Tao, Ran (2019) Advanced Technologies for Energy Saving, Wireless Backhaul and Mobility Management in Heterogeneous Networks. PhD thesis, University of Sheffield.
Abstract
In recent years, due to the increasing number of existing and new devices and applications, the wireless industry has experienced an explosion of data traffic usage. As a result, new wireless technologies have been developed to address the capacity crunch. Long-Term Evolution-Licensed Assisted Access (LTE-LAA) is developed to provide the tremendous capacity by extending LTE to 5 GHz unlicensed spectrum. Hyper-dense small cells deployment is another promising technique that can provide a ten to one hundred times capacity gain by bringing small cells closer to mobile user equipments [1]. In this thesis, I focus on
three problems related to these two techniques.
In Chapter 3, I present a novel activation and sleep mechanism for energy efficient small cell heterogeneous networks (HetNets). In the cell-edge area of a macrocell, the coverage area of a sleeping small-cell will be covered by a range of expanded small-cells nearby. In
contrast, in areas close to the macrocell, user equipment (UE) associated with a sleeping small cell will be distributed to the macrocell. Furthermore, the enhanced inter-cell interference coordination (eICIC) technique is used to support range-expanded small cells to avoid Quality of Service (QoS) degradation. Under both hexagonal and stochastic geometry based models, it is demonstrated that the proposed sleeping mechanism significantly reduces the energy consumption of the network compared with the conventional methods
while guaranteeing the QoS requirements.
Small cells are currently connected to limited backhaul to reduce the deployment and operational costs. In Chapter 4, an optimisation scheme is proposed for small cells to utilise the bandwidth of macrocells as wireless backhaul. I provide the numerical analysis of the
performance of both the targeted small cell and the whole network.
In Chapter 5, the mobility management (MM) of heterogeneous and LTE-LAA networks are investigated. To avoid Ping-Pong handover (PPHO) and reduce handover failure rate in HetNets, a self-optimisation algorithm is developed to change the handover parameters of a base station automagically. Furthermore, the MM of LTE-LAA networks is analysed. A new handover mechanism is proposed for LTE-LAA networks. Compared with the conventional LTE networks, LTE-LAA networks trigger the handover not only by using UE mobility, but also by the availability of the unlicensed band. A comprehensive analysis of the handover triggering event and handover procedure is presented. Simulation results show that by introducing handover triggered by available unlicensed band, the ratio of handover to unlicensed spectrum has a significant improvement. Therefore, a noticeable enhanced
throughput of UEs is achievable by LTE-LAA networks.
Metadata
Supervisors: | Zhang, Jie and Chu, Xiaoli |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Electronic and Electrical Engineering (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.770239 |
Depositing User: | ran ran tao |
Date Deposited: | 25 Mar 2019 10:24 |
Last Modified: | 25 Sep 2019 20:07 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:23367 |
Download
thesis
Filename: thesis.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.