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Abstract

The real connective K -homology of finite groups ko∗(BG), plays a big role in the
Gromov-Lawson-Rosenberg (GLR) conjecture. In order to compute them, we can cal-
culate complex connective K -cohomology, ku∗(BG), first and then follow by comput-
ing complex connective K -homology, ku∗(BG), or by real connective K -cohomology,
ko∗(BG). After we apply the η -Bockstein spectral sequence to ku∗(BG) or the Green-
lees spectral sequence to ko∗(BG), we shall get ko∗(BG). In this thesis, we compute all
of them algebraically and explicitly to reduce the difficulties of geometric construction
for GLR, especially for semidehedral group of order 16, SD16 , by using the methods
developed by Prof.R.R. Bruner and Prof. J.P.C. Greenlees. We also calculate some
relations at the stage of connective K -theory between SD16 and its maximal subgroup,
(dihedral groups, quaternion groups and cyclic group of order 8).
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Introduction

The connective K -theory of finite groups plays evidently a big role in the investigation
of Gromov-Lawson-Rosenberg (GLR) conjecture. This conjecture involves the existence
of a positive scalar curvature metric. That is; if n ≥ 5, M is a spin n-manifold with
π1(M) = G , (we restrict our attention to the case when G is finite, because of the
results of T.Schick, [31]), then M admits positive scalar curvature metric if and only if

[M ] ∈ ker(ΩSpin
n (BG) −→ kon(BG) −→ KOn(BG) −→ KOG

n ),

[30]. There is no known counter example for finite groups yet, see more discussions in
this direction in section 2.7 of [13], especially lemma 2.7.1 in [13]. In that, we will see
that the E∞ -page of Greenlees spectral sequence for ko∗(BG) is suitable for GLR. This
is actually the principal motivation. In order to minimize the difficulties of geometric
construction for GLR conjecture, we mainly concentrate to the algebraic calculations
as much as possible.

The main stuff in this thesis is the calculation of four types of connective K -
theory of finite groups which are ku∗(BG), ku∗(BG), ko∗(BG), ko∗(BG) for semidi-
hedral groups G , by using the methods developed by Prof.R.R. Bruner and Prof. J.P.C.
Greenlees, [14] and [13], which the author calls Bruner-Greenlees methods. The reasons
for choosing semidihedral groups,

SD2n = {s, t|s2n−1
= t2 = 1, tst = s2n−2−1}, for n ≥ 4,

to be a case study is firstly because there is no explicit answer for them yet, secondly,
because of their structures, e.g. SD2n−1 is not a subgroup of SD2n which contrasts
with those of dihedral groups, quaternion groups and cyclic group, and finally, because
of the first hoping that this groups might be the counter example of GLR, but so far,
it does not, by [29].

The strategies of the calculation on four types of the connective K -theory, for
finite group G , due to Bruner-Greenlees methods can be displayed as in the diagram
below;

vii
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H∗(BG;F2)

ku∗(BG) ku∗(BG)

ko∗(BG) ko∗(BG),

©©©©©©*
-

-
? ?

ASS

GSS

GSS

BSS BSS

where ASS refer to Adams spectral sequence, BSS refer to η -Bockstein spectral se-
quence and GSS refer to Greenlees spectral sequence and all arrows in this diagram
are not maps but they merely refer to the methods of the calculation which input and
output lie in the tails and heads of the arrows respectively. From this diagram, to
obtain ko∗(BG) via Bruner-Greenlees methods with the input H∗(BG;F2), we can do
possibly in two ways, i.e. ASS −→ BSS −→ GSS and ASS −→ GSS −→ BSS .
However, from our experience, combining of both ways gives us more information.

§ 0.1 Outline

Note at first that, the prerequisites for this thesis is the standard basics from algebraic
topology, K-theory, representation theory, commutative algebra and homological alge-
bra, especially on the topic spectral sequence.

Since all four types of connective K -theories we consider are infinite dimensional
CW -complex (classifying space BG) and are in the complete world (I -adic completion
of equivariant connective K -theory, [19]), we collect some basic facts about direct limit,
inverse limit, completion and p-adic integer in the Appendix. In preliminaries chapter
we include some basic background on periodic and connective K -theory and recall the
general methods of the calculation ku∗(BG) by using Adams spectral sequence from
[14]. Since all calculations by using Bruner-Greenlees methods are mainly based on
representation theory, we collect and record some facts about them. The technique
about exact sequence is often used, thus we collect some long induced exact sequences
concerning our calculation at the end of this chapter as well.

We start to calculate ku∗(BG), for semidihedral group G , by using Adams spec-
tral sequence in Chapter 2. Since the representation theory (character theory) and
cohomology ring are important tools in Bruner-Greenlees methods, we provide the
explicit calculation of the character table for semidihedral groups at the start of the
chapter. For cohomology rings, we investigate the results from [16] and try to make
the explicit relations with Chern classes or Stiefel-Whitney classes (some Bockstein
operations are included). After that, we calculate H∗(BSD2n ;F2) as a module over
the exterior algebra E(1) followed by the calculation of E2 -page which we also provide
the general structures for the E2 -page of Adams spectral sequence for ku∗(BG). The
calculation of differentials is not too hard and can be done by using the properties of
Chern classes, Bockstein operation and the theorem of May and Milgram, [25]. Since



INTRODUCTION ix

the Adams spectral sequence for ku∗(BG) is strongly convergent (see this discussion
in section 1.2.3), the additive structure can be read from E∞ -page together with the
character table and cohomology ring. Again, the representation theory and cohomology
ring give us the multiplicative structure. Note that we make explicit the structure of
ku∗(BG) only for G = SD16 and for general semidihedral group we merely say some-
thing about the relation with its periodic K -theory and cohomology ring. We end up
this chapter by comparing our result ku∗(BSD16) with ku∗(BG) for dihedral groups,
quaternion groups and cyclic groups G .

In Chapter 3, we calculate ku∗(BSD16) as a module over ku∗(BSD16) by using
the Greenlees spectral sequence. To do that, we recall some background about local
cohomology based on the Koszul complex (which is suitable to our purpose) at the
beginning. The main strategy for calculating ku∗(BSD16) is common with those in
[14]. That is by considering short exact sequence

0 −→ TU −→ ku∗(BSD16) −→ QU −→ 0,

where TU is v -torsion and QU is the image of ku∗(BSD16) in periodic K -theory.
This induces a long exact sequence of local cohomology and hence instead of doing cal-
culation on H∗

I (ku∗(BSD16)), we can do that on the TU part and the QU part which
is evidently more comfortable. For the TU part, this is embedded in the cohomology
ring and thus the calculation is not hard in local cohomology. For the QU part, we
work on the character table to make explicit the reduction to a principal ideal and in
that we try to link the generators of QU part to the Modified Rees ring, JUi , (these
generators will be used widely in this thesis). After that, we calculate H∗

I (QU) which
is the bulk of this chapter (we provide a great deal of detail about the calculations to
avoid mistrust) by using row-column matrix operations. After finishing this calcula-
tion, we record all results in the E1 1

2
page. To get the E2 -page, we need to identify

the differentials coming from the long exact sequence, which can be done by using the
module structure of local cohomology and the connective property of ku . It turns out
that the E2 -page is the E∞ -page and there is no any extension problem. Therefore,
the results is an immediately result from E∞ -page and the actions of ku∗(BSD16)
can be read from the module structure of local cohomology. We end up this chapter
by comparing our result ku∗(BSD16) with ku∗(BG) for dihedral groups, quaternion
groups and cyclic groups G .

In Chapter 4, we calculate ko∗(BSD16) by using the η -Bockstein spectral se-
quence with initial input ku∗(BSD16). For the E1 -page, this is simple by just copying
the input along the diagonal. For the E2 -page, we use the same strategies as in [13],
i.e. by considering short exact sequence of the input

0 −→ TU −→ ku∗(BSD16) −→ QU −→ 0,

as before. Next, we calculate homology of the part TU and QU where the differentials
on the two parts are given by Sq2 and 1±τ , respectively. We calculate and display the
kernel and homology (for homology we use Steenrod algebra and row-column matrix
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operations) of both parts explicitly based on cohomology ring and character table (in
term of the generator of JUi ), which take a number of page for this. The calculations
of connecting differentials and d2 , d3 are examined in the same time with the help of
representation theory and the properties of η -Bockstein spectral sequence, i.e. the fact
that the spectral sequence collapses at E4 -page (since η3 = 0). After we reach to the
E∞ -page, there are some extension problems to consider. We solve that problem by
using the structure of the E∞ -page together with the help of the η -Bockstein spectral
sequence for mod 2 coefficients and the mod 2-Bockstein spectral sequence. Again, we
end up this chapter by comparing our result ko∗(BSD16) with ko∗(BG) for dihedral
groups, quaternion groups and cyclic groups G .

In Chapter 5, we calculate ko∗(BSD16) as a module over ko∗(BSD16) by us-
ing Greenlees spectral sequence with initial input ko∗(BSD16). We proceed with the
calculations in the same way as in Chapter 3 but this one has more structure. The
strategy is closely the same as before but we need to consider two short exact sequences
for ko∗(BSD16). That is, for ko∗(BSD16);

0 −→ T −→ ko∗(BSD16)
πu

// QO −→ 0, and

0 −→ τ −→ T −→ TO −→ 0,

where QO is the image of ko∗(BSD16) in KU∗(BSD16), T is the kernel of πu , and
TO is concentrated in the zero line of the η -Bockstein spectral sequence which is a
submodule of H∗(BSD16;F2) and τ is the η -multiples of ko∗(BSD16). To get the E2 -
page, we need to calculate H∗

I (ko∗(BSD16)) but, by the induced long exact sequence
from the first short exact sequence, we can calculate H∗

I (T ), H∗
I (QO) and their con-

necting differentials instead. For H∗
I (T ), we use the long exact sequence induced from

the second short exact sequence, i.e. it is enough to find H∗
I (TO), H∗

I (τ) and their
connecting differentials. We take a number of page to find the radical ideal,

√
I , for all

of the module τ, TO and QO over ko∗(BSD16). The local cohomology calculation for
TO , τ and QO is not too hard but there is a problem concerning the connecting differ-
entials coming from the first short exact sequence. And also there are some extension
problems when we reach to E∞ -page. We take the bulk of this chapter to solve them.
However, some extension problems still remain and also some η -multiple elements of
the module ko∗(BSD16) are hindered by this methods. We write down some additive
structure of ko∗(BSD16) at the end of this chapter and postpone the remaining prob-
lems (precisely, in degree 8k and degree 8k+1) and η -multiple structures to Chapter 6.

In Chapter 6, we calculate ko∗(BSD16) as a module over ko∗(BSD16) by us-
ing the η -Bockstein spectral sequence with initial input ku∗(BSD16). The strategy is
similar to Chapter 4; we consider homology calculation on even and odd degree part
of ku∗(BSD16) separately. For the even degree part, we do some explicit calcula-
tions to embed the second column of the E∞ -page of ku∗(BSD16) in Chapter 3 to
H∗(BSD16;F2) and then calculate differential d1 on this part by using the dual of Sq2

operation, namely d1 = (Sq2)∨ . For the odd degree part, this is similar to the QU
part of Chapter 3, (i.e. by using character table and local ring for the calculation)
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where the differentials are given by d1 = 1 ± τ . This part needs careful work which
we take a large number of page to deal with in order to prevent mistrust. To find the
differentials, it is easy now by referring to the results in Chapter 5. It turns out that
the E∞ -page contains more extension problems than the GSS and most of them are
non-trivial extension problems. By good fortune, in degree 8, it is a trivial extension
problem and this resolves the extension problem in degree 8k from the last chapter.
This also reveals the η -structure for ko∗(BSD16). However, both methods, BSS and
GSS, still leave the extension problem in degree 8k + 1. Fortunately, by the results of
D.Bayen [7], we can complete the calculation.

§ 0.2 Main results and Conclusions

Main results:

From our calculation, the main results for ku∗(BSD16) are;

• The generators and relations of ku∗(BSD16) are shown explicitly for both addi-
tive and multiplicative structure (Theorem 2.5.5 and Theorem 2.6.1).

• Comparing with the result of ku∗(BG) where G is finite groups of p-rank ≥ 2,
e.g. dihedral groups and elementary abelian 2-groups, the complex connective K
cohomology of them contains v -torsion in codegree 6 whereas ku6(BSD16) has
no v -torsion (Lemma 2.5.2).

• ku∗(BSD16) is embedded in H∗(BSD16;F2)⊕KU∗(BSD16) (Lemma 2.4.4(4)).

• ku∗(BSD16) is embedded in ku∗(BD8)⊕ku∗(BQ8)⊕ku∗(BC8) (Theorem 2.7.2).

• ku∗(BSD16) is generated by Chern classes and then the image in periodic K -
theory is a Modified Rees ring based on the definition 2.3 in [19] by R.R. Bruner
and J.P.C. Greenlees (Theorem 2.5.5).

• ku∗(BSD2n) is embedded in ku∗(BD2n−1)⊕ ku∗(BQ2n−1)⊕ ku∗(BC2n−1) (The-
orem 2.7.3).

The main results for ku∗(BSD16) are;

• The generators and relations of ku∗(BSD16) are shown explicitly (Theorem 3.5.1)
and the action of ku∗(BSD16) on ku∗(BSD16) can be read from the table 3.4
and table 3.5 in Chapter 3.

• There is an explicit map from ku∗(BSD16) to ku∗(BD8)⊕ku∗(BQ8)⊕ku∗(BC8)
(Proposition 3.6.2, 3.6.4, Subsection 3.6.3).

The main results for ko∗(BSD16) are;

• The generators and relations of ko∗(BSD16) are shown explicitly (Theorem 4.4.1).
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• There is a natural injective map from ko∗(BSD16) to H∗(BSD16;F2)⊕KO∗(BSD16)
(Corollary 4.4.2).

• There is an explicit map from ko∗(BSD16) to ko∗(BD8)⊕ko∗(BQ8)⊕ko∗(BC8)
which is not monomorphism (Proposition 4.5.2, 4.5.4, 4.5.6).

The main results for ko∗(BSD16) are;

• The generators and relations of ko∗(BSD16) are shown explicitly (Theorem 6.5.2).

• There are elements of the second column of GSS detected in H∗(BSD16;F2),
namely η̃[u4]

(u4)k+2 ∈ ko8k+8(BSD16) are detected by (uyP 2k+1)∨ ∈ H8k+8(BSD16;F2)
(Theorem 6.5.2).

The conclusions:

The Bruner-Greenlees methods for the calculation of connective K -theory for
finite groups is a powerful tool. This machine reduces the work in homotopy theory to
algebra and can be attacked by representation theory and cohomology theory. It is no
exaggeration to say that the combining of ASS, BSS and GSS gives an excellent and
standard way to make explicit the structure of connective K -theory for finite groups.
All in all from our calculations, we can conclude that even if the methods that uses
to calculate connective K-theory are different, all of them still require representation
theory to determine their differentials, and surprisingly, they give the same answer.
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Chapter 1

Preliminaries

We collect some meaning and properties of complex connective K -theory and the
strategy to calculate ku∗(BSD16) by using Adams spectral sequence from [14] in the
first section. The second section, we provide some basic knowledge of representation
theory involving to our calculation. And in the last section, we investigate some long
exact sequences concerning both real and complex connective K -theory via killing
homotopy groups.

§ 1.1 Periodic K -theory and connective K -theory

In this section, we collect some facts of complex periodic K -cohomology theory and
complex connective K -cohomology theory which are relevant to our purpose, i.e. for
calculation by using representation theory.

1.1.1 What is KU∗(BG) = K∗(BG)?

A useful way to think about the periodic K -theory of classifying space BG , for finite
groups G is equivariant K theory. That is, by definition in [32], for a compact G-space
X ,

KG(X) = Z{[η]}/([η1 ⊕ η2] = [η1] + [η2]), (1.1)

where η is a complex G-equivariant vector bundle over X ; precisely, it is a G-map
π : ξ −→ X so that for each x ∈ X the fibre ξx := π−1(x) is a complex vector space
and for each g ∈ G , the translation g : ξx −→ ξgx is linear and furthermore ξ is locally
trivial, [18]. Note that the tensor product makes equivariant K -theory, KG(X), to be
a ring.

This definition can extend to locally compact G-space X , i.e.,

K0
G(X) = K̃G(X+) = ker(KG(X+) −→ KG(pt))

and
K1

G(X) = K̃G(S1 ∧X+),

1
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where X+ means one point compactification of X . This theory has the main properties
that ([32])

1 KG(pt) = R(G), representation ring and by Bott periodicity, Kn
G
∼= Kn+2

G , we
get that

K∗
G(pt) ∼= KG

∗ (pt) = R(G)[v, v−1],

where v ∈ KU2 = KU−2 = KU0(S2) is the Bott element,

2 KG(X) ∼= K(X/G) if G acts freely on X .

The main theorem which relates to our purpose is the theorem of Atiyah and Segal;

Theorem 1.1.1. ([3]) The equivariant K -theory of EG is

K0
G(EG) = R(G)∧J and K1

G(EG) = 0,

where J = ker(R(G) −→ R(1) = Z).

Note that EG is a terminal free G-space in the homotopy category, i.e, for any
free G-space X , there is a G-map νX : X −→ EG , unique up to homotopy. In fact
EG is free and non-equivariantly contractible and BG = (EG)/G). Thus, by this fact,
properties of KG above, theorem 1.1.1 and Bott-periodicity we have;

KU∗(BG) = K∗(BG) = K∗(EG/G) = K∗
G(EG) = R(G)∧J [v, v−1]. (1.2)

Moreover, there is another useful theorem by Atiyah and D.O.Tall, ([5], III.1.1)
which is suitable for our calculation (i.e. connective K -theory of finite p-groups),
namely if G is a p-group, the J -adic and (p)-adic topology coincide on J so that

R(G)∧J ∼= Z⊕ J∧(p), (1.3)

where J = ker(R(G) −→ R(1) = Z), [18]. Furthermore, [18], for finite group G , J -adic
completion R(G) −→ R(G)∧J is injective if and only if G is a p-group, [3] and [5].

1.1.2 What is ku∗(BG)?

Roughly speaking, complex connective K -cohomology theory is an associated coho-
mology of the spectrum ku which is the fibre of the killing homotopy group of the
spectrum1 KU ,

KU↑
0 := KU < 0 >−→ KU −→ KU−1

↓ ,

i.e. ku := KU↑
0 := KU < 0 > and more precisely

πn(ku) =
{
Z, if n is even and ≥ 0;
0, otherwise.

.

1Note: spectrum KU contains a sequence of spaces KU i, i ∈ Z s.t. KU2k = Z×BU , KU2k+1 = U ,
by Bott periodicity theorem.
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Also, by Proposition 16.6 in J.F.Adams book [2],

H∗(ku;F2) ∼= A⊗E(1) F2, (1.4)

where E(1) =
∧
F2

(Q0, Q1), Q0 = Sq1, Q1 = Sq1Sq2 + Sq2Sq1 and A is mod 2 Steen-
rod algebra.

Moreover, there is the assertion from, for example, [14], [13] and [19] that; ku∗(−)
is a complex orientable cohomology theory, ku∗(BU(n)) = ku∗[[c1, c2, ..., cn]] , where
ku∗ = ku∗(pt) = ku∗(pt) = Z[v] ; and for finite group G , ku∗(BG) is a Noetherian
ring. Furthermore, there is a relation between equivariant and non-equivariant complex
connective K -theory in [19] that; for any compact Lie group G ,

ku∗(BG) ∼= (ku∗G)∧I , (1.5)

where I = ker(ku∗G −→ ku∗) is the augmentation ideal.

The relations between connective and periodic K -theory or connective K -theory
and ordinary cohomology theory are evidently useful for our calculation which we can
investigate them in [14], for example:

• There is a cofibre sequence Σ2ku −→ ku −→ HZ , and there is an equivalence
KU ' ku[ 1v ] .

• By lemma 1.1.1 in [14], for any space X ,

ku∗(X)[
1
v
] ∼= KU∗(X).

• For finite groups G , k̃u
i
(BG(n)) is finite if n > i , where BG(n) is the n-skeleton

of BG , thus the inverse system {ku∗(BG(n))} is Mittag-Leffler and hence (page
31, [14])

ku∗(BG) = lim←−n

ku∗(BG(n)).

• For any representation V of G , the natural map

H∗(BG;Fp) ←− ku∗(BG) −→ KU0(BG) = R(G)∧J sends

cH
i (V ) ←− cku

i (V ) −→ cKU
i (V ) = v−icR

i (V ),

where cR
i (V ) =

∑i
j=0(−1)j

(
n− j
n− i

)
∧j (V ) and cE

i (V ) is the ith Chern class

in cohomology theory E .

Remark 1.1.2. To calculate ∧j(χ), where χ is an character irreducible representation
V for some V (dimension n) of a groups G, we use Newton recurrence relation and
Adams operations Ψk , namely, by using proposition 7.4 in [12],

Ψk(χ)(g) = χ(gk),
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and the recurrence relation [5], Ψk(χ)−Ψk−1(χ)∧1 (χ)+ ...+(−1)k−1Ψ1(χ)∧k−1 (χ)+
(−1)kk ∧k (χ) = 0, or in other words,

∧k(χ) =
(−1)k

k
[∧k−1(χ)Ψ1(χ)− ∧k−2(χ)Ψ2(χ) + ... + (−1)k−1Ψk(χ)].

Note also that ∧1(χ) = χ and ∧n(V ) = det(V ).

To obtain ku∗(BG), we can use Atiyah-Hirzebruch Spectral sequence;

Ep,q
2 = Hp(X; πq(ku)) ⇒ kup+q(X),

or Adams Spectral sequence, [14];

E∗,∗
2 = Ext∗,∗A (H∗(ku;Fp),H∗(BG;Fp)) ⇒ ku∗(BG)∧p . (1.6)

In this thesis, by Bruner-Greenlees methods, we use Adams spectral sequence.

1.1.3 How to calculate ku∗(BG) by the Adams spectral sequence?

By (1.4), (1.6) and the standard change of ring argument (i.e., for algebra A (flat as a
module) over a ring R , ExtA(A⊗RN, M) ∼= ExtR(N, M), where M,N are R-modules),
the E2 -page of the Adams spectral sequence is reduced to

E∗,∗
2 = Ext∗,∗E(1)(Fp,H

∗(BG;Fp)),

where E(1) =
∧
F2

(Q0, Q1), Q0 = Sq1, Q1 = Sq1Sq2+Sq2Sq1 and A is mod 2 Steenrod
algebra. Moreover, if G is a discrete group, then (Theorem 2.4.11, [10]) BG ' K(G, 1),
Eilenberg-MacLane space. Also by theorem 2.2.3 in [10], H∗(G;Fp) ∼= H∗(K(G, 1);Fp).
These facts lead the Adams spectral sequence for ku∗(BG), where G is finite groups,
to be

E∗,∗
2 = Ext∗,∗E(1)(F2,H

∗(G;F2)) ⇒ ku∗(BG)∧2 . (1.7)

The calculation of E2 -page is all homological algebra. The standard way is firstly
calculate H∗(G;F2) as a module over E(1), i.e. calculate the actions of Q0 and Q1

on H∗(G;F2). Secondly, take a projective resolution of F2 or an injective resolution
of H∗(G;F2). Thirdly, take Hom∗

E(1)(−,F2) or Hom∗
E(1)(F2,−) to the projective or

the injective resolution and get a long exact sequence. Finally, calculate homology of
the long exact sequence and then E2 -page follows. However, the module structure of
E2 -page over Ext∗,∗E(1)(F2,F2) will play a big role for differential calculation, thus it is
worth to find out such structure, see more details in the section 2.3.1 and 2.3.2.

The convergence of Adams spectral sequence for ku∗(BG)∧2 is strong convergence.
This means that

ku∗(BG)∧2 ∼= lim←−s

(R/F sR),

where R = ku∗(BG)∧2 = F 0R ⊇ F 1R ⊇ F 2R ⊇ ... in which F sR/F s+1R = Es,n+s∞ . In
fact, the strong convergence is guaranteed by J.F.Adams, [2], and J.M. Boardman, [11].
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Precisely, theorem 15.1 in [2] (applying for Y = ku , E = HF2 , X = BG , Y E = Y ∧
2 ,

which all assumptions in the theorem are satisfied) yields the conditional convergence
(theorem 15.1(iii)) and theorem 7.1 in [11] gives the strong convergence.

For the calculation of Adams differentials, the theorem of May and Milgram,
[25], and representation theory are powerful tools. Knowing the additive structure from
stable splitting, (i.e. if BG ' X∨Y , then we have E∗,∗

2 (X∨Y ) ∼= E∗,∗
2 (X)⊕E∗,∗

2 (X) =⇒
ku∗(X) ⊕ ku∗(Y ) and the calculations of differentials can be done separately), is also
helpful (see, for example, the calculation of ku∗(BQ2n) in [14]). Moreover, knowing,
if we are lucky, the generator of cohomology ring as a characteristic class, will be very
helpful to determine differentials as well (see, for example, the calculation of ku∗(BD2n)
in [14]).

After we reach to E∞ -page, it remains to find additive and multiplicative struc-
ture. To do this the comparison of representation theory (by Atiyah and Segal theorem)
and cohomology ring will play an important role (see more details in Chapter 2). How-
ever, some relations in ku∗(BG) are obtained immediately from Lemma 1.3.4 in [14],
i.e. for one dimensional representation α, β ,

eku(αβ) = eku(α) + eku(β)− veku(α)eku(β)

and Lemma 2.1.1 in [14], that if ρ is induced up from the trivial subgroup (e.g. regular
representation), it will be annihilated by Euler classes. Note also that the target of
the Adams spectral sequence is ku∗(BG)∧2 but we actually need to calculate ku∗(BG).
However, for p-groups G , two this things are nearly the same, i.e. ku∗(BG) = Z[v]⊕
k̃u

∗
(BG)∧2 . In other words, for p-groups G ,

k̃u
∗
(BG)∧p ∼= k̃u

∗
(BG). (1.8)

This fact, (1.8), follows from (1.5) which asserts that ku∗(BG) is an I -adic completion
(I = ker(ku∗G −→ ku∗), the augmentation ideal) and the Atiyah theorem, [5], which
asserts that, for p-groups G , J -adic topology and p-adic topology coincide.

1.1.4 Theorem of May and Milgram for connective K -theory

The relation between the Adams spectral sequence for ku∗(BG) and the Bockstein

spectral sequence for H∗(BG;Z) come from the inclusion E(0) i // E(1) . This
inclusion induces homomorphism

Ext∗,∗E(1)(F2,H
∗(BG;F2)) i∗ // Ext∗,∗E(0)(F2,H

∗(BG;F2)) .

Note also that Bockstein spectral sequence for calculation H∗(BG;Z) can adapt to be;

E2 -page = Ext∗,∗E(0)(F2,H
∗(BG;F2)) =⇒ H∗(BG;Z) = [BG, HZ] .
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This yields the diagram below;

Ext∗,∗E(1)(F2,H
∗(BG;F2)) =⇒

i∗
²²

ku∗(BG)

²²
Ext∗,∗E(0)(F2,H

∗(BG;F2)) =⇒ H∗(BG;Z).

Hence, these two spectral sequences are related. Some relations are found by May and
Milgram, theorem of May and Milgram [25], which guarantee that the towers in each
Er -page of both spectral sequences correspond and under this correspondence their
differentials agree.

§ 1.2 Representation theory for connective K -theory

In this section we collect some facts of representation theory from [13] and [1] that are
involved in our calculation. Since Chern classes and Stiefel-Whitney classes will play a
role in, at least, the calculation of differentials in Adams spectral sequence, we record
some facts about their relations as well.

1.2.1 Representation theory and real K -theory

An excellent source of representation theory for the calculation of connective K -theory
is Real connective K -theory book, [13]. However, to be easier in looking back, we
record some of definitions and propositions that concern our calculations (in Chapter
4) as below.

Definition 1.2.1. ([13]) A real representation of G is a representation V of G over C
with a conjugate linear map J : V −→ V with J2 = 1. A quaternionic representation
of G is a representation V of G over C with a conjugate linear map J : V −→ V with
J2 = −1. A complex representation of G is the same as a representation over C.

The criterion to separate real, complex and quaternionic representation is;

Lemma 1.2.2. ([1]) Let V be a complex irreducible representation of a compact group
G. Then ∫

g∈G
χV (g2) =





1, if V is real;
0, if V is not self-conjugate;
−1, if V is quaternionic.

In particular, for finite group G,
∫
g∈G χV (g2) is replaced by 1

|G|
∑

g∈G χV (g2).

Proof. See [1] page 70.

The Grothendieck groups of finite dimensional real, complex and quaternionic
representations of a groups G are denoted by RO(G), RU(G) and RSp(G) respectively.
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There are natural transformations (forgetting the structure map J )

RO(G) c // RU(G) RSp(G)
c̃

oo ,

which are both called complexification and

RO(G) r
oo RU(G)

q // RSp(G) ,

where r is realification and q is quaternionification (Chapter 2, [13]). There is also a
conjugation map

τ : RU(G) −→ RU(G).

The composites of these maps have some properties which are given by;

Lemma 1.2.3. (Lemma 2.1.5, [13])
(i) rc = 2, cr = 1 + τ .
(ii) qc̃ = 2, c̃q = 1 + τ .
(iii) Every real or quaternionic representation is self-conjugate: τc = c and τ c̃ = c̃.
Also, rτ = r and qτ = q.

Proof. See, for example, [1], proposition 3.6 page 27.

The calculation of representation theory is more comfortable if we calculate
on character tables. The character table has meaning on complex representation.
However, we can use character table on both real and quaternionic representation
by working on their complexification. To do that, knowing the additive generator
of RO(G), RU(G) and RSp(G) is useful. Suppose {Ui}i∈I is the list of simple real
representations,{Vj , τVj}j∈J is the list of simple complex representations, and {Wk}k∈K

is the list of simple quaternionic representations. By the assertions from Chapter 2
(page 18-19) in [13] again, we have the additive basis of the representation groups as;

• RO(G) = Z{Ui, rVj , rc̃Wk | i ∈ I, j ∈ J, k ∈ K} ,
• RU(G) = Z{cUi, Vj , τVj , c̃Wk | i ∈ I, j ∈ J, k ∈ K} ,
• RSp(G) = Z{qcUi, qVj ,Wk | i ∈ I, j ∈ J, k ∈ K} .

Thus, by these lists and Lemma 1.2.3, the calculation on character table is possible.

It is well known that the periodic real K -theory is an associated cohomology
theory of the spectrum KO = Z × BO which has period 8. Real connective K -
cohomology theory is an associated cohomology theory of the connective cover of KO .
In particular,

KO∗(pt) ∼= Z[η, α, β, β−1]/(2η, η3, ηα, α2 − 4β),

with η ∈ KO−1(pt), α ∈ KO−4(pt) and β ∈ KO−8(pt). And

ko∗(pt) ∼= Z[η, α, β]/(2η, η3, ηα, α2 − 4β).
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Moreover, for non negative degrees, ko∗(BG) ∼= KO∗(BG) and in general, we have
evidently ko∗(BG)[β−1] ∼= KO∗(BG), see more details about this discussion in [13].

There is also the relations between complex and real K -theory in lemma 2.2.11
in [13] which is;

Lemma 1.2.4. (Lemma 2.1.11 in [13])
Complexification KO∗ c // KU∗ is the ring homomorphism given by c(η) = 0, c(α) =

2v2 and c(β) = v4 . Realification KU∗ r // KO∗ is the KO∗ -module homomorphism
given by r(1) = 2, r(v) = η2, r(v2) = α and r(v3) = 0.

The correspondence between representation theory and periodic real K -theory
is given by M.F.Atiyah and G.B.Segal in [4] which we record as;

Theorem 1.2.5. (cf.[13]) For compact groups G,

KO∗(BG) ∼= ROε(G)∧J [β, β−1],

such that (ε = 0,−1, ...,−7)

RO0(G) ∼= RO(G) , RO−1(G) ∼= RO(G)/rRU(G),
RO−2(G) ∼= RU(G)/c̃RSp(G) , RO−3(G) = 0,
RO−4(G) ∼= RSp(G) , RO−5(G) ∼= RSp(G)/qRU(G),
RO−6(G) ∼= RU(G)/cRO(G) , RO−7(G) = 0,

where J is the augmentation ideal of RO(G), β is Bott element in KO8(pt). If,
moreover, G is a p-groups, then J -adic topology coincides with p-adic topology.

Proof. See [5] and [4].

1.2.2 Chern classes and Stiefel-Whitney classes

The relation between Stiefel-Whitney class of real representation V of G and reduction
mod 2 of Chern class for complexification of V , say VC , is given by;2

Proposition 1.2.6. For an n-dimensional real representation V and its complexifica-
tion VC ,

ci(VC) = [wi(V )]2 in H∗(BG;F2) .

Proof. Let V be n-dimension real representation of a group G which is represented by
ρV : G −→ O(n). So, VC can be represented by ρVC : G −→ U(n) which ρVC = c ◦ ρV ,
where c : O(n) −→ U(n) is complexification. This induces

BG
BρV // BO(n) Bc // BU(n) ,

2 a means reduction mod 2
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and

H∗(BU(n);F2) = F2[c1, c2, ..., cn] → H∗(BO(n);F2) = F2[w1, w2, ..., wn] → H∗(BG;F2),

such that (BρV )∗(wi) = wi(V ) and (BρVC)
∗(ci) = ci(VC). So, it remains to show that

(Bc)∗(ci) = w2
i .

For n = 1, we consider maps O(n) det // O(1) and U(n) det // U(1) , which induces

BO(n)
Bdet=w1// BO(1) = K(Z/2, 1) = RP∞,

and
BU(n)

Bdet=c1// BU(1) = K(Z, 2) = CP∞.

And thus, we have a commutative diagram;

H∗(BU(1);F2)

c∗1
²²

(Bc)∗1 // H∗(BO(1);F2)

w∗1
²²

H∗(BU(n);F2)
(Bc)∗n // H∗(BO(n);F2).

We see that the image of c1 ∈ H∗(BU(1);F2) via (Bc)∗n ◦ c∗1 is (Bc)∗(c1), because
c∗1(c1) = c1 ∈ H∗(BU(n);F2), which is also the image of (Bc)∗1(c1) = λw2

1 (degree of
c1 is 2) under w∗1 . We need to check that the image of c1 is not zero under (Bc)∗1 i.e.,
need to check that λ = 1. To do this, we use Serre spectral sequence for fibre sequence

BO(1) −→ BU(1) B2 // BU(1) ,

which is simple to see that c1 is detected by w2
1 .

For n > 1, we use the splitting principle. Note that ci ∈ H∗(BU(n);F2) is
the ith -symmetric function on generator x1, x2, ..., xn , where xi = c1(zi) for some 1-
dimensional complex representation zi . By case n = 1, xi 7−→ t2i = [w1(ξi)]2 for some
1-dimensional real representation ξi and hence

ci = σi(x1, x2, ..., xn) 7−→ σi(t21, t
2
2, ..., t

2
n) = [σi(t1, t2, ..., tn)]2 = w2

i ,

which completes the proof.

For Stiefel-Whitney classes of n-dimension complex representation W of a group
G and its relation with Chern classes, we have that w2i+1(W ) = 0 and w2i(W ) is the
image of ci(W ) under the coefficient homomorphism H2i(BG;Z) −→ H2i(BG;F2) see,
for example, proposition 3.8, page 83 in [23]. Similarly, for Pontryagin classes, see, for
example, page 94 in [23], there is an assertion that

c2i(VC) = pi(V ). (1.9)
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§ 1.3 Killing homotopy groups

Here, we investigate some long exact sequences involving to the relations of cohomology
ring and real and complex connective K -theory. Let X be an spectrum. One can
construct Xn

↓ := X(−∞, n] which is the spectrum X such that the homotopy above
degree n are killed, i.e. Xn

↓ = X ∪ en+2 ∪ en+3 ∪ ... . Then we have a natural map

X
k // Xn

↓ and thus this forms a fibration

Fibre(k) l // X
k // Xn

↓ ,

where Fibre(k) = X↑
n+1 = X < n+1 > is n-connected cover of X or n+1-connective

cover of X , which yields that πi(k) is an isomorphism for i ≤ n and πi(l) is an
isomorphism for i ≥ n + 1. By definition, for the Eilenberg-Maclane spectrum HA ,
we have

πi(HA) =
{

A, if i = 0;
0, if i 6= 0,

and it is well know that

if πi(X) =
{

A, if i = n;
0, if i 6= n,

then X ' ΣnHA .

By these facts, we have, for example;

1 Cofibre sequence
ku = KU↑

0 −→ KU −→ KU−1
↓ ,

i.e. ku is a connective cover of KU ,

2 Cofibre sequence

ko < 1 >= (ko↑1) −→ ko −→ (ko0
↓) = HZ,

3 Cofibre sequence
ko < 2 >−→ ko < 1 >−→ ΣHF2,

because π∗ko = (Z, 2, 2, 0,Z, 0, 0, 0,Z, 2, 2, 0,Z, 0, 0, 0, ....︸ ︷︷ ︸
π∗ko<1>

), (periodicity is 8).

By applying ∧X and π∗ to the cofibre sequence 2, we obtain a long exact sequence;

· · · −→ π1(ko < 1 > ∧X) −→ π1(ko∧X) −→ π1(HZ∧X) −→ π0(ko < 1 > ∧X) −→ · · · ,
(1.10)

and clearly π0(ko < 1 > ∧X) = 0. By applying ∧X (connective) and π∗ to the cofibre
sequence 3, we obtain a long exact sequence

· · ·π1(ko < 2 > ∧X) −→ π1(ko < 1 > ∧X)
∼= // π1(ΣHF2 ∧X) −→ 0 −→ 0, (1.11)
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such that π1(ko < 2 > ∧X) is obviously zero and hence π1(ko < 1 > ∧X) = H0(X;F2).
Therefore, by (1.10), (1.11) and πn(E ∧ X) := En(X) (definition in [2]), there is a
natural long exact sequence;

· · · −→ H2(X;Z) −→ H0(X;F2) −→ ko1(X) −→ H1(X;Z) −→ 0. (1.12)

Note also further that the cofibre sequence

Σko
η // ko −→ ku,

in [13], yields the induced long exact sequence

−→ kon−1(BG) −→ kon(BG) −→ kun(BG) −→ (1.13)

and in particular;

· · · −→ ku3(BG) −→ ko1(BG) −→ ko2(BG) −→ ku2(BG) −→ ko0(BG) −→
ko1(BG) −→ ku1(BG) −→ ko−1(BG) −→ ko0(BG) −→ ku0(BG) −→ 0.

Since ko−1(BG) = 0, this exact sequence splits as

ko0(BG) ∼= ku0(BG), (1.14)

and

· · · −→ ku3(BG) −→ ko1(BG) −→ ko2(BG) −→ ku2(BG) −→ ko0(BG) −→
ko1(BG) −→ ku1(BG) −→ 0.

Remark 1.3.1. It is well known that;

• ko0(BG) = KO0(BG) = RO(G)∧J .

• ko0(BG) = H0(BG;Z) = Z, and in fact ko0(X) = H0(BG;Z) = Z, for any
space X .

• ku0(BG) = KU0(BG) = RU(G)∧J .

• KU0(BG) = H0
J(R(G)) = Z and KU1(BG) = H1

J(R(G)) for finite groups G.

• H0(BG;Fp) = Fp , for prime p.

• H1(BG;Z) ∼= Gab , e.g. H1(BSD16;Z) ∼= SDab
16 = Z/2× Z/2.



Chapter 2

Complex connective
K-cohomology

In this chapter, we will calculate complex connective K -cohomology for semi-dihedral
group as a ring by using Adams spectral sequence with initial input H∗(BSD2n ;F2)
or equally, H∗(SD2n ;F2). Actually, the Adams spectral sequence for calculation
ku∗(BG), where G is finite group, is given by;

Es,t
2 = Exts,t

E(1)(F2,H
∗(BG;F2)) =⇒ ku−(t−s)(BG)∧2 ,

where E(1) denotes the exterior algebra on the Milnor generators Q0 and Q1 ([14]
page 28). The experiences from the book of R.R.Bruner and J.P.C. Greenlees , see
[14], suggest that representation theory is fruitful to determine differentials, additive
generator and multiplicative structure. Therefore, it is reasonable to calculate the
character table as the first step and then followed by the calculation of E2 -page, their
differentials, the additive structure and finally the multiplicative structure.

§ 2.1 Character table of semi-dihedral group

Presentation for semi-dihedral group of order 2n , for n ≥ 4, is given by

SD2n = {s, t|s2n−1
= t2 = 1, tst = s2n−2−1}.

In this section, we need to find the character table of them explicitly. To gain the
general (order 2n for n ≥ 4) tables, it is natural to deal with the case n = 4 first.

2.1.1 Character table of SD16

In this case, the structure of SD16 is represented by

SD16 = < s, t|s8 = t2 = 1, tst = s3 >

= {1, t, s, s2, s3, s4, s5, s6, s7, ts, ts2, ts3, ts4, ts5, ts6, ts7}

12
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Note that any complex representation does not change under the same conjugacy
class and can identify with its character. So, it is make sense to find its conjugacy class
first. Recall that for any group G and a ∈ G , the conjugacy class of a , say [a] , consists
of b ∈ G such that gag−1 = b for some g ∈ G . In other words, [a] = {gag−1|g ∈ G} .
Thus the conjugacy classes of sm and tsm , for each m ∈ {1, 2, 3, ..., 7} , can be found
as below.

Lemma 2.1.1. The conjugacy classes of SD16 consist of 7 classes which are [1] = {1},
[s] = {s, s3}, [s2] = {s2, s6}, [s4] = {s4}, [s5] = {s5, s7}, [t] = {t, ts2, ts4, ts6} and
[ts] = {ts, ts3, ts5, ts7}.

Proof. From the relation in SD16 , we get that:

tsk = s3kt

(sk)−1 = s8−k

(tsk)−1 = ts5k

for each k ≥ 0. Thus, we have (sk)(sm)(sk)−1 = sm and

(tsk)(sm)(tsk)−1 = (tsk)(sm)(ts5k) = (tsm+k)(ts5k)
= (s3(m+k)t)(ts5k) = s3m

Then the conjugacy classes of sm is {sm, s3m} for each m ∈ {1, 2, 3, ..., 7} . Similarly,
for conjugacy classes of tsm ,

(sk)(tsm)(sk)−1 = (sk)(tsm)(s8−k) = (sk)(s3mt)(s8−k)
= (s3m+k)(ts8−k) = (s3m+k)(s3(8−k)t)
= (s−2k)(tsm), for all k ∈ {1, 2, 3, ..., 7}

and

(tsk)(tsm)(tsk)−1 = (s3kt)(tsm)(ts5k) = (s3k+m)(ts5k)
= (s3k+m)(s15kt)
= s2k+mt, for all k ∈ {1, 2, 3, ..., 7}.

So, the conjugacy classes of tsm is {(s−2k)(tsm), s2k+mt | k ∈ {1, 2, 3, ..., 7}} for each
m ∈ {1, 2, 3, ..., 7} .

Before doing further calculation, let us recall and collect some properties of linear
representation of finite groups involving to our computation .

Proposition 2.1.2. Let V be a complex vector space of dimension n and G be a finite
group. If χ is the character of a representation ρ (ρ : G → GL(V )) of degree n i.e.
χρ(s) = Tr(ρ(s)) for each s ∈ G , we have:

(1) χ(1) = n, degree of ρ.
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(2) χ(s−1) = χ(s), conjugate of complex number, for all s ∈ G.

(3) χ(tst−1) = χ(s) for all s ∈ G.

(4) If φ is the character of a representation V , then (φ, φ) is a positive integer and
we have (φ, φ) = 1 if and only if V is irreducible, where

(φ, φ) =
1
|G|

∑

s∈G

φ(s)φ(s).

(5) Two representations with the same character are isomorphic.
( Note:ρ ∼= ρ′ ⇔ TRs = R′

sT for some invertible matrix T and for all s ∈ G,
where Rs and R′

s are the representation matrixes of ρ(s) and ρ′(s) respectively.)

(6) The number of irreducible representations of G (up to isomorphism) is equal to
the number of conjugacy classes of G.

(7) The degree of the irreducible representation of G divide the order of G. Further-
more, it also divides (G : C) where C is the centre of G.

(8) The character rG of the regular representation is given by: rG(1) = |G| and
rG(s) = 0 if s 6= 1.

(9) If the irreducible characters of G are χ1, χ2, ..., χh then |G| =
∑h

i=1 n2
i where

ni = χi(1) and if s ∈ G is different from 1, then we have
∑h

i=1 niχi(s) = 0.

Proof. See the book of J.P. Serre ( Linear Representations of Finite Groups), [33].

Here, from lemma 2.1.1, SD16 has 7 conjugate classes. So, it is easy to see that
this group has only 4 irreducible representations of dimension one. Thus, by the above
proposition, it must have 3 irreducible representations of dimension 2. We define the
representation ρh of SD16 by setting:

ρh(sm) =
(

whm 0
0 w3hm

)
and ρh(tsm) =

(
0 w3hm

whm 0

)
,

where w = e
πi
4 and h,m ∈ {0, 1, 2, 3, ..., 7} . It is not hard to check that ρh is repre-

sentation for each h ∈ {0, 1, 2, 3, ..., 7} .
Moreover, we can see that ρ1 ∼= ρ3 , ρ2 ∼= ρ6 and ρ5 ∼= ρ7 because they have

the same character. We claim that ρ1 , ρ2 and ρ5 are irreducible representation. This
claim can be verified easily by direct calculation as follows.
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(χρ5 , χρ5) =
1
16

∑

x∈G

χρ5χρ5

=
1
16

7∑

m=0

χρ5(sm)χρ5(sm), (since χρ5(tsm) = 0, ∀m ∈ {0, 1, 2, 3, ..., 7})

=
1
16

7∑

m=0

(w5m + w15m)(w5m + w15m)

=
1
16

7∑

m=0

[2 + (w10m + w−10m)]

=
1
16

7∑

m=0

[2 + 2 cos
5mπ

2
] = 1

So, ρ5 is irreducible and by the same calculation, the conclusion for ρ1 and ρ2 follows.
Furthermore, we also see that ρ4 is not irreducible representation because (χρ4 , χρ4) 6=
1.

Whence, we obtain the character table of SD16 as below.

SD16 [1] [s4] [s] [s2] [s5] [t] [ts]
1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 −1 −1
χ3 1 1 −1 1 −1 1 −1
χ4 1 1 −1 1 −1 −1 1
χρ 2 −2

√
2i 0 −√2i 0 0

χρ2 2 2 0 −2 0 0 0
χρ5 2 −2 −√2i 0

√
2i 0 0

Table 2.1: The character table of SD16

Hence, from the table, we can see relations and then get the representation ring
of semi-dihedral group of order 16 as (by setting σ1= representation with character
χρ , σ2= representation with character χρ2 , σ3= representation with character χρ5 )1:

R(SD16) = Z[χ2, χ3, χ4, σ1, σ2, σ3]/R (2.1)

R = (χ2
2 = χ2

3 = χ2
4 = 1, χ2χ3 = χ4 , σ2

1 = σ2
3 = σ2 +χ3 +χ4 , σ2

2 = 1+χ2 +χ3 +χ4 ,
σ1σ2 = σ2σ3 = σ1 + σ3 , σ1σ3 = σ2 + 1 + χ2 , χ2σ1 = σ1 , χ2σ2 = σ2 , χ2σ3 = σ3 ,
χ2σ2 = χ3σ2 = χ4σ2 = σ2 , χ3σ1=χ4σ1 = σ3 , χ3σ3 = χ4σ3 = σ1 )

1We change the notation to avoid the double power of ρi .
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2.1.2 Character table of SD2n for n ≥ 5

We proceed this calculation as the case n = 4 starting with finding conjugacy classes
of SD2n first.

Lemma 2.1.3. The conjugacy classes of SD2n consist of 2n−2 + 3 classes which are
[1], [t], [ts] and [sm] for each m ∈ C ′ := {1, 2, 3, ..., 2n−3, 2n−3+2, 2n−3+4, ..., 2n−2, 2n−2+
1, 2n−2 + 3, ..., 2n−2 + (2n−3 − 1)}.

Proof. In SD2n , we have
tsk = s(2n−2−1)kt,

skt = ts(2n−2−1)k,

(tsk)−1 = ts(2n−2+1)k.

By the same process as lemma 2.1.1, the conjugacy classes of SD2n are {1} ,
{sm, s(2n−2−1)m} for each m ∈ {1, 2, 3, ..., 2n−1 − 1} , {ts2k | k ∈ {0, 1, 2, ..., 2n−2 − 1}}
and {ts2k+1 | k ∈ {0, 1, 2, ..., 2n−2 − 1}} . To be more precise, we need to explicit the
collection of the different conjugacy classes coming from the part of sm , say C∗ . Note
in SD2n that s2n−1

= 1 then

sr1 = sr2 ⇐⇒ r1 ≡ r2 mod 2n−1

and also for each i ∈ C = {1, 2, 3, ..., 2n−1 − 1} ,

i ≡ i(2n−2 − 1)mod 2n−1 ⇐⇒ i = 2n−2.

Let C1= {1, 2, 3, ..., 2n−3} , C2= {2n−3 + i : i ∈ C1} , C3= {2n−2 + i : i ∈ C1}
and C4= {2n−2 + 2n−3 + i : i ∈ C1 − {2n−3}} . By direct calculation, from the set
C = C1 ∪ C2 ∪ C3 ∪ C4 , we see that: for each i ∈ C1 , if i is odd, then

(2n−2 − 1)i ≡ (2n−2 − i)mod 2n−1

(2n−2 − 1)(2n−2 + i) ≡ (2n−1 − i)mod 2n−1

and if i is even, then

(2n−2 − 1)i ≡ (2n−1 − i)mod 2n−1

(2n−2 − 1)(2n−3 + i) ≡ (2n−2 + (2n−3 − i))mod 2n−1.

This means that C∗ consists of

[si] = {si, s2n−2−i} for each odd element i of C1 ,

[si] = {si, s2n−1−i} for each even element i of C1 ,

[s2n−3+i] = {s2n−3+i, s2n−2+(2n−3−i)} for each even element i of C1 ,

and [s2n−2+i] = {s2n−2+i, s2n−1−i} for each odd element i of C1 ,

which completes the proof.
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In this case, there are four 1-dimensional representations as in the case n = 4.
For 2-dimensional representations, we define

ρh(sm) =
(

whm 0
0 w(2n−2−1)hm

)
and ρh(tsm) =

(
0 w(2n−2−1)hm

whm 0

)
,

where w = e
πi

(2n−2) , h and m are in {1, 2, 3, ..., 2n−1} . But, by the equality of character,
ρh1 ∼= ρh2 if h1 and h2 are the power of s in the same conjugacy class, i.e. [sh1 ] =
{sh1 , sh2} , so we can say instead that h ∈ C ′ .

Lemma 2.1.4. All ρh where h ∈ C ′ − {2n−2} are irreducible representations, where
C ′ is the same set as in lemma 2.1.3.

Proof. Let h ∈ C ′ . Consider

(χρh , χρh) =
1
2n

∑

x∈G

χρh(x)χρh(x)

=
1
2n

2n−1∑

m=1

χρh(sm)χρh(sm), (since χρh(tsm) = 0,∀m ∈ {1, 2, 3, ..., 2n−1})

=
1
2n

2n−1∑

m=1

(whm + w(2n−2−1)hm)(whm + w(2n−2−1)hm)

=
1
2n

2n−1∑

m=1

[2 + (w(2n−2)hm + w−(2n−2)hm)]

Thus,

(χρh , χρh) =
1
2n

2n−1∑

m=1

[2 + 2 cos
(2n−2 − 2)hmπ

2n−2
].

By using the formula 1 + 2 cosx + 2 cos 2x + 2 cos 3x + ... + 2 cosnx = sin((n+ 1
2
)x)

sin x
2

and
sin(2π + θ) = sin(θ), we obtain that

1
2n

2n−1∑

m=1

2 cos
(2n−2 − 2)hmπ

2n−2
= 0

i.e. (χρh , χρh) = 1,∀h ∈ C ′−{2n−2} . In particular, it is easy to see that (χ
ρ2n−2 , χ

ρ2n−2 )

6= 1, then ρ2n−2
is not irreducible which completes the proof.

Finally, we reach to the character table of SD2n where n ≥ 5. This table includes
4 one-dimensional irreducible characters and 2n−2−1 two-dimensional irreducible char-
acters which consists of χρh for each h ∈ C ′ − {2n−2} . For the filling any entry in the
table, it is very useful to know that (which is easy to prove by using basic identity of
trigonometry): for each n ∈ N , natural number,

wn + w(2n−2−1)n =
{

2i sin nπ
2n−2 , if n is odd;

2 cos nπ
2n−2 , if n is even.
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So,

∗ = χρh(sm) = whm + w(2n−2−1)hm

=
{

2i sin hmπ
2n−2 , if hm is odd;

2 cos hmπ
2n−2 , if hm is even.

Whence, we obtain the character table of SD2n ,n ≥ 5,m ∈ C ′ and h ∈ C ′ −
{2n−2} as below.

SD2n [1] [sα0 ] [s] [s2] [sm] [sα1 ] [t] [ts]
1 1 1 1 1 1 1 1 1
χ2 1 1 1 1 1 1 −1 −1
χ3 1 1 −1 1 (−1)m −1 1 −1
χ4 1 1 −1 1 (−1)m −1 −1 1
χρ 2 −2 2i sin π

2n−2 2 cos π
2n−3 ∗ −2i sin π

2n−2 0 0
χρ2 2 2 2 cos π

2n−3 2 cos π
2n−4 α −2 cos π

2n−3 0 0
χρ3 2 −2 2i sin 3π

2n−2 2 cos 3π
2n−3 ∗ 2i sin 3π

2n−2 0 0
...

...
...

...
...

. . .
. . .

...
...

χρh 2 ±2 ∗ 2 cos hπ
2n−3 ∗ ∗ 0 0

...
...

...
...

...
. . .

. . .
...

...
χρα1 2 −2 −2i sin π

2n−2 −2 cos π
2n−3 ∗ −2i sin π

2n−2 0 0

Table 2.2: The character table of SD2n , n ≥ 5 where α0 = 2n−2 , α1 = 3(2n−3)− 1
and α = 2 cos mπ

2n−3 .

§ 2.2 mod 2 cohomology ring of semi-dihedral group

2.2.1 Cohomology ring of semi-dihedral group

L.Evens and S.Priddy, [16], they calculated the cohomology of semi-dihedral groups,
both with integer and mod 2 coefficients. Their method for the calculation of mod 2
coefficient is to compare with the cohomology of dihedral and quaternion groups.

Specifically, using names for generators corresponding to those for the semi-
dihedral group, SD2n = Gp < s, t : s2n−1

= t2 = 1, tst = s2n−2−1 > , we take

D2n−1 = Gp < s, t | s2n−2
= 1 = t2; tst = s−1 >, for n ≥ 4,

which is a quotient of SD2n and

D8 = Gp < s4 = 1 = t2; tst = s−1 > .

Similarly
Q8 = Gp < σ, τ | σ4 = 1, τ2 = σ2; τστ−1 = σ−1 > .
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Thus we may view D8 , Q8 as subgroups of SD2n under the inclusions

Φ : D8 −→ SD2n ; s 7→ s2n−3
, t 7→ t, (2.2)

Ψ : Q8 −→ SD2n ; σ 7→ s2n−3
, τ 7→ st. (2.3)

The cohomology of these groups is known [17]. In fact, we have

H∗(D2n−1 ;Z/2) = Z/2[x, y, w2]/(x2 + xy), (2.4)

where x, y are one-dimensional classes defined by < x, s >= 1, < x, t >= 0, < y, t >=
1, < y, s >= 0. The class w2 is the second Stiefel-Whitney class of the representation
of D2n−1 on the plane (its first Stiefel-Whitney class is y ). Similarly,

H∗(D8;Z/2) = Z/2[x, y, w2]/(x2 + xy), (2.5)

where < x, s >= 1, < x, t >= 0, < y, t >= 1, < y, s >= 0 and w2 restricts to z2 .
Here, the class z is 1-dimensional class in the cohomology group of the cyclic subgroup
generated by s2 . The cohomology of the quaternion group of order 8 is given by

H∗(Q8;Z/2) = Z/2[x̃, ỹ, P̃ ]/(x̃2 + x̃ỹ + ỹ2, x̃2ỹ + x̃ỹ2), (2.6)

where x̃ and ỹ are one dimensional classes defined by < x̃, σ >= 1, < x̃, τ >= 0 and
< ỹ, τ >= 1, < ỹ, σ >= 0. The class P̃ is the mod 2 reduction of the first Pontryagin
class of the natural representation of Q8 on the quaternions; it restricts to z̃4 where
z̃ is the one dimensional class in the cohomology of the cyclic subgroup generated by
σ2 , [17].

Now Evens and Priddy approach the cohomology of SD2n by considering the
Lyndon-Hochschild-Serre spectral sequence of the central extension

(A) : Z/2 < s2n−2
>−→ SD2n −→ D2n−1 .

To gain control of it they compare it with the central extensions

(B) : Z/2 < s2 >−→ D8 −→ Z/2× Z/2 < s, t >

and
(C) : Z/2 < σ2 >−→ Q8 −→ Z/2× Z/2 < σ, τ >,

which are already understood.

Since we need some of the details we will run through the proof.

Proposition 2.2.1. [16] The cohomology of the semi-dihedral groups is given by the
formula

H∗(SD2n ;Z/2) = Z/2[x, y, u, P ]/(x2 + xy, xu, x3, u2 + (x2 + y2)P ),

where |x| = |y| = 1, |u| = 3 and |P | = 4. Here, Φ∗ : H∗(SD2n ;Z/2) −→ H∗(D8;Z/2)
sends x, y, u, P to 0, y, w2y, w2

2 and Ψ∗ : H∗(SD2n ;Z/2) −→ H∗(Q8;Z/2) sends
x, y, u, P to ỹ, ỹ, 0, P̃ respectively.
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We begin by identifying some key differentials in the spectral sequence of the
extension (A).

Lemma 2.2.2. [16] In the spectral sequence for (A),

d2z = w + x2, d3z
2 = x3, d5z

4 = 0,

where z is the one dimensional class in the fiber of the extension (A).

Proof. The known facts from the extension(B) in [[17], prop.VI3.1, 3.2] is d2z = x2+xy
and

φ∗(x) = 0, φ∗(y) = y, φ∗(w2) = x2 + xy,

where φ : Z/2 × Z/2 < s, t >↪→ D2n−1 induced by Φ. By naturality of spectral
sequences between extension (A) and (B), d2z = w2 + αx2 for some α ∈ Z/2. On the
other hand, by [[34];5.2], for the spectral of (C), d2z̃ = x̃2 + x̃ỹ + ỹ2 and

ψ∗(x) = ỹ, ψ∗(y) = ỹ, ψ∗(w2) = x̃2 + x̃ỹ,

where ψ : Z/2×Z/2 < σ, τ >↪→ D2n−1 induced by Ψ. Again, by naturality of spectral
sequences between extension (A) and (C), d2z = w2 + x2 or d2z = w2 + y2 . Thus
d2z = w2 + x2 .

Now, d3 and d5 follow from d2 and corollary 6.9 (page 189) in [27], i.e.,

d3z
2 = d3Sq1z = Sq1d2z = Sq1(w2 + x2) = w2y = x2y ≡ x3 (in the E3 -page)

and
d5z

4 = d5Sq2z2 = Sq2d3z
2 = Sq2x3 = x5 ≡ 0 (in the E5 -page).

Proof of Proposition 2.2.1:

Proof. By using Lemma 2.2.2 and noting that w2 + x2 is not zero-divisor, we see that

E3(A) = Z/2[x, y]/(x2 + xy)⊗ Z/2[z2].

Since d3z
2 = x3 and d5z

4 = 0, it is not hard now to see that the spectral sequence
collapses at E4 . Accordingly,

E∞(A) = E4(A) = Z/2[x, y, u, P ]/(R),

where P = z4 ,u = z2(x+y) and R is the ideal generated by x2−xy, xu, x3, u2− (x2 +
y2)P . That is, a basis for E∞ is given by

{P sxε, P syl, P suyl : s, l ≥ 0; ε = 1, 2}.
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Also, by using φ∗ and ψ∗ in the proof of lemma 2.2.2, E∞Φ∗ sends P sxε, P syl, P suyl to
0, z4syl, z4s+2yl+1 and E∞Ψ∗ sends them to z̃4sỹε, z̃4sỹl, 0 respectively. Then kerE∞Φ∗∩
kerE∞Ψ∗ = {0} and thus

E∞Φ∗ ⊕ E∞Ψ∗ : E∞(A) −→ E∞(B)⊕ E∞(C)

is injective. This also implies that Φ∗⊕Ψ∗ is injective. The relations in H∗(SD2n ;Z/2)
can be deduced simply by using the injective property of Φ∗ ⊕ Ψ∗ . In this case,
x, y ∈ H∗(SD2n ;Z/2) are uniquely determined i.e.,

Φ∗(y) = y , Φ∗(x) = 0 and Ψ∗(x) = Ψ∗(y) = ỹ .

For u, P , one (Evens and Priddy) chooses them to be classes in H∗(SD2n ;Z/2) reduc-
ing to u and P in E∞(A) which satisfy

Φ∗(u) = w2y mod < x3 > , Φ∗(P ) = w2
2 mod < w2x

2, x4 > , and Ψ∗(u) = 0 mod x3 ,

and the relation Ψ∗(P ) = P̃ is uniquely determined because H4(Q8;Z/2) has only
one generator. From here, the relations in H∗(SD2n ;Z/2) are easy to verify and all
are the same relations in E∞(A) or, in other words, H∗(SD2n ;Z/2) ∼= E∞(A) as an
algebra.

2.2.2 Characteristic classes in cohomology ring of SD2n

From now on, to emphasize the ring structure, we intend to use F2 instead of Z/2.
Let a denote a reduction modulo by 2 and ci(c), wi(r) be the ith Chern and Stiefel-
Whitney characteristic classes of complex representation c and real representation r
respectively. We have;

Lemma 2.2.3. In H∗(SD16;F2) = F2[x, y, u, P ]/(x2 +xy, xu, x3, u2 +(x2 +y2)P ) and
the character table of SD16 , we have x = w1(χ3),y = w1(χ2) and P = c2(σ1) = c2(σ3).

Proof. From the above inclusion maps (2.2) and (2.3), as the subgroup of SD16 , D8 =
Gp < s2, t > and Q8 = Gp < s2, ts3 > , we have the character table of these groups as
follows.

D8 [1] [s4] [s2] [t] [ts2]
1 1 1 1 1 1
ψ2 1 1 −1 −1 1
ψ3 1 1 −1 1 −1
ψ4 1 1 1 −1 −1
σ 2 −2 0 0 0

Table 2.3: The character table of D8

where [s4] = {s4} , [s2] = {s2, s6} , [t] = {t, ts4} and [ts2] = {ts2, ts6} .
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Q8 [1] [s4] [s2] [ts3] [ts]
1 1 1 1 1 1
ρ2 1 1 −1 −1 1
ρ3 1 1 −1 1 −1
ρ4 1 1 1 −1 −1
υ 2 −2 0 0 0

Table 2.4: The character table of Q8

where [s4] = {s4} , [s2] = {s2, s6} , [ts] = {ts, ts5} and [ts3] = {ts3, ts7} . So, we have
explicit restriction on representation rings

Φ! : Rep(SD16) −→ Rep(D8)

which sends

1 7→ 1, χ2 7→ ψ4 , χ3 7→ 1, χ4 7→ ψ4 , σ1 7→ σ , σ2 7→ ψ2 + ψ3 and σ3 7→ σ,

by considering Table 2.1 and Table 2.3. Similarly, by Table 2.1 and Table 2.4,

Ψ! : Rep(SD16) −→ Rep(Q8)

sends

1 7→ 1, χ2 7→ ρ4 , χ3 7→ ρ4 , χ4 7→ 1, σ1 7→ υ , σ2 7→ ρ2 + ρ3 and σ3 7→ υ .

We note that all elements in Rep1(SD16) are one dimensional real representations
and that w1 : Rep1(SD16) −→ H1(SD16;F2) is natural isomorphism. It is clear that
in H1(SD16;F2) has only 3 distinct non-trivial elements, namely x, y, x + y . So, these
elements must match with w1(χ2),w1(χ3) and w1(χ4) in some order. Furthermore, by
the nature of Stiefel-Whitney classes that they commutes with natural pull-back maps
in representation theory and cohomology, we get that;

Φ∗(w1(χ2)) = w1(Φ!(χ2)) = w1(ψ4) 6= 0
Φ∗(w1(χ4)) = w1(Φ!(χ4)) = w1(ψ4) 6= 0
Φ∗(w1(χ3)) = w1(Φ!(χ3)) = w1(1) = 0.

Combining this results and Proposition 2.2.1 (Φ∗(x) = 0), it turns out that x = w1(χ3).
Similarly on the side of Q8 , there is only w1(χ2) and w1(χ3) which is non zero in the
image of Ψ∗ . Since Ψ∗(y) 6= 0 and H∗(SD16;F2) remains just one candidate, namely
w1(χ2), y = w1(χ2). Moreover w1(χ4) = w1(χ2 ⊗ χ3) = w1(χ2) + w1(χ3) = x + y .

Since we have P restricts to z4 ∈ H∗(A;F2), A = Z/2 < s4 > , it is useful to
consider commutative diagram below.

H∗(SD16;Z) i∗ //

mod2

²²

H∗(A;Z)

²²
H∗(SD16;F2) // H∗(A;F2)
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It is easy to see that Rep(A) = {1, α} with z = w1(α). By character table, only σ1 and
σ3 restrict to α⊕α and hence i∗(c2(σ1)) = i∗(c2(σ3)). We have c2(σ1) ∈ H4(SD16;Z)
restricts to c1(α)2 ∈ H4(A;Z) and then reduces mod 2 to w1(α)4 = z4 . On the other
hand, c2(σ1) reduces to c2(σ1) ∈ H4(SD16;F2) and similarly for σ3 . We also note that
in H4(SD16;F2), P is the only one of the 3 generators (i.e.y4, yu, P ) that restricts to
z4 = w1(α)4 . This means that the candidates for c2(σ1) or c2(σ3) are P + λyu + µy4

for some λ, µ ∈ {0, 1} .
To specify it, we request the injection of Φ∗⊕Ψ∗ : H∗(SD2n ;F2) ½ H∗(D8;F2)⊕

H∗(Q8;F2) in Proposition 2.2.1. We see that, for ε = 1, 3,

Φ∗ ⊕Ψ∗(c2(σε)) = (Φ∗(c2(σε)), Ψ∗(c2(σε)))

= (c2(Φ!(σε)), c2(Ψ!(σε)))
= (c2(σ), c2(υ))
= ([w2(σ)]2, P1(υ))
= (w2

2, P̃ ), (by (2.5) and (2.6))
= Φ∗ ⊕Ψ∗(P ),

which completes the proof.

