split. (5.42)
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Lemma 5.4.4. For R = ko*(BSD1s) and I which is the augmentation ideal of R,

[H}(R))10 = Z/2® Z)2.

Proof. Consider the commutative diagram below;

where ¢ = 7%(t4 +7,) € 7% (ko®(BSDig)) in lemma 5.3.1 and ¢ is the pre-image of
g under 7. We need to show that there is some elements of order 2 in [H (1q,)(R)]10
detects the generator [g] of ker(d! : [H1 (QO)]1o — HX(T)) = 7Z/2, where g = 2% €
QO[ J10. By definition, QO = 7%(R), then we can find g € R[%] in which

=" ([g]) = lg)

Note that [2g] = 0, then 2g € I'm(iz) and in fact 2g = ”4T9 where v*0 = [0, 2¢, 0, —2¢, 0, 0],
by the explicit generator in theorem 4.4.1. So, there exist 86 € R which W“(ﬂg) =v4h.
Now, we have i1(36) and 2g has the same image, (viz; 2¢), under 7', by commutative
property of diagram. To conclude that il(ﬂg) = 2g, we need to check that they have
the same image in H*(BSDjg; IFQ)[%] This is immediate because 2 and [ are zero in

(BSDw,Fz)[ ] Hence

30

1

and thus [g] has order 2. Note further that H}(T) = H(lu )(T) H(lq
¢ =Uy+7, and 7, € annﬂo (1), 1e M \/(? . Then the long exact sequence
obtained by applying H (5 ),(G’ SDqg), splits to give the short exact sequence

25 =

)(T) , since

0— [H(lq/)(T)]lo — [Hy (R0 — [HE (@010 — 0,

because [ (Qi)]lo = 0. Also, the natural map (see remark 3.1.2 in Chapter 3)
M) —

n:Hj, ;(R; — H{(R; M) yields the commutative diagram;

0—= [H{(Dho—> [HR)1o—2>[H(QO)1o —2[HAT) (5.44)

Rl

(q,)(T)hom*> [H(lq/)(R)]lo L [H, [ (Qi)]

R

0—— [ 0’
which treats 7 to be a monomorphism. Recall that [H(lq,)(T)]lo =Z/2 and [H(lq) (QO0)]10 =

Z/4. If [H gq,)(R)]w = 7Z/8, then it contains one element of order 2, namely [g], and
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it must be detected by the image of the generator of [H (lq,)(T)]l() under iy. This
contradicts the fact that [g] has order 2 sending to [g] € [H (lq) (Q0)]10 and hence

[H{yy(R)10 = Z/2 ® Z/4.

Let (¢’,0) and (0,a) be the generator of [H(lq,)(R)]lo in which the order of (¢’,0)
and (0,a) are 2 and 4 resp. Now, we see that [g] must be either (0,2a) or (¢',2a).
Suppose, [Hi(R)]io = Z/4 generated by h, then 2h must be zero via p;. Since
n is an monomorphism, 7(h) must be either (0,a) or (¢’,a) which the images of
them in [H (1q) (QO)]10 are of order 4. The contradiction happens with commutative
property of diagram 5.44 again, because 2h will be not zero via this way and hence

H}R)1o=7/2®Z/2 as required. O
[H}

The immediate results from lemma 5.4.4 and the assertion (5.42) is;

Corollary 5.4.5. The E?-page of Greenlees spectral sequence for ko.(BSDig) is the
E2 -page in Figure 5.3.

§5.5 The results

5.5.1 FE°— PAGE

It is left only to determine the differential do so as to get the E°°-page. The possible
non-zero differential starting from [HY(R)], to [H7(R)]n+1, occurs in only degree n
being congruent to 1 modulo 8, for n > 9.

We start to justify dy in degree 9 first by using the action of R over [H?(R)]. and
[H?(R)]«. Recall that [H(R)], is a module over R via 7% and [H?(R)]. is a module
over R via ¢ in diagram (5.5). Here, we make use the action of T +7, which its image
under ¢ is b%. By lemma 5.4.3, [H?(R)]s = Z/2 < Z—; > and [H?(R)]10 =2Z/2 < ZTII >
which is not hard to see that b? : [HZ(R)]1o = [H?(R)]e is an isomorphism. Now,

consider the commutative diagram below;

(Z/2)* = [HY(R)]o Z— [HZ(R)]10

e

0 = [HY(R)]s —2—= [H3(R)]s.

The commutative property of this diagram treats ds to be zero in degree 9.

Next, we investigate degree 17 by using the same method as above. So, to con-
clude that ds : [HY(R)]17 — [H?(R)]1s is a zero map, it is left only to check whether

that b? : [H?(R)|1s — [HZ(R)]14 is an isomorphism, because [HY(R)]13 = 0. It is
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does isomorphism since [HF(R)]14 = (Z/2)* < %5, 3z > and [HF(R)|1is = (Z/2)? <
b

7 % >, by lemma 5.4.3.

For higher degrees, n = 17 + 8k for £ > 1, we use the action of §. It is
simple to see that multiplying by 8 gives an isomorphism from [H?(R)h”g(k,l) to
[HY(R)]17+8k- Since da departing from degree 17, i.e. E%ZO’ is a zero map, do departing
from degree n = 1748k for k > 1, are also zero maps. Therefore E>-page is E?-page.

degree(t)
: : : : 27
0 23 22 3 [8] 25 26
0 0 22 20 25
0 22 [4] @ [32] & [64] & [16%] @ [2 - 167] 7 24
0 0 0 0 23
0 23 8] 0 22
0 0 0 0 21
0 22 [2] @ [32] & [64] P [2048] P [2048] Z 20
0 0 0 0 19
0 22 22 & [4] 25 18
0 0 22 25 17
0 2 [2] @ [8] @ [16] @ [256] @ [512] Z 16
0 0 0 0 15
0 22 [4] 0 14
0 0 0 0 13
0 2 8] @ [16] @ [128] @ [128] 7 12
0 0 0 0 11
0 2 2 (2] 24 10
0 0 2 24 9
0 0 2] & [4] @ [16] & [32] Z 8
0 0 0 0 7
0 2 2] 0 6
0 0 0 0 5
0 0 [4] & [8] @ [8] Z 4
0 0 0 0 3
0 0 0 23 2
0 0 0 23 1
0 0 0 Y4 0
HiZ*(R) H}(R) H}(R) HY(R)
where [n] := cyclic group of order n, 2":= elementary abelian group of rank r.

Figure 5.4: The E°-page of Greenlees spectral sequence for ko,(BSDig).



CHAPTER 5. REAL CONNECTIVE K-HOMOLOGY 168

5.5.2 RESULTS AND EXTENSION PROBLEMS

The results can be read from the E. -page directly with the filtration given by
kon(BSD1g) = Fy D FI' D Fy D F3 =0,

with FJ/Fl = B FrJEFY =2 B and B = EXP"T2. Precisely, we use two
short exact sequences to determine ko, (BSD1g), viz;

0 — F' — ko,(BSD1g) — E%™" — 0,

and
0— E 22 L pbntt .

From this fact, we see that there are extension problems in degree n > 8 being congru-
ent to 0,1,2 modulo 8. In this chapter, we will solve such problems in degree 8k + 2
for all £ > 1. For resolving the extension problems in degree 8k and 8k + 1, we wait
to the next chapter.

Solving extension problems in degree 8k + 2 for all £ > 1.

In these degrees, we consider the commutative diagram below;

0—> ple+2 k08k+1(BSD16)’L>E&8k+1 I

| ) |
0 E0—0278k+4 — k08k+2(BSD16) —_— E'O 8k+2 0
where the homomorphism 7 and 77 mean multiplying by 1 and 7] respectively. By
isomorphism Ex"**" = [HL | (7)]srrc for each e = 1,2 (since V" = BOIH)

and by lemma 5.2.4, we get that 77 : Foo L8k+1 Eo_ol’gkﬁ is an isomorphism. The

consequence is that we can define the homomorphism s : E&SkH — kogga2(BSD1g)
by setting

s(n(p1(9))) == n(9),

for all g € kogg+1(BSD16) which is easy to check that pyos = = idgose+2. Thus, by
splitting lemma, the second short exact sequence in the above dlagram is additively
split and therefore

kogiy2(BSDyg) = EOSF2 g g 286+, (5.45)

We collect all results we have so far as;
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Theorem 5.5.1. Additively, ko.(BSD1g) can tabulate as follows;

k‘On(BSDlﬁ) n
2F] @ [2- 4 @ [4F2 @ [8 - 16FH ) @ [8 - 1651 | 8k + 11 > 19
[2]9° @ 2k+1 8k + 10 > 18
< 2T @ [2F1] > 8k+9>17
Z- lpd < [2]92 @ 261 > 8k +8 > 16
[2F] @ [2 - 4F) @ [4F ) @ 1651 @ [2 - 16FF1] 8k +7>15
2k 8k +6 > 14
[2K+1] 8k+5>13
Z - (ko @ 2k 8k +4 > 12
[8] @© [16] @ [128] @ [128] 11 ’
2|94 @ 2 10
<253 [2] > 9
Z-Bpd<[2]®2> 8
2] @ [4] @ [16] @ [32] 7
0 6
2] 5
Z-o®d?2 4
[4] & [8] @ [8] 3
[2]693 9
[2]@3 1
Z-p 0

where (B is the Bott element in KOg(pt), p is the first Chern class of reqular represen-
tation of SDis, a = 2p and [n] means cyclic group of order n, 2% means elementary
abelian two group of rank k and < 2% @ [2°] > means abelian groups of order 2070
which is not determined yet.

In order to see more precisely structure, e.g., n-multiples, we will use Bockstein
spectral sequence to calculate ko.(BSDig) from ku.(BSDis) in Chapter 3 and then
compare both results. We postpone this calculation and the remaining extension prob-
lems to the next chapter.



