Xie, Zhihua (2010) Numerical Modelling of Breaking Waves under the Influence of Wind. PhD thesis, University of Leeds.
Abstract
Wave breaking plays an important role in air-sea interaction, surf zone dynamics, nearshore sediment transport, marine hydrodynamics, and wave-structure
interaction. When the wind is blowing over water waves, it not only enhances the exchanges of heat, mass and momentum on the air-water interface, but also affects the wave breaking process.
The objective of this thesis is to contribute to the understanding of breaking waves under the influence of wind. A two-phase flow model is presented to solve the flow in the air and water simultaneously. Two strategies for turbulence modelling, namely, the Reynolds-averaged Navier–Stokes (RANS) equations with the k−ǫ turbulence model and Large Eddy Simulation (LES) with the Smagorinsky subgrid-scale model, are employed to study two-dimensional (2D)
and three-dimensional (3D) breaking waves, respectively. The governing equations are solved by the finite volume method in a Cartesian staggered grid and the partial cell treatment is implemented to deal with complex geometries. The SIMPLE or PISO algorithms are utilized for the pressure-velocity coupling and a backward finite difference discretization is used for the time derivative. The
air-water interface is modelled by the interface capturing method via a high resolution VOF (Volume of Fluid) scheme. The numerical model is validated by simulating 2D overturning waves on a sloping beach and over a reef, and 3D solitary wave run-up on a conical island, in which good agreement between numerical results and experimental measurements is obtained. Moreover, the overturning
jet and subsequent splash-up are captured in the computation.
The numerical model is further employed to investigate 2D breaking solitary waves on a sloping beach, 2D periodic breaking waves (both spilling and plunging breakers) in the surf zone, and 3D overturning waves over a submerged conical
island. Numerical results in the absence of wind are presented and compared with available experimental data, and then the effect of wind is included in the computation of breaking waves.
The key findings of this thesis are that the wind can influence the kinematics and dynamics of breaking waves, as onshore winds assist the development of water particle velocities towards the critical wave phase speed, cause the wave to break earlier in a deeper water further off shore. There is recirculation of air flow above the wave crest in the absence of wind whereas air flow separation is observed
in the presence of a sufficiently strong wind. In addition, the wind affects the shape of the overturning jet, generation of vorticity, and energy transformation
and dissipation during wave breaking.
This study has contributed to the characteristics of breaking waves, focusing on the period during wave overturning. The information gained in this study shed
some light on wind effects on breaking waves, which have import implications for coastal engineering and air-sea interaction.
Metadata
Supervisors: | Wen, X. and Ross, A. |
---|---|
ISBN: | 978-0-85731-005-7 |
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > University of Leeds Research Centres and Institutes > Centre for Computational Fluid Dynamics (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.516039 |
Depositing User: | Ethos Import |
Date Deposited: | 02 Jul 2010 12:14 |
Last Modified: | 25 Jul 2018 09:44 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:939 |
Download
Xie_Z_SPEME_PhD_2010
Filename: Xie_Z_SPEME_PhD_2010.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.