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Abstract

Wave breaking plays an important role in air-sea interaction, surf zone dynam-

ics, nearshore sediment transport, marine hydrodynamics, and wave-structure

interaction. When the wind is blowing over water waves, it not only enhances

the exchanges of heat, mass and momentum on the air-water interface, but also

affects the wave breaking process.

The objective of this thesis is to contribute to the understanding of break-

ing waves under the influence of wind. A two-phase flow model is presented

to solve the flow in the air and water simultaneously. Two strategies for tur-

bulence modelling, namely, the Reynolds-averaged Navier–Stokes (RANS) equa-

tions with the k−ǫ turbulence model and Large Eddy Simulation (LES) with the

Smagorinsky subgrid-scale model, are employed to study two-dimensional (2D)

and three-dimensional (3D) breaking waves, respectively. The governing equa-

tions are solved by the finite volume method in a Cartesian staggered grid and

the partial cell treatment is implemented to deal with complex geometries. The

SIMPLE or PISO algorithms are utilized for the pressure-velocity coupling and

a backward finite difference discretization is used for the time derivative. The

air-water interface is modelled by the interface capturing method via a high res-

olution VOF (Volume of Fluid) scheme. The numerical model is validated by

simulating 2D overturning waves on a sloping beach and over a reef, and 3D soli-

tary wave run-up on a conical island, in which good agreement between numerical

results and experimental measurements is obtained. Moreover, the overturning

jet and subsequent splash-up are captured in the computation.

The numerical model is further employed to investigate 2D breaking solitary

waves on a sloping beach, 2D periodic breaking waves (both spilling and plunging

breakers) in the surf zone, and 3D overturning waves over a submerged conical

island. Numerical results in the absence of wind are presented and compared
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with available experimental data, and then the effect of wind is included in the

computation of breaking waves.

The key findings of this thesis are that the wind can influence the kinematics

and dynamics of breaking waves, as onshore winds assist the development of water

particle velocities towards the critical wave phase speed, cause the wave to break

earlier in a deeper water further off shore. There is recirculation of air flow above

the wave crest in the absence of wind whereas air flow separation is observed

in the presence of a sufficiently strong wind. In addition, the wind affects the

shape of the overturning jet, generation of vorticity, and energy transformation

and dissipation during wave breaking.

This study has contributed to the characteristics of breaking waves, focusing

on the period during wave overturning. The information gained in this study shed

some light on wind effects on breaking waves, which have import implications for

coastal engineering and air-sea interaction.
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κ von Kármán’s constant page 68
λf the interpolation factor for face f=e, w,

n, s, b, r
page 35

µ dynamic viscosity of the fluid Pa·s ML−1T−1 page 29
µSGS subgrid-scale eddy viscosity Pa·s ML−1T−1 page 158
µt turbulent eddy viscosity Pa·s ML−1T−1 page 66
Ω the volume of the control volume m3 L3 page 33
ω vorticity 1/s T−1 page 184

ζ mean water surface elevation m L page 124
φ an arbitrary variable page 64

Φ() step function page 43
Ψ() limiter function page 40
∂Ω boundary of the computational domain m2 L2 page 30
ρ the density of fluid kg/m3 ML−3 page 28
σ wave angular frequency rad/s T−1 page 2
σǫ empirical coefficient in the k − ǫ model page 67
σk empirical coefficient in the k − ǫ model page 67
∆t time step s T page 45
τSGS
ij Subgrid-scale Reynolds stress in LES Pa ML−1T−2 page 157
τw shear stress on the wall Pa ML−1T−2 page 69

xxii



Nomenclature

θ θ function for the control volume in FA-
VOR

page 37

Ω a computational domain m3 L3 page 30
ξ0 surf similarity parameter, or Iribarren

number
page 7

ζ water surface elevation m L page 124

Superscripts

∗ Guessed value in pressure-velocity cou-
pling

page 47

′ first corrected value in pressure-velocity
coupling

page 47

′′ second corrected value in pressure-
velocity coupling

page 49

a variable for the air page 29
FOU first order upwind scheme page 39
HRS high resolution scheme page 40
n value in previous time step page 45

n+ 1 value in current time step page 45
′ fluctuation of the variable in RANS and

subgrid-scale property in LES
page 64

SOU second order upwind scheme page 40
w variable for the water page 29

Subscripts

A value in the accepter cell page 39
B the value for back point of point P page 37
b the value for back face of the control vol-

ume P
page 37

c the value for centre of the control volume
P

page 37

D value in the donor cell page 39
E the value for east point of point P page 37
e the value for east face of the control vol-

ume P
page 37

f the value for the face of the control vol-
ume P

page 37

N the value for north point of point P page 37

xxiii



Nomenclature

n the value for north face of the control
volume P

page 37

P the value for present point considered page 37
R the value for front point of point P page 37
r the value for front face of the control vol-

ume P
page 37

S the value for south point of point P page 37
s the value for south face of the control

volume P
page 37

U value in the upwind cell page 39
W the value for west point of point P page 37
w the value for west face of the control vol-

ume P
page 37

Other Symbols

〈()〉 time averaging or ensemble averaging page 64

() spatial filtering page 156

xxiv



Abbreviations

ADI Alternating Direction Implicit
BEM Boundary Element Method
BIEM Boundary Integral Element Method
Bi-CGSTAB Bi-Conjugate Gradients Stablized
CBC Convection Boundedness Criteria
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy
CICSAM Compressive Interface Capturing Scheme for Arbitrary Meshes
CIP Constrained Interpolation Profile
CISPH Correct Incompressible SPH
CLSVOF Coupled Level Set and Volume Of Fluid
COBRAS COrnell BReaking waves And Structures
DNS Direct Numerical Simulation
DPIV Digital Particle Image Velocimetry
FAVOR Fractional-Area-Volume Obstacle Representation
FCT Flux-Corrected Transport
FDM Finite Difference Method
FEM Finite Element Method
FVM Finite Volume Method
GENSMAC GENeralized Simplified Marker-And-Cell
KdV Korteweg-de Vries
KP Kadomtsev-Petviashvili
LANL Los Alamos National Laboratory
LDV Laser Doppler Velocimetry
LES Large Eddy Simulation
MAC Marker-And-Cell
MLPG R Meshless Local Petrov-Galerkin method based on Rankine source solution
MPS Moving Particle Semi-implicit
NLS NonLinear Schrödinger
NVD Normalized Variable Diagram
NWT Numerical Wave Tank
PDE Partial Differential Equation
PFEM Particle Finite Element Methods
PISO Pressure-Implicit with Splitting of Operators

xxv



PIV Particle Image Velocimetry
PLIC Piecewise Linear Interface Calculation
RANS Reynolds-Averaged Navier-Stokes
RIPPLE A computer program for incompressible flows with free surfaces
RLW Regularized Long Wave
RNG Re-Normalized Group
SGS Subgrid-Scale
SIMPLE Semi-Implicit Method for Pressure-Linked Equations
SIMPLEC SIMPLE-Consistent
SIMPLER SIMPLE-Rivised
SIP Strongly Implicit Procedure
SLIC Simple Line Interface Calculation
SL-VOF Segment Lagrangian - VOF
SMAC Simplified Marker And Cell
SMMC Surface Marker and Micro Cell
SOLA-VOF A solution algorithm for transient fluid flow with multiple free boundaries
SPH Smooth Particle Hydrodynamics
TDMA Tridiagonal Matrix Algorithm
TVD Total Variation Diminishing
VOF Volume Of Fluid

xxvi



Chapter 1

Introduction

The water wave problem has been one of the fascinating topics of fluid mechanics

for many years. There have been no shortage of theoretical studies of water waves,

motivated by mathematicians from the nineteenth century, and the problem has

also attracted many researchers using experimental and numerical techniques to

better understand the relevant processes associated with water waves. Water

waves start to break when their amplitude reaches a critical level as widely seen

in the ocean and nearshore region. Wave breaking plays an important role in

air-sea interaction, surf zone dynamics, nearshore sediment transport, marine

hydrodynamics, and wave-structure interaction.

Previous investigations of breaking waves have greatly improved our knowl-

edge of the wave breaking process, but the present state-of-the-art is still far from

satisfactory. This thesis deals with breaking waves under the influence of wind

via numerical simulations. When the wind is blowing over water waves, it can

not only enhance the exchanges of heat, mass and momentum on the air-water

interface, but also affect the wave breaking process. This study tries to shed some

light on this problem in order to better understand the kinematics and dynamics

of breaking waves.

In this chapter, after introducing water wave mechanics, we review the back-

ground of breaking wave studies. Then the effects of wind on water waves are

explored and some relevant investigations available in the literature are briefly

discussed. After that, the scope of the thesis is described, and finally the outline

of the thesis is presented.
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1.1 Water Wave Mechanics

1.1 Water Wave Mechanics

Unsteady free surface flows subjected to gravitational forces are called water

waves (Mader, 2004). They are also called gravity waves. Gravity waves on an

air-water interface are known as surface waves while internal gravity waves are

named internal waves.

There are different water waves in nature (Mader, 2004), which include wind-

generated waves in the open ocean, flood waves in rivers and lakes, seiche or long-

period oscillations in harbour basins, wakes produced by moving ships, tidal bores

or moving hydraulic jumps in estuaries, tsunami waves generated by underwater

earthquakes or landslides, and waves generated by underwater explosions.

Figure 1.1 shows the characteristics of a water wave over a flat bottom, where

L is the wave length, H is the wave height, D is the water depth, a = H/2 is

the wave amplitude, η is the water surface elevation, and the coordinate axis

that will be used in this study is located at the still water line. The angular

wavenumber is defined as kw = 2π/L, the angular frequency is σ = 2π/T , where

T is the period of the wave, and the wave phase speed is C = L/T . Thus, three

important parameters are:

• D
L
: relative depth.

• H
D

: relative height.

• H
L

: wave steepness.

Water waves can be classified in a number of useful ways. One classification

is by the frequency fw, which is the reciprocal of the period T . Kinsman (1965)

gave a schematic representation of surface water waves in the ocean by their

categorized frequency, along with the primary disturbing and restoring forces, as

shown in figure 1.2.

Another important wave classification is by the depth of water. They include

shallow water waves (D/L < 0.05), intermediate water waves (0.05 < D/L <

0.5), and deep water waves (D/L > 0.5).

Water wave theories consist of linear wave and nonlinear wave theories. The

development of water wave theory can be found in two review articles by Craik
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1.1 Water Wave Mechanics
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Table 1.1: Water wave theories for irrotational flow on flat bottoms. (After Mader, 2004)

Water Waves

Linear wave theories

H

D
≪ 1

H

L
( L

D
)3 ≪ 1

Shallow water
D

L
< 0.05

Hydrostatic

Irrotational

Perfect fluid

Oscillatory

Linear long
wave theory

No

Exact

Airy

Finite depth
0.05 < D

L
< 0.5

Deep water
D

L
> 0.5

Nonhydrostatic

Irrotational

Perfect fluid

Oscillatory

Small amplitude
wave theory

No

Exact

Airy

RELATIVE

HEIGHT

URSELL

PARAMETER

RELATIVE

DEPTH

PRESSURE

ROTATIONALITY

FRICTION

FORCES

TYPE OF

WAVE

NAME OF

THEORY

MASS

TRANSPORT

SOLUTION

MODEL

Nonlinear wave theories

H

D
≪ 1

H

L
( L

D
)3 < 10

Finite depth
0.05 < D

L
< 0.5

Nonhydrostatic

Irrotational

Perfect fluid

Oscillatory

Small amplitude
wave theory

Small

Power series
in H/L

Stokes

H

D
< 1

H

L
( L

D
)3 = 1

Shallow water
D

L
< 0.1

Hydrostatic

Irrotational

Perfect fluid

Oscillatory

Cnoidal
wave theory

Small

Power series
in H/D

Korteweg and
de Vries

Translatory

Solitary
wave theory

Yes

Power series
in H/D

Laitone

H

D
≷ 1

H

L
( L

D
)3 ≫ 1

Very shallow water
D

L
≪ 0.05

Hydrostatic

Irrotational

Perfect fluid

Translatory

Long wave
theory

Yes

Numerical
methods

Airy

D/L → 0

Limit case

1st order term
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1.2 Background of Breaking Wave Studies

(2004, 2005). Mader (2004) presented a summary, shown in table 1.1, for the

principles of different water wave theories. It is shown that all the water wave

theories in table 1.1 are derived based on the assumptions of irrotational flows and

flat bottoms. They are only valid in a specific region, when the characteristics of

the wave and water depth are known. Further water wave theroy can be found

in Mei (1989). Hence, the most suitable water wave theory must be chosen for

the different problems we consider in later chapters.

1.2 Background of Breaking Wave Studies

1.2.1 Breaking Waves

In the open ocean, clearly visible ‘whitecaps’ are formed during wave breaking,

enhancing the exchange of mass and momentum between the atmosphere and

the ocean. The process of wave breaking on a beach is the most common wave

breaking phenomenon seen in nature. Wave breaking is responsible for the dissi-

pation of wave energy and the generation of turbulence, vorticity and nearshore

currents in the surf zone. Over the last three decades, significant advances have

been made in theoretical, experimental and numerical studies of the characteris-

tics of breaking waves. There are some comprehensive reviews for water waves,

such as breaking waves on beaches (Peregrine, 1983), wave breaking in deep water

(Banner & Peregrine, 1993; Longuet-Higgins, 1987), surface waves in surf zone

dynamics (Battjes, 1988), and coastal hydrodynamics (Mei & Liu, 1993).

Generally, breaking waves are classified into four basic types (Galvin, 1968),

which are shown in figure 1.3:

• Spilling: Bubbles and turbulent water appear at the wave crest and spill

down the front face of the wave.

• Plunging: A plunging jet is ejected from the wave crest as the wave over-

turns, curling over a large air pocket, impinging on the surface ahead and

generating a subsequent splash-up.

• Collapsing: Lower half of the wave breaks without splash-up present.

5



1.2 Background of Breaking Wave Studies

Figure 1.3: Breaking wave types (Galvin, 1968).

• Surging: Smooth wave profile is observed during wave run-up whereas rip-

ples may be produced during wave run-down.

In deep water, most waves are observed as spilling or plunging breakers. In

shallow water, the type of wave breaking depends on the characteristics of the

wave and the slope of the beach. It is suggested that spilling breakers occur on

mildly sloping beaches, whereas plunging breakers occur on steeper beaches, and

collapsing and surging breakers occur on very steep beaches (Dean & Dalrymple,

1984; Svendsen, 2005). A prediction of the breaker type can be made with the

surf similarity parameter, or Iribarren number, as (Battjes, 1974):

ξ0 =
tan(β)
√

H0

L0

, (1.1)

where β is the angle of the sloping beach with respect to the flat bottom, H0 and
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1.2 Background of Breaking Wave Studies

Table 1.2: The surf similarity parameter corresponding to different breaker types
(Battjes, 1974).

Breaker type surf similarity parameter ξ0
Spilling ξ0 < 0.5
Plunging 0.5 < ξ0 < 3.3

Surging/collapsing ξ0 > 3.3

L0 represent the deep water wave height and length, respectively. The values of

the surf similarity parameter corresponding to different breaker types are given

in table 1.2.

