Zhou, Kejia (2014) Development of Advanced GaAs Based Quantum Dot Devices. PhD thesis, University of Sheffield.
Abstract
This thesis details research on the development of ~1.3μm quantum dot (QD) devices. QD devices which are theoretically ideal for the realisation of temperature insensitive lasers. A method to measure the recombination coefficients in a semiconductor laser is developed, and the role of Auger recombination in the realisation of temperature insensitive lasers is discussed.
Moreover, due to a broad spectral linewidth and strong state-filling effects, QD structures are promising for application as broadband light sources.
It is reported that the Auger recombination coefficient decreases with increasing device temperature, as measured by several complicated experimental techniques. In chapter 2, a simple analysis method (small signal modulation) to measure all of the recombination coefficients is introduced and discussed. In chapter 3, experimental data based on the small signal modulation technique is analysed. Which shows that all of the recombination coefficients, including the Auger coefficient, are a function of temperature and modulation doping in QD lasers.
Following on from chapter 3, in chapter 4 the dynamic characteristic (differential carrier lifetime) of a 3μm-ridge QD laser device fabricated from commercial QD material is investigated. The modelled GS peak gain as a function of current density is determined based on the recombination coefficients, the random population model and the measured gain (via the
iv
Hakki-Paoli method). Then, by comparing the modelled GS gain to the experimental results, the carrier thermal escape parameter is determined. Finally in chapter 4, the variation of the Auger coefficient is explored to investigate the possibility of a temperature independent current density.
The selective intermixing technique can be used in order to achieve broadband light source devices. In chapter 5, the intermixing method is introduced based on both quantum well and quantum dot structures. Then, a number of different capping materials on samples with different active region structures are discussed based on photoluminescence measurements from intermixed structures. The potential for selective area intermixing of an integrated device with a TiO2 and SiO2 cap annealed on a p-doped sample is demonstrated at the end of the chapter.
Finally, in chapter 6, two integrated devices are fabricated based on this TiO2 and SiO2 cap. These devices demonstrate a broad emission bandwidth, and by applying a fast Fourier transform to the spectra in order to determine the point spread function of the instrument, and application of the Rayleigh criterion for resolution, an estimation of the resolution in an OCT system is made.
Metadata
Supervisors: | Hogg, Richard |
---|---|
Keywords: | Quantum Dot |
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Electronic and Electrical Engineering (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.605477 |
Depositing User: | Mr Kejia Zhou |
Date Deposited: | 05 Jun 2014 07:45 |
Last Modified: | 03 Oct 2016 11:16 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:6177 |
Download
PHD Thesis
Filename: 2014 04 23 ai-5 page kaoyou.pdf
Description: PHD Thesis
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.