Remark 2.2.4. With the same notation as in the lemma above, we have;

1. By this lemma and complexification of real representation, we obtain further that
eH(χ2) = c1(χ2) = [w1(χ2)]2 = y2 and similarly eH(χ3) = x2 and eH(σε) =
c2(σε) = P , where ε = 1, 2 and eH(α) is the Euler class of α for cohomology
ring.

2. Generally, in H∗(SD2n ;F2) for n ≥ 5, we can show in the same way as this lemma
that x, y and P are also the first Stiefel-Whitney classes of χn

3 , χn
2 and second

Chern class of σn
odd resp, where χn

3 , χn
2 and σn

odd are the representations of SD2n

with character χ3, χ2 and χρodd in the table 2.2 respectively.

2.2.3 H∗(BSD2n ;F2) as a module over E(1)

In order to compute E2 page of Adam spectral sequence, we need to calculate mod-
ule structure over the exterior algebra E(1) =

∧
F2

(Q0, Q1), where Q0 = Sq1, Q1 =
Sq1Sq2 + Sq2Sq1 . The Bockstein operations also play a role in the calculation of dif-
ferential of such spectral sequence (by theorem of May and Milgram, [25]). Here, the
Steenrod actions on H∗(BSD2n ;F2) are obtained by such things on H∗(D8;Z2) and
H∗(Q8;Z2) provided by Sq1(w2) = w2y and Sqi(P̃ ) = 0 for each i = 1, 2, 3. Precisely,
we have:

Proposition 2.2.5. Steenrod action on H∗(SD2n ;F2) is given by Sq1(x) = x2 ,Sq1(y) =
y2 , Sq1(u) = Sq1(P ) = 0, Sq2(u) = Px + Py + uy2 , Sq2(P ) = u2 and the Bockstein
operation is given by βn−1(u) = P .
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Proof. The action Sq1 on generator x, y is obvious from the Steenrod axiom (dimen-
sion). The remaining follows from the Proposition 2.2.1 above. More precisely, we
compute Sq1 ,Sq2 on the image of Φ∗⊕Ψ∗ and then use the injectivity property. For in-
stant, Φ∗⊕Ψ∗(Sq2(u)) = (Sq2(Φ∗(u)), Sq2(Ψ∗(u))) = (Sq2(w2y), 0) = (w2

2y+w2y
3, 0)

which is the image of Px + Py + uy2 ∈ H5(SD2n ;F2). By injectivity of Φ∗ ⊕ Ψ∗ ,
Sq2(u) = Px + Py + uy2 .

For the Bockstein operation, we obtain it from the calculation of 2-Bockstein
spectral sequence for H∗(SD2n ;Z), where 2 has bidegree (0, 1) detected by h0 in
Adams spectral sequence and detected by 2 in H∗(SD2n ;Z), ([14], page 19,31). Namely,

E∗,∗
1 = H∗(SD2n ;F2)[2] =⇒ H∗(SD2n ;Z),

which differential d1 is given by Sq1 and dr is given by βr , the higher Bockstein
operation. We found that E2 -page has infinite tower on the generator {1} , {uPn |
n ≥ 0} and {Pn | n ≥ 1} . But, corollary 1.4.9 in [14] confirms that in such Bockstein
spectral sequence E∗,∗

N = E∗,∗∞ and Es,∗∞ = 0 for s ≥ N where N is the exponent of |G| .
This means that the differential βn = 0 and βn−i must be detected by some generators
for some 1 ≤ i ≤ n− 2. By Theorem A in L.Evens and S.Priddy paper, [16], we have

H∗(SD2n ;Z) = Z[β, ξ, ζ, γ]/(2β, 2ξ, 2γ, 2n−1ζ, ξ2, βξ, ξγ, γ2 − β3ξ),

where |β| = |ξ| = 2, |ζ| = 4, |γ| = 5. Hence our results, i.e. i = 1, follow from the
element ζ which has order 2n−1 and degree 4.

As stated above, we need to compute H∗(SD2n ;F2) = F2[x, y, u, P ]/(x2+xy, xu,
x3, u2 + (x2 + y2)P ) as a module over E(1). It is helpful to consider its structure first.
By its relations, as abelian group, H∗(SD2n ;F2) contains additive generators which
can be written explicitly as;

[x] ∪ [y] ∪ [u] ∪ [P ] ∪ [uy] ∪ [uP ] ∪ [xP ] ∪ [yP ] ∪ [uyP ],

where

1.[x] = {x, x2} 2.[y] = {yk|k ∈ N} 3.[u] = {u}
4.[P ] = {Pm|m ∈ N} 5.[uy] = {uym|m ∈ N}
6.[uP ] = {uPm|m ∈ N} 7.[xP ] = {xPm, x2Pm|m ∈ N}
8.[yP ] = {ykPm|k, m ∈ N} 9.[uyP ] = {uykPm|k, m ∈ N}.

The identity Q0(αβ) = αQ0(β) + βQ0(α) and Q1(αβ) = αQ1(β) + βQ1(α)
are easy to verify and are so useful for computation. By using Proposition 2.2.5 and
Steenrod axiom, especially Cartan formula, we get E(1) action as below.
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Generator Image of Q0 Image of Q1

xk

{
x2 , k = 1
0 , k = 2

0 ∀k = 1, 2

yk

{
yk+1 , odd(k)
0 , even(k)

{
yk+3 , odd(k)
0 , even(k)

u 0 x2P + y2P = u2

Pm 0,∀m 0, ∀m

uyk

{
uyk+1 , odd(k)
0 , even(k)

{
u2yk + uyk+3 , odd(k)
u2yk , even(k)

uPm 0,∀m x2Pm+1 + y2Pm+1, ∀m

xkPm

{
x2Pm , k = 1
0 , k = 2

0, ∀k, m

ykPm

{
yk+1Pm , odd(k)
0 , even(k)

{
yk+3Pm , odd(k)
0 , even(k)

uykPm

{
uyk+1Pm , odd(k)
0 , even(k)

{
uyk+3Pm + yk+2Pm+1 , odd(k)
yk+2Pm+1 , even(k)

Table 2.5: The action of E(1) on H∗(SD2n ;F2)

Therefore, as an E(1)-module,

M := H∗(SD2n ;F2) = M(1) ⊕M(2) ⊕M(3) ⊕M(4) ⊕M(5), (2.7)

where;

-M(1) := H∗(BC2;F2) generated by [y] .

-M(2) := the direct sum of trivial module {Pm} for each m ∈ N .

-M(3) := the direct sum of free module generated by uy2k−1Pm−1 , for each k, m ∈ N
({uy2k−1Pm−1, uy2kPm−1, uy2k+2Pm−1 + y2k+1Pm, y2k+2Pm}).

-M(4) := the direct sum of module Lk = {xP k, x2P k} for each k ≥ 0.

-M(5) := the direct sum of augmentation ideal, IkE(1) = {uP k−1, uy2P k−1 + (x +
y)P k, (x2 + y2)P k} for each k ∈ N .

§ 2.3 E2 page of Adams spectral sequence for SD2n

Recall that E2 page of Adams spectral sequence for the calculation of ku∗(BG) is
reduced to Es,t

2 (M) = Exts,t
E(1)(F2,M), with degree s and degree t , where M is

H∗(BG;F2) viewed as E(1)- module and E(1) acts trivially on F2 . So, the main
tasks in this section is to calculate the functor Ext which we will recall about this
functor in subsection 2.3.1 below.
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2.3.1 Some properties of the functor Ext

First note that in the Adams spectral conventions, (category of graded left Γ-modules,
ΓMod ), for graded module M , ΣtM = Σ−tM means decreasing codegree of module
M by t (increasing degree by t) i.e. (ΣtM)i = Mi−t , (cf. [27], page 377). The graded
version of the Hom-functor of the graded module A,B over graded algebra Γ is given
by

Homt
Γ(A,B) = Hom0

Γ(A, ΣtB) = Hom0
Γ(Σ−tA,B),

which can be though of as a group of homomorphisms from A to B that shift codegree
down by t (cf. [27], page 376-377). Note also that Hom0

Γ(A,ΣtB) = [HomΓ(A,B)]−t ,
and

HomΓ(A,B) =
⊕

t∈Z
Homt

Γ(A,B) =
⊕

t∈Z
[HomΓ(A,B)]−t.

In general, for any graded module M,N over a graded algebra Γ (Γ be a graded
algebra over a field k with unit ε : k −→ Γ and augmentation η : Γ −→ k ), it is
well known that Exts,tΓ (M, N) can be calculated dualistically in two ways. The first
way starts by taking projective resolution on M , say P• , applying Homt

Γ(P•, N) and
then ends with taking homology, Hs(Homt

Γ(P•, N)). The second way starts by taking
injective resolution on N , say I• , applying Homt

Γ(M, I•) and then ends with taking
homology, Hs(Homt

Γ(M, I•)).

It is also well known from homological algebra that this functor is independent
of the choices of projective or injective resolution. So, we can take resolutions to be
minimal (actually, canonical free resolution). Here, by definition, a homomorphism,
f : M −→ N of left Γ-modules is said to be minimal if f(M) ⊆ I(Γ) · N , where
I(Γ) = ker(η : Γ −→ k). A projective resolution of a module M is said to be a minimal
resolution if every mapping in the resolution is minimal (definition from [27], page 379).

The consequence of taking projective minimal resolution is useful when N = k .
This is actually suitable to our trivial case, i.e., with M, N = k . Precisely, if P• is
minimal projective resolution, then

Exts,t
Γ (M,k) ∼= Homt

Γ(Ps, k), (2.8)

which the proof is straightforward or see, for example, Proposition 9.4 in [27].

As usual, for a short exact sequence of Γ-module, 0 −→ C ′ −→ C −→ C ′′ −→ 0,
there is the induced long exact sequence;

0 −→ HomΓ(C ′′, N) −→ HomΓ(C, N) −→ HomΓ(C ′, N) −→ Ext1Γ(C ′′, N) −→ · · ·
· · · −→ Extn

Γ(C ′′, N) −→ Extn
Γ(C, N) −→ Extn

Γ(C ′, N) −→ Extn+1
Γ (C ′′, N) −→ · · ·

(2.9)
and

0 −→ HomΓ(M, C ′) −→ HomΓ(M, C) −→ HomΓ(M,C ′′) −→ Ext1Γ(M,C ′) −→ · · ·
· · · −→ Extn

Γ(M,C ′) −→ Extn
Γ(M, C) −→ Extn

Γ(M, C ′′) −→ Extn+1
Γ (M, C ′) −→ · · ·

(2.10)
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Note further that E2 -page of Adams spectral sequence for our interest is equipped
with multiplicative structure, namely composition product,

◦ : Extp,t
Γ (L,M)⊗ Extq,t′

Γ (M,N) −→ Extp+q,t+t′
Γ (L, N), (2.11)

which defines for all p, q, t, t′ ≥ 0. For [f ] ∈ Extp,t
Γ (L,M) and [g] ∈ Extq,t′

Γ (M, N),
the composition product for [f ] and [g] , say [f ] ◦ [g] is defined as follows. First, note
that [f ] and [g] are represented by f : Pp −→ ΣtM and g : Qq −→ Σt′N for some
projective resolutions 0 ←− L ←− P• and 0 ←− M ←− Q• . Next, using the defining
property of projective modules, lift f up the resolution to fq : Pp+q −→ ΣtQq . Finally,
suspends g to Σtg : ΣtQq −→ Σt+t′N and let

[f ] ◦ [g] = [Σtg ◦ fq],

see details in Theorem 9.5 in [27] page 380.

In particular, for our case L = M = N = F2 , we get that Ext∗,∗E(1)(F2,F2) is a
graded ring via this product. Also, by applying L = M = F2 and N = H∗(BG;F2) to
(2.11), we have

E∗,∗
2 -page = Ext∗,∗E(1)(F2,H

∗(BG;F2)) is a graded module over Ext∗,∗E(1)(F2,F2)
(2.12)

via the composition product. This is a very useful fact for calculation of differentials
in Adams spectral sequence.

We now return to our case of interest, Ext∗,∗E(1)(F2,M), where M = H∗(SD2n ;F2).
The fact that the functor Ext commutes with direct sums makes us comfortable to cal-
culate E2 page, i.e. we can calculate E2 page for M separately by fixing calculation
to each submodule M(i) , i ∈ {1, 2, 3, 4, 5} . We see further that all M(i) ’s are the com-
positions of small modules, i.e., trivial module F2 , free module E(1), augmentation
ideal module IE(1), module MQ0 = E(1)/(Q0), module MQ1 = E(1)/(Q1), module
MQ0Q1 = E(1)/(Q0Q1) and string module M̃(1) = H̃∗(RP∞;F2) = F2[y]− {1} , which
are displayed as figure below. We will calculate Ext∗,∗E(1)(F2,−) of them as modules
over Ext∗,∗E(1)(F2,F2) in the next subsection.
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Figure 2.6: Position and structure of F2 ,E(1), IE(1), MQ0Q1 , MQ1 , MQ0 and
M̃(1) .

2.3.2 Calculation of E2 -page

In order to calculate Ext∗,∗E(1)(F2,H
∗(SD2n ;F2)) as a module over Ext∗,∗E(1)(F2,F2), it is

enough to focus the calculation to small modules as in Figure 2.6 above. So, the first
task is showing that Ext∗,∗E(1)(F2,F2) is a ring under composition product explicitly.
Then all remaining tasks will follow by helps of the induced long exact sequence (2.10).

We now start with Ext∗,∗E(1)(F2,F2) by taking minimal projective resolution as;

P• : 0 ←− F2 ←− P0 ←− P1 ←− P2 ←− P3 ←− ...,

where, for s ≥ 0,

Ps =
i=s⊕

i=0

Σs+2iE(1).

Since this is a minimal resolution,

Es,t
2 (F2) = Exts,t

E(1)(F2,F2)

= Hs(Homt
E(1)(P•,F2))

= Homt
E(1)(Ps,F2)

=
i=s⊕

i=0

Homt
E(1)(Σ

s+2iE(1),F2)

=
{
F2, if t = s + 2i where i = 0, 1, ..., s;
0, otherwise.
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Let h0 and v be non-zero generators in E1,1
2 (F2) and E1,3

2 (F2) respectively. To see
that Es,t

2 (F2) ∼= F2[h0, v] as a ring under composition product, it suffices to show that
multiplying by h0 or v is not zero. This is guaranteed by diagram below;

Multiplied by h0

0 ←− F2 ←− E(1)
ε (Q0 Q1 )¾ Σ1E(1)⊕ Σ3E(1) ¾ Σ2E(1)⊕ Σ4E(1)Σ6E(1) ←−

(
Q0 Q1 0
0 Q0 Q1

)

Σ1F2
¾ Σ1E(1)¾ Σ2E(1)⊕ Σ4E(1) ←−

©©©©©©©©©¼ ? ?ε (Q0 Q1 )

(ε, 0) = h0 (1, 0)h0,0 h0,1

(
1 0 0
0 1 0

)

©
©

Multiplied by v

0 ←− F2 ←− E(1)
ε (Q0 Q1 )¾ Σ1E(1)⊕ Σ3E(1) ¾ Σ2E(1)⊕ Σ4E(1)Σ6E(1) ←−

(
Q0 Q1 0
0 Q0 Q1

)

Σ3F2
¾ Σ3E(1)¾ Σ4E(1)⊕ Σ6E(1) ←−

©©©©©©©©©¼ ? ?ε (Q0 Q1 )

(0, ε) = v (0, 1)v0,0 v0,1

(
0 1 0
0 0 1

)

©
©

Now, it is not hard to see that hi
0v

j ∈ Exti+j,i+3j
E(1) (F2,F2) ∼= F2 is not zero for all

i, j ≥ 0 and hence (cf.[14]),

Ext∗,∗E(1)(F2,F2) ∼= F2[h0, v], (2.13)

where h0 ∈ Ext1,1
E(1)(F2,F2) and v ∈ Ext1,3

E(1)(F2,F2).

Next, for Ext∗,∗E(1)(F2,MQ1), we consider short exact sequence;

0 −→ Σ1F2 −→ MQ1 −→ F2 −→ 0.

This induces long exact sequence, (2.10), for each t ∈ Z ,

0 −→ Hom0,t
E(1)(F2,Σ1F2) −→ Hom0,t

E(1)(F2, MQ1) −→ Hom0,t
E(1)(F2,F2) −→

δ // Ext1,t
E(1)(F2, Σ1F2) −→ Ext1,t

E(1)(F2,MQ1) −→ Ext1,t
E(1)(F2,F2) −→

δ // Ext2,t
E(1)(F2, Σ1F2) −→ Ext2,t

E(1)(F2,MQ1) −→ Ext2,t
E(1)(F2,F2) −→ · · ·

For the third column we have Ext∗,∗E(1)(F2,F2) ∼= F2[h0, v] and for the first column we
have Ext∗,∗E(1)(F2, Σ1F2) ∼= Σ−1F2[h0, v] . Note here that we are using diagram of E2 -
page under coordinate (s, t− s) and thus Σ−1F2[h0, v] means moving F2[h0, v] to the
left one unit (i.e. by (0,−1)).

Once we determine differential δ : Exts,t−s
E(1) (F2,F2) −→ Exts+1,(t−s)−1

E(1) (F2,Σ1F2),
we will obtain Ext∗,∗E(1)(F2, MQ1) as

0 −→ Σ−1F2[h0, v]/im(δ) −→ Ext∗,∗E(1)(F2,MQ1) −→ ker(δ) −→ 0.
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Since we have diagram;

F2 E(1)ε
oo

1}}{{
{{

{{
{{

²²
F2 MQ1

oo

Σ1E(1)⊕ Σ3E(1) ←− · · ·oo

h0=(ε,0)

²²
Σ1F2 ←− 0oo

then δ(1) = Σ−1h0 and hence

Ext∗,∗E(1)(F2,MQ1) ∼= Σ−1F2[v]. (2.14)

Similarly, by considering on short exact sequence 0 −→ Σ3F2 −→ MQ0 −→ F2 −→ 0,
we get that δ(1) = Σ−3v and

Ext∗,∗E(1)(F2,MQ0) ∼= Σ−3F2[h0]. (2.15)

Next, for Ext∗,∗E(1)(F2,MQ0Q1), we first consider short exact sequence

0 −→ Σ3F2 −→ MQ0Q1 −→ MQ1 −→ 0.

The first column and the third column of the induced long exact sequence have been
done. They are Σ−3F2[h0, v] ∼= F2[h0, v] < g2 > and Σ−1F2[v] ∼= F2[v] < g1 > , where
0 6= g1 ∈ Ext0,−1

E(1)(F2, MQ1) and 0 6= g2 ∈ Ext0,−3
E(1)(F2,F2) (in coordinate (s, t − s)),

respectively. It is clear that, by coordinate reason, differential δ = 0 and hence

Ext∗,∗E(1)(F2,MQ0Q1) ∼= F2[h0, v] < g2 > ⊕F2[v] < g1 > .

It remains to determine whether vg2 = h0g1 . To do this, we next consider another
short exact sequence, i.e.,

0 −→ Σ1F2 −→ MQ0Q1 −→ MQ0 −→ 0.

By similar process as above, we have;

Ext∗,∗E(1)(F2,MQ0Q1) ∼= F2[h0, v] < g′1 > ⊕F2[h0] < g′2 >,

where 0 6= g′2 ∈ Ext0,−3
E(1)(F2,MQ1) and 0 6= g′1 ∈ Ext0,−1

E(1)(F2,F2).

Since g1 and g′1 are both non-zero elements in Ext0,−1
E(1)(F2,MQ0Q1) ∼= F2 , g1 = g′1

and similarly we can conclude that g2 = g′2 . The consequence is that vg2 = h0g1 and
thus,

Ext∗,∗E(1)(F2,MQ0Q1) ∼= F2[h0, v] < g1, g2 > /(vg2 − h0g1), (2.16)

where |g1| = (0,−1) and |g2| = (0,−3) in coordinate (s, t− s).

Next, for Ext∗,∗E(1)(F2, IE(1)), we consider short exact sequence

0 −→ Σ1MQ0 −→ IE(1) −→ Σ3F2 −→ 0.
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Again, we need to determine differential in the induced long exact sequence

δ : Σ−3F2[h0, v] −→ Σ−4F2[h0].

It is not hard to see that δ(Σ−31) = Σ−4h0 and hence

Ext∗,∗E(1)(F2, IE(1)) ∼= Σ−4F2[h0]/im(δ)⊕ ker(δ).

That is
Ext∗,∗E(1)(F2, IE(1)) ∼= Σ−4F2 ⊕ Σ1,−1F2[h0, v], (2.17)

where Σ1,−1F2[h0, v] means shifting F2[h0, v] to the left one unit and to above one unit
in coordinate (s, t− s).

Finally, for Ext∗,∗E(1)(F2, M̃(1)), we filtrate M̃(1) as

M̃(1) = F0 ⊇ F1 ⊇ F2 ⊇ ...,

so that

F0/F1
∼= Σ1MQ0Q1 := M1,

F0/F2
∼= M2 in which 0 −→ M1 −→ M2 −→ Σ3MQ0 −→ 0,

F0/F3
∼= M3 in which 0 −→ M2 −→ M3 −→ Σ5MQ0 −→ 0,

· · · · · · · · ·
F0/Fn

∼= Mn in which 0 −→ Mn−1 −→ Mn −→ Σ2n−1MQ0 −→ 0,
· · · · · · · · · ,

and lim
n→∞F0/Fn

∼= M̃(1) . Before doing further, note that, generator of Ext0,∗
E(1)(F2,M)

is any element in M annihilated by Q0 and Q1 . This is because we take minimal
projective resolution for F2 to be

0 ←− F2 ←− E(1) Σ1E(1)
(Q0 Q1)
oo ⊕ Σ3E(1) ←− · · · ,

which yields

0 −→ M
(Q0 Q1)// Σ−1M ⊕ Σ−3M −→ · · · ,

and Ext0,∗
E(1)(F2,M) is the kernel of (Q0 Q1 ) map. This fact and (2.16) imply that

Ext∗,∗E(1)(F2,M1) ∼= F2[h0, v][y]/(y3, vy2 − h0y),

where y = y2 ∈ H̃2(RP∞;F2).

To calculate Ext∗,∗E(1)(F2,M2), we use the same technique as (2.16), i.e., by consid-
ering 0 −→ M1 −→ M2 −→ Σ3MQ0 −→ 0 and 0 −→ Σ1MQ1 −→ M2 −→ Σ2M1 −→ 0.
It is not hard to see that

Ext∗,∗E(1)(F2,M2) ∼= F2[h0, v][y]/(y4, vy2 − h0y).
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By the same process and induction on n , we can conclude that

Ext∗,∗E(1)(F2,Mn) ∼= F2[h0, v][y]/(yn+1, vy2 − h0y). (2.18)

To conclude that (2.18) is true for all n , we need to consider short exact sequences;

0 −→ M̃(1) −→ L −→ Σ−1F2 −→ 0,

and
0 −→ Σ1MQ1 −→ M̃(1) −→ Σ2M̃(1) −→ 0,

where L is the module M̃(1) with extra generator in degree −1. That is L = lim←−(Lk),

where Lk = L/Σ2kL . By using the same technique as above and taking inverse limit,
we conclude that

Ext∗,∗E(1)(F2, M̃(1)) ∼= F2[h0, v][y]/(vy2 − h0y). (2.19)

To be comfortable, we recollect results of (2.13)-(2.19) as;

Proposition 2.3.1. In E2 -page of Adams spectral sequence for ku∗(BG), we have (in
coordinate (s, t− s)):

• Ext∗,∗E(1)(F2, E(1)) ∼= Σ4F2 .

• Ext∗,∗E(1)(F2, E(1)/(Q0, Q1)) ∼= F2[h0, v],where |h0| = (1, 0) and |v| = (1, 2).

• Ext∗,∗E(1)(F2, E(1)/(Q1)) ∼= Σ(0,−1)F2[v].

• Ext∗,∗E(1)(F2, E(1)/(Q0)) ∼= Σ(0,−3)F2[h0].

• Ext∗,∗E(1)(F2, IE(1)) ∼= Σ(0,−4)F2 ⊕ Σ(1,−1)F2[h0, v].

• Ext∗,∗E(1)(F2, E(1)/(Q0Q1)) ∼= F2[h0, v] < g1, g2 > /(vg2 − h0g1), where |g1| =
(0,−1) and |g2| = (0,−3).

• Ext∗,∗E(1)(F2, H̃
∗(RP∞;F2)) ∼= F2[h0, v, y]/(vy2−h0y), where y = y2 ∈ H̃2(RP∞;F2).

As an immediate result of this proposition, we have;

Lemma 2.3.2. E2 -page of Adams spectral sequence for ku∗(BSD2n) is given by (with
coordinate (s, t− s) and the same notation as in (2.7));

• E∗,∗
2 (M(1)) ∼= F2[h0, v]⊕ F2[h0, v, y]/(vy2 − h0y).

• E∗,∗
2 (M(2)) =

⊕

m≥1

Σ4m(F2[h0, v]) ∼= F2[h0, v][P ], a direct sum of free modules over

F2[h0, v] generated by Pm ∈ H4m(SD2n ;F2), for each m ≥ 1.
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• E∗,∗
2 (M(3)) = E0,∗

2 (M(3)) = E0,∗
2 (

⊕

i,j∈N
M i,j

(3)) =
⊕

i,j∈N
E0,∗

2 (M i,j
(3)), which is an F2 -

vector space spanned by y2k+2Pm ∈ H4m+4k+2(SD2n ;F2) for each k ≥ 1,m ≥ 1.

• E∗,∗
2 (M(4)) =

⊕

k≥0

E∗,∗
2 (Lk), which is a direct sum of free modules over F2[v]

generated by x2P k ∈ H4k+2(SD2n ;F2) for each k ≥ 0.

• E∗,∗
2 (M(5)) =

⊕

k≥1

E∗,∗
2 (IkE(1)), which is a direct sum of

⊕

k≥1

F2 < (x2 + y2)P k >

and
⊕

k≥1

F2[h0, v] < ũP k−1 >, where |ũP k−1| = (1,−(4k − 3)).

Here, as in page 54 of [14], we use ũ for the non-zero element in Ext1,−1
E(1)(F2, M).

This is because u is the element of mod 2 cohomology that generates the tower of
Bockstein spectral sequence (see the proof of proposition 2.2.5) which that tower cor-
responds to the tower generated by ũ of Adams spectral sequence here, by theorem of
May and Milgram (version over E(1); see this discussion in [14] page 31-32), and hence
this will support differential.

We summarize the diagram of E2 -page in coordinate (s, t− s) of H∗(SD2n ;F2)
in the next page.
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§ 2.4 Differentials and E∞ -page

We record at first from the last section that, in Es,t−s
2 term, v multiplies each tower

of codegree l to the tower of codegree l + 2 for all l ∈ Z . Also v is not zero divisor
in the filtration which is greater than 0 and is not zero divisor for all filtrations if it
multiplies on codegree which is less than or equal to 4. In other words,

v acts monomorphically on positive filtration of Es,t−s
2 - page for ku∗(BSD2n).

Since relations between connective K theory, cohomology ring and representation the-
ory are useful for the calculation of differentials, let us investigate some facts about
them first.

Here, we define the Euler classes in connective K cohomology for SD16 by;

a := eku(χ3) ∈ ku2BSD16

b := eku(χ2) ∈ ku2BSD16

d := eku(σ) ∈ ku4BSD16

d2 := eku(σ2) ∈ ku4BSD16

d3 := eku(σ3) ∈ ku4BSD16 .

Similarly, for SD2n , we define a := eku(χn
3 ), b := eku(χn

2 ) and di = eku(σn
i ), see remark

2.2.4. Note that in this thesis, we intend to calculate explicitly only on SD16 . However,
for SD2n , its calculation is similar to SD16 until E∞ -page because the initial input
for Adams spectral sequence of both SD16 and SD2n are the same i.e., their E2 -
page are the same, but it is different in the differential calculations. Precisely, we will
see that the Adams spectral sequence for ku∗(BSD16) collapses at E4 -page and it is
not hard to see that the Adams spectral sequence for ku∗(BSD2n) collapses at En -
page (this is because the higher Bockstein operation βn−1(u) = P in Proposition 2.2.5
and the theorem of May and Milgram). Furthermore, when n varies, the calculation
in representation theory for ku∗(BSD2n) also varies (the number of generators and
relations in ku∗(BSD2n)). Henceforth, we mainly focus on the case SD16 .

The relations between connective K theory and cohomology ring come from the
natural transformation, ([14] page 15-16),

ku∗(BSD16) −→ H∗(BSD16;Z) −→ H∗(BSD16;F2),

which we have;
a 7−→ cHZ

1 (χ3) 7−→ (wHF2
1 (χ3))2 = x2,

b 7−→ cHZ
1 (χ2) 7−→ (wHF2

1 (χ2))2 = y2 = y,

d, d3 7−→ cHZ
2 (σε) 7−→ cHF2

2 (σε) = P,

d2 7−→ cHZ
2 (σ2) 7−→ cHF2

2 (σ2) = 0.

On the other hand, the relations between connective K theory and representa-
tion theory come from the Atiyah completion theorem, [3], i.e., for finite group G ,
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KU∗(BG) ∼= R(G)∧J [v, v−1] , and natural transformation, ([14] page 15-16),

ku∗(BG)
ρK // KU∗(BG) .

From here, the Euler classes in the representation theory is calculable easily by using
lemma 1.3.3, 1.3.6 in [14]. Namely, for an n-dimensional complex representation V ,

vneKG
(V ) = eR(V ) = λ(V ) = 1− V + λ2V − · · ·+ (−1)nλn(V ).

Thus, in our case, the relations of Euler classes between ku theory and represen-
tation theory is given by:

A := va = 1− χ3

B := vb = 1− χ2

D := v2d = 1− σ1 + detσ1 = 1− σ1 + χ4

D2 := v2d2 = 1− σ2 + detσ2 = 1− σ2 + χ2

D3 := v2d3 = 1− σ3 + det σ3 = 1− σ3 + χ4 .

In computation, it is very useful to have the character table of these classes.

R(SD16) [1] [s4] [s] [s2] [s5] [t] [ts]
A 0 0 2 0 2 0 2
B 0 0 0 0 0 2 2
D 0 4 −√2i 2

√
2i 0 2

D2 0 0 2 4 2 0 0
D3 0 4

√
2i 2 −√2i 0 2

Table 2.8: The character table of the Euler classes in R(SD16)

We now turn to the calculation of Adams differentials. Note that differen-
tials of Adams spectral sequence are compatible with natural maps. For any com-
plex representation V on G , ρV : G −→ U(n), one has BρV : BG −→ BU(n)
and (BρV )∗ : ku∗(BU(n)) −→ ku∗(BG) in which cn(V ) is defined via this maps
as cn(V ) := (BρV )∗(cn), because ku is a complex oriented theory. Then all Chern
classes are infinite cycles in Adams spectral sequence, since there is no differentials in
ku∗(BU(n)). This implies that x2, y and P are in the kernel of any differential. In
other words, there is no non-zero differential departing from even codegree in Adams
spectral sequence for ku∗(BSD2n).

By Proposition 2.2.5 , β3(u) = P , and by the correspondent between tower of
Adams and Bockstein spectral sequence (theorem of May and Milgram), we get that
E2 -page =E3 -page and also there is evidently non-zero differential d3 detected by ũ
in codegree 3. It must take the form

d3(ũ) = a0h
4
0P + vx

for some a0 ∈ F2 and some vx in codegree 4 and filtration 4.
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Lemma 2.4.1. a0 is not zero.

Proof. By restriction to the 4 skeleton, i.e. BSD16 ↪→ BSD
(4)
16 , there is no any element

lies in codegree greater than 4. So, d3(ũ) = a0h
4
0P . Suppose that d3(ũ) = 0, then h4

0P

is an infinite cycle and hence 16d 6= 0 in ku4(BSD
(4)
16 ). This contradicts lemma 2.4.2

below and the fact that Hn(BSD
(n)
16 ;Z) is annihilated by 16, lemma 1.4.8 [14].

Lemma 2.4.2. kun(X(n)) ∼= Hn(X(n);Z), where X(n) is an n skeleton of CW-
complexs X .

Proof. There is a cofibre sequence Σ2ku
v−→ ku −→ HZ (Bott periodicity). Hence, for

any paracompact space Y , there is a long exact sequence

· · · −→ [Y,Σ2+nku] −→ [Y,Σnku] −→ [Y, ΣnHZ] −→ [Y, Σ3+nku] −→ · · · .

Since Σ2+nku and Σ3+nku are n + 1 and n + 2 connected space, respectively, the
result follows by lemma below.

Lemma 2.4.3. Let Y be d-dimensional CW-complex and Z be n-connected space, if
d ≤ n then [Y, Z] = 0.

Proof. By induction on d , it is clear for the first step, i.e. Y is 0-dimensional. Suppose
this holds for dimension d and d + 1 ≤ n . We consider cofibre sequence Y (d) −→
Y (d+1) −→ ∨

i S
d+1 . Thus, there is a long exact sequence

· · · ←− [
∨

i S
d, Z] ←− [Y (d), Z] ←− [Y (d+1), Z] ←− [

∨
i S

d+1, Z] ←− · · ·

Since Z is n-connected space and d+1 ≤ n , [
∨

i S
d, Z] =

∏
i πd(Z) = 0 and [

∨
i S

d+1, Z]
=

∏
i πd+1(Z) = 0. This yields that [Y (d), Z] ∼= [Y (d+1), Z] . By induction step,

[Y (d+1), Z] ∼= [Y (d), Z] = 0 and hence the result follows.

Note further that the generators of the tower lying on odd codegree in E2 -page
are of the form vεũP k for all ε ∈ {0, 1} and k ≥ 0. Since d3 is derivation and d3

vanishes on vεP k for all ε ∈ {0, 1} and k ≥ 0,

d3(vεũP k) = vεP kd3(ũ) + ũd3(vεP k) = (vεP k)(h4
0P + vx) 6= 0,

by E2 -page (precisely, v is monomorphism above zero line). Thus E4 concentrates in
even degree and hence E4 = E∞ .

Now, we have:

Lemma 2.4.4. In the Adams spectral sequence

Ext∗,∗E(1)(F2,H
∗(BSD16;F2)) =⇒ ku∗(BSD16)∧2 ,

(1) d3(ũ) = h4
0P + v2h2

0P
2 ,
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(2) E4 = E∞ is generated over F2[h0, v] by the filtration zero classes x2 ,y ,P , detect-
ing a,b and d respectively,

(3) multiplication by v is a monomorphism in positive Adams filtration, and this holds
for all filtration if v acts on elements in codegree being less than or equal to 4,
and

(4) the natural map ku∗(BSD16) −→ H∗(BSD16;F2) ⊕ K∗(BSD16) is a monomor-
phism.

Proof. We have just proved (2). For (3), we assume for contradiction that this is a false
statement. So, there exists 0 6= [r] ∈ E∞ which v[r] = 0. Thus vr = d3(z) for some
0 6= z ∈ E2 = E3 and then

vr = z(h4
0P + vx) (2.20)

for some 0 6= z ∈ E2 = E3 . That is v(r − xz) = z(h4
0P ). Since h4

0P : E
(s≥1,∗)
2 /(v) −→

E
(s≥1,∗)
2 /(v) is monomorphism, z = vk for some 0 6= k ∈ E2 = E3 with d3(k) = 0,

because it is in even codegree. Substituting this result in equation (2.20), we obtain
that vr = vk(h4

0P + vx). Since v is monomorphism on E2 page above zero lines or
all lines if it acts on codegree being less than or equal to 4, r = k(h4

0P + vx)=d3(kũ).
Hence [r] = 0, which is a contradiction.

For (4), suppose x ∈ ku∗BSD16 has image (0, 0). Let F0 ⊇ F1 ⊇ F2 ⊇ F3 ⊇ · · · ,
be the filtration of F0 := ku∗(BSD16)∧2 . Then x 7→ 0 ∈ H∗(BSD16;F2) ⊇ F0/F1 and
hence x ∈ F1 . From (3), F1

v½ K∗= Colim(ku∗ v→ ku∗ v→ ku∗ v→ · · · ). Therefore
x = 0.

For(1), from the table 2.8, 16D−12D2 +10D3−6D4 +D5 = 0 in representation
theory. This is equivalent to say that v2(16d−12v2d2+10v4d3−6v6d4+v8d5) = 0. Since
v2 acts monomorphically on ku4(BSD16), r := 16d−12v2d2+10v4d3−6v6d4+v8d5 = 0.
It follows that [r] = h4

0P + v2h2
0P

2 = 0 in filtration 4 and even codegree of E4 = E∞
page. So, it must be detected by some elements in codegree 3 and filtration 1 which
has only one generator, i.e., ũ .

Now, we reach to the main objective of this section, i.e. E∞ -page shown as in
figure below.
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§ 2.5 The additive structure of ku∗(BSD16)

2.5.1 Generating set of ku∗(BSD16)∧2

Note that (see this discussion in the subsection 1.2.3) the convergence of Adams spectral
sequence for ku∗(BG), finite group G ,

Ext∗,∗E(1)(F2,H
∗(BG;F2) =⇒ ku∗(BG)∧2 ,

is strongly convergent ([2], [11]). This means that Ê := ku∗(BG)∧2 has filtration
Ê = F0 ⊇ F1 ⊇ F2 ⊇ F3 ⊇ · · · s.t.

⋂
s Fs = 0 and Gr(Ê) :=

⊕
s≥0 Fs/Fs+1 = Es∞

where (Fs/Fs+1)n = Es,n+s∞ in coordinate (s, t) and will be Es,n∞ if we use coordinate
(s, t− s). In other words, for finite group G ,

ku∗(BG)∧2 ∼= lim←− Ê/Fs. (2.21)

Furthermore, E∞ -page does give the generating set for ku∗(BG)∧2 since we have:

Proposition 2.5.1. For finite group G, if {xα} is a set of elements in kun(BG)∧2 such
that B := {xα + Ff(xα)} is an additive generating set, as an F2[h0]-module, for E∗,n∞ ,
then B := {xα} is an additive generating set for kun(BG)∧2 as an Z∧2 -module, where
f(xα) is the maximum filtration of xα plus 1, i.e., xα ∈ Ff(xα)−1 but xα /∈ Ff(xα) .

Proof. Let x ∈ kun(BG)∧2 = Ê . Then x + Ff(x) ∈ Ff(x)−1/Ff(x) = E
f(x)−1,n
∞ . So,

x + Ff(x) = (
n0∑

i=1

cixαi) + Ff(x),

for some ci ∈ Z∧2 , xαi ∈ B and f(xαi) ≤ f(x) with f(cixαi) = f(x). Let x1 =∑n0
i=1 cixαi , then x′1 = x − x1 ∈ Ff(x) which means that x = x1 ∈ Ê/Ff(x) . We do

the same process starting with x′1 , we get x2 which is in term of elements in B and
x = x1 + x2 ∈ Ê/Ff(x′1) , where f(x2) > f(x1). By induction on f(x), we can write
x = x1 + x2 + x3 + ... + xn ∈ Ê/Ff(x′n−1) such that xi ’s are written in term of elements

in B , where f(xi+1) > f(xi). Set an =
∑i=n

i=1 xi , we get that this sequence, (an)
converges uniquely to x , (an) −→ x , in the topology given by neighborhood (2-adic
topology), since

⋂
s Fs = 0, which completes the proof.

From the last section, in our case, the additive generator, as an F2[h0]- module,
of E∗,∗∞ -page are;

{vix2P j , vkP l|i, j, k, l ≥ 0} ∪ {(x2 + y2)P i, yjP k|i, k ≥ 1, j > 1}
∪ {vi, yj , vky|i ≥ 0, j, k ≥ 1} .

This implies, by proposition 2.5.1 above, that these elements correspond to the additive
generating set of ku∗(BSD16)∧2 . That is, explicitly,
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{viadj , vkdl|i, j, k, l ≥ 0} ∪ {(a + b)di, bjdk|i, k ≥ 1, j > 1} ∪ {vi, bj , vkb|i ≥ 0, j, k ≥ 1},

generates ku∗(BSD16)∧2 as a Z∧2 - module.

Next, to determine its structure and additive extension problem precisely, equally,
we need to find its basis generator over Z∧2 for each codegree. A good way to do this is
to compare the generator of connective K theory with cohomology ring theory, periodic
K theory and character theory, i.e. using the injectivity of the natural homomorphism
in lemma 2.4.4(4)

ku∗(BSD16) −→ H∗(BSD16;F2)⊕K∗(BSD16),

which we start to do this in the next subsection.

2.5.2 Additive structure of ku∗(BSD16)

It is evident from E∞ -page and lemma 2.4.4 that, for codegree being less than or equal

to 2, multiplying by v gives an isomorphism k̃u
2n

(BSD16) ∼= k̃u
2(n−1)

(BSD16). So, it
suffices to find additive basis for the generating set on codegree which is greater than
or equal to 2.

We now first consider in codegree grater than 2. Let k ≥ 1.

In codegree 4k the generator over Z∧2 and their images are;

ku∗(BSD16) H∗(BSD16;F2) K∗(BSD16)

b2k y4k B2k

dk+1 P k+1 Dk+1

v2idk+1+i 0 Dk+i i = 1, 2, 3, ...
b2i+2dk−1−i y4i+4P k−1−i B2i+2Dk−1−i, i = 0, 1, 2, 3, ...k − 2, (k ≥ 2)
v2i+1adk+i 0 ADk+i, i = 0, 1, 2, 3, ...

In codegree 4k + 2 the generator over Z∧2 and their images are;

ku∗(BSD16) H∗(BSD16;F2) K∗(BSD16)

b2k+1 y4k+2 B2k+1

v2i−1dk+i 0 Dk+i i = 1, 2, 3, ...
b2i+1dk−i y4i+2P k−i B2i+1Dk−i, i = 1, 2, 3, ...k − 1, (k ≥ 2)
adk x2P k ADk,
v2iadk+i 0 ADk+i, i = 1, 2, 3, ...
(a + b)dk (x2 + y2)P k (A + B)Dk

In table 2.8, we see that in codegree 4k , k ≥ 2 and i ∈ {0, 1, 2, 3, ...k − 2}

B2i+2Dk−1−i = 2k−1+iBD = AB2i+1Dk−1−i
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which means that

b2i+2dk−1−i 7→ (y4i+4P k−1−i, 2k−1+iBD) and ab2i+1dk−1−i 7→ (0, 2k−1+iBD)

have the same image in K∗(BSD16). It follows that b2i+2dk−1−i − ab2i+1dk−1−i has
image (y4i+4P k−1−i, 0) which is not zero. Thus, this element is annihilated by 2 and
v and hence

b2i+2dk−1−i − ab2i+1dk−1−i (2.22)

does not generate Z∧2 part of ku4k(BSD16) but it generates F2 part instead. Similarly,
in codegree 4k + 2, k ≥ 2 and i ∈ {1, 2, 3, ...k − 1} ,

b2i+1dk−i − ab2idk−i (2.23)

is annihilated by 2 and v and hence generates F2 part of ku4k+2(BSD16). Note here
that both of ab2idk−i and ab2i+1dk−1−i are actually a combination of elements in the
generating set for ku4k+2(BSD16) and ku4k(BSD16) respectively, which we will see
clearly soon (after lemma 2.5.2 and lemma 2.5.3 below).

What next we have to concern with is the element (a + b)dk ∈ ku4k+2(BSD16)
for each k > 0. The image of this element is ((x2 + y2)P k, (A + B)Dk) which is not
zero in both H∗(BSD16;F2) and K∗(BSD16). Furthermore, since we have

2(A + B)Dk =
1
9
Dk+4 + 4ADk − 16

9
Dk+1 − 20

9
Dk+2 − 8

9
Dk+3 6= 0

in character table, thus

2(a + b)dk =
1
9
v7dk+4 + 4adk − 16

9
vdk+1 − 20

9
v3dk+2 − 8

9
v5dk+3 (2.24)

is not zero in positive filtration and hence (a + b)dk is not 2-torsion or v -torsion.

To guarantee that the combination of (a+b)dk and other elements in ku4k+2(BSD16)
is not 2 torsion or v -torsion, we need to check that the image of (a+b)dk ∈ ku4k+2(BSD16)
is not the images of some generating elements of ku4k+2(BSD16) in K∗(BSD16) which
lie in positive filtration. This is confirmed by:

Lemma 2.5.2. Let k > 0. All generating elements of ku4k+2(BSD16) in positive
filtration can be written as a Z∧2 - combination of elements in

[B4k+2] := {b2k+1, adk, 2(a + b)dk, vdk+1, v3dk+2, v5dk+3}.

Proof. We will calculate on its image. Let x be a generating element of ku4k+2BSD16

in positive filtration which is not in [B4k+2] (otherwise it is obvious). Then im(x) will
be zero on H∗(BSD16;F2) and we will write its image as

(0, X) = (0, [x1, x2, x3, x4, x5, x6]),

where x1 = X([s4]), x2 = X([s]), x3 = X([s2]), x4 = X([s5]), x5 = X([t]), x6 =
X([ts]). (Note that we omit x0 = X([1]) because this is zero for every x that we
consider). Now, we have:
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im(b2k+1) = (y2k+1, [0 0 0 0 22k+1 22k+1])
im(adk) = (x2P k, [0 2(−√2i)k 0 2(

√
2i)k 0 2k+1])

im(2(a + b)dk) = (0, [0 4(−√2i)k 0 4(
√

2i)k 0 2k+3])
im(vdk+1) = (0, [4k+1 (−√2i)k+1 2k+1 (

√
2i)k+1 0 2k+1])

im(v3dk+2) = (0, [4k+2 (−√2i)k+2 2k+2 (
√

2i)k+2 0 2k+2])
im(v5dk+3) = (0, [4k+3 (−√2i)k+3 2k+3 (

√
2i)k+3 0 2k+3])

im(x) = (0, [x1 x2 x3 x4 x5 x6])

Thus x can be written as the combination of elements in [B4k+2] if

x = n1(b2k+1) + n2(adk) + n3(2(a + b)dk) + n4(vdk+1) + n5(v3dk+2) + n6(v5dk+3),

where ni ∈ Z∧2 for each i = 1, 2, 3, ..., 6 s.t.
i=6∑

i=1

n2
i 6= 0 and n1, n2 are both even. This

is equivalent to say that



0 0 0 4k+1 4k+2 4k+3

0 2(−c)k 4(−c)k (−c)k+1 (−c)k+2 (−c)k+3

0 0 0 2k+1 2k+2 2k+3

0 2(c)k 4(c)k (c)k+1 (c)k+2 (c)k+3

22k+1 0 0 0 0 0
22k+1 2k+1 2k+3 2k+1 2k+2 2k+3







n1

n2

n3

n4

n5

n6




=




x1

x2

x3

x4

x5

x6




where c =
√

2i . We find the solution of ni ’s by using row-reduced matrix, i.e.,



0 0 0 4k+1 4k+2 4k+3 |x1

0 2(−c)k 4(−c)k (−c)k+1 (−c)k+2 (−c)k+3 |x2

0 0 0 2k+1 2k+2 2k+3 |x3

0 2(c)k 4(c)k (c)k+1 (c)k+2 (c)k+3 |x4

22k+1 0 0 0 0 0 |x5

22k+1 2k+1 2k+3 2k+1 2k+2 2k+3 |x6




∼




0 0 0 0 2 · 4k+1 3 · 4k+2 |x1 − 2k+1x3 = x′1
0 0 0 2(−c)k+1 0 2(−c)k+3 |x2 − (−1)kx4 = x′2
0 0 0 2k+1 2k+2 2k+3 |x3

0 2(c)k 4(c)k (c)k+1 (c)k+2 (c)k+3 |x4

22k+1 0 0 0 0 0 |x5

0 2k+1 2k+3 0 0 0 |x6 − x5 − x3 = x′6




∼




0 0 0 0 2 · 4k+1 3 · 4k+2 |x′1
0 0 0 2(−c)k+1 0 2(−c)k+3 |x′2
0 0 0 0 2k+2 3 · 2k+2 |x3 − ( ck+1

2 )x′2 = x′3
0 2(c)k 4(c)k (c)k+1 (c)k+2 (c)k+3 |x4

22k+1 0 0 0 0 0 |x5

0 2k+1 2k+3 0 0 0 |x′6



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∼




0 0 0 0 0 6 · 4k+1 |x′1 − 2k+1x′3 = x′′1
0 0 0 2(−c)k+1 0 0 |x′2 − ( (−c)k+3

3·4k+1 )x′′1 = x′′2
0 0 0 0 2k+2 0 |x′3 − ( 1

2k+1 )x′′1 = x′′3
0 2(c)k 4(c)k 0 0 0 |x′4

22k+1 0 0 0 0 0 |x5

0 −2k+1 0 0 0 0 |x′6 − 2(−c)kx′4 = x′′6




∼




0 0 0 0 0 6 · 4k+1 |x′′1
0 0 0 2(−c)k+1 0 0 |x′′2
0 0 0 0 2k+2 0 |x′′3
0 0 4(c)k 0 0 0 |x′4 + ( 1

(−c)k )x′′6 = x′′4
22k+1 0 0 0 0 0 |x5

0 −2k+1 0 0 0 0 |x′′6




,

where

x′4 = x4 − (−1)k+1

2
x′′2 −

1
(−c)k+2

x′′3 −
ck+3

6 · 4k+1
x′′1

=
1
2
[x4 + (−1)kx2]− (

1
(−c)k+2

)x′′3.

Hence,

n1 = x5

22k+1 , n2 = x′′6
−2k+1 , n3 = x′′4

4(c)k , n4 = x′′2
2(−c)k+1 , n5 = x′′3

2k+2 , n6 = x′′1
6·4k+1 .

Recall that the images of generating elements in positive filtration of codegree
4k + 2 which is not in [B4k+2] are in the form ADs , where s ≥ k + 1 and Ds where
s ≥ k + 4. We are ready to check them now by starting with ADs , where s ≥ k + 1,
first.

case ADs=[x1, x2, x3, x4, x5, x6] = [0, 2(−c)s, 0, 2(c)s, 0, 2s+1] , s ≥ k + 1

We need to check that ni ∈ Z∧2 for each i = 1, 2, 3, ..., 6 s.t.
∑i=6

i=1 n2
i 6= 0 and

n1, n2 are both even. In this case we have x5 = 0 (i.e.n1 = 0), x′1 = 0, x′2 =
2(c)s[(−1)s − (−1)k] , x′3 = −(c)k+s+1((−1)s − (−1)k), x′6 = 2s+1 . This implies that

x′′1 = 2k+1(c)k+s+1[(−1)s − (−1)k]

=
{ ±2k+2(c)k+s+1, if k + s is odd;

0, otherwise.

That is

n6 =
x′′1

6 · 4k+1
=

{
±2

s−k−1
2

3 , if k + s is odd;
0, otherwise,

So, n6 ∈ Z∧2 because s ≥ k + 1.
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Next, since we have

x′′2 = x′2 − (
(−c)k+3

3 · 4k+1
)x′′1

= 2(c)s[(−1)s − (−1)k]− (
(−c)k+3

3 · 4k+1
)2k+1(c)k+s+1[(−1)s − (−1)k]

= 2(c)s[(−1)s − (−1)k]− (−2
(c)s

3
[(−1)s − (−1)k])

=
8
3
(c)s[(−1)s − (−1)k],

then

n4 =
x′′2

2(−c)k+1
=

(−1)k+1 · 4
3

cs−k−1((−1)s − (−1)k)

=

{
±42

s−k+1
2

3 , if k + s is odd;
0, otherwise,

and hence n4 ∈ Z∧2 . Next,

n5 =
x′′3

2k+2
= (x′3 − (

1
2k+1

)x′′1)/2k+2

= [−2cs−k−1((−1)s − (−1)k)]/2k+2

=

{
±2

s−k+1
2 , if k + s is odd ;

0, otherwise,

which yields that n5 ∈ Z .

Before doing analysis on n2 and n3 , we need to find x′4 first. By direct calculation
with x′4 = 1

2(x4 + (−1)kx2)− ( 1
(−c)k+2 )x′′3 , we have

x′4 =
{

2cs, if k + s is even;
−4cs−1, if k + s is odd.

Consequently,

n2 =
x′′6

−2k+1
= (x′6 − 2(−c)kx′4)/− 2k+1

=

{
−2s−k + (−1)

3k+s
2 2

k+s
2

+1, if k + s is even;
−2s−k − (−1)

3k+s−1
2 2

k+s−1
2

+2, if k + s is odd.

Hence n2 is an even integer. For n3 = x′′4
4(c)k , we have that

x′′4 = x′4 + (
1

(−c)k
)x′′6 = (

1
(−c)k

)x′6 − x′4

=

{
2s+1

(−c)k − 2cs, if k + s is even;
2s+1

(−c)k + 4cs−1, if k + s is odd.
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It is now not hard to conclude that n3 ∈ Z , which complete the proof for this case.

case Ds=[x1, x2, x3, x4, x5, x6] = [4s, (−c)s, 2s, (c)s, 0, 2s] , s ≥ k + 4

In this case we have x5 = 0, x′1 = 4s − 2k+s+1 , x′2 = cs[(−1)s − (−1)k] , x′3 =
2s − ck+s+1

2 ((−1)s − (−1)k) and x′6 = 0. So, n1 = 0. Also, x′′1 = 4s − 2k+s+2 + 2k ·
ck+s+1[(−1)s − (−1)k] gives

n6 =
x′′1

6 · 4k+1
=

4s

6 · 4k+1
− 2k+s+2

6 · 4k+1
+

2k · ck+s+1

6 · 4k+1
[(−1)s − (−1)k].

Since s ≥ k + 4, 4s

6·4k+1 and 2k+s+2

6·4k+1 are in the form (1
3)α1 and (1

3)α2 where α1, α2 are
even integer. In the last part, it is zero if k + s is an even and for k + s is odd,

2k · ck+s+1

6 · 4k+1
[(−1)s − (−1)k] = ± ck+s+1

6 · 2k+1
= (±1

3
)2

s−k−3
2 .

Thus, n6 = (±1
3)α3 ∈ Z∧2 for some even integer α3 .

By the results of n6 above and

n4 =
x′′2

2(−c)k+1
=

x′2
2(−c)k+1

− (−c)k+3

2 · (−c)k+1
· x′′1
3 · 4k+1

=
(−1)k+1

2
cs−k−1[(−1)s−(−1)k]+2n6,

then n4 ∈ Z∧2 . It is not hard to check that x′3
2k+2 = 2s−k−2 − ck+s+1

2k+3 [(−1)s − (−1)k] is
an even integer. This follows that

n5 =
x′′3

2k+2
=

x′3
2k+2

− x′′1
2 · 4k+1

=
x′3

2k+2
− 3n6 =

x′3
2k+2

− α3,

is an even integer.

Furthermore, we have x′′6 = −2(−c)kx′4 which yields x′′4 = −x′4 and x′4 = cs

2 [1 +

(−1)k+s]− x′′3
(−c)k+2 , then

n3 =
x′′4

4(c)k
=
−x′4
4(c)k

= −cs−k

8
(1+(−1)k+s)− x′′3

2k+3
=

{
(1
2)n5, if k + s is odd;
− cs−k

4 + (1
2)n5, if k + s is even.

Then n3 ∈ Z because n5 is an even integer and s ≥ k + 4. Finally, we have n2 =
x′′6

−2k+1 = (2(−c)k) x′4
2k+1 = −4(−x′4

4·ck ) = −4n3 which completes the proof.

Now, it is clear that {b2k+1, adk, (a + b)dk, vdk+1, v3dk+2, v5dk+3} is linearly in-
dependent set and spans all generating elements of ku4k+2(BSD16) over Z∧2 . In par-
ticular, as we stated above, for i ≥ 1, ab2idk−i = 2i(a + b)dk − 2iadk which can be
written in term of generating set for ku4k+2(BSD16) by using 2.24. Moreover, we can
say that v acts monomorphically on kui(BSD16) for all i ≤ 6.

Next, we need to identify the additive basis for ku4k(BSD16). To do this, we use
the same method as in the lemma above. Since v(a + b)dk 6= 0 and 2v(a + b)dk 6= 0
in ku4k(BSD16), v(a + b)dk will not lie in F2 parts. Actually, this will generate Z∧2
parts instead.
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Lemma 2.5.3. Let k > 0. All generating elements of ku4k(BSD16) in positive filtra-
tion can be written as a Z∧2 combination of

[B4k] := {b2k, vadk, v(a + b)dk, dk, v2dk+1, v4dk+2}.

Proof. We will calculate on its image as the previous lemma. Let x be the generator
of ku4k(BSD16) on positive filtration but not in [B4k] . Then we have:

im(b2k) = (y2k, [0 0 0 0 22k 22k])
im(vadk) = (0, [0 2(−√2i)k 0 2(

√
2i)k 0 2k+1])

im(v(a + b)dk) = (0, [0 2(−√2i)k 0 2(
√

2i)k 0 2k+2])
im(dk) = (P k, [4k (−√2i)k 2k (

√
2i)k 0 2k])

im(v2dk+1) = (0, [4k+1 (−√2i)k+1 2k+1 (
√

2i)k+1 0 2k+1])
im(v4dk+2) = (0, [4k+2 (−√2i)k+2 2k+2 (

√
2i)k+2 0 2k+2])

im(x) = (0, [x1 x2 x3 x4 x5 x6])

Thus x can be written as the combination of [B4k] if

x = n1(b2k) + n2(vadk) + n3(v(a + b)dk) + n4(dk) + n5(v2dk+1) + n6(v4dk+2),

where ni ∈ Z∧2 for each i = 1, 2, 3, ..., 6 s.t.
∑i=6

i=1 n2
i 6= 0 and n1, n4 are both even. This

is equivalent to say that



0 0 0 4k 4k+1 4k+2

0 2(−c)k 2(−c)k (−c)k (−c)k+1 (−c)k+2

0 0 0 2k 2k+1 2k+2

0 2(c)k 2(c)k (c)k (c)k+1 (c)k+2

22k 0 0 0 0 0
22k 2k+1 2k+2 2k 2k+1 2k+2







n1

n2

n3

n4

n5

n6




=




x1

x2

x3

x4

x5

x6




where c =
√

2i . We find the solution ni by using row-reduced matrix, i.e.,



0 0 0 4k 4k+1 4k+2 |x1

0 2(−c)k 2(−c)k (−c)k (−c)k+1 (−c)k+2 |x2

0 0 0 2k 2k+1 2k+2 |x3

0 2(c)k 2(c)k (c)k (c)k+1 (c)k+2 |x4

22k 0 0 0 0 0 |x5

22k 2k+1 2k+2 2k 2k+1 2k+2 |x6




∼




0 0 0 0 2 · 4k 3 · 4k+1 |x1 − 2kx3 = x′1
0 0 0 0 2(−c)k+1 0 |x2 − (−1)kx4 = x′2
0 0 0 2k 2k+1 2k+2 |x3

0 2(c)k 2(c)k (c)k (c)k+1 (c)k+2 |x4

22k 0 0 0 0 0 |x5

0 2k+1 2k+2 0 0 0 |x6 − x5 − x3 = x′6



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∼




0 0 0 0 0 3 · 4k+1 |x′1 + (2k · ck−1)x′2 = x′′1
0 0 0 0 2(−c)k+1 0 |x′2
0 0 0 2k 0 0 |x3 − ck+1

2 x′2 − 1
3·2k x′′1 = x′3

0 2(c)k 2(c)k 0 0 0 |x′4
22k 0 0 0 0 0 |x5

0 0 2k+1 0 0 0 |x′6 − (−c)kx′4 = x′′6




∼




0 0 0 0 0 3 · 4k+1 |x′′1
0 0 0 0 2(−c)k+1 0 |x′2
0 0 0 2k 0 0 |x′3
0 2(c)k 0 0 0 0 |x′4 − 1

(−c)k x′′6 = x′′4
22k 0 0 0 0 0 |x5

0 0 2k+1 0 0 0 |x′′6




where x′4 = x4 − 1
(−c)k x′3 − (−1)k+1

2 x′2 − ck+2

3·4k+1 x′′1 .

Hence, n1 = x5

22k , n2 = x′′4
2(c)k , n3 = x′′6

2k+1 , n4 = x′3
2k , n5 = x′2

2(−c)k+1 , n6 = x′′1
3·4k+1 .

Before doing further, we simplify x′3 and x′4 as

x′3 = x3 − ck+1

2
x′2 −

1
3 · 2k

x′′1

= x3 − 2k+1 · n5 − 2k+2 · n6

and x′4 = 1
2 [x4 − (−1)k+1x2]− (ck)n4 − (ck+2)n6 , i.e.

x′4
ck

=
1

2 · ck
[x4 − (−1)k+1x2]− n4 + 2n6.

Consequently, n4 = x3

2k −2n5−4n6 , n2 = x′′4
2(c)k = x′4

ck − x′6
2k+1 and n3 = x′′6

2k+1 = (1
2)x′4

ck −n2 .

Recall that the images of generating element in positive filtration of codegree 4k
are in the form ADs , where s ≥ k + 1 and Ds where s ≥ k + 3.

case ADs=[x1, x2, x3, x4, x5, x6] = [0, 2(−c)s, 0, 2(c)s, 0, 2s+1] , s ≥ k + 1

We need to show that ni ∈ Z∧2 for each i = 1, 2, 3, ..., 6 s.t.
∑i=6

i=1 n2
i 6= 0 and

n1, n4 are both even. In this case we have x5 = 0 (i.e.n1 = 0), x′1 = 0, x′2 =
2(c)s((−1)s − (−1)k). This implies that x′′1 = 2k+1(c)k+s−1((−1)s − (−1)k) and hence

n6 =
x′′1

3 · 4k+1
=

{
(±1

3)2
s−k−1

2 , if s + k is even;
0, if s + k is odd.

Thus n6 ∈ Z∧2 . Similarly, n5 = x′2
2(−c)k+1 ∈ Z i.e. 0 or ±2

s−k+1
2 . Since x3 = 0, n4 is

immediately an even integer from relation above.
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To justify n2 and n3 , it remains to show that x′4
ck is an even integer because

x′6
2k+1 = 2s+1

2k+1 ∈ Z . Since x′4
ck = 1

2·ck [x4−(−1)k+1x2]−n4+2n6 , it reduces to check whether
that 1

2·ck [x4 − (−1)k+1x2] is an even integer. The result follows because 1
2·ck [x4 −

(−1)k+1x2] = cs−k[1− (−1)k+s+1] .

By using above relation, previous method and the relation s ≥ k + 3, we can
verify that v2(s−k)ds , for each s ≥ k +3, can be written in term of [B4k] over Z∧2 .

From this lemma, we see that ab2i+1dk−i−1 = 2iv(a + b)dk − 2ivadk and its
explicit combination in term of the generating set of ku4k(BSD16) follows by the
relation v6dk+3 = 18vadk − 9v(a + b)dk − 8dk − 2v2dk+1 + 5v4dk+2 or in other words,

v(a + b)dk = 2vadk − 8
9
dk − 2

9
v2dk+1 +

5
9
v4dk+2 − 1

9
v6dk+3 (2.25)

Lemma 2.5.3 and this relation imply that an additive basis for Z∧2 part of ku4k(BSD16),
for k ≥ 1, is [B4k] or, by changing basis, {b2k, vadk, dk, v2dk+1, v4dk+2, v6dk+3} .

Finally,we use the same method to find an additive basis for ku2(BSD16). This
is also enough to find the additive basis of ku2k(BSD16) for all k ≤ 0 because v :

k̃u
2k

(BSD16) −→ k̃u
2(k−1)

(BSD16) is an isomorphism for each k ≤ 1.

Lemma 2.5.4. All generating elements of ku2(BSD16) in positive filtration can be
written as a Z∧2 combination of [B2] := {b, a, v2(a + b)d, vd, v3d2, v5d3}.

Proof. We will calculate on its image as before. Let x be a generating element of
ku2(BSD16) in positive filtration but not in [B2] . Then we have:

im(b) = (y2, [0 0 0 0 2 2])
im(a) = (x2, [0 2 0 2 0 2])
im(v2(a + b)d) = (0, [0 2(−√2i) 0 2(

√
2i) 0 8])

im(vd) = (0, [4 −√2i 2
√

2i 0 2])
im(v3d2) = (0, [16 (−√2i)2 4 (

√
2i)2 0 4])

im(v5d3) = (0, [64 (−√2i)3 8 (
√

2i)3 0 8])
im(x) = (0, [x1 x2 x3 x4 x5 x6])

Thus x can be written as the combination of [B2] if

x = n1(b) + n2(a) + n3(v2(a + b)d) + n4(vd) + n5(v3d2) + n6(v5d3),

where ni ∈ Z∧2 for each i = 1, 2, 3, ..., 6 s.t.
∑i=6

i=1 n2
i 6= 0 and n1, n2 are both even. This

is equivalent to say that



0 0 0 4 16 64
0 2 2(−c) −c −2 2(c)
0 0 0 2 4 8
0 2 2(c) c −2 2(−c)
2 0 0 0 0 0
2 2 8 2 4 8







n1

n2

n3

n4

n5

n6




=




x1

x2

x3

x4

x5

x6



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where c =
√

2i . We find the solution ni by using row-reduced matrix, i.e.,



0 0 0 4 16 64 |x1

0 2 2(−c) −c −2 2(c) |x2

0 0 0 2 4 8 |x3

0 2 2(c) c −2 2(−c) |x4

2 0 0 0 0 0 |x5

2 2 8 2 4 8 |x6




∼




0 0 0 0 8 48 |x1 − 2x3 = x′1
0 0 4(−c) 2(−c) 0 4(c) |x2 − x4 = x′2
0 0 0 2 4 8 |x3

0 2 0 0 −2 0 |x4 + (1
2)x′2 = x′4

2 0 0 0 0 0 |x5

0 0 8 2 6 8 |x6 − x5 − x′4 = x′6




∼




0 0 0 0 8 48 |x′1
0 0 4(−c) 2(−c) 0 4(c) |x′2
0 0 0 2 4 8 |x3

0 2 0 0 −2 0 |x′4
2 0 0 0 0 0 |x5

0 0 0 0 10 24 |x′6 − c · x′2 + x3 = x′′6




∼




0 0 0 0 −12 0 |x′1 − 2 · x′′6 = x′′1
0 0 4(−c) 0 0 0 |x′2 + c · x′3 − ( c

6)x′′′6 = x′′2
0 0 0 2 0 0 |x3 + (1

3)x′′1 − (1
3)x′′′6 = x′3

0 2 0 0 0 0 |x′4 − (1
6)x′′1 = x′′4

2 0 0 0 0 0 |x5

0 0 0 0 0 24 |x′′6 + (5
6)x′′1 = x′′′6




Hence, n1 = x5
2 , n2 = x′′4

2 , n3 = x′′2
4(−c) , n4 = x′3

2 , n5 = x′′1
−12 , n6 = x′′′6

24 .