For further details of the mechanisms of how waves break, refer to Longuet-

Higgins (1996) for deep water breaking waves and Svendsen (2005) for shallow

water breaking waves, respectively.

1.2.2 Experimental Studies

Much of our knowledge of breaking waves comes from laboratory measurements

as the characteristics of breaking waves are much more difficult to capture in

field measurements. Several systematic studies have been done in the past for

steady (or quasi-steady) breaking waves, unsteady deep-water breaking waves,

and unsteady breaking waves in the surf zone.

Steady breaking waves

The steady breaking waves are usually caused by moving submerged objects in the

water (view from the frame of the objects) or a steady current over fixed objects.

They are always classified as spilling breakers with small free surface distortions.

In this case, small-amplitude waves are generated above the submerged objects

and start to break when the depth of submergence is small enough (Duncan,

1983). The turbulent flow field, generated downstream of breaking waves, resem-

bles that in a self-similar turbulent wake (Battjes & Sakai, 1981). The evolution

of a quasi-steady breaker from the onset of a capillary pattern to a fully evolved

breaking wave was investigated by Lin & Rockwell (1995). Based on different

Froude numbers, they presented the distortion of the water surface, near-surface

7



1.2 Background of Breaking Wave Studies

Figure 1.4: The effect of surface tension on spilling breakers (Duncan, 2001).

velocity field and the vorticity in the mixing layer, and found that flow separation

occurs at higher Froude number. Duncan (2001) gave a review of this kind of

spilling breakers and discussed the effect of surface tension on spilling breakers

(see figure 1.4). It was indicated that the surface tension effects, which can alter

the shape of breaking waves, become increasing important for short waves.

Unsteady deep-water breaking waves

In contrast to steady breaking waves, unsteady breaking waves often occur in the

ocean and nearshore region, break at a special circumstance and last for a short

period of time.

There are a variety of experimental investigations of unsteady deep-water

breaking waves. Earlier research is based on photographic techniques for wave

instability (Melville, 1982) and details of flow visulization in the breaking re-

gion (Bonmarin, 1989; Rapp & Melville, 1990). Waves become more and more

asymmetric during wave pre-breaking and the asymmetry is more apparent for

plunging breakers than spilling breakers. After the impingement, the splash-up

can rise as high as the original overturning jet and the potential energy decreases

gradually during the jet-splash cycles (Bonmarin, 1989).
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1.2 Background of Breaking Wave Studies

To measure the internal kinematics of deep-water breaking waves, laser doppler

velocimetry (LDV) and particle image velocimetry (PIV) are usually employed

in experiments (Grue & Jensen, 2006; Perlin et al., 1996; Skyner, 1996). Skyner

(1996) obtained a good agreement between experiment and potential flow model

for the velocity field in the plunging jet. Perlin et al. (1996) found that parasitic

capillary waves form on the forward face of the wave and the maximum velocity

is located in the overturning jet with a magnitude of 1.3C. In contrast to the

findings of Skyner that particle velocities are nearly horizontal in the rear side of

the wave, they found that velocities in the plunging breaker are in a circular-like

motion. During wave overturning, the horizontal and vertical accelerations were

found up to 1.1g and 1.5g on the front face of the wave (Grue & Jensen, 2006),

respectively, where g is the acceleration of gravity.

Much research has focused on the wave dissipation and energy loss of break-

ing waves. During wave breaking in deep water, the energy loss was found to

range from 10% for spilling breakers to as much as 25% for plunging breakers.

In addition, it was indicated that about 90% of the energy is dissipated within

four wave periods (Rapp & Melville, 1990). With the developing digital particle

image velocimetry (DPIV) technique, Melville et al. (2002) measured the veloc-

ity field under breaking waves and found that the kinetic energy, vorticity and

Reynolds stress decay approximately as t−1. Banner & Peirson (2007) carried out

a laboratory investigation of the breaking initiation and subsequent energy loss

for two-dimensional deep-water wave groups. Recently, Drazen et al. (2008) and

Drazen & Melville (2009) using DPIV investigated the turbulence and mixing in

unsteady deep-water breaking waves. Energy dissipation during wave breaking

plays an important role in better understanding the coupling between the wave

field and the dynamics of the upper ocean, therefore the study of the scaling

of energy dissipation will lead the improvement in modelling air-sea interaction.

The measured turbulent structure of breaking waves provides insight into the

post-breaking wave field and will guide numerical studies of breaking waves.

Unsteady breaking waves in the surf zone

When water waves approach the beach, due to the shoaling effect, the wave

height increases while the water depth decreases. Eventually, the wave will break

9



1.2 Background of Breaking Wave Studies

on the beach. To better understand this process and get insight into the velocity,

vorticity, and turbulence fields, several laboratory studies have been carried out

for unsteady breaking wave in the surf zone. Most experiments are based on LDV

measuremnts (Nadaoka et al., 1989; Stansby & Feng, 2005; Stive & Wind, 1982;

Ting & Kirby, 1994, 1995, 1996), where the mean velocity is obtained by time-

averaging or phase-averaging procedure while turbulent fluctuations are obtained

from the instantaneous velocity. Large-scale eddies, referred to as ‘horizontal

eddies’ and ‘obliquely descending eddies’, were observed by Nadaoka et al. (1989)

under breaking waves in the surf zone. A systematic study of the structure of the

undertow and turbulence in the laboratory surf zone was carried out by Ting &

Kirby (1994, 1995, 1996). It is indicated that there are fundamental differences

in the dynamics of turbulence between spilling and plunging breakers. Compared

to spilling breakers, plunging breakers have much higher turbulence levels and

much smaller vertical variations of undertow and turbulence intensity. It was also

found that turbulence is transported seaward by spilling breakers and shoreward

by plunging breakers.

With the development of measurement techniques, it is capable of using PIV

to capture the detailed kinematics during wave breaking. Chang & Liu (1998)

carried out PIV measurements of the fluid particle velocity, acceleration and

vorticity in the overturning jet of a breaking wave and their further study of

turbulence under breaking waves was reported later in Chang & Liu (1999). It

was found that the maximum velocity in the water is about 0.86C when the

wave is close to the breaking point, 1.07C when the wave starts to overturn,

1.47C when the overturning jet curls down, and 1.68C when the overturning jet

strikes the water surface with an acceleration of 1.1g at an angle of 88o downward,

respectively. Recently, detailed PIV measurements of surf zone breaking waves

were performed by Kimmoun & Branger (2007) and they presented a complete

space-time evolution of the velocity field in the laboratory surf zone. It was found

that the maximum shoreward transport is in the splash-up locations whereas the

maximum seaward transport is near the bottom after the first splashing region.

Several vortices were generated during wave breaking and the front of the breaking

crest was found to be the initiation point for kinetic energy production.

10



1.2 Background of Breaking Wave Studies

Figure 1.5: Bubble creation mechanisms in breaking waves (Deane & Stokes,
2002).

Air entrainment

Air entrainment during wave breaking plays an important role in heat and mass

transfer across the air-sea interface. Several attempts have been made to mea-

sure void fraction and energy dissipation for deep-water breaking waves (Deane

& Stokes, 2002; Lamarre & Melville, 1991) and breaking waves in the surf zone

(Chanson & Lee, 1997; Cox & Shin, 2003; Hoque & Aoki, 2005; Jansen, 1986;

Lin & Hwung, 1992). Deane & Stokes (2002), using a high-speed video camera,

presented a detailed view of wave-generated bubbles when the plunging jet strikes

the water surface ahead (see figure 1.5). It is suggested that the jet/wave-face

interaction and the collapsing cavity are the two distinct flow features driving

bubble creation, and distinct vortices can be observed during the splash-up. For

breaking waves in the surf zone, it was found that the void fraction decays ex-

ponentially with the depth (Hoque & Aoki, 2005; Kimmoun & Branger, 2007),

and air entrainment and splash-up account for 4 − 9% and 2.5 − 5% of the total

energy dissipation during wave breaking, respectively (Blenkinsopp & Chaplin,

2007).

Three-dimensional breaking waves

It is worth remarking that most laboratory investigations of breaking waves are

two-dimensional or through incident two-dimensional waves leading to break due

to three-dimensional instability (Melville, 1982; Su et al., 1982). Only a few
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1.2 Background of Breaking Wave Studies

experiments have been carried out for fully three-dimensional breaking waves

generated by spatially focusing or diffracting waves (Nepf et al., 1998; She et al.,

1997; Wu & Nepf, 2002). As wave directionality varies from diffraction to positive

focusing, both the steepness and severity of breaking waves increase monotoni-

cally (Nepf et al., 1998). The energy loss for focusing waves is higher than that for

diffracting waves, and both are comparable to the energy loss of two-dimensional

breaking waves with the same spectral shape (Wu & Nepf, 2002). For the internal

kinematics during wave breaking, She et al. (1997) found the ratio of the crest

velocity to the wave speed is approximately unity while Wu & Nepf (2002) found

the ratio of local particle velocity to the wave speed is larger than unity. This

discrepancy may be caused by different laboratory setups.

For water waves propagating over irregular bathymetry, several laboratory

investigations have been performed for non-breaking waves over a semi-circular

shoal (Whalin, 1971) and a sloping elliptic shoal (Berkhoff et al., 1982), and

breaking waves over a submerged elliptic shoal (Vincent & Briggs, 1989) and

a circular shoal (Chawla et al., 1998). The refraction and diffraction of waves

passing over a varying bathymetry provide more information to the coastal engi-

neering community.

Summary of experimental studies

Overall, with the development of measurement techniques, physical experiments

have provided much insight into the kinematics and dynamics of breaking waves.

However, the process of wave breaking has not yet been fully understood due to its

complexity and experimental investigations still struggle to provide the detailed

flow field, especially during wave overturning in three dimensions. Moreover,

conducting physical experiments cost a lot of money and are also very time-

consuming. Thus, a variety of numerical studies, which are cost-effective and

can provide the detailed flow field, act as a complementary approach to study

breaking waves.
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1.2 Background of Breaking Wave Studies

1.2.3 Numerical Studies

Considering the scope of the present study, only the numerical studies dealing

with breaking waves will be discussed here. There are a variety of mathematical

models for water waves, of varying degrees of complexity, which are shown in

table 1.3.

Depth-integrated models

To simplify the problem into horizontal 1D or 2D, the depth-integrated models are

usually utilized for the water wave propagation. The radiative transfer equation

is often used to describe the large scale waves in a complex sea state in terms

of the spectral energy in directional wave-number space. This equation is the

foundational model for wind-wave prediction (Sobey, 1986).

For unidirectional wave propagation in 1D, the evolution of long waves is

based on the Korteweg-de Vries (KdV) equation (Korteweg & de Vries, 1895)

and the regularized long wave (RLW) equation (Benjamin et al., 1972) which is

similar to the KdV equation but with a different dispersive term. These equations

are widely used for solitary wave interactions and some other physical problems.

For 2D, the Kadomtsev-Petviashvili (KP) equation (Kadomtsev & Petviashvili,

1970), which is the extension of the KdV equation in 2D, is used to model the

long wave propagation, while the nonlinear Schrödinger (NLS) equation is used

for the evolution of the envelope of wave groups (Dingemans & Otta, 2001).

Under the assumption of slowly varying bathymetry, the mild slope equation

is used to model the wave refraction and diffraction in horizontal 2D (Berkhoff

et al., 1982; Kirby & Dalrymple, 1983; Liu & Tsay, 1984), and also for breaking

waves over irregular bathymetry (Chawla et al., 1998).

When the horizontal length scale is much greater than the vertical length

scale, the shallow water equations are used to model 1D long wave propagation

including wave breaking (Li & Raichlen, 2002; Titov & Synolakis, 1995), 2D long

wave run-up (Hubbard & Dodd, 2002; Liu et al., 1995; Titov & Synolakis, 1998)

and some dam-break flows. The shallow water equations are widely used in free

surface flows as they can provide satisfactory results with low computational cost.
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Table 1.3: Water wave models

Water Wave models

Depth-integrated models

Unidirectional wave
propagation models

KdV
equation

RLW
equation

KP
equation

NLS
equation

Radiative
transfer
equation

Mild slope
equation

Shallow water
equations

Boussinesq
equations

Depth-resolved models

Laplace’s
equation

Navier–Stokes
equations

Hydrostatic
Quasi 3D Fully 3D
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1.2 Background of Breaking Wave Studies

Using the approximation for weakly nonlinear and dispersive water waves,

Boussinesq (1872) derived the equation for wave propagation over a flat bottom

which was called the original Boussinesq equations. Peregrine (1967) proposed the

standard Boussinesq equations for variable depth. After that, many Boussinesq-

type equations were introduced by researchers in order to improve the nonlinearity

and dispersion of the model. The Boussinesq-type models have wide applications

in surf zone dynamics including wave breaking, wave run-up and wave-current

interaction. The wave breaking process can be modelled in the Boussinesq-type

equations by the eddy viscosity concept (Chen et al., 2000; Karambas & Kouti-

tas, 1992; Zelt, 1991), surface roller model (Madsen et al., 1997; Schaffer et al.,

1993; Sorensen et al., 2004), and vorticity transport model (Svendsen et al., 1996;

Veeramony & Svendsen, 2000). Comprehensive reviews of the Boussinesq-type

equations can be found in Madsen & Schaffer (1999) and Kirby (2003), and will

not be discussed here.

Actually, it is worth remarking that although the depth-integrated models

are widely used in modelling surface wave propagation, they cannot capture the

realistic wave breaking and overturning processes.

Potential flow models

In order the obtain the kinematics and dynamics of breaking waves, depth-

resolved models must be used. One of these is the fully nonlinear potential flow

model based on Laplace’s equation with inviscid and irrotational assumptions,

which can simulate the deep-water breaking wave in a periodic space domain and

the physics of wave shoaling on the beach up to the early stage of wave breaking.

Longuet-Higgins & Cokelet (1976), using the theory of potential flow and con-

formal mapping, studied periodic two-dimensional deep water overturning waves

by specifying an artificial pressure force on the free surface. The detailed process

before, during and after wave breaking was described by Cokelet (1977). Since

then, several numerical methods are developed to extend the application of the

potential flow model (Baker et al., 1982; Dold & Peregrine, 1986; Dommermuth

et al., 1988; New et al., 1985; Roberts, 1983; Vinje & Brevig, 1981), and the

comparison between potental flow model and experimental results confirmed the
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1.2 Background of Breaking Wave Studies

validity of potential-theory calculations for such breaking waves and indicated

that other physical mechanisms have little effect up to the wave re-entry (Dom-

mermuth et al., 1988). Compared to deep-water breaking waves, shallow water

breaking waves develop faster and have a larger overturning jet (Vinje & Brevig,

1981). For the internal kinematics, it was found that the horizontal velocities

and acceleration during wave overturning are in the range of 1.5−2C and 5−6g,

respectively. In addition, a remarkable similarity of wave profiles was found in

the overturning regions of many breaking waves (New et al., 1985).