Chapter 6

kox(BSDig) by n-Bockstein
spectral sequence

In this chapter, we will repeat the calculation of ko.(BSDig) by using the n-Bockstein
spectral sequence with input ku.(BSDig). That is;

ET’* = ku*(BSDw)[?ﬂ = kO*(BSDlﬁ).

The main purpose is to investigate n-multiple elements in ko.(BSD;g), resolve the
extension problems remaining from the last chapter and to give confidence in our cal-
culation, i.e., both ways of the calculation (i.e., via ko*(BSD1s) by using the Greenlees
spectral sequence and via ku.(BSDig) by using the n-Bockstein spectral sequence)
must agree. However, the extension problem in degree 8k + 1 for all £ > 1 is still to
be a problem by this calculation, but fortunately, this problem can be sorted out by
the results of D.Bayen thesis, [7].

§6.1 The strategy of calculation

For Fj-page, at the zero line, it is simply to lay ku.(BSD1g) down degree by degree.
To fill elements in positive filtration, we merely copy elements in the zero line along
diagonal via 77 (which has bidegree (1,1)). So as to calculate dy differential, we need
to work precisely on elements of ku.(BSDig). Recall from chapter 4 that ku.(BSD1s)
is separated by two parts, i.e., even degree part and odd degree part. Evidently, we
have, (in this chapter we refer R to be ku*(BSD,;));

kugk—1(BSD16) = Hi (R)ax,

and
kugy(BSD1g) = Z[v*] & [H7 (R))ok-+2-

Actually, in even degree part, we have a short exact sequence;

0 — [HF(R)]st2 — ku(BSD1g) — [H}(R)], — 0. (6.1)

170
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Note further that H}(R)o and [HY(R)]ax for all k£ > 0 come from QU part, the
image of ku*(BSDig)) in KO*(BSDig). Patently, [HY(R)]ox € QUay and H1(R)ag
is a quotient of (QU [%})gk To identify the d; differential on these parts, we now recall
lemma 4.1.1 which asserts that

dy = { 147, if dy departs from QUygyo ;

1— 7, if di departs from QUyy. (6.2)
This operation is also compatible with QU [%]2]@ — H1(R)ag, see [13]. Hence, we have;

di — 1+ 7, if dy departs from kuyx_3(BSD1g) ;
71 1—7, ifd; departs from kugg—1(BSD1g).

Clearly, d; departing from [H?(R)]ax € QOq is the same map as (6.2).

(6.3)

For the differential on the [H?(R)]. part, we note that this part is calculated from
TU C H*(BSDs4;F2) by using the Greenlees spectral sequence. Thus [HZ(R)].+2
can be identified to be the subset of H,(BSDig;F2). Furthermore, we have that
d1 of n-Bockstein spectral sequence on TU C H*(BSD1g;F2) is Sq? operation, by
lemma 4.1.1, and H,(BSDi4;F2) is the dual of H*(BSD14;F2). Therefore, di of 7-
Bockstein spectral sequence on [H?(R)].2 — H.(BSDis;F2) is the dual of S¢?, see
[13]. Namely,
& = (S¢)" on [HE(R)).. (6.4)

where (Sq¢?)V is the dual operation of Sq?.

As the previous technique, we calculate d; on kueyen(BSDig) via the long exact
sequence induced by (6.1). Precisely, we calculate d; differential on [HZ(R)]., [HY(R)].
and kuoqq(BSDig) by using (6.4), (6.2), (6.3), respectively and record as Elé—page.
After we determine the connecting homomorphism in the long exact sequence, we ob-
tain Fa-page. Finally, the results in Theorem 5.5.1 treat the differential dy and ds and
then we obtain E -page as required.

We now start with the even degree part.

§6.2 The d; differential on kucyen(BSDig)

Differential d; on [HY(R)]. is simple by (6.2) which gives;

2R o = ey s [ (R — [ (R) = { 0 3200 (69)
and
H(H ). = 20N/ [ Raws) = { 15 LR 00

So, the main task in this section is to compute di on [H?(R)].. To do this, we need
to see the embedding i : [H?(R)]s12 — H.(BSDsg;F2) explicitly and then use the
action of (S¢?)Y on H,(BSDs;F2) to determine such dj .
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6.2.1 EXPLICIT EMBEDDING OF [H?(R)]st2 IN H.(BSD1g;F2)

To gain the main objective, we need to see the elements of [H?(R)].t2 explicitly first.
This is automatic by recalling from lemma 3.4.3 that H?(R) = (Fa[b,d])"(v), where
vV = p3gz - In other words, we have;

1 1 1

[H} (R)]. = F2[?a p] < Py?

> . (6.7)
However, to be more general, we will make explicit such an embedding of H, (2y P) (H*(BSDan;Fq))

at Eo-page of the Greenlees spectral sequence in H,(BSDan;Fy). D.Benson calcu-
lated this by using the Greenlees spectral sequence in [9] (page 6-8). We record his
results by adapting notation to suit our notation as;

Lemma 6.2.1. (cf.[9]) Let R' = H*(BSDan;Fy) = Fa[z,y,u, P]/(2®+xy, 23, zu, (22 +
y?)P+u?) for n > 4. We have the augmentation ideal I = ker(y : R — Fa) = (y, P)
and short exact sequence;

0 — [HF(R)lky2 — Hi(BSDan;Fy) — [Hi(R)x11 — 0,

5] < P%,?P%, > and H}(R') = Fo[$] < z,2% >. Precisely,

where H?(R') = ]FQ[% 5
LR ks1 ® [H(R))ks2, for all k> 0.

Hy(BSDyn;Fo) = [HL(

Note that H(Qy P) (H*(BSDgn;Fs)) and H.(BSDan;Fy) are module over R’ via

cap product. So, we can determine the embedding by using the action of R’ on both
sides first and then follow by using comparison on their annihilators. This is possible,
because we have;

Lemma 6.2.2. For vector space V over a field F of finite dimension n and X a
subspace of V', we have;
anny (anny=«(X)) = X,

where V* is the dual space of V.

Proof. First, choose a basis {vy,v2,...,vs} of X and extend to a basis for V' as {v;|i =
1,2,...,n}. Let {vf|i =1,2,...,n} be the natural dual basis. It is simple to see that

anny«(X) = {0 e V*0(v) =0,Yve X}
= Span({vili € {s+1,s+2,5+3,...,n}}),

since v} (vj) = di;, (the Kronecker delta). Then, we get;
anny (anny+(X)) = {w e V|f(w) =0,V € anny-(X)}

{w e V]f(w) =0,V € Span({v]]i € {s+1,s+2,s+3,...,n}})}

Span({v;|j € {vi,v2,...,v5}})
= X

)

which completes the proof. O
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The consequence of this lemma is that;

Proposition 6.2.3. If G is a group with R' := H*(BG;F3) finite generated in each
degree, then for g,h € H(BG;Fy), for some k, we have;

annp(g) = anng (h) < g = h.
Proof. By using lemma 6.2.2 apply to V = Hy(BG;F3) over the filed Fy, we obtain

annp(g) = anng(h) = [anng (9)]kx = [anng (h)]k

anng, (9) = anng, (h)

ann(gyy-annpg; (9) = ann(g,y-anng, (h)
Spanr,({g}) = Spang,({h})

g=nh,

R

as required, since H*(BG;Fy) = (Hy(BG;Fy))*. u

From the proof of this proposition, we see that it is enough to calculate [anng/ (g)]x =
anng, (9) and [anng (h)]x = anng, (h) to conclude that g = h. Thus, by this facts,
lemma 6.2.1 and straightforward calculation, we get;

Lemma 6.2.4. For each k >0, [H}(H*(BSDan;F2))kt2 is generated by

U i k 1 . k+1
{WW <J SL(Z)ak‘ > O}U{WH <Jj< L(T),k23}7

with the explicit inclusion to Hy(BSDan;Fy) given by

u . .
- i, k—45\V
PitLyk—4j+1 (P7y™)

1 i1, k—4j+1
Pigk—i+2 7 (uP?™ty™ Y,

where L(r) := greatest integer which is less than or equal to v and ()Y € Hy(BSDan;Fs)
is the natural dual of o € H¥(BSDan;Fy).

In particular, by (6.7) and lemma 6.2.4 above, we have that [H?(R)]ji2 is
zero unless k is even. Also, for any even integer k > 4, the explicit inclusion of
[H7 (R)]+2 — Hy(BSDan;Fa) is given by

1

P (uPi=Lyk=4i+t)V, (6.8)

Now, we ready to calculate d; on [H?(R)]. which we do this in the next subsection.
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6.2.2 dy ON [HZ(R)|st2

Now, we pay attention to the elements in H*(BSDan; Fy) being of the form (uPi—lyF~4+1)V
(since (6.8)) for each even integer k > 4 and regard other elements as zero. To find
(Sq?)V operation on these elements, we firstly calculate Sq® operation on uPJ~1y*F=47+1,
This is simple since we have: (recall from Proposition 2.2.5)

Sq*(z) = 2%, 5¢' (y) = v*, S¢' (u) = 0,5¢*(P) =0
and

Sq*(x) = 0,5¢*(y) = 0,5¢*(u) = Pz + Py + uy®, S¢°(P) = Pa? + Py,

By using Cartan’s formula, we have;

S¢t(PY = 0,for all i,

; Piz? + Piy?, if i is odd;
S¢(P') = { 0

if 7 is even,
242 e .
2, 2\ _ y<'T= if 4 is odd;
Se(y™) = { 0, if ¢ is even,
S Q(u 2¢+1) - Pay?tl 4 py?it2, if ¢ is odd;
Ty - Pry? 1 4 Py? 2 L uy? 3 if i is even.

