Hernandez Vicente, Bernardo Andres (2018) Model predictive control for linear systems: adaptive, distributed and switching implementations. PhD thesis, University of Sheffield.
Abstract
Thanks to substantial past and recent developments, model predictive control has become one of the most relevant advanced control techniques.
Nevertheless, many challenges associated to the reliance of MPC on a mathematical model that accurately depicts the controlled process still exist.
This thesis is concerned with three of these challenges, placing the focus on constructing mathematically sound MPC controllers that are comparable in complexity to standard MPC implementations.
The first part of this thesis tackles the challenge of model uncertainty in time-varying plants.
A new dual MPC controller is devised to robustly control the system in presence of parametric uncertainty and simultaneously identify more accurate representations of the plant while in operation.
The main feature of the proposed dual controller is the partition of the input, in order to decouple both objectives.
Standard robust MPC concepts are combined with a persistence of excitation approach that guarantees the closed-loop data is informative enough to provide accurate estimates.
Finally, the adequacy of the estimates for updating the MPC's prediction model is discussed.
The second part of this thesis tackles a specific type of time-varying plant usually referred to as switching systems.
A new approach to the computation of dwell-times that guarantee admissible and stable switching between mode-specific MPC controllers is proposed.
The approach is computationally tractable, even for large scale systems, and relies on the well-known exponential stability result available for standard MPC controllers.
The last part of this thesis tackles the challenge of MPC for large-scale networks composed by several subsystems that experience dynamical coupling.
In particular, the approach devised in this thesis is non-cooperative, and does not rely on arbitrarily chosen parameters, or centralized initializations.
The result is a distributed control algorithm that requires one step of communication between neighbouring subsystems at each sampling time, in order to properly account for the interaction, and provide admissible and stabilizing control.
Metadata
Supervisors: | Trodden, Paul and Anderson, Sean |
---|---|
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Automatic Control and Systems Engineering (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.759849 |
Depositing User: | Mr. Bernardo Hernandez Vicente |
Date Deposited: | 26 Nov 2018 08:55 |
Last Modified: | 23 Dec 2019 11:04 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:22174 |
Download
Thesis
Filename: Thesis.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.