Combining the high order time stepping method of Dold & Peregrine (1986)

and a high order boundary element method (BEM), Grilli et al. (1989) devel-

oped a two-dimensional fully nonlinear potential flow model for nonlinear water

waves. This model was subsequently applied to study breaking solitary waves

over breakwaters (Grilli et al., 1994a), shoaling of a solitary wave on a sloping

beach (Grilli et al., 1994b), wave breaking induced by moving boundaries (Grilli

& Subramanya, 1996), and periodic waves in a numerical wave tank (NWT)

(Grilli & Horrillo, 1997). Grilli et al. (1997) investigated the breaking criterion

and characteristics for solitary waves on slopes. Several cases for different slopes

and wave steepnesses were studied and detailed information for breaking waves

was presented up to the point at which the plunging jet of breaking waves im-

pinged on the free surface. It was found that the slope is more important than

the incident wave height to determine the shape of breaking waves.

It is worth noticing that all the computations described above terminate before

the plunging jet impinges on the water surface, however, Wang et al. (1995)

developed a 2D potential flow model based on a multi-subdomain approach and

the BEM, which was able to simulate the initial stage of jet closure and splash

of overturning waves.

Few attempts have been made with potential flow models to simulate three-

dimensional breaking waves. Motivated by Longuet-Higgins & Cokelet (1976),

Xü (1992) and Xü & Yue (1992) simulated three-dimensional overturning waves,

which were generated by applying an artificial three-dimensional pressure force on

a progressive two-dimensional Stokes wave in a periodic domain. An interesting

phenomenon was found that although the maximum forcing pressure is along

the central line, the overturning waves develop either at the centre or at the
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edges depending on the ratio of the width of the tank to the wave length. Since

then, the method of Xü (1992) was advanced by Xue et al. (2001) and Liu et al.

(2001) to study the kinematics and dynamics of three-dimensional overturning

waves, steep crescent waves and wave-body interactions. For applications in non-

periodic domains, there are other research for overturning solitary waves over a

sand bank (Broeze et al., 1993), three-dimensional shoaling and overturning of

solitary waves over a sloping ridge (Grilli et al., 2001; Guyenne & Grilli, 2006), and

three-dimensional overturning waves over a non-symmetrical seabed or multiple

reefs (Yan & Ma, 2010).

The potential flow models, which are very efficient and only need one or two

hours on a normal PC for 3D computation (Yan & Ma, 2010), are capable of sim-

ulating breaking waves and can provide insight into the kinematics and dynamics

of water waves during wave overturning. However, these models usually termi-

nate before the plunging jet touches down and cannot provide any information

after wave breaking. In addition, the potential flow models are limited in the

application when the generation of vorticity and turbulence is important, such as

breaking waves in the surf zone.

Navier–Stokes models

Another depth-resolved model to study breaking waves is based on the Navier–

Stokes equations. One of this kind is the quasi-3D model (Casulli & Cheng, 1992),

which is based on the hydrostatic pressure assumption. Under this assumption,

the pressure is replaced by the water surface elevation, which is governed by the

kinematic free surface boundary condition, thus the coupling between the velocity

and pressure is avoided. Though the quasi-3D model is not able to capture the

interface during wave breaking, the computation is more efficient and this model

is always used to simulate large-scale water waves like tides and ocean currents.

The full Navier–Stokes equations can also be solved with an interface tracking or

capturing, as in the following discussion.

For quasi-steady breaking waves, spilling breaking waves generated by two-

dimensional submerged hydrofoils (Duncan, 1983) were simulated by RANS mod-

els (Muscari & Di Mascio, 2003; Rhee & Stern, 2002) and a domain decomposition
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approach (Iafrati & Campana, 2005), where the Navier–Stokes model is used near

the interface while the potential flow model is employed far from the interface.

Good agreement between these numerical results and experimental data was ob-

tained and turbulent flows generated downstream were discussed.

Several numerical studies of deep-water breaking waves have been done in

the past (Chen et al., 1999; Hendrickson, 2005; Iafrati, 2009; Song & Sirviente,

2004). In these studies, a steep Stokes wave, which leads to a plunging breaker,

was simulated in a periodic space domain. The vorticity generation, energy dissi-

pation and detailed kinematics during wave overturning, including the splash-up,

were shown and discussed in Chen et al. (1999). It was found that the maximum

horizontal velocity is about 1.76C and the maximum acceleration is 3.62g just

before the plunging jet touches the surface. In addition, strong vortices were

generated during the wave breaking process, and t−1 dependence was found for

the energy dissipation after two wave periods, which has also been observed in

laboratory experiments (Melville et al., 2002; Rapp & Melville, 1990). A further

study was conducted by Song & Sirviente (2004), but attention was paid to sur-

face tension, density ratio and viscosity effects. Hendrickson (2005) presented

a comprehensive analysis of the energy dissipation and the transfer of energy

at the air-water interface during wave breaking and found that there is no flow

separation in the water while air flow separation is observed on the front face

of the wave and over the crest. More recently, the effects of the breaking in-

tensity on deep-water breaking waves were investigated by Iafrati (2009). It can

be seen from above that deep-water breaking waves are computed in a periodic

space domain in most numerical studies, however, Zwart (1999), using a inte-

grated space-time finite volume method under the inviscid assumption, studied

an overturning wave generated in a water channel by a piston wavemaker, which

was previously investigated by Dommermuth et al. (1988). The numerical results

for the water surface elevations at various locations were compared with experi-

mental data and good agreement was obtained. The profiles and detailed moving

meshes of the plunging jet were presented just before the impingement and it

was indicated that the shape of the plunging jet differs somewhat from the more

vertical plunge predicted by the potential flow model (Dommermuth et al., 1988).

This descrepancy between the potential flow model and Navier–Stokes model was
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also observed in Chen et al. (1999) and it was shown that more rounded plunging

jet is predicted in Navier–Stokes simulations.

To better understand breaking waves in shallow water of varying depth, several

numerical investigations of two-dimensional breaking waves on a sloping beach

have been performed for breaking solitary waves (Chan & Street, 1970; Guignard

et al., 1999, 2001; Helluy et al., 2005; Khayyer et al., 2008; Lachaume et al., 2003;

Lin, 2007; Lin et al., 1999; Lo & Shao, 2002; Ma & Zhou, 2009; Xie et al., 2009)

and periodic breaking waves (Bakhtyar et al., 2009; Bradford, 2000; Hieu et al.,

2004; Lee & Heo, 2005; Lemos, 1992; Lin & Liu, 1998a,b; Mayer & Madsen, 2000;

Shao, 2006; Shao & Ji, 2006; Takikawa et al., 1997; Wang et al., 2009b; Watanabe

& Saeki, 2002; Zhao et al., 2004). A more detailed discussion will be given in

Chapter 4 and Chapter 5 respectively.

For breaking waves in ship hydrodynamics, an early attempt at studying

breaking waves was presented by Miyata (1986). Various techniques that are

suitable for ship hydrodynamics were implemented in the code including irregu-

lar boundary treatment. There are also some applications for water impact on

a two-dimensional flat-bottomed body (Ng & Kot, 1992) and plunging breaking

waves over a submerged bump (Wang et al., 2009a). Andrillon & Alessandrini

(2004) developed a fully coupled method to solve the Navier–Stokes equations,

which does not require a correction step. Several cases for sloshing and dam

break problems were shown and this model was employed to simulate the bow

wave around the Wigley hull.

With increases in computational power and developments in numerical meth-

ods, some attempts have been made to investigate three-dimensional breaking

waves. Applications include finite-amplitude waves in turbulent channel flow

(Hodges & Street, 1999), deep-water breaking waves in a periodic domain (Lu-

bin et al., 2006), periodic breaking waves in the surf zone (Christensen, 2006;

Christensen & Deigaard, 2001; Liovic & Lakehal, 2007; Watanabe & Saeki, 1999;

Watanabe et al., 2005), breaking solitary waves (Biausser et al., 2004; Mutsuda

& Yasuda, 2000), landslide-generated waves (Liu et al., 2005; Wu, 2004), ship

hydrodynamics (Miyata et al., 1996; Yang & Stern, 2009), and a viscous numer-

ical wave tank (Park et al., 1999; Wang, 2007). More details will be discussed in

Chapter 6.
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Recently, the coupling of different wave models to investigate breaking waves

has been developed, such as the coupling between potential flow model and the

Navier–Stokes equations with the VOF (Biausser et al., 2004) or level set (Iafrati

& Campana, 2005) methods. More recently, Sitanggang & Lynett (2010) de-

veloped a hybrid wave model for simulating water wave propagation from deep

water to shoreline, in which the horizontal 1D Boussinesq and 2D RANS equa-

tions were employed in pre-breaking zone and nearshore region, respectively. It

was suggested that the hybrid model is able to perform large-scale tsunami sim-

ulations with good accuracy and efficient computational time.

Commerical codes

Nowadays, there are a number of commerical codes (CFX, FLUENT, STAR-CD,

FLOW3D, to name a few) available as a computational fluid dynamics (CFD)

tool for general fluid flow problems. Most of these CFD software are based on

the finite volume method (FVM) and they are all capable of simulating turbulent

free surface flows, including breaking waves. However, as they are designed for

general-purpose engineering simulation, additional effort is required for water

wave modelling such as wave generation at the inlet or wave damping at the

outlet.

1.3 Wind Effects on Water Waves

When the wind is blowing over water waves, it will enhance the exchanges of heat,

mass and momentum on the air-water interface (see figure 1.6 for example). Some

important effects of wind on water waves have been discussed by Sobey (1986),

Melville (1996) and Jahne & Haussecker (1998). One of the most important effect

of wind on water waves is the generation of surface waves. In the comprehensive

review of the knowledge more than five decades ago, Ursell (1956) opened in

the statement that “wind blowing over a water surface generated waves in the

water by physical processes which cannot be regarded as known” and concluded

that “the present state of our knowledge is profoundly unsatisfactory”. Since
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Figure 1.6: Wind wave interaction. Picture from the Cou-
pled Boundary Layers Air-Sea Transfer Defense Research Initiative
(http://www.whoi.edu/science/AOPE/dept/CBLASTmain.html).

then, numerous theoretical, experimental and numerical investigations have been

carried out to advance our understanding of wind-wave interactions.

Theoretical studies

An early calculation for wave generation is the Jeffreys’ sheltering theory. Jeffreys

(1925) supposed that the air flow over waves may be unable to follow the deformed

surface but separated at the leeward region of the wave crest, which was known as

the sheltering effect. Thus, the pressure difference across the moving wave could

result in energy transfer from the air to the water if the wind is moving faster

than the wave. Jeffreys found that the skin friction is negligible and a sheltering

coefficient was obtained through the energy balance of the wave motion. However,

the pressure differences, found in several laboratory experiments on wavy walls,

were much smaller than the value proposed by Jeffreys (Phillips, 1977).
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1.3 Wind Effects on Water Waves

Phillips (1957) presented the resonance mechanism for wave generation by

wind. The correlations between air and water motions are neglected, and the

turbulent pressure fluctuation on the water surface is responsible for wave gener-

ation. The resonance model predicts that most of the growth of waves occurs in

the principal stage of development and follows a linear growth rate.

Nearly at the same time, Miles (1957) proposed the shear-flow model for wave

generation. Miles neglected the turbulent fluctuations and made the interaction

between mean air flow and waves as the essential mechanism. Under some as-

sumptions, the problem is governed by an inviscid Orr–Sommerfeld equation,

which is often called the Rayleigh equation. Benjamin (1959) studied the same

problem in terms of local orthogonal coordinates. Later, Lighthill (1962) pre-

sented physical interpretation of the shear-flow theory, and Kawai (1979) carried

out a laboratory investigation of the generation of initial wavelets.

Experimental studies

Many laboratory studies have been carried out to investigate wind-wave interac-

tions. Most works were mainly focused on wind profiles, wave surface elevation,

wind-induced drift currents and wave growth rate. In experiments, the logarith-

mic wind profile was observed near the air-water interface (Bole & Hsu, 1969;

Wu, 1968). Under the influence of wind, the wave grows with the fetch and the

wave growth rate is reduced in water containing surfactants (Mitsuyasu & Honda,

1982). When the wind is blowing in the opposite direction to the wave propa-

gation. It was shown that the wave attenuation rate is approximately 2.5 times

greater than the wave growth rate for comparable wind forcing (Peirson et al.,

2003). With wave breaking in the presence of wind drift and swell, the surface

drift was found to be of the order of 3% of the wind speed (Phillips & Banner,

1974) and Banner & Phillips (1974) found the ‘micro-breaking’ for deep-water

breaking waves, which is important in the energy and momentum transfer from

the wave to near surface turbulence and currents.

Some experimental investigations have also been carried out for the surface

pressure, shear stress and turbulence field. Banner (1990) investigated the influ-

ence of wave breaking on the surface pressure distribution in wind-wave interac-

tion and found that the form drag and wind stress increase during wave breaking.
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Thais & Magnaudet (1996) used LDV to investigate the turbulent structure be-

neath water waves sheared by the wind. With the development of visualization

and PIV techniques, the aqueous surface sublayer flows beneath the wind-driven

air-water interface and microscale breaking wind waves have been investigated

by Banner & Peirson (1998) and Peirson & Banner (2003), respectively. Banner

& Peirson found that the tangential stress contributes to the entire wind stress

before the formation of wind waves while the wave form drag provides the major

portion of the wind stress beyond the early growth stage. Peirson & Banner indi-

cated that microscale breaking plays an important role in the direct transport of

fluid from the surface to the highly turbulent region below, enhancing the air-sea

exchange under moderate winds. Recently, Kharif et al. (2008) investigated the

influence of wind on extreme wave events, and found that the focusing point is

shifted downstream, and the height and duration of the extreme waves increase

in the presence of wind.

When the wind is blowing over water waves, air flow separation occurs ahead

of the wave crest at the onset of wave breaking (Banner & Melville, 1976). Air

flow separation was also observed in short wind waves (Kawai, 1982) and steep

wave events (Kharif et al., 2008). Recently, Reul et al. (2008) used DPIV to

investigate the air flow velocity, vorticity and streamline patterns over breaking

waves propagating in groups. The air flow structure was captured at different

stages of wave breaking, various wind speeds and breaking intensities. It was

found that air flow separation which occurs near the crest is very similar to the

flow separation over a backward step. Furthermore, a steeper wave crest leads to

an increase in the height of the separated layer and the downstream reattachment

length.