Thus, setting S := Sq?(uPi~lyF~4+1)

- Pj—lsQQ(Uyk—4j+l) + Sql (Pj—l)Sql(uyk—4j+l) + uykz—4j+15q2(Pj—1)
Pj—1Sq2(uyk;—4j+1) + uyk—4j+15q2(pj—1)
{ (PI=1)[Pyh—4+L 4 pyk—4i+2], if kK — 47 = 2mod4;
(PI=Y)[PzyF~4+L 4 pyk=4+2 4 b =4+3] if k — 45 = Omod4,

uyk74j+1(pj*1$2 + Pi71y2) if j —11is odd;

0, if j — 1 is even,
- Pigyb—4i+1 . pigh=4i+2 | pi=ly k=443 if | 1 2 = 2mod4:;
= Pl . piyk—4i+2 if k+ 25 = 0mod4.

Since we regard that all elements are zero except elements which are in the form
uPI~lyk=4+1  we get that

i—1, k—4j+3 . ‘
Sq? (uPi= k4t = { wP? YRS i k4 25 = 2modd,

0, if k + 25 = OmodA4.
Therefore,
j—1, k—4j+1\V L .
2\V i1 k—djtaywy _ | (WPTTy )Y, if k+ 25 = 2mod4;
(57) ((uP"y ") { 0, if k+ 25 = 0mod4,

or in other words, by changing k£ to k — 2 (in order to suit (6.8),

. ; j—1, k—4j—1\VvV . .
2\V i1 k—djt1yvy _ J (wPTTly )Y, if k425 = 0mod4;
(9¢7) " ((uP"™7y )" = { 0, if k4 2j = 2mod4,
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and hence, by (6.8),

by ) Py if k+2j = 0mod4 and k # 4j;
(Sq7) (W) =4 0, if k + 25 = 2mod4; (6.9)
0, if k=4j,
where the third condition comes from the fact that % for each 7 > 1 is not contained

in [HZ(R)]«. Here, we illustrate the diagram of dy = (Sq?)¥ action on [H?(R)]. in low
degree as follows.

degree k Generator of [HZ(R)|k+2
1
4 -
1
1 1
8 ?yﬁ P2y2
1 1
10 Pys 1T32y4
1 1 1
12 ITaylo P2yb 1T33y2
1 1 1
14 py12 jf2y8 p3y4
16 1 1 1 1
Tylél p2y10 ]fSyG p4y2
18 1 1 1 1
Py16 1132y12 P3y8 P4y4
20 1 1 1 1 1
Tyw P2y14 ]TDSylo P4y6 ]TD5y2
29 1 1 1 1 1
pyZO ITD2y16 P3y12 1134y8 P5y4
24 1 1 1 1
?:UQQ P2y18 FT)3y14 P4y10 FT)5y6 P6y2
2 1 1 1 1 1
Py ?2@/20 P3yT6 ?4?;12 P5y8 ?6y4
28 1 1 1 1 1 1 1
Ify% PZy22 ITDSylg JZme 1T35y10 P6y8 PTy2
30 1 1 1 1 1 1 1
Py78 ]f2y24 P3y20 1T34y16 Poy12 ITDGylo Pyl
32 1 1 1 1 1 1
430 P20 3422 P1yTs PoyTa JZame: PTy0 PSy2

Diagram 6.1: The d; = (Sq¢?)¥(:=7) action on [HZ(R)]..



CHAPTER 6. KO.(BSDis) BY n-BOCKSTEIN SPECTRAL SEQUENCE 176

Now, we have;

Lemma 6.2.5. With the notation above,

1) The (Sq*)¥—homology of [H}(R)]« is represented by Fa|ps] < P%yQ >.

2) The (Sq*)V—cycles of [H(R)]« is represented by

Fof > .

1 1 1 1 1 1 1
o

— 5ol < > /F < =55
gt PQ] Py’ P2yt P22 / Q[y ] P2y6

Proof. Diagram 6.1 suggests the pattern, and the proof is the immediate result from
(6.9). O

§6.3 d; differentials on ku,qq(BSDig)

Since we have (6.3) and Theorem 3.5.1, the calculation of kernel and homology of d;
on kueqq(BSDig) is straightforward but needs careful work. This section is devoted to
the proof of lemma 6.3.1 below.

Lemma 6.3.1. For positive odd integers s, let My := kus(BSD1g). Let Z(M)s =
ker(d; : My — Ms_2) and H(M)s :== Z(M)s/d1(Msy2). Using the same symbols as
i Theorem 3.5.1, we have:

1%

o Z(M) = [2]® (2] generated by z1,y1; H(M)1 = [2] & [2] generated by [z1], [11]-
o Z(M)s = [2] @ [4] @ [8] generated by x2,y2, w2, resp.; H(M)s = 0.

d Z(M)5 = [2] ©® [2] D [2] genemted by 2353,424378“3; resp.; H(M)5 = [2] ©® [2}
generated by [2x3] and [4ys].

o Z(M)7 = [2] @ [4] @ [16] @ [32] generated by 2wy, x4, ya,us, resp.; H(M)7 = 0.

o Z(M)y =2 [2]® 2] ® 2] ® [2] generated by 225,425, 16ys, 32us, resp.; H(M)g =
2@ 2] [2] generated by [225], [das], [1695].

o Z(M)1 = [8]® (8] @ [64] @ [128] generated by x,te, ys, u +we , resp.; H(M )1 =
[2] generated by [ts].

12

o Z(M)i3 = [2]®[2]®[2]®[4] generated by 87, 64yy, 427, wh = wr—4z7+2t7+64ur,
resp.; H(M)13 = [2] @ [2] @ [2] generated by [8z7], [64y7], [427].

o Z(M)5 = [2]@[8] ®[16] @ [256] @ [512] generated by ts, 2ws + 28, T8, Ys, g, T€SP.;
H(M)5 = [2] generated by [ts].

o Forn>3, Z(M)s,—7=2[2]®[2] @ [2] @ [2] ® 2" Y] generated by 4" x4,_3,
16" yan—3,2-4" 22453, 2" 3tan_g and 4(—8)" ugn_3+ (—2)"24n—3 — Wan—3 :=
uly,_5 resp.; H(M)gn—7 = [2]®[2]D[2]®[2] generated by [4" 1 gn—3], [16™ Lysn—3],
24" 2245 3], [27 3 tan—3] .
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e Forn>3, Z(M)g,5 22" 2@ [2-4" @ 2-4" @ 4-16" @ [8 16"
generated by zin_2,lan—2, Tan—2, Yan—2, Win—2 —Usn_2 1esp.; H(M)g, 5 = [2]D|2]
generated by [tan—2] and [z4n—2].

e Forn >3, Z(M)s,—3 2 [2] @ [2] @ [2] @ [2] @ [2"] generated by 2 - 4" Lay,_1,
416" yapo1, A" g1, 231 + 2" 21, and wan—1 + (—8)"Uan_1 —
(—2)"zan—1 resp.; H(M)gp—3 = [2] @ [2] & [2] & [2] generated by [2 - 4" z4p1],
[4 . 16"71y4n_1] s [4"712’4n_1] ) and [2n73t4n—1 + 2"*211)4”_1] .

o Forn>4, Z(M)g,—o 22" 2@ [2-4" 2@ [4" @ [16" 1 d[2-16" 1] generated
by tan—a, 2Wan—a+ 2an—a, Tan—4, Yan—a, Uan—a 1esp.; H(M)sn—o = [2] generated by
[tan—a].

Proof. We use the same natation as in Theorem73.5.1 jnd lemma 3.34, ie, for each
a € {z,y,z,t,u,w} and for € = 2,3,4, qyi— = % + Ry 2@ +p' - Ry forall i >1,
and Qyj_5 = % + Ry = a5 +p’ - Ry, for all j > 2, with p = [16,—2,4,—2,16,4]. So,
it is possible to use the character table to calculate the kernel and homology of d;.

Degree 1: M; = kui(BSDig) = [2] @ [2] generated by z1,y1, with 23 = ¢ =
wy =u1 +x1 +y1 =0, where

Tl =11+ 21
y1 = 241
zZ1 = 251 =

0,0,2,0,0,1] + Ry
0,0,0,0,1,0] + Ry
0,0,4,0,0,0] + Ro

—c,2,¢,0,0] + Ry

[
[
[
wi=w1+2z1 = [0,

It is clear that dy(M1) = (1 + 7)(M;) =0, because M_; =0.

Degree 3: M3 = kus(BSDig) = [2] @ [4] @ [8] generated by za,y2,wa resp.,
with zo = 4wy, ty = 2(wy + y2) and ug + 4wy = 0, where

Yo = 20p = [0000 ]+R0

22222 == [002000]+R0

ty=1ty = [0,—1,1,-1,0,0] + Ry

UQ:ﬂQ = [0, COCOO]+RQ
- 1

Wy = 2Wy = [5, —¢,1,¢,0,1] + Ry

It is simple to see that (1 —7)(z2) = (1 —7)(y2) =0 and (1 — 7)(w2) = 2w; — 21 = 0.

Degree 5: M5 = kus(BSDig) = [4] @ [8] @ [16] generated by x3,ys,us resp.,
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with ws = 8us, 23 = 2x3 + 4y3 + 4us and t3 = 0, where

133253%-;3

Y3 = 2¥3

z3 =23 + ;3
ty = 213

uz = us

w3:1173

1 _

= [07_1507—1a0a§]+R0
1 _
= [07070707Z’O]+R0
= [0,-1,1,—1,0,0] + Ry
= [0,—2,0 200]+R0
1 —c

= [17 5 5 200]+R0
= [07 ¢, 07 —C, 07 0] + EO

Now, we see that (14 7)(z3) = 2ts — 20+ x92 = 2, (14+7)(y3) = y2 and (14 7)(w3) =

Wy — Uy — 29 — Ty = we — xo. Then 2x3,4ys,8us € Z(

Degree 7: M; = kuy(BSDig) =
and t4 + 2x4 + 24 + 8y4 + 8uyg = 0, where

resp., with z4 4+ 2w4 + 8ug =0

w4:754—8il4 =

Now, we see that (1

Degree 9: Mg = kug(BSD1g) =

—7)(z4) = (1-7)(ya) = (17
Then 2wy, x4, ys,us € Z(M)7 and H(M)s5 = [2]

M)5 and H(M)g =0.