We check only on ADs where s ≥ 1, and Ds where s ≥ 4 by using table below.

ni ADs, s is odd ADs, s is even
n1 0 0
n2 n5

1
3(2s + 2 · cs)

n3
1
3(2s−1 + cs−1) 1

3(2s−1 + cs−2)
n4

−1
9 (2s+2 + 8 · cs+1) 1

9(−2s+2 + 4 · cs)
n5

1
3(2s + 2 · cs+1) 1

3(2s − cs)
n6

−1
9 (2s−1 + cs+1) −1

9 (2s−1 + cs−2)
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ni Ds, s is odd Ds, s is even
n1 0 0
n2 n5 n5 + cs

2

n3 n6 − n4
2 + cs−1

2 n6 − n4
2

n4 2s−1 − 2 · n5 − 4 · n6 2s−1 − 2 · n5 − 4 · n6

n5
1
3(−4s−1 + cs+1) + 2s−1 1

3(−4s−1 + cs−2) + 2s−1

n6
1
9(5 · 4s−2 + cs−1)− 2s−3 1

9(5 · 4s−2 + cs−4)− 2s−3

E.g.

v2ad =
−2
3

(a) +
2
3
(v2(a + b)d) +

8
9
(vd) +

−2
3

(v3d2) +
1
9
(v5d3),

v4ad2 = 1 · (v2(a + b)d) +
−8
3

(vd) + 2(v3d2) +
−1
3

(v5d3),

v7d4 = −12(a) + 3(v2(a + b)d) + 8(vd)− 14(v3d2) + 7(v5d3),

v9d5 = −72(a) + 18(v2(a + b)d) + 32(vd)− 72(v3d2) + 32(v5d3).

Also, it is immediately from the table to conclude that ni ∈ Z∧2 . We now complete the
proof.

Combining all the previous results, we reach to the additive structure of ku∗(BSD16)
as:

Theorem 2.5.5. In ku∗(BSD16), we have a, b ∈ ku2(BSD16), d ∈ ku4(BSD16),
where a = eku(χ3), b = eku(χ2) and d = eku(σ1) s.t.

(1) if k ≤ 0, then ku2k(BSD16) ∼= Z⊕ (Z∧2 )6 , which
(Z∧2 )6 is generated by vk{1, vb, va, v3(a + b)d, v2d, v4d2, v6d3},

(2) ku2(BSD16) ∼= (Z∧2 )6 generated by {b, a, v2(a + b)d, vd, v3d2, v5d3},
(3) ku4(BSD16) ∼= (Z∧2 )6 generated by {b2, vad, v(a + b)d, d, v2d2, v4d3},
(4) ku6(BSD16) ∼= (Z∧2 )6 generated by {b3, ad, (a + b)d, vd2, v3d3, v5d4},
(5) if k > 1, then ku4k+2(BSD16) ∼= (Z∧2 )6 ⊕ (F2)k−1 with

(Z∧2 )6 generated by {b2k+1, adk, (a + b)dk, vdk+1, v3dk+2, v5dk+3} and
(F2)k−1 generated by {b3dk−1 − ab2dk−1, b5dk−2 − ab4dk−2, ..., b2k−1d− ab2k−2d},

(6) if k > 1, then ku4k(BSD16) ∼= (Z∧2 )6 ⊕ (F2)k−1 with
(Z∧2 )6 generated by {b2k, vadk, v(a + b)dk, dk, v2dk+1, v4dk+2} and
(F2)k−1 generated by {b2dk−1 − ab1dk−1, b4dk−2 − ab3dk−2, ..., b2k−2d − ab2k−3d}
and

(7) the 2 torsion is annihilated by v .

(8) v acts monomorphically on positive filtration and on non negative filtration if it
acts on codegree which is less than or equal to 6.

Next, to find the ring structure, representation theory and cohomology ring the-
ory, again, play a big role. We deal with this in the next section.
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§ 2.6 The multiplicative structure of ku∗(BSD16)

In this section we will find all relations of the ring ku∗(BSD16). The very useful tool
is the representation theory, cohomology ring theory and additive structure we have
found. In other words, we use injectivity of homomorphism

ku∗(BSD16) ½ H∗(BSD16;F2)⊕KU∗(BSD16).

By theorem 2.5.5, we have that all 2, v -torsion are in H∗(BSD16;F2) (zero filtration),
so, if we deal with elements lying on positive filtration, then it suffices to consider only
on the representation theory side but if not, we need to consider on both sides.

Now, we start to find the relations. First, recall that a and b are defined to
be Euler classes of one dimensional representation, χ3 and χ2 respectively, by lemma
1.3.4 in [14], we get immediately that

0 = eku(1) = eku((χ3)2) = eku(χ3) + eku(χ3)− veku(χ3)eku(χ3)

i.e. va2 = 2a and similarly, vb2 = 2b . In fact, we can also use the relation between
characteristic class of connective K -theory and representation theory (see below) to
gain these relations. More precisely, since we have relation χ2

2 = χ2
3 = 1 and A = va =

1− χ3 , B = vb = 1− χ2 ,

1 = (χ3)2 = (1− va)2 = 1− 2va + v2a2

1 = χ2)2 = (1− vb)2 = 1− 2vb + v2b2

and hence
va2 = 2a and vb2 = 2b , (2.26)

because v acts monomorphically on positive filtration.

To be easier in comparing, let us recollect the representation ring we have as:

R(SD16) = Z[χ2, χ3, χ4, σ1, σ2, σ3]/R

R = (χ2
2 = χ2

3 = χ2
4 = 1, χ2χ3 = χ4 , σ2

1 = σ2
3 = σ2 +χ3 +χ4 , σ2

2 = 1+χ2 +χ3 +χ4 ,
σ1σ2 = σ2σ3 = σ1 + σ3 , σ1σ3 = σ2 + 1 + χ2 , χ2σ1 = σ1 , χ2σ2 = σ2 , χ2σ3 = σ3 ,
χ2σ2 = χ3σ2 = χ4σ2 = σ2 , χ3σ1=χ4σ1 = σ3 , χ3σ3 = χ4σ3 = σ1 )

and

χ2 = 1− vb

χ3 = 1− va

χ4 = (1− vb)(1− va)
σ1 = 1− v2d + (1− vb)(1− va)
σ2 = 1− v2d2 + 1− vb

σ3 = 1− v2d3 + (1− vb)(1− va).
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And the relation between connective K theory, ku∗(BSD16), and cohomology ring
theory, H∗(SD16;F2), is given by,

a 7→ x2,
b 7→ y2,
d, d3 7→ P,
d2 7→ 0.

(2.27)

Now, since we have the relation (1 − χ2)(1 − σ1 + χ4) = (1 − χ3)(1 − χ2),
v3bd = v2ab and because v is monomorphism at this point, thus

ab = vbd = v(a + b)d− vad. (2.28)

Similarly, by (1− χ2)(1− σ2 + χ2) = 0, we have

bd2 = 0. (2.29)

It is not hard to check that
bd3 = bd, (2.30)

by using (1 − χ2)(1 − σ3 + χ4) = (1 − χ2)(1 − σ1 + χ4) and injectivity of v . Since
χ3σ1 = σ3 , (1− va)(1− v2d+(1− vb)(1− va)) = 1− v2d3 +(1− vb)(1− va) and hence

d3 = (1− va)d + ab
= d− 2vad + v(a + b)d.

(2.31)

Similarly, we use σ2 = σ2
1 − (χ3 + χ4) to get

d2 = 4d− v2d2 − 2vad + ab
= 4d− 3vad + v(a + b)d− v2d2.

(2.32)

The relation χ3σ1 = χ4σ1 gives us the relation 2ab = v2abd and combining this with
(2.26) and the fact that v acts monomorphically on codegree 6, theorem 2.5.5(8), we
obtain

vabd = ab2. (2.33)

For regular representation, ρ = 1 + χ2 + χ3 + χ4 + 2(σ1 + σ2 + σ3), we get that
ρ = 16 − 6va − 8vb + v2ab − 12v2d + 6v3ad + 2v4d2 . Since ρ is induced up from the
trivial subgroup and by Lemma 2.1.1 in [14],

0 = dρ = 16d− 6vad− 8vbd + v2abd− 12v2d2 + 6v3ad2 + 2v4d3

= 16d− 6vad− 6vbd− 12v2d2 + 6v3ad2 + 2v4d3.

However, we see that dρ
2 ∈ ku∗(BSD16) and by cohomology ring, character table,

dρ
2 7→ (0, 0), thus

8d− 3vad− 3vbd− 6v2d2 + 3v3ad2 + v4d3 = 0. (2.34)

The relation χ3σ2 = σ2 give us the relation v2ad2 − 2a + vab = 0 then v4ad2 =
v2a2b− 2a + vab and hence

v3ad2 = 3ab− a2 (2.35)
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The relation σ2σ3 = σ1 +σ3 give us the relation v2d2d3 +vad2 = d3−d+2d2 and thus

8d− 6v2d2 + v4d3 − v5ad3 + 3v3ad2 − 5vad + 3ab = 0.

Combining this relation with dρ
2 = 0, we obtain

v4ad3 = −2ad + 6bd (2.36)

By considering on σ2
2 = 1 + χ2 + χ3 + χ4 , we have 4d2 = a2 − ab + v2d2

2 and hence

16d− 20v2d2 + 8v4d3 − v6d4 − 9a2 + 9ab = 0 (2.37)

Furthermore, elements from 2, v -torsion part will be necessary to fulfill relations.
Here, from theorem 2.5.5, we define

τ := b2d− abd ∈ ku8(BSD16). (2.38)

Hence, the torsion part of ku∗(BSD16) := TU is a free module over F2[b, d] generated
by τ , i.e.,

TU = F2[b, d] < τ > . (2.39)

The obvious relations with this element is

2τ = vτ = aτ = 0. (2.40)

Also, from (2.28), we have abd = vbd2 and hence

τ − b2d + vbd2 = 0. (2.41)

Therefore, now we have a set of the relation I ′ in ku∗(BSD16) as:

I ′ = {(r1 : va2 = 2a, r2 : vb2 = 2b, r3 : ab = vbd = v(a + b)d− vad,
r4 : ab2 = vabd, r5 : v3ad2 = 3ab− a2, r6 : v4ad3 = −2ad + 6bd,
r7 : 8d− 3vad− 3vbd− 6v2d2 + 3v3ad2 + v4d3 = 0,
r8 : 16d− 20v2d2 + 8v4d3 − v6d4 − 9a2 + 9ab = 0)
r9 : 2τ = vτ = aτ = 0, r10 : τ − b2d + vbd2 = 0} ,

which we will see in the theorem below that I ′ is a complete relation set for ku∗(BSD16).

Theorem 2.6.1. ku∗(BSD16) = (Z[v][a, b, d, τ ]/I)∧J where |a| = |b| = 2, |d| = 4 and
|τ | = 8, and where J is the augmentation ideal and I is the ideal

I = (va2 − 2a, vb2 − 2b, ab− vbd,
ab2 − vabd, v3ad2 − 3ab + a2, v4ad3 + 2ad− 6bd,
8d− 3vad− 3vbd− 6v2d2 + 3v3ad2 + v4d3,
16d− 20v2d2 + 8v4d3 − v6d4 − 9a2 + 9ab,
2τ, vτ, aτ, τ − b2d + vbd2).

The natural map ku∗(BSD16) −→ H∗(BSD16;F2) sends a to x2 , b to y2 , d2 to 0
and d, d3 to P .
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Proof. The final statement is an evident from (2.27). Thus, now, it remains to show
that I is the completed relation in ku∗(BSD16). To show this, we need to check that
multiplying any of the additive generators of theorem 2.5.5 by a, b, d, τ or v produces
an element which can be written in term of that additive basis by using relation from
I .

Note that multiplying by τ can be reduced obviously to the additive basis for
ku∗(BSD16). So, we consider the elements in term of v, a, b, d . Let x ∈ ku∗(BSD16).
It is without loss of generality to assume that x ∈ R2m := ku2m(BSD16) for some
integer m .

Case m = k ≤ 0: In this case, R2k =
⋃i=7

i=0 Ci , where

C0 = {vk}, C1 = {vk+i+2jaidj |i, j ≥ 1}, C2 = {vk+ibi|i ≥ 1},
C3 = {vk+2idi|i ≥ 1}, C4 = {vk+i+jaibj |i, j ≥ 1}, C5 = {vk+iai|i ≥ 1},
C6 = {vk+i+2jbidj |i, j ≥ 1}, C7 = {vk+i+j+2laibjdl|i, j, l ≥ 1},

and additive basis of ku2k(BSD16) is

B2k := {vk, vk+1a, vk+1b, vk+3(a + b)d, vk+2d, vk+4d2, vk+6d3}.

For any element in C5 and C2 , it is easily reduced to the combination of elements in B2k

via iterating of r1 and r2 respectively, i.e. vk+iai = 2i−1vk+1a and vk+ibi = 2i−1vk+1b .
From r5 and r7 , we have ab = 1

3(v3ad2) + 1
3a2 and 1

3(v3ad2) = 1
3(v(a + b)d − 8

9d +
2
3v2d2 − 1

9v4d3 . Thus, combining these relations with r1 , we get that

vk+2ab =
1
3
(vk+3(a + b)d− 8

9
vk+2d +

2
3
vk+4d2 − 1

9
vk+6d3 +

2
3
vk+1a.

This follows that, for any element in C4 , vk+i+jaibj = 2i+j−2vk+2ab can reduce to the
combination of elements in B2k via I .

By using r3 and r4 , we have v3bd = v2(vbd) = v2ab and then v5bd2 = v2(v3bd)d =
v2(v2abd) = 2v2ab . So, iterating this process and using induction we can show that
v2j+1bdj = 2j−1v2ab . Then vk+i+2jbidj can reduce to 2i−1vk(v2j+1bdj) = 2i+j−2vk+2ab
and hence C6 can be reduced to B2k via I .

It is not hard now to show that the conclusion for C7 also holds by using the
previous result, i.e. v2j+1bdj , vk+2ad and r1 . For C1 , we consider the following
process;

vk+3ad = vk+3(a + b)d− vk+3bd

vk+5ad2 = vk+2(3ab− a2), because of r5,

= 3vk+2ab− 2vk+1a

vk+7ad3 = 3vk+2(v2abd)− 2vk+3ad

= 6vk+2ab− 2vk+3ad, because of r4,

So, by induction, we can conclude that v2j+1adj can reduce to the combination of
elements in B2k via I and hence this holds for all elements in C1 . The last task for
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this case can be done by considering step by step as above. That is

vk+8d4 = vk+2(v6d4)
= 16vk+2d− 20vk+4dk+2 + 8vk+6d3 − 18vk+1a + 9vk+2ab, because of r8,

vk+10d5 = v2d(vk+8d4)
= 16vk+4d2 − 20vk+6dk+3 + 8vk+8d4 − 18vk+3ad + 9vk+4abd.

By repeating this process and using the previous result, we complete the proof for our
fist case.

Case m = 1: In this case R2 =
⋃i=7

i=1 Ci , where

C1 = {viai+1|i ≥ 0}, C2 = {vibi+1|i ≥ 0},
C3 = {v2i+1di+1|i ≥ 0}, C4 = {vi+j−1aibj |i, j ≥ 1},
C5 = {vi+2j−1aidj |i, j ≥ 1}, C6 = {vi+2j−1bidj |i, j ≥ 1},
C7 = {vi+j+2l−1aibjdl|i, j, l ≥ 1},

and additive basis for ku2(BSD16) is

B2k := {a, b, v2(a + b)d, vd, v3d2, v5d3}.
The proof for this case is very similar to the first case.

Case m = 2k, k ≥ 1: In this case R4k =
⋃i=10

i=1 Ci , where

C1 = {via2k+i|i ≥ 0},
C2 = {vib2k+i|i ≥ 0},
C3 = {v2idk+i|i ≥ 0},
C4 = {vj+lai+jb(2k−i)+l|1 ≤ i < 2k, j, l ≥ 0},
C5 = {vj+2la2i+jd(k−i)+l|1 ≤ i < k, j, l ≥ 0},
C6 = {vj+1+2la2i+j+1d(k−i)+l|0 ≤ i < k, j, l ≥ 0},
C7 = {vj+2lb2i+jd(k−i)+l|1 ≤ i < k, j, l ≥ 0},
C8 = {vj+1+2lb2i+j+1d(k−i)+l|0 ≤ i < k, j, l ≥ 0},
C9 = {vl+s+2tai+lbj+sdk− i+j

2
+t| i+j is even and 1 ≤ i+j

2 < k, l, s, t ≥ 0},
C10 = {vl+s+2t+1ai+lbj+sdk− i+j−1

2
+t|i+j is odd and 1 ≤ i+j−1

2 < k, l, s, t ≥ 0},

and additive basis for torsion free part of ku4k(BSD16) is

B4k := {b2k, vadk, v(a + b)dk, dk, v2dk+1, v4dk+2},
and for 2, v -torsion part is (case k ≥ 2)

TU4k := {τdk−2, τb2dk−3, ..., τb2k−4d}.
In this case note that reducing of C2 is obvious by r2 and we will begin with C5 by
considering r7 . By r7 , we have that v3ad2 = −8

3d+v(a+ b)d+2v2d2− 1
3v4d3 and that

v3adi = −8
3
di−1 + v(a + b)di−1 + 2v2di − 1

3
v4di+1. (2.42)
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That is v3adi can be reduced to the combination of elements in B4(i−1) for all i ≥ 2.
Thus, by r5 we have a2 = 3ab− v3ad2 and hence

a2d = 3abd− v3ad3

= 3vbd2 +
8
3
d2 − v(a + b)d2 − 2v2d3 +

1
3
v4d4

= 2v(a + b)d2 − 3vad2 +
8
3
d2 − 2v2d3 +

1
3
v4d4.

Also, it is clear that d(B4i − {b2i}) = B4(i+1) − {b2(i+1)} . Hence,

a2dk−1 = 2v(a + b)dk − 3vadk +
8
3
dk − 2v2dk+1 +

1
3
v4dk+2,

can be reduced to B4k − {b2k} via I . Consider,

a4d = 2va2(a + b)d2 − 3va3d2 +
8
3
a2d2 − 2v2a2d3 +

1
3
v4a2d4

=
2
3
a2d2 + 4abd2 − 4vad3 +

2
3
v3ad4

=
2
3
a2d2 + 4vbd3 − 4vad3 +

2
3
v3ad4, because of r3.

Hence, from above result a2dk−1 , when k = 3, a4d can be reduced to B8 −{b4} via I
and thus the conclusion holds for a4dk−2 . Again,

a6d = a2(a4d)
= a2[e1va3 + e2v(a + b)d3 + e3d

3 + e4v
2d4 + e5v

4d5], ei ∈ Z∧2
= 2e1a

2d3 + 2e2a
2d3 + 2e2abd3 + e3a

2d3 + 2e4vad4 + 2e5v
3ad5.

Hence from the previous result, a6d can be reduced to B12 − {b6} via I and thus the
conclusion holds for a6dk−3 . By analogous process as above and induction, we can
conclude that a2idk−i can be written by using elements in B4k via I .

Next, we consider

v2a2d2 = 2v3(a + b)d3 − 3v3ad3 +
8
3
v2d3 − 2v4d4 +

1
3
v6d5

= 2v3bd3 − v3ad3 +
8
3
v2d3 − 2v4d4 +

1
3
v6d5.

We concentrate on each term, for the fist term, we have

v3bd3 = v2(vbd)d2 = 2abd = 2vbd
2 = 2v(a + b)d2 − 2vad2,

and the last term by r8 , we have v6d5 = 16d2 − 20v2d3 + 8v4d4 − 9a2d + 9abd . Since
a2d and abd can reduced to B8 − {b4} via I , so is v2a2d2 , i.e., v2a2d2 can be written
in the form e1vad2 + e2v(a + b)d2 + e3d

2 + e4v
2d3 + e5v

4d4 . For v4a2d3 = v2d(v2a2d2)
can do analysis as above and we now can say that the result for v2ia2di+1 follows. By
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using the same process we have done, we now conclude that v2ja2idj+1 can be reduced
to the combination of elements in B4(i+1) − {b2(i+1)} . This follows that

vj+2la2i+jd(k−i)+l = 2ja2iv2ld(k−i)+l

= 2jd(k−i)−1(v2la2id1+l),

i.e., C5 can be written as the combination of elements in B4k via I .

For C6 , since for j ≥ 1, vj+1+2la2i+j+1d(k−i)+l = 2vj+2la2i+jd(k−i)+1 which is
the case C5 , we need to consider only on v2l+1adk+l . But this is a consequence of
(2.42) together with the fact that v6dk+3 can reduce to B4k (by the same method as
above), hence C6 can reduce to B4k via I . Also, the conclusion for C3 is immediate
because multiplying by v2d on B4k − {b2k}) can reduce to itself via I (i.e., by using
r8 as C5 ).

For C1 , we use r5 , i.e. a2 = 3ab− v3ad2 . Then a2k = 3a2k−1b− v3a2k−1d2 . The
seconde term is reduced by C6 . The first term is easy because

a2k−1b = a2k−2(vbd)
= bd(va2)a2k−4

= 2bda2k−3

and iterates this via r1 and r3 until we get a2k−1b = 2k−1vbdk = 2k−1[v(a+b)dk−vadk] .
Since via2k+i = 2ia2k , we finish C1 .

For C7 we first consider r10 , i.e., b2d = τ +vbd2 . It is not hard to see that b2idk−i

can reduce to TU4k∪ (B4(i+1)−{b2(i+1)}) via I . Precisely, by r2 , r9 and iterating r10 ,
we have b2di = τd2 + vbdi+1 , b2id = τb2(i−1) + 2i−1vbdi+1 and thus

b2idk−i = τb2(i−1)dk−i−1 + 2i−1vbdk.

From here, with the help of r2 , the conclusion for C7 follows.

For C8 , this is a similar situation with C6 , i.e. we need to prove only on
v2l+1bdk+l . To prove this, we use the fact that v2j+1bd1+j = 2jab via r3, r4 . For
C4 , C9 and C10 are immediately verified by the previous results and the relation r1, r2

and r3 .

Case m = 2k + 1, k ≥ 1: In this case R4k+2 =
⋃i=10

i=1 Ci , where

C1 = {via2k+1+i|i ≥ 0},
C2 = {vib2k+1+i|i ≥ 0},
C3 = {v2i+1dk+i+1|i ≥ 0},
C4 = {vj+lai+1+jb(2k−i)+l|0 ≤ i < 2k, j, l ≥ 0},
C5 = {vj+2la2i+1+jd(k−i)+l|0 ≤ i < k, j, l ≥ 0},
C6 = {vj+1+2la2(i+1)+jd(k−i)+l|0 ≤ i < k, j, l ≥ 0},
C7 = {vj+2lb2i+1+jd(k−i)+l|0 ≤ i < k, j, l ≥ 0},
C8 = {vj+1+2lb2(i+1)+jd(k−i)+l|0 ≤ i < k, j, l ≥ 0},
C9 = {vl+s+2t+1ai+lbj+sdk− i+j

2
+t+1| i+j is even and 1 ≤ i+j

2 < k, l, s, t ≥ 0},
C10 = {vl+s+2tai+lbj+sdk− i+j−1

2
+t|i+j is odd and 1 ≤ i+j−1

2 < k, l, s, t ≥ 0},
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and the additive basis for torsion free part of ku4k+2(BSD16) is

B4k+2 := {b2k+1, adk, (a + b)dk, vdk+1, v3dk+2, v5dk+3},

and for 2, v -torsion part is

TU4k+2 = {τbdk−2, τb2dk−3, ..., τb2k−3}.

In this case note that C2 is reduced obviously to B4k+2 by r2 and we will begin with
C5 by considering r7 which we have;

vad =
8
3
d− vbd− 2v2d2 + v3ad2 +

1
3
v4d3

v2ad2 =
8
3
vd2 − v2bd2 − 2v3d3 + v4ad3 +

1
3
v5d4

From r6 we have v4ad3 = 6bd− 2ad and note that

v2bd2 = vabd = ab2 = (ab)b = (vbd)b = 2bd,

by r2, r3 and r4 . This yields that v2ad2 can be reduced to B6 − {b3} via I . It is
an experience that d(B4i+2 − {b2i+1}) can be reduced to B4(i+1)+2 − {b2(i+1)+1} . So,
v2adi+1 and v2bdi+1 can be written as the combination of elements in B4i+2−{b2i+1}
via I .

By r8 , we have;

v6d4 = 16d− 20v2d2 + 8v4d3 − 9a2 + 9ab

v7di+4 = 16vdi+1 − 20v3di+2 + 8v5di+3 − 9va2di + 9vabdi

= 16vdi+1 − 20v3di+2 + 8v5di+3 − 18abi + 18bdi.

Now, consider

v2d(adi) = v2adi+1

v2d(bdi) = v2ad2 = 2bdi

v2d(vdi+1) = v3di+1

v2d(v3di+2) = v5di+2

v2d(v5di+3) = v7di+3.

By using the above results, we see that v2d(B4i+2−{b2i+1} can reduce to B4i+2−{b2i+1}
via I and hence C3 is proved. Next, by r5 we have a2d = 3abd− v3ad3 . Then

a3d = 3ab2d− v3a2d3

= 6bd2 − 2v2ad3.

By the results above we can conclude that a3d can reduce, via I , to B10 − {b5} and
hence, similarly for a3dk−1 and for v2la3dk−1+2l to B4k+2 − {b2k+1} . Moreover, we
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have

a2[adi] = a3di

a2[bdi] = a2bdi = 2bdi

a2[vdi+1] = 2adi+1

a2[v3di+2] = 2v2adi+2

a2[v5di+3] = 2(v2d)(v2adi+2)

Hence, a2(B4i+2−{b2i+1} can reduce to B4(i+1)+2−{b2(i+1)+1} via I , i.e. the conclu-
sions for a2i+1dk−i are the same. This follows that C5 and C6 can be reduced as we
need (by similar process as case 4k ).

For C7 and C8 , we again use r10 , which yields

b2i+1dk−i = τb2i−1dk−i−1 + 2ibdk.

So, by r2 , the conclusion for C7 follows. For C8 , we use r3 and r4 . For C1 , we use
r5 , i.e. a2 = 3ab− v3ad2 , which gives

a2k+1 = 3a2kb− v3a2kd2.

The second term is reduced by C6 . The first term follows from case m = 2k which
we have a2k−1b = 2k−1vbdk and then a2kb = 2kbdk via r4 . For C4 , C9 and C10 are
immediately verified by the previous results and the relations r1, r2 and r3 . We now
complete the proof for this theorem here.

The complex connective K-theory of SD16 is quite strange when we compare with
that of D2n since both of them have p-rank two but their 2, v -torsion are different,
i.e. ku6(BD2n) contains 2, v -torsion whereas ku6(BSD16) is torsion free. We explore
the relationship on complex connective K-theory of SD16 and its maximal subgroups
in the next section.

§ 2.7 Relations with its maximal subgroups

In this section, we will relate our results, i.e., complex connective K-theory of SD16 ,
ku∗(BSD16), to the complex connective K-theory of its maximal subgroups ku∗(BD8),
ku∗(BQ8) and ku∗(BC8) in [14]. To do this, it is simple to use the fact that all of
them are embedded in their sums of cohomology ring and representation ring.

First of all, we recall and record the results from [14] as;

Proposition 2.7.1. [14], Complex connective K-theory of D8, Q8 and C8 is given by:
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1. ku∗(BD8) ∼= (ku∗[a, b, d]/I)∧J where |a| = |b| = 2, |d| = 4 s.t. a = eku(ŝt), b =
eku(ŝ), d = eku(σ1) and where I is the ideal

I = (v4d3 − 6v2d2 + 8d,

va2 − 2a, vb2 − 2b, vad, 2ad,

ab− b2 + vbd,

vbd− 4d + v2d2, 2bd− v2bd2).

The natural map ku∗(BD8) −→ H∗(BD8;F2) sends a to x2
1 , b to x2

2 and d
to w2 , where H∗(BD8;F2) = F2[x1, x2, w]/(x2(x1 + x2)) s.t. x1 = w1(ŝt), x2 =
w1(ŝ) and w = w2(σ1).

2. ku∗(BQ8) ∼= (ku∗[a, b, q]/I)∧J where |a| = |b| = 2, |q| = 4 s.t. a = eku(ψ0−1), b =
eku(χ), q = eku(ψ1) and where I is the ideal

I = (v4q3 − 6v2q2 + 8q,

va2 − 2a, vb2 − 2b, a2 − vaq, b2 − vbq,

ab− (vaq + vbq + v2q2 − 4q)).

The natural map ku∗(BQ8) −→ H∗(BQ8;F2) sends a to x2
1 , b to x2

2 and q to
p1 , where H∗(BQ8;F2) = F2[x1, x2, p1]/(x2

1 + x1x2 + x2
2, x1x2(x1 + x2)).

3. ku∗(BC8) ∼= Z[v][[y]]/(yρ = (1− (1− vy)3)/v), where y = eku(α) ∈ ku2(BC8).
The natural map ku∗(BC8) −→ H∗(BC8;F2) sends y to y ∈ H2(BC8;F2), where
H∗(BC8;F2) = F2[z, y]/(z2) where |z| = 1, |y| = 2.

The relation is given by;

Theorem 2.7.2. With the same notations as in Theorem 2.6.1 and Proposition 2.7.1
above, we have a natural monomorphism;

ku∗(BSD16) −→ ku∗(BD8) ⊕ ku∗(BQ8) ⊕ ku∗(BC8)

a 7→ ( 0 , b , 4y − 6vy2 + 4v2y3 − v3y4 )
b 7→ ( a , b , 0 )
d 7→ ( d , q , 3y2 − 3vy3 + v2y4 ).

Proof. Note first that, for G = SD16, D8, Q8 and C8 , the natural map ku∗(BG) −→
H∗(BG;F2) ⊕ KU∗(BG) ∼= R(G)∧J [v, v−1] is a monomorphism. Thus it is enough to
find the relations of them via cohomology ring theory and representation ring theory.

For D8 , with the notation of representations in [14] and in the proof of lemma
2.2.3, we have ŝt ↔ ϕ4 , ŝ ↔ ϕ3 , σ1 ↔ σ and ŝ + t̂ ↔ ϕ2 + ϕ3 . Also, in cohomology
ring H∗(BD8;F2) on both sources are related by x = x2, y = x1, w2 = w . The
restriction of R(SD16) −→ R(D8), recall from the proof of lemma 2.2.3, is given by
1 7→ 1, χ2 7→ ψ4, χ3 7→ 1, χ4 7→ ψ4, σ1 7→ σ, σ2 7→ ψ2 + ψ3 and σ3 7→ σ . This implies
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that, in periodic K -theory,

KU0(BSD16) 3 va = 1− χ3 7→ 1− 1 = 0 ∈ KU0(BD8)
KU0(BSD16) 3 vb = 1− χ2 7→ 1− ψ4 = va ∈ KU0(BD8)

KU0(BSD16) 3 v2d = 1− σ1 + χ4 7→ 1− σ + ψ4 = v2d ∈ KU0(BD8).

Combining this fact with Proposition 2.2.1, we finish the proof for D8 .

For Q8 , we concentrate only on periodic K -theory since there is no 2, v -torsion
element in ku∗(BQ8). The relation of the notation of representations in [14] and in the
proof of lemma 2.2.3 is ψ0 − 1 = ρ̂ ↔ ρ3, χ = ĵ ↔ ρ4, ψ1 ↔ υ, ψ2 = ĵ + ρ̂j ↔ ρ2 + ρ4.
The restriction of R(SD16) −→ R(Q8), recall from the proof of lemma 2.2.3, is given
by 1 7→ 1, χ2 7→ ρ4, χ3 7→ ρ4, χ4 7→ 1, σ1 7→ υ, σ2 7→ ρ2 + ρ3 and σ3 7→ υ . This implies
that, in periodic K -theory,

KU0(BSD16) 3 va = 1− χ3 7→ 1− ρ4 = vb ∈ KU0(BQ8)
KU0(BSD16) 3 vb = 1− χ2 7→ 1− ρ4 = vb ∈ KU0(BQ8)

KU0(BSD16) 3 v2d = 1− σ1 + χ4 7→ 2− ψ1 = 2− υ = v2q ∈ KU0(BQ8),

which completes the proof for Q8 .

Finally, for C8 =< s|s8 = 1 > , we need to check the relation only on periodic
K -theory. Note that R(C8) = Z[α]/(α8 − 1), where αk(s) = ck , c =

√
2

2 (1 + i). It is
not hard to see that the restriction of R(SD16) −→ R(C8) is given by 1 7→ 1, χ2 7→
1, χ3 7→ α4, χ4 7→ α4, σ1 7→ α + α3, σ2 7→ α2 + α6 and σ3 7→ α5 + α7 . This implies that

va = 1− χ3 7→ 1− α4 = 1− (1− vy)4 ∈ KU0(BQ8)
vb = 1− χ2 7→ 1− 1 = 0 ∈ KU0(BQ8)

v2d = 1− σ1 + χ4 7→ 1− (α + α3) + α4

= 1− ((1− vy) + (1− vy)3) + (1− vy)4 ∈ KU0(BQ8),

which completes the proof.

Moreover, note that at E∞ -page of Adams spectral sequence for ku∗(BSD16)
and ku∗(BSD2n) are nearly the same. That is v acts monomorphically above the
zero line at E2 -page and by similar argument as in the proof of lemma 2.4.4, v acts
monomorphically above the zero line at E∞ -page for ku∗(BSD2n). This means that
the natural map

ku∗(BSD2n) ½ H∗(BSD2n ;F2)⊕KU∗(BSD2n) (2.43)

is a monomorphism. So, by using the same idea as above, we have;

Theorem 2.7.3. In general for n ≥ 5, we have a natural monomorphism

ku∗(BSD2n) ½ ku∗(BD2n−1)⊕ ku∗(BQ2n−1)⊕ ku∗(BC2n−1).
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Proof. It is not hard to see that SD2n = D2n−1 ∪Q2n−1 ∪C2n−1 via the inclusion map

Φ : D2n−1 −→ SD2n , which sends s 7→ s2, t 7→ t,
Ψ : Q2n−1 −→ SD2n , which sends σ 7→ s2, t 7→ st,
Υ : C2n−1 −→ SD2n , which sends s 7→ s,

where
D2n−1 = Gp < s, t | s2n−2

= 1 = t2; tst = s−1 >, for n ≥ 5,

Q2n−1 = Gp < σ, τ | σ2n−2
= 1 = t2; tst = s−1 >, for n ≥ 5,

C2n−1 = Gp < s | s2n−2
= 1 >, for n ≥ 5.

This implies that the natural map

R(SD2n) ½ R(D2n−1)⊕R(Q2n−1)⊕R(C2n−1) (2.44)

is a monomorphism. Precisely, if ρ ∈ R(SD2n) is sent to (0, 0, 0), then ρ([x]) = 0 for
every conjugacy classes of D2n−1 , Q2n−1 , C2n−1 which are the conjugacy classes of SD2n

and thus ρ = 0.

On the other hand, we have (see Proposition 2.2.1 or Jon F. Carlson’s homepage,
[15]) the restriction map

H∗(BSD2n ;F2) ½ H∗(BD2n−1 ;F2)⊕H∗(BQ2n−1 ;F2)⊕H∗(BC2n−1 ;F2) (2.45)

is a monomorphism. Hence, combining all informations we have so far with the fact
that

ku∗(BG) ½ H∗(BG;F2)⊕KU∗(BG) ∼= R(G)∧J [v, v−1]

is a monomorphism for each G = SD2n , D2n−1 , Q2n−1 , C2n−1 , we complete the proof.

We investigate complex connective k-homology theory of SD16 , ku∗(BSD16), as
a module over ku∗(BSD16) in the next chapter.



Chapter 3

Complex connective K-homology
for SD16

In this chapter, we will calculate ku∗(BSD16) as a module over ku∗(BSD16). In order
to do this, we will use Greenlees spectral sequence applied to ku∗(BSD16). That is,
[14];

E2
s,t = H−s

I (ku∗(BSD16))t =⇒ kus+t(BSD16)

where differential dr : Er
s,t → Er

s−r,t+r−1 and I = ker(ku∗(BSD16) → ku∗) = (a, b, d),
ideal generated by the Euler classes a, b and d with codegree 2, 2 and 4 respectively,
(Theorem 2.6.1).

Here, the main task is the calculation of local cohomology for R = ku∗(BSD16),
H∗

I (R). Before of that, let us recollect local cohomology of Greenlees spectral sequence
for ku∗(BSD16) first.

§ 3.1 Local cohomology and strategy

The definition of local cohomology which is suitable to our calculation is defined via
stable Koszul complex.

Definition 3.1.1. For a commutative ring (with unity) R and its ideal I = (x1, x2, ..., xn),
the stable Koszul complex of R at I is

K∞(x1, x2, ..., xn; R) = K∞(x1;R)⊗R K∞(x2; R)⊗R ...⊗R K∞(xn; R)

the tensor of cochain complex, where K∞(xi;R) is the cochain complex (R −→ R[ 1
xi

]),
(r 7−→ r

1 ), for each i ∈ {1, 2, ..., n}. For a module M over the ring R , local cohomology
of M at I is

H∗
I (R;M) := H∗(K∞(x1, x2, ..., xn; R)⊗R M)

where H∗(C) is the homology of a chain complex C . In particular, we define

64
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H∗
I (R) := H∗

I (R; R).

It is clear from the definition that H i
I(R;M) = 0 for i > n.

Remark 3.1.2. Let R be a ring and (x) be an ideal of R . The chain complex K∞(x) =
(R −→ R[ 1

x ]) give a natural map ε : K∞(x) −→ R . Precisely, there is a commutative
diagram;

K∞(x)

ε

²²
R

=

=

(R //

²²

R[ 1
x ])

²²
(R // 0).

Hence, for any ideal I = (x1, x2, ..., xm) and J = (y1, y2, ..., yn) of R , there exists a
map of chain complexes

1⊗ εn : K∞(I + J) = K∞(I)⊗R K∞(J) −→ K∞(I) = K∞(I)⊗R R.

After applying ⊗RM , M is a module over R , and taking homology, we obtain the map

η : Hs
I+J(R;M) −→ Hs

I (R;M).

Example 3.1.3. For R = Z and I = (2), we have K∞(2;Z) = (Z −→ Z[12 ]). The
map in this cochain complex is clearly monomorphism and also the cokernel is easy to
calculate. That is

H i
(2)(Z)=

{
Z/2∞, if i=1 ;
0, otherwise,

where Z/2∞ is the set of rational numbers which are not integers whose denominators
are a power of 2.

Example 3.1.4. For R = k[x], polynomial ring over field k with indeterminate x of
degree r and I = (x), we have K∞(x; k[x]) = (k[x] −→ k[x][ 1

x ]). The calculation is
easier if we look at the picture below.

Figure 3.1: Koszul complex of k[x] at (x).

R
i

R[ 1
x ]-

6

q
q
q
q

1

x

x2

x3 6

q
q
q
q

1

x

x2

x3

?
a
a
ax−1

x−2

x−3

-

-

-

-

This means the kernel of i is zero and the cokenel of i is k[x, x−1]/k[x] which
is Σ−r(k[x]∨), dual vector space of k[x] shifted degree down by r , where k[x]∨ :=
Homk(k[x], k). It follows that
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H i
(x)(k[x])=

{
Σ−r(k[x]∨) = k[x, x−1]/k[x], if i=1 ;
0, otherwise.

Example 3.1.5. For R = k[x, y], polynomial ring over a field k with indeterminate
x, y of degree r, s and I = (x, y), we have

K∞(I; R) = K∞(x; R)⊗R K∞(y; R)

= (R −→ R[
1
x

]⊕R[
1
y
] −→ R[

1
xy

])

As the previous example, we illustrate the picture of Koszul complex for this ring as
below.

Figure 3.2: Koszul complex of k[x, y] at (x, y).
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From this figure, it is easy to see that this cochain complex is exact at the first
and second term. Thus, H0

I (R) and H1
I (R) are zero. For the third term, the cokernel

of < i,−i > map is all the circle point in the third quadrant, which is isomorphic to
Σ−(r+s)(R∨). Hence,

H i
I(R)=





0, if i=0;
0, if i=1;
Σ−(r+s)(R∨), if i=2;
0, otherwise.

For a module M over a commutative ring R (with unity) with ideal I , we have
other definitions of local cohomology which is defined by using functor ΓI(−). Here,
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ΓI(M):={x ∈ M : Inx = 0 for some n ∈ N }.

And H i
I() is defined to be the ith right derived functor of ΓI , i.e, taking injective

resolution of M , applying ΓI and taking cohomology. It is simple to show that ΓI is
left exact functor and thus

H0
I (M) = ΓI(M).

One can show that this definition and the previous definition agree for a module over
Noetherian ring (see, for example, [21], page 7).

Remark 3.1.6. For R module M , H∗
I (M) = H∗

I (R; M) and H∗
I (R) = H∗

I (R; R).

Since our work involve to Noetherian ring, ku∗(BG) is Noetherian ring for any
finite group G , we recollect some properties relating to our calculation of local coho-
mology for a module over such a ring as following.

Proposition 3.1.7. Let R be a commutaring Noetherian ring (with unity), I ¢R and
M a module over R .

1. If L and N are R module such that 0 −→ L −→ M −→ N −→ 0 is a short exact
sequence, then we have an induced long exact sequence

0 −→ H0
I (L) −→ H0

I (M) −→ H0
I (N) −→ H1

I (L) −→ H1
I (M) −→ H1

I (N) −→ ...

2. For J is an ideal of R , if
√

J =
√

I then H i
I(M) = H i

J(M) for all i.

3. For a Noetherian ring S , ϕ : R −→ S a ring homomorphism and N an S module,
H i

I(N) ∼= H i
IS(N) for each i as S module.

4. Let Λ be a directed set and {Mλ}λ∈Λ a direct system of R module.
Then lim

→λ
H i

I(Mλ) ∼= H i
I(lim→λ

Mλ).

5. If S is flat over R , then H i
I(M)⊗R S = H i

IS(M ⊗R S).

6. If (R,m) is local, then H i
m(M) ∼= H i

mR̂
(R̂⊗R M) which is isomorphic to H i

mR̂
(M̂)

if M is finitely generated.

Proof. See, for example, [21] or [26].

The strategy we will use is decomposing the input of Greenlees spectral sequence,
ku∗(BSD16), as a short exact sequence

0 −→ TU
i // ku∗(BSD16)

% // QU −→ 0 (3.1)

where TU is 2, v -torsion of ku∗(BSD16) and QU is the image of ku∗(BSD16) in
KU∗(BSD16). This short exact sequence induces long exact sequence
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0 −→ H0
I (TU) −→ H0

I (ku∗(BSD16)) −→ H0
I (QU) δ //

H1
I (TU) −→ H1

I (ku∗(BSD16)) −→ H1
I (QU) δ //

H2
I (TU) −→ H2

I (ku∗(BSD16)) −→ H2
I (QU) δ //

H3
I (TU) −→ H3

I (ku∗(BSD16)) −→ H3
I (QU) δ // ...

From here, instead of doing calculation of H∗
I (ku∗(BSD16)) directly, we prefer to do

calculation on H∗
I (TU) and H∗

I (QU). After determining differential, we obtain E2 -
page, i.e., H∗

I (ku∗(BSD16)) as original requirement.

§ 3.2 Local cohomology for v -torsion part of ku∗(BSD16)

Let R = ku∗(BSD16). Recall from Theorem 2.5.5 that for each k > 1, the v - torsion
of

1 ku4k+2(BSD16) is Fk−1
2 generated by {(b2d−abd)bdk−2, (b2d−abd)b2dk−3, ..., (b2d−

abd)b2k−3} and

2 ku4k(BSD16) is Fk−1
2 generated by {(b2d−abd)dk−2, (b2d−abd)b2dk−3, ..., (b2d−

abd)b2k−4} .

In other words, setting τ = b2d− abd ,

TU4k+2 = {τbdk−2, τb2dk−3, ..., τb2k−3}

TU4k = {τdk−2, τb2dk−3, ..., τb2k−4d}.
The monomorphism

ku∗(BSD16) −→ H∗(BSD16;F2)
⊕

KU∗(BSD16)

sending a 7−→ (x2, A), b 7−→ (y2, B) and d 7−→ (P, D) implies that aτ = 0 and b, d
act freely on TU . Hence, we have;

Lemma 3.2.1. v -torsion part of ku∗(BSD16), TU , is a free module over PC :=
F2[b, d] generated by τ , where (codegree) |τ | = 8 and a · TU = 0.

Note that TU can be identified to be a subring of H∗(BSD16;F2), i.e. a :=
x2, b := y2 and d := P . In fact, it is a Ch∗(BSD16;F2)-module, where Ch∗(BG;F2)
is the Chern subring of H∗(BG;F2). Moreover, we have a commutative diagram
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ku∗(BSD16)

η

²²

ϕ

))RRRRRRRRRRRRRR

H∗(BSD16;Z)
ρ2 // H∗(BSD16;F2),

where η is a natural map, ρ2 is modulo by 2 map and ϕ = ρ2 ◦ η and thus TU is an
R module via ϕ . Then

H∗
I (TU) = H∗

(a,b,d)(R; TU)
= H∗

ϕ(a,b,d)(Ch∗(BSD16;F2);TU)
= H∗

(x2,y2,P )(Ch∗(BSD16;F2);TU)

= H∗
(y2,P )(Ch∗(BSD16;F2);TU), [

√
(y2, P ) = (x2, y2, P ),∵ (x2)2 = 0]

= H∗
(b,d)(PC, PC) · τ, [∵ TU = PC · τ ]

= H∗
I′(PC) · τ,

where I ′ := (b, d).

By example 3.1.5, we get immediately that

Lemma 3.2.2. Local cohomology of TU at I = (a, b, d) is

H i
I′(PC) · τ = Σ−8(H i

I′(PC)) =





0, if i = 0;
0, if i = 1;
Σ−2((F2[b, d])∨), if i = 2;
0, if i ≥ 3.

§ 3.3 Local cohomology for the image of ku∗(BSD16) in KU∗(BSD16)

For H∗
I (QU), we consider the additive basis of QU by recalling from Theorem 2.5.5

which asserts that, for k ≥ 0,

(QU)2k = Z[v]⊕ Z∧2 < %(vk{vb, va, v3(a + b)d, v2d, v4d2, v6d3}) >,

= Z[v]⊕ Z∧2 < B, A, (A + B)D,D, D2, D3 >:= R0,

(QU)−2 = Z∧2 < %({b, a, v2(a + b)d, vd, v3d2, v5d3}) >,

= Z∧2 < B, A, (A + B)D, D, D2, D3 >,

(QU)−4 = Z∧2 < %({b2, vad, v(a + b)d, d, v2d2, v4d3}) >,

= Z∧2 < B2, AD, (A + B)D, D,D2, D3 >,

(QU)−6 = Z∧2 < %({b3, ad, (a + b)d, vd2, v3d3, v5d4}) >,

= Z∧2 < B3, AD, (A + B)D, D2, D3, D4 >,

(QU)−(4k) = Z∧2 < %({b2k, vadk, v(a + b)dk, dk, v2dk+1, v4dk+2}) >,

= Z∧2 < B2k, ADk, (A + B)Dk, Dk, Dk+1, Dk+2 >,

(QU)−(4k+2) = Z∧2 < %({b2k+1, adk, (a + b)dk, vdk+1, v3dk+2, v5dk+3}) >,

= Z∧2 < B2k+1, ADk, (A + B)Dk, Dk+1, Dk+2, Dk+3 > .
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Here, QU is a module over R via % . That is

H∗
I (QU) = H∗

(a,b,d)(R; QU)
= H∗

%(a,b,d)(QU ; QU)
= H∗

I′′(QU)

where I ′′ := %(a, b, d), the image of % in KU∗(BSD16). Since QUi for all i ≤ −1
are generated by Chern classes of at most 2 dimension complex representation, i.e.
χ2, χ3, χ4, σ1, σ2, σ3 , we get that;

Lemma 3.3.1. For each i ∈ Z,

(QU)i = (QU)−i ∼=





0, if i is odd.
R0, if i ≥ 0 and i is even;
ĴU1, if i = −2;
ĴU2, if i = −4;
ĴUk, if i = −2k,

where JU1 is the augmentation ideal of QU generated by first Chern classes, JU2 is
generated by JU2

1 and second Chern classes, and JUk = JU1JUk−1 + JU2JUk−2 for
k ≥ 3 and ĴU r = (JUr)∧J for all r .

3.3.1 QU and H0
I (R)

By lemma 3.3.1, we, instead of computing H∗
I′′(QU) directly, prefer to study from ĴU i

(Modified Rees ring), which is more tidy than QU−i . However, we keep the trace of
such isomorphism for i = 1, ..., 5 which ĴU2, ..., ĴU5 will play an important role for
our calculation. By definition and direct calculation, we see that

ĴU1 = Z∧2 < cR
1 (χ2), cR

1 (χ3), cR
1 (χ4), cR

1 (σ1), cR
1 (σ2), cR

1 (σ3) >

= Z∧2 < 1− χ2, 1− χ3, 1− χ4, 2− σ1, 2− σ2, 2− σ3 >
∼= Z∧2 < x1, y1, z1, t1, u1, w1 >

where

x1 = cR
1 (χ2) = B

y1 = cR
1 (χ3)− cR

1 (χ4) + cR
1 (χ2) =

2
3
A +

1
3
(A + B)D − 8

9
D +

2
3
D2 − 1

9
D3

z1 = cR
1 (χ4) = B +

1
3
A− 1

3
(A + B)D +

8
9
D − 2

3
D2 +

1
9
D3

t1 = cR
1 (σ2)− cR

1 (χ4) =
5
3
A− 2

3
(A + B)D +

4
9
D +

5
3
D2 − 4

9
D3

u1 = cR
1 (σ1) + cR

1 (σ3)− cR
1 (σ2)− cR

1 (χ4) = −5
3
A− 1

3
(A + B)D +

14
9

D − 5
3
D2 +

4
9
D3

w1 = cR
1 (σ3)− cR

1 (σ2) = −A− 1
3
D −D2 +

1
3
D2.
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On the other hand, we have A = z1−x1 +y1 , B = x1 , (A+B)D = −2w1−u1−
t1 + 2y1 , D = u1−w1 , D2 = 2u1− z1 + t1 + x1− y1 and D3 = 2w1 + 7u1 + 3t1− 3y1 .
Also, the images of x1, y1, z1, t1, u1, w1 in H∗(BSD16;F2) are y2, 0, x2 + y2, x2, x2, x2

respectively. Again we represent all generators of (QU)−2
∼= ĴU1 as the image of

character omitting the image of identity, because all such generators have image zero
at the identity.

(QU)−2
∼= ĴU1 = Z∧2

〈
x1 : [ 0 0 0 0 2 2 ]
y1 : [ 0 0 0 0 0 4 ]
z1 : [ 0 2 0 2 2 0 ]
t1 : [ 0 0 4 0 0 2 ]
u1 : [ 8 0 0 0 0 2 ]
w1 : [ 4 c −2 −c 0 0 ]

〉
, c =

√
2i .

Next, ĴU2 . This is, by definition JU2 := JU2
1 + cR

2 (σ), an ideal consisting of all
αβ for each α, β ∈ JU1 , together with cR

2 (σ1), cR
2 (σ2) and cR

2 (σ3). Again by direct
calculation, we get

ĴU2 = Z∧2

〈
x2 : [ 0 0 0 0 0 4 ]
y2 : [ 0 0 0 0 4 0 ]
z2 : [ 0 0 8 0 0 0 ]
t2 : [ 0 2 4 2 0 0 ]
u2 : [ 0 2c 0 −2c 0 0 ]
w2 : [ 4 c 2 −c 0 2 ]

〉
,

where x2 = x1t1 = x1u1 = t1u1 , y2 = x1z1 , z2 = −t1w1 , t2 = cR
2 (σ2), u2 =

cR
2 (σ3)− cR

2 (σ1), and w2 = cR
2 (σ3). It is not hard to see that

x2 = (A + B)D −AD
y2 = B2 − (A + B)D + AD
z2 = (A + B)D − 4AD + 16

3 D − 1
3D3

t2 = (A + B)D − 3AD + 4D −D2

u2 = (A + B)D − 2AD
w2 = D + (A + B)D − 2AD

,

B2 = x2 + y2

AD = x2 − u2

(A + B)D = 2x2 − u2

D = u2 − w2

D2 = 6u2 + 4w2 − x2 − t2
D3 = 25u2 + 16w2 − 6x2 − 3z2,

and the images of x2, y2, z2, t2, u2, w2 in H∗(BSD16;F2) are 0, y4, 0, 0, 0, P respectively.

Next, ĴU3 . This is, by definition JU3 := JU1JU2 +JU2JU1 = JU1JU2 , an ideal
consisting of all αβ for each α ∈ JU1 and β ∈ JU2 . Again by direct calculation, we
get

ĴU3 = Z∧2

〈
x3 : [ 0 0 0 0 0 4 ]
y3 : [ 0 0 0 0 8 0 ]
z3 : [ 0 0 8 0 0 0 ]
t3 : [ 0 4 0 4 0 0 ]
u3 : [ 16 −2 −4 −2 0 0 ]
w3 : [ 0 2c 0 −2c 0 0 ]

〉
,
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where x3 = x1w2 , y3 = x1y2 = z1y2 , z3 = t1w2− x3 , t3 = −w1u2 = z1t2 , u3 = w1w2 ,
and w3 = z1w2 . It is not hard to see that

x3 = (A + B)D −AD
y3 = B3 − 2(A + B)D + 2AD
z3 = (A + B)D − 4AD − 4

3D2 + 3D3 − 2
3D4

t3 = −2(A + B)D + 4AD − 8
3D2 + 2D3 − 1

3D4

u3 = D2 − x3 − z3

w3 = (A + B)D − 2AD.

On the other hand, B3 = y3+2x3 , AD = x3−w3 , (A+B)D = 2x3−w3 , D2 = u3+x3 ,
D3 = w3 − z3 + 2t3 + 3x3 + 4u3 and D4 = 16u3 + 10x3 − 6z3 + 9t3 and the images
of x3, y3, z3, t3, u3, w3 in H∗(BSD16;F2) are y2P, y6, (x2 + y2)P, 0, x2P, (x2 + y2)P re-
spectively.

Next, ĴU4 . By definition JU4 := JU1JU3 + JU2JU2 = JU2
1 JU2 + JU2

2 , since
JU2

1 ⊆ JU2 , JU2
1 JU2 ⊆ JU2JU2 and hence JU4 = JU2

2 . This is an ideal consisting of
all αβ for each α, β ∈ JU2 . Again by direct calculation, we get

ĴU4 = Z∧2

〈
x4 : [ 0 0 0 0 0 8 ]
y4 : [ 0 0 0 0 16 0 ]
z4 : [ 0 0 16 0 0 0 ]
t4 : [ 0 4 0 4 0 0 ]
u4 : [ 16 −2 4 −2 0 4 ]
w4 : [ 0 2c 8 −2c 0 0 ]

〉
,

where x4 = x2w2 , y4 = y2y2 , z4 = z2w2 , t4 = −u2w2 , u4 = w2w2 , and w4 = t2w2 . It
is not hard to see that

x4 = (A + B)D2 −AD2

y4 = B4 − 2(A + B)D2 + 2AD2

z4 = (A + B)D2 − 4AD2 + 16
3 D2 − 1

3D4

t4 = (A + B)D2 − 2AD2

u4 = D2

w4 = 4
3D2 + D3 − 1

3D4 −AD2.

On the other hand, B4 = y4 + 2x4 , AD2 = x4 − t4 , (A + B)D = 2x4 − t4 , D2 = u4 ,
D3 = 4u4 − z4 + w4 − x4 + 2t4 and D4 = 16u4 − 6x4 − 3z4 + 9t4 and the images of
x4, y4, z4, t4, u4, w4 in H∗(BSD16;F2) are 0, y8, 0, 0, P 2, 0 respectively.

Next, ĴU5 . By definition JU5 := JU1JU4 + JU2JU3 = JU1JU2
2 + JU2

2 JU1 =
JU1JU2

2 = JU1JU4 , this is an ideal consisting of all αβ for each α ∈ JU1 and β ∈ JU4 .
Again by direct calculation, we get
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ĴU5 = Z∧2

〈
x5 : [ 0 0 0 0 0 8 ]
y5 : [ 0 0 0 0 32 0 ]
z5 : [ 0 0 16 0 0 0 ]
t5 : [ 0 −4 0 −4 0 0 ]
u5 : [ 64 −2c −8 2c 0 0 ]
w5 : [ 0 4c 0 −4c 0 0 ]

〉
,

where x5 = x1u4 , y5 = x1y4 = z1y4 , z5 = t1u4 − x5 , t5 = z1u4 , u5 = w1u4 , and
w5 = z1w4 . It is not hard to see that

x5 = (A + B)D2 −AD2

y5 = B5 − 4(A + B)D2 + 4AD2

z5 = −5(A + B)D2 + 8AD2 − 4
3D3 + 3D4 − 2

3D5

t5 = −(A + B)D2 + 2AD2

u5 = 2(A + B)D2 − 3AD2 − 1
3D3 −D4 + 1

3D5

w5 = 2(A + B)D2 − 4AD2 + 8
3D3 − 2D4 + 1

3D5.

On the other hand, B5 = y5 + 4x5 , AD2 = t5 + x5 , (A + B)D = 2x5 + t5 , D3 =
u5 +w5 + z5 , D4 = 4u5 +3z5 +2w5− t5−2x5 and D5 = 16u5−12x5 +10z5 +7w5 and
the images of x5, y5, z5, t5, u5, w5 in H∗(BSD16;F2) are y2P 2, y10, (x2 + y2)P 2, (x2 +
y2)P 2, (x2 + y2)P 2, 0 respectively.

Similarly, we record ĴU6, ĴU7, ĴU8 and ĴU9 as;
ĴU6 = ĴU

3

2 = ĴU2ĴU4 generated by ĴU7 = ĴU1ĴU6 generated by

x6 : [ 0 0 0 0 0 16 ]
y6 : [ 0 0 0 0 64 0 ]
z6 : [ 0 0 32 0 0 0 ]
t6 : [ 0 −4 16 −4 0 0 ]
u6 : [ 0 −4c 0 4c 0 0 ]
w6 : [ 64 −2c 8 2c 0 8 ]

,

x7 : [ 0 0 0 0 0 16 ]
y7 : [ 0 0 0 0 128 0 ]
z7 : [ 0 0 32 0 0 0 ]
t7 : [ 0 −8 0 −8 0 0 ]
u7 : [ 256 4 −16 4 0 0 ]
w7 : [ 0 −4c 0 4c 0 0 ]

ĴU8 = ĴU
4

2 = ĴU2ĴU6 generated by ĴU9 = ĴU1ĴU8 generated by

x8 : [ 0 0 0 0 0 32 ]
y8 : [ 0 0 0 0 256 0 ]
z8 : [ 0 0 64 0 0 0 ]
t8 : [ 0 −8 0 −8 0 0 ]
u8 : [ 256 4 16 4 0 16 ]
w8 : [ 0 −4c 32 4c 0 0 ]

,

x9 : [ 0 0 0 0 0 32 ]
y9 : [ 0 0 0 0 29 0 ]
z9 : [ 0 0 64 0 0 0 ]
t9 : [ 0 8 0 8 0 0 ]
u9 : [ 45 4c −32 −4c 0 0 ]
w9 : [ 0 −8c 0 8c 0 0 ]

By induction, we see that ĴU2k = ĴU
k

2 = ĴU2ĴU2k−2 and ĴU2k+1 = ĴU1ĴU2k and
for k ≥ 2 we have ĴU4k+2 , ĴU4k+3 , ĴU4k+4 respectively as ;
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Z∧2

〈
x4k+2 : [ 0 0 0 0 0 4 · 4k ]
y4k+2 : [ 0 0 0 0 4 · 16k 0 ]
z4k+2 : [ 0 0 8 · 4k 0 0 0 ]
t4k+2 : [ 0 2(−2)k 4 · 4k 2(−2)k 0 0 ]
u4k+2 : [ 0 2c(−2)k 0 −2c(−2)k 0 0 ]
w4k+2 : [ 4 · 16k c(−2)k 2 · 4k −c(−2)k 0 2 · 4k ]

〉
,

Z∧2

〈
x4k+3 : [ 0 0 0 0 0 4 · 4k ]
y4k+3 : [ 0 0 0 0 8 · 16k 0 ]
z4k+3 : [ 0 0 8 · 4k 0 0 0 ]
t4k+3 : [ 0 4(−2)k 0 4(−2)k 0 0 ]
u4k+3 : [ 16 · 16k −2(−2)k −4 · 4k −2(−2)k 0 0 ]
w4k+3 : [ 0 2c(−2)k 0 −2c(−2)k 0 0 ]

〉
,

Z∧2

〈
x4k+4 : [ 0 0 0 0 0 8 · 4k ]
y4k+4 : [ 0 0 0 0 16 · 16k 0 ]
z4k+4 : [ 0 0 16 · 4k 0 0 0 ]
t4k+4 : [ 0 4(−2)k 0 4(−2)k 0 0 ]
u4k+4 : [ 16 · 16k −2(−2)k 4 · 4k −2(−2)k 0 4 · 4k ]
w4k+4 : [ 0 2c(−2)k 8 · 4k −2c(−2)k 0 0 ]

〉
,

and ĴU4k+5 as

Z∧2

〈
x4k+5 : [ 0 0 0 0 0 8 · 4k ]
y4k+5 : [ 0 0 0 0 32 · 16k 0 ]
z4k+5 : [ 0 0 16 · 4k 0 0 0 ]
t4k+5 : [ 0 −4(−2)k 0 −4(−2)k 0 0 ]
u4k+5 : [ 64 · 16k −2c(−2)k −8 · 4k 2c(−2)k 0 0 ]
w4k+5 : [ 0 4c(−2)k 0 −4c(−2)k 0 0 ]

〉
.

So far, we have seen the pattern of relations among ĴU i ’s as

ĴU2

∼=
p

// ĴU6

∼=
p

// ... ĴU4k+2

∼=
p

// ...

ĴU3

∼=
p

// ĴU7

∼=
p

// ... ĴU4k+3

∼=
p

// ...

ĴU4

∼=
p

// ĴU8

∼=
p

// ... ĴU4k+4

∼=
p

// ...

ĴU5

∼=
p

// ĴU9

∼=
p

// ... ĴU4k+5

∼=
p

// ...

where p is defined as follows.
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Definition 3.3.2. Define p ∈ (QU)8 = ĴU4 to be

p = %(d2 + b4 − (2v(a + b)d2 − 2vad2))
= D2 + B4 − (2(A + B)D2 − 2AD2)
= [ p([1]) p([s4]) p([s]) p([s2]) p([s5]) p([t]) p([ts]) ]
= [ 0 16 −2 4 −2 16 4 ]

where [1], [s4], [s], [s5], [t] and [ts] are conjugacy classes of SD16 .

Now, it is simple to see that %(a4) = %(v5ad2) ·p−%(v2a2) ·p ∈ (p), principal ideal
generated by p , %(b6) = %(v3ad2) ·p+%(a2) ·p+ρ(b2) ·p ∈ (p) and %(d3) = %(d) ·p ∈ (p).
This means the radical of (p) is I ′′ ,

√
(p) = I ′′ and hence

H∗
I′′(QU) ∼= H∗

(p)(QU). (3.2)

Therefore H i
I′′(QU) = 0 for i ≥ 2, H i

I(R) = 0 for i ≥ 3 and the long exact sequence
from (3.1) splits as;

0 −→ H0
I (R) −→ H0

(p)(QU) −→ 0

0 −→ H1
I (R) −→ H1

(p)(QU) δ // H2
I′(PC) · τ −→ H2

I (R) −→ 0.
(3.3)

The immediate result from this sequences is;

Lemma 3.3.3. Let ρ be a regular representation, ρ = 16 · 1 − 6va − 8vb + v2ab −
12v2d + 6v3ad + 2v4d2 .

(H0
I (R))i=

{
Z · ρ, if i is non-negative even integer;
0, otherwise.

Moreover, H1
I (R) = ker δ , H2

I (R) = coker δ and H i
I(R) = 0 for i ≥ 3.

Proof. The last statement is obvious from the second exact sequence in (3.3). Here
we have %(ρ) = ρ = [ 16 0 0 0 0 0 0 ] . Since H0

(p)(QU) = Γ(p)(QU),
H0

(p)(QU) = {x ∈ QU : (p)nx = 0, ∃n ∈ N} . Thus, the only possible element in QU

satisfying (p)nx = 0 for some n ∈ N is ρ ∈ R0 and hence all n · ρ for all n ∈ Z . By
lemma 3.3.1 and the first short exact sequence in (3.3), H0

I (R) ∼= H0
(p)(QU), the result

follows.

3.3.2 E1 1
2 - page

The main task in this section is to find H1
(p)(QU) from the short exact sequence;

0 −→ H0
I (QU) −→ QU −→ QU [1p ] −→ H1

(p)(QU) −→ 0.
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Since QU is graded, so is QU [1p ] and H1
(p)(QU). We calculate H1

(p)(QU)t as coker(QUt −→
(QU [1p ])t). Note that

lim−→( QUt
p // QUt−8

p // QUt−2(8)
p // ... ) ∼=(f) (QU [

1
p
])t

(where ∼=(f) means isomorphism given by the natural map, say f ), and this direct
system is eventually constant at QU−4 = ĴU2 or QU−6 = ĴU3 or QU−8 = ĴU4 or
QU−10 = ĴU5 . By proposition A.0.4, ĴU ε

∼=(g) (QU [1p ])t for which ε ∈ {2, 3, 4, 5} and

hence H1
(p)(QU)t

∼= coker( QUt
pi

// ĴU ε ) for i = t+2ε
8 ∈ Z . Now, it is obvious that

H1
(p)(QU)t = 0 for t ≤ −4 or t is odd. For t ≥ −2, we have

H1
(p)(QU)−2

∼= ĴU5/p · JU1 , H1
(p)(QU)2(4k−5)

∼= ĴU5/pk ·R0

H1
(p)(QU)0 ∼= ĴU4/p ·R0 , H1

(p)(QU)2(4k−4)
∼= ĴU4/pk ·R0

H1
(p)(QU)2 ∼= ĴU3/p ·R0 , H1

(p)(QU)2(4k−3)
∼= ĴU3/pk ·R0

H1
(p)(QU)4 ∼= ĴU2/p ·R0 , H1

(p)(QU)2(4k−2)
∼= ĴU2/pk ·R0

for each k ≥ 2. The isomorphism f sending (q1, q2, q3, ..., qm, 0, 0, 0, ...) to q1+ q2

p + q3
p2 +

...+ qm

pm−1 and the isomorphism in the proposition A.0.4, yield explicitly the isomorphism

g as g(αε) = αε

pi for i = t+2ε
8 ∈ Z . This implies that αε + pi ·QUt in ĴU ε/pi ·QUt can

be identified by αε

pi + QUt in H1
(p)(QU)t .

Lemma 3.3.4. For each α ∈ {x, y, z, t, u, w} and for ε =2,3,4 let α̃−1 = α5
p + ĴU1

∼=
α5 + p · ĴU1 , α̃4i−ε = αε

pi + R0
∼= αε + pi ·R0 for all i ≥ 1, and let α̃4j−5 = α5

pj + R0
∼=

α5 + pj ·R0 , for all j ≥ 2, we have

• H1
(p)(QU)−2 = Z/2 < x̃−1 > with x̃−1 = ỹ−1 = z̃−1 , t̃−1 = x̃−1 − ỹ−1 and

ũ−1 = w̃−1 = 0.