In contrast to the experimental studies of wind effects on deep-water waves,

the influence of wind on nearshore breaking waves was investigated by Galloway

et al. (1989) using an empirical approach based on in-situ measurements, and by

Douglass (1990) and King & Baker (1996) in a laboratory wind-wave flume. The

wind has significant effects on the breaker location, geometry and type. Onshore

winds enhance the development of spilling breakers whereas offshore winds assist

the formation of plunging breakers (Galloway et al., 1989). In addition, Douglass

found that onshore winds cause waves to break earlier and in deeper water further
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from shore; offshore winds cause waves to break later and in shallower water closer

to shore. He found that the effect of wind on breaker depth is significant while the

effect on breaker height is slight. Douglass indicated that the primary mechanism

for wind affecting breaking waves appears to be shear, not normal stress and

concluded that “Surf zone dynamics models that ignore wind or include wind

only as a surface shear may be missing a very important effect of the wind—its

effect on the initiation and mechanics of wave breaking.” Similar results were

also observed by King & Baker (1996) and they further studied the motion of

suspended particles and found that the generation of a wind drift layer can affect

particle drift velocities. During wave shoaling, it was suggested that low wind

speeds have little effect on run-up heights, but high wind speeds significantly

increase run-up heights (Ward et al., 1998). Moreover, wind increases the shoaling

wave energy and has a significant effect on the wave shape (e.g. changes wave

skewness and asymmetry) (Feddersen & Veron, 2005).

Numerical studies

A few numerical studies have been done for the air flow over waves. Early works

are based on numerical models with turbulence closure schemes (Al-Zanaidi &

Hui, 1984; Chalikov, 1978; Davis, 1970; Gent & Taylor, 1976; Harris et al., 1996;

Townsend, 1972), and with more detail in two PhD theses (Li, 1995; Mastenbroek,

1996). Belcher & Hunt (1998) presented a review on the turbulent flow over hills

and waves up to 1998.

With increases in computer power and developments in CFD, there are some

numerical studies employing direct numerical simulation (DNS) or large eddy

simulation (LES) to investigate turbulent air flow over stationary wavy surfaces

(Cherukat et al., 1998; De Angelis et al., 1997; Henn & Sykes, 1999) or moving

wavy surfaces (Shen et al., 2003; Sullivan et al., 2000). The turbulent flow beneath

a sheared interface has been investigated with a specified shear stress at the

surface using DNS (Tsai et al., 2005) and LES (Kawamura, 2000). In contrast

to the decoupled models discussed above, in which only the flows in the air or in

the water are solved (one-phase flow), there are some numerical studies for the

coupled air-water interface (two-phase flow), in which the two phases are coupled
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at the interface by the continuity of the velocities and shear stresses. Lombardi

et al. (1996) employed DNS to study near-interface turbulence and the detail of

the interfacial sublayer was further explored by Fulgosi et al. (2003). Recently,

Lin et al. (2008) utilized DNS to investigate wind-wave generation processes.

It is worth remarking that all the numerical studies discussed above are per-

formed in a periodic space domain and have not considered wind effects on break-

ing waves. For air flow over wavy surfaces (either stationary or moving), the wavy

interface is not deformable. For turbulent flow beneath a sheared interface, the

effect of the air flow is only modelled by a specified shear stress. For the coupled

air-water interfacial flow, although the interaction between the air and water is

taken into account, the strong topological changes of the interface, such as wave

breaking, have not been considered yet.

Recently, a few numerical studies have began to investigate the influence of

wind on water waves. Chen et al. (2004) implemented a parameterized wind stress

into Boussinesq wave models to investigate the nearshore wave propagation and

horizontal circulation. Kharif et al. (2008) applied an empirical wind pressure

distribution on the free surface using Jeffreys’ sheltering theory (Jeffreys, 1925)

in their potential flow model, to calculate the influence of wind on extreme wave

events. However, wave breaking is neglected and the effect of wind on the onset

of wave breaking has not been investigated in these studies.

1.4 Scope of the Present Study

From the above discussion, it is apparent that little attention has been paid to

investigate breaking waves under the influence of wind, either by experimental

measurements or numerical simulations. Thus, this study tries to shed some light

on this problem in order to better understand the wave breaking process.

The aim of the present study is to investigate breaking water waves under

the influence of wind. A two-phase flow model, which solves the flow in the

air and water simultaneously, is developed here and solved by the widely used

finite volume method. The model is based on the RANS (Reynolds Averaged

Navier-Stokes) equations with the k − ǫ turbulence model in 2D and LES in

3D. The pressure correction method, either the SIMPLE (Semi-Implicit Method
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for Pressure-Linked Equations) (Patankar, 1980) or the PISO (Pressure-Implicit

with Splitting of Operators) (Issa, 1986) methods, are employed to solve the

governing equations, and the air-water interface is captured by a high resolution

VOF scheme CICSAM (Compressive Interface Capturing Scheme for Arbitrary

Meshes) developed by Ubbink (1997). The model is validated in the absence

of wind using a variety of benchmark problems from the literature, including

breaking solitary waves, breaking periodic waves in the surf zone and solitary

wave run-up on a conical island. The effect of wind is included to investigate the

kinematics and dynamics of breaking waves in both 2D and 3D.

1.5 Outline of Thesis

This thesis consists of seven chapters, one of which is the introduction chapter.

The reminder of the thesis is organized as follows:

In Chapter 2, the mathematical model and numerical implementation are

presented. The Navier–Stokes equations and the VOF equation for capturing

the air-water interface are described along with corresponding initial and bound-

ary conditions. The finite volume discretization for the governing equations and

pressure-velocity coupling are described in detail. After briefly reviewing the

techniques for interface calculations, the description of the CICSAM scheme used

for the VOF equation is included.

In Chapter 3, the RANS modelling of two-dimensional breaking waves is in-

troduced. The RANS equations and the k − ǫ turbulence model are presented

in detail. Two experiments for overturning waves, which include the free sur-

face profiles during wave overturning, are employed to validate the model. Good

agreement between numerical results and experimental data shows the capability

of the present model in simulating breaking waves, including the overturning jet.

In Chapter 4, the RANS model is utilized to study two-dimensional breaking

solitary waves. First, the run-up of breaking solitary waves on a 1:19.85 slope in

the absence of wind is computed and compared with experimental measurements.

Then, detailed results of winds effects on breaking solitary waves are presented.

In Chapter 5, the RANS model is further used to study two-dimensional peri-

odic breaking waves in the surf zone. Both the spilling and plunging breakers on a
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1:35 slope in the absence of wind are simulated and compared with experimental

measurements as well as other previous numerical results in the literature. After

that, periodic breaking waves under the influence of wind are investigated and

the effects of wind on the breaking characteristics are discussed.

In Chapter 6, the large eddy simulation of three-dimensional breaking waves

is introduced. The filtered Navier–Stokes equations for LES are described and

the conventional Smagorinsky model is adopted as the subgrid-scale model. First,

the solitary wave run-up on a conical island is simulated to validate the 3D code

and numerical results are compared with experimental measurements in terms

of free surface elevations and maximum run-up heights. Then, the overturning

of a solitary wave over a submerged conical island is investigated and the de-

tailed kinematics and dynamics of overturning waves are presented. Finally, the

overturning wave under the influence of wind is studied.

In Chapter 7, the main findings and conclusions are summarized and the

future work is discussed.
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Chapter 2

Mathematical Model and

Numerical Implementation

In this chapter, the mathematical model and numerical implementation are pre-

sented. It is noted that only the Navier-Stokes equations are described here and

different turbulence models will be discussed in later chapters. Then the finite

volume discretization for the governing equations and pressure-velocity coupling

are described in detail. After briefly reviewing the techniques for interface cal-

culations, the volume of fluid (VOF) method used in this study to capture the

air-water interface is presented.

2.1 Navier–Stokes Equations

The governing equations for incompressible Newtonian fluid flow are the Navier–

Stokes equations. Mass conservation is described by the continuity equation

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

where ρ is the density, t is the time and u = (u, v, w) is the velocity vector.

If we assume that the fluid is incompressible (
dρ

dt
= 0), then the continuity

equation can be simplified to

∇ · u = 0. (2.2)
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2.1 Navier–Stokes Equations

The momentum conservation is expressed as

∂(ρu)

∂t
+ ∇ · (ρu ⊗ u) = −∇p+ ∇ · [µ(∇u + ∇

Tu)] + ρg, (2.3)

where p represents pressure, g the gravitational acceleration vector, µ the dynamic

viscosity of the fluid and the superscript T denotes the transpose.

The momentum equation is closed with the constitutive relations for the den-

sity and dynamic viscosity of the fluid

ρ = Fρw + (1 − F )ρa, (2.4)

µ = Fµw + (1 − F )µa, (2.5)

where the superscript w and a denotes fluid water and air, respectively. F is the

volume fraction defined as

F =

{

1, if only water is present;

0, if only air is present.
(2.6)

The air-water interface is then within the cells where 0 < F < 1. A particle on

surface stays on surface and the volume fraction F has a zero material derivative

dF

dt
=
∂F

∂t
+ u · ∇F = 0. (2.7)

The equations (2.2, 2.3, 2.7) complete the mathematical description of the two-

phase flow model.

The above governing equations can also be rewritten in tensor forms as

∂ui

∂xi

= 0, (2.8)

∂(ρui)

∂t
+
∂(ρujui)

∂xj
= − ∂p

∂xi
+

∂

∂xj

[

µ

(

∂ui

∂xj
+
∂uj

∂xi

)]

+ ρgi, (2.9)

∂F

∂t
+ ui

∂F

∂xi

= 0. (2.10)
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2.2 Initial and Boundary Conditions

where xi, xj (i, j = 1, 2, 3) or (x, y, z) are the streamwise, spanwise and vertical

coordinates, and ui, uj or (u, v, w) are the components of the velocity vector u.

2.2 Initial and Boundary Conditions

2.2.1 Boundary Conditions

In order to completely describe the mathematical model it is necessary to define

the boundary conditions in a computational domain. Consider a computational

domain Ω which has the boundary ∂Ω, the unit outward normal vector to the

boundary is n and the unit tangential vector to the boundary is t. Mathemati-

cally, there are three main types of boundary conditions:

• Dirichlet boundary condition: where the value is specified on the boundary

for the arbitrary variable φ

[φ]∂Ω = B, (2.11)

where B is a user specified function.

• Neumann boundary condition: where the gradient of the value is specified

on the boundary
[

∂φ

∂n

]

∂Ω

= B. (2.12)

• Robin boundary condition (Eriksson et al., 1996): where the following equa-

tion is applied on the boundary

[

aφ+ b
∂φ

∂n

]

∂Ω

= B, (2.13)

where the constants a and b are nonzero.

However, in studying water wave problems, it is more appropriate to specify

boundary conditions based on the feature of the considered water wave problems,

which will be discussed as follows.
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2.2 Initial and Boundary Conditions

Inlet boundary condition

During the calculation, water waves are generated at the inlet of the computa-

tional domain. The time history of the velocity field and the volume fraction at

the inlet are obtained from an analytical solution of water waves, namely,

[u]inlet = B1(uwave), (2.14)

[F ]inlet = B2(ηwave), (2.15)

where B1 and B2 are user specified functions.

Open or radiative boundary condition

When there is a sloping beach at the outlet, the wave will eventually break on

the beach and there is no need to define the outlet boundary for water waves.

However, when reducing the computational domain where the sloping beach is

absent, in order to let the water wave propagating out without reflection, the

Sommerfeld radiation condition is used at the outlet of the computational domain

(Lin et al., 2008)
∂φ

∂t
+ C0

∂φ

∂n
= 0, (2.16)

where C0 is the characteristic velocity of water waves. For long waves, C0 =
√

g(D +H), and for regular short waves, C0 =
√

g
kw

tanh (kwD) (Lin et al.,

2008).

The implementation of the radiative boundary condition has been demon-

strated in regular wave tests during code development. It should be noted that

the Sommerfeld radiation condition is very effective for long waves, but for short

waves, the combination of the Sommerfeld radiation condition and a damping

zone will help to reduce the reflection from the outlet.

Free surface boundary condition

As both fluids in the air and water are solved simultaneously in the present two-

phase flow model, the kinematic free surface boundary condition and the dynamic

31



2.3 Finite Volume Discretization

free surface boundary condition are already implemented and they do not need

to be specified explicitly at the air-water interface.

Wall boundary condition

At a wall, there are two main types of boundary conditions: no-slip and free-slip

conditions. The no-slip condition is used in this study and it ensures that the

fluid at the boundary will have zero velocity relative to the wall, e.g. if the wall

is stationary

[un]wall = 0, [ut]wall = 0, (2.17)

where un and ut are the velocity components normal and tangential to the wall,

respectively. The shear stress on the wall is obtained as

τw = µ
∂ut

∂n
. (2.18)

2.2.2 Initial Conditions

In the computation, the initial flow field at t = 0 has to be prescribed. This can be

obtained from laboratory data or user-specified values. For calculations with the

fluids initially at rest, the flow field is initialized with zero velocity and hydrostatic

pressure, and the volume fraction is computed from the initial water depth. When

the wave is initialized in the computational domain, the water velocities and water

surface are specified using the corresponding analytical solution for water waves.

The velocity in the air is initialized as zero in this case as little is known about the

flow in the air and the pressure distribution in the whole domain is hydrostatic.

2.3 Finite Volume Discretization

2.3.1 Introduction

In order to solve the mathematical model proposed in the previous sections,

a numerical discretization method is needed. There are several discretization

approaches for numerical solution of partial differential equations (PDEs), such
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2.3 Finite Volume Discretization

Figure 2.1: A control volume.

as the finite difference method (FDM), finite element method (FEM), meshless

methods, and the finite volume method (FVM).

In the FVM, also known as the control volume method, the whole domain is

divided into a number of control volumes, such that there is a control volume sur-

rounding each grid point. The differential equation is integrated over each control

volume in order to derive the algebraic equation containing the grid-point values

of φ, where φ is the considered variable. The discretized equation expresses the

conservation principle for a finite control volume, just as the differential equation

expresses it for an infinitesimal control volume. The FVM is conservative and

can deal with complex geometries (Ferziger & Peric, 2002; Hirsch, 2007), thus

it is especially suitable for modelling free surface flows due to the requirement

of mass conservation and the deformed interface, therefore it is adopted in the

present study.

2.3.2 Discretization of the Governing Equations

Consider a volume of fluid Ω which has an arbitrary domain shown in figure 2.1,

the surface of the control volume is S and the unit outward normal vector to

the face f is n. All the governing equations can be recast into a general integral

formulation as below
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2.3 Finite Volume Discretization

∫∫∫

Ω

∂

∂t
(ρφ)dΩ +

∫∫

S

(ρu · n)φdS =

∫∫

S

Γ
∂φ

∂n
dS +

∫∫∫

Ω

QS
φdΩ, (2.19)

where φ denotes the dependent variable, Γ is the viscosity and QS
φ is the source

term in the control volume.

Table 2.1 shows the various values of φ, Γ and QS
φ in the general integral

formulation to represent the Navier–Stokes equations. It is noted that the final

form of the continuity equation (2.2) used here is obtained under the assumption

that the fluid is incompressible.

Table 2.1: Values of φ, Γ and QS
φ in the general integral formulation to represent

the Navier–Stokes equations.

Equation φ Γ QS
φ

Continuity 1 0 0

Momentum u µ −∇p+ ρg

2.3.3 Variable Arrangement on the Staggered Grid

The staggered grid (Arakawa-C grid), which has the advantage of strong coupling

between the velocity and the pressure, is used in this study. Figure 2.2 shows a

typical variable arrangement in a 3D Cartesian grid, in which the velocities are

located on the face centre of the control volume, and the pressure, all other scalar

variables and the volume fraction F are stored at the cell centre.