[4] @ [4] @ [16] & [32] generated by wy, x4, Y4, usg

1 _
[0,0,0,0,0, 5] + Ry

1 _
[o,o,o,o,g,o] + Ry
[0,0,1,0,0,0] + Ro
[0,1,0,1,0,0] + Ro

1 1 1 —
-, —1,-,—-1,0, = R
[87 a27 7)2]_'_ 0
-1 ¢ -3 _
—,—+4 4
[543 ,2+0 2]+ Ro

2
)(ug) = 0 and (1-7)(ws) = w3 = Bus.

(usg
[2] generated by [2z3] and [4ys].

2] ®
[4] @ [8] @

[32] & [64] generated by z5, 5, ys, us

resp., with ws = 0 and t5 + 45 — 225 + 16ys — 24us = 0, where

x5 = Ty + 25 + Sus
Ys = 2ys

25 = z5 + Ws + 24us
ts = 15

us = Us

ws = 2(ws + 16us)

Now, we see that (14 7)(x

1 -3 1. —
— 5,4, 40>

[27 5 27 7074]+R0
- [000016 0] + Ro

3 c —11 —c —
= 2,8 12,70 "% 9

[272 ) 2 y 2 7070]+R0
= [0,1,0,1,0,0] + Ro

1 -1 -1 -1 —
- [E;?aja?)o)o]_{—RO
= [2,¢—16,—8,—c—16,0,0] + Ry

5) = 8uy — Twy — Tz = 8ug + x4 + 24 = 2wy + x4, (1 +

T)(Ys) = ya, (1 + 7)(25) = 2wyg + 32ug — 1424 = 16ug + 2wy, (since 2z4 = 16uy) and
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(1 4+ 7)(us) = ug — ¢4 — 24 = Yug — x4 + 2wy. Then 4xs, 16ys, 225, 32us € Z(M)g and
H(M)7 is calculated by the representing matrix below;

which is easy to see that H(M)7 = 0.

Degree 11: Mj; = kuy1(BSDqg)

2] [4 [16] [32]
2wy x4 Ya Uq
1 1 0 0 |n
0 0 1 0 |
1 0 0 16 |r
1 —1 0 9 "I‘4
= 2] @ [8] @ [8] @ [64] @ [128] generated by

ug, tg, Tg, Yg, Wg resp., with zg + 4xg + 32yg + 2tg + 16wg = 0, where

Te = Tg

Y6 = 2Ys

26 = 26

te = tg + 16Wg
ug = Ug + 64wg
we = 2We

7)(z6) = (1—

Now, we see that (1—
0, (1—7)(u
T6, l6, Yg, Ug +We € Z(M)11 and H(
because 32us has been detected.

Degree 13: M13 = kulg(BSDlﬁ) = [ ]
wr, 27, T7, Y7, U7, with t7 = 0, where (77

x7 = Ty + 27 + 16Uy
yr = 2yr
27 = z7 + 17 + 16uy

t7 = 2n7

w7 = U7y

wy = wy + 427

Now observe that wy, = wr — 427 4 2t7 + 64ur = [0, ¢,
2wl # 0. Then (1+ 7)(w%) = 0 and then w} €

7)(y

6) = 33(ws — 32us) = 32us (since ws

1 _
[07 07 07 0707 Z] + RO
0,0,0,0, 2. 0] + Ry
1 _
0,0,5,0,0,0] + Ro
1 9 1 —
-4 -, —4 —,0,2
[47 c+ 2>47 c+ 2707 ]+R0
33c _ —33c —
1,290 g 990
[ ) ) a87 2 7078]+R0
1 ¢ 1 —c 1 —
[37)571a7707 1]+R0
6) = (1=7)(26) = 0, (1-7)(t6) = 8(ws—32us) =

0) and (1 —7)(ws) = 32us . Then

Jo = [2]® [2]29 [2] generated by [4x5], [16ys], [225],

[2] @ [8] @ [16] @ [128] & [256] generated by
=ty + 4x7 + 227 + 64y7 — 32uy)

1
—4¢.0. =
Ca 78]

0] + Ro

7?7 +E0
0,0,0,0, —
0, 64’
-1 1

11 1 11 —
N P talit
[472 C)4a2 22]+R0
1-16¢,9,1 4 16¢,1,1] + Ry

0,0] + Ry

+ 4,

0,5,0,0] 4+ Ry and 4w, =0 but
(M )13 having degree 4. Moreover,
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we see that (1 + 7)(x7) = 16w — 16(ug — 32wg) — 1526 — 1526 = 16(ug + weg) + 6 +
z6 = 32ys — 2tg — 3wg, (since zg + 4xg + 32ys + 2t + 16wg = 0), (1 + 7)(y7) = vs,
(147)(27) = 2tg—ue+17(ug—32ws) + 1826 — 1226 +32ys = 2t6—32we+226+4x6+32ys =
4xe + 32y — 2tg — 32wg, (1 + T)(w7) = 4z = 64wg and (1 + T)(U7) = Wg — (UG —
32we) — x6 — 26 = 49(ug + we) + 2t + 3w + 32ys. Thus 8wy, 64yr, 427, 128u; = 2w}
are also in Z(M )13. Now, H(M); is calculated by the representing matrix below;

8] 8] [64] [128]
tg Te Yo Ug + We

(1+7)(x7):] -2 -3 32 0 |1
I4+7)(y7):] 0 0 1 0 |72
(14+7)(z7):] -2 4 32 -32  rs
(I4+7)(wy):] 0 0 O 64 |74
I+7)(ur):] 2 3 32 49 |75

which is equivalent to (by row operations)

(8] [8] [64]  [128]
6 ®6 Yo U+ We

| 0 1 0 0 G4

0 0 1 0 |

| 2 0 0 0 I

0 0 o0 0o |

| 0 0 O 49 4
and hence H(M )11 = [2] generated by [tg].

Degree 15: M5 = kui5(BSDig) = [2]®[2] 6 [16] P [16] © [256] B [512] generated
by ts, 28, ws, Ts, ys, ug resp., where

_ 1
rs=F5 = [0,0,0,0,0, ] +Fo
_ 1 —
Yys = 2y8 = [0,0,0,0, T28,0] + R()
v = 35 — 205 — 25605 = [—1, g ~ 64,16, —- — 64,0, ~16] + Ro

-1 -33 =17 =33 -1 17
2727272727 2

tg = ;8 — 2(2:778 =+ 38) — 128@]8 + 178) = [ ] + R()

PSRN N I (5 W
ug = sug = 1287278727 78 0
- - 1 c 17 c —
wg = wg + 32ug = [§>8—17§,8+§,0,2]+R0
Now, we see that (1 — 7)(xg) = (1 —7)(ys) = (1 — 7)(tg) = (1 — 7)(ug) = O,

(1—7)(ws) = wh, (1—7)(28) = 128u7 and (1 —7)(2ws+ 2z3) = 0 (because all elements
in character table of 2wg + zg are real) . Then g, tg,ys, ug, 2ws + s € Z(M)15. And
H(M)i3 = [2] ® [2] @ [2] generated by [8z7], [64y7], [427], because wh and 2w, = 128uy
have been detected.
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Next, we start to calculate in general degree beginning with degree 8n — 7 and
also, however, with degree 8n — 9.

Degree 8n — 7, n > 3: Mg, 7 = kug,_7(BSDys) = 2" 2@ 2" 2@ 4" o
2.4 @[2-16" " @ [4- 16" "] generated by tap—3, Wan—3, 24n—3; Tan—3, Yan—3, Udn—3
resp., where

Tan-3 = Tan—3+ [Fan—sz + 24" 1y,
2 2 1 _
= [Fa_(_Q)n7_2+ﬁa_(_2)n7oa ﬁ]—i_RO
- 1 —
Yan—3 = 2y4n—3 = [07 07 07 07 W? 0] + RO
Zin3 = [Zan—z+2 4" Mg 3] + [Wan_3 — (—2)" ' Z4n_3]
2 —c 2 2 c —
S T A G - —(=2)",0,0| + R
[471—1’ (_2)77,—1 ( ) ) + gn—1 (_2)n—1’ (_2)n—1 ( ) s Uy ]+ 0
tan—g = tan-3+ (=2)"Tun—3 — 4(—=8)" Wun—3 — (—2)" 1243 — 2(—8)" Msp_3
1 1 1
— —9. 47171 —(—2 n -
o SO e
1 1 _
S —— R R
(—2)n2 ' (—2)n2’ (_2)1172] + o
- 1 1 —1 1 _
Ugn—-3 = Ugn—-3 = [16.”,1 ) (_2)71,1 5 4n71’ (_2)n,1 ) O’ 0] + RO
Wan-3 = 2[Wan-3 — (—2)" 'Z4n_3]
2 — _
= [0, — C 5.0,0] + Ro

(2 (22 (2

Degree 8n —9, n > 3: Mg, g = ku8n,9(BSD16) = [2”72] D [2“72] SP) [4”71] S5,
A" @ [16" ! @ [2- 16" 1] generated by tan—a, Zan—4a, Wapn—4, Tan—a, Yan—4, Usp—a TSP.,
where

~ 2 -
Ton—4 = T4n—4 = [Oa Oa Oa 07 07 F] + RO

~ 2 —
Yan—4 = 2y4n—4 == [Oa 05 07 07 W; 0] + RU

Zan—4 = Zn—4 — 2Win—g — 4(—=8)" Mlgn_y
_ [(5“’ (72_)272 _gn (=2t ﬁ — 47,0, —(~2)"*"] + R,
tan—a = tan—a+ (—=2)" 2(2Tan—a + Zan—a) — 2(—8)" " (Yun—a + Uan—a)
- [(—21)"—2’ (—2;1—2 B (—2];"—2
(_2171_2 — 24" 1 (_21)71_2 (—=2)" + (_2;1_2] + Ry,
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- 2 2 2 2 2 —
Utn—g = 2Ugp—q4 = [16”*1’ E =, (_Q)n,l,(), 47171] + Ry
Wip—g = Win-a+2 4" gy
2 1 c 2 1 c =
= [4n7_1»2(—2)n —ma2+ﬁ>2(—2)n +Waoaz]+R0

We observe that s := (2(—8)" lugn_4 + 24n-4) + (2Qwan—ag — 2 - 4" uy,_4) =
[0,0, g7=2,0,0,0]. Now, we have;

1+ 7)(T4n—3) = 2- 4n_1u4n74 —2.4" s 45— 2. 4n_1x4n74 + Tan—4,

24" My 4 + 8 + Tap_a, since 2-4""1s =0,

= 2(—8)”71’&4”,_4 + (2wan—4 + z4n—4) + Tan—4, by replacing s.