• H1
(p)(QU)0 = Z/2 < ỹ0 > with ũ0 = ỹ0 and x̃0 = z̃0 = w̃0 = t̃0 = 0.

• H1
(p)(QU)2 = Z/2 < x̃1 > ⊕ Z/2 < z̃1 > ⊕ Z/4 < ỹ1 > with w̃1 = z̃1 ,

ũ1 + x̃1 + z̃1 + 2ỹ1 = 0 = t̃1 .

• H1
(p)(QU)4 = Z/2 < x̃2 > ⊕ Z/8 < ỹ2 > ⊕ Z/16 < w̃2 > with z̃2 = 8w̃2 ,

t̃2 + x̃2 = 4(w̃2 + ỹ2) and ũ2 + 8w̃2 = 0.

• H1
(p)(QU)6 = Z/2 < t̃3 > ⊕ Z/4 < x̃3 > ⊕ Z/16 < ỹ3 > ⊕ Z/16 < ũ3 > with

w̃3 − 8ũ3 = 0 and t̃3 + z̃3 = 2x̃3 + 8ỹ3 + 4ũ3 .
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• H1
(p)(QU)8 = Z/4 < x̃4 > ⊕ Z/4 < w̃4−8ũ4 > ⊕ Z/32 < ỹ4 > ⊕ Z/64 < ũ4 >

with z̃4 + 2w̃4 = 0 and t̃4 + 2x̃4 − 2w̃4 + 16ỹ4 + 16ũ4 = 0.

• H1
(p)(QU)10 = Z/2 < w̃5 + 16ũ5 > ⊕ Z/4 < z̃5 + 8ũ5 > ⊕ Z/8 < x̃5 > ⊕

Z/64 < ỹ5 > ⊕ Z/64 < ũ5 > with t̃5 + 4x̃5 + 32ỹ5 + 2z̃5 + 16ũ5 = 0.

• H1
(p)(QU)12 = Z/2 < ũ6 + 64w̃6 > ⊕ Z/8 < x̃6 > ⊕ Z/8 < t̃6 + 16w̃6 > ⊕

Z/128 < ỹ6 > ⊕ Z/256 < w̃6 > with z̃6 + 4x̃6 + 64ỹ6 + 2t̃6 + 64w̃6 = 0.

In general for n ≥ 3,

• H1
(p)(QU)2(4n−5) = Z/2n−2⊕Z/2n−2⊕Z/2 · 4n−2⊕Z/4n−1⊕Z/16n−1⊕Z/16n−1

generated by t̃4n−5+(−2)n−1x̃4n−5−(−2)n−2z̃4n−5+(−8)n−1ỹ4n−5+4(−8)n−2ũ4n−5 ,
w̃4n−5+(−2)n−1z̃4n−5 , z̃4n−5+(4)n−1ũ4n−5 , x̃4n−5 , ỹ4n−5 and ũ4n−5 respectively.

• H1
(p)(QU)2(4n−4) = Z/2n−2 ⊕ Z/2n−2 ⊕ Z/4n−1 ⊕ Z/4n−1 ⊕ Z/2 · 16n−1⊕ Z/4 ·

16n−1 generated by t̃4n−4 +(−2)n−2(2x̃4n−4 + z̃4n−4)− 2(−8)n−1(ỹ4n−4 + ũ4n−4),
z̃4n−4−2w̃4n−4−4(−8)n−1ũ4n−4 , w̃4n−4 +2 ·4n−1ũ4n−4 , x̃4n−4 , ỹ4n−4 and ũ4n−4

respectively.

• H1
(p)(QU)2(4n−3) = Z/2n−2 ⊕ Z/2n−1 ⊕ Z/4n−1 ⊕ Z/2 · 4n−1 ⊕ Z/4 · 16n−1⊕

Z/4 · 16n−1 generated by t̃4n−3 + (−2)nx̃4n−3 − 4(−8)n−1ỹ4n−3 − (−2)n−1z̃4n−3 −
2(−8)n−1ũ4n−3 , w̃4n−3− (−2)n−1z̃4n−3 , z̃4n−3 +2 ·4n−1ũ4n−3 , x̃4n−3 , ỹ4n−3 and
ũ4n−3 respectively.

• H1
(p)(QU)2(4n−2) = Z/2n−2⊕Z/2n−1⊕Z/2 ·4n−1⊕Z/2 ·4n−1⊕Z/8 ·16n−1⊕Z/16n

generated by z̃4n−2− (−2)nx̃4n−2− (−8)nỹ4n−2− (−8)nw̃4n−2− (2+(−2)n)t̃4n−2 ,
ũ4n−2 + (−8)nw̃4n−2 , t̃4n−2 + 4nw̃4n−2 , x̃4n−2 , ỹ4n−2 and w̃4n−2 respectively.

Proof. Recall from the previous subsection that p · ĴU1 = Z∧2 < p · x1, p · y1, p · z1, p ·
t1, p · u1, p ·w1 > and ĴU5 = Z∧2 < x5, y5, z5, t5, u5, w5 > , we get that p · x1 = x5 + y5 ,
p ·y1 = 2x5 , p ·z1 = y5 + t5 , p · t1 = x5 +z5 , p ·u1 = 2u5 +w5 +z5 +x5 and p ·w1 = u5 .
Hence, we represent matrix for the computation of ĴU5/p · ĴU1 as

x5 y5 z5 t5 u5 w5

p · x1 : | 1 1 0 0 0 0 |
p · y1 : | 2 0 0 0 0 0 |
p · z1 : | 0 1 0 1 0 0 |
p · t1 : | 1 0 1 0 0 0 |
p · u1 : | 1 0 1 0 2 1 |
p · w1 : | 0 0 0 0 1 0 |,

which we do row operations as
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x5 y5 z5 t5 u5 w5

c1 c2 c3 c4 c5 c6

r1| 1 1 0 0 0 0 |
r2| 2 0 0 0 0 0 |
r3| 0 1 0 1 0 0 |
r4| 1 0 1 0 0 0 |
r5| 1 0 1 0 2 1 |
r6| 0 0 0 0 1 0 |

∼=

x5 y5 z5 t5 u5 w5

c1 c2 c3 c4 c5 c6

r1| 1 1 0 0 0 0 |
r2| 2 0 0 0 0 0 |
r3| 0 1 0 1 0 0 |
r4| 1 0 1 0 0 0 |
r′5| 0 0 0 0 0 1 |
r6| 0 0 0 0 1 0 |

, (Step ∗),

where r′5 = r5− r4− 2r6 and (Step ∗) means the last step of our row operations; after
doing column operations, we get the required result. Then we do column operations
and get

new generator → g1 g2 g3 g4 g5 g6

column operation → c′1 c′2 c′3 c′4 c′5 c′6
r1| 0 1 0 0 0 0 |
r2| 2 0 0 0 0 0 |
r3| 0 0 0 1 0 0 |
r4| 0 0 1 0 0 0 |
r′5| 0 0 0 0 0 1 |
r6| 0 0 0 0 1 0 |,

where c′1 = c1 − c2 + c4 − c3 , c′2 = c2 − c4 and c′i = ci for i = 3, 4, 5, 6. Note that row
operations do not change the basis of ĴU5/p · ĴU1 but column operations will effect
such a basis i.e. changing basis. More precisely, let q be an element in (Step ∗) which
q = ax5 + by5 + cz5 + dt5 + eu5 + fw5 where a, b, c, d, e, f ∈ Z∧2 . Then after column
operations we get q = (a− b− c + d)g1 + (b− d)g2 + cg3 + dg4 + eg5 + fg6 and hence

a(x5−g1)+b(y5+g1−g2)+c(z5+g1−g3)+d(t5−g1−g4+g2)+e(u5−g5)+f(w5−g6) = 0.

If q = r6 then g5 = u5 and if q = r′5 then g6 = w5.
If q = r2 then g1 = x5 and if q = r1 then g2 = x5 + y5.
If q = r3 then g3 = x5 + z5 and if q = r4 then g4 = t5 − x5 + y5.

That is ĴU5/p · ĴU1 = Z∧2 /2Z∧2 ∼= Z/2 generated by g1 + p · ĴU1 = x5 + p · ĴU1

and u5, w5, x5 + y5, x5 + z5, t5 − x5 + y5 ∈ p · ĴU1 and hence H1
(p)(QU)−2 follows.

The rest of this proof relies on pk ·R0 for k > 0 which is

Z∧2

〈
pk · 1 : [ 16k (−2)k 4k (−2)k 16k 4k ]
pk ·A : [ 0 2(−2)k 0 2(−2)k 0 2 · 4k ]
pk ·B : [ 0 0 0 0 2 · 16k 2 · 4k ]
pk ·D : [ 4 · 16k −c(−2)k 2 · 4k c(−2)k 0 2 · 4k ]

pk · (A + B)D : [ 0 −2c(−2)k 0 2c(−2)k 0 8 · 4k ]
pk ·D2 : [ 16 · 16k −2(−2)k 4 · 4k −2(−2)k 0 4 · 4k ]
pk ·D3 : [ 64 · 16k 2c(−2)k 8 · 4k −2c(−2)k 0 8 · 4k ]

〉
.
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Here, we change this basis to

Z∧2

〈
pk · 1 : [ 16k (−2)k 4k (−2)k 16k 4k ]

pk · x′0 : [ 0 0 0 0 0 14
3 · 4k ]

pk · y0 : [ 0 0 0 0 2 · 16k 0 ]
pk · z0 : [ 0 −2(−2)k 0 −2(−2)k 0 0 ]
pk · t′0 : [ 4 · 16k 0 0 0 0 0 ]
pk · u0 : [ 0 0 4 · 4k 0 0 0 ]
pk · w0 : [ 0 −c(−2)k 2 · 4k c(−2)k 0 0 ]

〉
,

where

pk · x′0 =
2
9
pk ·D + pk ·D2 − 2

9
pk ·D3 − 8

3
pk · 1 +

7
3
pk ·A− 1

3
pk · (A + B)D

+
4
3
pk ·B

pk · y0 = pk ·B − 7
3
pk · x′0

pk · z0 =
7
3
pk · x′0 − pk ·A

pk · t′0 = 4pk · 1 + 2pk · z0 − pk · u0 − 2pk ·B +
6
7
pk · x′0

pk · u0 = 8pk · 1− 4pk ·A− 2pk ·D + pk · (A + B)D − 6
7
pk · x′0

pk · w0 = pk ·D − pk · t0 − 7
3
pk · x′0.

We can change this basis further by

pk · x′0 → pk · x0 = 3pk · x′0 − 12pk · 1 + 6pk · y0 − 3pk · u0 − 6pk · z0 − 3pk · t′0
and

pk · t′0 → pk · t′0 − 4pk · 1− 2pk · z0 + pk · u0 − 2pk · y0 − 2pk · x0 = 0.

Now the basis for pk ·R0 for k > 0 is reduced to

Z∧2

〈
pk · 1 : [ 16k (−2)k 4k (−2)k 16k 4k ]

pk · x0 : [ 0 0 0 0 0 2 · 4k ]
pk · y0 : [ 0 0 0 0 2 · 16k 0 ]
pk · z0 : [ 0 −2(−2)k 0 −2(−2)k 0 0 ]
pk · u0 : [ 0 0 4 · 4k 0 0 0 ]
pk · w0 : [ 0 −c(−2)k 2 · 4k c(−2)k 0 0 ].

〉

For the calculation of H1
(p)(QU)0 ∼= ĴU4/p·R0 , we use the same method as above

which we can represent matrix for the calculation of ĴU4/p ·R0 as
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x4 y4 z4 t4 u4 w4

p · 1 : | 0 1 0 0 1 0 |r0

p · x0 : | 1 0 0 0 0 0 |r1

p · y0 : | 0 2 0 0 0 0 |r2

p · z0 : | 0 0 0 1 0 0 |r3

p · u0 : | 0 0 1 0 0 0 |r4

p · w0 : | 0 0 0 0 0 1 |r5.

After column operations, we have

g1 g2 g3 g4 g5 g6

c′1 c′2 c′3 c′4 c′5 c′6
r∗0| 0 0 0 0 1 0 |
r∗1| 1 0 0 0 0 0 |
r∗2| 0 2 0 0 0 0 |
r∗3| 0 0 0 1 0 0 |
r∗4| 0 0 1 0 0 0 |
r∗5| 0 0 0 0 0 1 |,

where c′2 = c2 − c5 and c′i = ci for i 6= 2. Thus, ĴU4/p · R0
∼= Z/2 generated by

g2 + p ·R0 and gi ∈ p ·R0 for all i 6= 3. By the same process as the case H1
(p)(QU)−2 ,

we get that g1 = x4 , g2 = y4 , g3 = z4 , g4 = t4 , g5 = u4 + y4 and g6 = w4 and hence
the result for H1

(p)(QU)0 follows.

For H1
(p)(QU)2 ∼= ĴU3/p · R0 , we can represent matrix for the calculation of

ĴU3/p ·R0 as

x3 y3 z3 t3 u3 w3

p · 1 : | 1 2 1 0 1 0 |r0

p · x0 : | 2 0 0 0 0 0 |r1

p · y0 : | 0 4 0 0 0 0 |r2

p · z0 : | 0 0 0 1 0 0 |r3

p · u0 : | 0 0 2 0 0 0 |r4

p · w0 : | 0 0 1 0 0 1 |r5.

After column operations, we have

g1 g2 g3 g4 g5 g6

c′1 c′2 c′3 c′4 c′5 c′6
r∗0| 0 0 0 0 1 0 |
r∗1| 2 0 0 0 0 0 |
r∗2| 0 4 0 0 0 0 |
r∗3| 0 0 0 1 0 0 |
r∗4| 0 0 2 0 0 0 |
r∗5| 0 0 0 0 0 1 |,
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where c′1 = c1 − c5 , c′2 = c2 − 2c5 , c′3 = c3 − c5 − c6 and c′i = ci for i = 4, 5, 6. Thus,

ĴU3/p ·R0
∼= Z/2⊕ Z/2⊕ Z/4

generated by g1 + p ·R0 , g3 + p ·R0 and g2 + p ·R0 respectively, and gi ∈ p ·R0 for all
i = 4, 5, 6. By the same process as the case H1

(p)(QU)−2 , we get that g1 = x3 , g2 = y3 ,
g3 = z3 , g4 = t3 , g5 = u3 + x3 + 2y3 + z3 and g6 = w3 + z3 and hence the result for
H1

(p)(QU)2 follows.

For H1
(p)(QU)4 ∼= ĴU2/p · R0 , we can represent matrix for the calculation of

ĴU2/p ·R0 as

x2 y2 z2 t2 u2 w2

p · 1 : | −1 4 0 −1 −2 4 |r0

p · x0 : | 2 0 0 0 0 0 |r1

p · y0 : | 0 8 0 0 0 0 |r2

p · z0 : | 0 0 −1 2 0 0 |r3

p · u0 : | 0 0 2 0 0 0 |r4

p · w0 : | 0 0 1 0 1 0 |r5.

Now, we do row operations by
r0 −→ [r∗0 = r0 − 2r∗5 + r∗4] , r1 = r∗1 , r2 = r∗2
r3 −→ [r′3 = r3 + 2r0 − r2 + r1] −→ [r∗3 = r′3 + 4r∗5 − 2r∗4] ,
r4 −→ [r′4 = r4 + 2r3] −→ [r′′4 = r′4 + 4r0 − 2r2 + 2r1] −→ [r′′′4 = r′′4 − 2r′′5 ] −→ [r∗4 =
r′′4 + 2r∗5] ,
r5 −→ [r′5 = r5 + r3] −→ [r′′5 = r′5 + 2r0 − r2 + r1] −→ [r∗5 = r′′5 − r′′′4 ] ,
and then we obtain (Step ∗) and the required result as

(Step ∗)=

x2 y2 z2 t2 u2 w2

c1 c2 c3 c4 c5 c6

r∗0| −1 4 0 −1 0 4 |
r∗1| 2 0 0 0 0 0 |
r∗2| 0 8 0 0 0 0 |
r∗3| 0 0 −1 0 0 8 |
r∗4| 0 0 0 0 0 16 |
r∗5| 0 0 0 0 1 8 |

∼=

g1 g2 g3 g4 g5 g6

c′1 c′2 c′3 c′4 c′5 c′6
r∗0| 0 0 0 −1 0 0 |
r∗1| 2 0 0 0 0 0 |
r∗2| 0 8 0 0 0 0 |
r∗3| 0 0 −1 0 0 0 |
r∗4| 0 0 0 0 0 16 |
r∗5| 0 0 0 0 1 0 |,

where c′1 = c1 − c4 , c′2 = c2 + 4c4 , c′6 = c6 + 4c4 + 8c3 − 8c5 and c′i = ci for i = 3, 4, 5.
Thus,

ĴU2/p ·R0
∼= Z/2⊕ Z/8⊕ Z/16

generated by g1 + p ·R0 , g2 + p ·R0 and g6 + p ·R0 respectively, and gi ∈ p ·R0 for all
i = 3, 4, 5. By the same process as the case H1

(p)(QU)−2 , we get that g1 = x2 , g2 = y2 ,
g3 = z2 − 8w2 , g4 = t2 + x2 − 4(w2 + y2), g5 = u2 + 8w2 and g6 = w2 and hence the
result for H1

(p)(QU)4 follows.
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For H1
(p)(QU)6 ∼= ĴU5/p2 · R0 , we can represent matrix for the calculation of

ĴU5/p2 ·R0 as

x5 y5 z5 t5 u5 w5

p2 · 1 : | 2 8 3 −1 4 2 |r0

p2 · x0 : | 4 0 0 0 0 0 |r1

p2 · y0 : | 0 16 0 0 0 0 |r2

p2 · z0 : | 0 0 0 2 0 0 |r3

p2 · u0 : | 0 0 4 0 0 0 |r4

p2 · w0 : | 0 0 2 0 0 −1 |r5.

Now, we do row operations by
r0 −→ [r∗0 = r0 + 2r5 − 2r4] , r1 = r∗1 , r2 = r∗2 , r3 = r∗3
r4 −→ [r∗4 = r4 + 4r∗0 + 2r∗3 − 2r∗1 − 2r∗2] ,
r5 −→ [r∗5 = r5 + 2r∗0 + r∗3 − r∗1 − r∗2] ,
and then we obtain (Step ∗) and the required result as

(Step ∗)=

x5 y5 z5 t5 u5 w5

c1 c2 c3 c4 c5 c6

r∗0| 2 8 −1 −1 4 0 |
r∗1| 4 0 0 0 0 0 |
r∗2| 0 16 0 0 0 0 |
r∗3| 0 0 0 2 0 0 |
r∗4| 0 0 0 0 16 0 |
r∗5| 0 0 0 0 8 −1 |

∼=

g1 g2 g3 g4 g5 g6

c′1 c′2 c′3 c′4 c′5 c′6
r∗0| 0 0 −1 0 0 0 |
r∗1| 4 0 0 0 0 0 |
r∗2| 0 16 0 0 0 0 |
r∗3| 0 0 0 2 0 0 |
r∗4| 0 0 0 0 16 0 |
r∗5| 0 0 0 0 0 −1 |,

where c′1 = c1 + 2c3 , c′2 = c2 + 8c3 , c′3 = c3 , c′4 = c4 − c3 , c′5 = c5 + 4c3 + 8c6 and
c′6 = c6 . Thus,

ĴU5/p2 ·R0
∼= Z/2⊕ Z/4⊕ Z/16⊕ Z/16

generated by g4 + p2 ·R0 , g1 + p2 ·R0 , g2 + p2 ·R0 and g5 + p2 ·R0 respectively, and
g3, g6 ∈ p2 · R0 . By the same process as the case H1

(p)(QU)−2 , we get that g1 = x5 ,
g2 = y5 , g3 = z5−2x5−8y5 + t5−4u5 , g4 = t5 , g5 = u5 and g6 = w5−8u5 and hence
the result for H1

(p)(QU)6 follows.

For H1
(p)(QU)8 ∼= ĴU4/p2 · R0 , we can represent matrix for the calculation of

ĴU4/p2 ·R0 as

x4 y4 z4 t4 u4 w4

p2 · 1 : | −6 16 −3 9 16 0 |r0

p2 · x0 : | 4 0 0 0 0 0 |r1

p2 · y0 : | 0 32 0 0 0 0 |r2

p2 · z0 : | 0 0 0 −2 0 0 |r3

p2 · u0 : | 0 0 4 0 0 0 |r4

p2 · w0 : | 0 0 3 0 0 −2 |r5.
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Now, we do row operations by
r0 −→ [r∗0 = r0 + 2r1 + r5 + 4r3] , r1 = r∗1 , r2 = r∗2 ,
r3 −→ [r′3 = r3 + 2r∗0 − r∗1 − r∗2] −→ [r∗3 = −r′3]
r4 −→ [r′4 = r4 + 4r∗5] −→ [r∗4 = −(r′4 − 2r′3)],
r5 −→ [r∗5 = r5 − r4] ,
and then we obtain (Step ∗) and the required result as

x4 y4 z4 t4 u4 w4

c1 c2 c3 c4 c5 c6

r∗0| 2 16 0 1 16 −2 |
r∗1| 4 0 0 0 0 0 |
r∗2| 0 32 0 0 0 0 |
r∗3| 0 0 0 0 −32 4 |
r∗4| 0 0 0 0 64 0 |
r∗5| 0 0 −1 0 0 −2 |

∼=

g1 g2 g3 g4 g5 g6

c′1 c′2 c′3 c′4 c′5 c′6
r∗0| 0 0 0 1 0 0 |
r∗1| 4 0 0 0 0 0 |
r∗2| 0 32 0 0 0 0 |
r∗3| 0 0 0 0 0 4 |
r∗4| 0 0 0 0 64 0 |
r∗5| 0 0 −1 0 0 0 |,

where c′1 = c1 − 2c4 , c′2 = c2 − 16c4 , c′3 = c3 , c′4 = c4 , c′5 = c5 + 8c6 − 16c3 and
c′6 = c6 + 2c4 − 2c3 . Thus,

ĴU4/p2 ·R0
∼= Z/4⊕ Z/4⊕ Z/32⊕ Z/64

generated by g1 + p2 ·R0 , g6 + p2 ·R0 , g2 + p2 ·R0 and g5 + p2 ·R0 respectively, and
g3, g4 ∈ p2 · R0 . By the same process as the case H1

(p)(QU)−2 , we get that g1 = x4 ,
g2 = y4 , g3 = z4 +2w4 , g4 = t4 +2x4 +16y4− 2w4 +16u4 , g5 = u4 and g6 = w4− 8u4

and hence the result for H1
(p)(QU)8 follows.

For H1
(p)(QU)10

∼= ĴU3/p2 · R0 , we can represent matrix for the calculation of

ĴU3/p2 ·R0 as

x3 y3 z3 t3 u3 w3

p2 · 1 : | 4 32 10 9 16 0 |r0

p2 · x0 : | 8 0 0 0 0 0 |r1

p2 · y0 : | 0 64 0 0 0 0 |r2

p2 · z0 : | 0 0 0 −2 0 0 |r3

p2 · u0 : | 0 0 8 0 0 0 |r4

p2 · w0 : | 0 0 4 0 0 −2 |r5.

Now, we do row operations by
r0 −→ [r∗0 = r0 − r4 + 4r3] , r1 = r∗1 , r2 = r∗2 ,
r3 −→ [r∗3 = r3 + 2r∗0 − r∗1 − r∗2 − r5]
r4 −→ [r∗4 = r4 − 2r5 − 2r∗3] ,
r5 −→ [r∗5 = r5 + r∗3] ,
and then we obtain (Step ∗) and the required result as
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x3 y3 z3 t3 u3 w3

c1 c2 c3 c4 c5 c6

r∗0| 4 32 2 1 16 0 |
r∗1| 8 0 0 0 0 0 |
r∗2| 0 64 0 0 0 0 |
r∗3| 0 0 0 0 32 2 |
r∗4| 0 0 0 0 −64 0 |
r∗5| 0 0 4 0 32 0 |

∼=

g1 g2 g3 g4 g5 g6

c′1 c′2 c′3 c′4 c′5 c′6
r∗0| 0 0 0 1 0 0 |
r∗1| 8 0 0 0 0 0 |
r∗2| 0 64 0 0 0 0 |
r∗3| 0 0 0 0 0 2 |
r∗4| 0 0 0 0 −64 0 |
r∗5| 0 0 4 0 0 0 |,

where c′1 = c1 − 4c4 , c′2 = c2 − 32c4 , c′3 = c3 − 2c4 , c′4 = c4 , c′5 = c5 − 8c3 + 16c6 and
c′6 = c6 . Thus,

ĴU3/p2 ·R0
∼= Z/2⊕ Z/4⊕ Z/8⊕ Z/64⊕ Z/64

generated by g6 + p2 · R0 , g3 + p2 · R0 , g1 + p2 · R0 , g2 + p2 · R0 and g5 + p2 · R0

respectively, and g4 ∈ p2 · R0 . By the same process as the case H1
(p)(QU)−2 , we get

that g1 = x3 , g2 = y3 , g3 = z3 + 8u3 , g4 = t3 + 4x3 + 32y3 + 2z3 + 16u3 , g5 = u3 and
g6 = w3 + 16u3 and hence the result for H1

(p)(QU)10 follows.

For H1
(p)(QU)12

∼= ĴU2/p2 · R0 , we can represent matrix for the calculation of

ĴU2/p2 ·R0 as

x2 y2 z2 t2 u2 w2

p2 · 1 : | −28 64 −15 2 −32 64 |r0

p2 · x0 : | 8 0 0 0 0 0 |r1

p2 · y0 : | 0 128 0 0 0 0 |r2

p2 · z0 : | 0 0 2 −4 0 0 |r3

p2 · u0 : | 0 0 8 0 0 0 |r4

p2 · w0 : | 0 0 4 0 −2 0 |r5.

Now, we do row operations by
r0 −→ [r∗0 = r0 + 4r1 + 2r4 + 8r′4] , r1 = r∗1 , r2 = r∗2 ,
r3 −→ [r′3 = r3 − 2r∗0 + r∗1 + r∗2] −→ [r∗3 = −r′3]
r4 −→ [r′4 = r4 − 2r5] −→ [r∗4 = r′4 + 2r′5] ,
r5 −→ [r′5 = r5 − 4r∗0 + 2r∗1 + 2r∗2 − r′3] −→ [r∗5 = −r′5] ,
and then we obtain (Step ∗) and the required result as

x2 y2 z2 t2 u2 w2

c1 c2 c3 c4 c5 c6

r∗0| 4 64 1 2 0 64 |
r∗1| 8 0 0 0 0 0 |
r∗2| 0 128 0 0 0 0 |
r∗3| 0 0 0 8 0 128 |
r∗4| 0 0 0 0 0 256 |
r∗5| 0 0 0 0 2 128 |

∼=

g1 g2 g3 g4 g5 g6

c′1 c′2 c′3 c′4 c′5 c′6
r∗0| 0 0 1 0 0 0 |
r∗1| 8 0 0 0 0 0 |
r∗2| 0 128 0 0 0 0 |
r∗3| 0 0 0 8 0 0 |
r∗4| 0 0 0 0 0 256 |
r∗5| 0 0 0 0 2 0 |,
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where c′1 = c1 − 4c3 , c′2 = c2 − 64c3 , c′3 = c3 , c′4 = c4 − 2c3 , c′5 = c5 and c′6 =
c6 − 16c4 − 64c5 − 32c3 . Thus,

ĴU2/p2 ·R0
∼= Z/2⊕ Z/8⊕ Z/8⊕ Z/128⊕ Z/256

generated by g5 + p2 · R0 , g1 + p2 · R0 , g4 + p2 · R0 , g2 + p2 · R0 and g6 + p2 · R0 re-
spectively, and g3 ∈ p2 ·R0 . By the same process as the case H1

(p)(QU)−2 , we get that
g1 = x2 , g2 = y2 , g3 = z2 + 4x2 + 64y2 + 2t2 + 64w2 , g4 = t2 + 16w2 , g5 = u2 + 64w2

and g6 = w2 and hence the result for H1
(p)(QU)12 follows.

Now, we are going to prove the general case which separates to 4 types. Let
n ≥ 3, r0 = pn · 1, r1 = pn · x0 , r2 = pn · y0 , r3 = pn · z0 , r4 = pn · u0 and
r5 = pn ·w0 . Beginning with H1

(p)(QU)2(4n−5)
∼= ĴU5/pn ·R0 , we can represent matrix

for the calculation of ĴU5/pn ·R0 as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x5 y5 z5 t5 u5 w5

2 · 4n−2 8 · 16n−2 2 · 16n−2 + 4n−2 −(−2)n−2 4 · 16n−2 2 · 16n−2

4n−1 0 0 0 0 0
0 16n−1 0 0 0 0
0 0 0 −(−2)n−1 0 0
0 0 4n−1 0 0 0
0 0 2 · 4n−2 0 0 −(−2)n−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Now, we do row operations by
r0 −→ [r∗0 = r0 − 2 · 4n−3r4] , r1 = r∗1 , r2 = r∗2 , r5 = r∗5
r3 −→ [r′3 = r3 + 2r∗0 − r∗1 − r∗2] −→ [r∗3 = r′3 + 4(−8)n−2r6 − 2(−8)n−2r4]
r4 −→ [r∗4 = −(r4 − 2r∗3)],
and then we obtain (Step ∗) and the required result as

x5 y5 z5 t5 u5 w5

c1 c2 c3 c4 c5 c6

r∗0| 2 · 4n−2 8 · 16n−2 4n−2 −(−2)n−2 4 · 16n−2 2 · 16n−2 |
r∗1| 4n−1 0 0 0 0 0 |
r∗2| 0 16n−1 0 0 0 0 |
r∗3| 0 0 2 · 4n−2 0 8 · 16n−2 0 |
r∗4| 0 0 0 0 16n−1 0 |
r∗5| 0 0 2 · 4n−2 0 0 −(−2)n−2 |

∼=

g1 g2 g3 g4 g5 g6

c′1 c′2 c′3 c′4 c′5 c′6
r∗0| 0 0 0 −(−2)n−2 0 0 |
r∗1| 4n−1 0 0 0 0 0 |
r∗2| 0 16n−1 0 0 0 0 |
r∗3| 0 0 2 · 4n−2 0 0 0 |
r∗4| 0 0 0 0 16n−1 0 |
r∗5| 0 0 0 0 0 −(−2)n−2 |,
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where

c′1 = c1 + 2(−2)n−2c4

c′2 = c2 + 8(−8)n−2c4

c′3 = c3 − (−2)n−1c6 + [(−2)n−2 + 4(16)n−2]c4

c′4 = c4

c′5 = c5 − 4n−1c3 + (−8)n−1c6 − 43n−4c4

c′6 = c6 + 2(−8)n−2c4.

Thus,

ĴU5/pn ·R0
∼= Z/2n−2 ⊕ Z/2n−2 ⊕ Z/2 · 4n−2 ⊕ Z/4n−1 ⊕ Z/16n−1 ⊕ Z/16n−1

generated by g4 + pn · R0 , g6 + pn · R0 , g3 + pn · R0 , g1 + pn · R0 , g2 + pn · R0 and
g5 + pn · R0 respectively. By the same process as the case H1

(p)(QU)−2 , we get that
g1 = x5 , g2 = y5 , g3 = z5 + 4n−1u5 , g5 = u5 , g6 = w5 + (−2)n−1z5 and

g4 = t5 + (−2)n−1x5 + (−8)n−1y5 − (−2)n−2z5 − 2(−8)n−2w5 + 4(−8)n−2u5.

Note that 2(−8)n−2w5 is zero and hence the result for H1
(p)(QU)2(4n−5) follows.

Next, H1
(p)(QU)2(4n−4)

∼= ĴU4/pn ·R0 , we can represent matrix for the calculation

of ĴU4/pn ·R0 as
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x4 y4 z4 t4 u4 w4

e 16n−1 4n−2 − 4 · 16n−2 l 16n−1 0
4n−1 0 0 0 0 0

0 2 · 16n−1 0 0 0 0
0 0 0 (−2)n−1 0 0
0 0 4n−1 0 0 0
0 0 2 · 4n−2 + (−2)n−2 0 0 (−2)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where e = 2 · 4n−2− 8 · 16n−2 and l = (−2)n−2 + 8 · 16n−2 . Now, we do row operations
by
r0 −→ [r∗0 = r0 + 2 · 4n−2r∗1 + 4n−2r4 + 4(−8)n−2r3] , r1 = r∗1 , r2 = r∗2 ,
r3 −→ [r′3 = r3 + 2r∗0 − r∗1 − r∗2] −→ [r∗3 = r′3 + (−2)n−1r∗5 + (−2)n−2r∗4]
r4 −→ [r∗4 = −(r4 − 2r′3)],
r5 −→ [r′5 = r5 − 2r∗0 + r∗1 + r∗2 − r3] −→ [r∗5 = r′5 + r∗4],
and then we obtain (Step ∗) and the required result as

x4 y4 z4 t4 u4 w4

c1 c2 c3 c4 c5 c6

r∗0| 2 · 4n−2 16n−1 4n−2 (−2)n−2 16n−1 0 |
r∗1| 4n−1 0 0 0 0 0 |
r∗2| 0 2 · 16n−1 0 0 0 0 |
r∗3| 0 0 0 0 2 · 16n−1 4n−1 |
r∗4| 0 0 0 0 4 · 16n−1 0 |
r∗5| 0 0 (−2)n−2 0 2 · 16n−1 (−2)n−1 |

∼=
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g1 g2 g3 g4 g5 g6

c′1 c′2 c′3 c′4 c′5 c′6
r∗0| 0 0 0 (−2)n−2 0 0 |
r∗1| 4n−1 0 0 0 0 0 |
r∗2| 0 2 · 16n−1 0 0 0 0 |
r∗3| 0 0 0 0 0 4n−1 |
r∗4| 0 0 0 0 4 · 16n−1 0 |
r∗5| 0 0 (−2)n−2 0 0 0 |,

where

c′1 = c1 + (−2)n−1c4

c′2 = c2 + 2(−8)n−1c4

c′3 = c3 − (−2)n−2c4

c′4 = c4

c′5 = c5 + (4(−8)n−1 − 4n)c3 + 2 · 16n−1c4 − 2 · 4n−1c6

c′6 = c6 + 2c3 + (−2)n−1c4.

Thus,

ĴU4/pn ·R0
∼= Z/2n−2 ⊕ Z/2n−2 ⊕ Z/4n−1 ⊕ Z/4n−1 ⊕ Z/2 · 16n−1 ⊕ Z/4 · 16n−1

generated by g3 + pn · R0 , g4 + pn · R0 , g1 + pn · R0 , g6 + pn · R0 , g2 + pn · R0 and
g5 + pn · R0 respectively. By the same process as the case H1

(p)(QU)−2 , we get that
g1 = x4 , g2 = y4 , g3 = z4 − 2w4 − 4(−8)n−1u4 ,g5 = u4 , g6 = w4 + 2 · 4n−1u4 ,

g4 = t4 + (−2)n−2(2x4 + z4)− 2(−8)n−1(y4 + u4),

and hence the result for H1
(p)(QU)2(4n−4) follows.

Next, H1
(p)(QU)2(4n−3)

∼= ĴU3/pn · R0 , we can represent matrix for the calcula-

tion of ĴU3/pn ·R0 as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x3 y3 z3 t3 u3 w3

4n−1 2 · 16n−1 2 · 4n−2 + 8 · 16n−2 24n−5 + (−2)n−2 16n−1 0
2 · 4n−1 0 0 0 0 0

0 4 · 16n−1 0 0 0 0
0 0 0 (−2)n−1 0 0
0 0 2 · 4n−1 0 0 0
0 0 4n−1 0 0 (−2)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Now, we do row operations by
r0 −→ [r∗0 = r0 − 4n−2r4 + 4(−8)n−2r3] , r1 = r∗1 , r2 = r∗2 ,
r3 −→ [r∗3 = r3 + 2r∗0 − r∗1 − r∗2]
r4 −→ [r′4 = r4 − 2r∗3] −→ [r∗4 = −r′4] ,
r5 −→ [r∗5 = r5 − 2r∗3 + r∗4]
and then we obtain (Step ∗) and the required result as
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x3 y3 z3 t3 u3 w3

c1 c2 c3 c4 c5 c6

r∗0| 4n−1 2 · 16n−1 2 · 4n−2 (−2)n−2 16n−1 0 |
r∗1| 2 · 4n−1 0 0 0 0 0 |
r∗2| 0 4 · 16n−1 0 0 0 0 |
r∗3| 0 0 4n−1 0 2 · 16n−1 0 |
r∗4| 0 0 0 0 4 · 16n−1 0 |
r∗5| 0 0 −4n−1 0 0 (−2)n−1 |

∼=

g1 g2 g3 g4 g5 g6

c′1 c′2 c′3 c′4 c′5 c′6
r∗0| 0 0 0 (−2)n−2 0 0 |
r∗1| 2 · 4n−1 0 0 0 0 0 |
r∗2| 0 4 · 16n−1 0 0 0 0 |
r∗3| 0 0 4n−1 0 0 0 |
r∗4| 0 0 0 0 4 · 16n−1 0 |
r∗5| 0 0 0 0 0 (−2)n−1 |,

where

c′1 = c1 − (−2)nc4

c′2 = c2 + 4(−8)n−1c4

c′3 = c3 + (−2)n−1c4 + (−2)n−1c6

c′4 = c4

c′5 = c5 − 8 · 4n−2c3 − 2(−8)n−1c6

c′6 = c6.

Thus,

ĴU3/pn ·R0
∼= Z/2n−2 ⊕ Z/2n−1 ⊕ Z/4n−1 ⊕ Z/2 · 4n−1 ⊕ Z/4 · 16n−1 ⊕ Z/4 · 16n−1

generated by g4 + pn · R0 , g6 + pn · R0 , g3 + pn · R0 , g1 + pn · R0 , g2 + pn · R0 and
g5 + pn · R0 respectively. By the same process as the case H1

(p)(QU)−2 , we get that
g1 = x3 , g2 = y3 , g3 = z3 + 2 · 4n−1u3 , g5 = u3 , g6 = w3 − (−2)n−1z3 ,

g4 = t3 + (−2)nx3 − 4(−8)n−1y3 − (−2)n−1z3 − 2(−8)n−1u3,

and hence the result for H1
(p)(QU)2(4n−3) follows.

Finally, H1
(p)(QU)2(4n−2)

∼= ĴU2/pn · R0 , we can represent matrix for the calcu-

lation of ĴU2/pn ·R0 as

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x2 y2 z2 t2 u2 w2

4n−1 − 2 · 16n−1 4 · 16n−1 h −(−2)n−1 −2 · 16n−1 4 · 16n−1

2 · 4n−1 0 0 0 0 0
0 8 · 16n−1 0 0 0 0
0 0 −(−2)n−1 2(−2)n−1 0 0
0 0 2 · 4n−1 0 0 0
0 0 4n−1 0 (−2)n−1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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where h = 2 · 4n−2 − 16n−1 − (−2)n−2 . Now, we do row operations by
r0 −→ [r∗0 = r0 + 4n−1r∗1 + 2 · 4n−2r4 − (−2)n−2r3 − (−8)n−1r′4] , r1 = r∗1 , r2 = r∗2 ,
r3 −→ [r∗3 = r3 + 2r∗0 − r∗1 − r∗2]
r4 −→ [r′4 = r4 − 2r5] −→ [r∗4 = r′4 + 2r∗5] ,
r5 −→ [r∗5 = r5 + 4(−2)n−2r∗0 + (−2)n−1(r∗1 + r∗2)− (1− (−2)n−1)r∗3] ,
and then we obtain (Step ∗) and the required result as;

x2 y2 z2 t2 u2 w2

c1 c2 c3 c4 c5 c6

r∗0| 4n−1 4 · 16n−1 −(−2)n−2 4n−1 − (−2)n−1 0 4 · 16n−1 |
r∗1| 2 · 4n−1 0 0 0 0 0 |
r∗2| 0 8 · 16n−1 0 0 0 0 |
r∗3| 0 0 0 2 · 4n−1 0 8 · 16n−1 |
r∗4| 0 0 0 0 0 −16n |
r∗5| 0 0 0 0 (−2)n−1 −8 · 16n−1 |

∼=

g1 g2 g3 g4 g5 g6

c′1 c′2 c′3 c′4 c′5 c′6
r∗0| 0 0 −(−2)n−2 0 0 0 |
r∗1| 2 · 4n−1 0 0 0 0 0 |
r∗2| 0 8 · 16n−1 0 0 0 0 |
r∗3| 0 0 0 2 · 4n−1 0 0 |
r∗4| 0 0 0 0 0 −16n |
r∗5| 0 0 0 0 (−2)n−1 0 |,

where

c′1 = c1 + (−2)nc3

c′2 = c2 + (−8)nc3

c′3 = c3

c′4 = c4 + (2 + (−2)n)c3

c′5 = c5

c′6 = c6 − 2 · 4nc3 − (−8)nc5 − 4nc4.

Thus,

ĴU2/pn ·R0
∼= Z/2n−2 ⊕ Z/2n−1 ⊕ Z/2 · 4n−1 ⊕ Z/2 · 4n−1 ⊕ Z/8 · 16n−1 ⊕ Z/16n

generated by g3 + pn · R0 , g5 + pn · R0 , g1 + pn · R0 , g4 + pn · R0 , g2 + pn · R0 and
g6 + pn · R0 respectively. By the same process as the case H1

(p)(QU)−2 , we get that
g1 = x2 , g2 = y2 , g4 = t2 + 4nw2 , g5 = u2 + (−8)nw2 , g6 = w2 ,

g3 = z2 − (−2)nx2 − (−8)ny2 − (−8)nw2 − (2 + (−2)n)t2,

and hence the result for H1
(p)(QU)2(4n−2) follows.
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Accordingly, we reach to the E1 1
2 -page of Greenlees spectral sequence as;
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H1
(p)(QU) H0

I (R)H2
I′(PC) · τHε≥3

I (R) ¾ δ

where[n] := cyclic group of order n , 2r := elementary abelian group of rank r .

Figure 3.3: The E1 1
2 -page of Greenlees spectral sequence for ku∗(BSD16)

§ 3.4 E2 -page

The purpose here is to find H1
I (R) and H2

I (R) which is equivalent to find ker(δ) and
coker(δ) respectively. Recall from lemma 3.2.2 that H2

I′(PC)·τ = (F2[b, d])∨·τ on which
b, d act freely and a acts as zero, where the degree of a, b, d are −2,−2,−4 respectively.
For v ∈ M , we write it image in M∨ by 1

v . Since H2
I′(PC) · τ is annihilated by 2, a

and δ is a module homomorphism over R , the restriction of δ to 2(H1
(p)(QU)) is a

zero map. Note that the structure of (H2
I′(PC) · τ)∨ is simpler than the undual one, so

instead of calculating R-module homomorphism δ : H1
(p)(QU) −→ H2

I′(PC)·τ directly,



CHAPTER 3. COMPLEX CONNECTIVE K-HOMOLOGY FOR SD16 91

we will do on the opposite side first, i.e. F2[b, d]-module homomorphism

(δ)∨ : (H2
I′(PC) · τ)∨ −→ [H1

(p)(QU)/2(H1
(p)(QU))]∨ .

Moreover, we note that ku∗ is a connective spectrum and then kut(BSD16) = 0
for all t < 0. It follows, by E1 1

2 -page, that δ−1 and δ0 are isomorphism and δ1 is
surjective. Thus

(δ−1)∨( bd
τ ) = 1

x̃−1
and (δ0)∨( b2d

τ ) = 1
x̃0

.

So as to identify all (δi)∨ , it suffices to find the structure of [H1
(p)(QU)/2(H1

(p)(QU))]∨

as a module over F2[b, d] , i.e. how do b and d act? To do this, we simply use the char-
acter table of ĴU ε for ε ∈ {2, 3, 4, 5} and lemma 3.3.4 in the last section. Here we also
record the action of v and a because this will be used in the calculation of R action
on ku∗(BSD16).

Generator Image of a Image of b Image of d where (k > 0)

x̃i

{
x̃i−1,
2x̃i−1,

{
x̃i−1,
2x̃i−1,

{
x̃i−2,
x̃i−2,

{
i is odd;
i is even.

ỹi 0 ỹi−1 0 for all i.
z̃i 0 0 z̃i−2 for all i.

t̃i





2t̃i−1 − z̃i−1,

−2t̃i−1,

2t̃i−1,

t̃i−1,





0,
0,
0,
0,





−w̃i−2,
ũi−2,
−w̃i−2,
z̃i−2 − w̃i−2,





i = 4k − 5;
i = 4k − 4;
i = 4k − 3;
i = 4k − 2.

ũi





ũi−1,

x̃i−1 + t̃i−1,

−t̃i−1,
2w̃i−1,





0,
x̃i−1,
0,
0,





ũi−2 + t̃i−2,
w̃i−2 − ũi−2,
ũi−2 + w̃i−2,

t̃i−2,





i = 4k − 5;
i = 4k − 4;
i = 4k − 3;
i = 4k − 2.

w̃i





−2ũi−1,
w̃i−1,
2w̃i−1 − z̃i−1,
x̃i−1 + w̃i−1,





0,
0,
0,
x̃i−1,





−t̃i−2,

z̃i−2 − t̃i−2,

−t̃i−2,

ũi−2 + t̃i−2,





i = 4k − 5;
i = 4k − 4;
i = 4k − 3;
i = 4k − 2.

Table 3.4 : The action of a, b and d on H1
(p)(QU).



CHAPTER 3. COMPLEX CONNECTIVE K-HOMOLOGY FOR SD16 92

Generator Image of v , k ≥ 0

x̃i

{
x̃i+1, if i is odd;
2x̃i+1, if i is even.

ỹi 2ỹi+1 for all i ≥ −1.

z̃i

{
z̃i+1, if i is odd;
2z̃i+1, if i is even.

t̃i





−t̃i+1, if i = 4k − 5;
t̃i+1, if i = 4k − 4;
2t̃i+1 − z̃i+1, if i = 4k − 3;
t̃i+1 + z̃i+1, if i = 4k − 2.

ũi





4ũi+1 + 2t̃i+1 − w̃i+1 − z̃i+1 − 2x̃i+1, if i = 4k − 5;
ũi+1 − z̃i+1 − x̃i+1, if i = 4k − 4;
4w̃i+1 − 2ũi+1 − z̃i+1 − t̃i+1 − 2x̃i+1, if i = 4k − 3;
−w̃i+1, if i = 4k − 2.

w̃i





2w̃i+1 − z̃i+1, if i = 4k − 5;
w̃i+1 + z̃i+1, if i = 4k − 4;
ũi+1, if i = 4k − 3;
ũi+1 + z̃i+1 + x̃i+1, if i = 4k − 2.

Table 3.5 : The action of v on H1
(p)(QU).

Note that we can view H1
(p)(QU)t/2H1

(p)(QU)t for each t , as a vector space over F2

and b, d as a linear transformation among them. Hereby, the module structure of
[H1

(p)(QU)/2H1
(p)(QU))]∨ := M∨ over F2[b, d] given by

b · [ 1
α̃i

] = [b∨( 1
α̃i

)] and d · [ 1
α̃i

] = [d∨( 1
α̃i

)]

for each [ 1
α̃i

] ∈ M∨ , can be done by Table 3.4 and the fact that;

Lemma 3.4.1. Let V and W be an finite vector space over a field k and T be a linear
transformation, T : V −→ W . If T is represented by a matrix A, then T∨ : W∨ −→
V ∨ is represented by transpose of matrix A.

Proof. Suppose {v1, ..., vn} and {w1, ..., wm} are an basis for V and W respectively.
The natural basis for V ∨ and W∨ are {v∗1, ..., v∗n} and {w∗1, ..., w∗n} , where v∗i (vj) = δij

and w∗l (wj) = δlj , Kronecker delta function. Let A be a matrix representing for T ,
i.e. T (vi) =

∑
Aijwj , and B for T∨ , i.e.T∨(w∗i ) =

∑
Bijv

∗
j . Hence, Bij = (Bi1v

∗
1 +

... + Binv∗n)(vj) = T∨(w∗i )(vj) = w∗i ◦ T (vj) = w∗i (Aj1w1 + ... + Ajmwm) = Aji .

Now, by setting α∗i = [ 1
α̃i

] for each α = x, y, z, t, u, w , we get that, as an abelian
group;

-(Mv)2 is generated by x∗−1 with x∗−1 = y∗−1 = z∗−1 , t∗−1 = x∗−1 − z∗−1 and
u∗−1 = w∗−1 = 0
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-(Mv)0 is generated by y∗0 with u∗0 = y∗0 and x∗0 = z∗0 = t∗0 = w∗0 = 0
-(Mv)−2 is generated by x∗1, y

∗
1, z

∗
1 with w∗1 = z∗1 , t∗1 = 0 and u∗1 + x∗1 + z∗1 = 0

-(Mv)−4 is generated by x∗2, y
∗
2, w

∗
2 with t∗2 = x∗2 and z∗2 = u∗2 = 0

-(Mv)−6 is generated by x∗3, y
∗
3, t

∗
3, u

∗
3 with w∗3 = 0 and t∗3 = z∗3

-(Mv)−8 is generated by x∗4, y
∗
4, u

∗
4, w

∗
4 with z∗4 = t∗4 = 0

-(Mv)−10 is generated by x∗5, y
∗
5, z

∗
5 , u

∗
5, w

∗
5 with t∗5 = 0

-(Mv)−12 is generated by x∗6, y
∗
6, t

∗
6, u

∗
6, w

∗
6 with z∗6 = 0 and

-(Mv)−2n is generated by x∗n, y∗n, z∗n, t∗n, u∗n, w∗n for n > 6.

Hence, by Table 3.4 and lemma 3.4.1, i.e. b · α∗ = b∨(α∗) and d · α∗ = d∨(α∗),
we obtain the structure of M∨ over F2[b, d] as;

Generator Image of b, (i > 0) Image of d

x∗k





y∗0, if k = −1;
w∗2i+1, if k = 2i;
u∗4i, if k = 4i− 1;
w∗4i−2, if k = 4i− 3.





x∗1 + z∗1 , if k = −1;
x∗3 + u∗3, if k = 1;
x∗4 + w∗4, if k = 2;
x∗i+2, if k = i > 2.

y∗k y∗k+1, ∀k 0,∀k

z∗k 0,∀k





u∗3 + t∗3, if k = 1;
z∗5 + w∗5, if k = 3;
z∗2i+1, if k = 2i− 1, i > 2;
z∗4i−2 + t∗4i−2, if k = 4i− 4, i > 2;
z∗4i + w∗4i, if k = 4i− 2, i > 2.

t∗k 0,∀k





u∗3 + t∗3, if k = 1;
w∗4i, if k = 4i− 2, i > 1;
w∗4i+1, if k = 4i− 1, i > 1;
u∗4i+2 + w∗4i+2, if k = 4i, i > 1;
u∗4i+3 + w∗4i+3, if k = 4i + 1, i > 1.

u∗k 0,∀k




u∗2i+3, if k = 2i + 1, i > 0;
w∗4i+2, if k = 4i, i > 0;
t∗4i+4 + u∗4i+4, if k = 4i + 2, i > 0.

w∗k 0,∀k





u∗4i, if k = 4i− 2, i > 0;
t∗4i+2, if k = 4i, i > 0;
t∗4i+3, if k = 4i + 1, i > 0;
t∗4i+5 + u∗4i+5, if k = 4i + 3, i > 0.

Table 3.6: The module structure of [H1
(p)(QU)/2H1

(p)(QU))]∨ over F2[b, d] .

Consequently, we have:

Lemma 3.4.2. The module map over F2[b, d], δ
∨ : [H2

I (TU)]∨ −→ [H1
I (QU)/2H1

I (QU)]∨

is given by δ
∨(q) = x̃∗−1 , δ

∨(dq) = x̃∗1 + z̃∗1 , δ
∨(d2q) = x̃∗3 + t̃∗3 and
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δ
∨(biq) = ỹ∗i−1 for all i ≥ 1

δ
∨(d2i+1q) = x̃∗4i+1 + w̃∗4i+1 + z̃∗4i+1 for all i ≥ 1

δ
∨(d2iq) = x̃∗4i−1 + t̃∗4i−1 + z̃∗4i−1 for all i ≥ 2

δ
∨(bd2i−1q) = w̃∗4i−2and δ

∨(bd2iq) = ũ∗4i for all i ≥ 1

and 0 if otherwise, where q = bd
τ .

Accordingly, by using lemma 3.4.1 applying on δ
∨ , we can find ker(δ) = H1

I (R)
and coker(δ) = H2

I (R) as:

Lemma 3.4.3. As an abelian group, H1
I (R)i = 0 for i < 2 or i is odd, and

• H1
I (R)2 = Z/2 < x̃1 + z̃1 > ⊕ Z/2 < 2ỹ1 > with w̃1 + z̃1 = 0 = t̃1 , and

ũ1 + (x̃1 + z̃1) + 2ỹ1 = 0.

• H1
I (R)4 = Z/2 < x̃2 > ⊕ Z/4 < 2ỹ2 > ⊕ Z/8 < 2w̃2 > with z̃2 = 8w̃2 ,

t̃2 + x̃2 = 4(w̃2 + ỹ2) and ũ2 + 8w̃2 = 0.

• H1
I (R)6 = Z/4 < x̃3 + t̃3 > ⊕ Z/8 < 2ỹ3 > ⊕ Z/16 < ũ3 > with w̃3 − 8ũ3 = 0

and t̃3 + z̃3 = 2x̃3 + 8ỹ3 + 4ũ3 .

• H1
I (R)8 = Z/4 < x̃4 > ⊕ Z/4 < w̃4− 8ũ4 > ⊕ Z/16 < 2ỹ4 > ⊕ Z/32 < 2ũ4 >

with z̃4 + 2w̃4 = 0 and t̃4 + 2x̃4 − 2w̃4 + 16ỹ4 + 16ũ4 = 0.

• H1
I (R)10 = Z/4 < z̃5 + w̃5 + 24ũ5 > ⊕ Z/8 < x̃5 + z̃5 + 8ũ5 > ⊕ Z/32 < 2ỹ5 >

⊕ Z/64 < ũ5 > with t̃5 + 4x̃5 + 32ỹ5 + 2z̃5 + 16ũ5 = 0.

• H1
I (R)12 = Z/2 < ũ6 + 64w̃6 > ⊕ Z/8 < x̃6 > ⊕ Z/8 < t̃6 + 16w̃6 > ⊕

Z/64 < 2ỹ6 > ⊕ Z/128 < 2w̃6 > with z̃6 + 4x̃6 + 64ỹ6 + 2t̃6 + 64w̃6 = 0.

• H1
I (R)14 = Z/2 < w̃7 + 4z̃7 > ⊕ Z/8 < η̃7 + z̃7 + 16ũ7 > ⊕ Z/16 < x̃7 +

z̃7 + 16ũ7 > ⊕ Z/128 < 2ỹ7 > ⊕ Z/256 < ũ7 > with 2η̃7 = 0 where η̃7 =
t̃7 + 4x̃7 + 2z̃7 + 32ỹ7 − 32ũ7 .

In general,

• for n ≥ 4, H1
I (R)2(4n−5) = Z/2n−3⊕Z/2n−2⊕Z/2 ·4n−2⊕Z/4n−1⊕Z/8 ·16n−2⊕

Z/16n−1 generated by 2[t̃4n−5 + (−2)n−1x̃4n−5− (−2)n−2z̃4n−5 + (−8)n−1ỹ4n−5−
4(−8)n−2ũ4n−5], w̃4n−5+(−2)n−1z̃4n−5, [z̃4n−5+(4)n−1ũ4n−5]+[t̃4n−5+(−2)n−1x̃4n−5−
(−2)n−2z̃4n−5+(−8)n−1ỹ4n−5+4(−8)n−2ũ4n−5], x̃4n−5+[z̃4n−5+(4)n−1ũ4n−5], 2ỹ4n−5

and ũ4n−5 respectively.

• for n ≥ 3, H1
I (R)2(4n−4) = Z/2n−2 ⊕ Z/2n−2 ⊕ Z/4n−1 ⊕ Z/4n−1 ⊕ Z/16n−1⊕

Z/2 · 16n−1 generated by t̃4n−4 + (−2)n−2(2x̃4n−4 + z̃4n−4) − 2(−8)n−1(ỹ4n−4 +
ũ4n−4), z̃4n−4− 2w̃4n−4− 4(−8)n−1ũ4n−4 , w̃4n−4 + 2 · 4n−1ũ4n−4 , x̃4n−4 , 2ỹ4n−4

and 2ũ4n−4 respectively.
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• for n ≥ 3, H1
I (R)2(4n−3) = Z/2n−2⊕Z/2n−2⊕Z/4n−1⊕Z/2 ·4n−1⊕Z/2 ·16n−1⊕

Z/4 · 16n−1 generated by t̃4n−3 + (−2)nx̃4n−3 − 4(−8)n−1ỹ4n−3 − (−2)n−1z̃4n−3 −
2(−8)n−1ũ4n−3 , 2[w̃4n−3 − (−2)n−1z̃4n−3], [z̃4n−3 + 2 · 4n−1ũ4n−3] + [w̃4n−3 −
(−2)n−1z̃4n−3], x̃4n−3 + [z̃4n−3 + 2 · 4n−1ũ4n−3], 2ỹ4n−3 and ũ4n−3 respectively.

• for n ≥ 3, H1
I (R)2(4n−2) = Z/2n−2⊕Z/2n−1⊕Z/2·4n−1⊕Z/2·4n−1⊕Z/4·16n−1⊕

Z/8 · 16n−1 generated by z̃4n−2 − (−2)nx̃4n−2 − (−8)nỹ4n−2 − (−8)nw̃4n−2 − (2 +
(−2)n)t̃4n−2 , ũ4n−2 +(−8)nw̃4n−2 , t̃4n−2 +4nw̃4n−2 , x̃4n−2 , 2ỹ4n−2 and 2w̃4n−2

respectively.

H2
I (R) = (F2[b, d])∨(ν), where ν = τ

b3d2 .

So far, we reach to the E2 -page shown as below.
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where[n] := cyclic group of order n , 2r := elementary abelian group of rank r .

Figure 3.7: The E2 -page of Greenlees spectral sequence for ku∗(BSD16).
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§ 3.5 ku∗(BSD16)

Note that ku∗(BG) = ku∗(pt)⊕ k̃u∗(BG). In our case, ku∗(pt) = Z[v] = H0
I (R). This

means that there is no non-zero differential detecting on E2 -page and hence E2 = E∞ .
Since this spectral sequence converges to ku∗(BSD16), there is a filtration

ku∗(BSD16) = F 0
∗ ⊇ F 1

∗ ⊇ F 2
∗ ⊇ 0,

which F 0
n/F 1

n
∼= E∞

0,n , F 1
n/F 2

n
∼= E∞

−1,n+1 and F 2
n
∼= E∞

−2,n+2 . It is clear that there is
no additive extension problem and thus ku∗(BSD16) can be read from E∞ = E2 -page
and the main required result follows as;

Theorem 3.5.1. As a module over ku∗(BSD16), ku∗(BSD16) = kueven(BSD16) ⊕
kuodd(BSD16) such that

(1) kueven(BSD16) = Z[v] < ρ > ⊕Σ2H
2
I (R) = Z[v] < ρ > ⊕Σ2F2[b, d])∨(ν), where

ρ = 16 · 1− 6va− 8vb + v2ab− 12v2d + 6v3ad + 2v4d2 and ν = τ
b3d2

Additively, k̃u2i(BSD16) =

{
0, if i = 0, 1 ;
(Z/2)L( i−1

2
), if i > 1 .

,

where L(r):= least integer which is greater than or equal to r .

(2) kuodd(BSD16) =
⊕

i≥1 ku2i−1(BSD16) =
⊕

i≥1 H1
I (R)2i

More precisely,

-ku1(BSD16) ∼= [2]⊕ [2] generated by x1, y1 , with z1 = t1 = w1 = u1 + x1 + y1 = 0.

-ku3(BSD16) ∼= [2] ⊕ [4] ⊕ [8] generated by x2, y2, w2 resp., with z2 = 4w2 , t2 =
2(w2 + y2) and u2 + 4w2 = 0.

-ku5(BSD16) ∼= [4] ⊕ [8] ⊕ [16] generated by x3, y3, u3 resp., with w3 = 8u3 , z3 =
2x3 + 4y3 + 4u3 and t3 = 0.

-ku7(BSD16) ∼= [4]⊕ [4]⊕ [16]⊕ [32] generated by w4, x4, y4, u4 resp., with z4 +2w4 +
8u4 = 0 and t4 + 2x4 + z4 + 8y4 + 8u4 = 0.

-ku9(BSD16) ∼= [4]⊕ [8]⊕ [32]⊕ [64] generated by z5, x5, y5, u5 resp., with w5 = 0 and
t5 + 4x5 − 2z5 + 16y5 − 24u5 = 0.

-ku11(BSD16) ∼= [2]⊕ [8]⊕ [8]⊕ [64]⊕ [128] generated by u6, t6, x6, y6, w6 resp., with
z6 + 4x6 + 32y6 + 2t6 + 16w6 = 0.

-ku13(BSD16) ∼= [2] ⊕ [8] ⊕ [16] ⊕ [128] ⊕ [256] generated by w7, z7, x7, y7, u7 , with
t7 = 0.
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In general,

ku8n−11(BSD16) ∼= [2n−3]⊕ [2n−2]⊕ [2 · 4n−2]⊕ [4n−1]⊕ [8 · 16n−2]⊕ [16n−1],
generated by t4n−5, w4n−5, z4n−5, x4n−5, y4n−5, u4n−5 resp., n > 3.

ku8n−9(BSD16) ∼= [2n−2]⊕ [2n−2]⊕ [4n−1]⊕ [4n−1]⊕ [16n−1]⊕ [2 · 16n−1],
generated by t4n−4, z4n−4, w4n−4, x4n−4, y4n−4, u4n−4 resp., n > 2.

ku8n−7(BSD16) ∼= [2n−2]⊕ [2n−2]⊕ [4n−1]⊕ [2 · 4n−1]⊕ [2 · 16n−1]⊕ [4 · 16n−1],
generated by t4n−3, w4n−3, z4n−3, x4n−3, y4n−3, u4n−3 resp., n > 2.

ku8n−5(BSD16) ∼= [2n−2]⊕ [2n−1]⊕ [2 · 4n−1]⊕ [2 · 4n−1]⊕ [4 · 16n−1]⊕ [8 · 16n−1],
generated by z4n−2, u4n−2, t4n−2, x4n−2, y4n−2, w4n−2 resp., n > 2,

where

x1 = x̃1 + z̃1, x2 = x̃2, x3 = x̃3 + t̃3, x4 = x̃4,
y1 = 2ỹ1, y2 = 2ỹ2, y3 = 2ỹ3, y4 = 2ỹ4,

z1 = 2z̃1, z2 = z̃2, z3 = z̃3 + t̃3, z4 = z̃4,

t1 = t̃1, t2 = t̃2, t3 = 2t̃3, t4 = t̃4,
u1 = ũ1, u2 = ũ2, u3 = ũ3, u4 = 2ũ4,
w1 = w̃1 + z̃1, w2 = 2w̃2, w3 = w̃3, w4 = w̃4 − 8ũ4,

x5 = x̃5 + z̃5 + 8ũ5,
y5 = 2ỹ5,
z5 = z̃5 + w̃5 + 24ũ5,

t5 = t̃5,
u5 = ũ5,
w5 = 2(w̃5 + 16ũ5),

x6 = x̃6,
y6 = 2ỹ6,
z6 = z̃6,

t6 = t̃6 + 16w̃6,
u6 = ũ6 + 64w̃6,
w6 = 2w̃6,

x7 = x̃7 + z̃7 + 16ũ7,
y7 = 2ỹ7,
z7 = z̃7 + 16ũ7 + η̃7,
t7 = 2η̃7,
u7 = ũ7,
w7 = w̃7 + 4z̃7,

such that η̃7 = t̃7 + 4x̃7 + 2z̃7 + 64ỹ7 − 32ũ7 and in general,

x4n−5 = x̃4n−5 + [z̃4n−5 + 4n−1ũ4n−5],
y4n−5 = 2ỹ4n−5,
z4n−5 = [z̃4n−5 + 4n−1ũ4n−5] + 1

2 t4n−5,

t4n−5 = 2[t̃4n−5 + (−2)n−1x̃4n−5 − (−2)n−2z̃4n−5 + (−8)n−1ỹ4n−5 + 4(−8)n−2ũ4n−5],
u4n−5 = ũ4n−5,
w4n−5 = w̃4n−5 + (−2)n−1z̃4n−5,

x4n−4 = x̃4n−4,
y4n−4 = 2ỹ4n−4,
z4n−4 = z̃4n−4 − 2w̃4n−4 − 4(−8)n−1ũ4n−4,

t4n−4 = t̃4n−4 + (−2)n−2(2x̃4n−4 + z̃4n−4)− 2(−8)n−1(ỹ4n−4 + ũ4n−4),
u4n−4 = 2ũ4n−4,
w4n−4 = w̃4n−4 + 2 · 4n−1ũ4n−4,
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x4n−3 = x̃4n−3 + [z̃4n−3 + 2 · 4n−1ũ4n−3],
y4n−3 = 2ỹ4n−3,
z4n−3 = [z̃4n−3 + 2 · 4n−1ũ4n−3] + [w̃4n−3 − (−2)n−1z̃4n−3],
t4n−3 = t̃4n−3 + (−2)nx̃4n−3 − 4(−8)n−1ỹ4n−3 − (−2)n−1z̃4n−3 − 2(−8)n−1ũ4n−3,
u4n−3 = ũ4n−3,
w4n−3 = 2[w̃4n−3 − (−2)n−1z̃4n−3],

x4n−2 = x̃4n−2

y4n−2 = 2ỹ4n−2

z4n−2 = z̃4n−2 − (−2)nx̃4n−2 − (−8)nỹ4n−2 − (−8)nw̃4n−2 − (2 + (−2)n)t̃4n−2

t4n−2 = t̃4n−2 + 4nw̃4n−2

u4n−2 = ũ4n−2 + (−8)nw̃4n−2

w4n−2 = 2w̃4n−2,

For the action, b, d act freely on k̃u2i(BSD16) whereas a acts as zero and the ku∗(BSD16)
action on kuodd(BSD16) can be read from Table 2.4 and Table 2.5 with the definition
above.

Proof. This is the immediate result from E∞ -page and lemma 3.4.3.

Next we investigate some relations of ku∗(BSD16) and ku∗(BG) for G = D8, Q8

and C8 in the section below.

§ 3.6 Relations with its maximal subgroups

In this section we aim to explicit the natural corestriction maps from ku∗(BSD16) to
ku∗(BG) for G = D8, Q8 and C8 .