2.3.4 Notation Used in a Control Volume

Figure 2.3 shows a typical control volume used in the present study, in which P is

the present node, the upper-case letter E, W, N, S, B, and R denote neighbouring

nodes on the east, west, north, south, back, and front with respect to the central

node P. The lower-case e, w, n, s, b, and r denote the corresponding face of the

control volume whereas c denotes the centre of the control volume. ∆x, ∆y and
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u(i,j,k)u(i−1,j,k)

w(i,j,k)

w(i,j,k−1)

v(i,j,k)

v(i,j−1,k)

φ(i,j,k)

x 

y 
z 

Figure 2.2: Variables used for the control volume (i, j, k) in a 3D staggered grid.
Velocities u(i, j, k), v(i, j, k) and w(i, j, k) are stored at the centre of the east,
back and north face of the control volume. Pressure and other variables φ(i, j, k)
are stored at the centre of the control volume.

∆z are the cell length in the x, y and z directions, respectively. Thus, the cell

volume is obtained as
∫∫∫

Ω

dΩ = ∆x∆y∆z. (2.20)

The area of the face A is similarly calculated, e.g. the one of the east face Ae is

Ae =

∫∫

e

dS = ∆y∆z. (2.21)

Unless stated otherwise the variable on the face is predicted with linear interpo-

lation

φe = λeφP + (1 − λe)φE, (2.22)

where λe is the interpolation factor defined as

λe =
|eE|
|PE| . (2.23)

Analogous expressions can be derived for all other faces (f=w, n, s, b, r) by
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2.3 Finite Volume Discretization

Figure 2.3: A control volume and the notation used for a 3D Cartesian grid.
The upper-case letter E, W, N, S, B, and R denote neighbouring nodes on the
east, west, north, south, back, and front with respect to the central node P. The
lower-case e, w, n, s, b, and r denote the corresponding face of the control volume
whereas c denotes the centre of the control volume. ∆x, ∆y and ∆z are the cell
length, and i, j and k are unit vectors in the x, y and z directions, respectively.
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2.4 The Complex Geometry Treatment in Cartesian Grid

making appropriate index substitutions and will not be shown here.

2.4 The Complex Geometry Treatment in Carte-

sian Grid

To deal with complex geometries in engineering applications, overlapping grids,

boundary-fitted grids and unstructured grids can be used. However, the pro-

gramming of these methods can be complicated and generating such a grid is

usually very cumbersome. Cartesian grid methods which can simulate flow with

complex geometries on Cartesian grids, avoid these problems. The most popu-

lar methods are the immersed boundary method (Mittal & Iaccarino, 2005) and

Cartesian cut cell method (Ingram et al., 2003). The primary advantage of the

Cartesian grid method is that only little modification of the program on Cartesian

grids is needed to account for the complex geometries. It also has the advantage

of simplified grid generation and simulating flow with moving boundaries due

to the use of stationary, nondeforming grids. The drawback of these methods

is that implementing boundary conditions is not straightforward and instability

problems may occur in small cells when explicit schemes are used. Thus, the

cell-merging technique (Causon et al., 2000) and using slightly different control

volumes (Kleefsman et al., 2005) are developed to avoid this instability, both of

which effectively increase the size of the cut cell.

In this study, the partial cell treatment is used and a typical θ function in a

control volume, arises from FAVOR (Fractional-Area-Volume Obstacle Represen-

tation) method (see for example Torrey et al., 1985), is introduced in the finite

volume discretization. The θ function is defined whose value is 1 for a point ac-

cessible to fluid and 0 for a point inside an obstacle. The average of this function

over a control volume or cell face is the fraction of the volume or area available to

the flow. Figure 2.4 shows a typical cut cell in a 2D Cartesian grid and analogous

expressions can be obtained in 3D. To prevent the instability in small cells, an

implicit scheme is employed for the governing equations.

In contrast to a full cell, the convective and diffusive fluxes at cell faces are

modified in a cut cell, which will be presented in the following discretization.
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Figure 2.4: θ function for a typical cut cell in a 2D Cartesian grid, in which the
length of the face is represented as θ · ∆x or θ ·∆z, and the volume of the cell is
represented by θc · ∆x∆z.

2.5 Discretization of Spatial Terms

2.5.1 Convection Term

The finite volume discretization of the convection term is obtained as

QC
φ =

∫∫

S

(ρu · n)φdS =
∑

f

(θA)f [(ρu · n)φ]f

=
∑

f

(ρu · nθA)fφf

=
∑

f

mfφf ,

(2.24)

where the subscript f denotes the corresponding face of the control volume, A is

the area of the face and m is the mass flux through the face

m = ρu · nθA. (2.25)
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Figure 2.5: Notation of the cells for the interpolation at the face f: D, A, and U
denote donor cell, acceptor cell and upwind cell, respectively.

The mass flux at the faces of the momentum control volume can be obtained by

the interpolation of values of ρ and u, such as mf = ρfuf · nθfAf , however, the

mass conservation in the momentum control volume can be only guaranteed to

the accuracy of the interpolation procedure (Ferziger & Peric, 2002). Thus, in

this study, the mf is obtained from the interpolation of the mass fluxes, which is

already available at the faces of the continuity control volumes. The face value φf

can be obtained from different schemes and will be described in detail as follows.

First order upwind scheme

The upwind scheme implies that the convection is received from upstream and

transmitted to the next control volume downstream. In the first order upwind

(FOU) scheme, the value of φ on the face of the control volume is taken by the

constant extrapolation of the value of φ at the grid point of the donor cell, e.g.

φFOU
f = φD, (2.26)

where subscripts D, A, and U denote donor cell, acceptor cell and upwind cell,

which is shown in figure 2.5.

If the first order upwind scheme is used, the convection term in the east face

of the control volume can be expressed as

meφe = max(me, 0)φP − max(−me, 0)φE. (2.27)
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High order schemes

Among all the possible schemes, the first order upwind scheme has the best

convergence property but the aim of other schemes is to improve the accuracy.

Thus when a high order scheme is used, it is advantageous to also use the first

order formulation and the difference between the first order upwind and the other

scheme gives rise to an additional source term QH
φ , used in the deferred correction

approach (Ferziger & Peric, 2002).

Second order upwind scheme In the second order upwind (SOU) scheme,

the value at the face of the control volume is obtained by the linear extrapolation

of the value of φ at two upstream cells as

φSOU
f =

3

2
φD − 1

2
φU

= φD +
1

2
(φD − φU)

= φFOU
f +

1

2
(φD − φU).

(2.28)

The QUICK scheme can also be implemented in a similar way, however it

was found that it led to some convergence problems in the simulation due to the

implicit scheme used for the momentum equation.

High resolution scheme

It is well known that unphysical wiggles (numerical oscillations) will appear in

numerical simulations with high order schemes under some circumstances. Thus,

a high resolution scheme (Hirsch, 2007), which combines the high order accuracy

with monotonicity, is used in this study to discretize the value at the face as

φf
HRS = φFOU

f + Ψ(rφ
f )(φSOU

f − φFOU
f ), (2.29)

in which Ψ() is the limiter function where the minmod limiter (Roe, 1986), which

is one of the simplest second-order TVD (Total Variation Diminishing) schemes,
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is used here

Ψ(r) = max[0,min(r, 1)]. (2.30)

Similar results were obtained by using other limiter functions and a general review

of various limiter functions can be found in Waterson & Deconinck (2007) and

will not be presented here. rφ
f represents the ratio of successive gradients of φ on

the solution mesh and obtained as

rφ
f =

φA − φD

φD − φU

. (2.31)

Discussion

The convection term plays an important role in numerical solution of the Navier–

Stokes equations. For a two-phase flow model, the convection term can be dis-

cretized in two different ways: conservative form and nonconservative form.

When nonconservative form is employed, the density in the centre of the

control volume is used and the mass flux on the face m′
f can be obtained as

m′
f = ρc(u · nθA)f . (2.32)

As we assume that the velocity does not vary discontinuously near an interface,

the resulting mass flux is continuous in a control volume but discontinuous be-

tween the control volumes. Many people used the nonconservative form as it is

simple for numerical implementation. However, the nonconservative form will

violate the rule for consistency at control volume faces proposed by Patankar

(1980):

Consistency at control volume faces When a face is common to

two adjacent control volumes, the flux across it must be represented

by the same expression in the discretization equations for the two

control volumes.

For example on the east face of the control volume P, the mass flux is expressed as

ρP(u ·nθA)e when the control volume surrounding P is considered, and as ρE(u ·

nθA)e when the control volume surrounding E is considered. In the vicinity of the
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interface, the mass flux across the face between the control volumes surrounding

P and E will be inconsistent when ρP 6= ρE.

Therefore, the conservative form for the mass flux

mf = (ρu · nθA)f , (2.33)

is employed in this study.

In the available literature, the conservative form is only used in a few two-

phase flow models (Bussmann et al., 2002; Rudman, 1998; Ubbink, 1997; Udayku-

mar et al., 1997; Unverdi & Tryggvason, 1992). It is mentioned that special

attention has to be paid in the discretization of the conservative form of the

convection term, otherwise, high and irregular velocities near the interface can

sometimes destroy the solution (Prosperetti & Tryggvason, 2007), and one way to

overcome this is to use the nonconservative form of the convection term (Esmaeeli

& Tryggvason, 2005). In addition, special attention should be paid to the dis-

cretization of the body force, otherwise non-physical velocities will be generated

for the quiescent fluid (Mencinger & Zun, 2007; Wemmenhove, 2008).

The idea of consistency between mass and momentum conservation has been

proposed in the conservative form (Bussmann et al., 2002; Rudman, 1998; Ubbink,

1997). For collocated grids, Ubbink (1997) used the face value for Ff calculated

from the VOF equation to obtain the mass flux for the momentum equation

while Bussmann et al. (2002) explicitly calculated the exact mass flux based on

the volume tracking method. It is not easy to calculate consistent mass fluxes

across cell faces for a staggered grid, Rudman (1998) introduced a twice-as-fine

sub-mesh nested within the underlying solver mesh for mass convection, in order

to overlap the control volumes for the mass and momentum to get the consistency.

Rudman used the explicit scheme for the momentum equation, and calculated the

mass fluxes based on the volume fraction which was obtained from the Youngs’

VOF method. However, it is not clear yet how to deal with this consistency in

a single staggered grid if the mass flux is not calculated based on the explicit

interface advection (such as surface capturing methods), and especially when the

implicit scheme is employed for the momentum equation.
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It is worth remarking that the mass flux is discontinuous in a control volume

in the conservative form due to the density variation between the cell face and

cell centre. Sometimes, the combination of the conservative form and the high

resolution scheme may lead to some convergence problems in the simulation.

Thus, a step function for the mass flux is introduced to the high resolution scheme

to get more robust and accurate solution as

φf
HRS = φFOU

f + Φ(rm
f )Ψ(rφ

f )(φSOU
f − φFOU

f ), (2.34)

where Φ() is the step function and rm
f is the variation for the mass which is defined

as the ratio of the mass flux between the conservative and nonconservative form

rm
f =

mf

m′
f

. (2.35)

The step function Φ() takes the form

Φ(r) =

{

1, if |r| ≤ 1;

0, otherwise,
(2.36)

which means that the present high resolution scheme switches to the first order

upwind scheme when the density on the cell face is larger than the density in the

cell centre.

2.5.2 Diffusion Term

The finite volume discretization of the diffusion term is obtained as

QD
φ =

∫∫

S

Γ
∂φ

∂n
dS =

∑

f

Γf

∂φ

∂n
(θA)f +QW

φ , (2.37)

where the viscosity on the face is obtained by the harmonic mean (Patankar,

1980), for example, on the east face

Γe =
ΓPΓE

λeΓP + (1 − λe)ΓE

. (2.38)
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2.5 Discretization of Spatial Terms

Analogous expressions can be derived for all other faces (f=w, n, s, b, r) by

making appropriate index substitutions and will not be shown here.

The gradient at the face is calculated by the finite difference approach as

∂φ

∂n
=
φnb − φP

∆Pnb

, (2.39)

where ∆Pnb is the distance from the present point P to the neighbouring point

nb.

QW
φ , which is zero in full cells, is the discretization of the diffusion flux on the

solid boundary in cut cells, which will be discussed later in the implementation

of boundary conditions.

2.5.3 Source Term

Source term linearization

When the source term QS
φ is a function of φ then there are many ways in which

the QS0
φ and QS1

φ can be chosen to satisfy (Patankar, 1980)

QS
φ = QS0

φ +QS1
φ φ, QS1

φ < 0. (2.40)

The term in QS
φ without φ goes into the term QS0

φ . The term which includes φ is

modified as QS1
φ φ provided QS1

φ < 0 is satisfied, otherwise, it goes into the term

QS0
φ . The advantage of this way is that once substituting the discretized source

term into the governing equation, the term QS1
φ φ may be moved to left-hand side

of the equation, yields an equation which has a stronger diagonal dominance and

therefore a better and faster rate of convergence will be achieved.

Pressure term

The finite volume discretization of the pressure term is obtained as

Qp
φ =

∫∫∫

Ω

−∇pdΩ = −∇pθcΩ, (2.41)
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2.6 Temporal Discretization

and the pressure gradient is calculated as

∇p = (
∂p

∂x
,
∂p

∂y
,
∂p

∂z
)

= (
pe − pw

∆x
,
pb − pr

∆y
,
pn − ps

∆z
).

(2.42)

Body force term

The finite volume discretization of the body force term is obtained as

QB
φ =

∫∫∫

Ω

ρgdΩ = ρcgθcΩ, (2.43)

where the value in the centre of the control volume is obtained by the volume

averaging of two values on the face of the control volume.

2.6 Temporal Discretization

A backward finite difference is used for the time derivative, which leads to an

implicit scheme for the governing equations

QT
φ =

∫∫∫

Ω

∂

∂t
(ρφ)dΩ =

ρn+1
c φn+1 − ρn

cφ
n

∆t
θcΩ, (2.44)

where ∆t is the time step and the superscripts n + 1 and n mean the value

in current and previous time step, respectively. The implicit scheme has the

advantage of unconditional stability and thus can prevent the instability problem

in small cut cells. Higher order schemes such as Gear’s method can also be used,

which can reduce the amplitude decay for the regular or solitary wave propagation

when a large time step is used in the simulation.
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2.7 General Form of the Discretization

Substituting all the above discretized terms into (2.19) and subtracting the con-

tinuity equation multiplied by φn+1
P , leads to

aφ
Pφ

n+1
P =

∑

aφ
nbφ

n+1
nb + bφP, (2.45)

where aφ is the coefficient, the subscripts P and nb = E,W,N, S,B,R denote the

variables in the present and neighbouring cells respectively and bφP is the source

term.