(1+7)(Yan—3) = yan—a-
(1+7)(2an—3) = 2-4" lugy g —2-4" s+ 5 — (=2)" s =247y, 4,
= 4(—=8)" tugy g+ (1 = (=2)"" N (2wan_a + 2an_4).
(14 7)(tan—3) = 2tan_a+2(=8)""Ls+2(—=8)" 244 = 2t4n 4.
(I +7)(uan—3) = Uan—a— S — Tan—4,
= (142(=8)""1 —2-4" Nuyy g + (2wan_a + Zan—1a) — Tan_a.
(14 7)(wan—3) = (=2)"s = (=2)"(2Wan—s + zan—a) + 4(—8)" Ly _4.

Thus 4" 24,3, 16" 1yan_3,2:4" 2243, 2" 34,3, 2" 2wan—3 and 2-16" Mgy, 3
are in Z(M)4,—3. However, we also observe that

1 —c c

Uty—g = 4(=8)" " tan—3+(—=2)"zan—3+((—2)""'=1)wan_3 = [0, — 0 0,0],

and then
uﬁln_3 = 4(—8)n_1U4n_3 + (—2)nZ4n_3 — Whn—-3 = ’Eﬁlln—?,

having order 2" ! is also contained in Z(M)4,_3. Moreover, 2”_2uﬁm73 = 216" uygy_3
and hence the result for Z(M),—3 follows.

Degree 8n—5, n > 3: Mg, 5 = kug,_5(BSD1g) = [2" ?|@ 2" Y@ [2-4" @
[2 . 4n71] QP [4 . 16n71] S5 [8 . 167171] genel"ated by Z4n—2, UWdn—2, tdn—2, Tan—2, Yan—2, Won—2
resp., where

~ 1 —=
Tapn—2 = T4n—2 = [07 07 07 07 07 7] + RO

4n—1
~ 8 —
Yan—2 = 2y4n—2 - [07070707 ﬁ?o] + RO
Zin—o = Zan-2 — (=2)"Tan—2 — (—8) " Tan—2 — (—=8)"Wan_2 — (2 + (=2)")t4n_2
—4 1 1
e (24— ) —dne (=)
(e T i
1 —4 1 —
24— )+ 47 oyt~ 4R
R R = T
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tan—2 = tan_o+4"Wsn o
1 . 1 1 . 1 _
= [F,(—Q) CcC — (_2)n_1,2+ 4n_1,—(—2) C — W’O, 2] +R0
Usn—2 = Udp—2 + (—8)"Wap—2
4 c c —
= 4"c — ————— 2(=2)"" —4" — .0, 2(=2)" R
T O e e 02
- 8 —c 1 c 1 —
Win—2 = 2Wip—2 = [— 0 |+ Ro

16”7 (_2)7171’ 4n71’ (_2)7171’ ) gn—1

Now, we get that (1 — 7)(z4n—2) = (1 — 7)(yan—2) = 0 and, because u}, 5 has order
21 we also get (1 —7)(24n—2) = (1 — 7)(tan—2) = 0. Furthermore, (1 — 7)(ugpn_2) =
(1 — 7)(wan—2) = uly,_5, so (1 — 7)(wan—2 — uan—2) = 0 and hence the result for
Z(M)gy—s5 follows. Moreover, H(M)g,—7 is immediate since only u/,, 5 has been de-
tected.

Degree 8n — 11, n > 4: Mg,_11 = kugn_u(BSDlﬁ) = [2”73] D [2”72] D [2 :
44" @[8-16" 2] @[16" '] generated by tan 5, Wan—5, Zan—5, Lan—5, Yan—5, Udn—5
resp., where

Ton—5 = %47175 + [z4n75 + 411—1{[4”75]
1 _ 1 _ —
= [Wa (=2)" e, -2+ =k —(=2)""¢,0, ﬁ] + Ro
~ 4 _
Yan—5 = 2y4n—5 = [07 O) O) 07 W? 0] + RO
~ 1~ 1
Zan—s = [Zan—s + 4" Ugn_5] + §t4n—5
1 1 1 —1 —1 1
= [(_Q)n_z + o (52" =247 e — (a2 (=2)"" =2+ 5
1 . . 1 ~1 ~1 _
_(_27)71_2,_((_2)11 24" e SRt (_Q)n_Q] + Ry
t4n75 — 2[;47175 + (_2)71—1:2:4”75 - (_2)71_2241175 + (_8)71_1?741175 + 4(—8)71_2&47175]
2 -2 2
— _ 4n—1 —(—=2)" —
[(_2)n—2 ’ (_2)11—2 ) ( ) (_2)n—2 ’
_9 1 _
e 4n—1 R
ot T e T
- 4 c —2 —c —
Ugn—-5 = U4n-5 = [16n_17 (_2)n—1’ qn—1 (_2)71—1’0’0] + Ry
~ N1~ c 1 —c —
Win—5 = Win—s~+ (=2)"" Zan—5 = [0, 0,0] + Ry

Here, we need to find Z(M)gn_ll = ker(1+7 : ku8n_11(BSD16) I ku8n_13(BSD16))
for n > 4, which is equivalent to find Z(M)s,—3 = ker(1+7 : kug(,41)—11(BSD1g) —



CHAPTER 6. KO.(BSDis) BY n-BOCKSTEIN SPECTRAL SEQUENCE 184

kug,—5(BSD1g)) for n > 3. Now, we see that:

§ = zuno (24 (=2)"tan—2 + (=2)"Tan—2 — 4(=8)" "yun—o — 4" wan 2
= [0707 An 1505050]
and that
2 2 1 —
(1—|—T)$4n 1 = [4TL 1,0 4+ 477,71’0’0’ 4n71} +RO

A" Wy —o — 4" (Ugp—2 + 4(78)”_1104“,2) + (1 —4™)s" + (1 —4")xgpn—2
= 4"wip—2+ 5 + Tap—2
= 2ypn—2 + (2 + (—2)n)t4n_2 + ((—2)” + 1)x4n_2 — 4(—8)”713/4”_2

1+ T)yan-1 = Yan—2
2 2 —2 2 2
1 = 2(~2)" — 4 -
( + T)Z4n 1 [(_Q)n—l + 4n71’ (_2)7171’ ( ) + gn—1 (—2)"717
-2 -2 —2 —
|+ Ro

(=2)n=7 (=2)n 7 (=2)n !
= (4(=8)" + 4" wan g — (4(=8)" " +4") (tan—2 + 4(—8)" wan_2)
—(4(=8)" + 4"V 4n—2 — (Zan—2 + (—=2)"tan—2) +

(1—(=2)"' — 4" —4(=8)" )5’
= 8(=8)" lwan—2 + (24 (=2)")tan—2 + (=2)"Tap—2 — 4(—8)" 1 yan_2
4 4 .
(1+ T)tgp—1 = [( R EI=E —2(—2)"*! ==
—4 2 2 _
2y (e e
= 8(=8)" Nwan—2 — Tan—2 — (uan—2 + 4(—=8)"win_2)]

(
—4(=8)""'s' = 2(zan—2 — 2(=2)" Mtan—2) + ((—2)" — 4(=8)""1)¢’
= —2(—8)"wan—2 — 224n—2
(14 Duan 1 = [%,o 4;1,0 0,0] + Ro
Win—2 — (Uan—2 + 4(=8)" Lwyn_o) — Tyn_o — 5’
(Wan—2 — Usn_2) + (4" — 4(=8)" VNwan_2 — 24n_2
—(14 (=2))2gn—2 +4(=8)" Lysn_2 — (2+ (=2)")t4n_o

2 _
(14T win—1 = 10,0, W,O»O»O] + Ro

= (—2)”3/ =2(—2)")tan—2 — (—8)"wap—2

Therefore, it is simple now to see that 2 - 4" lay,_1, 4 - 16" ysm_1, 4" L24n_1,
2" 3ty 1 + 2" 2wy, 1, 8- 16" luy, 1 are contained in Z(M)s,_3 which their or-
der are 2. However, we also observe that;

_ C —C —
Wian—-1 — (_2)71 1[2 AU 1 F tap—1 — 2241171] = [0, (_2)11—1 , 0, (_2)n—1 0, 0] + Ro

= Wap—1 + (—8)"uan—1 — (—2)" 241

!
= Wyp
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having order 2" with 2"~ 1(w/, ;) = 816" luy,_1. Thus, the result for Z(M)s,_3

follows. Furthermore, H (M )g,—5 is calculated by the representing matrix below;