3.6.1 ku∗(BSD16) and ku∗(BD8)

We first recollect the results of ku∗(BD8) from theorem 3.5.1 in [14] as;

Proposition 3.6.1. ([14]) As an R′ := ku∗(BD8) module, ku∗(BD8) = kuodd(BD8)⊕
kueven(BD8) where kueven(BD8) = Z[v] < ρ′ > ⊕k̃ueven(BD8) with ρ′ = 8 − 4va −
2v2d− v3bd and

1 k̃ueven(BD8) = Σ−2H2
I (R′) = Σ2P∨ , where P = F2[a, b, d]/(ab + b2). Additively,

k̃ueven(BD8) = (Z/2)i .

2 kuodd(BD8) = Σ−1H1
I (R′), with additive generators ai, bi, ci and di in ku2i−1(BD8)

for i > 0.

2.1 ku1(BD8) = (Z/2)2 =< a1 > ⊕ < b1 >, with d1 = a1 and c1 = 0.

2.2 ku3(BD8) = (Z/4)3 =< a2 > ⊕ < b2 > ⊕ < d2 > and c2 = 2a2 + 2d2.
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2.3 ku5(BD8) = (Z/8)3 =< a3 > ⊕ < b3 > ⊕ < d3 > and c3 = 4a3 + 4d3.

2.4 For i ≥ 4, ku2i−1(BD8) = (Z/2i)3 ⊕ A2i−1 =< ai > ⊕ < bi > ⊕ < di >
⊕A2i−1 , where

• A4n−1 = Z/2n−1 =< c2n + 2n(a2n + d2n) >,
• A4n+1 = Z/2n−1 =< c2n+1 + 2n+1(a2n+1 + d2n+1) >.

The R′ -module structure is given by

v a b d

ai 2ai+1 ai−1 bi−1 − 2ci−1 0
bi 2(bi+1 − εi+1ci+1) bi−1 − 2ci−1 bi−1 + 2εici−1 2ci−2

ci 2ci+1 0 (1 + εi)ci−1 ci−2

di 2di+1 − εici+1 0 ci−1 di−2

where ε2i = 0 and ε2i+1 = 1.

We can also explicit the generator name for k̃ueven(BD8) = Σ−2H2
I (R′) = Σ2P∨

by doing calculation on local cohomology of TU = F2[a, b, d]/(ab + b2) < ad > at
I = (a, b, d) =

√
(a, d). Indeed, H i

I(TU) = 0 if i 6= 2 and

H2
I (TU) = F2[

1
a
,
1
d
] <

τ ′b
ad

,
τ ′

ad
>,

where τ ′ = ad . After determining differentials δ : [H1
I (QU)]∗ −→ [H2

I (TU)]∗ , we get
that

H2
I (ku∗(BD8)) = F2[

1
a
,
1
d
] <

τ ′b
a2d2

,
τ ′

a2d2
> . (3.4)

Also, the explicit name for k̃ueven(BSD16) ∼= Σ2H
2
I (ku∗(BSD16)) is given by

H2
I (ku∗(BSD16)) = F2[

1
b
,
1
d
] <

τ

b3d2
>, (3.5)

where τ = b2d− abd .

The rest of this subsection is devoted to prove the following property.

Proposition 3.6.2. The natural corestriction map from ku∗(BSD16) to ku∗(BD8) is
as follows;

1 kueven(BSD16) is embedded in kueven(BD8), explicitly,

ρ 7→ 2ρ′ and τ
b3d2 7→ τ ′

a2d2 .

2 kuodd(BSD16) −→ kuodd(BD8) is given by

x1 7→ c1, y1 7→ a1, z1 7→ 2c1, t1 7→ 0, u1 7→ d1 − c1, w1 7→ c1,
x2 7→ 0, y2 7→ a2, z2 7→ 2c2, t2 7→ c2, u2 7→ 0, w2 7→ d2,
x3 7→ 0, y3 7→ a3, z3 7→ c3, t3 7→ 0, u3 7→ d3 − c3, w3 7→ 0,
x4 7→ 0, y4 7→ a4, z4 7→ 2c4, t4 7→ 0, u4 7→ d4, w4 7→ c4 − 4d4,
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x5 7→ 8d5 − 7c5,
y5 7→ a5,
z5 7→ 24d5 − 23c5,
t5 7→ 0,
u5 7→ d5 − c5,
w5 7→ 32d5 − 32c5,

x6 7→ 0,
y6 7→ a6,
z6 7→ 2c6,
t6 7→ c6 + 8d6,
u6 7→ 32d6,
w6 7→ d6,

x7 7→ 16d7 − 15c7,
y7 7→ a7,
z7 7→ 19c7 − 16d7 + 32a7,
t7 7→ 68c7 + 64a7 − 64d7,
u7 7→ d7 − c7,
w7 7→ 4c7.

In general,

for n ≥ 4,
x4n−5 7→ (1− 4n−1)c4n−5 + 4n−1d4n−5,
y4n−5 7→ a4n−5,
z4n−5 7→ [1− (−2)n−2 − 4n−1 − 4(−8)n−2]c4n−5 + [4n−1 + 4(−8)n−2]d4n−5

−4(−8)n−2a4n−5,
t4n−5 7→ [(−2)n−1 + (−8)n−1]c4n−5 − (−8)n−1d4n−5 + (−8)n−1a4n−5,
u4n−5 7→ d4n−5 − c4n−5,
w4n−5 7→ (−2)n−1c4n−5,

for n ≥ 3,
x4n−4 7→ 0,
y4n−4 7→ a4n−4,
z4n−4 7→ −2(−8)n−1d4n−4,
t4n−4 7→ −(−2)n−1c4n−4 − (−8)n−1d4n−4 − (−8)n−1a4n−4,
u4n−4 7→ d4n−4,
w4n−5 7→ c4n−4 + 4n−1d4n−4,

for n ≥ 3,
x4n−3 7→ (1− 2 · 4n−1)c4n−3 + 2 · 4n−1d4n−3,
y4n−3 7→ a4n−3,
z4n−3 7→ [1− (−2)n−1 − 2 · 4n−1]c4n−3 + 2 · 4n−1d4n−3,
t4n−3 7→ −2(−8)n−1a4n−3 − 2(−8)n−1d4n−3 + [2(−8)n−1 − (−2)n−1]c4n−3,
u4n−3 7→ d4n−3 − c4n−3,
w4n−3 7→ (−2)nc4n−3,

for n ≥ 3,
x4n−2 7→ 0,
y4n−2 7→ a4n−2,
z4n−2 7→ −(−2)nc4n−2 + 4(−8)n−1a4n−2 + 4(−8)n−1d4n−2,
t4n−2 7→ c4n−2 + 2 · 4n−1d4n−2,
u4n−2 7→ −4(−8)n−1d4n−2,
w4n−2 7→ d4n−2.

Proof. Since both ku∗(BSD16) and ku∗(BD8) are isomorphic to their E∞ -page and
we choose their elements to be the elements in E∞ -page, it is enough to consider
their relations at E∞ -stage, i.e. consider H i

I(ku∗(BSD16)) and H i
I(ku∗(BD18)) for

i = 0, 1, 2. Thus this proposition is an immediate result from Theorem 2.7.2 in the last
chapter. Precisely, to prove ρ 7→ 2ρ′ , we use the fact that a 7→ 0, b 7→ a, d 7→ d and the
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relation v2d2 = 4d− vbd in ku∗(BD8), i.e.

ρ = 16 · 1− 6va− 8vb + v2ab− 12v2d + 6v3ad + 2v4d2

7→ 16− 8va− 12v2d + 2v4d2

= 16− 8va− 12v2d + 2(4v2d− v3bd)
= 2[8− 4va− 2v2d− v3bd] = 2ρ′.

Also,

τ

b3d2
7→ a2d

a3d2
=

ad

a2d2
=

τ ′

a2d2
.

To prove the corestrictions in odd degree, we use the set of relations in QUD8

(lemma 3.5.2, [14]) which is {ad = 0, va2 = 2a, vb2 = 2b, vbd = b2−ab, v2d2 = 4d−vbd} ,
and definition of element’s in kuodd(BD8) ([14], page 73-74) which is;

a2n = 2a2

yn+1 b2n = 2b2

yn+1 c2n = vbd
yn+1 d2n = 2d

yn+1

a2n−1 = 2a3

yn+1 b2n−1 = 2b3

yn+1 c2n−1 = 2bd
yn+1 d2n−1 = vd2

yn+1 ,
(3.6)

where p = d2 + b4 − 2vbd2 7→ d2 + a4 − 2vad2 = (d + a2)2 = y2 (because 2vad2 = 0).

Indeed, we have (see section 2.3) the restriction of JU2, JU3, JU4 and JU5 of
QUSD16 to QUD8 as;

x2 7→ vad ≡ 0
y2 7→ a2 − vad ≡ 0
z2 7→ vad + 16

3 d− 1
3v4d3 ≡ 2vbd

t2 7→ vad + 4d− v2d2 ≡ vbd
u2 7→ vad ≡ 0
w2 7→ vad + d ≡ d

,

x3 7→ ad ≡ 0
y3 7→ a3 − 2ad ≡ a3

z3 7→ ad− 4
3vd2 + 3v3d3 − 2

3v5d4 ≡ 2bd
t3 7→ −2ad− 8

3vd2 + 2v3d3 − 1
3v5d4 ≡ 0

u3 7→ vd2 − im(x3)− im(z3) ≡ vd2 − 2bd
w3 7→ ad ≡ 0

x4 7→ vad2 ≡ 0
y4 7→ a4 − 2vad2 ≡ a4

z4 7→ vad2 + 16
3 d2 − 1

3v4d4 ≡ 2vbd2

t4 7→ vad2 ≡ 0
u4 7→ d2

w4 7→ 4
3d2 + v2d3 − 1

3v4d4 ≡ vbd2

,

x5 7→ ad2 ≡ 0
y5 7→ a5 − 4ad2 ≡ a5

z5 7→ −5ad2 − 4
3vd3 + 3v3d4 − 2

3v5d5

≡ 2bd2

t5 7→ −2ad2 ≡ 0
u5 7→ 2ad2 − 1

3vd3 − v3d4 + 1
3v5d5

≡ vd3 − 2bd2

w5 7→ 2ad2 + 8
3vd3 − 2v3d4 + 1

3v5d5 ≡ 0

Combining this facts with α̃4i−ε = αε

pi for i ≥ 1 and α̃4i−5 = α5

pi for i ≥ 2, where
ε = 2, 3, 4 and α ∈ {x, y, z, t, u, w} , we get that;

x̃4i−2 7→ 0
ỹ4i−2 7→ a2

y2i

z̃4i−2 7→ 2vbd
y2i

t̃4i−2 7→ vbd
y2i

ũ4i−2 7→ 0
w̃4i−2 7→ d

y2i

,

x̃4i−3 7→ 0
ỹ4i−3 7→ a3

y2i

z̃4i−3 7→ 2bd
y2i

t̃4i−3 7→ 0
ũ4i−3 7→ vd2

y2i − 2bd
y2i

w̃4i−3 7→ 0
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x̃4i−4 7→ 0
ỹ4i−4 7→ a4

y2i ≡ a2

y2i−1

z̃4i−4 7→ vbd2

y2i ≡ vbd
y2i−1

t̃4i−4 7→ 0
ũ4i−4 7→ d2

y2i ≡ d
y2i−1

w̃4i−4 7→ vbd2

y2i ≡ vbd
y2i−1

,

x̃4i−5 7→ 0
ỹ4i−5 7→ a5

y2i ≡ a3

y2i−1

z̃4i−5 7→ 2bd2

y2i ≡ 2bd
y2i−1

t̃4i−5 7→ 0
ũ4i−5 7→ vd3

y2i − 2bd2

y2i ≡ vd2

y2i−1 − 2bd
y2i−1

w̃4i−5 7→ 0.

Hence by (3.6) and definition in Theorem 3.5.1, we complete the proof.

3.6.2 ku∗(BSD16) and ku∗(BQ8)

We proceed this subsection as in the last subsection by firstly recalling ku∗(BQ8) from
[14], page 69-70 as;

Proposition 3.6.3. (cf.[14]) As a module over R′′ := ku∗(BQ8),

ku∗(BQ8) = Z[v] · ρ′′ ⊕ kuodd(BQ8),

where ρ′′ = v4q2 − 6v2q + 8 and kuodd(BQ8) = Σ−1H1
I (R′′), H1

I (R′′) = cok(R′′ −→
R′′[1q ]), which can be shown explicitly as;

• ku1(BQ8) = Z/2⊕ Z/2 =< e1 > ⊕ < f1 >, with g1 = h1 = 0.

• ku3(BQ8) = Z/2⊕ Z/2⊕ Z/8 =< e2 > ⊕ < f2 > ⊕ < g2 >, with h2 = 0.

• ku5(BQ8) = Z/4⊕ Z/4⊕ Z/8 =< e3 > ⊕ < f3 > ⊕ < g3 >, with h3 = 0.

In general for k ≥ 2,

• ku4k−1(BQ8) = Z/2k⊕Z/2k⊕Z/22k+1⊕Z/2k−1 =< e2k > ⊕ < f2k > ⊕ < g2k >
⊕ < h2k + (2k+1 − 4)g2k >,

• ku4k+1(BQ8) = Z/2k+1 ⊕ Z/2k+1 ⊕ Z/22k+1 ⊕ Z/2k−1 =< e2k+1 > ⊕ < f2k+1 >
⊕ < g2k+1 > ⊕ < h2k+1 + (2k+1 − 4)g2k+1 >,

where
e2k = a2

qk+1 , f2k = b2

qk+1 , g2k = q
qk+1 , h2k = v2q2

qk+1 ,

e2k+1 = a
qk+1 , f2k+1 = b

qk+1 , g2k+1 = vq
qk+1 , h2k+1 = v3q2

qk+1 .

The ku∗(BQ8) action is given by

v a b q

e2i 2e2i+1 2ei−1 κ2i e2i−2

e2i+1 e2i+2 e2i κ2i+1 e2i−1

f2i 2f2i+1 κ2i 2f2i−1 f2i−2

f2i+1 f2i+2 κ2i+1 f2i f2i−1

gi gi+1 ei−1 fi−1 gi−2

h2i h2i+1 2e2i−1 2f2i−1 h2i−2

g2i+1 6h2i+2 − 8g2i+2 2e2i 2f2i h2i−1
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where κ2i = 2e2i−1 + 2f2i−1 − 4g2i−1 + h2i−1 and κ2i+1 = e2i + f2i − 4g2i + h2i .

Note in this proposition that we have used relation

v2(n+1)qn+2 = (2 · 4n − 2n)v2q2 + (2n+2 − 4n+1)q

obtained by relation v4q3 = 6v2q2 − 8q and recurrence relation method.

Some relations between ku∗(BSD16) and ku∗(BQ8) are;

Proposition 3.6.4. The natural corestriction map from ku∗(BSD16) to ku∗(BQ8) is
as follows;

1 ρ 7→ 2ρ′′ .

2 kuodd(BSD16) −→ kuodd(BQ8) is given by

x1 7→ −f1, y1 7→ 0, z1 7→ 0, t1 7→ 0, u1 7→ 0, w1 7→ 0,
x2 7→ f2, y2 7→ 0, z2 7→ 0, t2 7→ −f2 + 4g2, u2 7→ 0, w2 7→ 2g2,

x3 7→ f3,
y3 7→ 0,
z3 7→ −2f3 + 4g3,
t3 7→ 0,
u3 7→ f3 − 3g3,
w3 7→ 0,

x4 7→ f4,
y4 7→ 0,
z4 7→ −2f4 + 8g4 − 2h4,
t4 7→ 0,
u4 7→ 2g4,
w4 7→ −f4 − (h4 + 4g4),

x5 7→ −f5 + 7h5 − 20g5,
y5 7→ 0,
z5 7→ −2f5 + 23h5 − 68g5,
t5 7→ 0,
u5 7→ f5 − 3g5 + h5,
w5 7→ 32(f5 − 3g5 + h5),

x6 7→ f6,
y6 7→ 0,
z6 7→ −2f6 + 8g6 − 2h6,
t6 7→ −f6 + 20g6 − h6,
u6 7→ 64g6,
w6 7→ 2g6,

x7 7→ 15f7 − 44g7 + 15h7,
y7 7→ 0,
z7 7→ −18f7 + 60g7 − 19h7,
t7 7→ −64f7 + 208g7 − 68h7,
u7 7→ f7 − 3g7 + h7,
w7 7→ −8f7 + 16g7 − 4h7.

In general,

for n ≥ 4,
x4n−5 7→ (4n−1 − 1)f4n−5 + (4− 3 · 4n−1)g4n−5 + (4n−1 − 1)h4n−5,
y4n−5 7→ 0,
z4n−5 7→ [4(−8)n−2 + 4n−1 − (−2)n−1 − 2]f4n−5 + [−12(−8)n−2 − 3 · 4n−1

−(−2)n + 4]g4n−5 + [4(−8)n−2 + 4n−1 + (−2)n−2 − 1]h4n−5,
t4n−5 7→ −(−8)n−1f4n−5 + [3(−8)n−1 − (−2)n+1]g4n−5

−[(−2)n−1 + (−8)n−1]h4n−5,
u4n−5 7→ f4n−5 − 3g4n−5 + h4n−5,
w4n−5 7→ (−2)nf4n−5 + (−2)n+1g4n−5 − (−2)n−1h4n−5,
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for n ≥ 3,
x4n−4 7→ f4n−4,
y4n−4 7→ 0,
z4n−4 7→ −4(−8)n−1g4n−4,
t4n−4 7→ [8(−2)n−2 − 2(−8)n−1]g4n−4 + (−2)n−1h4n−4,
u4n−4 7→ 2g4n−4,
w4n−5 7→ −f4n−4 + (2 · 4n−1 + 4)g4n−4 − h4n−4,

for n ≥ 3,
x4n−3 7→ (2 · 4n−1 − 1)f4n−3 + (4− 6 · 4n−1)g4n−3 + (2 · 4n−1 − 1)h4n−3,
y4n−3 7→ 0,
z4n−3 7→ (2 · 4n−1 − (−2)n − 2)f4n−3 + [−6 · 4n−1 − (−2)n+1 + 4]g4n−3

+(2 · 4n−1 + (−2)n−1 − 1)h4n−3,
t4n−3 7→ −2(−8)n−1f4n−3 + [6(−8)n−1 − (−2)n+1]g4n−3

+[−2(−8)n−1 + (−2)n−1]h4n−3,
u4n−3 7→ f4n−3 − 3g4n−3 + h4n−3,
w4n−3 7→ (−2)n+1f4n−3 + (−2)n+2g4n−3 − (−2)nh4n−3,

for n ≥ 3,
x4n−2 7→ f4n−2,
y4n−2 7→ 0,
z4n−2 7→ [−4(−8)n − (−2)n+2]g4n−2 + (−2)nh4n−2,
t4n−2 7→ −f4n−2 + (4 + 4n)g4n−2 − h4n−2,
u4n−2 7→ (−8)ng4n−2,
w4n−2 7→ 2g4n−2.

Proof. As in the proof of Proposition 3.6.2, we consider relations on local cohomology.
For ρ 7→ 2ρ′′ , we use the fact that a 7→ b, b 7→ b, d 7→ q and the set of relations in
ku∗(BQ8) (Theorem 2.4.6, [14]) which is {v4q3 = 6v2q2− 8q, va2 = 2a, vb2 = 2b, vaq =
a2, vbq = b2, ab = vaq + vbq + v2q2 − 4q} , i.e.

ρ = 16 · 1− 6va− 8vb + v2ab− 12v2d + 6v3ad + 2v4d2

7→ 16− 6vb− 8vb + v2b2 − 12v2q + 6v3bq + 2v4q2

= 16− 14vb + (2vb)− 12v2q + 6(2vb) + 2v4q2

= 2[8− 6v2q − v4q2] = 2ρ′′.

To prove the corestrictions in odd degree, we again use the set of relations in ku∗(BQ8)
and definition of element’s in kuodd(BQ8). Indeed, we have (see section 2.3) the re-
striction of JU2, JU3, JU4 and JU5 of QUSD16 to ku∗(BQ8) as;

x2 7→ vbq ≡ b2

y2 7→ b2 − vbq ≡ 0
z2 7→ −2vbq + 16

3 q − 1
3v4q3

≡ −2b2 + 8q − 2v2q2

t2 7→ −vbq + 4q − v2q2

≡ −b2 + 4q − v2q2

u2 7→ 0
w2 7→ q

,

x3 7→ bq
y3 7→ b3 − 2bq ≡ 0
z3 7→ −2bq − 4

3vq2 + 3v3q3 − 2
3v5q4

≡ −2bq + 4vq2 − v3q3

t3 7→ −8
3vq2 + 2v3q3 − 1

3v5q4 ≡ 0
u3 7→ v3q3 − 3vq2 + bq
w3 7→ 0
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x4 7→ vbq2 ≡ b2q
y4 7→ b4 − 2vbq2 ≡ 0
z4 7→ −2vbq2 + 16

3 q2 − 1
3v4q4

≡ −2vbq2 + 8q2 − 2v2q3

t4 7→ 0
u4 7→ q2

w4 7→ 4
3q2 + v2q3 − 1

3v4q4 − vbq2

≡ 4q2 − v2q3 − b2q

,

x5 7→ bq2

y5 7→ b5 − 4bq2 ≡ 0
z5 7→ −2bq2 − 4

3vq3 + 3v3q4 − 2
3v5q5

≡ −2bq2 + 4vq3 − v3q4

t5 7→ 0
u5 7→ bq2 − 1

3vq3 − v3q4 + 1
3v5q5

≡ bq2 − 3vq3 + v3q4

w5 7→ 8
3vq3 − 2v3q4 + 1

3v5q5 ≡ 0.

Also, we have p = d2 + b4 − 2vbd2 7→ q2 + b4 − 2vbq2 ≡ q2 . Combining these
facts with α̃4i−ε = αε

pi for i ≥ 1 and α̃4i−5 = α5

pi for i ≥ 2, where ε = 2, 3, 4 and
α ∈ {x, y, z, t, u, w} , we get that;

x̃4i−2 7→ b2

q2i

ỹ4i−2 7→ 0
z̃4i−2 7→ −2 b2

q2i + 8 q
q2i − 2v2q2

q2i

t̃4i−2 7→ − b2

q2i + 4 q
q2i − v2q2

q2i

ũ4i−2 7→ 0
w̃4i−2 7→ q

q2i

,

x̃4i−3 7→ b
q2i−1

ỹ4i−3 7→ 0
z̃4i−3 7→ −2 b

q2i−1 + 4 vq
q2i−1 − v3q2

q2i−1

t̃4i−3 7→ 0
ũ4i−3 7→ b

q2i−1 − 3 vq
q2i−1 + v3q2

q2i−1

w̃4i−3 7→ 0

x̃4i−4 7→ b2

q2i−1

ỹ4i−4 7→ 0
z̃4i−4 7→ −2 b2

q2i−1 + 8 q
q2i−1 − 2 v2q2

q2i−1

t̃4i−4 7→ 0
ũ4i−4 7→ q

q2i−1

w̃4i−4 7→ − b2

q2i−1 + 4 q
q2i−1 − v2q2

q2i−1

,

x̃4i−5 7→ b
q2i−2

ỹ4i−5 7→ 0
z̃4i−5 7→ −2 b

q2i−2 + 4 vq
q2i−2 − v3q2

q2i−2

t̃4i−5 7→ 0
ũ4i−5 7→ b

q2i−2 − 3 vq
q2i−2 + v3q2

q2i−2

w̃4i−5 7→ 0.

Hence by definition in Proposition 3.6.3 and definition in Theorem 3.5.1, we complete
the proof.

3.6.3 ku∗(BSD16) and ku∗(BC8)

To see the relation between ku∗(BSD16) and ku∗(BC8) as in the previous subsection,
we need to explicit ku∗(BC8). To do that, it is simple to use the same method as
ku∗(BSD16), i.e. by using Greenlees spectral sequence. It is enough to calculate kernel
and cokernel of the map R′′′ := ku∗(BC8) −→ R′′′[ 1y ] , where y = 1−α

v := c1 and
α8 = 1. However, to be simple in comparing with ku∗(BSD16), we intend to use
y′ := c1 + c3 − c4 , where

ci :=
1− αi

v

for i ≥ 1 with c8k+ε = cε (since c8 = 0). This is possible (i.e. multiplying by y′

gives an isomorphism R′′′
−2k

∼= // R′′′
−2k−2 for all k ≥ 1) by Lemma 3.4.1 in [14] and

changing basis.
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The kernel of the map is Z[v] < ρ′′′ > which is contributed to kueven(BC8),
where ρ′′′ = 1 + α + α2 + ... + α7 . For kuodd(BC8), we need to calculate the quotient
groups

[H1
(y′)(R

′′′)]2n = R′′′
−2/(y′)n+1R′′′

2n

for all n ≥ 0, where R′′′
−2 = Z∧2 < c1, c2, ..., c7 > , R′′′

0 = Z∧2 < α,α2, ..., α7 > ⊕Z and
R′′′

2n = vnR′′′
0 . It is not hard to see that the basis of (y′)n+1R′′′

2n is reduced to

{(y′)n+1vnα, (y′)n+1vnα2, ..., (y′)n+1vnα7},
and thus we do need to explicit (y′)kvk−1αj in term of ci ’s in ku2(BC8).

By direct calculation, we have some useful properties for our calculation which
are;

ciα
j = ci+j − cj

vcicj = ci + cj − ci+j

v[c3c5 − c4c5] = c1 + c3 − c4 = y′

y′αj = −cj + cj+1 + cj+3 − cj+4

vy′ck = c1 + c3 − c4 + ck − ck+1 − ck+3 + ck+4.

(3.7)

By using equation 4 and 5 in (3.7), we also have;

(y′)2vαj = −2cj + 2cj+1 − cj+2 + 2cj+3 − 4cj+4 + 2cj+5 − cj+6 + 2cj+7

(y′)3v3αj = −10cj + 7cj+1 − 6cj+2 + 7cj+3 − 10cj+4 + 9cj+5 − 6cj+6 + 9cj+7.

Repeating this process, observing the pattern and using inductive proof, we get that;

(y′)2kv2k−1αj = −(2 · 16k−1 + 4k−1 − (−2)k−1)cj + 2 · 16k−1cj+1

−(2 · 16k−1 − 4k−1)cj+2 + 2 · 16k−1cj+3

−(2 · 16k−1 + 4k−1 + (−2)k−1)cj+4 + 2 · 16k−1cj+5

−(2 · 16k−1 − 4k−1)cj+6 + 2 · 16k−1cj+7

(3.8)

(y′)2k+1v2kαj = −(8 · 16k−1 + 2 · 4k−1)cj + (8 · 16k−1 − (−2)k−1)cj+1

−(8 · 16k−1 − 2 · 4k−1)cj+2 + (8 · 16k−1 − (−2)k−1)cj+3

−(8 · 16k−1 + 2 · 4k−1)cj+4 + (8 · 16k−1 + (−2)k−1)cj+5

−(8 · 16k−1 − 2 · 4k−1)cj+6 + (8 · 16k−1 + (−2)k−1)cj+7.
(3.9)

The results of ku∗(BC8) follow as;

Proposition 3.6.5. With the same symbols as above, ku∗(BC8) = kueven(BC8) ⊕
kuodd(BC8), where kueven(BC8) = Z[v] < ρ′′′ > and, for k ≥ 1, kuodd(BC8) =
ku4k−3(BC8)⊕ ku4k−1(BC8) such that

¦ ku4k−3(BC8) = Z/2k−1 ⊕ Z/2k−1 ⊕ Z/2k−1 ⊕ Z/2k−1 ⊕ Z/2k ⊕ Z/4k ⊕ Z/2 · 4k,

generated by

1. c1,2k−1 + ((−2)k + 1)c3,2k−1 − c7,2k−1 + (4k − 1)c5,2k−1,
2. c2,2k−1 + (2 · 4k−1 − (−2)k)c1,2k−1 − ((−2)k + 1)c6,2k−1 + 3(−2)k−1c3,2k−1

−3(−2)k−1c7,2k−1 − (4k + (−2)k)c5,2k−1,
3. c4,2k−1 + c6,2k−1 − c2,2k−1 − (2 + 5(−2)k−1)c3,2k−1 + 5(−2)kc7,2k−1

+(4k + (−2)k)c5,2k−1,
4. c3,2k−1 − c7,2k−1 + (−2)kc5,2k−1,
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5. c7,2k−1 − (−2)kc5,2k−1,
6. c5,2k−1 + c6,2k−1

7. c5,2k−1,

respectively and

¦ ku4k−1(BC8) = Z/2k−1 ⊕ Z/2k−1 ⊕ Z/2k ⊕ Z/2k ⊕ Z/4k ⊕ Z/2 · 4k ⊕ Z/2 · 4k,

generated by c1,2k−c3,2k−c5,2k +(−2)k+1c6,2k +c7,2k , c2,2k−c4,2k−c6,2k +(−2)k+1c7,2k ,
c3,2k , c4,2k , c5,2k , c6,2k and c7,2k respectively, where

ci,2k−1 = ci

(y′)2k and ci,2k = ci

(y′)2k+1

for i = 1, 2, ..., 7.

Proof. It remains to do row and column operations on matrix obtained by (3.9) and
(3.8) of both odd case and even case. It is not hard to see that [H1

(y′)(R
′′′)]0 = 0.

For [H1
(y′)(R

′′′)]4k = R′′′
−2/(y′)2k+1R′′′

4k , we set rj := (y′)2k+1αj , for j = 1, 2, ..., 7,
and we do row operations by:

1. r1 −→ [r′1 = r1 − r7] −→ [r′′1 = r′1 − r′5 + r′3] −→ [r′′′1 = r′′1 + 2r′′′3 ] −→ [r4
1 =

r′′′1 + 2r6
5] −→ [r∗1 = 1

1+5·4k r4
1] ,

2. r2 −→ [r′2 = r2 − r6] −→ [r′′2 = r′2 + 2r′′6 + r′′5 ] −→ [r′′′2 = r′′2 + (2(−2)k − 1)r′′′3 ] −→
[r4

2 = r′′′2 + (−2 + 2(−2)k)r∗1] −→ [r∗2 = r4
2 + (2(−2)k − 1)r∗5] ,

3. r3 −→ [r′3 = r3 − r7] −→ [r′′3 = r′3 − r′′1 ] −→ [r′′′3 = r′′3 − r′′5 ] −→ [r4
3 = r′′′3 + r∗1] −→

[r∗3 = r4
3 + r∗5] ,

4. r4 −→ [r′4 = r4 − r6] −→ [r′′4 = r′4 − (−2)kr′′3 ] −→ [r′′′4 = r′′4 − r′2] −→ [r4
4 = r′′′4 +

2(−2)kr′′5 ] −→ [r5
4 = r4

4 − 2(−2)kr∗1] −→ [r6
4 = r5

4 − 2(−2)kr∗5] −→ [r∗4 = r6
4 + r∗2] ,

5. r5 −→ [r′5 = r5 − r7] −→ [r′′5 = r′5 − (−2)kr′2] −→ [r′′′5 = r′′5 + 2r′′7 ] −→ [r4
5 =

r′′′5 − 2(−8)kr4
4 − r′′′3 ] −→ [r5

5 = r4
5 + (4k − 2(−8)k)r′′′2 ] −→ [r6

5 = r5
5 + (2 · 4k−1 −

2(−8)k)r′′′1 ] −→ [r∗5 = r6
5 − (2 + 10 · 4k−1)r∗1] ,

6. r6 −→ [r′6 = r6 + r7] −→ [r′′6 = r′6 − (−2)k−1r′′2 + (−2)k−1r′′3 ] −→ [r′′′6 = r′′6 − r′′7 ] −→
[r4

6 = r′′′6 + 4kr∗1] −→ [r5
6 = r4

6 − 2 · 4k−1r∗2] −→ [r∗6 = r5
6 + (−2)kr∗3 + (−8)kr∗4] ,

7. r7 −→ [r′7 = r7] −→ [r′′7 = r′7 + 4(−8)k−1r′2 − 4(−8)k−1r′′3 − (−2)k−1r′′2 ] −→ [r′′′7 =
r′′7 − 4kr∗1] −→ [r4

7 = r′′′7 + 2 · 4k−1r∗2] −→ [r∗7 = r4
7 − (−8)kr∗4] .
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We now get;

c1 c2 c3 c4 c5 c6 c7

r∗1| 0 0 0 0 −4k 0 0 |
r∗2| 0 0 0 0 0 −2 · 4k 0 |
r∗3| 0 0 0 −(−2)k 0 0 0 |
r∗4| 0 0 −(−2)k 0 0 0 0 |
r∗5| 0 0 0 0 0 0 2 · 4k |
r∗6| −(−2)k−1 0 (−2)k−1 0 (−2)k−1 −4k −(−2)k−1 |
r∗7| 0 −(−2)k−1 0 (−2)k−1 0 (−2)k−1 −4k |.

After doing some column operations, the results for ku4k−1(BC8) follow.

For [H1
(y′)(R

′′′)]4k−2 = R′′′
−2/(y′)2kR′′′

4k−2 , we set rj := (y′)2kαj , for j = 1, 2, ..., 7,
and we do row operations by:

1. r1 −→ [r′1 = r1 − r5] −→ [r′′1 = r′1 + 2r′′5 ] −→ [r′′′1 = r′′1 + (2k − 1)r′3] −→ [r4
1 =

r′′′1 + 2(−2)kr′′′3 ] −→ [r5
1 = r4

1 + 2r6
2] −→ [r6

1 = r5
1 − 2r7

2] −→ [r∗1 = −1
1+3(−8)k r6

1] ,

2. r2 −→ [r′2 = r2 − r6] −→ [r′′2 = r′2 + 2r′′6 ] −→ [r′′′2 = r′′2 + (2(−2)k−1 − 4k)r′′5 ] −→
[r4

2 = r′′′2 + (1 + (−2)k − 2 · 4k−1 + 4(−8)k−1)r′3] −→ [r5
2 = r4

2 + (1 + (−2)k + 2 ·
4k−1)r′′′1 ] −→ [r6

2 = r5
2 − (−2)kr′′′3 ] −→ [r7

2 = r6
2 + ((−2)k−1 + 4(−8)k−1)r5

1] −→
[r∗2 = r7

2 + 12(−8)k−1r∗1] ,

3. r3 −→ [r′3 = r3 − r7] −→ [r′′3 = r′3 + 2r4
7] −→ [r′′′3 = r′′3 − (−2)k−1r′′′1 − r5

2] −→ [r4
3 =

r′′′3 + (4k + 1)r∗2] −→ [r∗3 = r4
3 + 4kr∗1] ,

4. r4 −→ [r′4 = r4 − r6] −→ [r′′4 = r′4 + 2r′6] −→ [r∗4 = r′′4 − r∗3] ,

5. r5 −→ [r′5 = r5 − r7] −→ [r′′5 = r′5 + (−2)k−1r′1] −→ [r∗5 = r′′5 + r∗3] ,

6. r6 −→ [r′6 = r6 + r7] −→ [r′′6 = r′6− (−2)k−1r′′4 ] −→ [r′′′6 = r′′6 − (−2)k−1r∗5] −→ [r4
6 =

r′′′6 − (−2)kr∗3] −→ [r∗6 = r4
6 − r∗7] ,

7. r7 −→ [r′7 = r7 − 2 · 4k−1r′6] −→ [r′′7 = r′7 − 2(−8)k−1r′2 + 2 · 4k−1r′′6 ] −→ [r′′′7 =
r′′7−4k−1r′′2 +2(−8)k−1r′1 +(−2)k−1r′′5 ] −→ [r4

7 = r′′′7 −(2 ·4k−1 +2(−8)k−1)r′3] −→
[r5

7 = r4
7 + 4k−1r∗1 + (−2)k−1r∗3] −→ [r6

7 = r5
7 + 2 · 4k−1r8

2 + 4k−1r∗1] −→ [r∗7 =
r6
7 − 2 · 4k−1r∗3 + 4k−1r∗1] .

We now get;
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c1 c2 c3 c4

r∗1| 0 0 0 0
r∗2| 0 0 0 0
r∗3| 0 0 0 0
r∗4| 2 · 4k−1 −(−2)k−1 (−2)k − 2 · 4k−1 (−2)k−1

r∗5| −(−2)k−1 0 (−2)k−1 + 2 · 4k−1 0
r∗6| 2 · 4k−1 − 2(−8)k−1 −(−2)k−1 0 0
r∗7| 0 0 −(−2)k−1 0

c5 c6 c7

2 · 4k 0 0 |
−4k −4k 0 |
4k 0 −(−2)k |

−2 · 4k−1 (−2)k−1 2 · 4k−1 |
(−2)k−1 0 (−2)k−1 + 2 · 4k−1 |

6(−8)k−1 − 2 · 4k−1 (−2)k−1 − 2 · 4k−1 0 |
2 · 4k−1 0 (−2)k−1 |.

After doing column operations by;

c′1 = c1 + (2(−2)k−1 − 2 · 4k−1)c2 − 2 · 4k−1c4,
c′2 = c2 + c4,
c′3 = (1 + 2(−2)k−1)c1 + [2(−2)k−1 + 2 · 4k−1 − 4(−8)k−1]c2

+c3 + [2 + 2(−2)k−1 − 2 · 4k−1 − 4(−8)k−1]c4,
c′4 = c4,
c′5 = c5 − c6 + (−2)kc7 + (8 · 16k−1 − 4(−8)k−1 + 2(−2)k−1 − 1)c2

+(1 + (−2)k − 4k)c1 + (2 · 4k − (−2)k + 4(−8)k−1 + 8 · 16k−1)c4,
c′6 = c6 + (1 + (−2)k)c2 + (−2)kc4,
c′7 = c7 + c3 + (2− (−2)k)c1 + (2− 4k − 4(−8)k−1)c4

+(2− 2k)(2(−2)k−1 − 2 · 4k−1)c2,

the results for ku4k−3(BC8) follow.

The corestriction of ku∗(BSD16) to ku∗(BC8) is not hard since we have that

a 7→ c4

b 7→ 0
d 7→ y′

v
1
pi 7→ v2i

(y′)2i ≡ v2i(y′)2i

(y′)4i ,

(3.10)

and also by (3.7), we have that

v(y′)2 = 2c1 − c2 + 2c3 − 4c4 + 2c5 − c2 + 2c7

v2(y′)3 = 7c1 − 6c2 + 7c3 − 10c4 + 9c5 − 6c2 + 9c7

v3(y′)4 = 32c1 − 28c2 + 32c3 − 34c4 + 32c5 − 28c2 + 32c7

v4(y′)5 = 130c1 − 120c2 + 130c3 − 136c4 + 126c5 − 120c2 + 126c7.

(3.11)
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By, again, direct calculation, observing the pattern and inductive proof, we have;

v2k(y′)2k = [2 · 16k−1 + 4k−1 − (−2)k−1]1 − 2 · 16k−1α
+[2 · 16k−1 − 4k−1]α2 − 2 · 16k−1α3

+[2 · 16k−1 + 4k−1 + (−2)k−1]α4 − 2 · 16k−1α5

+[2 · 16k−1 − 4k−1]α6 − 2 · 16k−1α7

(3.12)

and

v2k+1(y′)2k+1 = [8 · 16k−1 + 2 · 4k−1]1 − [8 · 16k−1 − (−2)k−1]α
+[8 · 16k−1 − 2 · 4k−1]α2 − [8 · 16k−1 − (−2)k−1]α3

+[8 · 16k−1 + 2 · 4k−1]α4 − [8 · 16k−1 + (−2)k−1]α5

+[8 · 16k−1 − 2 · 4k−1]α6 − [8 · 16k−1 + (−2)k−1]α7

(3.13)

Thus, if we set α∗ := vn(y′)n =
∑i=7

i=0 ai+1α
i for any n ≥ 0, then the action of α∗ on

cj ’s is given by

cjα
∗ =

7∑

i=0

ai+1cj+i − (
7∑

i=1

ai+1ci).

The corestriction in even degree is given by ρ 7→ 2ρ′′′ . Indeed,

ρ = 16 · 1− 6va− 8vb + v2ab− 12v2d + 6v3ad + 2v4d2

7→ 16− 6vc4 − 12v2(
y′

v
) + 6v3c4(

y′

v
) + 2v4(

y′

v
)2

= 16− 2v[c1 + c2 + c3 + c4 + c5 + c6 + c7], (by (3.11))
= 2[1 + α + α2 + ... + α7] = 2ρ′′′.

And in odd degree the corestriction can be read by definition in Theorem 3.5.1 and
the restrictions below (which the proof is simple by using the explicit generators of
JU2, JU3, JU4, JU5 and (3.10), (3.11), (3.12), (3.13) and α∗ action.)

Degree 8i− 5, i ≥ 1.

x̃4i−2 7→ 0
ỹ4i−2 7→ 0
z̃4i−2 7→ [−3vc4(y′

v ) + 16
3 (y′

v )− 1
3v4(y′

v )3](v2i(y′)2i

(y′)4i )

≡ [−3vc4y
′ + 16

3 y′ − 1
3v2(y′)3](v2i−1(y′)2i−1

(y′)4i−1 )
= [2(c2 − c4 + c6)] α∗

(y′)4i−1

= 4i[c2,4i−2 − c4,4i−2 + c6,4i−2]

t̃4i−2 7→ [−2vc4(y′
v ) + 4(y′

v )− v2(y′
v )2](v2i(y′)2i

(y′)4i )

≡ [−2vc4y
′ + 4y′ − v(y′)2](v2i−1(y′)2i−1

(y′)4i−1 )
= [−3c1 + c2 − 3c3 + 3c4 + c6)] α∗

(y′)4i−1

= (−6 · 16i−1 + (−2)i−1)c1,4i−2 + (6 · 16i−1 − 4i−1)c2,4i−2

+(−6 · 16i−1 + (−2)i−1)c3,4i−2 + (6 · 16i−1 + 4i−1 + 3(−2)i−1)c4,4i−2

+(−6 · 16i−1 − (−2)i−1)c5,4i−2 + (6 · 16i−1 − 4i−1)c6,4i−2

+(−6 · 16i−1 − (−2)i−1)c7,4i−2
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ũ4i−2 7→ [−vc4(y′
v )](v2i(y′)2i

(y′)4i )

≡ [−vc4y
′](v2i−1(y′)2i−1

(y′)4i−1 )
= [−(c1 + c3 − c5 − c7)] α∗

(y′)4i−1

= −(−2)ic4,4i−2

w̃4i−2 7→ [(y′
v )− vc4(y′

v )](v2i(y′)2i

(y′)4i )

≡ [y′ − vc4y
′](v2i−1(y′)2i−1

(y′)4i−1 )
= [c5 + c7 − c4] α∗

(y′)4i−1

= 4i−1c2,4i−2 − (3(−2)i−1 + 4i−1)c4,4i−2 + 4i−1c6,4i−2

Degree 8i− 7, i ≥ 1.

x̃4i−3 7→ 0
ỹ4i−3 7→ 0
z̃4i−3 7→ [−3c4(y′

v )− 4
3v(y′

v )2 + 3v3(y′
v )3 − 2

3v5(y′
v )4](v2i(y′)2i

(y′)4i )

≡ [−3vc4y
′ − 4

3v(y′)2 + 3v2(y′)3 − 2
3v3(y′)4](v2i−2(y′)2i−2

(y′)4i−2 )
= [−6c1 + 2c2 − 6c3 − 2c4 + 6c5 + 2c6 + 6c7] α∗

(y′)4i−2

= −6 · (−2)i−1[c1,4i−3 + c3,4i−3 − c5,4i−3] + 2 · 4i−1[c2,4i−3 − c4,4i−3 + c6,4i−3]

t̃4i−3 7→ [2c4(y′
v )− 8

3v(y′
v )2 + 2v3(y′

v )3 − 1
3v5(y′

v )4](v2i(y′)2i

(y′)4i )

≡ [2vc4y
′ − 8

3v(y′)2 + 2v2(y′)3 − 1
3v3(y′)4](v2i−2(y′)2i−2

(y′)4i−2 )
= [2c4] α∗

(y′)4i−2

= −(−2)ic4,4i−3

ũ4i−3 7→ [v(y′
v )2](v2i(y′)2i

(y′)4i )− im(x̃4i−3)− im(z̃4i−3)

≡ [v(y′)2](v2i−2(y′)2i−2

(y′)4i−2 )− im(z̃4i−3)
= [2c1 − c2 + 2c3 − 4c4 + 2c5 − c6 + 2c7] α∗

(y′)4i−2 − im(z̃4i−3)

=





8c1,4i−3 − 3c2,4i−3 + 8c3,4i−3 − 2c4,4i−3 − 4c5,4i−3 − 3c6,4i−3 − 4c7,4i−3,
if i = 1;
(28 · 16i−2 − 4i−2 − 11(−2)i−2)c1,4i−3 + (−28 · 16i−2 − 4i−1 − (−2)i−2)c2,4i−3

+(28 · 16i−2 + 4i−2 + 6(−2)i−1)c3,4i−3 + (−28 · 16i−2 + 3 · 4i−2 − (−2)i−1)c4,4i−3

+(28 · 16i−2 − 4i−2 + 11(−2)i−2)c5,4i−3 + (−28 · 16i−2 − 3 · 4i−2 + (−2)i−2)c6,4i−3

+(28 · 16i−2 + 4i−2 − 6(−2)i−1)c7,4i−3, if i ≥ 2.

w̃4i−3 7→ [−c4(y′
v )](v2i(y′)2i

(y′)4i )

≡ [−vc4y
′](v2i−2(y′)2i−2

(y′)4i−2 )
= [−(c1 + c3 − c5 − c7)] α∗

(y′)4i−2

= −(−2)i−1[c1,4i−3 + c3,4i−3 − c5,4i−3 − c7,4i−3]
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Degree 8i− 9, i ≥ 2.

x̃4i−4 7→ 0
ỹ4i−4 7→ 0
z̃4i−4 7→ [−3vc4(y′

v )2 + 16
3 (y′

v )2 − 1
3v4(y′

v )4](v2i(y′)2i

(y′)4i )

≡ [−3vc4y
′ + 16

3 y′ − 1
3v2(y′)3](v2i−2(y′)2i−2

(y′)4i−3 )
= [2c2 − 2c4 + 2c6] α∗

(y′)4i−3

= 2 · 4i−1[c2,4i−4 − c4,4i−4 + c6,4i−4]

t̃4i−4 7→ [−vc4(y′
v )2](v2i(y′)2i

(y′)4i )

≡ [−vc4y
′](v2i−2(y′)2i−2

(y′)4i−3 )
= [−(c1 + c3 − c5 − c7)] α∗

(y′)4i−3

= −(−2)i−1[c1,4i−4 + c3,4i−4 − c5,4i−4 − c7,4i−4]

ũ4i−4 7→ [(y′
v )2](v2i(y′)2i

(y′)4i )

≡ [y′](v2i−2(y′)2i−2

(y′)4i−3 )
= [c1 + c3 − c4] α∗

(y′)4i−3

=





c1,4i−4 + c3,4i−4 − c4,4i−4, if i = 1;
(8 · 16i−2 − (−2)i−2)c1,4i−4 + (−8 · 16i−2 + 2 · 4i−2)c2,4i−4

(8 · 16i−2 − (−2)i−2)c3,4i−4 + (−8 · 16i−2 − 2 · 4i−2)c4,4i−4

(8 · 16i−2 + (−2)i−2)c5,4i−4 + (−8 · 16i−2 + 2 · 4i−2)c6,4i−4

(8 · 16i−2 + (−2)i−2)c7,4i−4, if i ≥ 2.

w̃4i−4 7→ [−vc4(y′
v )2 + 4

3(y′
v )2 + v2(y′

v )3 − 1
3v4(y′

v )4](v2i(y′)2i

(y′)4i )

≡ [−vc4y
′ + 4

3y′ + v(y′)2 − 1
3v2(y′)3](v2i−2(y′)2i−2

(y′)4i−3 )
= [c2 − 2c4 + c6] α∗

(y′)4i−3

= 4i−1c2,4i−4 − (4i−1 + (−2)i−1)c4,4i−4 + 4i−1c6,4i−4]

Degree 8i− 11, i ≥ 2.

x̃4i−5 7→ 0
ỹ4i−5 7→ 0
z̃4i−5 7→ [−3c4(y′

v )2 − 4
3v(y′

v )3 + 3v3(y′
v )4 − 2

3v5(y′
v )5](v2i(y′)2i

(y′)4i )

≡ [−3c4 − 4
3y′ + 3v(y′)2 − 2

3v2(y′)3](v2i−2(y′)2i−2

(y′)4i−4 )
= [c2 − 7c4 + c6] α∗

(y′)4i−4

= 4i−1c2,4i−5 − (4i−1 + 6(−2)i−1)c4,4i−5 + 4i−1c6,4i−5]

t̃4i−5 7→ [c4(y′
v )2](v2i(y′)2i

(y′)4i )

≡ [c4](
v2i−2(y′)2i−2

(y′)4i−4 )
= [c4] α∗

(y′)4i−4

= (−2)i−1c4,4i−5
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ũ4i−5 7→ [−c4(y′
v )2 − 1

3v(y′
v )3 − v3(y′

v )4 + 1
3v5(y′

v )5](v2i(y′)2i

(y′)4i )

≡ [−c4 − 1
3y′ − v(y′)2 + 1

3v2(y′)3](v2i−2(y′)2i−2

(y′)4i−4 )
= [−c2 + c5 − c6 + c7] α∗

(y′)4i−4

=





(4 · 16i−2 − 4i−2 − (−2)i−2)c1,4i−5 + (−4 · 16i−2 − 4i−2 − (−2)i−2)c2,4i−5

(4 · 16i−2 + 4i−2 + (−2)i−2)c3,4i−5 + (−4 · 16i−2 − 4i−2)c4,4i−5

(4 · 16i−2 − 4i−2 + (−2)i−1)c5,4i−5 + (−4 · 16i−2 − 4i−2 + (−2)i−2)c6,4i−5

(4 · 16i−2 + 4i−2 − (−2)i−2)c7,4i−5

w̃4i−5 7→ [−2c4(y′
v )2 + 8

3v(y′
v )3 − 2v3(y′

v )4 + 1
3v5(y′

v )5](v2i(y′)2i

(y′)4i )

≡ [−2c4 + 8
3y′ − 2v(y′)2 + 1

3v2(y′)3](v2i−2(y′)2i−2

(y′)4i−4 )
= [c1 + c3 − c5 − c7] α∗

(y′)4i−4

= (−2)i−1[c1,4i−5 + c3,4i−5 − c5,4i−5 − c7,4i−5]

We finish this chapter here and next we will investigate real connective cohomol-
ogy of semidihedral group of order 16, ko∗(BSD16), by using η−Bockstein spectral
sequence.



Chapter 4

Real connective K-cohomology

In this chapter, we will calculate ko∗(BSD16) as a ring by using η -Bockstein spectral
sequence (η -BSS, for short) with input ku∗(BSD16) and output ko∗(BSD16), i.e.

E∗,∗
1 = ku∗(BG)[η̃] ⇒ ko∗(BG),

where η̃ has bidegree (1, 1) and differential dr : Es,t
r −→ Es+r,t−1

r , [13]. Since η3 = 0
in ko∗(pt), this spectral sequence collapses at E4 -page. Thus the main task is the
calculation of E2 -page, differential d2 and d3 which can be done by the fact that all
entries above the 2-line are all zero at E4− page together with, again, the help of
representation theory (Atiyah-Segal Theorem for the real case).

§ 4.1 Bockstein spectral sequence for ko∗(BG) and strategy

In theory (for the tools), the Bockstein spectral sequence that we use here originally
comes from the cofibre sequence

Σko
η // ko

c // ku
r // Σ2ko ,

where c is complexification and vr is realification, see more details about how to
construct this tools in [13]. In practices (for the using tools), roughly speaking, to
calculate ko∗(BG) for finite group G by η -BSS, we proceed by using the facts and
methods from [13];

1 For E1 -page, we can fill ku∗(BG) in the bottom row (i.e. the 0-line) degree by
degree and then copy them along the diagonal line via η̃ .

2 For E2 -page, we need to determine differential d1 (see details below) and put its
kernel on the 0-line and its homology on the 1-line and then copy the latter along
the diagonal line via η̃ .

3 η̃ is an infinite cycle and corresponds to η ∈ ko−1(BG).

4 Since η3 = 0 in ko∗(pt), dk = 0 for k ≥ 4 and hence E4 = E∞ .

114
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5 For d2 and d3 , we use the fact that all entries above the 2-line are zero and
representation theory.

6 At E∞−page, all entries in column i contribute to ko−i(BG).

For example, in the simple case,

E∗,∗
1 = ku∗(pt)[η̃] = Z[v, η̃] ⇒ ko∗(pt) = Z[η, α, β]/(2η, η3, ηα, α2 − 4β),

where β is the degree 8 Bott element, α is of degree 4, and η is the image of the Hopf
map in degree 1. Note that η c // 0 , α c // 2v2 and β

c // v4 in ku∗(pt) = Z[v]
(where c is complexification, a ring map), see details in lemma 2.2.11 in [13].

The strategy for E2 -page is firstly decomposing R := ku∗(BG) as v -torsion part
(TU ) and torsion free part (QU ), i.e. considering the short exact sequence

0 −→ TU −→ ku∗(BG) −→ QU −→ 0

which we can view as a short exact sequence of chain complex and thus, there is an
induced long exact sequence

0 −→ ZTU −→ ZR −→ ZQU −→δ

HTU −→ HR −→ HQU
δ // HTU −→ ...

(4.1)

So, instead of calculating the kernel and homology of d1 on ku∗(BG) directly, we will
do that on TU and QU part and after determining differentials δ ’s we will get ZR
and HR as we need. This is because we have a very useful tool from [13] which deal
with differentials in TU part and QU part as following.

Lemma 4.1.1. (cf.[13]) Denote: τ = complex conjugation, we have

1 d1 =
{

1 + τ, if d1 departs from QU4k+2;
1− τ, if d1 departs from QU4k.

2 d1 = Sq2 on TU .

3 ker(1 + τ : RU −→ RU) = (1 − τ)RU , RU = Z{ρi} where ρi := simple repre-
sentation.

Proof. To clarify the d1 differential of Bockstein spectral sequence on both parts,
QU ½ KU and TU ½ HF2 , we go back to the origin of the cofibre sequence by
starting with (exact couple);

(∗) S1 S0 C(η) S2

S3 S2 Σ2C(η)

-η - -

‖
PPPPPPPPq

d′1
-η -

where C(η) is a cone of Hopf map η : S3 ' S(C2) −→ CP 1 ' S2 with cofibre CP 2

given by (w, z) −→ [w, z] . From this diagram, we smash (∗) with KO, ko and HF2
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and using the fact from [2] (Wood’s theorem, page 206) that KO ∧ C(η) ' KU and
ko ∧ C(η) ' ku , [13] i.e.,
smash with KO ;

(∗) ∧S0 KO : ΣKO KO KU Σ2KO

Σ3KO Σ2KO Σ2KU ,

-η - -

‖
XXXXXXXXXXz

1 ∧ d′1
-η -

smash with ko ;

(∗) ∧S0 ko : Σko ko ku Σ2ko

Σ3ko Σ2ko Σ2ku

-η - -

‖
XXXXXXXXXXz

1 ∧ d′1
-η -

and smash with HF2 ;

(∗) ∧S0 HF2 : ΣHF2 HF2 HF2 ∧ C(η) Σ2HF2ko

Σ3HF2 Σ2HF2 HF2 ∧ Σ2C(η).

-η - -

‖
XXXXXXXXXXz

1 ∧ d′1
-η -

Moreover, by the associativity of the smash product, note that

(∗) ∧S0 HF2 ' (∗) ∧S0 ko ∧ko HF2.

That is smashing with HF2 factors through ko . This guarantees that differentials on
TU agree with differentials on HF2 . Now, we are ready to prove this lemma.

Proof of 1:
To do this, it is useful to consider diagram (from diagram smashed with KO );

Σ2KU

Σ2KOKU

Σ2KO Σ2KU

‖
-R

-
c

¡
¡

¡ª

v

XXXXXXXXXXz
d1 = 1 ∧ d′1

?
r

From this diagram, we see that d1 = c ◦ R and hence d1 : RU ∼= KU −→ Σ2KU ∼=
v−1RU (whenever we are dealing with classifying space for a group G , BG) is given
by

d1(x) = c ◦R(x)
= c(rv−1x)
= (1 + τ)(v−1x)
= v−1(1− τ)(x)
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since cr = 1 + τ and τ(v−1) = −v−1 , by lemma 2.1.5 and lemma 2.2.10 in [13].
Similarly, we can show that d1 : vkRU −→ vk−1RU is given by

d1(vkx) = vk−1(1 + (−1)k−1τ)(x)

for all x ∈ RU . Combining this facts with the isomorphism vkRU ∼= RU for each
integer k , the results follow. (Note: degree of v is 2 i.e., QU ⊆ RU concentrate in
even degree.)

Proof of 2:
This follows because η is detected by Sq2 in HF2 . Precisely, by diagram smashed with
HF2 above, we get

HF2 ∧ C(η) HF2 ∧ Σ2C(η)

Σ2F (C(η),HF2) Σ4F (C(η),HF2)
? ?

-

-

1 ∧ d′1

F (d′1, 1)

' 'SW SW

where SW is Spanier-Whitehead duality. After apply π2 = [S2,−] to this diagram, we
get

H2(C(η),F2) H0(C(η),F2)

H0(C(η),F2) H2(C(η),F2).
? ?

-

-

Sq2

Sq2

' 'SW SW

Here Sq2 6= 0 because C(η) ' CP 2 and H∗(CP 2
+;F2) = F2[x]/(x3) s.t. codegree of x

is 2 and hence Sq2(x) = x2 . We complete the proof of 2.

Remark 4.1.2. For Sn+k
f ′ // Sk −→ C(f ′), if there exist cohomology operation

α : Hk −→ Hn+k+1 s.t. α 6= 0 on H∗(C(f ′)), we say that α detects f ′ .

Proof of 3:
We can show in general for any space X which is finite Q-set where Q is a group of
order 2 that

ZX
1−τ // ZX

1+τ // ZX

is exact. This is true because X can be viewed as the disjoint union of Q fixed point
and non-fixed point one, i.e,

X = XQ tQ× Y = {x1, x2, ..., xm, y1, τy1, y2, τy2, ..., yn, τyn}.
So, ker(1 + τ) is free over Z on generator y1 − τy1, y2 − τy2, ..., yn − τyn which is
(1 − τ)ZX as required. In particular, X = {simple complex representations} then
ZX = RU and Q = Gp < τ > and hence ker(1 + τ : RU −→ RU) = (1− τ)RU .

§ 4.2 E2 -page for ko∗(BSD16)

The E1 -page can be filled in easily by copying both v -torsion part and torsion free
part along the diagonal by η̃ . To get E2 -page of ku∗(BSD16), we need to calculate



CHAPTER 4. REAL CONNECTIVE K-COHOMOLOGY 118

the differential d1 on both parts first and then calculate connecting homomorphism δ
in (4.1).

4.2.1 Bockstein spectral sequence for v -torsion part of ku∗(BSD16)

Recall that for v -torsion part in ku∗(BSD16),

TU = PC · τ , where PC = F2[b, d] and τ = b2d− abd .

Moreover, we note from theorem 2.6.1 that TU is embedded in H∗(BSD16;F2) as

a −→ x2 , b −→ y2 , d −→ P and τ −→ y4P − x2y2P = y4P .

Furthermore, d1 = Sq2 . The action on each element of TU is given by Sq2(a) =
Sq2(x2) = x4 = 0, Sq2(b) = Sq2(y2) = y4 = b2 and Sq2(d) = Sq2(P ) = u2 =
(x2 + y2)P = ad + bd and thus Sq2(τ) = b3d = bτ . Moreover, Sq1(d) = 0 and
Sq1(b) = 0 then Sq1(dj) = 0 and Sq1(bi) = 0 for all i, j . By using this information
and Cartan formula, we have

• Sq2(djτ) =
{

bdjτ, if j is even;
0, if j is odd.

• Sq2(biτ) =
{

bi+1τ, if i is even;
0, if i is odd.

• Sq2(bidjτ) =
{

bi+1djτ, if i + j is even;
0, if i + j is odd.

To find the kernel and image of d1 = Sq2 , we will show its action on TU in the
diagram below for small degree and then observe the pattern:
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Codegree Generator of TU

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

τ

bτ

b2τ

b3τ

b4τ

b5τ

b6τ

b7τ

b8τ

b9τ

b10τ

b11τ

b12τ

b13τ

b14τ

dτ

bdτ

b2dτ

b3dτ

b4dτ

b5dτ

b6dτ

b7dτ

b8dτ

b9dτ

b10dτ

b11dτ

b12dτ

d2τ

bd2τ

b2d2τ

b3d2τ

b4d2τ

b5d2τ

b6d2τ

b7d2τ

b8d2τ

b9d2τ

b10d2τ

d3τ

bd3τ

b2d3τ

b3d3τ

b4d3τ

b5d3τ

b6d3τ

b7d3τ

b8d3τ

d4τ

bd4τ

b2d4τ

b3d4τ

b4d4τ

b5d4τ

b6d4τ

d5τ

bd5τ

b2d5τ

b3d5τ

b4d5τ

d6τ

bd6τ

b2d6τ bd7τ

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

Diagram 4.1: The d1 = Sq2(:=↓) action on TU .

This diagram suggests that the kernel and homology of d1 = Sq2 are F2[b2, d2] <
bτ, dτ > and F2[d2] < dτ > respectively. This can be proved easily from the information
above and induction. We record these results as:

Lemma 4.2.1. With the same notation as above,

1) The Sq2−homology of TU is concentrated in degrees −12,−20,−28,−36, ... being
represented by F2[d2] < dτ >.

2) The module of Sq2−cycles of TU is F2[b2, d2] < bτ, dτ >.
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4.2.2 Bockstein spectral sequence for torsion free part of ku∗(BSD16)

Now we consider the QU part starting by filling in the zero-line of E1 1
2
-page, i.e. the

kernel of differential d1 ’s first and then follows by filling in the positive line, i.e., ho-
mology of d1 ’s.

Filling in the zero-line of QU -part:
For ker(1 − τ : QU4k −→ QU4k−2) := ZQU4k , we calculate them directly but for
ker(1+τ : QU4k+2 −→ QU4k) := ZQU4k+2 we will use lemma 4.1.1(3), i.e., ZQU4k+2 =
(1− τ)QU4k+4 .

By lemma 3.3.1 and the character table, it is not hard to see that

ZQU4k+2 = Z∧2 < θ >, (4.2)

for all k ≥ 0, where

θ = D − τ(D) = −4
3
A +

1
3
(A + B)D +

16
9

D − 4
3
D2 +

2
9
D3

= [0,−2c, 0, 2c, 0, 0].

For ZQU−(4k+2) , we calculate on JUk = QU−(2k) that is ZQU−(4k+2) = (1−τ)JU2(k+1)

and we obtain the results as

ZQU−(4k+2) = Z∧2 < θk >, (4.3)

where θk = 2L( k
2
)θ and L(r) := greatest integer which is less than or equal to r .

Again by lemma 3.3.1 and character table, for k ≥ 0,

ZQU4k = Z < v2k > ⊕(Z∧2 )5 < A, B, C,D2, D̃3 >, (4.4)

where C = (A + B)D − 2D and D̃3 = D3 + 2D . For negative degree,

ZQU−4 = (Z∧2 )5 < x2, y2, z2, t2, u2 − 2w2 >,
ZQU−8 = (Z∧2 )5 < x4, y4, z4, t4, u4 > .

In general,

ZQU−8k−4 = (Z∧2 )5 < x4k+2, y4k+2, z4k+2, t4k+2, u4k+2 − 2w4k+2 >,
ZQU−8k = (Z∧2 )5 < x4k, y4k, z4k, t4k, u4k > .

(4.5)

Filling in the positive line of QU -part:
We calculate H(QU) only one case which is H(QU)4k = ZQU4k/(1 + τ)QU4k+2 . For
H(QU)4k+2 , this is zero for all k , since H(QU)4k+2 = ZQU4k+2/(1 − τ)QU4k+4 and
ZQU4k+2 = (1− τ)QU4k+4 by lemma 4.1.1(3).
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In non-negative degree, as in chapter 3, we represent ZQU4k and (1 + τ)QU4k+2

as character table below; ZQU4k = Z⊕ (Z∧2 )5 generated by

〈
1 : [ 1 1 1 1 1 1 1 ]
A : [ 0 0 2 0 2 0 2 ]
B : [ 0 0 0 0 0 2 2 ]
C : [ 0 −8 0 −4 0 0 4 ]

D2 : [ 0 16 −2 4 −2 0 4 ]
D̃3 : [ 0 72 0 12 0 0 12 ]

〉

and (1 + τ)QU4k+2 = Z⊕ (Z∧2 )5 generated by

〈
(1 + τ)1 : [ 2 2 2 2 2 2 2 ]
(1 + τ)A : [ 0 0 4 0 4 0 4 ]
(1 + τ)B : [ 0 0 0 0 0 4 4 ]
(1 + τ)D : [ 0 8 0 4 0 0 4 ]

(1 + τ)D2 : [ 0 32 −4 8 −4 0 8 ]
(1 + τ)D3 : [ 0 128 0 16 0 0 16 ]

〉

for all k ≥ 0. Note that

(1+τ)(A+B)D = [0, 0, 0, 0, 0, 0, 16] = 4(1+τ)A− 16
3

(1+τ)D+4(1+τ)D2− 2
3
(1+τ)D3.

Now, the representing matrix for the calculation of H(QU)4k can be found as;

1 A B C D2 D̃3

(1 + τ)1 : | 2 0 0 0 0 0 |r1

(1 + τ)A : | 0 2 0 0 0 0 |r2

(1 + τ)B : | 0 0 2 0 0 0 |r3

(1 + τ)D : | 0 4
3 0 −1

3
4
3

−2
9 |r4

(1 + τ)D2 : | 0 0 0 0 2 0 |r5

(1 + τ)D3 : | 0 −8
3 0 2

3
−8
3

22
9 |r6

After several row operations, we obtain

1 A B C D2 D̃3

| 2 0 0 0 0 0 |r1

| 0 2 0 0 0 0 |r2

| 0 0 2 0 0 0 |r3

| 0 0 0 1 0 0 |r′4
| 0 0 0 0 2 0 |r5

| 0 0 0 0 0 2 |r′6 = r6 + 2r4

where r′4 = (−3)[r4 − 2
3r2 − 2

3r5 + 1
9r′6] . Hence, for k ≥ 0,

H(QU)4k = (Z/2)5 generated by [1], [A], [B], [D2], [D̃3] , (4.6)
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or more precisely by v2k, v2k+1a, v2k+1b, v2k+4d2, v2k+6d3 + 2v2k+2d .