In nonlinear problems it is often desirable to slow down the change in the

predicted change of the dependent variable and in such circumstances under-

relaxation (Patankar, 1980) is used, thus the equation (2.45) may be written as

φn+1
P = φ0

P + αφ

(

∑

aφ
nbφ

n+1
nb + bφP
aφ

P

− φ0
P

)

, (2.46)

or
aφ

P

αφ

φn+1
P =

∑

aφ
nbφ

n+1
nb + bφP +

1 − αφ

αφ

φ0
P, (2.47)

where φ0
P is the value from the previous iteration and 0 < αφ < 1 is the under-

relaxation factor. There are no general rules for choosing the best value for the

under-relaxation factor (Patankar, 1980), thus from our experience αφ=u,v,w = 0.7

is used for the momentum equations in this study.

The coefficients depend on the approximations used and the first order upwind

scheme is used in this study as the basis of the formulation, high resolution scheme

is implemented using the deferred correction method via source term QH
φ (Ferziger

& Peric, 2002).

For example, the coefficients for momentum equation φ = u, v, w are

aφ
nb = max(−mφ

f , 0) +
Γf(θA)f

∆Pnb

,

aφ
P =

ρcθcΩ

∆t
+
∑

nb

aφ
nb,

bφP = Qp
φ +QB

φ +
ρcθcΩ

∆t
φn

P +QH
φ .

(2.48)
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2.8 Pressure-Velocity Coupling

In the incompressible Navier–Stokes equations pressure and velocity are decou-

pled as the pressure term does not appear in the continuity equation. For some

numerical discretizations this may cause convergence problems. However, when

a staggered mesh is used, as in this work, coupling occurs as a result of the

discretization, as velocity updates on cell faces contain pressure terms. In the

control volume for the pressure, shown in figure 2.3, the discretization equations

for momentum u on the face f can also be expressed by moving the pressure term

out from the source term in equation (2.47) as

au

P

αu

uf =
∑

au

nbunb + buP +
1 − αu

αu

u0
f + Af(pP − pnb). (2.49)

For a guessed pressure distribution p∗, the above momentum equations can

be solved to produce the fluid velocities u∗, which satisfy

au

P

αu

u∗
f =

∑

au

nbu
∗
nb + buP +

1 − αu

αu

u0
f + Af(p

∗
P − p∗nb). (2.50)

Suppose the correct pressure is obtained by a pressure correction p′, e.g.

p = p∗ + p′, (2.51)

similarly the correct fluid velocities are obtained by the velocity correction u′

u = u∗ + u′. (2.52)

If the equations (2.49) are subtracted from equations (2.50), then the fully implicit

velocity correction equations are obtained as

au

P

αu

u′
f =

∑

au

nbu
′
nb + Af(p

′
P − p′nb), (2.53)

where the velocity correction at any point is connected to all of the velocity

correction in the computational domain.

In the SIMPLE algorithm (Patankar, 1980), the velocity correction equations

are approximated by dropping the
∑

au

nbu
′
nb terms on the right-hand side of the
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2.8 Pressure-Velocity Coupling

equations (2.53) and we obtain

u′
f =

αuAf

au

P

(p′P − p′nb). (2.54)

Thus far we have only considered the momentum equations, nevertheless, the

velocity field is also subject to the constraint that it should satisfy the continuity

equation (2.2). The discretized form for the continuity equation in the continuity

control volume (see figure 2.3) is

ueθeAe − uwθwAw + vbθbAb − vrθrAr + wnθnAn − wsθsAs = 0. (2.55)

To obtain the pressure correction, equations (2.52) and (2.54) are substituted

into the discretized continuity equation (2.55) and the resulting pressure correc-

tion equation has the following form

ap
Pp

′
P =

∑

ap
nbp

′
nb + b′P, (2.56)

where the coefficients are

ap
E =

(

αuθA
2

au
P

)

e

, ap
W =

(

αuθA
2

au
P

)

w

,

ap
B =

(

αvθA
2

av
P

)

b

, ap
R =

(

αvθA
2

av
P

)

r

,

ap
N =

(

αwθA
2

aw
P

)

n

, ap
S =

(

αwθA
2

aw
P

)

s

,

ap
P =

∑

nb

ap
nb,

b′P = −
(

u∗eθeAe − u∗wθwAw

+ v∗bθbAb − v∗r θrAr

+ w∗
nθnAn − w∗

s θsAs

)

.

(2.57)

The term b′P, called the mass residual, in the pressure correction equation is the

left-hand side of the discretized continuity equation (2.55) evaluated in terms

of the fluid velocity components u∗, v∗ and w∗. If b′P is zero then the fluid

velocity satisfies the continuity equation and the solution to the problem has
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2.8 Pressure-Velocity Coupling

been obtained.

After the pressure correction equation (2.56) is solved, the pressure is updated

by

p = p∗ + αpp
′, (2.58)

where the under-relaxation factor for the pressure αp = 0.3 is used in this study

following the expression proposed by Ferziger & Peric (2002), stated that from

their experience the optimum value of αp is given by αp = 1 − αu. Velocities are

updated by equations (2.52) and (2.54).

In the PISO algorithm (Issa, 1986), a second correction step is introduced as

au

P

αu

u′′
f =

∑

au

nbu
′
nb + Af(p

′′
P − p′′nb), (2.59)

where

u = u∗ + u′ + u′′,

p = p∗ + p′ + p′′.
(2.60)

The
∑

au

nbu
′
nb terms, which has been neglected in the first correction step, are

now included in the second correction step as we have already obtained the value

of u′
nb from the first correction step. Then, substitution of the above expression

(2.60) and (2.59) into the continuity equation (2.55) leads to the second pressure-

correction equation as

ap
Pp

′′
P =

∑

ap
nbp

′′
nb + b′′P, (2.61)

where the coefficients have the same value in the first pressure correction equation

shown in (2.57) and the source term has been changed to

b′′P = −
[

(

αu

au
P

∑

au
nbu

′
nb

)

e

θeAe −
(

αu

au
P

∑

au
nbu

′
nb

)

w

θwAw

+

(

αv

av
P

∑

av
nbv

′
nb

)

b

θbAb −
(

αv

av
P

∑

av
nbv

′
nb

)

r

θrAr

+

(

αw

aw
P

∑

aw
nbw

′
nb

)

n

θnAn −
(

αw

aw
P

∑

aw
nbw

′
nb

)

s

θsAs

]

.

(2.62)
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2.9 Interface Calculations

After the second pressure correction equation (2.61) is solved, all solutions are

updated by equation (2.60).

It is worth remarking that under-relaxation is not needed in the PISO algo-

rithm and all under-relaxation factors are αφ = 1.

Both SIMPLE and PISO algorithms are the pressure-correction method and

they are widely used in CFD as well as in some commercial software. The SIM-

PLE method is very robust to deal with steady problems while the PISO method

is more efficient in solving transient problems. At the beginning of the develop-

ment of the code, the SIMPLE algorithm is used to simulate 2D breaking solitary

waves, whereas the PISO algorithm, which can reduce the computational effort

and CPU time, is further implemented for 2D periodic breaking waves and 3D

breaking waves.

2.9 Interface Calculations

A key requirement for modelling two-phase flow is a method of calculating the

shape of the interface. There are essentially two types of method (Ferziger &

Peric, 2002):

• interface tracking,

• interface capturing.

Table 2.2 gives a brief overview of the numerical methods for interfacial flows.

In this section, we review different methods for interface calculations first and

then we present the method used in this study.

2.9.1 Interface Tracking

In interface tracking methods, the exact position of the interface is known during

the computation, and boundary conditions can be applied at the interface. During

each time step, the location of the interface has to be advanced with the solution

in the background mesh (fixed or moving) or meshless domain.
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2.9 Interface Calculations

Table 2.2: Interface calculation methods

Methods for interfacial flows

Interface tracking

Height
function

Meshless,
or particle

SPH MPS PFEM

Moving
mesh

Interface capturing

MAC VOF

Algebraic
method

Geometric
method

SLIC PLIC

Level set
Density
function

Height function method

In the height function method (Nichols & Hirt, 1973), the location of the free

surface is represented by a height relative to the reference elevation. The evolu-

tion of the height function is governed by the kinematic free surface boundary

condition and solved with the fluid velocities to track the interface. This method

is very efficient in 2D or 3D free surface flows as the problem can be transformed

to horizontal 1D or 2D. The major limitation of this method is that breaking

and overturning waves cannot be simulated because the height function remain

single-valued at horizontal locations.

Moving mesh or boundary fitted method

Moving mesh methods, utilize boundary fitted grids that follow an interface as

it moves, so that boundary conditions can be applied at cell faces. The grid

adapts to the position of the surface at each time step. Many finite-element
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2.9 Interface Calculations

or unstructured finite-volume (Zwart, 1999) methods use this approach. The

advantage of this method is that we can get the sharp interface and the exact

position is known throughout the computation. The limitation of the methods

is that it is difficult to track surfaces that interact or break up, such as wave

post-breaking and the splash-up.

Particle and meshless method

Apart from the Eulerian method mentioned above, in which the results are based

on a fixed or moving grid, there are also some meshless Lagrangian or particle

methods, such as the smooth particle hydrodynamics (SPH) (Monaghan, 1994),

moving particle semi-implicit (MPS) (Koshizuka et al., 1995) and particle finite

element methods (PFEM) (Idelsohn et al., 2004). In these methods, particles are

calculated in Lagrangian approach and advection is computed directly through

particle motion without numerical diffusion. Particles are advanced at each time

step, and thus the interface can be determined. These methods have advantages

to deal with moving bodies, large deformation such as wave post-breaking but

the difficulty and limitation is that it involves heavy computational demands

especially in 3D applications and the treatment of boundary conditions is not as

straightforward as in mesh-based methods (Nguyen et al., 2008).

The particle method has been increased rapidly recently including some ap-

plications for breaking waves (Dalrymple & Rogers, 2006; Gotoh & Sakai, 1999,

2006; Khayyer et al., 2008; Landrini et al., 2007; Lo & Shao, 2002; Ma & Zhou,

2009; Shao, 2006; Shao & Ji, 2006).

2.9.2 Interface Capturing

In contrast to interface tracking methods, interface capturing methods are im-

plemented on a fixed grid, which often extends beyond the free surface and in-

cludes the whole computational domain. The methods are relatively simple to

implement and require less computational effort compared to interface tracking

methods, as the grid remains fixed.
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2.9 Interface Calculations

Marker methods

The Marker-and-Cell (MAC) method (Harlow & Welch, 1965) was the earliest

numerical method, which is based on a fixed, Eulerian grid of control volumes,

for solving the unsteady free surface flow problems. Massless marker particles

are introduced in the calculation and advanced in each time step. The fluid is

determined by the cells, which contain markers. After that, later improvement

includes the SMAC (Simplified Marker-And-Cell) (Amsden & Harlow, 1970) and

GENSMAC (GENeralized Simplified Marker-And-Cell) (Tome & Mckee, 1994)

methods. The advantage of the MAC method is that it can deal with a wide

range of free surface flows including wave breaking, and the limitation is that

considerable computational effort is needed to advance the markers especially in

3D.

In contrast to the MAC method, the SMMC (Surface Marker and Micro Cell)

method (Chen et al., 1997), which only introduces markers on the interface rather

than in the interior fluid, is more efficient in the computational effort and it is also

more straightforward to apply free surface boundary conditions on the markers.

Density function method

The density function method, is a front-capturing method used to resolve complex

free surface profiles. The density function usually has different values in each

phase and the interface between phases is represented by the contour of the

average value of the density function. In order to obtain a sharp interface, high

order difference schemes, such as the CIP (Constrained Interpolation Profile)

method (Yabe et al., 2001), are often employed to avoid numerical diffusion in

the advection equation. The density function method is efficient to deal with

multiphase flows, but its drawback is that the interface may be smeared when

using low order schemes.

Level set method

The level set method was derived by Osher & Sethian (1988). A continuous scalar

function, which is a distance function from the interface, is introduced over the

whole computational domain. The level set function is propagated with time by
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solving a scalar convection equation. Thus, the interface is defined to be where

the function has a value of zero. The advantage of this approach is that the level

set function varies smoothly across the interface, nevertheless, special attention

has to be given to ensure mass conservation. Sussman et al. (1994) presented a

level set approach for simulating two-phase flows and later improvements include

the coupled level set and volume of fluid (CLSVOF) method (Sussman & Puckett,

2000) and the hybrid particle level set method (Enright et al., 2002). Reviews

of the level set method can be found in Osher & Fedkiw (2001) and Sethian &

Smereka (2003).

The level set method has been employed to investigate steady breakers gen-

erated by the flow over a submerged hydrofoil (Iafrati & Campana, 2005), deep-

water breaking waves (Hendrickson, 2005; Iafrati, 2009), breaking solitary waves

(Lin, 2007), breaking waves in the surf zone (Wang et al., 2009b), plunging break-

ing waves over a submerged bump (Wang et al., 2009a) and ship hydrodynamics

(Yang & Stern, 2009).

Volume of Fluid (VOF) method

Numerous methods have been proposed and used for the simulation of interfacial

flows. However, the Volume of Fluid (VOF) method for tracking the interface is

the most popular one due to its advantages: mass conservation, computational

efficiency and easy implementation. Rider & Kothe (1998) and Scardovelli & Za-

leski (1999) have given an excellent review on the VOF methods. At the beginning

of VOF methods, fluid volumes are initialized for the computational domain from

a specified initial interface geometry. The volume for each cell is expressed by the

volume fraction F , where cells across the interface will have a volume fraction

F between zero and one, and cells without interfaces will have a value equal to

zero or unity. During the computation, interfaces are tracked in VOF methods

through the evolution of the volume fraction F . From a general point of view,

there are two classes of algorithms to solve the F transport equation: algebraic

and geometric computation (Rider & Kothe, 1998).

Geometric computation Most geometric VOF methods are based on a two-

stage process. Firstly, interfaces are reconstructed from the volume fraction data
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so that a geometric profile is found which approximates the actual interface loca-

tion. Changes in volume fraction values are then calculated by integrating volume

fluxes across cell boundaries, using the geometric profile of the reconstructed in-

terface. Typical implementation of these algorithms are one-dimensional, with

multidimensionality obtained via operator splitting (Rider & Kothe, 1998).

With respect to the interface reconstruction, the various VOF methods can

be classified into two categories which are described below:

i. Simple Line (Piecewise Constant) Interface Calculation (SLIC)

In piecewise constant methods, the interface within each cell is assumed to

be a line (in 2D) or plane (in 3D) that is aligned parallel with one of the

grid axes. It is very easy and straightforward to implement, but has low

accuracy. Implementations of this method include the SLIC method of Noh

& Woodward (1996) and the VOF method of Hirt & Nichols (1981).

ii. Piecewise Linear Interface Calculation (PLIC)

In PLIC method, the interface within a cell, which represented as a slope

line in 2D (a plane in 3D), can be presented at any angle with respect

to the mesh axes. The slope of the line is given by an interface normal

(the gradient of the volume fraction), and the intercept by conservation

of volume within a cell (Rider & Kothe, 1998). PLIC methods are more

accurate than piecewise constant methods because they represent a more

realistic topology of the interface. Most PLIC methods reconstructed the

interface within each cell whereas Ashgriz & Poo (1991) reconstructed it

across cell faces. Implementations of this method include Youngs (1982),

Rider & Kothe (1998) , Gueyffier et al. (1999) and Pilliod & Puckett (2004).