[2"2] 2.4 [2-4771  [4-16771  8.1677!
Z4n—2 tan—2 Ton—2 Yan—2 wiln_z
(1+7)(Tan—1) : | 1 24 (=2)" 1+ (=2)" —4(-8)"! 0
(1 4+ 7)(yan—1) : | 0 0 0 1 0
(I+7)(zan-1) 1| 0 2+4(=2)" (=2 —4(=8)"t §(=8)~ !
(1 + T)(t4n_1) : | -2 0 0 0 —2(—8)”
1+ 7)(ugn-1):| -1 —2—(=2)" —1—(=-2)" 4(-8)»! g
(1 + 7)(wan—1) : | 0 2(=2)" 0 0 —(—8)"

where W), o = Wyp—2 — Usp—2 and g =1+ 4™ — 4(—8)"~1 which is equivalent to

2772 [2-4771 [2-4771 [4-16"71] 816771
Zan—2  tapn—2 Tan—2 Yan—2 Wiy, o
1 0 1 0 0 Irg
|0 0 0 1 O 1
0 2 0 0 0 3
| -2 0 0 0 0 Ir3
0 0 0 0 g I
0 0 0 0 0 Irs,

by row operations;

ro — [rg = 1o +4(=8)""r1] — [rf = rj — 5],

ry =17,

ro — [y =12 +4(=8)""1ry — 8(=8)" 11| — [r§y =15 — (=2)"r{]
— [y =15+ (=2)" 5]

rs — [r§ =13+ 2(=8)"]]

ry — [} =14 +70],

rs — [r5 =15+ (=8)"ri] — [ry =15 — 2ry] — [r5 =rg + 2r3].
After doing a bit column operations, the result for H(M)s,—5 follows.

o
|71
|r2
T3
|74
|75,

Next, for Z(M)gn—9 = ker(1 — 7 : kugn—9(BSD16) — kugn—11(BSD1s)), we see
that an—4, Yan—a,tan—a and ug,—g are in Z(M)g,—g, because their entry in character

table are all real. Moreover, (1 —7)z4—4 = 2“’;‘(71—1)—

| = 2w, 5 and (1 —7)wa, 4 =

wil(nfl)fl = wl,,_5 and thus 2wa,—4 + 24n—4a € Z(M)gn—9 which yields the results for
Z(M)sgn—9 and the result for H(M)g,—3 is immediate ( only the generator w}, ; has

been detected).

Finally, H(M)g,—9 can be calculated by the representing matrix (by Degree
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8n — 7 and Degree 8n — 9 above) below;

147

1+ 7)(24n—3

(1 =+ T)(t4n 3):
(1+ 7)(ugn—3) :
(1 + T)(w4n_3 :

M — — e

( )(@an—3) : |
(1+7)(yan—3) |
( ( |
|
|

[277]

tan—a
0

O O N OO

24772
2Wan—a + 2an—4a

4]
Tan—4

where h =1+ 2(—8)"~! —2.4""! | which is equivalent to

[2772]
tan—a
0

O O N OO

[2 . 4n—2] [4n—1]
2Wan—4 + Zan—a4  Tan—a

OO o += OO

1

O O O O O

[16"]
Yan—4
0

O O O O+

(1671 21671
Yan—a U4n—4
0 2(—8)nt
1 0
0 4(—8)nt
0 0
0 h
0 4(=8)"!
21671
Ugn—4
0 )
0 |ry
0 3
0 3
1—2-4771 |3
0 75,

by simple row operations and hence we complete the proof.

§6.4 FE-page

|70
|71
|72
|73
|74
|75,
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From the last section, lemma 6.3.1, we obtain E)1-page. To get FEj-page, we need
2

to determine connecting homomorphism in even degree part induced by (6.1), i.e. 0 :
Z(HY(R).) — H(H?(R).«12). By (6.5) and lemma 6.2.5, we see that Z(HY(R).) con-
tain only in degree divided by 4 whereas H(H?(R).42) contain only in degree divided
by 8. Thus 6 = 0, because ¢ shift down degree by 2, and hence E, 1—page > Fs—page.

We can now display the Fs-page, differentials and the E,-page in Figure 6.2 and
Figure 6.3 below, where [n] means cyclic group of order n derived from ku,qq4(BSD1g) -
part and 2¢ denotes elementary abelian 2 group of rank & derived from kteyen(BSD1g)-
part. The target symbols are the same meaning as in Theorem 5.5.1. All differentials
are treated by Theorem 5.5.1 and the fact that d, = 0,¥r > 4 (because 7° = 0).
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§6.5 Extension problems and results

The E. -page in Figure 6.3 gives n-multiple structure. Precisely,  and 1? multiple el-
ements of ko.(BSDis) are detected by the generater lying on the second (s=1) and the
third row (s=2) of E-page. For example, ko1(BSDis) contains one n-multiple gener-
ator, koy(BSD1g) contains one n?-multiple and two n-multiple generator, ko3(BSDjg)
contains two 772 -multiple generator, et cetera.

More surprisingly, the extension problems of degree 8 is obviously trivial and this
fact leads to:

Lemma 6.5.1. The extension problem occurring in Greenlees spectral sequence for
ko.(BSDyg) in Theorem 5.5.1 of degree 8k for all k > 1 are trivial.

Proof. Consider the commutative diagram, from Greenlees spectral sequence;

00— 22~ 218 —— kois(BSDyg) — Ex"'" 222 ——0

LR

0—— ~ — —~ _
22 B —— Log(BSDig) — B = [2]

—0.

Suppose that the first row of this diagram is non-split. So, there is T € z:v016(BSD16)
such that 2% # 0 and 27 must lie in Ex™® =~ 22 < Z—g, % >. By calculation we
check that there exit t € ko®(BSD1g), namely 3, or Ty, s.t. tN(2%) # 0. This implies
that 2(t N ) =t N (2) in non-zero in /];68(BSZ2\1/6) which is a contradiction because

kog(BSDsg) is split and contains ¢t N . Hence, koig(BSD;g) is split.

To generalise the conclusion to all degree 8k, k > 2, we again consider the com-
mutative diagram below;

0—= 2k g 28642 — L0600 (BSDig) Ex8 92 ——0

X | %

0—> ~ p—28k+10 o Thtl
2t = BT kog(k+1)(BSDig) — > Ex ¥ 2= 2

—0.

Since 3 is an isomorphism for k& > 2, lemma 5.2.4, if Z:ng(BSDw) is split ( i.e. there
exist s @ Ex"™ ™ — kogp(BSDyg) s.t. somp = idp—1s6+1), then we can define
s Bt %8(;“_1)(BS’D16) by

which is easy to see that s’ o mpy1 = idg—1840, ie. %S(kﬂ)(BSDlﬁ) is split. The
assumption is possible by degree 16 and hence completes the proof. O
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Next, we need to solve the extension problems of degree 8k+1 for all k£ > 0. If we
can show that the extension problems in degree 9 and 17 are trivial, then by the similar
reason as in the second part of the proof of lemma 6.5.1 above (E&g’““ = E&g’“*g by
3), kogkr1(BSDyg) for all k > 0 are split. To solve the extension problems in degree
9 and 17, we use many techniques as we have used in chapter 4 and chapter 5, but

they still remain.

Fortunately, D.Bayen, [7], calculated ko.(BSDjs) by using Adams spectral se-
quence on each part of the stable splitting of BSDig;

BSDyn =~ BSL3(q) V L(2) VRP>® v X' BS3/BN,

(see details of this description in [7]). In that, he calculated and recorded separately
for each part of

ko.(BSD1g) = koy(BSL3(3)) @ kox(L(2)) ® kos(RP™) & ko, (X LBS®/BN).

By his results, the extension problems are trivial (even through in degree 8k and 8k+2).

Now, by recollecting all our results we have so far (in this chapter and in the last
chapter), we get ko.(BSDig) as a module over ko*(BSDqg) as;

Theorem 6.5.2. The additive structure of ko.(BSDsg) is given by;

kOn(BSDm) n
2F| @ [2- 45T @ [4F 2 @ [8 - 16+ @ [8 - 16FH1] | 8k + 11 > 19
[2]95 @ 2k+1 8k + 10 > 18
27 @ [2k+]] 8k+9>17
Z - 3*1p @ [2]92 @ 2F+! 8k +8 > 16
[2F] @ [2 - 4] @ [4F 1) @ [16F 1] @ [2 - 1651 8k +7>15
2k 8k +6 > 14
[2k+1] 8k+5>13
Z - (ko @ 2k 8k +4>12
[8] @ [16] @ [128] @ [128] 11 ’
[2]94 @ 2 10
2° @ [2] 9
Z-Bpd[2]®2 8
2] ® [4] © [16] @ [32] 7
0 6
2] 5
Z- a2 4
[4] @ [8] @ [8] 3
[2]653 )
[2]693 1
Z-p 0
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where [ is the Bott element in KOg(pt), p is the first Chern class of reqular represen-
tation of SD1g, a = 2p and [n] means cyclic group of order n, 2% means elementary
abelian two group of rank k.

The generator description for ko.(BSDig) by the Greenlees spectral sequence is
as follows.

° kOQ(BSDlG) 2Z<p>.

e koi(BSD1g) = [2]®[2]@[2] generated by A[B), 71D, 71(JA] + [D?)) such that only
AlD3] is an n-multiple generator-.

o koy(BSD16) = [2] @ [2] @ [2] generated by 2B, 12D, 72([A] + [D¥) such that
n2[D?] is an n?-multiple generator and 7?[B], 7?([A] + [D?]) are n-multiple gen-
erator.

o ko3(BSD1s) = [4] @ [8] © [8] generated by T + 23, Wy and 2 respectively, with
t'9—2T9—8ys—zo—4u's = 0, where ap = %—inOle for each o € {z,y,z,t',u'}.
Moreover, there are two 1> -multiple generators from the top of To + Z2 and, 1:’2
or 2%s.

o koy(BSDig) 2Z < a>®d2< Z—Z > such that Z—; is embedded in H.(BSDigs;F2)

s (uy)".

e kos(BSDis) = [2] < wh >, where w's =
Ul —fl — 2w, .

qlll + QO _, such that W'y = 0 =

° kOG(BSlei) =0.
e koy(BSDis) = [2] @ [4]

respectively, where ay =

[16] @ [32] generated by zy + 4uy, Ta, 2ys and 2uy
+ QO _g for each o € {w,y,2,t,u}.