In negative degree, for k ≥ 1, H(QU)−4k = ker(1 − τ : JU2k −→ JU2k+1)/(1 +
τ)JU2k−1 and this can be calculated by using the character table of JUi in Chapter 3.
The representing matrix for H(QU)−4 can be found as;

x2 y2 z2 t2 u∗2
(1 + τ)x1 : | 1 1 0 0 0 |r1

(1 + τ)y1 : | 2 0 0 0 0 |r2

(1 + τ)z1 : | 0 1 −1 2 0 |r3

(1 + τ)t1 : | 1 0 1 0 0 |r4

(1 + τ)u1 : | −1 0 −1 0 −2 |r5

(1 + τ)w1 : | −1 0 −1 0 −1 |r6

,

where u∗2 = u2 − 2w2 = [−8, 0,−4, 0, 0,−4].

Now, using row operations, we obtain

x2 y2 z2 t2 u∗2
| 1 1 0 0 0 |r1

| 2 0 0 0 0 |r2

| 0 0 0 2 0 |r3 + r4 − r1

| 1 0 1 0 0 |r4

| 0 0 0 0 0 |r5 + r4 + 2r′6
| 0 0 0 0 1 |r′6 = r6 − r5

,

By doing column operation, i.e., changing c1 to c1−c2−c3 and using the same method
in Chapter 3, it is not hard to see that

H(QU)−4 = (Z/2)2 generated by [x2] and [t2] , (4.7)

with [x2] = [y2] = [z2] and [u∗2] = 0, where [α2] = α2+(1+τ)JU1 for α ∈ {x, y, z, t, u∗} .
For H(QU)−8 = ker(τ : JU4 −→ JU5)/(1 + τ)JU3 , the representing matrix for

H(QU)−8 can be found as;

x4 y4 z4 t4 u4

(1 + τ)x3 : | 1 0 0 0 0 |r1

(1 + τ)y3 : | 0 1 0 0 0 |r2

(1 + τ)z3 : | 0 0 1 0 0 |r3

(1 + τ)t3 : | 0 0 0 2 0 |r4

(1 + τ)u3 : | −1 0 −1 0 2 |r5

(1 + τ)w3 : | 0 0 0 0 0 |r6

,

Again, row operations give
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x4 y4 z4 t4 u4

| 1 0 0 0 0 |r1

| 0 1 0 0 0 |r2

| 0 0 1 0 0 |r3

| 0 0 0 2 0 |r4

| 0 0 0 0 2 |r5 + r1 + r3

| 0 0 0 0 0 |r6

.

Hence,
H(QU)−8 = (Z/2)2 generated by [t4] and [u4] , (4.8)

with [x4] = [y4] = [z4] = 0 where [α4] = α4 + (1 + τ)JU3 for α ∈ {x, y, z, t, u} .
In general, for k ≥ 1, H(QU)−8k−4 = ker(1 − τ : JU4k+2 −→ JU4k+3)/(1 +

τ)JU4k+1 , the representing matrix for H(QU)−8k−4 can be found as;

x4k+2 y4k+2 z4k+2 t4k+2 u∗4k+2

(1 + τ)x4k+1 : | 1 0 0 0 0 |r1

(1 + τ)y4k+1 : | 0 1 0 0 0 |r2

(1 + τ)z4k+1 : | 0 0 1 0 0 |r3

(1 + τ)t4k+1 : | 0 0 −1 2 0 |r4

(1 + τ)u4k+1 : | −1 0 −1 0 −1 |r5

(1 + τ)w4k+1 : | 0 0 0 0 0 |r6

,

Hence, for k ≥ 1,

H(QU)−8k−4 = Z/2 generated by [t4k+2] , (4.9)

with [x4k+2] = [y4k+2] = [z4k+2] = [u∗4k+2] = 0 where u∗4k+2 = [−8 · 16k, 0,−4 ·
4k, 0, 0,−4 · 4k] = u4k+2 − 2w4k+2 and [α4k+2] = α4k+2 + (1 + τ)JU4k+1 for α ∈
{x, y, z, t, u∗} .

For k ≥ 2, H(QU)−8k = ker(1 − τ : JU4k −→ JU4k+1)/(1 + τ)JU4k−1 , the
representing matrix for H(QU)−8k can be found as;

x4k y4k z4k t4k u4k

(1 + τ)x4k−1 : | 1 0 0 0 0 |r1

(1 + τ)y4k−1 : | 0 1 0 0 0 |r2

(1 + τ)z4k−1 : | 0 0 1 0 0 |r3

(1 + τ)t4k−1 : | 0 0 0 2 0 |r4

(1 + τ)u4k−1 : | −1 0 −1 0 2 |r5

(1 + τ)w4k−1 : | 0 0 0 0 0 |r6

,

Hence, for k ≥ 2,

H(QU)−8k = (Z/2)2 generated by [t4k] and [u4k] , (4.10)

with [x4k] = [y4k] = [z4k] = 0 where [α4k] = α4k +(1+ τ)JU4k−1 for α ∈ {x, y, z, t, u} .
Summarizing from (4.2) to (4.10), we may display the E1 1

2
-page of the Bockstein

spectral sequence for ko∗(BSD16) as;
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Figure 4.2: E2(TU)
⊕

E2(QU) := E1 1
2
(ku∗(BSD16))-page

Z′ Z′ Z′ Z′ Z′ Z′ Z′Z′5 Z′5 Z′5 Z′5 Z′5 Z′6 Z′6 Z′6

←− t

s
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2
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B
B
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B

B
B

B
BM

d3∼= B
B

B
B

B
BM

d3∼=

B
B
BM

δ0
B

B
BM

δ1

Notation: Z′ = Z∧2 , Z′5 = (Z∧2 )5 , Z′6 = Z⊕ (Z∧2 )5 , 2 = Z/2
and 2’s come from TU part otherwise come from QU part.

To obtain the E2 -page we need to determine the connecting homomorphisms,
δ ’s, in (4.1). In order to do this, the representation theory will be very useful.

4.2.3 Representation theory and differentials

The aim of this subsection is to prove lemma 4.2.2 below.

Lemma 4.2.2. Connecting homomorphisms,δk ’s, are all zero in Bockstein spectral
sequence for ko∗(BSD16) and thus E1 1

2
(ku∗(BSD16))-page is E2(ku∗(BSD16))-page.

Furthermore the d3 ’s leaving the 8k + 4 column are as illustrated in Figure 4.2.

To prove this, the representation theory plays an important role. The details
of representation theory involved in the computation of real connective K-cohomlogy
theory can be found in [13] chapter 2. By lemma 1.2.2 and the character table of
SD16 , we see that 1, χ2, χ3, χ4 and σ2 are real representation whereas σ1 and σ3 are
not self-conjugate, i.e., complex representation. In fact, τσ1 = σ3 . Thus, we have;

RO(SD16) = Z{1, χ2, χ3, χ4, σ2, rσ1},
RU(SD16) = Z{c1, cχ2, cχ3, cχ4, σ1, σ3},
RSp(SD16) = Z{qc1, qcχ2, qcχ3, qcχ4, qσ1}.

(4.11)

By Atiyah-Segal theorem for the real case, we have;

Lemma 4.2.3. Periodic real K -theory KO∗(BSD16) is given by

• KO8k(BSD16) ∼= RO(SD16)∧J = (Z∧2 )6,

• KO8k−1(BSD16) ∼= RO(SD16)∧J/rRU(SD16)∧J = (Z/2)5,

• KO8k−2(BSD16) ∼= RU(SD16)∧J/c̃RSp(SD16)∧J = (Z/2)5 ⊕ Z∧2 ,

• KO8k−3(BSD16) = 0,



CHAPTER 4. REAL CONNECTIVE K-COHOMOLOGY 125

• KO8k−4(BSD16) ∼= RSp(SD16)∧J = (Z∧2 )6,

• KO8k−5(BSD16) ∼= RSp(SD16)∧J/qRU(SD16)∧J = 0,

• KO8k−6(BSD16) ∼= RU(SD16)∧J/cRO(SD16)∧J = Z∧2 ,

• KO8k−7(BSD16) = 0,

where k ∈ Z.

Proof. This is an immediate result from (4.11) and lemma 2.1.5 in [13].

Now, we are ready to prove lemma 4.2.2.

Proof. To get E2(ku∗(BSD16))-page, it suffices to calculate

δk : (ZQU)−10−8k −→ (HTU)−12−8k

for each k ≥ 0. Since all entries in E1 1
2
-page are contained in even degree, d2 = 0 and

then E2 -page is equal to E3 -page. Moreover, by using the fact that this spectral must
collapse at E4 -page together with lemma 4.2.3, d3 must be surjective and isomorphism
above the zero-line shown as in picture above. In particular, at degree −12 − 8k ,
d3 : (Z/2)2 −→ (Z/2)2 must be an isomorphism. If δk is not zero, then rank of domain
of d3 must less than 2 and this implies that d3 can not be isomorphism. Hence, δk

must be zero for all k .

There is one family of differentials still to be determined and we will deal with
this in the next section.

§ 4.3 E∞ -page and additive extension problems for ko∗(BSD16)

4.3.1 E∞ -page

So as to get E∞ -page, we need to determine differential departing from the zero-line
at degree 8k + 4 for all k , i.e.,

d3 : Z(TU)8k+4 ⊕ Z(QU)8k+4 −→ H(TU)8k ⊕H(QU)8k.

Here, ker d3 can be calculated by lemma below.

Lemma 4.3.1. Kernel of d3 : Z(TU)8k+4 ⊕ Z(QU)8k+4 −→ H(TU)8k ⊕ H(QU)8k)
illustrated in Figure 4.2 is

Sq2TU8k+6 ⊕ (1 + τ)QU8k+6

for all k .
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Proof. This follows from the commutative diagram below;

Z(TU)8k+4 ⊕ Z(QU)8k+4 H(TU)8k+4 ⊕H(QU)8k+4

H(TU)8k ⊕H(QU)8k η̃H(TU)8k ⊕ η̃H(QU)8k

-

-

η̃∗

∼=

6 6
d3 onto d′3 ∼=

where η̃∗ is a projective map modulo by Sq2TU8k+6 ⊕ (1 + τ)QU8k+6 .

Now, it is easy to see that, by this lemma and character table in Chapter 3, for
k ≥ 0,

E0,8k+4∞ = ker(d3) = Z⊕ (Z∧2 )5 generated by 2v2k and 2A, 2B, D, 2D2, D3 , (4.12)

which are the image of 1 and A,B, D,D2, D3 under 1+τ , respectively. Here, v2k, A, B, D2

have the same character table as before and the character table for D and D3 is rep-
resented by [8, 0, 4, 0, 0, 4] and [128, 0, 16, 0, 0, 16] respectively.

For negative k , E0,8k+4∞ = Sq2TU8k+6 ⊕ (1 + τ)JU−(4k+3) and again these can
be read from Sq2 action in diagram of subsection 4.2.1 and JUi in Chapter 3 easily.
Explicitly,

• E0,−4∞ = (1 + τ)JU1 = (Z∧2 )5 generated by {x2 + y2, 2x2, y2 + z2 + 2t2, x2 +
z2,−x2 − z2 − u∗2} .

• E0,−12∞ = (1 + τ)JU5 = (Z∧2 )5 generated by {x6, y6, z6, 2t6 − z6,−x6 − z6 − u∗6} .

• For k ≤ −3, E0,8k+4∞ = Sq2TU8k+6 ⊕ (1 + τ)JU4(k−1)+1 = (Z/2)|k|−2 ⊕ (Z∧2 )5

generated by {b4(|k|−2−i)d2i+1τ | i = 0, 1, 2, ..., |k| − 3} and {x4(k−1)+2, y4(k−1)+2,

z4(k−1)+2, 2t4(k−1)+2 − z4(k−1)+2,−x4(k−1)+2 − z4(k−1)+2 − u∗4(k−1)+2} .

Now, we reach the E∞ -page.

Figure 4.3: E∞(ku∗(BSD16))-page

Z′ Z′ Z′ Z′ Z′ Z′ Z′Z′5 Z′5 Z′5 Z′5 Z′5 Z′6 Z′6 Z′6 0

1

2

3

s

←− t-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8

25

25

22

22

22

22

2 22 2 2 2

Notation: Z′ = Z∧2 , Z′5 = (Z∧2 )5 , Z′6 = Z⊕ (Z∧2 )5 , 2 = Z/2
and 2’s come from TU part otherwise come from QU part.
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4.3.2 additive extension problems

The next task is the extension problems. Here, each column of the E∗,−t∞ -page, con-
tributes to each kot(BSD16). Precisely, kot(BSD16) has filtration

kot(BSD16) = F t
0 ⊇ F t

1 ⊇ F t
2 ⊇ F t

3 = 0

with F t
0/F t

1 = E0,−t∞ , F t
1/F t

2 = E1,−t∞ and F t
2 = E2,−t∞ . In this case, the only extension

problems come from codegree 8k − 2 for k ≥ 2. For codegree 8k + 6, for k ≤ 0, these
short exact sequences split because they end with Z∧2 .

We claim that all this short exact sequences split. We consider firstly on codegree
14 which has two candidates, i.e, split one and non-split one. Precisely, additively,
ko14(BSD16) can be Z∧2 ⊕ (Z/2)3 or Z∧2 ⊕Z/4⊕Z/2 but can not be Z∧2 ⊕Z/8, because
it reduces to two η̃ -multiple generators at E∞ . If we can show that this codegree
split, then all exact sequences will also split. This is because;

Lemma 4.3.2. If the short exact sequence for ko14(BSD16) splits, then the short exact
sequence for ko8k−2(BSD16), for each k ≥ 3, split.

Proof. It is clear that η -multiple elements have order 2. So, it remains to identify
elements in ko8k−2(BSD16) which reduce to elements in TU at E∞ . By assump-
tion, b3τ in ko14(BSD16) reducing to b3τ in E∞ has order 2. So, 2r · b3τ = 0 for
all r ∈ ko∗(BSD16). Recall that, for k ≥ 1, ko8k(BSD16) ∼= (Z∧2 )5 generated by
{x4k, y4k, z4k, t4k, u4k} which y4k and u4k send to (b4k, B4k − 2(A + B)D2k + 2AD2k)
and (d2k, D2k) in H∗(BSD16;Z/2) ⊕ R(SD16)∧J respectively. Furthermore, note that
yk

4 = y4k and d
k
4 = d4k .

Let {b4k−5−4id2iτ | i = 0, 1, 2, ..., k − 3} ⊆ ko8k−2(BSD16) reduce to (same
notation!) {b4k−5−4id2iτ | i = 0, 1, 2, ..., k − 3} ⊆ E

0,−(8k−2)
∞ . It is clear that

b4k−5−4id2iτ = (b4)k−2−i(d2)i(b3τ)

for all k , which are the multiples of element b3τ in ko14(BSD16) and (b4)k−2−i(d2)i =
r ∈ ko8(k−1)(BSD16). Therefore, they are annihilated by 2 and then we complete the
proof.

4.3.3 η - Bockstein spectral sequence for mod 2 coefficient

In order to solve the extension problems, we will investigate η - Bockstein spectral
sequence for mod 2 coefficient. That is,

E∗,∗
1 = ku∗(BG;Z/2)[η̃] ⇒ ko∗(BG;Z/2)

which comes from the cofibre sequence

Σko/2
η // ko/2 c // ku/2 r // Σ2ko/2 .
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For calculation of mod 2 coefficient connective K -theory, we use universal coeffi-
cient theorem for spectrum E with finite generated coefficient G (Proposition 6.6(ii)
page 201, [2]), i.e.,

0 −→ En(X)⊗G −→ (EG)n(X) −→ TorZ1 (En+1(X), G) −→ 0.

In this case G = Z/2 and E = ku and thus this short exact sequence splits. That is
E∗,∗

1 -page can be calculated by

kun(BG;Z/2) ∼= kun(BG)⊗ Z/2⊕ TorZ1 (kun+1(BG),Z/2).

Note that the identity TorZ1 (Za ⊕ (Z/2)b,Z/2) = (Z/2)b is often used in our case.
Also, the part TorZ1 (kun+1(BG),Z/2) for G = SD16 comes from v -torsion part TU .
Thus, all differentials from integral η -Bockstein spectral sequence are applied for mod
2 coefficient by dividing by 2. Precisely, in torsion free parts,

d1 =
{

(1− τ)mod2, if it departs from QU4n ⊗ Z/2;
(1 + τ)mod2, if it departs from QU4n+2 ⊗ Z/2,

and in v torsion parts are the same, i.e., d1 = Sq2 . Note that, however, in lemma
4.1.1 (3) can not applied for mod 2 coefficient case. That is ker(1 + τ : RU ⊗ Z/2 −→
RU ⊗ Z/2) can not compute from (1− τ)RU ⊗ Z/2.

So, to find E2 -page is similar to the integral case but we need to consider kernel
and image of differential carefully. Here is the E1 -page of η -Bockstein spectral sequence
mod 2 coefficient:

Figure 4.4: The E1 -page of η -Bockstein spectral sequence for mod 2
coefficient
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Notation: 2’s come from TU otherwise come from QU ⊗ Z/2.

To find the E2 -page around codegree 14, we calculate Z(QUn⊗Z/2), H(QUn⊗
Z/2), Z(TUn⊗Z/2) and H(TUn⊗Z/2) for n ≥ −20. This is, again, a direct calculation
from character table of QUi in chapter 3 and Sq2 action of TUi in lemma 4.2.1 which
we record as; (with the same notation in the integral case)
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• For n ≥ 0, Z(QU4n ⊗ Z/2) = (Z/2)6 generated by {v2n, A,B,C, D2, D̃3} .
• For n ≥ 0, Z(QU4n+2⊗Z/2) = (Z/2)6 generated by {v2n, A, B, (A+B)D,D2, D3} .
• For n ≥ 0, H(QU4n ⊗ Z/2) = (Z/2)5 generated by {[v2n+1], [A], [B], [D2], [D̃3]} .
• For n ≥ 0, H(QU4n+2⊗Z/2) = (Z/2)5 generated by {[v2n+1], [A], [B], [D2], [D3]} .
• Z(QU−2 ⊗ Z/2) = (Z/2)3 generated by {y1, t1 + x1 + z1, u1 + t1} .
• H(QU−2 ⊗ Z/2) = (Z/2)2 generated by {[y1], [t1 + x1 + z1]} .
• For n ≥ 1, Z(QU−4n ⊗ Z/2) = (Z/2)5 generated by {x2n, y2n, z2n, t2n, u2n} .
• For n = 1, 2, 4, H(QU−4n ⊗ Z/2) = (Z/2)2 generated by {[t2n], [u2n]} .
• For n ≥ 1, H(QU−4−8n ⊗ Z/2) = Z/2 generated by {[t4n+2]} .
• For n ≥ 0, Z(QU−6−8n ⊗ Z/2) = (Z/2)3 generated by {t4n+3, w4n+3, u4n+3 +

x4n+3 + z4n+3} .
• For n ≥ 0, H(QU−6−8n⊗Z/2) = (Z/2)2 generated by {[u4n+3], [u4n+3 +x4n+3 +

z4n+3]} .
• For n ≥ 1, Z(QU−2−8n ⊗ Z/2) = (Z/2)2 generated by {t4n+1 + z4n+1, w4n+1} .
• For n ≥ 1, H(QU−2−8n ⊗ Z/2) = Z/2 generated by {[t4n+1 + z4n+1]} .

For Z(TUi) and H(TUi) part, this can be read easily from diagram 4.1.

So as to identify differentials, knowing some results, i.e., kon(BSD16;Z/2) for
some n , is fruitful. This is possible because all codegree n with n 6= 8k + 6 (k > 0),
E∞ of integral η -Bockstein spectral sequence split (see Figure 4.3). Thus we can
identify kon(BSD16) for all codegree n with n 6= 8k + 6 (k > 0). Also, since most of
non-zero generators in ko∗(BSD16) are in even degree, most of the additive structure
of ko∗(BSD16;Z/2) can be identified explicitly. After direct calculation, we record all
information to find the E∞ -page of η -Bockstein spectral sequence for mod 2 coefficient
as;

Figure 4.5: The E1 1
2
-page of η -Bockstein spectral sequence for mod 2

coefficient
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Notation: 2’s come from TU otherwise come from QU ⊗ Z/2. On the Target
(ko∗(BSD16;Z/2)) line, 2̂k means merely the order.

Description of Figure 4.5

It is obvious that there is no connecting homomorphism and d2 departing from de-
gree which is greater than -8. Since ko−2(BSD16;Z/2) =(Z/2)11 and ko−3(BSD16;Z/2)
=(Z/2)5 and dk ’s commute with η multiple elements, there is no non-zero differentials
departing from diagonal starting from degree 0. Then d3 departing from degree 4 and
6 in the zero-line are rank 5 and above the zero-line are isomorphisms. From a similar
description, there is no non-zero differentials departing from degree -8,-6 and hence d3

departing from degree -4 and -2 in the zero-line are rank 2 and above the zero-line are
isomorphisms.

Now, we are reaching to the main point in codegree 14. Again, ko15(BSD16;Z/2) =
(Z/2)3 and dk ’s commute with η multiple elements, no-non zero differentials depart-
ing from diagonal starting from codegree 16. Then d3 departing from diagonal line
in codegree 12 must have rank 2. Consequently, connecting homomorphisms δ0 must
be 0. The dimension of ko11(BSD16;Z/2) being 0 give us the rank 1 differential d2

from codegree 11. Also there is no non-zero differtial depart from degree 14 since there
must be at least rank one differential depart from diagonal line in degree 18. Hence all
differentials illustrated in Figure 4.5 are determined. At this point, we have proved;

Lemma 4.3.3. The dimension of ko13(BSD16;Z/2) is 3 and the order of
ko14(BSD16;Z/2) is 26 .

Now, we are going to determine the extension problem for ko14(BSD16). To do
this, we use mod 2 Bockstein spectral sequence with input ko∗(BG;Z/2) and output
ko∗(BG). We deal with this in the next subsection.

4.3.4 mod 2 - Bockstein spectral sequence for real connective k theory

The cofibre sequence ko
2 // ko −→ ko/2 give us the mod 2 - Bockstein spectral

sequence:
Et

1 = kot(BG;Z/2)[2̃] ⇒ kot(BG).

Since degree of 2̃ is (1, 0), E1 -page can be done similarly as the case of η but all entries
in the above zero line are obtained by copying along the column (not diagonal).

In this case, we need to investigate in codegree 14 but the input in codegree 11 is
zero and all differentials get back by one degree, so it is enough to consider on codegree
11 to codegree 16. By lemma 4.3.3, we have the E1 -page of mod2 - Bockstein spectral
sequence as;
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Figure 4.6: The E1 -page of mod2-Bockstein spectral sequence for
ko∗(BSD16)
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Notation: ↖ ’s are differential d1 and 2’s are kernel of d1 and
2 → 2 → 2 → 2 → ... := Z∧2 .

The precise structure of ko14(BSD16;Z/2), ko15(BSD16;Z/2) and all differen-
tials illustrated in Figure 4.6 above are obtained clearly from the target ko∗(BSD16).
Thus, ko14(BSD16) = Z∧2 ⊕ (Z/2)3 .

Corollary 4.3.4. Additive extension problems of η -Bockstein spectral sequence for
ko∗(BSD16) are trivial.

Proof. This follows by the result above and lemma 4.3.2.

§ 4.4 Results for ko∗(BSD16)

Since there is no additive extensions in the Bockstein spectral sequence for ko∗(BSD16),
the results (additively) can be read from E∞ -page directly, i.e., kot(BSD16) ∼= E∗,−t∞ .

Theorem 4.4.1. Additively,

kon(BSD16) n ≤ 0, (k ≥ 0)
0 −8k − 7 ≤ −7
Z∧2 −8k − 6 ≤ −6
0 −8k − 5 ≤ −5

Z⊕ (Z∧2 )5 −8k − 4 ≤ −4
0 −8k − 3 ≤ −3

Z∧2 ⊕ (Z/2)5 −8k − 2 ≤ −2
(Z/2)5 −8k − 1 ≤ −1
Z⊕ (Z∧2 )5 −8k ≤ 0

,

kon(BSD16) n ≥ 0
0 8k − 7 ≥ 1

Z∧2 ⊕ (Z/2)k−1 8k − 6 ≥ 2
0 8k − 5 ≥ 3

(Z∧2 )5 4
(Z∧2 )5 ⊕ (Z/2)k−2 8k − 4 ≥ 12

0 8k − 3 ≥ 5
Z∧2 ⊕ (Z/2)2 ⊕ (Z/2)k−1 8k − 2 ≥ 6

(Z/2)2 8k − 1 ≥ 7
(Z∧2 )5 ⊕ (Z/2)k−1 8k ≥ 8

.
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Generator description:
Let A = cRU

1 (χ3), B = cRU
1 (χ2) and D = cRU

2 (σ1) which has character table as
[0, 2, 0, 2, 0, 2], [0, 0, 0, 0, 2, 2] and [4,−c, 2, c, 0, 2] respectively, where c =

√
2i. More

over, let C = (A+B)D−2D and D̃3 = D3 +2D . Then the generator of kon(BSD16)
for each codegree n are;

Non - positive codegree:, for k ≥ 0;

• ko−8k−6(BSD16) ∼= Z∧2 < βkv3θ >, where

θ = D − τ(D) = −4
3
A +

1
3
(A + B)D +

16
9

D − 4
3
D2 +

2
9
D3

= [0,−2c, 0, 2c, 0, 0]

• ko−8k−4(BSD16) ∼= Z < βk2v2 > ⊕ (Z∧2 )5 < 2A, 2B, D, 2D2, D3 > v2βk , where

D =
4
3
A− 1

3
C +

4
3
D2 − 2

9
D̃3

= [8, 0, 4, 0, 0, 4]

D3 = −8
3
A +

2
3
C − 8

3
D2 +

22
9

D̃3

= [128, 0, 16, 0, 0, 16]

• ko−8k−2(BSD16) ∼= Z∧2 < βkvθ > ⊕ (Z/2)5 < η̃2[1], η̃2[A], η̃2[B], η̃2[D2], η̃2[D̃3] >
βk .

• ko−8k−1(BSD16) ∼= (Z/2)5 < η̃[1], η̃[A], η̃[B], η̃[D2], η̃[D̃3] > βk .

• ko−8k(BSD16) ∼= Z < βk > ⊕ (Z∧2 )5 < A, B, C,D2, D̃3 > βk .

Notation: [x] = x + (1 + τ)(QU8k+2) s.t. x ∈ ker(1 − τ : QU8k −→ QU8k−2) and
η̃[1] ´ η ∈ ko−1(pt), 2 · v2 ´ α ∈ ko−4(pt) and β ∈ ko−8(pt).

Positive codegree:

• ko2(BSD16) ∼= Z∧2 < θ1 >, where θ1 = v−1θ = u1 − t1 − 2w1 .

• ko8k−6(BSD16) ∼= Z∧2 < θk > ⊕ (Z/2)k−1 < b4(k−1−i)−3d2iτ |i = 0, 1, ..., k − 2 >,
where k ≥ 2, τ = b2d− abd and

θk = ±(1− τ)(w4(k−1)) = ±2k−1v−kθ1.

Here, w4(k−1) ∈ JU4(k−1) and other notations below which does not state are
elements of JU ′

is in Chapter 3.
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• ko4(BSD16) ∼= (Z∧2 )5 < x2 + y2, 2x2, 2t2 − z2 + y2, z2 + x2,−u∗2 − x2 − z2 > s.t.

x2 + y2 = (1 + τ)(x1) = [0, 0, 0, 0, 4, 4]
2x2 = (1 + τ)(y1) = [0, 0, 0, 0, 0, 8]

2t2 − z2 + y2 = (1 + τ)(z1) = [0, 4, 0, 4, 4, 0]
z2 + x2 = (1 + τ)(t1) = [0, 0, 8, 0, 0, 4]

−u∗2 − x2 − z2 = (1 + τ)(w1) = [8, 0,−4, 0, 0, 0],

where u∗2 = u2 − 2w2 = [−8, 0,−4, 0, 0,−4].

• ko8k−4(BSD16) ∼= (Z∧2 )5 < x4k−2, y4k−2, z4k−2, 2t4k−2− z4k−2,−u∗4k−2−x4k−2−
z4k−2 > ⊕ (Z/2)k−2 < b4(k−2−i)d2i+1τ |i = 0, 1, ..., k − 3 > s.t.

x4k−2 = (1 + τ)(x4k−3) = [0, 0, 0, 0, 0, 4 · 4k−1]
y4k−2 = (1 + τ)(y4k−3) = [0, 0, 0, 0, 4 · 16k−1, 0]
z4k−2 = (1 + τ)(z4k−3) = [0, 0, 8 · 4k−1, 0, 0, 0]

2t4k−2 − z4k−2 = (1 + τ)(t4k−3) = [0, 4(−2)k−1, 0, 4(−2)k−1, 0, 0]
−u∗4k−2 − x4k−2 − z4k−2 = (1 + τ)(u4k−3) = [8 · 16k−1, 0,−4 · 4k−1, 0, 0, 0],

where k ≥ 2, b0dτ = 0 and u∗4k−2 = u4k−2 − 2w4k−2 = [−8 · 16k−1, 0,−4 ·
4k−1, 0,−4 · 4k−1].

• ko8k−2(BSD16) ∼= Z∧2 < θ′k > ⊕ (Z/2)2 < η̃2[t4k], η̃2[u4k] > ⊕ (Z/2)k−1 <
b4(k−1−i)−1d2iτ |i = 0, 1, ..., k − 2 >, where k ≥ 1,

θ′1 = (1− τ)(w2) = w3

θ′k = ±(1− τ)(w4k−2) = ±2k−1α′1.

and [ω4k] = ω4k + im(1 + τ : JU4k−1 −→ JU4k) for ω = t, u.

• ko8k−1(BSD16) ∼= (Z/2)2 < η̃[t4k], η̃[u4k] >, where k ≥ 1.

• ko8k(BSD16) ∼= (Z∧2 )5 < x4k, y4k, z4k, t4k, u4k > ⊕ (Z/2)k−1 < b4(k−1−i)−2d2i+1τ |i =
0, 1, ..., k − 2 >, where k ≥ 1.

Proof. This is an immediate results from E∞ -page, corollary 4.3.4, and character table.

Corollary 4.4.2. The natural homomorphism β∗ : ko∗(BSD16) −→ H∗(BSD16;F2)⊕
KO∗(BSD16) is a monomorphism.

Proof. Since ku∗(BSD16) ½ H∗(BSD16;F2)⊕KU∗(BSD16) and E∞ -page has been
calculated with the initial input ku∗(BSD16) s.t. there is no η -multiples coming from
TU part and also ko∗(BSD16) is additively isomorphic to E∞ -page, the result follows.

We investigate the restriction map ko∗(BSD16) −→ ko∗(BG) for each maximal
subgroup G of SD16 in the next section.
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§ 4.5 Relations with its maximal subgroups

As the previous chapter, we will make explicit only the map at E∞ -stage because all of
ko∗(BG), for G = SD16, D8, Q8, C8 , are isomorphic to their E∞ -page. So, the job is
giving the generator names for ko∗(BG)’s and relating them by using Theorem 2.7.2.

4.5.1 ko∗(BSD16) and ko∗(BD8)

By the results of ko∗(BD8) in [13], we can explicit the generator name for ko∗(BD8)
by using the same symbols as in Theorem 2.5.5 in [14] (and in Proposition 2.7.1) as
follows.

Proposition 4.5.1. (cf. [13]) The additive structure of real connective K-cohomology
of D8 is isomorphically given by;

n kon(BD8) Generators

−8k − 7 0 0
−8k − 6 0 0
−8k − 5 0 0
−8k − 4 Z⊕ (Z∧2 )4 βk2v2, βk2v2{va, vb, v2d, v2d2}
−8k − 3 0 0
−8k − 2 [2]5 βkη̃2{[1], [va], [vb], [v2d], [v2d2]}
−8k − 1 [2]5 βkη̃{[1], [va], [vb], [v2d], [v2d2]}
−8k Z⊕ (Z∧2 )4 βk, βk{va, vb, v2d, v2d2}
1 0 0
2 0 0
3 0 0
4 (Z∧2 )4 a2, b2, 2d, 2d2

5 0 0
6 [2]⊕ 2 η̃2[d2], ad

7 [2] η̃[d2]
8 (Z∧2 )4 a4, b4, d2, dd2

8k − 7 ≥ 9 0 0
8k − 6 ≥ 10 22k−2 a4(k−i−1)−1d2i+1, a4(k−i−1)−2bd2i+1, i = 0, ..., k − 2
8k − 5 ≥ 11 0 0

a4k−2, b4k−2, 2d2k−1, d2k−2d2,
8k − 4 ≥ 12 (Z∧2 )4 ⊕ 22k−3 a4(k−i−1)−2d2i+2, i = 0, ..., k − 2

a4(k−i−2)−3bd2i+4, i = 0, ..., k − 3
8k − 3 ≥ 13 0 0
8k − 2 ≥ 14 [2]⊕ 22k−1 η̃2[d2k], a4(k−i−1)+1d2i+1, i = 0, ..., k − 1

a4(k−i−1)bd2i+1, i = 0, ..., k − 2
8k − 1 ≥ 15 [2] η̃[d2k]

8k ≥ 16 (Z∧2 )4 ⊕ 22k−2 a4k, b4k, d2k, d2k−1d2,
a4(k−i−1)d2i+2, a4(k−i−1)−1bd2i+2, i = 0, ..., k − 2
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where [n] and 2m are referred to be a cyclic group of order n and elementary abelian
2-group of rank m as usual and d2 = 4d− v2d2 .

Now, the map is quickly calculated, by using Theorem 2.7.2, Proposition 4.5.1
and relations in ku∗(BD8), which we record as;

Proposition 4.5.2. The canonical map from ko∗(BSD16) to ko∗(BD8) is explicitly
given by

1 For k ≥ 0, ko−8k−6(BSD16) 7→ 0.

2 For k ≥ 0, ko−8k−4(BSD16) −→ ko−8k−4(BD8) is given by;

βk2v2 7→ βk2v2, βkv22D2 7→ 4(βk2v4d)− (βk2v4d2),
βkv22A 7→ 0, βkv2D 7→ βk2v4d,

βkv22B 7→ βk2v3a, βkv2D3 7→ 16(βk2v4d)− 6(βk2v4d2).

3 For k ≥ 0 , ko−8k−2(BSD16) −→ ko−8k−2(BD8) is given by;

βkvθ 7→ 0, βkη̃2[1] 7→ βkη̃2[1], βkη̃2[A] 7→ 0,

βkη̃2[B] 7→ βkη̃2[va], βkη̃2[D2] 7→ βkη̃2[v2d2], βkη̃2[D̃3] 7→ 0.

4 For k ≥ 0 , ko−8k−1(BSD16) −→ ko−8k−1(BD8) is given by;

βkη̃[1] 7→ βkη̃[1], βkη̃[A] 7→ 0,

βkη̃[B] 7→ βkη̃[va], βkη̃[D2] 7→ βkη̃[v2d2], βkη̃[D̃3] 7→ 0.

5 For k ≥ 0 , ko−8k(BSD16) −→ ko−8k(BD8) is given by;

βk1 7→ βk1, βkA 7→ 0, βkB 7→ βkva,

βkD2 7→ βk(4v2d− v2d2), βkC 7→ −2βkv2d, βkD̃3 7→ 0.

6 For k ≥ 1, ko8k−6(BSD16) −→ ko8k−6(BD8) is given by;

• k = 1, ko2(BSD16) 7→ 0,

• k ≥ 2, θk 7→ 0, b4(k−i−1)−3d2iτ 7→ a4(k−i−1)d2i+1 for i = 0, ..., k − 2.

7 For k ≥ 1, ko8k−4(BSD16) −→ ko8k−4(BD8) is given by;

• k = 1,
x2 + y2 7→ a2, 2x2 7→ 0, 2t2 − z2 + y2 7→ a2,
z2 + x2 7→ 2d2, −u∗2 − x2 − z2 7→ 2d− 2d2,

• k ≥ 2,
x4k−2 7→ 0, 2t4k−2 − z4k−2 7→ 0,
y4k−2 7→ a4k−2, −u∗4k−2 − x4k−2 − z4k−2 7→ 2d2k−1 − 2d2k−2d2,

z4k−2 7→ 2d2k−2d2,

and for k ≥ 3, b4(k−i−2)d2i+1τ 7→ a4(k−i−1)−2d2i+2 for i = 0, ..., k − 3.
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8 For k ≥ 1, ko8k−2(BSD16) −→ ko8k−2(BD8) is given by;
θ′k 7→ 0, η̃2[t4k] 7→ 0, η̃2[u4k] 7→ η̃2[d2k], b4(k−i−1)−1d2iτ 7→ a4(k−i−1)+1d2i+1

for i = 0, ..., k − 2.

9 For k ≥ 1, ko8k−1(BSD16) −→ ko8k−1(BD8) is given by;

η̃[t4k] 7→ 0, η̃[u4k] 7→ η̃[d2k].

10 For k ≥ 1, ko8k(BSD16) −→ ko8k(BD8) is given by;

x4k 7→ 0, y4k 7→ a4k, z4k 7→ 2d2k−1d2, t4k 7→ 0, u4k 7→ d2k,

and for k ≥ 2, b4(k−i−1)−2d2iτ 7→ a4(k−i−1)d2i+2 for i = 0, ..., k − 2.

4.5.2 ko∗(BSD16) and ko∗(BQ8)

By the results of ko∗(BQ8) in Theorem 6.4.2 in [13], we can make explicit the gener-
ator name for ko∗(BQ8) by working on representation theory only. To do this, it is
simply to work out on character table of RU(Q8) which is shown in the proof of lemma
2.2.3 (i.e., we have that 1, ρ2, ρ3, ρ4 are real representations and υ is a quoternionic
representation).

Precisely, with the same symbols in Theorem 2.4.6 in [14], we have character
table of va = 1−ρ3, vb = 1−ρ4, v

2q = 2−υ (note that 1−ρ2 = 4v2q−v4q2−va−vb)
as;

[1] [s4] [s2] [ts3] [ts]
va 0 0 2 0 2
vb 0 0 0 2 2
v2q 0 4 2 2 2

and character table of c̃RSp(Q8) as;

c̃RSp(Q8) [1] [s4] [s2] [ts3] [ts]
c̃qc1 2 2 2 2 2
c̃qcρ2 2 2 −2 −2 2
c̃qcρ3 2 2 −2 2 −2
c̃qcρ4 2 2 2 −2 −2
c̃υ 2 −2 0 0 0

because c̃q = 1 + τ , where c̃ is complexification from RSp to RU . From here, we get
character table of JSpi(Q8) as;

JSpi(Q8) [1] [s4] [s2] [ts3] [ts]
j1i 0 0 2i+1 0 2i+1

j2i 0 0 2i+1 2i+1 0
j3i 0 0 0 2i+1 2i+1

j4i 0 4i 2i 2i 2i
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After relating these character tables to the symbols v, a, b, q , we have;

Proposition 4.5.3. (cf. [13]) The additive structure of real connective K-cohomology
of Q8 is isomorphically given by;

n kon(BQ8) Generators

−8k − 7 0 0
−8k − 6 [2] βkη̃2[v4q]
−8k − 5 [2] βkη̃[v4q]
−8k − 4 Z⊕ (Z∧2 )4 βk2v2, βkv2{2va, 2vb, v2q, 2v4q2}
−8k − 3 0 0
−8k − 2 [2]4 βkη̃2{[1], [va], [vb], [v4q2]}
−8k − 1 [2]4 βkη̃{[1], [va], [vb], [v4q2]}
−8k Z⊕ (Z∧2 )4 βk, βk{va, vb, v22q, v4q2}

8k − 7 ≥ 1 0 0
8k − 6 ≥ 2 [2] η̃2[q2k−1]
8k − 5 ≥ 3 0 η̃[q2k−1]
8k − 4 ≥ 4 (Z∧2 )4 vaq2k−1, vbq2k−1, q2k−1, 2v2q2k

8k − 3 ≥ 5 0 0
8k − 2 ≥ 6 [2] η̃2[q2k]
8k − 1 ≥ 7 [2] η̃[q2k]

8k ≥ 8 (Z∧2 )4 vaq2k, vbq2k, q2k, 2v2q2k+1

Now, the map is quickly calculated, by using Theorem 2.7.2, Proposition 4.5.3
and relations in ku∗(BQ8), which we record as;

Proposition 4.5.4. The canonical map from ko∗(BSD16) to ko∗(BQ8) is explicitly
given by

1 For k ≥ 0, ko−8k−6(BSD16) 7→ 0.

2 For k ≥ 0, ko−8k−4(BSD16) −→ ko−8k−4(BQ8) is given by;

βk2v2 7→ βk2v2, βkv22A 7→ βk2v3b, βkv22B 7→ βk2v3b,

βkv22D2 7→ βk2v6q2, βkv2D 7→ 2βkv4q, βkv2D3 7→ 6(βk2v6q2)− 16(βkv4q).

3 For k ≥ 0 , ko−8k−2(BSD16) −→ ko−8k−2(BQ8) is given by;

βkvθ 7→ 0, βkη̃2[1] 7→ βkη̃2[1], βkη̃2[A] 7→ βkη̃2[vb],
βkη̃2[B] 7→ βkη̃2[vb], βkη̃2[D2] 7→ βkη̃2[v4q2], βkη̃2[D̃3] 7→ 0.

4 For k ≥ 0 , ko−8k−1(BSD16) −→ ko−8k−1(BQ8) is given by;

βkη̃[1] 7→ βkη̃[1], βkη̃[A] 7→ βkη̃[vb],
βkη̃[B] 7→ βkη̃[vb], βkη̃[D2] 7→ βkη̃[v4q2], βkη̃[D̃3] 7→ 0.
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5 For k ≥ 0 , ko−8k(BSD16) −→ ko−8k(BQ8) is given by;

βk1 7→ βk1, βkA 7→ βkvb, βkB 7→ βkvb,

βkD2 7→ βkv4q2, βkC 7→ 4vb− 2βkv2q, βkD̃3 7→ 6βkv4q2 − 6βkv2q.

6 For k ≥ 1, ko8k−6(BSD16) −→ 0.

7 For k ≥ 1, ko8k−4(BSD16) −→ ko8k−4(BQ8) is given by;

• k = 1,
x2 + y2 7→ vbq, 2x2 7→ 2vbq, 2t2 − z2 + y2 7→ 0,
z2 + x2 7→ −vbq + 8q − 2v2q2, −u∗2 − x2 − z2 7→ vbq − 6q + 2v2q2,

• k ≥ 2,
x4k−2 7→ vbq2k−1, 2t4k−2 − z4k−2 7→ 0,
y4k−2 7→ 0, −u∗4k−2 − x4k−2 − z4k−2 7→ vbq2k−1 − 6q2k−1 + 2v2q2k,

z4k−2 7→ −2vbq2k−1 + 8q2k−1 − 2v2q2k,

and for k ≥ 3, b4(k−i−2)d2i+1τ 7→ 0 for i = 0, ..., k − 3.

8 For k ≥ 1, ko8k−2(BSD16) −→ ko8k−2(BQ8) is given by;
θ′k 7→ 0, η̃2[t4k] 7→ 0, η̃2[u4k] 7→ η̃2[q2k], b4(k−i−1)−1d2iτ 7→ 0, for i =
0, ..., k − 2.

9 For k ≥ 1, ko8k−1(BSD16) −→ ko8k−1(BQ8) is given by;

η̃[t4k] 7→ 0, η̃[u4k] 7→ η̃[q2k].

10 For k ≥ 1, ko8k(BSD16) −→ ko8k(BQ8) is given by;

x4k 7→ vbq2k, y4k 7→ 0, z4k 7→ 8q2k − 2(vbq2k + v2q2k+1), t4k 7→ 0, u4k 7→ q2k,

and for k ≥ 2, b4(k−i−1)−2d2iτ 7→ 0 for i = 0, ..., k − 2.

4.5.3 ko∗(BSD16) and ko∗(BC8)

Recall that real connective K- cohomology on non-positive codegree is obtained directly
by representation theory. For ko∗(BC8), we will write out the generator of koi(BC8)
for i ≤ 0 by using such theory, and for i ≥ 0 we will use the results from Theorem 6.3.1
in [13]. For the restriction map ko∗(BSD16) −→ ko∗(BC8), we explicit such a map on
non-negative codegree and for positive codegree, we merely investigate the kernel.

Recall that, for i ≥ 0, ku−i(BC8) ∼= RU(C8)∧2 < vi > and RU(C8) = Z[α]/(α8−
1), where αi(sj) = cij s.t. c = e

iπ
4 =

√
2

2 (1+ i). It is not hard to see that 1, α4 are real
representations and the remaining are complex representations. So, by representation
theory and Theorem 6.3.1 in [13] we have;

Proposition 4.5.5. (cf. [13]) The additive structure of real connective K-cohomology
of C8 on non-positive codegree is isomorphically given by;
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n kon(BC8)
−8k − 7 0
−8k − 6 Z∧2 [α, α2, α3, α5, α6, α7]/(α + α7, α2 + α6, α3 + α5)
−8k − 5 0
−8k − 4 Z < 2 > ⊕(Z∧2 )4 < 2α4, α + α7, α2 + α6, α3 + α5 >
−8k − 3 0
−8k − 2 [2]2 < η̃2[1], η̃2[α4] > ⊕Z∧2 [α, α2, α3, α5, α6, α7]/(α + α7, α2 + α6, α3 + α5)
−8k − 1 [2]2 < η̃[1], η̃[α4] >
−8k RO(C8)∧2 = Z < 1 > ⊕(Z∧2 )4 < α4, α + α7, α2 + α6, α3 + α5 >

The additive structure of real connective K-cohomology of C8 on positive codegree is
isomorphically given by ([13]);

• ko4i(BC8) ∼= (p1)iRO(C8)∧2

• ko4i+2(BC8) ∼= (p1)iRUasc(C8)∧2 ,

for all i ≥ 1, where p1 = p1(α) = c1(α)c1(τα) = (1 − α)(1 − α7) and RUasc(C8)∧2 =
(Z∧2 )3 < α− α7, α2 − α6, α3 − α5 >.

Now, it is not hard to see that;

Proposition 4.5.6. The canonical map from ko∗(BSD16) to ko∗(BC8) on non-negative
degree is explicitly given by

1 For k ≥ 0, ko−8k−6(BSD16) −→ ko−8k−6(BC8) is given by;

βkv3θ 7→ −(α− α7)− (α3 − α5).

2 For k ≥ 0, ko−8k−4(BSD16) −→ ko−8k−4(BC8) is given by;

βk2v2 7→ 2, βkv22A 7→ 2− 2α4, βkv22B 7→ 0,

βkv22D2 7→ 4− 4(α + α7) + 2(α2 + α6)− 4(α3 + α5) + 8α4,

βkv2D 7→ 2− (α + α7)− (α3 + α5) + 2α4,

βkv2D3 7→ 20− 16(α + α7) + 12(α2 + α6)− 16(α3 + α5) + 20α4.

3 For k ≥ 0 , ko−8k−2(BSD16) −→ ko−8k−2(BC8) is given by;

βkvθ 7→ −(α− α7)− (α3 − α5), βkη̃2[1] 7→ η̃2[1], βkη̃2[A] 7→ η̃2[1]− η̃2[α4],
βkη̃2[B] 7→ 0, βkη̃2[D2] 7→ 0, βkη̃2[D̃3] 7→ 0.

4 For k ≥ 0 , ko−8k−1(BSD16) −→ ko−8k−1(BC8) is given by;

βkη̃[1] 7→ η̃[1], βkη̃[A] 7→ η̃[1]− η̃[α4],
βkη̃[B] 7→ 0, βkη̃[D2] 7→ 0, βkη̃[D̃3] 7→ 0.
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5 For k ≥ 0 , ko−8k(BSD16) −→ ko−8k(BC8) is given by;

βk1 7→ 1, βkA 7→ 1− α4, βkB 7→ 0,

βkD2 7→ 2− 2(α + α7) + (α2 + α6)− 2(α3 + α5) + 4α4,
βkC 7→ −2 + (α + α7) + (α3 + α5)− 2α4,

βkD̃3 7→ 12− 9(α + α7) + 6(α2 + α6)− 9(α3 + α5) + 12α4.

For positive codegree, we found that (with the help of (3.12));

1 For k ≥ 1, ko8k−6(BSD16) ½ ko8k−6(BC8), is monomorphism.

2 For k ≥ 1, ko8k−4(BSD16) −→ ko8k−4(BQ8) has kernel generated by x4i−2 ,
y4i−2 and b4(k−i−2)d2i+1τ for i = 0, ..., k − 3.

3 For k ≥ 1, ko8k−2(BSD16) −→ ko8k−2(BC8) has kernel generated by η̃2[t4k], η̃2[u4k]
and b4(k−i−1)−1d2iτ for i = 0, ..., k − 2.

4 For k ≥ 1, ko8k−1(BSD16) −→ 0.

5 For k ≥ 1, ko8k(BSD16) −→ ko8k(BQ8) has kernel generated by x4k, y4k and
for k ≥ 2, b4(k−i−1)−2d2iτ for i = 0, ..., k − 2.

Accordingly, we observe from proposition 4.5.2, 4.5.4 and 4.5.6 that the canonical
map from ko∗(BSD16) to ko∗(BD8)⊕ ko∗(BQ8)⊕ ko∗(BC8) is not a monomorphism,
e.g., η̃[t4] 7→ (0, 0, 0).

We investigate the real connective K homology for SD16 in the next chapter.



Chapter 5

Real connective K-homology

In this chapter, we will calculate ko∗(BSD16) as a module over ko∗(BSD16) by using
the Greenlees spectral sequence with input ko∗(BSD16) and output ko∗(BSD16). That
is by using

Es,t
2 = H−s

I (ko∗(BG)t ⇒ ko(s+t)(BG),

where I is the augmentation ideal of ko∗(BG).

§ 5.1 Strategy of input for ko∗(BSD16) of Greenlees spectral sequence

5.1.1 General strategy

Strategy we have used in Chapter 3 still plays a big role in this chapter but we need
more work to do. Here, for input, we consider two short exact sequences. That is

0 −→ ST −→ ko∗(BG) πo
// QO −→ 0 (5.1)

and
0 −→ T −→ ko∗(BG) πu

// QO −→ 0 (5.2)

where QO is the image of ko∗(BG) in KO∗(BG) and QO is the image of ko∗(BG) in
KU∗(BG) s.t. ST is the β -torsion part of ko∗(BG) and T is the kerπu . Here, QO
and QO are module over R := ko∗(BG) via πo and πu respectively.

Moreover, let Qτ be the ker(i : QO −→ QO). By snake lemma, Qτ ∼= coker(i′ :
ST −→ T ) or in other words, we have a short exact sequence

0 −→ ST −→ T −→ Qτ −→ 0. (5.3)

Generally, T will be 2- torsion part.

141
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Thus, to find H∗
I (ko∗(BG)), it is convenient to calculate from the long exact

sequence induced by (5.2) together with the long exact sequence induced by (5.3). Nor-
mally, Qτ ⊆ τ := η -multiple, since only η ∈ KO∗ = Z[α, η, β, (β)−1]/(η2, 2η, ηα, α2 −
4β) is sent to 0 ∈ KU∗ . Hence, if there is no η -multiple obtained from TU , v -torsion
part, then Qτ = τ .

5.1.2 Strategy for G = SD16

In this case, by E∞ -page, ST contains only elements that lie on the zero-line, i.e.
ST = TO , where TO , by definition in [13], consists of Bockstein ∞-cycles in ZTU .
Furthermore those elements come from the v -torsion part, i.e., TO ⊆ H∗(BSD16;F2).
On the other hand, τ is η -multiples coming from the torsion free part which TO∩τ = 0
and TO + τ = T . Therefore, as a 2-torsion part,

T ∼= τ ⊕ TO

and hence there is also a short exact sequence

0 −→ τ −→ T −→ TO −→ 0. (5.4)

Note that τ is a module over R := ko∗(BSD16) via πo and TO is a module over R
via ϕ of commutative diagram below;

ko∗(BSD16)

φ∗

²²

ϕ

))RRRRRRRRRRRRRR

H∗(BSD16;Z) 2 // H∗(BSD16;F2),

(5.5)

where φ∗ is induced by φ : ko −→ HZ . Then, we can viewed T being a module over
R as a direct sum of module τ and TO over R .

Hence, in order to calculate H∗
I (ko∗(BSD16)), we will use two short exact se-

quences (5.2) and (5.4). The reason to choose (5.4) instead of (5.3) will become clear
later. We will start with the calculation of H∗

I (R; T ) in the next section.

§ 5.2 Local cohomology of 2-torsion T

To calculate H∗
I (R; T ), it is enough to calculate H∗

ϕ(I)(ϕ(R);TO), H∗
πo(I)(π

o(R); τ) and
connecting homomorphism induced by short exact sequence (5.4), where throughout
this section, R denotes ko∗(BSD16).
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5.2.1 Local cohomology of TO

In case of G = SD16 , note that, by theorem 4.4.1, TO =
⊕

i TOi , where

TOi =





(Z/2)k−1, i = 8k − 6 ≥ 2;
(Z/2)k−2, i = 8k − 4 ≥ 12;
(Z/2)k−1, i = 8k − 2 ≥ 6;
(Z/2)k−1, i = 8k ≥ 8;
0, otherwise.

In other words, we have a short exact sequence

0 −→ TO −→ ker(Sq2)
d3 // H∗(TU ; Sq2) −→ 0 (5.6)

where ker(Sq2) = F2[b2, d2]{bτ, dτ} and H∗(TU ; Sq2) = F2[d2]{dτ} and all are module
over R via ϕ . Note in this subsection that τ = b2d− abd ∈ TU .

Before doing further calculation, we need to identify the ideal I¢R of each module
explicitly. To deal with this we use the fact that H∗

I (R; M) ∼= H∗
I′(R/annR(M);M).

Let M1 = ker(Sq2) and M2 = H∗(TU ; Sq2). For Mε , ε = 1, 2, we calculate

H∗
I′ε(ϕ(R)/annϕ(R)(Mε);Mε) (5.7)

by working explicitly on ϕ(R)/annϕ(R)(Mε) = ϕ(R)/{r ∈ ϕ(R)|rm = 0, ∀m ∈ Mε}
first.

Lemma 5.2.1. We have,

R1 := ϕ(R)/annϕ(R)(M1) = F2[b2, d2]{1, bτ, dτ}/F2[d2]{dτ}

and
R2 := ϕ(R)/annϕ(R)(M2) = F2[d2]{1, dτ}.

Proof. It is clear that the image of Rk for each codegree k ≤ 0, 2R and η -multiples un-
der ϕ are all zero, since ϕ(v), ϕ(2) and ϕ(η) are zero in H∗(BSD16;F2). Then ϕ(Rk),
for k ≤ 0, ϕ(2R) and ϕ(η -multiples) are all subset of annϕ(R)(Mε). Furthermore, by
using

• explicit generators of Rk in Theorem 4.4.1,

• explicit relations of generators in JUi, i = 1, 2, 3, 4, 5 in terms of Chern classes in
Chapter 3,

• the fact that JU4k+ε
∼= pk−1JUε where ε = 2, 3, 4, 5 in which ϕ(p) = P 2 + y8 :=

d2 + b4 ,

• a := x2 annihilates TU and

• ϕ(TO) ∼= TO ⊆ M1 ,
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we can conclude that

1 ϕ(R8k−6 \ TO8k−6) and ϕ(R8k−2 \ TO8k−2) are subsets of annϕ(R)(Mε) for each
k ≥ 1,

2 ϕ(generators of R4 ) = 0, except ϕ(x2 + y2) = ϕ(2t2 − z2 + y2) = b2 ,

3 ϕ(generators of torsion free part of R8k−4 ) = 0, except ϕ(y4k−2) = b4k−2 for
k ≥ 2 and

4 ϕ(generators of torsion free part of R8k ) = 0, except ϕ(y4k) = b4k and ϕ(u4k) =
d2k for k ≥ 1.

Hence, R1 = TO ∪ F2[b2, d2] . Since b2 and bτ annihilate M2 , R2 = F2[d2]{1, dτ} as
required.

Note that ϕ(x2 + y2) = b2 , ϕ(u4) = d2 and TO are in ϕ(I) where I =
ker(ko∗(BSD16) −→ ko∗). And note further that, (bτ)2 = b6d2 ∈ (b2, d2) and
(dτ)2 = b4d4 ∈ (b2, d2). Thus, by lemma 5.2.1 above,

I ′1 =
√

(b2, d2) and I ′2 =
√

(d2).

Consequently,
H∗

ϕ(I)(ϕ(R),M1) = H∗
(b2,d2)(R1,M1) (5.8)

and
H∗

ϕ(I)(ϕ(R), M2) = H∗
(d2)(R2,M2). (5.9)

Recall from definition 3.1.1 that H∗
I (R; M) := H∗(K∞(I)⊗R M). Here, Mε is a

ring and also a module over Rε in which x ∈ R and x ∈ Mε , then

Rε[
1
x

]⊗Rε Mε
∼= Mε[

1
x

]. (5.10)

Therefore,

H i
ϕ(I)(R1;M1) = H i

(b2,d2)(M1)
∼= H i

(b2,d2)(F2[b2, d2]{bτ, dτ})
∼= H i

(b2,d2)(F2[b2, d2]) · bτ ⊕H i
(b2,d2)(F2[b2, d2]) · dτ

∼=
{

Σ−2(F2[b2, d2])∨
⊕

(F2[b2, d2])∨, i = 2;
0, otherwise,

where the last equation comes from Example 3.1.5 and

H i
ϕ(I)(R2; M2) = H i

(d2)(M2)
∼= H i

(d2)(F2[d2]{dτ})
∼= H i

(d2)(F2[d2]) · dτ

∼=
{

Σ4(F2[d2])∨, i = 1;
0, otherwise,
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where the last equation comes from Example 3.1.4. Now, we reach to the main goal of
this subsection;

Lemma 5.2.2. Local cohomology of TO part of ko∗(BSD16) is given by

H i
I(TO) =

{
Σ4(F2[d2])∨ ⊕ Σ−2(F2[b2, d2])∨ ⊕ (F2[b2, d2])∨, i = 2;
0, otherwise.

Proof. This follows by the long exact sequence induced by (5.6) and the results above
which yields the short exact sequence

0 −→ Σ4(F2[d2])∨ −→ H2
I (TO) −→ Σ−2(F2[b2, d2])∨ ⊕ (F2[b2, d2])∨ −→ 0.

This short exact sequence split because H∗
I (TO) is mod 2 vector space.

Next, we need to compute H∗
I (τ) which we are going to do this in the next

subsection.

5.2.2 Local cohomology of η -multiples part

Recall from Theorem 4.4.1 for η -multiples part,τ , that

τ = Z/2{η̃ε[u4k], η̃ε[t4k], η̃εβn[1], η̃εβn[A], η̃εβn[B], η̃εβn[D2], η̃εβn[D̃3]},

where ε = 1, 2, k ≥ 1, n ≥ 0. As the previous subsection,

H∗
I (τ) := H∗

πo(I)(π
o(R); τ) ∼= H∗

I′(R
′; τ),

where R′ = πo(R)/annπo(R)(τ) and I ′ / R′ . So, the first task is to find
√

I ′ explicitly.
To do this, we need to consider annπo(R)(τ). Obviously, it contains at least

• πo(TO), since this is zero via πo ;

• All stuff of degree n which is not congruent to 0 or 1 modulo 8, since there is no
η -multiple on degree congruent to 0,3,4,5,6,7 modulo 8;

• 2πo(R), since τ is annihilated by 2.

Now, we only need to consider degrees congruent to 0 or 1 modulo 8. However,
whether elements in degree n ≡ 1mod 8 are in I ′ or not, these elements will not be
generator of it radical, since they are all η -multiples which the power three of them are
all zero. This means that it is enough to consider merely on degree divided by 8 which
we have the results as;

Lemma 5.2.3. In codegree divided by 8, only u4k, t4k, β
n1, βnA, βnB, βnD2 and βnD̃3

for each k ≥ 1 and n ≥ 0, are contained in R′ := πo(R)/annπo(R)(τ).
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Proof. From the character table of JUi in Chapter 3, we see that

u4ku4 = [16k+1, (−2)k+1, 4k+1, (−2)k+1, 0, 4k+1],

which is not in (1+τ)JU4(k+1)−1 for all k ≥ 1, since the entry in the last coordinate in
character table of every element of (1+τ)JU4k+3 are divisible by 2 ·4k+1 . This means
u4kη̃

εu4 6= 0 and hence u4k ∈ R′ for all k ≥ 1. Similarly for t4k , this is in R′ because
they can not kill at least η̃εu4 . To conclude that βn1, βnA, βnB, βnD2 and βnD̃3 for
each n ≥ 0, are in R′ , we multiply them with the element βnη̃[1], which yields that
they are not lie in (1 + τ)RU or (1 + τ)JU3 , i.e., they are not zero.

In order to conclude that there are only these elements which are in R′ , we need
to show that x4k, y4k, z4k and C are in annπo(R)(τ) for every k ≥ 1. This means we
need to check that they kill exactly every element in τ . Precisely, need to show that;

• α4k[γ4n] ∈ (1 + τ)JU4(k+n)−1 for each k, n ≥ 1,α ∈ {x, y, z} and γ ∈ {t, u} ,
• α4k[θ] ∈ (1 + τ)QU8(n−k)+2 for each k ≥ 1, n ≥ 0, α ∈ {x, y, z} and θ ∈
{βn1, βnA, βnB, βnD2, βnD̃3} ,

• C[γ4n] ∈ (1 + τ)JU4n−1 for each n ≥ 1 and for all γ ∈ {t, u} ,
• C[θ] ∈ (1 + τ)RU for all θ ∈ {1, A, B, D2, D̃3} .

This is a routine work which we can read from the character table of JUi and RU in
Chapter 3.

By this lemma, note that, as a set, I ′ ⊆ Z/2 < 1, t4m, u4m, βnA, βnB, βnD, βnD̃3 >
∪τ for m ≥ 1. Claim that √

(u4) = I ′. (5.11)

To prove this claim, we need to check only that Xk ∈ (u4) = {ru4 | r ∈ R′} for some
k > 0 and for all X ∈ {t4m, u4m, βnA, βnB, βnD,βnD̃3} . Since u4m = (u4)m , u4m ∈
(u4). It is easy to see that, by character table, t

2
4 = (t4D2)u4 and t4m = (t4um−2

4 )u4

for m ≥ 2. Then t4m ∈ (u4) for all m ≥ 1. By character table again, we have
(βnA)2 = 2β2nA, (βnB)2 = 2β2nB, βnD2 = βn(β · 1)u4 and

(βnD̃3)2 = −360β2nA− 360β2nD2 + 162β2nD̃3 + 90β2nC.

This means (βnA)2, (βnB)2 and (βn(D̃3))2 are zero in R′ , because R′ is annihilated
by 2 and thus we have proved (5.11). By the same argument as (5.10), we can conclude
that

H∗
I (τ) ∼= H∗

(u4)(τ).

Therefore,
H∗

I (τ) = H0
(u4)(τ)⊕H1

(u4)(τ). (5.12)

Now, we are ready to compute H∗
I (τ) by starting with H0

(u4)(τ) ∼= Γ(u4)(τ) = {x ∈
τ | (u4)kx = 0, ∃k ≥ 1} . It is not hard to see that multiplied by u4 is an isomorphism
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on negative degree, i.e., u4η̃
ε[u4k] = η̃ε[u4(k+1)] and u4η̃

ε[t4k] = η̃ε[t4(k+1)] . This implies
that

[H0
I (τ)]n = 0, for all negative n.

In positive degrees, we start to investigate elements of

Z/2{η̃εβn[1], η̃εβn[A], η̃εβn[B], η̃εβn[D2], η̃εβn[D̃3]},

for ε = 1, 2, k ≥ 1, n ≥ 0, by checking only whether that u4T , for

T ∈ τ ′ := Z/2{[1], [A], [B], [D2], [D̃3]},

are zero or not, since multiplied by u4 is an isomorphism on negative degree as stated
above. To do this, we need to judge that u4T , for each T ∈ τ ′ , lies in (1 + τ)ĴU3 or
not. To be more convenient, we record (1 + τ)ĴU3 as;

(1 + τ)ĴU3 = Z∧2

〈
(1 + τ)x3 : [ 0 0 0 0 0 8 ]
(1 + τ)y3 : [ 0 0 0 0 16 0 ]
(1 + τ)z3 : [ 0 0 16 0 0 0 ]
(1 + τ)t3 : [ 0 8 0 8 0 0 ]
(1 + τ)u3 : [ 32 −4 −8 −4 0 0 ]
(1 + τ)w3 : [ 0 0 0 0 0 0 ]

〉
.

Now it is simple to see that u4[1] = [u4] , u4[A] = [t4] , u4[D2] = [t4] , (In fact,
u4D

2 = 4(1+τ)u3+2(1+τ)t3+3(1+τ)z3+t4 ) and u4[B] and u4[D̃3] are in (1+τ)ĴU3 .
Thus,

[H0
I (τ)]ε = (Z/2)3 < η̃ε[B], η̃ε[D̃3], η̃ε([A] + [D2]) >,

where ε = 1, 2.

Next, we consider elements of τ8+ε . In this case, we need to check that whether
(u4)2T , for each T ∈ τ ′ , are in (1+ τ)ĴU3 or not. This can be read from the character
table above easily which we have;

[H0
I (τ)]8+ε = (Z/2)4 < η̃εβ[A], η̃εβ[B], η̃εβ[D2], η̃εβ[D̃3] >,

where ε = 1, 2.

Again, for elements of τ8k+ε where k ≥ 2. In this case, we need to check that
whether (u4)k+1T , for each T ∈ τ ′ , are in (1 + τ)ĴU3 or not. This can be read from
character table above easily which we have;

[H0
I (τ)]8k+ε = (Z/2)5 < η̃εβk[1], η̃εβk[A], η̃εβk[B], η̃εβk[D2], η̃εβk[D̃3] >,

where ε = 1, 2 and k ≥ 2.
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For [H1
I (τ)]∗ , it is now easy to determine by considering the short exact sequence;

0 −→ H0
(u4)(τ) −→ τ i // τ [ 1

u4
] −→ H1

(u4)(τ) −→ 0. (5.13)

Here, note that,

τε+8n[
1
u4

] ∼= lim−→( τε+8n
u4 // τε+8(n−1)

u4 // τε+8(n−2)
u4 // · · · )

∼= τε−8

= (Z/2)2 < η̃ε[u4]/(u4)n+1, η̃ε[t4]/(u4)n+1 >

where ε = 1, 2, by Proposition A.0.4.

Since for all negative n , i is an isomorphism on those degrees, [H1
I (τ)]n = 0, for

all negative n as well. Furthermore, since [H0
I (τ)]8k+ε = (Z/2)5 for k ≥ 2, i is zero

map on those degrees and hence

[H1
I (τ)]8k+ε = (Z/2)2 < η̃ε[u4]/(u4)k+1, η̃ε[t4]/(u4)k+1 > .

Now, it remains to calculate on degree ε and ε + 8 which is simple to see that
[H1

I (τ)]ε = 0 and [H1
I (τ)]8+ε = Z/2 < η̃ε[u4]/(u4)2 > .