Algebraic computation In the algebraic computation, the interface is cap-

tured by solving the F transport equation using a high-order difference scheme

without interface reconstruction. If the numerical scheme is too diffusive, the

value of F between 0 and 1 will spread over several cells and thus a sharp inter-

face cannot be captured. Moreover, mass conservation cannot be guaranteed in

the computation.
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Rudman (1997) proposed a FCT-VOF algorithm based on the concept of

flux-corrected transport (FCT). Firstly, the intermediate value of F is calculated

based on a low-order flux on cell boundaries, and then an anti-diffusive flux is

given by the difference between the high and low order flux approximation, finally,

the intermediate value and the correct anti-diffusive flux are used to advance the

F value at the new time. The comparison with other geometric VOF methods

for various test problems is shown in that paper. In order to avoid oscillations

for high-order schemes, Vincent & Caltagirone (1999) employed the TVD SU-

PERBEE scheme for the volume fraction equation. Ubbink (1997) developed a

compressive difference scheme, named CICSAM (Compressive Interface Captur-

ing Scheme for Arbitrary Meshes), for the volume fraction equation to capture

sharp fluid interface, which is available in the commercial codes STAR-CD and

FLUENT.

Overall, both geometric and algebraic VOF methods have been used in a wide

range of studies for breaking waves, such as the deep-water breaking waves (Chen

et al., 1999; Lubin et al., 2006; Song & Sirviente, 2004), periodic breaking waves

in the surf zone (Bradford, 2000; Christensen, 2006; Hieu et al., 2004; Lemos,

1992; Lin & Liu, 1998a,b; Liovic & Lakehal, 2007; Mayer & Madsen, 2000; Zhao

et al., 2004), breaking solitary waves (Biausser et al., 2004; Guignard et al., 2001;

Lin et al., 1999; Xie et al., 2009), wave overtopping (Stansby et al., 2007), wave

run-up from three-dimensional sliding masses (Liu et al., 2005), wave-structure

interactions (Chang et al., 2001, 2005; Hsu et al., 2002; Wu, 2004) and ship

hydrodynamics (Andrillon & Alessandrini, 2004).

2.9.3 VOF Scheme for Interface Capturing

Algebraic computation has a great advantage over geometric computation since

the interface is not required to be reconstructed during the calculation. Some suc-

cessful implementations have been done for two-dimensional interface reconstruc-

tion, however, it is not so easy to reconstruct the interface in three dimensions

(Gueyffier et al., 1999). In addition, the programming is much simpler in alge-

braic computation. Thus, considering the advantages of the VOF method and

efficiency in algebraic computation, the high resolution VOF scheme CICSAM
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is employed in this study to capture the air-water interface for breaking waves.

CICSAM is a high resolution scheme based on the Normalized Variable Diagram

(NVD) used by Leonard (1991). It contains two high resolution schemes and the

weighting factor is based on the angle between the interface and the direction of

motion. An outline of CICSAM is given below. Refer to Ubbink (1997) for the

details.

The normalized variable F̃ is defined as

F̃ =
F − FU

FA − FU

, (2.63)

where the subscript A indicates the acceptor and U the upwind cell. The Hyper-C

scheme (Leonard, 1991) (see figure 2.6(a)), which follows the upper bound of the

Convection Boundedness Criteria (CBC) is used as it is highly compressive and

can convert a smooth gradient into a sharp step.

F̃fCBC
=











min

{

1,
F̃D

cD

}

, when 0 ≤ F̃D ≤ 1

F̃D, when F̃D < 0, F̃D > 1

(2.64)

where subscript D indicates donor cell, cD =
∑

f max
{

−Vf∆t
ΩD

, 0
}

is the Courant

number of the donor cell and Vf is the volumetric flux. However, the Hyper-C

scheme is inadequate to preserve the shape of an interface which lies tangentially

to the flow direction. Thus CICSAM switches to the ULTIMATE-QUICKEST

(UQ) scheme (Leonard, 1991) (see figure 2.6(b))

F̃fUQ
=











min

{

8cDF̃D + (1 − cD)(6F̃D + 3)

8
, F̃fCBC

}

, when 0 ≤ F̃D ≤ 1

F̃D, when F̃D < 0, F̃D > 1

(2.65)

in this case.

Thus, depending on the angle between the interface and the flow, CICSAM

combines these two schemes, then

F̃f = γfF̃fCBC
+ (1 − γf)F̃fUQ

, (2.66)
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Figure 2.6: Normalized Variable Diagram of the binding schemes of CICSAM.

in which the weighting factor is given as

γf = min

{

kγ
cos(2αγ) + 1

2
, 1

}

, (2.67)

where kγ is a constant introduced to control the dominance of the different

schemes and the recommended value is kγ = 1, αγ is the angle between the

vector normal to the interface and the vector which convects the centres of donor

and acceptor cells.

The final expression for the face value of F is

Ff = (1 − βf)FD + βfFA, (2.68)

where the weight factor βf is obtained by

βf =
F̃f − F̃D

1 − F̃D

. (2.69)

It is noted that the normalized variable in (2.63) will be divided by zero if
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the volume fraction F has the same value in the acceptor and upwind cell. In

the numerical implementation, the numerator and denominator of the weighting

factor in (2.69) are multiplied by (FA − FU), resulting a modified expression of

the normalized variable on the face (not shown here), to avoid the singularity in

the computation.

2.10 Implementation of Boundary Conditions

2.10.1 Inlet Boundary Condition

Generally, water waves can be generated with a specified boundary condition at

the inlet, with an internal wave maker via a source term (Lin & Liu, 1999) or

with a moving wave maker at the inlet.

When the analytical solutions of the water particle kinematics are given, differ-

ent types of water waves can be generated from the inlet boundary by specifying

the value at the current time step as

[u]n+1
inlet = B1(u

n+1
wave), (2.70)

[F ]n+1
inlet = B2(η

n+1
wave). (2.71)

The detail of the expressions for the sinusoidal wave, solitary wave, conoidal

wave and Stokes wave can be found in Dean & Dalrymple (1984) as well as in

the following chapters.

2.10.2 Open or Radiative Boundary Condition

The discretization of the Sommerfeld radiation condition is obtained by the ex-

plicit scheme as

φn+1
imax = φn

imax + C0∆t

(

∂φ

∂x

)n

imax

= φn
imax + C0∆t

φn
imax − φn

imax−1

∆x
,

(2.72)
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Figure 2.7: Boundary treatment in a cut cell for the u momentum equation in
2D Cartesian grid.

where the subscript imax denotes the value at the outlet in the x direction of

wave propagation and C0 is the characteristic velocity of water waves.

2.10.3 Wall Boundary Condition

Momentum equations

When the control volume is a cut cell, special attention has to be paid to the

spatial discretization. When the face of a momentum control volume is on the

wall, the diffusion flux is obtained as

∫∫

S

Γ
∂φ

∂n
dS =

∑

f

Γf

∂φ

∂n
(θA)f + τw[(1 − θ)A]f , (2.73)

where ∂φ
∂n

is calculated by the finite difference approach in (2.39) and τw is the

shear stress on the face of the control volume. For example, in the case of the

control volume for u momentum equation in 2D (see figure 2.7), the shear stress

on the south face is

τw = −Γs

uP − usolid

0.5(θu∆z)
, (2.74)
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where usolid is the velocity on the solid boundary.

The mass flux has also to be modified by the θ function on the boundary. If

θ = 0, there is no mass flux through the face and the convective flux is obtained

as

mf = 0. (2.75)

Boundary condition for the pressure correction equation

If the normal fluid velocity at the boundary is specified, there is no need to correct

the velocity at the boundary, namely

u′
f = 0, (2.76)

and according to equation (2.54) which leads to

∂p′

∂n
= 0, (2.77)

and therefore on the boundary we can set the normal derivative of the pressure

correction to be zero. Sometimes, having Neumann conditions on all boundaries

makes the pressure correction equation singular. To obtain the unique solution,

it is usual to take the pressure at one reference point to be fixed, so all corrected

pressures are subtracted by the pressure correction calculated at the reference

point (Ferziger & Peric, 2002).

2.11 Solution Techniques for Systems of Linear

Algebraic Equations

In this study, the ADI (Alternating Direction Implicit) method with TDMA

(Tridiagonal Matrix Algorithm) is used the solve the algebraic equations in the

2D model since it is very efficient and easy to implement at the early stage of

the code development. However, it becomes inefficient with increasing number

of nodes. Thus in the 3D model, the iterative procedures used to solve the

algebraic equations are the 3D version SIP (Strongly Implicit Procedure) method

or Bi-CGSTAB (Bi-Conjugate Gradients Stablized) Method proposed by van der
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Vorst (1992). A comprehensive description of the solution techniques for linear

algebraic equations is presented in Chapter 5 of Ferziger & Peric (2002) and will

not be discussed here.

2.12 Concluding Remarks

In this chapter, the mathematical model and numerical implementation have

been presented. The finite volume discretization for the governing equations and

pressure-velocity coupling have been described in detail. After briefly reviewing

the technique for interface calculations, we introduced the CICSAM scheme which

we found to do a good job for interface capturing. The wave generation for nu-

merical simulations as well as the radiative boundary condition for reducing the

computational domain were also discussed. This code has the capability of study-

ing various free surface flow problems. It is worth remarking that although only

the Navier–Stokes equations are discussed in this chapter, the numerical methods

are also applicable to other governing equations described in later chapters.
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Chapter 3

RANS Modelling of

Two-Dimensional Breaking

Waves

Most flows in breaking waves are turbulent and therefore need different treatment

for the turbulence. The most accurate and straightforward approach is direct

numerical simulation (DNS), which solves the Navier–Stokes equations directly

without any modification. All detailed features in the turbulent flow are captured

in DNS, so the grid size must be no larger than the Kolmogorov scale (Ferziger

& Peric, 2002). Due to the high demand of the number of grid points (which

is proportional to Re9/4 in 3D, where Re is the Reynolds number), it has been

mostly used for low Reynolds number flows and it is only applicable to the high

Reynolds flow calculation in a small domain for current computational powers.

In many engineering practices, just a few quantitative properties of the turbu-

lent flow are of interest. Therefore the Reynolds-averaged Navier–Stokes (RANS)

equations are usually solved, in which all of the unsteadiness is averaged out and

considered as part of the turbulence, which is modelled by different approxima-

tions. Compared to DNS, the RANS model requires less computational effort

and can be solved in a relatively coarse grid, so the RANS model is employed in

this study to investigate two-dimensional breaking waves.

In this chapter, after briefly introducing the RANS model and the k−ǫ turbu-

lence model, we discuss the initial and boundary conditions for the RANS model
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and present the special numerical implementation for the k− ǫ turbulence model

near the wall. After that, two cases of 2D overturning waves with experimental

measurements are used to validate the model.

3.1 Reynolds-Averaged Navier–Stokes Equations

3.1.1 Reynolds Averaging

In the RANS model, every variable φ can be represented by the sum of the

averaged value and the fluctuating part as (Ferziger & Peric, 2002)

φ(xi, t) = 〈φ(xi)〉 + φ′(xi, t). (3.1)

In a steady flow, the time averaging is used to obtain the mean value

〈φ(xi)〉 = lim
T→∞

1

T

∫ T

0

φ(xi, t)dt, (3.2)

while ensemble averaging is used in unsteady flow

〈φ(xi, t)〉 = lim
Nφ→∞

1

Nφ

Nφ
∑

n=1

φ(xi, t), (3.3)

where Nφ is the total number of the ensemble values.

The RANS model has following fundamental properties:

(i). 〈〈φ〉〉 = 〈φ〉 , 〈φ′〉 = 0; (3.4)

(ii). 〈aφ+ bψ〉 = a 〈φ〉 + b 〈ψ〉 , a and b are constants; (3.5)

(iii). 〈φψ〉 = 〈(〈φ〉 + φ′)(〈ψ〉 + ψ′)〉 = 〈φ〉 〈ψ〉 + 〈φ′ψ′〉 ; (3.6)

(iv).

〈

∂φ

∂t

〉

=
∂ 〈φ〉
∂t

,

〈

∂φ

∂xi

〉

=
∂ 〈φ〉
∂xi

. (3.7)
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3.1 Reynolds-Averaged Navier–Stokes Equations

Applying the averaging processes to the Navier–Stokes equations (2.8–2.9),

we can obtain the RANS equations

∂ 〈ui〉
∂xi

= 0, (3.8)

∂(ρ 〈ui〉)
∂t

+
∂(ρ 〈uj〉 〈ui〉)

∂xj
= −∂ 〈p〉

∂xi
+

∂

∂xj

[

µ

(

∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)

−ρ
〈

u′iu
′
j

〉

]

+ρ 〈gi〉 ,
(3.9)

where the velocity-velocity correlation terms RS = −ρ
〈

u′iu
′
j

〉

are called the

Reynolds stresses.

The above RANS equations can also be rewritten in vector form as

∇ · 〈u〉 = 0, (3.10)

∂(ρ〈u〉)
∂t

+ ∇ · (ρ 〈u〉⊗ 〈u〉) = −∇ 〈p〉+ ∇ · [µ(∇ 〈u〉+ ∇
T 〈u〉) +RS] + ρ 〈g〉 .

(3.11)

3.1.2 Turbulence Models

In RANS modelling, attention is focused on the mean flow and the effects of

turbulence on mean flow properties. Extra terms (−ρ
〈

u′iu
′
j

〉

) appear in the

Reynolds-averaged flow equations due to the interactions between various turbu-

lent fluctuations. The governing equations are not closed, namely, the unknown

variables are more than the number of equations, thus, we have to use closure or

turbulence models to close the governing equations.

Eddy viscosity model

The eddy viscosity model relates the Reynolds stresses to the mean velocity gra-

dients as

−ρ
〈

u′iu
′
j

〉

= µt

(

∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)

− 2

3
ρδijk, (3.12)
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3.1 Reynolds-Averaged Navier–Stokes Equations

where δij is the Kronecker delta

δij =

{

1, if i = j;

0, if i 6= j,
(3.13)

k is the turbulent kinetic energy defined as

k =
1

2
〈u′iu′i〉 =

1

2
(〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉), (3.14)

and µt is the turbulent eddy viscosity, namely,

µt = CµρLtVt, (3.15)

where Lt is the turbulent length scale and Vt is the turbulent velocity scale. Cµ

is a dimensionless constant whose value will be given later. The eddy viscosity

model contains a number of different turbulence models with varying degree of

complexity, see Versteeg & Malalasekera (2007) for a discussion.