M\gw ®

o kog(BSD16) &7 < Bp > ®[2] < ?[usl] > P2 < T b4 > such that ?[ug and Z—Z are

embedded in H,(BSD1g;F2) as (uPy)Y and (uy®)" respectively.

o koo(BSD) = [2* < AALA[BL DYDY > 2 < T > of2] < 25 >,

where W5 = % + QO _g, such that 7[D3 and 7;[3‘;} are only two n-multiple

generators.
o kow(BSDg) = 2 < iP[A],7[B).iP[D?, (D) > &2 < % + g >, such
that there are three n-multiple generators which are 7?[A],7*[B],7?[D?] and only

one n? -multiple generator which is ?]2[53] Moreover T + 5= is embedded in
H.(BSDig;F2) as (uPy?)Y

k=

o ko11(BSD1g) = [8]D[16] D [128] © [128] generated by 26+t6,336+26, w's and 23s
respectively, with te = t'g+ 4T + 64ys + 222 + 64u'g, where ag = 3 +QO0_qy for
each o € {x,y,z,t' u'}. Moreover, there are three n? -multiple genemtm"s from
the top of Ze + tg, Te + 2 and, u's or 27s.
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o For k> 1, kogpya(BSD1g) 2 7 < BFa > @2k < Wm <i<k> such
that for each i, W)Z?d?i is embedded in H,(BSDig;Fa) as (uP%ySk-0+1)V

o For k> 1, kogpy5(BSD1g) = 2871 < @), .4 >, where W kg3 = ;,‘?% +QO_,
such that Wl =0, =1u — %1 — 2w .

~ bd bd
e For k >1, k08k+6(BSD16) ~ ok < b4<kji+1)d21' + = ;r)dQ 1+1)‘0 <1 <k-1>
bd bd .
such that for each i, pammge + b ey 5 embedded in H(BSD16;F2) as

(uPQi—1y8(k—i+1)—1)v + (uP2i+1y8(k—i)—1>\/

(if i =0, the first term disappears).
e For k> 1, kogpi7(BSD1g) = [2F] @ [2 - 4% @ [4FH ] @ [16F1]) @ [2 - 167H1] gener-
ated by Tag+a,Zaksa + 4 2 Uasa, Tapra, 20ansa and gy, respectively, with

tagsa = tapra — (=2 Taia — 2(=8) " g + (=2)FZupaa — 2(—=8)" gpa,

where Qapiq = qi‘ﬁ + QO _g for each a € {x,y,2,t,u}.

o For k > 1, kogeys(BSDig) 2 Z < BF+1p > @[22 < (H’Z[)ﬂ,jl% (,"g‘*] o> @2kl <

myo <1 <k > such that ("[;‘,ﬂﬂ and b4(k—7i—:1>d21' for each i, are embedded
in H.(BSDg;F2) as

(uyp2k+1)\/ and (uyS(kfi)+5P2i>\/

7[ta]

respectively, whereas CAGE is an only one n-multiple generator (which is actu-

ally n - tapsa) .

o For k > 1, kogpyo(BSD1g) = [2]° < pFHIg[L], pFH15[A], gF15]B), gF+15[D?,

pFRID3] > @[2)? < (24%}2, (;74)%{&2 > ®[2FY < 2Wypys >, where Wapys =

%—i—@_ﬁ, such that Bk“ﬁ[ﬁ?’] and (ﬂ E,H]Q are only two n-multiple generators
7% [ta]

whereas A is only one n?-multiple generator.

o Fork>1, koggr10(BSDig) = [2]° < g*H12[1], 8512 A, 8512 B], B2 D?)
75k+1ﬁ2[53] > @2kt < b4<k+ffj)+2d2i + b4(k—i7)—~l:i2d2i+2 >, such that there are four
n-multiple generators which are BFT12[1], BFH1R2[A], 192 B], BT 152 D?] and
only one n?-multiple generator which is ﬂkﬂﬁz[ﬁ?’]. Moreover PIFI—N T2t bZHQdQ, +
s is embedded in H,(BSDig; F2) as

(uyS(k+1—i)+1P2i—1)v 4 (uys(k—i)—l—lPQi—i-l)v

(if i =0, the first term disappears).

o For k >1, kogri11(BSDig) = [2F] @2 4@ 4k+J@8 1651 @ [8 - 16 +1]

generated by 24116, t45+6 + Z4kt6, Takt6 + Zaki6, Wakse and 2Yuie Tespec-
tively, with tagss = tapre + (—2)" 2 Tare + (—8) 2upie — (—2)" M Zup46 —
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4(—8)F 1/ g1 6, where Qupig = ;%—FQO_H for each o € {x,y, z,t',u'}. More-
over, there are four Tf -multiple generators from the top of 2t~4k+6, ZAk+6 —|—t~4k+6,
Tapr6 + 2ak+6 and, Wakre OT 2Yskt6-

Proof. This is an immediate result from theorem 5.5.1, lemma 5.4.3, lemma 6.2.4, Eo-
page of both Greenlees spectral sequence and 7-BSS. Precisely, to conclude that 7j[D?]
is an n-multiple generator we use;
28 13 4 5~
p=16-1-[-A+8B—- —C+-D*--D?

in lemma 5.3.2 and the same conclusion for 3*7¢ [55] is an immediate from the case
k = 0. To conclude n?-multiple generators in degree 8k + 3 for all £ > 0, we use the
comparison from the both spectral sequences. For the explicit embedding elements in
H,(BSDig) are obtained by lemma 5.4.3, 7-BSS and lemma 6.2.4. O

From our calculation, we see that the calculation of real connective K-homology
by using Greenlees spectral sequence applying on ko*(BSDig) gives us the enriched
structure which is suitable for GLR-conjecture but that method will not cover the
n-multiples. A tool to reveal them is 7-Bockstein spectral sequence applying on
ku,(BSD1g). Also, the results from D.Bayen which was obtained by using Adams
spectral sequence are needed to solve the extension problems. In other words, mixing
of these tools is more powerful.

All in all, from our calculations, we can conclude that even if the methods that
we have used to calculate connective K-theory are different, all of them still require
representation theory to determine their differentials, and surprisingly, they give the
same answer.



Appendix A

Basic commutative algebra

In the calculation of connective K-homology of both real and complex theory by us-
ing Greenlees spectral sequences, we need to calculate local cohomology and in that
direct limits (involving to Kozsul complex) are the main thing to deal with. Also,
connective K-theory is related to the completion mod p (for our calculation, p = 2) of
representation rings, thus p-adic integers play a role in the calculation.

A.0.1 DIRECT LIMITS

Here we investigate the definition and some properties of direct limit of modules and
rings by doing exercise on page 32-34 of M.F. Atiyah and I.G. Macdonald’s book [6].

Definition A.0.3. Let I be a direct set, R be a ring and let (M;);c; be a family of
R module indexed by I. A direct system (M;, pij) over the direct set I consists of an
R-homomorphism p;; : M; — M; for each i < j € I such that

o u;j 18 the identity mapping of M;, for all i € I;

® [k = [k © pij whenever i < j < k.
Let C be the direct sum of M; and identify each module M; with its canonical image
i C'. Let D be the submodule of C' generated by all elements of the form x; — Mij(fﬂi)

where i < j and x; € M;. The direct limit of the direct system (M;, pij) is defined to
be lim M; := C/D. Let : C — lim M; be the projection and let p; be the restriction

of w to M;, then p; = pij o p;; whenever i < j.

We can use this definition directly to prove:

Proposition A.0.4. In direct system (M;, pij) of an R-module over the direct set N,
if there is N € N such that pu(nyr)(N+k+1) are an R isomorphism for all k > 0 then

MN = lim Ml‘ .
Remark A.0.5. Note that:

194
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o This proposition will be true for any direct set I which can be proved by very
similar way to the direct set N.

o The condition that p(Nyr)(N+k+1) are an R isomorphism for all k > 0 is nec-

essary and the condition that p(Nyr)(N+k+1) are an R injection for all k >0 is
-1

(-1 &9 i direct

not sufficient because mj may be not lies in the domain of u
system of (M;, pij) such that p;; are all inclusion, we have

lim M; = _J M;. (A1)

1

For direct system (M, j1;;) over a ring R where M; = M,Vi € N and p,;; = p’—*

forall i <j €N and p € R, we define 7: P, M; —>M[%] by

T((]Il,xg, ey T, 0,0, 0, )) =T+ % + 1%’ + ...+ pfﬁl .

It is not hard to see that 7 is surjective and ker is D and hence
1

lim( M > M = M) =ML (A-2)

By very similar process as the proof of proposition above, we get a useful lemma.

Lemma A.0.6. In the situation of definition A.0.3, we have

1.) every element of lim M; can be written in the form p;(xz;) for some i € I and some
x; € M;,

2.) if pi(x;) =0 then there exists j > i such that p;j(x;) =0 and

3.) if pi(w;) = py(x) for some j > i then 3,k > j such that pir(x;) = pjr(})

Proof. 1.) and 2.) are obtained directly form definition, and 3.) follows from the defini-
tion and 2.). More precisely, since p;(2;) = p;(2}), by definition, p;(ui;j(2i)) = p;(2%)
and hence 1 (p;5(w;)—2";) = 0. By 2.), there exist k > j such that px(p;(2;)—2%) =0
and thus 3.) is proved. O

As the result of this lemma, we obtain universal property of direct limit:

Corollary A.0.7. (Universal property) Let N be an R- module and for each i € I let
aj : M; — N be an R-module homomorphism such that o; = ajop;; whenever i < j.
Then there exists a unique homomorphism « :lim M; — N such that a; = ao u; for

all 1€ 1.

