Ashmore, Ian (2011) Time dependent multifluid magnetohydrodynamic models of C-type shocks in weakly ionized, dusty media. PhD thesis, University of Leeds.
Abstract
During the star formation process, low mass protostars go through a period of mass loss which
involves expelling as much as half of the material from the accretion disk along their polar axes.
The ejected material affects the environment surrounding the protostar as it interacts with the
quiescent material of the core. Some of the core material is entrained and accelerated above the
local sound speed, ensuring that shocks are present at the interfaces with the undisturbed cloud.
Because of the high densities, appreciable magnetic field and low fractional ionization in
such regions, ambipolar diffusion allows the ram pressure of the flow to be dissipated over an
extended distance instead of one or two collisions. This precludes collisional ionization and reduces
molecular dissociation in the shock front and therefore guarantees efficient cooling. The
entrained cloud material is known as a molecular outflow and the extended associated shocks
are denoted C-type. In addition, the conditions in the shocks produce streaming velocities between
the charged and neutral species. This allows the dust grains present to become negatively
charged and facilitates collisions and chemical reactions both in the gas phase and on grain
surfaces.
Although previous work exists into the structure and processes in C-type shocks, computational
limitations have restricted most studies to either shocks at steady state or ones which
are perpendicular to the magnetic field. The conditions in molecular clouds make steady shocks
unlikely and the outflows make an arbitrary angle with the magnetic field making it unlikely that
an individual outflow is even nearly perpendicular to the upstream field. A new MHD scheme
is available which allows numerical models the structures of non-steady oblique shocks to be
made.
This thesis details multifluid MHD models of the C-type shocks in molecular outflows using
this scheme. Steady perpendicular and oblique C-type shock structures are obtained for suitable
molecular outflow conditions and compared to previous models to confirm the schemes accuracy.
The first non-steady simulations are undertaken to investigate the interaction of steady,
oblique C-type shocks with perturbations in the upstream density which are chosen to simulate
the clumpy nature of molecular cloud cores. Finally terms are developed to describe the systematic
collisions between charged grains and neutrals which are thought to return icy mantle
and refractory grain core material to the gas phase in a process known as sputtenng. A region of
parameter space suitable for the molecular outflows from low mass protostars is explored. The
results are compared to previous observations and theoretical investigations.
Chemical segregations are noted along the outflow axis, most notably between HCO+,
which is common in the upstream region and the edge of the precursor and water and SiO,
which become common in the shock and remain so in the downstream region. It is found that
the formation and sputtering of water directly causes the HCO+ abundance to fall. This finding
is in harmony with recent observations.
Further investigation also reveals a that the material sputtered from the grains has a dependence
on the angle between the shock normal and the upstream magnetic field. Such a
dependence follows from the expressions employed for the sputtering rates, but has not been
previously noted or quantified. It is found that the angular dependance is important over a wide
region of the parameter space and the insights gained are likely to affect the interpretation of
observations of the gas phase products of sputtering in the future.
Metadata
Supervisors: | Caselli, Paula and Caselli, Tom |
---|---|
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.589059 |
Depositing User: | Digitisation Studio Leeds |
Date Deposited: | 03 Jun 2016 10:31 |
Last Modified: | 06 Oct 2016 14:41 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:13307 |
Download
Ashmore_I_Physics_&_Astronomy_PhD_2011
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.