We summarize these results in the lemma below;

Lemma 5.2.4. Local cohomology of η -multiples in ko∗(BSD16) at I = (u4) consists
of two parts H0

(u4)(τ) and H1
(u4)(τ). Explicitly,

[H0
(u4)(τ)]ε+n =





(Z/2)3 < η̃ε[B], η̃ε[D̃3], η̃ε([A] + [D2]) >,

(Z/2)4 < η̃εβ[A], η̃εβ[B], η̃εβ[D2], η̃εβ[D̃3] >,

(Z/2)5 < η̃εβk[1], η̃εβk[A], η̃εβk[B], η̃εβk[D2], η̃εβk[D̃3] >,
0,

where ε = 1, 2 and n = 0, 8, 8k , k ≥ 2 and otherwise respectively. And,

[H1
(u4)(τ)]ε+n =




Z/2 < η̃ε[u4]/(u4)2 >,
(Z/2)2 < η̃ε[u4]/(u4)k+1, η̃ε[t4]/(u4)k+1 >,
0,

where ε = 1, 2 and n = 8, 8k , k ≥ 2 and otherwise respectively.

Consequently, by lemma 5.2.2, 5.2.4 and the long exact sequence induced by (5.4),
we have;

Corollary 5.2.5. Local cohomology of the 2-torsion part T in ko∗(BSD16) is given
by

Hn
I (T ) =





H0
I (τ), if n = 0;

H1
I (τ), if n = 1;

H2
I (TO), if n = 2;

0, otherwise.
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Note here that, if we use the long exact sequence induced by (5.3), then we will
have more work to determine connecting differential δ : H1

I (τ) −→ H2
I (TO). Hence,

this is the answer to the question that why we prefer to use (5.4) instead of (5.3).

§ 5.3 Local cohomology of torsion free part

As in the previous process, the first thing we need to do before calculating local coho-
mology of QO is to determine the radical of its ideal explicitly.

5.3.1 Radical ideal for torsion free part and H0
I (QO)

In the case of QO of ko∗(BSD16), we have;

Lemma 5.3.1. H∗
I (QO) ∼= H∗

(q)(QO), where q = πu(u4 + y4) ∈ πu(ko8(BSD16)).

Proof. To find the radical of ideal I ′/πu(R), we use the same trick as in the case of TO
and τ , i.e. investigating R := πu(R)/annπu(R)(QO). By theorem 4.4.1 and character
table, it is clear that TO and η -multiples parts kill QO , then we need only to consider
on the torsion free part. Again, in this case it is not hard to see that multiplying by

q = [16,−2, 4,−2, 16, 4] = πu(u4 + y4) ∈ πu(ko8(BSD16))

gives an isomorphism, for each k ≥ 1; QO−(8k+2)
∼= qkQO−2 , QO−(8k+6)

∼= qkQO−6 ,
QO−(8k+8)

∼= qkQO−8 and QO−(8k+12)
∼= qkQO−12 . Note that multiplied by q on

QO−4 is not isomorphic to QO−12 because x6 can not write in term of elements in
qQO−4 .

Now, it remains to show that there exist n ∈ N such that (QOε)n and (QO≥0)n

are in (q), where ε = −2,−4,−6,−8,−12. Since (QOε)k ⊆ QOkε and by isomorphism
above (i.e., multiplied by q in negative degree) for which k is big enough, the results
follows in negative degree. For non-negative degree, it suffices to consider degrees 0, 2, 4
and 6. By the character table again, we have;

θ3 = θq

A4 = (2A)2 = (AD2 −A2)q
B6 = (2B)3 = (AD2 + A2 + B2)q
C4 = (D)4 = 16Dq

D3 = Dq , (D2)2 = D2q

(D̃3)4 = (D3 + 2D)4 = (D10 + 8D8 + 24D6 + 32D4 + 16D2)q.

This shows that
√

(q) contains QO≥0 and hence
√

(q) =
√

I ′ as required.

The consequence of this lemma is that H∗
I (QO) ∼= H0

(q)(QO)⊕H1
(q)(QO). Recall

that all elements of QO can be represented by character table. The character table
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of q is not zero except in the first coordinate, i.e., conjugacy class of identity. This
suggests that each entry in character table of elements in H0

(q)(QO) ∼= Γ(q)(QO) must
be zero, except for the first coordinate. Such elements exist possibly in non-negative
degree which is divisible by 4, i.e., on degree containing βk[1] and βk[2v2] . Precisely,
we have;

Lemma 5.3.2. For k ≥ 0 and QO = Im(πu : ko∗(BSD16) −→ KU∗(BSD16)),

[H0
I (QO)]i =




Z < v4k[ρ] >, if i = 8k;
Z < v4k[αρ] >, if i = 8k + 4;
0, otherwise,

where

ρ = [16, 0, 0, 0, 0, 0, 0]

= 16 · 1− [
28
3

A + 8B − 13
3

C +
4
3
D2 − 5

9
D̃3]

and

αρ = [32, 0, 0, 0, 0, 0, 0]

= 16 · α− [−8(2A) + 8(2B)− 16(2D2) +
92
3

D +
7
3
D3],

such that {1, A, B, C,D2, D̃3} and {α = 2v2, 2A, 2B, D, 2D2,D3} are the set of gener-
ator for QO0 and QO4 respectively (see theorem 4.4.1).

Proof. This results follows by inspection of the character table.

5.3.2 H1
I (QO)

Next, we calculate H1
(q)(QO) as the coker(QO −→ QO[1q ]) by using the fact that

(QO[
1
q
])t = lim−→( QOt

q // QOt−8

q // QOt−2(8)
q // · · · ).

Note from the proof of lemma 5.3.1 that multiplying by q is eventually constant at
degree −2,−6,−8 and −12. This implies that

[H1
(q)(QO)]i = 0 , for all i < −4 and

H−4
∼= QO−12/qQO−4 and for k ≥ 1

H0
∼= QO−8/qQO0 , H8k

∼= QO−8/qk+1QO8k

H2
∼= QO−6/qQO2 , H8k+2

∼= QO−6/qk+1QO8k+2

H4
∼= QO−12/q2QO−4 , H8k+4

∼= QO−12/qk+2QO8k+4

H6
∼= QO−2/qQO6 , H8k+6

∼= QO−2/qk+1QO8k+6,

where H denotes H1
(q)(QO). The rest of this subsection will devote to the proof of;
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Lemma 5.3.3. As abelian groups;

• H−4 = Z/2 < x̃−2 > with x̃−2 = ỹ−2 = z̃−2 = t̃′−2 and ũ′−2 = 0, where α̃−2 =
α6
q +QO−12 for each α ∈ {x, y, z, t′, u′} and t′6 = 2t6−z6 , u′6 = −u∗6−x6−z6 ,

• H0 = Z/2 < ỹ0 > with x̃0 = z̃0 = t̃0 = 0 and ỹ0 = ũ0 , where α̃0 = α4
q + QO−8

for each α ∈ {x, y, z, t, u},
• H4 = Z/2 < z̃2 > ⊕ Z/4 < x̃2 > ⊕ Z/8 < ũ′2 > ⊕ Z/16 < ỹ2 > with

t̃′2−2x̃2−8ỹ2−z̃2−4ũ′2 = 0, where α̃2 = α6
q2 +QO−12 for each α ∈ {x, y, z, t′, u′},

• For k ≥ 0, H8k+2 = Z/2k+1 < w̃4k+1 >, where w̃4k+1 = w3

qk+1 + QO−6 ,

• For k ≥ 0, H8k+6 = Z/2k+1 < w̃′4k+3 >, where w̃′4k+3 = w′1
qk+1 +QO−2 such that

w′1 = θ1 = u1 − t1 − 2w1 ,

• For k ≥ 1, H8k+4 = Z/2k < t̃4k+2 > ⊕ Z/2 · 4k < z̃4k+2 > ⊕ Z/4k+1 <
x̃4k+2 > ⊕ Z/8 · 16k < ũ′4k+2 > ⊕ Z/16k+1 < ỹ4k+2 > with t̃4k+2 = t̃′4k+2 +
(−2)k+1x̃4k+2+(−8)k+1ỹ4k+2−(−2)kz̃4k+2−4(−8)kũ′4k+2 , where α̃4k+2 = α6

qk+2 +
QO−12 for each α ∈ {x, y, z, t′, u′},

• For k ≥ 1, H8k = Z/2k−1 < ˜̂t4k > ⊕ Z/2 · 4k−1 < z̃4k + 4k+1ũ4k > ⊕ Z/4k <

x̃4k > ⊕ Z/2 · 16k < ỹ4k > ⊕ Z/4 · 16k < ũ4k > with ˜̂t4k = t̃4k − (−2)kx̃4k −
2(−8)kỹ4k + (−2)k−1z̃4k − 2(−8)kũ4k , where α̃4k = α4

qk+1 + QO−8 for each α ∈
{x, y, z, t, u}.

The H i ’s which are not mentioned above are all zero.

Proof. As in Chapter 3, we do calculation by using row and column operation on gen-
erators.

For H−4 , we can represent matrix for the calculation of QO−12/qQO−4 as

x6 y6 z6 t′6 u′6
q(x2 + y2) : | 1 1 0 0 0 |r1

q(2x2) : | 2 0 0 0 0 |r2

q(2t2 − z2 + y2) : | 0 1 0 1 0 |r3

q(x2 + z2) : | 1 0 1 0 0 |r4

q(−u∗2 − x2 − z2) : | 0 0 0 0 1 |r5

.

After doing column operations, we get
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g1 g2 g3 g4 g5

c′1 c′2 c3 c4 c5

r1 : | 0 1 0 0 0 |
r2 : | 2 0 0 0 0 |
r3 : | 0 0 0 1 0 |
r4 : | 0 0 1 0 0 |
r5 : | 0 0 0 0 1 |

,

where c′1 = c1− c2 + c4− c3 and c′2 = c2− c4 . By using the same method as in Chapter
3, we get g1 = x6, g2 = x6 + y6, g3 = x6 + z6, g4 = t′6 + y6 and g5 = u′6 and then the
results follow.

For H0 , we can represent matrix for the calculation of QO−8/qQO0 as

x4 y4 z4 t4 u4

q1 : | 0 1 0 0 1 |r1

qA : | 1 0 0 −1 0 |r2

qB : | 1 2 0 0 0 |r3

qC : | 6 0 1 −4 −8 |r4

qD2 : | −6 0 −3 9 16 |r5

qD̃3 : | −30 0 −15 36 72 |r6

.

Now, we do row operations by changing;
r1 = r∗1 , r2 −→ [r∗2 = −r∗5] ,
r3 −→ [r∗3 = r3 − r2 + r∗5] ,
r4 −→ [r′4 = r4 − 6r2] −→ [r∗4 = r′4 − r′5 + r∗5] ,
r5 −→ [r′5 = r5 + 6r2 + 3r′4] −→ [r∗5 = r′5 + 8r1 − 4r3 − r′′6 ] ,
r6 −→ [r′6 = r6 + 30r2 + 15r′4] −→ [r′′6 = r′6 − 6r′5] −→ [r∗6 = r′′6 − 6r∗5] .
Then, we get Step(*) [cf. Chapter3] and the required results as

x4 y4 z4 t4 u4

c1 c2 c3 c4 c5

r∗1 : | 0 1 0 0 1 |
r∗2 : | 1 0 0 0 0 |
r∗3 : | 0 2 0 0 0 |
r∗4 : | 0 0 1 0 0 |
r∗5 : | 0 0 0 −1 0 |
r∗6 : | 0 0 0 0 0 |

∼=

g1 g2 g3 g4 g5

c1 c2 − c5 c3 c4 c5

r∗1 : | 0 0 0 0 1 |
r∗2 : | 1 0 0 0 0 |
r∗3 : | 0 2 0 0 0 |
r∗4 : | 0 0 1 0 0 |
r∗5 : | 0 0 0 −1 0 |
r∗6 : | 0 0 0 0 0 |

.

By using the same method as in Chapter 3, we get g1 = x4, g2 = y4, g3 = z4, g4 = t4
and g5 = u4 + y4 and then the results follow.

For H4 , we can represent matrix for the calculation of QO−12/q2QO4 as
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x6 y6 z6 t′6 u′6
q2(α) : | 2 8 3 −1 4 |r1

q2(2A) : | 4 0 0 −2 0 |r2

q2(2B) : | 4 16 0 0 0 |r3

q2(2D2) : | 8 0 36 2 64 |r4

q2D : | 4 0 10 0 16 |r5

q2D3 : | 16 0 136 0 256 |r6

.

Now, we do row operations by changing;
r1 −→ [r∗1 = r1 + r∗5] ,
r2 −→ [r∗2 = r2 − 2r∗1 − r∗5 + r∗3] ,
r3 −→ [r∗3 = r3 + r∗4] ,
r4 −→ [r′4 = r4 + r2 − 4r5] −→ [r∗4 = r′4 − 2r′5 − r′6] ,
r5 −→ [r′5 = r5 − 4r1 + 2r2 + 2r3] −→ [r∗5 = r′5 + 3r∗4] ,
r6 −→ [r′6 = r6 − 16r5 − 6r′4] −→ [r∗6 = r′6 − 6r∗4] .
Then, we get Step(*) and the required results as;

x6 y6 z6 t′6 u′6
c1 c2 c3 c4 c5

r∗1 : | 2 8 1 −1 4 |
r∗2 : | 0 0 0 0 −8 |
r∗3 : | 0 16 0 0 0 |
r∗4 : | −4 0 0 0 0 |
r∗5 : | 0 0 −2 0 0 |
r∗6 : | 0 0 0 0 0 |

∼=

g1 g2 g3 g4 g5

c′1 c′2 c′3 c4 c′5
r∗1 : | 0 0 0 −1 0 |
r∗2 : | 0 0 0 0 −8 |
r∗3 : | 0 16 0 0 0 |
r∗4 : | −4 0 0 0 0 |
r∗5 : | 0 0 −2 0 0 |
r∗6 : | 0 0 0 0 0 |

,

where c′1 = c1 + 2c4 , c′2 = c2 + 8c4 , c′3 = c3 + c4 and c′5 = c5 + 4c4 . By using the same
method as in Chapter 3, we get g1 = x6, g2 = y6, g3 = z6, g4 = t′6−2x6−8y6−z6−4u′6
and g5 = u′6 and then the results follow.

For H8k+4 , k ≥ 1 , we can represent matrix for the calculation of QO−12/qk+2QO4

as

x6 y6 z6 t′6 u′6
qk+2(α) : | 2 · 4k 8 · 16k 4k + 2 · 16k −(−2)k 4 · 16k |r1

qk+2(2A) : | 4 · 4k 0 0 −2(−2)k 0 |r2

qk+2(2B) : | 4 · 4k 16 · 16k 0 0 0 |r3

qk+2(2D2) : | 8 · 4k 0 4 · 4k + 32 · 16k 2(−2)k 64 · 16k |r4

qk+2D : | 4 · 4k 0 2 · 4k + 8 · 16k 0 16 · 16k |r5

qk+2D3 : | 16 · 4k 0 8 · 4k + 128 · 16k 0 256 · 16k |r6

.

Now, we do row operations by changing;
r1 −→ [r∗1 = r1 + 4kr∗5] ,
r2 −→ [r∗2 = r2 − 2r∗1 − r∗5 + r∗3 + r∗4] ,
r3 −→ [r∗3 = r3 + r∗4] ,
r4 −→ [r′4 = r4 + r2 − 4r5] −→ [r∗4 = r′4 − 2r∗5] ,
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r5 −→ [r∗5 = r5 − 4r1 + 2r2 + 2r3 + 3r′4] ,
r6 −→ [r′6 = r6 − 16r5 − 12r′4] −→ [r∗6 = r′6 + 12r∗5] .
Then, we get Step(*) and the required results as;

x6 y6 z6 t′6 u′6
c1 c2 c3 c4 c5

r∗1 : | 2 · 4k 8 · 16k 4k −(−2)k 4 · 16k |
r∗2 : | 0 0 0 0 −8 · 16k |
r∗3 : | 0 16 · 16k 0 0 0 |
r∗4 : | −4 · 4k 0 0 0 0 |
r∗5 : | 0 0 −2 · 4k 0 0 |
r∗6 : | 0 0 0 0 0 |

∼=

g1 g2 g3 g4 g5

c′1 c′2 c′3 c4 c′5
r∗1 : | 0 0 0 −(−2)k 0 |
r∗2 : | 0 0 0 0 −8 · 16k |
r∗3 : | 0 16 · 16k 0 0 0 |
r∗4 : | −4 · 4k 0 0 0 0 |
r∗5 : | 0 0 −2 · 4k 0 0 |
r∗6 : | 0 0 0 0 0 |

,

where c′1 = c1+2(−2)kc4 , c′2 = c2+8(−8)kc4 , c′3 = c3+(−2)kc4 and c′5 = c5+4(−8)kc4 .
By using the same method as in Chapter 3, we get g1 = x6, g2 = y6, g3 = z6, g4 =
t′6 + (−2)k+1x6 + (−8)k+1y6 − (−2)kz6 − 4(−8)ku′6 and g5 = u′6 and then the results
follow.

For H8k, k ≥ 1 , we can represent matrix for the calculation of QO−8/qQO8k as

x4 y4 z4 t4 u4

qk+11 : | a1 16k 4k−1 − 4 · 16k−1 (−2)k−1 + 8 · 16k−1 16k |r1

qk+1A : | 4k 0 0 −(−2)k 0 |r2

qk+1B : | 4k 2 · 16k 0 0 0 |r3

qk+1C : | a2 0 2 · 16k − 4k −4 · 16k −8 · 16k |r4

qk+1D2 : | a3 0 4k − 4 · 16k (−2)k + 8 · 16k 16 · 16k |r5

qk+1D̃3 : | a4 0 3 · 4k − 18 · 16k 36 · 16k 72 · 16k |r6

,

where a1 = 2·4k−1−8·16k−1, a2 = 2·4k+4·16k, a3 = 2·4k−8·16k and a4 = 6·4k−36·16k .
Now, we do row operations by changing;
r1 −→ [r∗1 = r1 + 2 · 4k−1r∗5 + 4k−1r′′4 − 4(−8)k−1r′2] ,
r2 −→ [r′2 = r2 − r∗5] −→ [r∗2 = r′2 − 2r′1 + r′3 + r∗5] ,
r3 −→ [r∗3 = r3 − r∗5] ,
r4 −→ [r′4 = r4 + 8r1 − 4r3 − 4r2] −→ [r′′4 = r′4 + 2r∗5] −→ [r∗4 = r′′4 + 2r∗2] ,
r5 −→ [r′5 = r5 + 2r4] −→ [r′′5 = r′5 + r2 + r′4] −→ [r∗5 = r′′5 − 2r′′6 ] ,
r6 −→ [r′6 = r6 + 9r4] −→ [r′′6 = r′6 + 6r′4 − 2r′′5 ] −→ [r∗6 = r′′6 − 2r∗5] .
Then, we get Step(*) and the required results as
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x4 y4 z4 t4 u4

c1 c2 c3 c4 c5

r∗1 : | 2 · 4k−1 16k 4k−1 (−2)k−1 16k |
r∗2 : | 0 0 −2 · 4k−1 0 −2 · 16k |
r∗3 : | 0 2 · 16k 0 0 0 |
r∗4 : | 0 0 0 0 −4 · 16k |
r∗5 : | 4k 0 0 0 0 |
r∗6 : | 0 0 0 0 0 |

∼=

g1 g2 g3 g4 g5

c′1 c′2 c′3 c4 c′5
r∗1 : | 0 0 0 (−2)k−1 0 |
r∗2 : | 0 0 −2 · 4k−1 0 0 |
r∗3 : | 0 2 · 16k 0 0 0 |
r∗4 : | 0 0 0 0 −4 · 16k |
r∗5 : | 4k 0 0 0 0 |
r∗6 : | 0 0 0 0 0 |

,

where c′1 = c1 +(−2)kc4, c
′
2 = c2 +2(−8)kc4, c

′
3 = c3− (−2)k−1c4 and c′5 = c5− 4k+1c3 .

By using the same method as in Chapter 3, we get g1 = x4, g2 = y4, g3 = z4 +
4k+1u4, g4 = t4 − (−2)kx4 − 2(−8)ky4 + (−2)k−1z4 − 2(−8)ku4 and g5 = u4 and then
the results follow.

Proof of H8k+2 and H8k+6 for all k ≥ 0 are easy because QO−2, QO−6, QO8k+2

and QO8k+6 are free abelian group with one generator and furthermore, qk+1QO8k+ε
∼=

±2k+1QO−8+ε for ε = 2, 6. The final statement in the lemma 5.3.3 is obvious.

§ 5.4 E2 -page

In this section, we will calculate the E2 -page by using the similar process as in Chapter
3. That is by considering E1 1

2 -page as a combination of H∗
I (T ) and H∗

I (QO) and then
determine the connecting homomorphism.

5.4.1 Connecting homomorphism δ1

To get the E2 -page, i.e., H∗
I (R), where R = ko∗(BSD16), we need to determine the

connecting homomorphism in the long exact sequence induced by (5.2);

0 −→ H0
I (T ) −→ H0

I (R) −→ H0
I (QO) δ0

// H1
I (T ) −→ H1

I (R) −→

H1
I (QO) δ1

// H2
I (T ) −→ H2

I (R) −→ 0,

since H i
I(T ) and H i−1

I (QO) are zero for i ≥ 3.
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Determining δ0 in our case is not hard. It is actually a zero map. This is because
H1

I (T ) ∼= H1
I (τ) which concentrate in degree n ≡ 1, 2mod 8 , by corollary 5.2.5 and

lemma 5.2.4, whereas H0
I (QO) concentrate in degree n ≡ 4mod 8 , by lemma 5.3.2.

This gives two exact sequences;

0 −→ H0
I (T ) −→ H0

I (R) −→ H0
I (QO) −→ 0 (5.14)

and

0 −→ H1
I (T ) −→ H1

I (R) −→ H1
I (QO) δ1

// H2
I (T ) −→ H2

I (R) −→ 0. (5.15)

The short exact sequence (5.14) splits because H0
I (QO) is free abelian group over Z ,

by lemma 5.3.2, and hence

H0
I (R) ∼= H0

I (T )⊕H0
I (QO). (5.16)

It is clear that H i
I(R) = 0 for all i ≥ 3. To determine H1

I (R) and H2
I (R), we need to

investigate connecting homomorphism δ1 . If δ1 is determined then we will get;

0 −→ H1
I (T ) −→ H1

I (R) −→ ker(δ1) −→ 0 (5.17)

and
H2

I (R) ∼= coker(δ1). (5.18)

Now, the main task is the calculation of ker(δ1) and coker(δ1). Before doing further
calculation, it is useful to collect the results together, E1 1

2 -page.

5.4.2 E1 1
2 -page

E1 1
2 -page here is the immediate results of the previous two sections. The purpose of

displaying this diagram is to provide all information involved in the calculation of the
E2 -page. Precisely, need to show the motivation of using some facts of ko∗(BSD16) to
determine connecting homomorphism δ1 .
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where[n] := cyclic group of order n , 2r := elementary abelian group of rank r .

Figure 5.1: The E1 1
2 -page of Greenlees spectral sequence for ko∗(BSD16).
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5.4.3 Some structures of H2
I (T ) and H1

I (QO)

So as to investigate the connecting homomorphism δ1 : H1
I (QO) −→ H2

I (T ), it is useful
to understand the module structure of H1

I (QO) and H2
I (T ) over R := ko∗(BSD16).

Recall, however, from lemma 5.2.5 and lemma 5.2.2 that,

H2
I (T ) = H2

I (TO) = Σ4(F2[d2])∨ ⊕ Σ−2(F2[b2, d2])∨ ⊕ (F2[b2, d2])∨.

Here, H2
I (T ) is a module over F2[b2, d2] . Then 2[H1

I (QO)] ⊆ ker(δ1). Thus, it is
enough (in order to investigate δ1 ) to consider H1

I (QO)/2[H1
I (QO)] := M as a module

over F2[b2, d2] as well. To do this, we need to see how b2, d2 act on both H2
I (T ) and M .

In H2
I (T ), we can write its elements explicitly (see, discussion before lemma

5.2.2) as;

Diagram 5.2: Explicit elements of H2
I (T )

[H2
I (T )]n :

−4 −2 0 2 4 6 8 10 12 14 16 18 20 22 · · · ← degree

τd τbd τb τd

d2

τbd

b2

τb

b2
τbd

d2

τbd

b4

τb

d2

τb

b4

τd

d4

τbd

b2d2

τbd

b6

τb

b6

τb

b2d2

τbd

d4

τbd

b4d2

τbd

b8

τb

d4

τb

b4d2

τb

b8

τd

d6

τbd

b2d2

τbd

b6d2

τbd

b10

τb

b10

τb

b2d4

τb

b6d2

Notation: τ := b2d− abd , τd := τd
d2 , τ bd := τd

b2d2 and τ b := τb
b2d2 .

The b2, d2 action on H2
I (T ) is given by;

b2 · τd

d2j = 0, b2 · τbd

b2id2j = τbd

b2i−2d2j , b2 · τb

b2id2j = τb

b2i−2d2j (5.19)

and
d2 · τd

d2j = τd

d2j−2 , d2 · τbd

b2id2j = τbd

b2id2j−2 , d2 · τb

b2id2j = τb

b2id2j−2 , (5.20)

where i, j ≥ 0. This action is clear from the additive structure of H2
I (T ) in the diagram

above.

In M := H1
I (QO)/2[H1

I (QO)], the action of b2(= [0, 0, 0, 0, 4, 4]) and d2(=
[16,−2, 4,−2, 0, 4]) are obtained easily by calculation on character table of lemma 5.3.3,
which we have;

• b2M−4 = 0 and d2M−4 = 0,

• b2ỹ0 = x̃−2 and d2M0 = 0
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• b2ỹ2 = ỹ0, b
2x̃2 = 2x̃0 = 0 = b2z̃2 = b2t̃′2 = b2ũ′2 and d2α̃2 = α̃−2 = x̃−2 for each

α ∈ {x, y, z, t′} whereas d2ũ′2 = ũ′−2 = 0,

• b2M6 = 0 and d2M6 = 0 since M−2 = 0,

• For k ≥ 1, b2x̃4k = 2x̃4k−2 = 0, b2ỹ4k = ỹ4k−2 , b2z̃4k = b2t̃4k = 0,b2ũ4k = x̃4k−2

and d2α̃4k = α̃4(k−1) for each α ∈ {x, y, z, t, u} ,
• For k ≥ 1, b2M8k+2 = 0 and d2w̃4k+1 = w̃4(k−1)+1 ,

• For k ≥ 1, b2x̃4k+2 = 2x̃4k = 0, b2ỹ4k+2 = ỹ4k , b2z̃4k+2 = b2t̃′4k+2 = b2ũ′4k+2 =
0 and d2α̃4k+2 = α̃4k−2 for each α ∈ {x, y, z} , d2α̃′4k+2 = α̃′4k−2 for each
α ∈ {t, u} ,

• For k ≥ 1, b2M8k+6 = 0 and d2w̃′4k+3 = w̃′4(k−1)+3 .

As we have done in Chapter 3, instead of finding δ1 directly, we prefer to consider

(δ1)∨ : [H2
I (T )]∨ −→ [H1

I (QO)]∨.

Here, [H2
I (T )]∨ and M∨ are also module over F2[b2, d2] . For the b2, d2 action on

them can be obtain easily from the structure of H2
I (T )] and M together with the

help of lemma 3.4.1. However, we need to determine δ1
−2 : M−4 −→ [H2

I (T )]−4 ,
δ1
0 : M0 −→ [H2

I (T )]0 and δ1
1 : M2 −→ [H2

I (T )]2 , see E1 1
2 -page, first. We are going to

deal with this in the next subsection.

5.4.4 ko∗(BG) and differential

Recall from E1 1
2 -page that δ1

−2 and δ1
0 are homomorphisms from Z/2 to itself. These

maps are actually isomorphisms because of the connectivity of ko∗(BG), precisely,
kon(BG) = 0 for all n < 0. For δ1

1 , we need more work to do. First, note that
ko0(BG) ∼= H0(BG;Z) since BG is a connected space. Indeed, this isomorphism
comes from the long exact sequence induced by the cofibre sequence (killing homotopy
group)

ko < 1 >−→ ko −→ ko0
↓ = ko(−∞, 0] = HZ,

smashing with BG and applying π∗ together with the fact that π0(ko < 1 > ∧BG) =
0 = π−1(ko < 1 > ∧BG) and π0(ko ∧ BG) := ko0(BG) and π0(HZ ∧ BG) :=
H0(BG;Z), where ko < 1 > is 1-connected cover of spectrum ko . This implies that

ko0(BSD16) ∼= Z
and hence δ1

1 can be possibly only a zero map or an isomorphism map. It depends on
whether d2 : [H0

I (R)]1 −→ [H2
I (T )]2 is a zero map or not.

By using the fact that δ1
−2 and δ1

0 are isomorphisms, (i.e., δ1
−2(x̃−2) = τd and

δ1
0(ỹ0) = τ bd ), and F2[b2, d2]-module structure of H2

I (T ) and H1
I (QO), we can con-

clude that δ1
2 is surjective. This implies that

ko2(BSD16) ∼= (Z/2)3 < η̃2[B], η̃2[D̃3], η̃2([A] + [D2]) >, (5.21)
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which contains eight elements of order two. Fortunately, we have;

Proposition 5.4.1. For G = SD16 , the natural map η∗ : ko1(BG) −→ ko2(BG) is
an epimorphism.

Proof. The cofibre sequence Σko
η // ko −→ ku induces the long exact sequence;

· · · −→ kon−1(BG) −→ kon(BG) −→ kun(BG) −→ kon−2(BG) −→ kon−1(BG) −→ · · · .

In particular, for G = SD16 and n = 2, we have

· · · −→ ko1(BG)
η∗ // ko2(BG)

r∗ // ku2(BG)
δ∗ // ko0(BG) −→ ko1(BG) −→ · · · .

Since ku2(BSD16) ∼= Z (by Theorem 3.5.1), ko2(BSD16) is finite generate (by (5.21))
and r∗ is homomorphism, r∗ is a zero map. Therefore η∗ is an epimorphism.

The consequence of this lemma is that;

Corollary 5.4.2. δ1
1 is an isomorphism.

Proof. Suppose δ1
1 is a zero map. Then d2 is an isomorphism and hence E0,1∞ =

(Z/2)2 . Consider the commutative diagram of the natural map η∗ : ko1(BSD16) −→
ko2(BSD16) below;

0 // E−1,2∞ = Z/2

η′∗=0

²²
0 // E−1,3∞ = 0

// ko1(BSD16)

η∗
²²

// ko2(BSD16)

// E0,1∞ = (Z/2)2

η′′∗
²²

// E0,2∞ = (Z/2)3

// 0

// 0

This diagram treats that η∗ can not be epimorphism which contradicts to the Propo-
sition 5.4.1. Hence, δ1

1 is an isomorphism as required.

Now, we already have the explicit maps

(δ1
−2)

∨(τ−d) = (x̃−2)−1 , (δ1
0)
∨(τ−bd) = (ỹ0)−1 and (δ1

1)
∨(τ−b) = (w̃1)−1 . (5.22)

Here τ−d, τ−bd and τ−b denote the dual of τd, τ bd and τ b respectively and sim-
ilarly for (α̃i)−1 denote the dual of α̃i . We use the same process as in Chapter 3 to
determine the module structure of [H2

I (T )]∨ and [H1
I (QO)]∨ over F2[b2, d2] . Then 5.22

and module structure yield all (δ1
i )
∨ which we record as;

(δ1)∨(d2τ−d) = (x̃2)−1 + (ỹ2)−1 + (z̃2)−1 (5.23)
(δ1)∨(b2τ−bd) = (ỹ2)−1 (5.24)

(δ1)∨(b2id2jτ−b) = 0,∀i ≥ 1, j ≥ 0 (5.25)
(δ1)∨(d2jτ−bd) = (ỹ4j)−1 + (ũ4j)−1,∀j ≥ 1 (5.26)
(δ1)∨(d2jτ−b) = (w̃4j+1)−1, ∀j ≥ 1 (5.27)

(δ1)∨(b4(k−i)d2iτ−bd) = (ỹ4k)−1, ∀k ≥ 2, k > i ≥ 0 (5.28)
(δ1)∨(b4(k−i)−2d2iτ−bd) = (ỹ4k−2)−1,∀k ≥ 2, k > i ≥ 0 (5.29)

(δ1)∨(d2jτ−d) = (t̃′4j−2)−1 + (x̃4j−2)−1 + (ỹ4j−2)−1 + (z̃4j−2)−1(5.30)
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where the last equation applies for j ≥ 2.

Finally, after applying lemma 3.4.1 on (δ1)∨ , we can find ker(δ1) and coker(δ1) =
H2

I (R) as:

Lemma 5.4.3. As an abelian group, [ker(δ1)]i = 0 for i < 4 or i is odd, and

• [ker(δ1)]4 = Z/4⊕Z/8⊕Z/8 generated by x̃2 + z̃2 , ũ′2 and 2ỹ2 respectively.

• [ker(δ1)]6 = Z/2 generated by w̃′3 .

• [ker(δ1)]8 = Z/2⊕Z/4⊕Z/16⊕Z/32 generated by z̃4 + 4ũ4 , x̃4 , 2ỹ4 and 2ũ4

respectively.

• [ker(δ1)]10 = Z/2 generated by 2w̃5 .

• [ker(δ1)]12 = Z/8⊕Z/16⊕Z/128⊕Z/128 generated by z̃6 + t̃6 , z̃6 + x̃6 , ũ′6 and
2ỹ6 respectively.

• For k ≥ 2, [ker(δ1)]8k = Z/2k−1⊕Z/2·4k−1⊕Z/4k ⊕Z/16k ⊕Z/2·16k generated

by ˜̂t4k , z̃4k + 4k+1ũ4k , x̃4k , 2ỹ4k and 2ũ4k respectively.

• For k ≥ 2, [ker(δ1)]8k+2 = Z/2k generated by 2w̃4k+1 .

• For k ≥ 2, [ker(δ1)]8k+4 = Z/2k−1⊕Z/2 · 4k ⊕Z/4k+1⊕Z/8 · 16k ⊕Z/8 · 16k

generated by 2t̃4k+2 , t̃4k+2+ z̃4k+2 , x̃4k+2+ z̃4k+2 , ũ′4k+2 and 2ỹ4k+2 respectively.

• For k ≥ 1, [ker(δ1)]8k+6 = Z/2k+1 generated by w̃′4k+3 .

Furthermore, as an abelian group, [H2
I (R)]i = 0 for i < 6 or i is odd, and

• [H2
I (R)]6 = Z/2 generated by τb

b2
,

• [H2
I (R)]8 = 0,

• [H2
I (R)]10 = Z/2 generated by τb

b4
,

• [H2
I (R)]12 = Z/2 generated by τbd

b6
+ τbd

b2d2 ,

• [H2
I (R)]14 = (Z/2)2 generated by τb

b6
and τb

b2d2 ,

• [H2
I (R)]16 = Z/2 generated by τbd

b8
+ τbd

b4d2 ,

• For k ≥ 2, [H2
I (R)]8k+2 = (Z/2)k generated by { τb

b4(k−i)d2i |0 ≤ i ≤ k − 1},

• For k ≥ 2, [H2
I (R)]8k+4 = (Z/2)k generated by { τbd

b4(k−i)+2d2i + τbd

b4(k−i−1)+2d2(i+1) |0 ≤
i ≤ k − 1},

• For k ≥ 2, [H2
I (R)]8k+6 = (Z/2)k+1 generated by { τb

b4(k−i)+2d2i |0 ≤ i ≤ k},
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• For k ≥ 3, [H2
I (R)]8k+8 = (Z/2)k generated by { τbd

b4(k−i+1)d2i + τbd

b4(k−i)d2(i+1) |0 ≤
i ≤ k − 1},

Now, we reach to E2∗ -page. Here, E2∗ -page denotes the E2 -page as normal but
with the assumption that the short exact sequence (5.17) split (i.e., up to the additive
extension problems). The notation ⊕∗ refers to the direct sum of groups as normal but
it comes with the assumption that the extension problems associated to the groups are
trivial which we will determine them later.
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where[n] := cyclic group of order n , 2r := elementary abelian group of rank r .

Figure 5.3: The E2∗ -page of Greenlees spectral sequence for ko∗(BSD16).
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5.4.5 Extension problems and E2 - page

In order to get the E2 -page, we need to solve the extension problems which occur in
degree 2 + 8k, k ≥ 1, of the second column in the E2∗ -page; viz:

0 −→ [H1
I (T )]2+8k −→ [H1

I (R)]2+8k −→ [ker(δ1)]2+8k −→ 0. (5.31)

The strategy to solve this problems is using the action of some elements in R , precisely
the action of β ∈ R8 and u4 ∈ R−8 over [H1

I (T )]2+8k and [ker(δ1)]2+8k . Recall from
lemma 5.2.5, lemma 5.2.4 and lemma 5.4.3 that

[H1
I (T )]2+8k =

{
Z/2 < η̃2[u4]/(u4)2 >, if k = 1;
(Z/2)2 < η̃2[u4]/(u4)k+1, η̃2[t4]/(u4)k+1 >, if k ≥ 2,

and [ker(δ1)]2+8k = Z/2k generated by 2w̃4k+1 = w3

qk+1 + QO−6 for all k ≥ 1.

It is not hard to see that

β · (2w̃4k+1) = v4(2w̃4k+1) = ±2[2w̃4(k+1)+1] (5.32)

and

β · η̃2[u4]/(u4)2 = 16η̃2[u4]/(u4)3 + 9η̃2[t4]/(u4)3 − 3η̃2[z4]/(u4)3 − 3η̃2[x4]/(u4)3

= η̃2[t4]/(u4)3,
β · η̃2[t4]/(u4)2 = −2 · η̃2[t4]/(u4)3 = 0,

and also in general we have;

β · η̃2[u4]/(u4)k+1 = η̃2[t4]/(u4)k+2 (5.33)

β · η̃2[t4]/(u4)k+1 = 0 (5.34)

for each k ≥ 1.

We firstly consider on [H1
I (R)]10 and [H1

I (R)]18 that whether they split or not
by using the action of β . There are four candidates to investigate, i.e., all split, all are
non-split, [H1

I (R)]10 split but [H1
I (R)]18 is non-split and [H1

I (R)]18 split but [H1
I (R)]10

is non-split. We claim that the two latter cases can not be possible by considering on
the commutative diagrams below;

degree 10: 0 //

degree 18: 0 //

Z/2

β′
²²

i1 // Z/2⊕ Z/2

β

²²
(Z/2)2

i2 // Z/2⊕ Z/8

p1 // Z/2

β′′
²²p2 // Z/4

// 0 : split

// 0 : non-split

(5.35)

and

degree 10: 0 //

degree 18: 0 //

Z/2

β′
²²

i1 // Z/4

β
²²

(Z/2)2
i2 // (Z/2)2 ⊕ Z/4

p1 // Z/2

β′′
²²p2 // Z/4

// 0 : non-split

// 0 : split

(5.36)
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In diagram (5.35), 4g ∈ Z/8 must be detected by i2 and β , where g is the
generator of Z/8. This means p2(4g) = 0 whereas β′′(p1(β−1(4g))) 6= 0, since β′′

is injective, by (5.32). Thus these two facts lead to the contradiction by commutative
property of the diagram and hence diagram (5.35) can not happen. For diagram (5.36),
the injectivity of β′ and β′′ yields the injectivity of β . Under this monomorphism, for
generator g′ ∈ Z/4 of degree 10, p2(β(g′)) has order 4 whereas β′′(p1(g′)) has order 2
which contradicts to the commutative property of the diagram. So, our claim is true.

Nonetheless, in higher degree k ≥ 2, if [H1
I (R)]2+8k is non-split, then we can

not conclude about [H1
I (R)]2+8(k+1) by using only the action of β because β is not

monomorphism (since β′ is not injective in high degree, by (5.34)). However, for k ≥ 2,

2+8k: 0 //

2+8(k+1): 0 //

(Z/2)2

β′
²²

i1// (Z/2)2 ⊕ Z/2k

β
²²

(Z/2)2
i2 // Z/2⊕ Z/2k+2

p1 // (Z/2)k

β′′
²²

p2// Z/2k+1

// 0 : split

// 0 : non-split

(5.37)
still can not be possible, by similarly reason as the case k = 1. Precisely, the generator
g ∈ Z/2k in degree 2 + 8k must not be zero via β′′ ◦ p1 because β′′ is injective. By
commutative diagram, β(g) 6= 0 ∈ Z/2k+1 . It follows that β(g) = 4h where h is the
generator of Z/2k+1 , by homomorphism property. Thus 2k−1g is zero via p2 ◦ β but
not zero via β′′ ◦ p1 which is a contradiction.

Next, we use the action of u4 . It is not hard to see that

u4 · η̃2[u4]/(u4)k+2 = η̃2[u4]/(u4)k+1 (5.38)
u4 · η̃2[t4]/(u4)k+2 = η̃2[t4]/(u4)k+1. (5.39)

In other words, u4 : [H1
I (T )]2+8(k+1) −→ [H1

I (T )]2+8k is an isomorphism for all k ≥ 2.
This implies that, for k ≥ 2,

[H1
I (R)]2+8k and [H1

I (R)]2+8(k+1) can not be both non-split. (5.40)

This is because if both of them are non-split, we have the commutative diagram as;

2+8(k+1): 0 //

2+8k: 0 //

(Z/2)2

u′4
²²

i1 // Z/2⊕ Z/2k+2

u4

²²
(Z/2)2

i2 // Z/2⊕ Z/2k+1

p1// (Z/2)k+1

u′′4
²²

p2 // Z/2k

// 0 : non-split

// 0 : non-split

(5.41)
and then 0 = ker(i2◦u′4) = ker(u4◦i1) = ker(u4)∩(Z/2)2 6= 0, which is a contradiction.

By using the impossibility of the diagram (5.35), (5.36), (5.37) and the fact (5.40),
we can conclude that the short exact sequence for [H1

I (R)]2+8k split for each k ≥ 3.
More precisely,

if the short exact sequence for [H1
I (R)]10 splits, then all split. (5.42)
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Lemma 5.4.4. For R = ko∗(BSD16) and I which is the augmentation ideal of R ,

[H1
I (R)]10 = Z/2⊕ Z/2.

Proof. Consider the commutative diagram below;

0 //

0 //

R10

πu

²²

i1 //

QO10

i2 //

R[ 1
q′ ]10

π′u
²²

p1 // [H1
(q′)(R)]10

π′′u
²²

QO[1q ]10
p2 // [H1

(q)(QO)]10

// 0

// 0,

(5.43)

where q = πu(u4 + y4) ∈ πu(ko8(BSD16)) in lemma 5.3.1 and q′ is the pre-image of
q under πu . We need to show that there is some elements of order 2 in [H1

(q′)(R)]10

detects the generator [g] of ker(δ1 : [H1
(q)(QO)]10 −→ H2

I (T )) = Z/2, where g = 2w3
q2 ∈

QO[1q ]10 . By definition, QO = πu(R), then we can find g̃ ∈ R[ 1
q′ ] in which

π′′u([g̃]) = [g].

Note that [2g] = 0, then 2g ∈ Im(i2) and in fact 2g = v4θ
1 where v4θ = [0, 2c, 0,−2c, 0, 0],

by the explicit generator in theorem 4.4.1. So, there exist βθ̃ ∈ R which πu(βθ̃) = v4θ .
Now, we have i1(βθ̃) and 2g̃ has the same image, (viz; 2g ), under π′u , by commutative
property of diagram. To conclude that i1(βθ̃) = 2g̃ , we need to check that they have
the same image in H∗(BSD16;F2)[ 1

q′ ] . This is immediate because 2 and β are zero in
H∗(BSD16;F2)[ 1

q′ ] . Hence,

2g̃ =
βθ̃

1
,

and thus [g̃] has order 2. Note further that H1
I (T ) = H1

(u4)(T ) = H1
(q′)(T ), since

q′ = u4 +y4 and y4 ∈ annπ0(R)(τ), i.e.,
√

(u4) =
√

(q′). Then the long exact sequence
obtained by applying H∗

(q′) to (5.2),(G = SD16 ), splits to give the short exact sequence

0 −→ [H1
(q′)(T )]10 −→ [H1

(q′)(R)]10 −→ [H1
(q)(QO)]10 −→ 0,

because [H0
(q)(QO)]10 = 0. Also, the natural map (see remark 3.1.2 in Chapter 3)

η : Hs
I+J(R; M) −→ Hs

I (R; M) yields the commutative diagram;

0 //

0 //

[H1
I (T )]10

∼=
²²

i1 //

[H1
(q′)(T )]10

i2 //

[H1
I (R)]10

η

²²

p1 // [H1
I (QO)]10

∼=
²²

[H1
(q′)(R)]10

p2 // [H1
(q)(QO)]10

δ1
// [H2

I (T )]10

// 0,

(5.44)

which treats η to be a monomorphism. Recall that [H1
(q′)(T )]10 = Z/2 and [H1

(q)(QO)]10 =
Z/4. If [H1

(q′)(R)]10 = Z/8, then it contains one element of order 2, namely [g̃] , and
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it must be detected by the image of the generator of [H1
(q′)(T )]10 under i2 . This

contradicts the fact that [g̃] has order 2 sending to [g] ∈ [H1
(q)(QO)]10 and hence

[H1
(q′)(R)]10 = Z/2⊕ Z/4.

Let (g′, 0) and (0, a) be the generator of [H1
(q′)(R)]10 in which the order of (g′, 0)

and (0, a) are 2 and 4 resp. Now, we see that [g̃] must be either (0, 2a) or (g′, 2a).
Suppose, [H1

I (R)]10 = Z/4 generated by h , then 2h must be zero via p1 . Since
η is an monomorphism, η(h) must be either (0, a) or (g′, a) which the images of
them in [H1

(q)(QO)]10 are of order 4. The contradiction happens with commutative
property of diagram 5.44 again, because 2h will be not zero via this way and hence
[H1

I (R)]10 = Z/2⊕ Z/2 as required.

The immediate results from lemma 5.4.4 and the assertion (5.42) is;

Corollary 5.4.5. The E2 -page of Greenlees spectral sequence for ko∗(BSD16) is the
E2∗ -page in Figure 5.3.

§ 5.5 The results

5.5.1 E∞− page

It is left only to determine the differential d2 so as to get the E∞ -page. The possible
non-zero differential starting from [H0

I (R)]n to [H2
I (R)]n+1 , occurs in only degree n

being congruent to 1 modulo 8, for n ≥ 9.

We start to justify d2 in degree 9 first by using the action of R over [H0
I (R)]∗ and

[H2
I (R)]∗ . Recall that [H0

I (R)]∗ is a module over R via πu and [H2
I (R)]∗ is a module

over R via ϕ in diagram (5.5). Here, we make use the action of x2+y2 which its image
under ϕ is b2 . By lemma 5.4.3, [H2

I (R)]6 = Z/2 < τb

b2
> and [H2

I (R)]10 = Z/2 < τb

b4
>

which is not hard to see that b2 : [H2
I (R)]10

∼= // [H2
I (R)]6 is an isomorphism. Now,

consider the commutative diagram below;

(Z/2)4 = [H0
I (R)]9

d2 //

b2

²²

[H2
I (R)]10

b2

²²
0 = [H0

I (R)]5
d2 // [H2

I (R)]6.

The commutative property of this diagram treats d2 to be zero in degree 9.

Next, we investigate degree 17 by using the same method as above. So, to con-
clude that d2 : [H0

I (R)]17 −→ [H2
I (R)]18 is a zero map, it is left only to check whether

that b2 : [H2
I (R)]18

// [H2
I (R)]14 is an isomorphism, because [H0

I (R)]13 = 0. It is



CHAPTER 5. REAL CONNECTIVE K-HOMOLOGY 167

does isomorphism since [H2
I (R)]14 = (Z/2)2 < τb

b6
, τb

b2d2 > and [H2
I (R)]18 = (Z/2)2 <

τb

b8
, τb

b4d2 > , by lemma 5.4.3.

For higher degrees, n = 17 + 8k for k ≥ 1, we use the action of β . It is
simple to see that multiplying by β gives an isomorphism from [H0

I (R)]17+8(k−1) to
[H0

I (R)]17+8k . Since d2 departing from degree 17, i.e. E2
17,0 , is a zero map, d2 departing

from degree n = 17+8k for k ≥ 1, are also zero maps. Therefore E∞ -page is E2 -page.
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where[n] := cyclic group of order n , 2r := elementary abelian group of rank r .

Figure 5.4: The E∞ -page of Greenlees spectral sequence for ko∗(BSD16).
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5.5.2 Results and Extension problems

The results can be read from the E∞ -page directly with the filtration given by

kon(BSD16) = Fn
0 ⊇ Fn

1 ⊇ Fn
2 ⊇ Fn

3 = 0,

with Fn
0 /Fn

1
∼= E0,n∞ , Fn

1 /Fn
2
∼= E−1,n+1∞ and Fn

2
∼= E−2,n+2∞ . Precisely, we use two

short exact sequences to determine kon(BSD16), viz;

0 −→ Fn
1 −→ kon(BSD16) −→ E0,n

∞ −→ 0,

and
0 −→ E−2,n+2

∞ −→ Fn
1 −→ E−1,n+1

∞ −→ 0.

From this fact, we see that there are extension problems in degree n ≥ 8 being congru-
ent to 0, 1, 2 modulo 8. In this chapter, we will solve such problems in degree 8k + 2
for all k ≥ 1. For resolving the extension problems in degree 8k and 8k + 1, we wait
to the next chapter.

Solving extension problems in degree 8k + 2 for all k ≥ 1.

In these degrees, we consider the commutative diagram below;

0 //

0 //

E−1,8k+2∞

²²

//

E−2,8k+4∞ //

ko8k+1(BSD16)

η

²²

p1 // E0,8k+1∞

η̃
²²

ko8k+2(BSD16)
p2 // E0,8k+2∞

// 0

// 0,

where the homomorphism η and η̃ mean multiplying by η and η̃ respectively. By
isomorphism E−1,8k+ε∞ ∼= [H1

(u4)(τ)]8k+ε for each ε = 1, 2 (since E0,8k+ε

1 1
2

= E0,8k+ε∞ )

and by lemma 5.2.4, we get that η̃ : E−1,8k+1∞ −→ E−1,8k+2∞ is an isomorphism. The
consequence is that we can define the homomorphism s : E0,8k+2∞ −→ ko8k+2(BSD16)
by setting

s(η̃(p1(g))) := η(g),

for all g ∈ ko8k+1(BSD16) which is easy to check that p2 ◦ s = id
E0,8k+2
∞

. Thus, by
splitting lemma, the second short exact sequence in the above diagram is additively
split and therefore

ko8k+2(BSD16) ∼= E0,8k+2
∞ ⊕ E−2,8k+4

∞ . (5.45)

We collect all results we have so far as;
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Theorem 5.5.1. Additively, ko∗(BSD16) can tabulate as follows;

kon(BSD16) n

[2k]⊕ [2 · 4k+1]⊕ [4k+2]⊕ [8 · 16k+1]⊕ [8 · 16k+1] 8k + 11 ≥ 19
[2]⊕5 ⊕ 2k+1 8k + 10 ≥ 18

< 27 ⊕ [2k+1] > 8k + 9 ≥ 17
Z · βk+1ρ⊕ < [2]⊕2 ⊕ 2k+1 > 8k + 8 ≥ 16

[2k]⊕ [2 · 4k]⊕ [4k+1]⊕ [16k+1]⊕ [2 · 16k+1] 8k + 7 ≥ 15
2k 8k + 6 ≥ 14

[2k+1] 8k + 5 ≥ 13
Z · βkα⊕ 2k+1 8k + 4 ≥ 12

[8]⊕ [16]⊕ [128]⊕ [128] 11
[2]⊕4 ⊕ 2 10

< 25 ⊕ [2] > 9
Z · βρ⊕ < [2]⊕ 2 > 8
[2]⊕ [4]⊕ [16]⊕ [32] 7

0 6
[2] 5

Z · α⊕ 2 4
[4]⊕ [8]⊕ [8] 3

[2]⊕3 2
[2]⊕3 1
Z · ρ 0

,

where β is the Bott element in KO8(pt), ρ is the first Chern class of regular represen-
tation of SD16 , α = 2ρ and [n] means cyclic group of order n, 2k means elementary
abelian two group of rank k and < 2a ⊕ [2b] > means abelian groups of order 2a+b

which is not determined yet.

In order to see more precisely structure, e.g., η -multiples, we will use Bockstein
spectral sequence to calculate ko∗(BSD16) from ku∗(BSD16) in Chapter 3 and then
compare both results. We postpone this calculation and the remaining extension prob-
lems to the next chapter.



Chapter 6

ko∗(BSD16) by η-Bockstein
spectral sequence

In this chapter, we will repeat the calculation of ko∗(BSD16) by using the η -Bockstein
spectral sequence with input ku∗(BSD16). That is;

E∗,∗
1 = ku∗(BSD16)[η̃] ⇒ ko∗(BSD16).

The main purpose is to investigate η -multiple elements in ko∗(BSD16), resolve the
extension problems remaining from the last chapter and to give confidence in our cal-
culation, i.e., both ways of the calculation (i.e., via ko∗(BSD16) by using the Greenlees
spectral sequence and via ku∗(BSD16) by using the η -Bockstein spectral sequence)
must agree. However, the extension problem in degree 8k + 1 for all k ≥ 1 is still to
be a problem by this calculation, but fortunately, this problem can be sorted out by
the results of D.Bayen thesis, [7].

§ 6.1 The strategy of calculation

For E1 -page, at the zero line, it is simply to lay ku∗(BSD16) down degree by degree.
To fill elements in positive filtration, we merely copy elements in the zero line along
diagonal via η̃ (which has bidegree (1, 1)). So as to calculate d1 differential, we need
to work precisely on elements of ku∗(BSD16). Recall from chapter 4 that ku∗(BSD16)
is separated by two parts, i.e., even degree part and odd degree part. Evidently, we
have, (in this chapter we refer R to be ku∗(BSD16));

ku2k−1(BSD16) ∼= H1
I (R)2k,

and
ku2k(BSD16) ∼= Z[vk]⊕ [H2

I (R)]2k+2.

Actually, in even degree part, we have a short exact sequence;

0 −→ [H2
I (R)]∗+2 −→ ku∗(BSD16) −→ [H0

I (R)]∗ −→ 0. (6.1)

170
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Note further that H1
I (R)2k and [H0

I (R)]2k for all k ≥ 0 come from QU part, the
image of ku∗(BSD16)) in KO∗(BSD16). Patently, [H0

I (R)]2k ⊆ QU2k and H1
I (R)2k

is a quotient of (QU [1p ])2k . To identify the d1 differential on these parts, we now recall
lemma 4.1.1 which asserts that

d1 =
{

1 + τ, if d1 departs from QU4k+2 ;
1− τ, if d1 departs from QU4k.

(6.2)

This operation is also compatible with QU [1p ]2k ³ H1
I (R)2k , see [13]. Hence, we have;

d1 =
{

1 + τ, if d1 departs from ku4k−3(BSD16) ;
1− τ, if d1 departs from ku4k−1(BSD16).

(6.3)

Clearly, d1 departing from [H0
I (R)]2k ⊆ QO2k is the same map as (6.2).

For the differential on the [H2
I (R)]∗ part, we note that this part is calculated from

TU ⊆ H∗(BSD16;F2) by using the Greenlees spectral sequence. Thus [H2
I (R)]∗+2

can be identified to be the subset of H∗(BSD16;F2). Furthermore, we have that
d1 of η -Bockstein spectral sequence on TU ⊆ H∗(BSD16;F2) is Sq2 operation, by
lemma 4.1.1, and H∗(BSD16;F2) is the dual of H∗(BSD16;F2). Therefore, d1 of η -
Bockstein spectral sequence on [H2

I (R)]∗+2 ↪→ H∗(BSD16;F2) is the dual of Sq2 , see
[13]. Namely,

d1 = (Sq2)∨ on [H2
I (R)]∗ , (6.4)

where (Sq2)∨ is the dual operation of Sq2 .

As the previous technique, we calculate d1 on kueven(BSD16) via the long exact
sequence induced by (6.1). Precisely, we calculate d1 differential on [H2

I (R)]∗ , [H0
I (R)]∗

and kuodd(BSD16) by using (6.4), (6.2), (6.3), respectively and record as E1 1
2
-page.

After we determine the connecting homomorphism in the long exact sequence, we ob-
tain E2 -page. Finally, the results in Theorem 5.5.1 treat the differential d2 and d3 and
then we obtain E∞ -page as required.

We now start with the even degree part.

§ 6.2 The d1 differential on kueven(BSD16)

Differential d1 on [H0
I (R)]∗ is simple by (6.2) which gives;

Z([H0
I (R)])2k := ker(d1 : [H0

I (R)]2k −→ [H0
I (R)]2k−2) =

{
Z, if k is even;
0, if k is odd,

(6.5)

and

H([H0
I (R)])2k := Z([H0

I (R)])2k/d1([H0
I (R)]2k+2) =

{
Z/2, if k is even;
0, if k is odd.

(6.6)

So, the main task in this section is to compute d1 on [H2
I (R)]∗ . To do this, we need

to see the embedding iH∗ : [H2
I (R)]∗+2 ↪→ H∗(BSD16;F2) explicitly and then use the

action of (Sq2)∨ on H∗(BSD16;F2) to determine such d1 .
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6.2.1 Explicit embedding of [H2
I (R)]∗+2 in H∗(BSD16;F2)

To gain the main objective, we need to see the elements of [H2
I (R)]∗+2 explicitly first.

This is automatic by recalling from lemma 3.4.3 that H2
I (R) = (F2[b, d])∨(ν), where

ν = τ
b3d2 . In other words, we have;

[H2
I (R)]∗ ∼= F2[

1
y2

,
1
P

] <
1

Py2
> . (6.7)

However, to be more general, we will make explicit such an embedding of H2
(y,P )(H

∗(BSD2n ;F2))
at E∞ -page of the Greenlees spectral sequence in H∗(BSD2n ;F2). D.Benson calcu-
lated this by using the Greenlees spectral sequence in [9] (page 6-8). We record his
results by adapting notation to suit our notation as;

Lemma 6.2.1. (cf.[9]) Let R′ = H∗(BSD2n ;F2) = F2[x, y, u, P ]/(x2+xy, x3, xu, (x2+
y2)P +u2) for n ≥ 4. We have the augmentation ideal I = ker(ϕ : R′ −→ F2) = (y, P )
and short exact sequence;

0 −→ [H2
I (R′)]k+2 −→ Hk(BSD2n ;F2) −→ [H1

I (R′)]k+1 −→ 0,

where H2
I (R′) = F2[ 1y , 1

P ] < u
Py , 1

Py > and H1
I (R′) = F2[ 1

P ] < x, x2 >. Precisely,
Hk(BSD2n ;F2) ∼= [H1

I (R′)]k+1 ⊕ [H2
I (R′)]k+2 , for all k ≥ 0.

Note that H2
(y,P )(H

∗(BSD2n ;F2)) and H∗(BSD2n ;F2) are module over R′ via
cap product. So, we can determine the embedding by using the action of R′ on both
sides first and then follow by using comparison on their annihilators. This is possible,
because we have;

Lemma 6.2.2. For vector space V over a field F of finite dimension n and X a
subspace of V , we have;

annV (annV ∗(X)) = X,

where V ∗ is the dual space of V .

Proof. First, choose a basis {v1, v2, ..., vs} of X and extend to a basis for V as {vi|i =
1, 2, ..., n} . Let {v∗i |i = 1, 2, ..., n} be the natural dual basis. It is simple to see that

annV ∗(X) = {θ ∈ V ∗|θ(v) = 0,∀v ∈ X}
= Span({v∗i |i ∈ {s + 1, s + 2, s + 3, ..., n}}),

since v∗i (vj) = δij , (the Kronecker delta). Then, we get;

annV (annV ∗(X)) = {w ∈ V |θ(w) = 0,∀θ ∈ annV ∗(X)}
= {w ∈ V |θ(w) = 0,∀θ ∈ Span({v∗i |i ∈ {s + 1, s + 2, s + 3, ..., n}})}
= Span({vj |j ∈ {v1, v2, ..., vs}})
= X,

which completes the proof.
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The consequence of this lemma is that;

Proposition 6.2.3. If G is a group with R′ := H∗(BG;F2) finite generated in each
degree, then for g, h ∈ Hk(BG;F2), for some k , we have;

annR′(g) = annR′(h) ⇔ g = h.

Proof. By using lemma 6.2.2 apply to V = Hk(BG;F2) over the filed F2 , we obtain

annR′(g) = annR′(h) ⇒ [annR′(g)]k = [annR′(h)]k
⇒ annR′k

(g) = annR′k
(h)

⇒ ann(R′k)∗annR′k
(g) = ann(R′k)∗annR′k

(h)
⇒ SpanF2({g}) = SpanF2({h})
⇒ g = h,

as required, since Hk(BG;F2) = (Hk(BG;F2))∗ .

From the proof of this proposition, we see that it is enough to calculate [annR′(g)]k =
annR′k

(g) and [annR′(h)]k = annR′k
(h) to conclude that g = h . Thus, by this facts,

lemma 6.2.1 and straightforward calculation, we get;

Lemma 6.2.4. For each k ≥ 0, [H2
I (H∗(BSD2n ;F2))]k+2 is generated by

{ u

P j+1yk−4j+1
|0 ≤ j ≤ L(

k

4
), k ≥ 0} ∪ { 1

P jyk−4j+2
|1 ≤ j ≤ L(

k + 1
4

), k ≥ 3},

with the explicit inclusion to Hk(BSD2n ;F2) given by

u

P j+1yk−4j+1
7→ (P jyk−4j)∨

1
P jyk−4j+2

7→ (uP j−1yk−4j+1)∨,

where L(r) := greatest integer which is less than or equal to r and (α)∨ ∈ Hk(BSD2n ;F2)
is the natural dual of α ∈ Hk(BSD2n ;F2).

In particular, by (6.7) and lemma 6.2.4 above, we have that [H2
I (R)]k+2 is

zero unless k is even. Also, for any even integer k ≥ 4, the explicit inclusion of
[H2

I (R)]k+2 ↪→ Hk(BSD2n ;F2) is given by

1
P jyk−4j+2

7→ (uP j−1yk−4j+1)∨. (6.8)

Now, we ready to calculate d1 on [H2
I (R)]∗ which we do this in the next subsection.
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6.2.2 d1 on [H2
I (R)]∗+2

Now, we pay attention to the elements in H∗(BSD2n ;F2) being of the form (uP j−1yk−4j+1)∨

(since (6.8)) for each even integer k ≥ 4 and regard other elements as zero. To find
(Sq2)∨ operation on these elements, we firstly calculate Sq2 operation on uP j−1yk−4j+1 .
This is simple since we have: (recall from Proposition 2.2.5)

Sq1(x) = x2, Sq1(y) = y2, Sq1(u) = 0, Sq1(P ) = 0

and

Sq2(x) = 0, Sq2(y) = 0, Sq2(u) = Px + Py + uy2, Sq2(P ) = Px2 + Py2.

By using Cartan’s formula, we have;

Sq1(P i) = 0, for all i,

Sq2(P i) =
{

P ix2 + P iy2, if i is odd;
0, if i is even,

Sq2(y2i) =
{

y2i+2, if i is odd;
0, if i is even,

Sq2(uy2i+1) =
{

Pxy2i+1 + Py2i+2, if i is odd;
Pxy2i+1 + Py2i+2 + uy2i+3, if i is even.

Thus, setting S := Sq2(uP j−1yk−4j+1),

S = P j−1Sq2(uyk−4j+1) + Sq1(P j−1)Sq1(uyk−4j+1) + uyk−4j+1Sq2(P j−1)
= P j−1Sq2(uyk−4j+1) + uyk−4j+1Sq2(P j−1)

=
{

(P j−1)[Pxyk−4j+1 + Pyk−4j+2], if k − 4j ≡ 2mod4;
(P j−1)[Pxyk−4j+1 + Pyk−4j+2 + uyk−4j+3], if k − 4j ≡ 0mod4,

+
{

uyk−4j+1(P j−1x2 + P j−1y2), if j − 1 is odd;
0, if j − 1 is even,

=
{

P jxyk−4j+1 + P jyk−4j+2 + P j−1uyk−4j+3, if k + 2j ≡ 2mod4;
P jxyk−4j+1 + P jyk−4j+2, if k + 2j ≡ 0mod4.

Since we regard that all elements are zero except elements which are in the form
uP j−1yk−4j+1 , we get that

Sq2(uP j−1yk−4j+1) =
{

uP j−1yk−4j+3, if k + 2j ≡ 2mod4;
0, if k + 2j ≡ 0mod4.

Therefore,

(Sq2)∨((uP j−1yk−4j+3)∨) =
{

(uP j−1yk−4j+1)∨, if k + 2j ≡ 2mod4;
0, if k + 2j ≡ 0mod4,

or in other words, by changing k to k − 2 (in order to suit (6.8),

(Sq2)∨((uP j−1yk−4j+1)∨) =
{

(uP j−1yk−4j−1)∨, if k + 2j ≡ 0mod4;
0, if k + 2j ≡ 2mod4,
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and hence, by (6.8),

(Sq2)∨(
1

P jyk−4j+2
) =





1
P jyk−4j , if k + 2j ≡ 0mod4 and k 6= 4j;
0, if k + 2j ≡ 2mod4;
0, if k = 4j,

(6.9)

where the third condition comes from the fact that 1
P j for each j ≥ 1 is not contained

in [H2
I (R)]∗ . Here, we illustrate the diagram of d1 = (Sq2)∨ action on [H2

I (R)]∗ in low
degree as follows.

degree k Generator of [H2
I (R)]k+2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

1
Py2

1
Py4

1
Py6

1
Py8

1
Py10

1
Py12

1
Py14

1
Py16

1
Py18

1
Py20

1
Py22

1
Py24

1
Py26

1
Py28

1
Py30

1
P 2y2

1
P 2y4

1
P 2y6

1
P 2y8

1
P 2y10

1
P 2y12

1
P 2y14

1
P 2y16

1
P 2y18

1
P 2y20

1
P 2y22

1
P 2y24

1
P 2y26

1
P 3y2

1
P 3y4

1
P 3y6

1
P 3y8

1
P 3y10

1
P 3y12

1
P 3y14

1
P 3y16

1
P 3y18

1
P 3y20

1
P 3y22

1
P 4y2

1
P 4y4

1
P 4y6

1
P 4y8

1
P 4y10

1
P 4y12

1
P 4y14

1
P 4y16

1
P 4y18

1
P 5y2

1
P 5y4

1
P 5y6

1
P 5y8

1
P 5y10

1
P 5y12

1
P 5y14

1
P 6y2

1
P 6y4

1
P 6y8

1
P 6y10

1
P 6y12

1
P 7y2

1
P 7y4

1
P 7y6

1
P 8y2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

Diagram 6.1: The d1 = (Sq2)∨(:=↑) action on [H2
I (R)]∗ .
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Now, we have;

Lemma 6.2.5. With the notation above,

1) The (Sq2)∨−homology of [H2
I (R)]∗ is represented by F2[ 1

P 2 ] < 1
P 2y2 >.