Proof. For each m € lim M;, by lemma A.0.6, m = u;(z;) for some i € I and some

x; € M; and define a(m) = «;(x;). This is well defined by 3.) and the detail of
checking that « is unique is a routine work. O
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Definition A.0.8. Let (M, pi;) and (N;,vi;) be direct systems of R-module over
the same directed set. Let p; : M; — lim M;, v; : N; — lim N; be the associated

homomorphisms. A homomorphism @ : (M;, ju;5) — (Ny, v45) is by definition a family
of R-module homomorphisms ¢; : M; — N; such that ¢; o u;; = v;j o ¢; whenever
1<j.

This homomorphism induces a unique homomorphism ¢ : lim M; — lim /V;

given by ¢(m) = v;(¢i(x;)) for each m = p;(z;) for some i € I and some z; € M;,
such that ¢gopu; =v;0¢; forall 1 € I.

We say that a sequence of direct systems and homomorphisms
(Mi, pij) — (Niyvig) — (P, i)

is exact if the corresponding sequence of modules and module homomorphisms is exact
for each i € I.

Proposition A.0.9. In direct system (M;, j1;5) of an R-module over the direct set I,
we have

1) if (M, pij) — (Ni, vij) — (P, mi5) is an exact sequence then lim M; — lim N; —

lim P; is also exact and
—

2.) any R-module N, im(M; ® N) = (lim M;) ® N where im(M; @ N) is a direct
limit of a direct system (M; ® N, p;; ®1).

Proof. The first statement is obtained by lemma A.0.6, definition A.0.8 and chasing
diagram. The second follows by using universal property of direct limit and universal
property of tensor product of module. More clear, a homomorphism p;®1 : M;Q N —
(hi>n M;)®N for each i € I induces a homomorphism 1 : h_H)l(Mi®N) — (lin M;)®N,
by corollary A.0.1. On the other hand, for each i € I, let g; : M; x N — M; @ N be
the canonical bilinear mapping. Note that IEH(Mz x N) = (hi>n M;) ® N. By passing
to the limit we obtain a mapping g : (h_H)l M;) x N — @(Mz ® N). It is not hard
to see that g is R-bilinear and hence by universal property of tensor product we get a
unique homomorphism ¢ : (hi>n M;)® N — h_r)n(Ml ® N). Now it is simple to show
that ¢ o1 and v o ¢ are identity mappings which completes the proof. 0

In our calculations, we will need to calculate H (1q) (R) = coker(R — R[%]) for
some ring R and some g € R (e.g. in Chapter 3, R = QU , a subring of KU*(BSD1s) ).
So, it is reasonable to understand R[%] as a direct limit. We start with;

Definition A.0.10. Let (A;)icr be a family of rings indezed by a direct set I, and for
each pair i < j in I let oy : Ay — A; be a ring homomorphism satisfying conditions
in the definition A.0.3. Regarding each A; as a Z-module, we can then form the direct
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limit im(A;). As in [8], define multiplicative structure of lim A; as follows. For the
coset a = Piecrr; and b = @je]’r‘; and take k > i,j foralli € {i € I :r; # 0} =
supp(a), j € {j € 17} # 0} = supp(b). Define

(a+ J)b+J) = > i (ri)agr(ry) +J
i€supp(a),j€supp(b)

where J is the subgroup of @, ; Ai generated by r; — cvij(r;) for all i < j € I. This is
well defined and o; : A; — lim(A;) are ring homomorphism, see [8], page 4.

Now, the ring structure of €, ; A; can be given as follows. For each i € I we
identify A; with its image in @,;.; A; and for r; € R;, 7“3- € Rj. Define
ri 15 = oy (ri) g (rg)

for general product, we extend this product via distributive law, [8](page8). So, we can
see that, for a direct system ((4;)ien,ij) such that A; = A,Vi € N and «;; = p'™*
for all 7 > i, where pe€ A,

(A 4P 4t ...)gA[;] (A.3)

A.0.2 INVERSE LIMITS, COMPLETION AND p-ADIC INTEGERS

We review the definition and some properties of inverse limit, completion and p-adic
integers from Chapter 10 in [6]. In that by definition, an inverse system consists of
a sequence of groups {4,} and homomorphism 6,1 : 4,11 — A,. The groups of
all coherent sequence (ay) (i.e. a, € A, and O,1a,11 = ay) is called the inverse
limit of this system and usually it is written by @An. In other words, by setting

A =172, A, one defines d4: A — A by,

dA(an) = ap — Opt1(ant1),
then lim A,, = ker(d?) and the coker(d?) is normally denoted by lim A, .
The exactness properties of inverse limit is different to direct limit, i.e. it is

merely left exact functor. Precisely, by proposition 10.2 in [6], one has that if 0 —
{4,} — {Bn} — {C,} — 0, is an exact sequence of inverse systems, then

0 — limA, — lim B,, — lim C,

is always exact. If, moreover, {A,} is a surjective system (i.e. €,41: Apy1 — Ay is
surjective for all n), then

0 —limA, — limB, — 1limC, — 0
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is exact.

Closely related to the inverse limit is completion. For the topological group G
topologized by the neighborhood of 0 in G, the completion of GG, denoted by @, is
the set of all equivalence classes of Cauchy sequence. It is an abelian group under the
additive operation, i.e., if (x;) and (y;) are two represented Cauchy sequence classes
in @, so is (z; + y;j). Moreover, for each x € G, we define ¢(x) to be the constant
sequence (z) in G for ¢:G— G. This is a homomorphism of abelian groups which
is not in general injective. In fact, we have ker(¢) = NU, where U runs through all
neighborhoods of 0 in G, and furthermore ¢ is injective if and only if G is Hausdorff,

[6].

The relevance to the inverse limit comes from the alternative purely algebraic
definitions of completion, namely, by using topologies given by the sequences of sub-
groups G =Gy 2 Gy D -G, D ---,ie., U C G is a neighborhood of 0 if and only
if it contains some G,,. Note that the subgroups G,, of G are both open and closed
in that topology. By this topology, one can form the inverse system {G/G,} with
On+1: G/Gpy1 — G/G,, and one can show that

G = 1limG/G,, (A.4)
see details of this isomorphism in page 103 of [6].

Since {G’/G!} is surjective system, for any short exact sequence of groups, 0 —

G — G2~ G" — 0 yields the short exact sequence,
0—G —G— G — 0,

where G has topology defined by a sequence {G,,} of subgroups and gives G', G” the
induces topologies, i.e. by the sequence {G;, NGy}, {pGnr}, (Corollary 10.3, [6]). The
consequence is that G, is a subgroup of G and

G/Gp =2 G/Gy and G = G.

The other relevances of inverse limit is the completion of topological ring (the
ring operations are continuous) given by the sequences of its ideal. For topological ring
G = A and its ideal a, the sequence of the ideal a is A =a’ Da! D a? D --- and the
a-adic topology is given by

Ay =lim A/a".

This completion is again a topological ring and ¢ : A — A7 is a continuous ring
homomorphism whose kernel is Na™. The topology is Hausdorff if and only if Na™ =0
if and only if A is a completion ring.

Likewise for an A-module M ; take G = M and G,, = a"M and the completion
of M is call a-adic topology on M which is

o~

M = lim M/a" M.
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This is a topological A-module. If M — N is any A—module homomorphism then
f(a"M) = a”f(M) C a"N, and thus f is continuous (with respect to the a-adic
topology on M and N) and so defines f: M — N, page 105, [6].

The example of our interest is p-adic integers, where p is prime, i.e. by taking

o0

A =7 and a = (p). It elements are infinite series Zanp”, 0 < ap < p—1 which
n=0

p" — 0 as n — 0, [6]. In other words,

. k
2 = tim 2/,
which contains all sequence (a1, as, as, ...) such that aj € Z/p* and ax1 = ap mod p”.

Here, for example, we see that % € imZ/ ok o 7Y because we can view % =
P

1+ (=2) 4+ (=2)% + (—2)% + ... as the coherent sequence (a1, as,as,...), [i.e. a; is the
image of 1+ (=2) + (=2)? + (=2)3 + ... in Z/2'], where

ap = 1=1 mod2,

az = 14 (=2)=-1 mod4,

az = 1+ (=2)+(-2)2=3 mods,
+

ag = 14(=2) (:2)2 +(-2)3= -5 modl6

which is easy to see that apy; = ap mod2¥. In general, we claim that % € Z4 for all
p,q €Z s.t. (p,q) =1 and ¢ is odd. To prove this, we will use another description of
Z% , i.e. as the completion of the matric space (Z, dz), where

1 __ ifa £ b,
— ) wm@ob ! 7
da(a.b) { 0, ifa=b,

and vo(n) = s if n=2%-odd.
Proposition A.0.11. For p,q € Z, (p,q) =1 and q # 0, we have that

LeZy < qis odd.

Proof. (<=): It is clear that p € Z) (as an eventually constant sequence), so by the

closed property of ring multiplication of Z%, we need only to check that % € 74 for

any odd number g. As before, we view % as

= =l4+z+z"+2°+ ...,
q 1l—=x

where z is an even integer. From this form, we get coherent sequence (g,) = (a1, a2, as, ...),
where a; = 1 +x + 22 + ... + 2!, the image of % in Z/2'. Tt is not hard to check
that (gn) is a Cauchy sequence in the matric space (Z,ds2). Precisely, for r > s,
ar—as =2+ + . 42" =251+ z+2?+...+27), then (a, —as) > s and thus
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do(ar,as) < % which yields (g,) to be a Cauchy sequence, i.e. % €Zh.

(=): Suppose ¢ is even (p is odd) and £ € Z% , then (%)(%) = % € Z%, since
% € Z4 . This implies that ¢ is a unit in the ring Z) and then ¢ mod2 must be a
unit in the ring Z/2 via any ring homomorphism Z) — Z/2. Hence ¢ must be odd

which contradicts to the assumption. O
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