2) The (Sq2)∨−cycles of [H2
I (R)]∗ is represented by

F2[
1
y4

,
1

P 2
] <

1
Py2

,
1

P 2y4
,

1
P 2y2

> /F2[
1
y4

] <
1

P 2y6
> .

Proof. Diagram 6.1 suggests the pattern, and the proof is the immediate result from
(6.9).

§ 6.3 d1 differentials on kuodd(BSD16)

Since we have (6.3) and Theorem 3.5.1, the calculation of kernel and homology of d1

on kuodd(BSD16) is straightforward but needs careful work. This section is devoted to
the proof of lemma 6.3.1 below.

Lemma 6.3.1. For positive odd integers s, let Ms := kus(BSD16). Let Z(M)s :=
ker(d1 : Ms −→ Ms−2) and H(M)s := Z(M)s/d1(Ms+2). Using the same symbols as
in Theorem 3.5.1, we have:

• Z(M)1 ∼= [2]⊕ [2] generated by x1, y1 ; H(M)1 ∼= [2]⊕ [2] generated by [x1], [y1].

• Z(M)3 ∼= [2]⊕ [4]⊕ [8] generated by x2, y2, w2 , resp.; H(M)3 = 0.

• Z(M)5 ∼= [2] ⊕ [2] ⊕ [2] generated by 2x3, 4y3, 8u3 , resp.; H(M)5 = [2] ⊕ [2]
generated by [2x3] and [4y3].

• Z(M)7 ∼= [2]⊕ [4]⊕ [16]⊕ [32] generated by 2w4, x4, y4, u4 , resp.; H(M)7 = 0.

• Z(M)9 ∼= [2] ⊕ [2] ⊕ [2] ⊕ [2] generated by 2z5, 4x5, 16y5, 32u5 , resp.; H(M)9 =
[2]⊕ [2]⊕ [2] generated by [2z5], [4x5], [16y5].

• Z(M)11
∼= [8]⊕ [8]⊕ [64]⊕ [128] generated by x6, t6, y6, u6 +w6 , resp.; H(M)11

∼=
[2] generated by [t6].

• Z(M)13
∼= [2]⊕[2]⊕[2]⊕[4] generated by 8x7, 64y7, 4z7, w

′
7 = w7−4z7+2t7+64u7 ,

resp.; H(M)13 = [2]⊕ [2]⊕ [2] generated by [8x7], [64y7], [4z7].

• Z(M)15
∼= [2]⊕ [8]⊕ [16]⊕ [256]⊕ [512] generated by t8, 2w8 +z8, x8, y8, u8 , resp.;

H(M)15 = [2] generated by [t8].

• For n ≥ 3, Z(M)8n−7
∼= [2]⊕ [2]⊕ [2]⊕ [2]⊕ [2n−1] generated by 4n−1x4n−3,

16n−1y4n−3, 2 ·4n−2z4n−3, 2n−3t4n−3 and 4(−8)n−1u4n−3 +(−2)nz4n−3−w4n−3 :=
u′4n−3 resp.; H(M)8n−7

∼= [2]⊕[2]⊕[2]⊕[2] generated by [4n−1x4n−3], [16n−1y4n−3],
[2 · 4n−2z4n−3], [2n−3t4n−3].
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• For n ≥ 3, Z(M)8n−5
∼= [2n−2] ⊕ [2 · 4n−1] ⊕ [2 · 4n−1] ⊕ [4 · 16n−1] ⊕ [8 · 16n−1]

generated by z4n−2, t4n−2, x4n−2, y4n−2, w4n−2−u4n−2 resp.; H(M)8n−5 = [2]⊕[2]
generated by [t4n−2] and [z4n−2].

• For n ≥ 3, Z(M)8n−3
∼= [2] ⊕ [2] ⊕ [2] ⊕ [2] ⊕ [2n] generated by 2 · 4n−1x4n−1 ,

4 · 16n−1y4n−1 , 4n−1z4n−1 , 2n−3t4n−1 + 2n−2w4n−1 , and w4n−1 + (−8)nu4n−1 −
(−2)nz4n−1 resp.; H(M)8n−3

∼= [2]⊕ [2]⊕ [2]⊕ [2] generated by [2 · 4n−1x4n−1],
[4 · 16n−1y4n−1], [4n−1z4n−1], and [2n−3t4n−1 + 2n−2w4n−1].

• For n ≥ 4, Z(M)8n−9
∼= [2n−2]⊕ [2 ·4n−2]⊕ [4n−1]⊕ [16n−1]⊕ [2 ·16n−1] generated

by t4n−4, 2w4n−4 +z4n−4, x4n−4, y4n−4, u4n−4 resp.; H(M)8n−9 = [2] generated by
[t4n−4].

Proof. We use the same natation as in Theorem 3.5.1 and lemma 3.3.4, i.e., for each
α ∈ {x, y, z, t, u, w} and for ε = 2, 3, 4, α̃4i−ε = αε

pi + R0
∼= αε + pi · R0 for all i ≥ 1,

and α̃4j−5 = α5

pj + R0
∼= α5 + pj · R0 , for all j ≥ 2, with p = [16,−2, 4,−2, 16, 4]. So,

it is possible to use the character table to calculate the kernel and homology of d1 .

Degree 1: M1 = ku1(BSD16) ∼= [2] ⊕ [2] generated by x1, y1 , with z1 = t1 =
w1 = u1 + x1 + y1 = 0, where

x1 = x̃1 + z̃1 = [0, 0, 2, 0, 0, 1] + R0

y1 = 2ỹ1 = [0, 0, 0, 0, 1, 0] + R0

z1 = 2z̃1 = [0, 0, 4, 0, 0, 0] + R0

w1 = w̃1 + z̃1 = [0,−c, 2, c, 0, 0] + R0

It is clear that d1(M1) = (1 + τ)(M1) = 0, because M−1 = 0.

Degree 3: M3 = ku3(BSD16) ∼= [2] ⊕ [4] ⊕ [8] generated by x2, y2, w2 resp.,
with z2 = 4w2 , t2 = 2(w2 + y2) and u2 + 4w2 = 0, where

x2 = x̃2 = [0, 0, 0, 0, 0, 1] + R0

y2 = 2ỹ2 = [0, 0, 0, 0,
1
2
, 0] + R0

z2 = z̃2 = [0, 0, 2, 0, 0, 0] + R0

t2 = t̃2 = [0,−1, 1,−1, 0, 0] + R0

u2 = ũ2 = [0,−c, 0, c, 0, 0] + R0

w2 = 2w̃2 = [
1
2
,−c, 1, c, 0, 1] + R0

It is simple to see that (1− τ)(x2) = (1− τ)(y2) = 0 and (1− τ)(w2) = 2w1 − z1 ≡ 0.

Degree 5: M5 = ku5(BSD16) ∼= [4] ⊕ [8] ⊕ [16] generated by x3, y3, u3 resp.,
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with w3 = 8u3 , z3 = 2x3 + 4y3 + 4u3 and t3 = 0, where

x3 = x̃3 + t̃3 = [0,−1, 0,−1, 0,
1
2
] + R0

y3 = 2ỹ3 = [0, 0, 0, 0,
1
4
, 0] + R0

z3 = z̃3 + t̃3 = [0,−1, 1,−1, 0, 0] + R0

t3 = 2t̃3 = [0,−2, 0,−2, 0, 0] + R0

u3 = ũ3 = [
1
4
,
−c

2
,
−1
2

,
c

2
, 0, 0] + R0

w3 = w̃3 = [0, c, 0,−c, 0, 0] + R0

Now, we see that (1 + τ)(x3) = 2t2− z2 + x2 ≡ x2 , (1 + τ)(y3) = y2 and (1 + τ)(w3) =
w2 − u2 − z2 − x2 ≡ w2 − x2 . Then 2x3, 4y3, 8u3 ∈ Z(M)5 and H(M)3 = 0.

Degree 7: M7 = ku7(BSD16) ∼= [4]⊕ [4]⊕ [16]⊕ [32] generated by w4, x4, y4, u4

resp., with z4 + 2w4 + 8u4 = 0 and t4 + 2x4 + z4 + 8y4 + 8u4 = 0, where

x4 = x̃4 = [0, 0, 0, 0, 0,
1
2
] + R0

y4 = 2ỹ4 = [0, 0, 0, 0,
1
8
, 0] + R0

z4 = z̃4 = [0, 0, 1, 0, 0, 0] + R0

t4 = t̃4 = [0, 1, 0, 1, 0, 0] + R0

u4 = 2ũ4 = [
1
8
,−1,

1
2
,−1, 0,

1
2
] + R0

w4 = w̃4 − 8ũ4 = [
−1
2

,
c

2
+ 4,

−3
2

,
−c

2
+ 4, 0,−2] + R0

Now, we see that (1−τ)(x4) = (1−τ)(y4) = (1−τ)(u4) = 0 and (1−τ)(w4) = w3 ≡ 8u3 .
Then 2w4, x4, y4, u4 ∈ Z(M)7 and H(M)5 = [2]⊕ [2] generated by [2x3] and [4y3] .

Degree 9: M9 = ku9(BSD16) ∼= [4]⊕ [8]⊕ [32]⊕ [64] generated by z5, x5, y5, u5

resp., with w5 = 0 and t5 + 4x5 − 2z5 + 16y5 − 24u5 = 0, where

x5 = x̃5 + z̃5 + 8ũ5 = [
1
2
,−4,

−3
2

,−4, 0,
1
4
] + R0

y5 = 2ỹ5 = [0, 0, 0, 0,
1
16

, 0] + R0

z5 = z̃5 + w̃5 + 24ũ5 = [
3
2
,
c

2
− 12,

−11
2

,
−c

2
− 12, 0, 0] + R0

t5 = t̃5 = [0, 1, 0, 1, 0, 0] + R0

u5 = ũ5 = [
1
16

,
−1
2

,
−1
4

,
−1
2

, 0, 0] + R0

w5 = 2(w̃5 + 16ũ5) = [2, c− 16,−8,−c− 16, 0, 0] + R0

Now, we see that (1 + τ)(x5) = 8u4 − 7x4 − 7z4 ≡ 8u4 + x4 + z4 ≡ 2w4 + x4 , (1 +
τ)(y5) = y4 , (1 + τ)(z5) = 2w4 + 32u4 − 14z4 ≡ 16u4 + 2w4 , (since 2z4 ≡ 16u4 ) and
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(1 + τ)(u5) = u4 − x4 − z4 ≡ 9u4 − x4 + 2w4 . Then 4x5, 16y5, 2z5, 32u5 ∈ Z(M)9 and
H(M)7 is calculated by the representing matrix below;

[2] [4] [16] [32]
2w4 x4 y4 u4

(1 + τ)(x5) : | 1 1 0 0 |r1

(1 + τ)(y5) : | 0 0 1 0 |r2

(1 + τ)(z5) : | 1 0 0 16 |r3

(1 + τ)(u5) : | 1 −1 0 9 |r4

which is easy to see that H(M)7 = 0.

Degree 11: M11 = ku11(BSD16) ∼= [2] ⊕ [8] ⊕ [8] ⊕ [64] ⊕ [128] generated by
u6, t6, x6, y6, w6 resp., with z6 + 4x6 + 32y6 + 2t6 + 16w6 = 0, where

x6 = x̃6 = [0, 0, 0, 0, 0,
1
4
] + R0

y6 = 2ỹ6 = [0, 0, 0, 0,
1
32

, 0] + R0

z6 = z̃6 = [0, 0,
1
2
, 0, 0, 0] + R0

t6 = t̃6 + 16w̃6 = [
1
4
, 4c +

1
2
,
9
4
,−4c +

1
2
, 0, 2] + R0

u6 = ũ6 + 64w̃6 = [1,
33c
2

, 8,
−33c

2
, 0, 8] + R0

w6 = 2w̃6 = [
1
32

,
c

2
,
1
4
,
−c

2
, 0,

1
4
] + R0

Now, we see that (1−τ)(x6) = (1−τ)(y6) = (1−τ)(z6) = 0, (1−τ)(t6) = 8(w5−32u5) ≡
0, (1− τ)(u6) = 33(w5 − 32u5) ≡ 32u5 (since w5 = 0) and (1− τ)(w6) = 32u5 . Then
x6, t6, y6, u6+w6 ∈ Z(M)11 and H(M)9 = [2]⊕[2]⊕[2] generated by [4x5], [16y5], [2z5] ,
because 32u5 has been detected.

Degree 13: M13 = ku13(BSD16) ∼= [2]⊕ [8]⊕ [16]⊕ [128]⊕ [256] generated by
w7, z7, x7, y7, u7 , with t7 = 0, where ( η̃7 = t̃7 + 4x̃7 + 2z̃7 + 64ỹ7 − 32ũ7 )

x7 = x̃7 + z̃7 + 16ũ7 = [
1
4
, 4c,

−7
4

,−4c, 0,
1
8
] + R0

y7 = 2ỹ7 = [0, 0, 0, 0,
1
64

, 0] + R0

z7 = z̃7 + η̃7 + 16ũ7 = [
−1
4

,
1
2
− 4c,

11
4

,
1
2

+ 4c,
1
2
,
1
2
] + R0

t7 = 2η̃7 = [−1, 1− 16c, 9, 1 + 16c, 1, 1] + R0

u7 = ũ7 = [
1
64

,
c

4
,
−1
8

,
−c

4
, 0, 0] + R0

w7 = w̃7 + 4z̃7 = [0,
−c

2
, 1,

c

2
, 0, 0] + R0

Now observe that w′7 = w7− 4z7 + 2t7 + 64u7 = [0, −c
2 , 0, c

2 , 0, 0] + R0 and 4w′7 = 0 but
2w′7 6= 0. Then (1 + τ)(w′7) = 0 and then w′7 ∈ Z(M)13 having degree 4. Moreover,
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we see that (1 + τ)(x7) = 16w6 − 16(u6 − 32w6) − 15x6 − 15z6 ≡ 16(u6 + w6) + x6 +
z6 ≡ 32y6 − 2t6 − 3x6 , (since z6 + 4x6 + 32y6 + 2t6 + 16w6 = 0), (1 + τ)(y7) = y6 ,
(1+τ)(z7) = 2t6−u6+17(u6−32w6)+18z6−12x6+32y6 ≡ 2t6−32w6+2z6+4x6+32y6 ≡
4x6 + 32y6 − 2t6 − 32w6 , (1 + τ)(w7) = 4z6 ≡ 64w6 and (1 + τ)(u7) = w6 − (u6 −
32w6) − x6 − z6 ≡ 49(u6 + w6) + 2t6 + 3x6 + 32y6 . Thus 8x7, 64y7, 4z7, 128u7 ≡ 2w′7
are also in Z(M)13 . Now, H(M)11 is calculated by the representing matrix below;

[8] [8] [64] [128]
t6 x6 y6 u6 + w6

(1 + τ)(x7) : | −2 −3 32 0 |r1

(1 + τ)(y7) : | 0 0 1 0 |r2

(1 + τ)(z7) : | −2 4 32 −32 |r3

(1 + τ)(w7) : | 0 0 0 64 |r4

(1 + τ)(u7) : | 2 3 32 49 |r5

which is equivalent to (by row operations)

[8] [8] [64] [128]
t6 x6 y6 u6 + w6

| 0 1 0 0 |r′1
| 0 0 1 0 |r′2
| −2 0 0 0 |r′3
| 0 0 0 0 |r′4
| 0 0 0 49 |r′5

and hence H(M)11
∼= [2] generated by [t6] .

Degree 15: M15 = ku15(BSD16) ∼= [2]⊕ [2]⊕ [16]⊕ [16]⊕ [256]⊕ [512] generated
by t8, z8, w8, x8, y8, u8 resp., where

x8 = x̃8 = [0, 0, 0, 0, 0,
1
8
] + R0

y8 = 2ỹ8 = [0, 0, 0, 0,
1

128
, 0] + R0

z8 = z̃8 − 2w̃8 − 256ũ8 = [−1,
c

2
− 64,−16,

−c

2
− 64, 0,−16] + R0

t8 = t̃8 − 2(2x̃8 + z̃8)− 128(ỹ8 + ũ8) = [
−1
2

,
−33
2

,
−17
2

,
−33
2

,
−1
2

,
−17
2

] + R0

u8 = 2ũ8 = [
1

128
,
1
2
,
1
8
,
1
2
, 0,

1
8
] + R0

w8 = w̃8 + 32ũ8 = [
1
8
, 8− c

4
,
17
8

, 8 +
c

2
, 0, 2] + R0

Now, we see that (1 − τ)(x8) = (1 − τ)(y8) = (1 − τ)(t8) = (1 − τ)(u8) = 0,
(1− τ)(w8) = w′7 , (1− τ)(z8) = 128u7 and (1− τ)(2w8 + z8) = 0 (because all elements
in character table of 2w8 + z8 are real) . Then x8, t8, y8, u8, 2w8 + x8 ∈ Z(M)15 . And
H(M)13 = [2]⊕ [2]⊕ [2] generated by [8x7], [64y7], [4z7] , because w′7 and 2w′7 ≡ 128u7

have been detected.
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Next, we start to calculate in general degree beginning with degree 8n − 7 and
also, however, with degree 8n− 9.

Degree 8n − 7, n ≥ 3: M8n−7 = ku8n−7(BSD16) ∼= [2n−2] ⊕ [2n−2] ⊕ [4n−1] ⊕
[2 · 4n−1]⊕ [2 · 16n−1]⊕ [4 · 16n−1] generated by t4n−3, w4n−3, z4n−3, x4n−3, y4n−3, u4n−3

resp., where

x4n−3 = x̃4n−3 + [z̃4n−3 + 2 · 4n−1ũ4n−3]

= [
2

4n−1
,−(−2)n,−2 +

2
4n−1

,−(−2)n, 0,
1

4n−1
] + R0

y4n−3 = 2ỹ4n−3 = [0, 0, 0, 0,
1

16n−1
, 0] + R0

z4n−3 = [z̃4n−3 + 2 · 4n−1ũ4n−3] + [w̃4n−3 − (−2)n−1z̃4n−3]

= [
2

4n−1
,

−c

(−2)n−1
− (−2)n,−2 +

2
4n−1

− 2
(−2)n−1

,
c

(−2)n−1
− (−2)n, 0, 0] + R0

t4n−3 = t̃4n−3 + (−2)nx̃4n−3 − 4(−8)n−1ỹ4n−3 − (−2)n−1z̃4n−3 − 2(−8)n−1ũ4n−3

= [
1

(−2)n−2
,

1
(−2)n−2

− 2 · 4n−1,−(−2)n +
1

(−2)n−2
,

1
(−2)n−2

− 2 · 4n−1,
1

(−2)n−2
,

1
(−2)n−2

] + R0

u4n−3 = ũ4n−3 = [
1

16n−1
,

1
(−2)n−1

,
−1

4n−1
,

1
(−2)n−1

, 0, 0] + R0

w4n−3 = 2[w̃4n−3 − (−2)n−1z̃4n−3]

= [0,
c

(−2)n−2
,

2
(−2)n−2

,
−c

(−2)n−2
, 0, 0] + R0

Degree 8n − 9, n ≥ 3: M8n−9 = ku8n−9(BSD16) ∼= [2n−2] ⊕ [2n−2] ⊕ [4n−1] ⊕
[4n−1]⊕ [16n−1]⊕ [2 ·16n−1] generated by t4n−4, z4n−4, w4n−4, x4n−4, y4n−4, u4n−4 resp.,
where

x4n−4 = x̃4n−4 = [0, 0, 0, 0, 0,
2

4n−1
] + R0

y4n−4 = 2ỹ4n−4 = [0, 0, 0, 0,
2

16n−1
, 0] + R0

z4n−4 = z̃4n−4 − 2w̃4n−4 − 4(−8)n−1ũ4n−4

= [
2

(−2)n−2
,

−c

(−2)n−2
− 4n,−(−2)n+1,

c

(−2)n−2
− 4n, 0,−(−2)n+1] + R0,

t4n−4 = t̃4n−4 + (−2)n−2(2x̃4n−4 + z̃4n−4)− 2(−8)n−1(ỹ4n−4 + ũ4n−4)

= [
1

(−2)n−2
,

1
(−2)n−2

− 2 · 4n−1, (−2)n +
1

(−2)n−2
,

1
(−2)n−2

− 2 · 4n−1,
1

(−2)n−2
, (−2)n +

1
(−2)n−2

] + R0,
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u4n−4 = 2ũ4n−4 = [
2

16n−1
,

2
(−2)n−1

,
2

4n−1
,

2
(−2)n−1

, 0,
2

4n−1
] + R0

w4n−4 = w̃4n−4 + 2 · 4n−1ũ4n−4

= [
2

4n−1
, 2(−2)n−1 − c

(−2)n−1
, 2 +

2
4n−1

, 2(−2)n−1 +
c

(−2)n−1
, 0, 2] + R0

We observe that s := (2(−8)n−1u4n−4 + z4n−4) + (2w4n−4 − 2 · 4n−1u4n−4) =
[0, 0, 1

4n−2 , 0, 0, 0]. Now, we have;

(1 + τ)(x4n−3) = 2 · 4n−1u4n−4 − 2 · 4n−1s + s− 2 · 4n−1x4n−4 + x4n−4,

≡ 2 · 4n−1u4n−4 + s + x4n−4, since 2 · 4n−1s ≡ 0,
≡ 2(−8)n−1u4n−4 + (2w4n−4 + z4n−4) + x4n−4, by replacing s.

(1 + τ)(y4n−3) = y4n−4.

(1 + τ)(z4n−3) = 2 · 4n−1u4n−4 − 2 · 4n−1s + s− (−2)n−1s− 2 · 4n−1x4n−4,

≡ 4(−8)n−1u4n−4 + (1− (−2)n−1)(2w4n−4 + z4n−4).
(1 + τ)(t4n−3) = 2t4n−4 + 2(−8)n−1s + 2(−8)n−1x4n−4 ≡ 2t4n−4.

(1 + τ)(u4n−3) = u4n−4 − s− x4n−4,

≡ (1 + 2(−8)n−1 − 2 · 4n−1)u4n−4 + (2w4n−4 + z4n−4)− x4n−4.

(1 + τ)(w4n−3) = (−2)ns ≡ (−2)n(2w4n−4 + z4n−4) + 4(−8)n−1u4n−4.

Thus 4n−1x4n−3, 16n−1y4n−3, 2·4n−2z4n−3, 2n−3t4n−3, 2n−2w4n−3 and 2·16n−1u4n−3

are in Z(M)4n−3 . However, we also observe that

ũ′′4n−3 := 4(−8)n−1u4n−3+(−2)nz4n−3+((−2)n−1−1)w4n−3 = [0,
−c

(−2)n−2
, 0,

c

(−2)n−2
, 0, 0],

and then
u′4n−3 := 4(−8)n−1u4n−3 + (−2)nz4n−3 − w4n−3 ≡ ũ′′4n−3

having order 2n−1 is also contained in Z(M)4n−3 . Moreover, 2n−2u′4n−3 ≡ 2·16n−1u4n−3

and hence the result for Z(M)4n−3 follows.

Degree 8n−5, n ≥ 3: M8n−5 = ku8n−5(BSD16) ∼= [2n−2]⊕ [2n−1]⊕ [2 ·4n−1]⊕
[2 · 4n−1]⊕ [4 · 16n−1]⊕ [8 · 16n−1] generated by z4n−2, u4n−2, t4n−2, x4n−2, y4n−2, w4n−2

resp., where

x4n−2 = x̃4n−2 = [0, 0, 0, 0, 0,
1

4n−1
] + R0

y4n−2 = 2ỹ4n−2 = [0, 0, 0, 0,
8

16n
, 0] + R0

z4n−2 = z̃4n−2 − (−2)nx̃4n−2 − (−8)nỹ4n−2 − (−8)nw̃4n−2 − (2 + (−2)n)t̃4n−2

= [
−4

(−2)n
,−(2 +

1
(−2)n−2

)− 4nc, (−2)n+1 − 1
(−2)n−2

,

−(2 +
1

(−2)n−2
) + 4nc,

−4
(−2)n

, (−2)n+1 − 1
(−2)n−2

] + R0
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t4n−2 = t̃4n−2 + 4nw̃4n−2

= [
1

4n−1
, (−2)nc− 1

(−2)n−1
, 2 +

1
4n−1

,−(−2)nc− 1
(−2)n−1

, 0, 2] + R0

u4n−2 = ũ4n−2 + (−8)nw̃4n−2

= [
4

(−2)n
, 4nc− c

(−2)n−1
, 2(−2)n,−4nc +

c

(−2)n−1
, 0, 2(−2)n] + R0

w4n−2 = 2w̃4n−2 = [
8

16n
,

−c

(−2)n−1
,

1
4n−1

,
c

(−2)n−1
, 0,

1
4n−1

] + R0

Now, we get that (1 − τ)(x4n−2) = (1 − τ)(y4n−2) = 0 and, because u′4n−3 has order
2n−1 , we also get (1− τ)(z4n−2) = (1− τ)(t4n−2) ≡ 0. Furthermore, (1− τ)(u4n−2) ≡
(1 − τ)(w4n−2) ≡ u′4n−3 , so (1 − τ)(w4n−2 − u4n−2) ≡ 0 and hence the result for
Z(M)8n−5 follows. Moreover, H(M)8n−7 is immediate since only u′4n−3 has been de-
tected.

Degree 8n − 11, n ≥ 4: M8n−11 = ku8n−11(BSD16) ∼= [2n−3] ⊕ [2n−2] ⊕ [2 ·
4n−2]⊕[4n−1]⊕[8·16n−2]⊕[16n−1] generated by t4n−5, w4n−5, z4n−5, x4n−5, y4n−5, u4n−5

resp., where

x4n−5 = x̃4n−5 + [z̃4n−5 + 4n−1ũ4n−5]

= [
1

4n−2
, (−2)n−1c,−2 +

1
4n−2

,−(−2)n−1c, 0,
2

4n−1
] + R0

y4n−5 = 2ỹ4n−5 = [0, 0, 0, 0,
4

16n−1
, 0] + R0

z4n−5 = [z̃4n−5 + 4n−1ũ4n−5] +
1
2
t4n−5

= [
1

(−2)n−2
+

1
4n−2

, ((−2)n−1 − 2 · 4n−1)c− 1
(−2)n−2

, (−2)n−1 − 2 +
1

4n−2

− 1
(−2)n−2

,−((−2)n−1 − 2 · 4n−1)c− 1
(−2)n−2

,
−1

(−2)n−2
,

−1
(−2)n−2

] + R0

t4n−5 = 2[t̃4n−5 + (−2)n−1x̃4n−5 − (−2)n−2z̃4n−5 + (−8)n−1ỹ4n−5 + 4(−8)n−2ũ4n−5]

= [
2

(−2)n−2
,

−2
(−2)n−2

− 4n−1c,−(−2)n − 2
(−2)n−2

,

−2
(−2)n−2

+ 4n−1c,
1

(−2)n−3
,

1
(−2)n−3

] + R0

u4n−5 = ũ4n−5 = [
4

16n−1
,

c

(−2)n−1
,
−2

4n−1
,

−c

(−2)n−1
, 0, 0] + R0

w4n−5 = w̃4n−5 + (−2)n−1z̃4n−5 = [0,
c

(−2)n−2
,

1
(−2)n−3

,
−c

(−2)n−2
, 0, 0] + R0

Here, we need to find Z(M)8n−11 = ker(1+τ : ku8n−11(BSD16) −→ ku8n−13(BSD16))
for n ≥ 4, which is equivalent to find Z(M)8n−3 = ker(1+ τ : ku8(n+1)−11(BSD16) −→
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ku8n−5(BSD16)) for n ≥ 3. Now, we see that:

s′ := z4n−2 + (2 + (−2)n)t4n−2 + (−2)nx4n−2 − 4(−8)n−1y4n−2 − 4nw4n−2

= [0, 0,
2

4n−1
, 0, 0, 0]

and that:

(1 + τ)x4n−1 = [
2

4n−1
, 0,−4 +

2
4n−1

, 0, 0,
1

4n−1
] + R0

= 4nw4n−2 − 4n(u4n−2 + 4(−8)n−1w4n−2) + (1− 4n)s′ + (1− 4n)x4n−2

≡ 4nw4n−2 + s′ + x4n−2

= z4n−2 + (2 + (−2)n)t4n−2 + ((−2)n + 1)x4n−2 − 4(−8)n−1y4n−2

(1 + τ)y4n−1 = y4n−2

(1 + τ)z4n−1 = [
2

(−2)n−1
+

2
4n−1

,
−2

(−2)n−1
, 2(−2)n − 4 +

2
4n−1

− 2
(−2)n−1

,

−2
(−2)n−1

,
−2

(−2)n−1
,

−2
(−2)n−1

] + R0

= (4(−8)n−1 + 4n)w4n−2 − (4(−8)n−1 + 4n)(u4n−2 + 4(−8)n−1w4n−2)
−(4(−8)n−1 + 4n)x4n−2 − (z4n−2 + (−2)nt4n−2) +
(1− (−2)n−1 − 4n − 4(−8)n−1)s′

≡ 8(−8)n−1w4n−2 + (2 + (−2)n)t4n−2 + (−2)nx4n−2 − 4(−8)n−1y4n−2

(1 + τ)t4n−1 = [
4

(−2)n−1
,

−4
(−2)n−1

,−2(−2)n+1 − 4
(−2)n−1

,

−4
(−2)n−1

,
2

(−2)n−2
,

2
(−2)n−2

] + R0

= 8(−8)n−1[w4n−2 − x4n−2 − (u4n−2 + 4(−8)n−1w4n−2)]
−4(−8)n−1s′ − 2(z4n−2 − 2(−2)n−1t4n−2) + ((−2)n − 4(−8)n−1)s′

≡ −2(−8)nw4n−2 − 2z4n−2

(1 + τ)u4n−1 = [
8

16n
, 0,

−4
4n

, 0, 0, 0] + R0

= w4n−2 − (u4n−2 + 4(−8)n−1w4n−2)− x4n−2 − s′

≡ (w4n−2 − u4n−2) + (4n − 4(−8)n−1)w4n−2 − z4n−2

−(1 + (−2)n)x4n−2 + 4(−8)n−1y4n−2 − (2 + (−2)n)t4n−2

(1 + τ)w4n−1 = [0, 0,
2

(−2)n−2
, 0, 0, 0] + R0

= (−2)ns′ ≡ 2(−2)n)t4n−2 − (−8)nw4n−2

Therefore, it is simple now to see that 2 · 4n−1x4n−1 , 4 · 16n−1y4n−1 , 4n−1z4n−1 ,
2n−3t4n−1 + 2n−2w4n−1 , 8 · 16n−1u4n−1 are contained in Z(M)8n−3 which their or-
der are 2. However, we also observe that;

w4n−1 − (−2)n−1[2 · 4nu4n−1 + t4n−1 − 2z4n−1] = [0,
c

(−2)n−1
, 0,

−c

(−2)n−1
, 0, 0] + R0

≡ w4n−1 + (−8)nu4n−1 − (−2)nz4n−1

:= w′4n−1
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having order 2n with 2n−1(w′4n−1) ≡ 8 · 16n−1u4n−1 . Thus, the result for Z(M)8n−3

follows. Furthermore, H(M)8n−5 is calculated by the representing matrix below;

[2n−2] [2 · 4n−1] [2 · 4n−1] [4 · 16n−1] 8 · 16n−1

z4n−2 t4n−2 x4n−2 y4n−2 w′4n−2

(1 + τ)(x4n−1) : | 1 2 + (−2)n 1 + (−2)n −4(−8)n−1 0 |r0

(1 + τ)(y4n−1) : | 0 0 0 1 0 |r1

(1 + τ)(z4n−1) : | 0 2 + (−2)n (−2)n −4(−8)n−1 8(−8)n−1 |r2

(1 + τ)(t4n−1) : | −2 0 0 0 −2(−8)n |r3

(1 + τ)(u4n−1) : | −1 −2− (−2)n −1− (−2)n 4(−8)n−1 g |r4

(1 + τ)(w4n−1) : | 0 2(−2)n 0 0 −(−8)n |r5,

where w′4n−2 = w4n−2 − u4n−2 and g = 1 + 4n − 4(−8)n−1 which is equivalent to

[2n−2] [2 · 4n−1] [2 · 4n−1] [4 · 16n−1] 8 · 16n−1

z4n−2 t4n−2 x4n−2 y4n−2 w′4n−2

| 1 0 1 0 0 |r∗0
| 0 0 0 1 0 |r∗1
| 0 2 0 0 0 |r∗2
| −2 0 0 0 0 |r∗3
| 0 0 0 0 g |r∗4
| 0 0 0 0 0 |r∗5,

by row operations;
r0 −→ [r′0 = r0 + 4(−8)n−1r1] −→ [r∗0 = r′0 − r′2] ,
r1 = r∗1 ,
r2 −→ [r′2 = r2 + 4(−8)n−1r1 − 8(−8)n−1r∗4] −→ [r′′2 = r′2 − (−2)nr∗0]
−→ [r∗2 = r′′2 + (−2)n−2r′′5 ] .
r3 −→ [r∗3 = r3 + 2(−8)nr∗4]
r4 −→ [r∗4 = r4 + r0] ,
r5 −→ [r′5 = r5 + (−8)nr∗4] −→ [r′′5 = r′5 − 2r′′2 ] −→ [r∗5 = r′′5 + 2r∗2] .
After doing a bit column operations, the result for H(M)8n−5 follows.

Next, for Z(M)8n−9 = ker(1− τ : ku8n−9(BSD16) −→ ku8n−11(BSD16)), we see
that x4n−4, y4n−4, t4n−4 and u4n−4 are in Z(M)8n−9 , because their entry in character
table are all real. Moreover, (1− τ)z4n−4 = 2w′4(n−1)−1 = 2w′4n−5 and (1− τ)w4n−4 =
w′4(n−1)−1 = w′4n−5 and thus 2w4n−4 + z4n−4 ∈ Z(M)8n−9 which yields the results for
Z(M)8n−9 and the result for H(M)8n−3 is immediate ( only the generator w′4n−1 has
been detected).

Finally, H(M)8n−9 can be calculated by the representing matrix (by Degree
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8n− 7 and Degree 8n− 9 above) below;

[2n−2] [2 · 4n−2] [4n−1] [16n−1] 2 · 16n−1

t4n−4 2w4n−4 + z4n−4 x4n−4 y4n−4 u4n−4

(1 + τ)(x4n−3) : | 0 1 1 0 2(−8)n−1 |r0

(1 + τ)(y4n−3) : | 0 0 0 1 0 |r1

(1 + τ)(z4n−3) : | 0 1− (−2)n−1 0 0 4(−8)n−1 |r2

(1 + τ)(t4n−3) : | 2 0 0 0 0 |r3

(1 + τ)(u4n−3) : | 0 1 −1 0 h |r4

(1 + τ)(w4n−3) : | 0 (−2)n 0 0 4(−8)n−1 |r5,

where h = 1 + 2(−8)n−1 − 2 · 4n−1 , which is equivalent to

[2n−2] [2 · 4n−2] [4n−1] [16n−1] 2 · 16n−1

t4n−4 2w4n−4 + z4n−4 x4n−4 y4n−4 u4n−4

| 0 0 1 0 0 |r∗0
| 0 0 0 1 0 |r∗1
| 0 1 0 0 0 |r∗2
| 2 0 0 0 0 |r∗3
| 0 0 0 0 1− 2 · 4n−1 |r∗4
| 0 0 0 0 0 |r∗5,

by simple row operations and hence we complete the proof.

§ 6.4 E∞ -page

From the last section, lemma 6.3.1, we obtain E1 1
2
-page. To get E2 -page, we need

to determine connecting homomorphism in even degree part induced by (6.1), i.e. δ :
Z(H0

I (R)∗) −→ H(H2
I (R)∗+2). By (6.5) and lemma 6.2.5, we see that Z(H0

I (R)∗) con-
tain only in degree divided by 4 whereas H(H2

I (R)∗+2) contain only in degree divided
by 8. Thus δ = 0, because δ shift down degree by 2, and hence E1 1

2
−page ∼= E2−page.

We can now display the E2 -page, differentials and the E∞ -page in Figure 6.2 and
Figure 6.3 below, where [n] means cyclic group of order n derived from kuodd(BSD16) -
part and 2k denotes elementary abelian 2 group of rank k derived from kueven(BSD16)-
part. The target symbols are the same meaning as in Theorem 5.5.1. All differentials
are treated by Theorem 5.5.1 and the fact that dr = 0, ∀r ≥ 4 (because η3 = 0).
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§ 6.5 Extension problems and results

The E∞ -page in Figure 6.3 gives η -multiple structure. Precisely, η and η2 multiple el-
ements of ko∗(BSD16) are detected by the generater lying on the second (s=1) and the
third row (s=2) of E∞ -page. For example, ko1(BSD16) contains one η -multiple gener-
ator, ko2(BSD16) contains one η2 -multiple and two η -multiple generator, ko3(BSD16)
contains two η2 -multiple generator, et cetera.

More surprisingly, the extension problems of degree 8 is obviously trivial and this
fact leads to:

Lemma 6.5.1. The extension problem occurring in Greenlees spectral sequence for
ko∗(BSD16) in Theorem 5.5.1 of degree 8k for all k ≥ 1 are trivial.

Proof. Consider the commutative diagram, from Greenlees spectral sequence;

0 //

0 //

22 ∼= E−2,18∞ //

t∩
²²

2 ∼= E−2,10∞ //

k̃o16(BSD16)

t∩
²²

// E−1,17∞ ∼= [2]2

²²

k̃o8(BSD16) // E−1,9∞ ∼= [2]

// 0

// 0.

Suppose that the first row of this diagram is non-split. So, there is x̃ ∈ k̃o16(BSD16)
such that 2x̃ 6= 0 and 2x̃ must lie in E−2,18∞ ∼= 22 < τb

b8
, τb

b4d2 > . By calculation we
check that there exit t ∈ ko8(BSD16), namely y4 or u4 , s.t. t∩ (2x̃) 6= 0. This implies
that 2(t ∩ x̃) = t ∩ (2x̃) in non-zero in k̃o8(BSD16) which is a contradiction because
k̃o8(BSD16) is split and contains t ∩ x̃ . Hence, k̃o16(BSD16) is split.

To generalise the conclusion to all degree 8k, k ≥ 2, we again consider the com-
mutative diagram below;

0 //

0 //

2k ∼= E−2,8k+2∞ //

β
²²

2k+1 ∼= E−2,8k+10∞ //

k̃o8k(BSD16)

β
²²

πk // E−1,8k+1∞ ∼= [2]2

β
²²

k̃o8(k+1)(BSD16)
πk+1 // E−1,8k+9∞ ∼= [2]2

// 0

// 0.

Since β is an isomorphism for k ≥ 2, lemma 5.2.4, if k̃o8k(BSD16) is split ( i.e. there
exist s : E−1,8k+1∞ −→ k̃o8k(BSD16) s.t. s ◦ πk = id

E−1,8k+1
∞

), then we can define

s′ : E−1,8k+9∞ −→ k̃o8(k+1)(BSD16) by

s′(β(x)) = β(s(x))

which is easy to see that s′ ◦ πk+1 = id
E−1,8k+9
∞

, i.e. k̃o8(k+1)(BSD16) is split. The
assumption is possible by degree 16 and hence completes the proof.
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Next, we need to solve the extension problems of degree 8k+1 for all k ≥ 0. If we
can show that the extension problems in degree 9 and 17 are trivial, then by the similar
reason as in the second part of the proof of lemma 6.5.1 above (E0,8k+1∞ ∼= E0,8k+9∞ by
β ), ko8k+1(BSD16) for all k ≥ 0 are split. To solve the extension problems in degree
9 and 17, we use many techniques as we have used in chapter 4 and chapter 5, but
they still remain.

Fortunately, D.Bayen, [7], calculated ko∗(BSD16) by using Adams spectral se-
quence on each part of the stable splitting of BSD16 ;

BSD2n ' BSL3(q) ∨ L(2) ∨ RP∞ ∨ Σ−1BS3/BN,

(see details of this description in [7]). In that, he calculated and recorded separately
for each part of

k̃o∗(BSD16) ∼= k̃o∗(BSL3(3))⊕ k̃o∗(L(2))⊕ k̃o∗(RP∞)⊕ k̃o∗(Σ−1BS3/BN).

By his results, the extension problems are trivial (even through in degree 8k and 8k+2).

Now, by recollecting all our results we have so far (in this chapter and in the last
chapter), we get ko∗(BSD16) as a module over ko∗(BSD16) as;

Theorem 6.5.2. The additive structure of ko∗(BSD16) is given by;

kon(BSD16) n

[2k]⊕ [2 · 4k+1]⊕ [4k+2]⊕ [8 · 16k+1]⊕ [8 · 16k+1] 8k + 11 ≥ 19
[2]⊕5 ⊕ 2k+1 8k + 10 ≥ 18
27 ⊕ [2k+1] 8k + 9 ≥ 17

Z · βk+1ρ⊕ [2]⊕2 ⊕ 2k+1 8k + 8 ≥ 16
[2k]⊕ [2 · 4k]⊕ [4k+1]⊕ [16k+1]⊕ [2 · 16k+1] 8k + 7 ≥ 15

2k 8k + 6 ≥ 14
[2k+1] 8k + 5 ≥ 13

Z · βkα⊕ 2k+1 8k + 4 ≥ 12
[8]⊕ [16]⊕ [128]⊕ [128] 11

[2]⊕4 ⊕ 2 10
25 ⊕ [2] 9

Z · βρ⊕ [2]⊕ 2 8
[2]⊕ [4]⊕ [16]⊕ [32] 7

0 6
[2] 5

Z · α⊕ 2 4
[4]⊕ [8]⊕ [8] 3

[2]⊕3 2
[2]⊕3 1
Z · ρ 0

,
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where β is the Bott element in KO8(pt), ρ is the first Chern class of regular represen-
tation of SD16 , α = 2ρ and [n] means cyclic group of order n, 2k means elementary
abelian two group of rank k .

The generator description for ko∗(BSD16) by the Greenlees spectral sequence is
as follows.

• ko0(BSD16) ∼= Z < ρ >.

• ko1(BSD16) ∼= [2]⊕ [2]⊕ [2] generated by η̃[B], η̃[D̃3], η̃([A]+[D2]) such that only
η̃[D̃3] is an η -multiple generator.

• ko2(BSD16) ∼= [2]⊕ [2]⊕ [2] generated by η̃2[B], η̃2[D̃3], η̃2([A] + [D2]) such that
η̃2[D̃3] is an η2 -multiple generator and η̃2[B], η̃2([A] + [D2]) are η -multiple gen-
erator.

• ko3(BSD16) ∼= [4]⊕ [8]⊕ [8] generated by x̃2 + z̃2 , ũ′2 and 2ỹ2 respectively, with
t̃′2−2x̃2−8ỹ2−z̃2−4ũ′2 = 0, where α̃2 = α6

q2 +QO−12 for each α ∈ {x, y, z, t′, u′}.
Moreover, there are two η2 -multiple generators from the top of x̃2 + z̃2 and, ũ′2
or 2ỹ2 .

• ko4(BSD16) ∼= Z < α > ⊕2 < τb

b4
> such that τb

b2
is embedded in H∗(BSD16;F2)

as (uy)∨ .

• ko5(BSD16) ∼= [2] < w̃′3 >, where w̃′3 = w′1
q1 + QO−2 such that w′1 = θ1 =

u1 − t1 − 2w1 .

• ko6(BSD16) = 0.

• ko7(BSD16) ∼= [2] ⊕ [4] ⊕ [16] ⊕ [32] generated by z̃4 + 4ũ4 , x̃4 , 2ỹ4 and 2ũ4

respectively, where α̃4 = α4
q2 + QO−8 for each α ∈ {x, y, z, t, u}.

• ko8(BSD16) ∼= Z < βρ > ⊕[2] < η̃[u4]
(u4)2

> ⊕2 < τb

b4
> such that η̃[u4]

(u4)2
and τb

b4
are

embedded in H∗(BSD16;F2) as (uPy)∨ and (uy5)∨ respectively.

• ko9(BSD16) ∼= [2]4 < η̃[A], η̃[B], η̃[D2], η̃[D̃3] > ⊕[2] < η̃2[u4]
(u4)2

> ⊕[2] < 2w̃5 >,

where w̃5 = w3
q2 + QO−6 , such that η̃[D̃3] and η̃2[u4]

(u4)2
are only two η -multiple

generators.

• ko10(BSD16) ∼= [2]4 < η̃2[A], η̃2[B], η̃2[D2], η̃2[D̃3] > ⊕2 < τbd

b6
+ τbd

b2d2 >, such
that there are three η -multiple generators which are η̃2[A], η̃2[B], η̃2[D2] and only
one η2 -multiple generator which is η̃2[D̃3]. Moreover τbd

b6
+ τbd

b2d2 is embedded in
H∗(BSD16;F2) as (uPy3)∨ .

• ko11(BSD16) ∼= [8]⊕ [16]⊕ [128]⊕ [128] generated by z̃6 + t̃6 , x̃6 + z̃6 , ũ′6 and 2ỹ6

respectively, with t̃6 = t̃′6 +4x̃6 +64ỹ6 +2z̃2 +64ũ′6 , where α̃6 = α6
q3 +QO−12 for

each α ∈ {x, y, z, t′, u′}. Moreover, there are three η2 -multiple generators from
the top of z̃6 + t̃6 , x̃6 + z̃6 and, ũ′6 or 2ỹ6 .
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• For k ≥ 1, ko8k+4(BSD16) ∼= Z < βkα > ⊕2k+1 < τb

b4(k−i)+2d2i |0 ≤ i ≤ k > such

that for each i, τb

b4(k−i)+2d2i is embedded in H∗(BSD16;F2) as (uP 2iy8(k−i)+1)∨ .

• For k ≥ 1, ko8k+5(BSD16) ∼= [2k+1] < w̃′4k+3 >, where w̃′4k+3 = w′1
qk+1 + QO−2

such that w′1 = θ1 = u1 − t1 − 2w1 .

• For k ≥ 1, ko8k+6(BSD16) ∼= 2k < τbd

b4(k−i+1)d2i + τbd

b4(k−i)d2(i+1) |0 ≤ i ≤ k − 1 >

such that for each i, τbd

b4(k−i+1)d2i + τbd

b4(k−i)d2(i+1) is embedded in H∗(BSD16;F2) as

(uP 2i−1y8(k−i+1)−1)∨ + (uP 2i+1y8(k−i)−1)∨,

(if i = 0, the first term disappears).

• For k ≥ 1, ko8k+7(BSD16) ∼= [2k]⊕ [2 · 4k]⊕ [4k+1]⊕ [16k+1]⊕ [2 · 16k+1] gener-

ated by ˜̂t4k+4 , z̃4k+4 + 4k+2ũ4k+4 , x̃4k+4 , 2ỹ4k+4 and 2ũ4k+4 , respectively, with
˜̂t4k+4 = t̃4k+4 − (−2)k+1x̃4k+4 − 2(−8)k+1ỹ4k+4 + (−2)kz̃4k+4 − 2(−8)k+1ũ4k+4 ,
where α̃4k+4 = α4

qk+2 + QO−8 for each α ∈ {x, y, z, t, u}.

• For k ≥ 1, ko8k+8(BSD16) ∼= Z < βk+1ρ > ⊕[2]2 < η̃[u4]
(u4)k+2 , η̃[t4]

(u4)k+2 > ⊕2k+1 <

τb

b4(k−i+1)d2i |0 ≤ i ≤ k > such that η̃[u4]
(u4)k+2 and τb

b4(k−i+1)d2i for each i, are embedded
in H∗(BSD16;F2) as

(uyP 2k+1)∨ and (uy8(k−i)+5P 2i)∨

respectively, whereas η̃[t4]
(u4)k+2 is an only one η -multiple generator (which is actu-

ally η · ˜̂t4k+4).

• For k ≥ 1, ko8k+9(BSD16) ∼= [2]5 < βk+1η̃[1], βk+1η̃[A], βk+1η̃[B], βk+1η̃[D2],
βk+1η̃[D̃3] > ⊕[2]2 < η̃2[u4]

(u4)k+2 , η̃2[t4]
(u4)k+2 > ⊕[2k+1] < 2w̃4k+5 >, where w̃4k+5 =

w3

qk+2 +QO−6 , such that βk+1η̃[D̃3] and η̃2[u4]
(u4)k+2 are only two η -multiple generators

whereas η̃2[t4]
(u4)k+2 is only one η2 -multiple generator.

• For k ≥ 1, ko8k+10(BSD16) ∼= [2]5 < βk+1η̃2[1], βk+1η̃2[A], βk+1η̃2[B], βk+1η̃2[D2]
, βk+1η̃2[D̃3] > ⊕2k+1 < τbd

b4(k+1−i)+2d2i + τbd

b4(k−i)+2d2i+2 >, such that there are four
η -multiple generators which are βk+1η̃2[1], βk+1η̃2[A], βk+1η̃2[B], βk+1η̃2[D2] and
only one η2 -multiple generator which is βk+1η̃2[D̃3]. Moreover τbd

b4(k+1−i)+2d2i +
τbd

b4(k−i)+2d2i+2 is embedded in H∗(BSD16;F2) as

(uy8(k+1−i)+1P 2i−1)∨ + (uy8(k−i)+1P 2i+1)∨

(if i = 0, the first term disappears).

• For k ≥ 1, ko8k+11(BSD16) ∼= [2k]⊕ [2 · 4k+1]⊕ [4k+2]⊕ [8 · 16k+1]⊕ [8 · 16k+1]
generated by 2t̃4k+6 , t̃4k+6 + z̃4k+6 , x̃4k+6 + z̃4k+6 , ũ′4k+6 and 2ỹ4k+6 respec-
tively, with t̃4k+6 = t̃′4k+6 + (−2)k+2x̃4k+6 + (−8)k+2ỹ4k+6 − (−2)k+1z̃4k+6 −
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4(−8)k+1ũ′4k+6 , where α̃4k+6 = α6

qk+3 +QO−12 for each α ∈ {x, y, z, t′, u′}. More-

over, there are four η2 -multiple generators from the top of 2t̃4k+6 , z̃4k+6 + t̃4k+6 ,
x̃4k+6 + z̃4k+6 and, ũ′4k+6 or 2ỹ4k+6 .

Proof. This is an immediate result from theorem 5.5.1, lemma 5.4.3, lemma 6.2.4, E∞ -
page of both Greenlees spectral sequence and η -BSS. Precisely, to conclude that η̃[D̃3]
is an η -multiple generator we use;

ρ = 16 · 1− [
28
3

A + 8B − 13
3

C +
4
3
D2 − 5

9
D̃3],

in lemma 5.3.2 and the same conclusion for βkη̃ε[D̃3] is an immediate from the case
k = 0. To conclude η2 -multiple generators in degree 8k + 3 for all k ≥ 0, we use the
comparison from the both spectral sequences. For the explicit embedding elements in
H∗(BSD16) are obtained by lemma 5.4.3, η -BSS and lemma 6.2.4.

From our calculation, we see that the calculation of real connective K-homology
by using Greenlees spectral sequence applying on ko∗(BSD16) gives us the enriched
structure which is suitable for GLR-conjecture but that method will not cover the
η -multiples. A tool to reveal them is η -Bockstein spectral sequence applying on
ku∗(BSD16). Also, the results from D.Bayen which was obtained by using Adams
spectral sequence are needed to solve the extension problems. In other words, mixing
of these tools is more powerful.

All in all, from our calculations, we can conclude that even if the methods that
we have used to calculate connective K-theory are different, all of them still require
representation theory to determine their differentials, and surprisingly, they give the
same answer.



Appendix A

Basic commutative algebra

In the calculation of connective K-homology of both real and complex theory by us-
ing Greenlees spectral sequences, we need to calculate local cohomology and in that
direct limits (involving to Kozsul complex) are the main thing to deal with. Also,
connective K-theory is related to the completion mod p (for our calculation, p = 2) of
representation rings, thus p-adic integers play a role in the calculation.

A.0.1 Direct limits

Here we investigate the definition and some properties of direct limit of modules and
rings by doing exercise on page 32-34 of M.F. Atiyah and I.G. Macdonald’s book [6].

Definition A.0.3. Let I be a direct set, R be a ring and let (Mi)i∈I be a family of
R module indexed by I . A direct system (Mi, µij) over the direct set I consists of an
R-homomorphism µij : Mi −→ Mj for each i ≤ j ∈ I such that

• µij is the identity mapping of Mi , for all i ∈ I ;

• µik = µjk ◦ µij whenever i ≤ j ≤ k .

Let C be the direct sum of Mi and identify each module Mi with its canonical image
in C . Let D be the submodule of C generated by all elements of the form xi − µij(xi)
where i ≤ j and xi ∈ Mi . The direct limit of the direct system (Mi, µij) is defined to
be lim−→ Mi := C/D . Let µ : C −→ lim−→ Mi be the projection and let µi be the restriction
of µ to Mi , then µi = µj ◦ µij whenever i ≤ j .

We can use this definition directly to prove:

Proposition A.0.4. In direct system (Mi, µij) of an R-module over the direct set N,
if there is N ∈ N such that µ(N+k)(N+k+1) are an R isomorphism for all k ≥ 0 then
MN

∼= lim−→ Mi .

Remark A.0.5. Note that:

194



APPENDIX A. BASIC COMMUTATIVE ALGEBRA 195

• This proposition will be true for any direct set I which can be proved by very
similar way to the direct set N.

• The condition that µ(N+k)(N+k+1) are an R isomorphism for all k ≥ 0 is nec-
essary and the condition that µ(N+k)(N+k+1) are an R injection for all k ≥ 0 is
not sufficient because m′

t may be not lies in the domain of µ−1
(t−1)t , e.g. in direct

system of (Mi, µij) such that µij are all inclusion, we have

lim−→ Mi
∼=

⋃

i

Mi. (A.1)

For direct system (Mi, µij) over a ring R where Mi = M,∀i ∈ N and µij = pj−i

for all i ≤ j ∈ N and p ∈ R , we define τ :
⊕

i∈NMi −→ M [1p ] by

τ((x1, x2, ..., xk, 0, 0, 0, ...)) = x1 + x2
p + x3

p2 + ... + xk

pk−1 .

It is not hard to see that τ is surjective and ker τ is D and hence

lim−→( M
p // M

p // M
p // ... ) ∼= M [

1
p
] (A.2)

By very similar process as the proof of proposition above, we get a useful lemma.

Lemma A.0.6. In the situation of definition A.0.3, we have

1.) every element of lim−→ Mi can be written in the form µi(xi) for some i ∈ I and some
xi ∈ Mi ,

2.) if µi(xi) = 0 then there exists j ≥ i such that µij(xi) = 0 and

3.) if µi(xi) = µj(x′j) for some j ≥ i then ∃, k ≥ j such that µik(xi) = µjk(x′j)

Proof. 1.) and 2.) are obtained directly form definition, and 3.) follows from the defini-
tion and 2.). More precisely, since µi(xi) = µj(x′j), by definition, µj(µij(xi)) = µj(x′j)
and hence µj(µij(xi)−x′j) = 0. By 2.), there exist k ≥ j such that µjk(µij(xi)−x′j) = 0
and thus 3.) is proved.

As the result of this lemma, we obtain universal property of direct limit:

Corollary A.0.7. (Universal property) Let N be an R- module and for each i ∈ I let
αi : Mi −→ N be an R-module homomorphism such that αi = αj ◦µij whenever i ≤ j .
Then there exists a unique homomorphism α : lim−→ Mi −→ N such that αi = α ◦ µi for
all i ∈ I .

Proof. For each m ∈ lim−→ Mi , by lemma A.0.6, m = µi(xi) for some i ∈ I and some

xi ∈ Mi and define α(m) = αi(xi). This is well defined by 3.) and the detail of
checking that α is unique is a routine work.
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Definition A.0.8. Let (Mi, µij) and (Ni, νij) be direct systems of R-module over
the same directed set. Let µi : Mi −→ lim−→ Mi , νi : Ni −→ lim−→ Ni be the associated

homomorphisms. A homomorphism Φ : (Mi, µij) −→ (Ni, νij) is by definition a family
of R-module homomorphisms φi : Mi −→ Ni such that φj ◦ µij = νij ◦ φi whenever
i ≤ j .

This homomorphism induces a unique homomorphism φ : lim−→ Mi −→ lim−→ Ni

given by φ(m) = νi(φi(xi)) for each m = µi(xi) for some i ∈ I and some xi ∈ Mi ,
such that φ ◦ µi = νi ◦ φi for all i ∈ I .

We say that a sequence of direct systems and homomorphisms

(Mi, µij) −→ (Ni, νij) −→ (Pi, ηij)

is exact if the corresponding sequence of modules and module homomorphisms is exact
for each i ∈ I .

Proposition A.0.9. In direct system (Mi, µij) of an R-module over the direct set I ,
we have

1.) if (Mi, µij) −→ (Ni, νij) −→ (Pi, ηij) is an exact sequence then lim−→ Mi −→ lim−→ Ni −→
lim−→ Pi is also exact and

2.) any R-module N , lim−→(Mi ⊗ N) ∼= (lim−→ Mi) ⊗ N where lim−→(Mi ⊗ N) is a direct

limit of a direct system (Mi ⊗N, µij ⊗ 1).

Proof. The first statement is obtained by lemma A.0.6, definition A.0.8 and chasing
diagram. The second follows by using universal property of direct limit and universal
property of tensor product of module. More clear, a homomorphism µi⊗1 : Mi⊗N −→
(lim−→ Mi)⊗N for each i ∈ I induces a homomorphism ψ : lim−→(Mi⊗N) −→ (lim−→ Mi)⊗N ,
by corollary A.0.1. On the other hand, for each i ∈ I , let gi : Mi ×N −→ Mi ⊗N be
the canonical bilinear mapping. Note that lim−→(Mi × N) = (lim−→ Mi) ⊗ N . By passing

to the limit we obtain a mapping g : (lim−→ Mi) × N −→ lim−→(Mi ⊗ N). It is not hard
to see that g is R-bilinear and hence by universal property of tensor product we get a
unique homomorphism φ : (lim−→ Mi) ⊗ N −→ lim−→(Mi ⊗ N). Now it is simple to show
that φ ◦ ψ and ψ ◦ φ are identity mappings which completes the proof.

In our calculations, we will need to calculate H1
(q)(R) = coker(R −→ R[1q ]) for

some ring R and some q ∈ R (e.g. in Chapter 3, R = QU , a subring of KU∗(BSD16)).
So, it is reasonable to understand R[1q ] as a direct limit. We start with;

Definition A.0.10. Let (Ai)i∈I be a family of rings indexed by a direct set I , and for
each pair i ≤ j in I let αij : Ai −→ Aj be a ring homomorphism satisfying conditions
in the definition A.0.3. Regarding each Ai as a Z-module, we can then form the direct
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limit lim−→(Ai). As in [8], define multiplicative structure of lim−→ Ai as follows. For the

coset a = ⊕i∈Iri and b = ⊕j∈Ir
′
j and take k ≥ i, j for all i ∈ {i ∈ I : ri 6= 0} =

supp(a), j ∈ {j ∈ I : r′j 6= 0} = supp(b). Define

(a + J)(b + J) :=
∑

i∈supp(a),j∈supp(b)

αik(ri)αjk(r′j) + J

where J is the subgroup of
⊕

i∈I Ai generated by ri−αij(ri) for all i ≤ j ∈ I . This is
well defined and αi : Ai −→ lim−→(Ai) are ring homomorphism, see [8], page 4.

Now, the ring structure of
⊕

i∈I Ai can be given as follows. For each i ∈ I we
identify Ai with its image in

⊕
i∈I Ai and for ri ∈ Ri , r′j ∈ Rj . Define

ri · r′j = αi(ij)(ri)αj(ij)(r
′
j) ;

for general product, we extend this product via distributive law, [8](page8). So, we can
see that, for a direct system ((Ai)i∈N, αij) such that Ai = A,∀i ∈ N and αij = pj−i

for all j ≥ i , where p ∈ A ,

lim−→( A
p // A

p // A
p // ... ) ∼= A[

1
p
] (A.3)

A.0.2 Inverse limits, completion and p-adic integers

We review the definition and some properties of inverse limit, completion and p-adic
integers from Chapter 10 in [6]. In that by definition, an inverse system consists of
a sequence of groups {An} and homomorphism θn+1 : An+1 −→ An . The groups of
all coherent sequence (an) (i.e. an ∈ An and θn+1an+1 = an ) is called the inverse
limit of this system and usually it is written by lim←− An . In other words, by setting

A = Π∞n=1An , one defines dA : A −→ A by,

dA(an) = an − θn+1(an+1),

then lim←− An
∼= ker(dA) and the coker(dA) is normally denoted by lim←−

1An .

The exactness properties of inverse limit is different to direct limit, i.e. it is
merely left exact functor. Precisely, by proposition 10.2 in [6], one has that if 0 −→
{An} −→ {Bn} −→ {Cn} −→ 0, is an exact sequence of inverse systems, then

0 −→ lim←− An −→ lim←− Bn −→ lim←− Cn

is always exact. If, moreover, {An} is a surjective system (i.e. θn+1 : An+1 −→ An is
surjective for all n), then

0 −→ lim←− An −→ lim←− Bn −→ lim←− Cn −→ 0
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is exact.

Closely related to the inverse limit is completion. For the topological group G
topologized by the neighborhood of 0 in G , the completion of G , denoted by Ĝ , is
the set of all equivalence classes of Cauchy sequence. It is an abelian group under the
additive operation, i.e., if (xi) and (yj) are two represented Cauchy sequence classes
in Ĝ , so is (xi + yj). Moreover, for each x ∈ G , we define φ(x) to be the constant
sequence (x) in Ĝ for φ : G −→ Ĝ . This is a homomorphism of abelian groups which
is not in general injective. In fact, we have ker(φ) = ∩U , where U runs through all
neighborhoods of 0 in G , and furthermore φ is injective if and only if G is Hausdorff,
[6].

The relevance to the inverse limit comes from the alternative purely algebraic
definitions of completion, namely, by using topologies given by the sequences of sub-
groups G = G0 ⊇ G1 ⊇ · · ·Gn ⊇ · · · , i.e., U ⊆ G is a neighborhood of 0 if and only
if it contains some Gn . Note that the subgroups Gn of G are both open and closed
in that topology. By this topology, one can form the inverse system {G/Gn} with
θn+1 : G/Gn+1 −→ G/Gn and one can show that

Ĝ ∼= lim←− G/Gn, (A.4)

see details of this isomorphism in page 103 of [6].

Since {G′/G′
n} is surjective system, for any short exact sequence of groups, 0 −→

G′ −→ G
p // G′′ −→ 0 yields the short exact sequence,

0 −→ Ĝ′ −→ Ĝ −→ Ĝ′′ −→ 0,

where G has topology defined by a sequence {Gn} of subgroups and gives G′, G′′ the
induces topologies, i.e. by the sequence {G′

n ∩Gn} , {pGn} , (Corollary 10.3, [6]). The
consequence is that Ĝn is a subgroup of Ĝ and

Ĝ/Ĝn
∼= G/Gn and ̂̂

G ∼= Ĝ.

The other relevances of inverse limit is the completion of topological ring (the
ring operations are continuous) given by the sequences of its ideal. For topological ring
G = A and its ideal a , the sequence of the ideal a is A = a0 ⊇ a1 ⊇ a2 ⊇ · · · and the
a-adic topology is given by

A∧a = lim←− A/an.

This completion is again a topological ring and φ : A −→ A∧a is a continuous ring
homomorphism whose kernel is ∩an . The topology is Hausdorff if and only if ∩an = 0
if and only if A is a completion ring.

Likewise for an A-module M ; take G = M and Gn = anM and the completion
of M is call a-adic topology on M which is

M̂ = lim←− M/anM.
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This is a topological Â-module. If M −→ N is any A−module homomorphism then
f(anM) = anf(M) ⊆ anN , and thus f is continuous (with respect to the a-adic
topology on M and N ) and so defines f̂ : M̂ −→ N̂ , page 105, [6].

The example of our interest is p-adic integers, where p is prime, i.e. by taking

A = Z and a = (p). It elements are infinite series
∞∑

n=0

anpn , 0 ≤ an ≤ p − 1 which

pn −→ 0 as n −→ 0, [6]. In other words,

Z∧p = lim←− Z/pk,

which contains all sequence (a1, a2, a3, ...) such that ak ∈ Z/pk and ak+1 ≡ ak mod pk .

Here, for example, we see that 1
3 ∈ lim←− Z/2k ∼= Z∧2 because we can view 1

3 =

1 + (−2) + (−2)2 + (−2)3 + ... as the coherent sequence (a1, a2, a3, ...), [i.e. ai is the
image of 1 + (−2) + (−2)2 + (−2)3 + ... in Z/2i ], where

a1 = 1 ≡ 1 mod2,
a2 = 1 + (−2) ≡ −1 mod4,
a3 = 1 + (−2) + (−2)2 ≡ 3 mod8,
a4 = 1 + (−2) + (−2)2 + (−2)3 ≡ −5 mod16
...

...
...

which is easy to see that ak+1 ≡ ak mod 2k . In general, we claim that p
q ∈ Z∧2 for all

p, q ∈ Z s.t. (p, q) = 1 and q is odd. To prove this, we will use another description of
Z∧2 , i.e. as the completion of the matric space (Z, d2), where

d2(a, b) =
{ 1

ν2(a−b) , if a 6= b;
0, if a = b,

and ν2(n) = s if n = 2s · odd .

Proposition A.0.11. For p, q ∈ Z, (p, q) = 1 and q 6= 0, we have that

p
q ∈ Z∧2 ⇐⇒ q is odd.

Proof. (⇐=): It is clear that p ∈ Z∧2 (as an eventually constant sequence), so by the
closed property of ring multiplication of Z∧2 , we need only to check that 1

q ∈ Z∧2 for
any odd number q . As before, we view 1

q as

1
q

=
1

1− x
= 1 + x + x2 + x3 + ...,

where x is an even integer. From this form, we get coherent sequence (qn) = (a1, a2, a3, ...),
where ai = 1 + x + x2 + ... + xi , the image of 1

q in Z/2i . It is not hard to check
that (qn) is a Cauchy sequence in the matric space (Z, d2). Precisely, for r ≥ s ,
ar − as = xs + xs+1 + ... + xr = xs(1 + x + x2 + ... + xr), then ν2(ar − as) ≥ s and thus
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d2(ar, as) ≤ 1
s which yields (qn) to be a Cauchy sequence, i.e. 1

q ∈ Z∧2 .

(=⇒): Suppose q is even (p is odd) and p
q ∈ Z∧2 , then (1

p)(p
q ) = 1

q ∈ Z∧2 , since
1
p ∈ Z∧2 . This implies that q is a unit in the ring Z∧2 and then q mod2 must be a
unit in the ring Z/2 via any ring homomorphism Z∧2 −→ Z/2. Hence q must be odd
which contradicts to the assumption.
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