3.1.3 The k − ǫ Model

The k−ǫ model is the most widely used model among two-equation eddy viscosity

models. It has been tested over a large variety of flow situations and therefore its

limitations, as well as its successes, have become well understood. The standard

high-Reynolds-number k−ǫ turbulence model (Launder & Spalding, 1974) is used

in this study where

∂(ρk)

∂t
+ ∇ · (ρuk) = ∇ · [(µ+

µt

σk

)∇k] + Pk − ρǫ, (3.16)

∂(ρǫ)

∂t
+ ∇ · (ρuǫ) = ∇ · [(µ+

µt

σǫ
)∇ǫ] + C1ǫ

ǫ

k
Pk − C2ǫρ

ǫ2

k
, (3.17)

in which Pk is the turbulent production term, and the turbulent length scale and

turbulent velocity scale for the k − ǫ model are

Vt = k
1
2 , (3.18)
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Lt =
k

3
2

ǫ
. (3.19)

Thus, the turbulent eddy viscosity µt can be obtained from equation (3.15) as

µt = ρCµ
k2

ǫ
, (3.20)

where the empirical coefficients Cµ, σk, σǫ, C1ǫ and C2ǫ are given in table 3.1.

Table 3.1: Empirical coefficients in the k−ǫ turbulence model (Launder & Spald-
ing, 1974)

Cµ σk σǫ C1ǫ C2ǫ

0.09 1.0 1.3 1.44 1.92

3.2 Initial and Boundary Conditions

Initial and boundary conditions for the continuity and momentum equations are

the same as in § 2.2, so only the conditions for the k − ǫ model are presented

here.

3.2.1 Boundary Conditions for the k − ǫ Model

Inlet boundary condition

Similar to the method of Lin (1998), at the inlet, the turbulent kinetic energy is

obtained as k = 1
2
(I×C)2, where C is the wave phase speed and I is the turbulent

intensity. The turbulent eddy dissipation ǫ = ρCµk
2/(Iǫ × µ) is adjusted so the

turbulent eddy viscosity is Iǫ times the dynamic viscosity of each fluid at the

inlet. Unless stated otherwise I = 0.005 and Iǫ = 10 are used in this study.
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3.2 Initial and Boundary Conditions

Open boundary condition

On the open boundary, the zero gradient boundary condition is usually applied

for the turbulence and dissipation, so

[

∂k

∂n

]

open

= 0,

[

∂ǫ

∂n

]

open

= 0. (3.21)

Wall functions for the k − ǫ model

In high Reynolds number flows, the viscous sublayer is so thin that it will need

very fine mesh in the near wall region to resolve it. To alleviate this, wall functions

are used in the present study, which are based on the empirical near-wall velocity

profile of a turbulent boundary layer

u+ =
ut

uτ
=







n+, n+ ≤ 11.225;

1

κ
ln (E+n+), n+ > 11.225,

(3.22)

where κ = 0.4187 is von Kármán’s constant, E+ = 9.7393 is the coefficient for a

smooth wall, n+ is the dimensionless distance from the wall (also known as ‘near

wall Reynolds number’) as

n+ =
ρuτn

µ
, (3.23)

where n is the distance to the wall and uτ is the friction velocity defined as

uτ =

√

τw
ρ
. (3.24)

Spalding (1961) found that the turbulent viscosity is a cubic function of n+ or

u+ in the viscous and buffer layers but in the logarithmic layer the viscosity is

an exponential function of u+. By matching these two functions, and assuming

that the shear stress is constant very near to the wall, he derived the following

universal formula for the law of the wall

n+ = u+ +
1

E+

[

eκu+ − 1 − κu+ − (κu+)2

2!
− (κu+)3

3!

]

. (3.25)

Generally, the wall functions are usually applied at the first grid point above
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3.2 Initial and Boundary Conditions

the wall. The shear stress on the wall is calculated from the velocity ut by

employing the law of the wall.

From the definition of the shear velocity we have

u+ =
ut

uτ
=⇒ uτ =

√

τw
ρ

=⇒ τw =

√
ρτwut

u+
. (3.26)

In the fully developed boundary layer (local equilibrium), we have

τ 2
w = Cµρ

2k2 =⇒ √
ρτw = ρC

1
4
µ k

1
2 . (3.27)

Thus, substitute equations (3.27) and (3.22) into (3.26), we can obtain the shear

stress at the first grid point as

τw =























µ
ut

n
, n+ ≤ 11.225;

ρC
1
4
µ k

1
2ut

1

κ
ln (E+n+)

, n+ > 11.225.
(3.28)

The turbulent eddy dissipation is obtained as

ǫ = C
3
4
µ
k

3
2

κn
. (3.29)

The turbulent production in the wall region is calculated as

Pk = τw
∂ut

∂n
, (3.30)

and the velocity gradient can be obtained from

τw = µt
∂ut

∂n
=⇒ ∂ut

∂n
=
τw
µt

, (3.31)

thus, the production term is rewritten as

Pk =
τ 2
w

µt
. (3.32)
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Figure 3.1: Wall function treatment for a sloping wall and air-water interface
with angle α to the horizontal.

Wall functions for a sloping wall and air-water interface

In the present study, the wall functions are extended for a sloping wall and air-

water interface. Figure 3.1 shows a typical control volume containing a wall or

air-water interface at an angle of α to the horizontal and the distance from the

grid point to the interface is ∆n. It can be seen from figure 3.1 that the normal

unit vector n and tangential unit vector t can be expressed in terms of the unit

vectors in the x and z directions, i and k as

n = i sinα− k cosα, (3.33)

t = i cosα+ k sinα. (3.34)

The tangential velocity relative to the wall or air-water interface can be ob-
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3.2 Initial and Boundary Conditions

tained as

ut = [(u − uw) · t] t

= [(u− uw) cosα + (w − ww) sinα] t

= [(u− uw) cosα + (w − ww) sinα] cosαi+

[(u− uw) cosα + (w − ww) sinα] sinαk,

(3.35)

where uw is the velocity vector for the solid wall or the first point just below the

air-water interface.

Substituting the tangential velocity (3.35) into the shear stress (3.28), the

shear stress along the x and z directions can be obtained as

τx
w =























µ
[(u− uw) cosα+ (w − ww) sinα] cosα

∆n
, ∆n+ ≤ 11.225;

ρC
1
4
µ k

1
2 [(u− uw) cosα + (w − ww) sinα] cosα

1

κ
ln (E+∆n+)

, ∆n+ > 11.225.
(3.36)

τ z
w =























µ
[(u− uw) cosα + (w − ww) sinα] sinα

∆n
, ∆n+ ≤ 11.225;

ρC
1
4
µ k

1
2 [(u− uw) cosα+ (w − ww) sinα] sinα

1

κ
ln (E+∆n+)

, ∆n+ > 11.225.
(3.37)

The wall function used for the air-water interface during the calculation here

is similar to the wall function for the solid wall. The wall function for the water

surface is applied at the first point in the air above the water surface. It is worth

remarking that the boundary layer in water generated by wind (Tsanis, 1989; Wu

& Tsanis, 1995) or without wind (Cotton et al., 2005) is ignored in this study

and we assume there is no surface boundary layer in water. After obtain the

shear stress in the air τ a
w, the condition τw

w = τ a
w is applied at the interface for

water. This calculated shear stress across the interface is used for discretization

of the momentum equation and turbulence model during the computation. The

wall function for the air-water interface is neglected for the cut cells on the slope

where run-up depth is very small.
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3.2.2 Initial Conditions for the k − ǫ Model

When the RANS model is employed, the turbulence fields for k and ǫ are initial-

ized to the same value as the boundary conditions at the inlet.

3.3 Special Numerical Implementation

3.3.1 Numerical Discretization

Table 3.2 shows the various values of φ, Γ and QS
φ in the general integral formu-

lation (see § 2.3.2) to represent the Reynolds-averaged Navier–Stokes equations.

The same numerical discretization used in Chapter 2 is employed here for the

RANS model.

Table 3.2: Values of φ, Γ and QS
φ in the general integral formulation to represent

the Reynolds-averaged Navier–Stokes equations.

Equation φ Γ QS
φ

Continuity 1 0 0

Momentum 〈u〉 µ+ µt −∇ 〈p〉 + ρ 〈g〉
k k µ+ µt

σk
Pk − ρǫ

ǫ ǫ µ+ µt

σǫ
C1ǫ

ǫ
k
Pk − C2ǫρ

ǫ2

k

3.3.2 Source Term Linearization for the k − ǫ Model

Using the source term linearization described in § 2.5.3, the finite volume dis-

cretization of the source term in k equation is obtained as

QS
k = Pk − ρǫ

= Pk − Cµ
ρ2k

µt
k

= QS0
k +QS1

k k,

(3.38)

where

QS0
k = Pk, QS1

k = −Cµ
ρ2k

µt

. (3.39)
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Similarly, the finite volume discretization of the source term in ǫ equation is

obtained as

QS
ǫ = C1ǫ

ǫ

k
Pk − C2ǫρ

ǫ2

k

= C1ǫ
ǫ

k
Pk − C2ǫρ

ǫ

k
ǫ

= QS0
ǫ +QS1

ǫ ǫ,

(3.40)

where

QS0
ǫ = C1ǫ

ǫ

k
Pk, QS1

ǫ = −C2ǫρ
ǫ

k
. (3.41)

3.3.3 Wall Boundary Condition

Momentum equations

When the face of a momentum control volume is on the wall, the diffusion flux

on the wall is obtained as

∫∫

S

Γ
∂φ

∂n
dS = Γf

∂φ

∂n
(θA)f + τw[(1 − θ)A]f . (3.42)

The k − ǫ model

In the first grid point near the wall, the turbulent eddy dissipation is obtained as

ǫ = C
3
4
µ
k

3
2

κn
, (3.43)

and the turbulent production term is obtained from

Pk =
τ 2
w

µt
. (3.44)
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3.4 2D Overturning Waves on a Sloping Beach

3.4.1 Introduction

Prior to attempting numerical simulation of breaking waves, several validation

checks of the proposed code for dam break and regular wave tests were performed.

In order to test the code for overturning waves, we simulate a two-dimensional

overturning solitary wave and compare with the experiment by Li (2000) for a

breaking solitary wave splash-up on a 1:15 sloping beach. The processes for wave

breaking and splash-up in the experiment are shown in figure 3.2. The wave

surface profiles in space were captured using a high-speed video camera in the

experiment, thus this is considered as a benchmark problem to simulate breaking

waves over a slope.

In the past, Grilli et al. (1997) investigated the breaking criterion and charac-

teristics for solitary waves on slopes. Several cases for different slopes and wave

steepnesses were studied and detailed information for breaking waves was pre-

sented up to the point at which the plunging jet of breaking waves impinged on

the free surface. Li & Raichlen (1998) compared the experimental data against

the potential flow model of Grilli et al. (1997) and found that there is a phase

shift of the wave shape due to the energy dissipation which is not taken into

account in the potential flow model. In order to simulate post-breaking waves

with the BEM (Boundary Element Method) and save computational efforts in

the VOF model, the coupling between the BEM and VOF methods is developed

by using the ‘weak coupling method’, in which the VOF model is initialized from

the BEM results (Guignard et al., 1999), or the ‘strong coupling method’, in

which the BEM and VOF models are fully coupled and constantly exchanging

information with each other (Lachaume et al., 2003). Recently, meshless particle

methods have been advanced to simulate breaking waves and wave impacts on

structures. Khayyer et al. (2008) developed the CISPH (Corrected Incompress-

ible SPH) method to investigate breaking solitary waves, and both qualitative and

quantitative comparisons were made with experimental data. More recently, Ma

& Zhou (2009) developed the MLPG R (Meshless Local Petrov-Galerkin method

based on Rankine source solution) method for 2D breaking waves and quite good
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Figure 3.2: Solitary wave splash-up on a 1:15 slope for an incident wave H/D =
0.40 from Li & Raichlen (2003).
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Figure 3.3: Schematic of an incident H/D = 0.45 solitary wave breaking on a
1:15 sloping beach (not scaled).

agreement with experimental data for the wave surface profiles during wave over-

turning was obtained. It is worth noting that only the numerical results in Grilli

et al. (1997) and Ma & Zhou (2009) have compared the wave surface profiles in

space with experimental data.

3.4.2 Computational Setup

Computational parameters

In the simulation, the computational setup is the same as the laboratory setup

except that we use the analytical solution to generate the solitary wave at the

inlet. The schematic of the run-up of a breaking solitary wave is shown in fig-

ure 3.3, where the origin of the coordinate system is on the still water level above

the toe of the beach, x and z are the horizontal and vertical coordinates respec-

tively, D is the still water depth, H is the solitary wave height. The slope of the

beach tan(β) = 1 : 15, the still water depth is D = 0.3048 m and we calculate

the case for the incident solitary wave with the ratio of wave height to still water

depth, H/D = 0.45. The computational domain starts from the toe of the beach

and extends to the location beyond the maximum run-up point 18.75D. The

height of the computational domain is 1.75D and it is discretized by a 1800×140

nonuniform grid with minimum meshes ∆x/D = 0.005 and ∆z/D = 0.005 in the

breaking region. The CPU time is approximately 72h on a PC (Intelr Pentiumr

D CPU 3.40GHz, 2GB RAM).
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Boundary conditions

At the inlet, the solitary wave is generated by giving the water surface profile and

the water particle velocities based on the analytical solution (Dean & Dalrymple,

1984) as

η(x, t) =Hsech2

[

√

3H

4D3
X

]

,

X = x−Ct−xL, (3.45)
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.

The no-slip wall boundary condition is applied at the sloping beach and open

boundary conditions are applied at the top and outlet of the computational do-

main.

Similar to the method in Lin & Liu (1998a), the turbulent kinetic energy is

obtained as k = 1
2
(I×C)2, where C is the wave phase speed and I = 0.005 is the

turbulent intensity. The turbulent eddy dissipation is adjusted so the turbulent

eddy viscosity is ten times the dynamic viscosity of each fluid at the inlet.

Initial conditions

At t = 0, the water velocities and water surface are given by the results of the

analytical solution of a solitary wave (3.45), the velocity in the air is initialized

as zero, the pressure distribution in the whole domain is hydrostatic and the

turbulence fields for k and ǫ are initialized to the same value as the boundary

conditions at the inlet.
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3.4 2D Overturning Waves on a Sloping Beach

3.4.3 Results and Discussion

Comparison of wave surface profiles

In figure 3.4, the profiles of the overturning wave are compared with the ex-

perimental data (Li, 2000) at t
√

g/D = 9.29, 9.87, 10.35, 10.73 along with the

recently published results of Ma & Zhou (2009) using the MLPG R method. At

t
√

g/D = 9.29 before wave breaking, it can be seen that the wave crest becomes

steep due to the shoaling effect. At t
√

g/D = 9.87 during wave breaking, the

wave has passed the breaking point, which is defined as when the front of the

wave becomes vertical, and starts to overturn. At t
√

g/D = 10.35 during wave

overturning, a plunging jet is formed in front of the wave. At t
√

g/D = 10.73

during wave curling down, the plunging jet will impinge the water surface ahead

and generate the splash-up. Numerical results are only presented up to this stage

because the water surface profiles are not available after the wave touches down.

It can be seen from figure 3.4 that the computational results agree well with ex-

perimental measurements and MLPG R results in terms of the wave shape and

location before wave curling down, and there is only a slight difference in the size

of the cavity enclosed by the plunging jet. The slight discrepancy may be caused

by the solitary wave at the inlet generated from the analytical solution differing

slightly from the experiment (as indicated by Lee et al., 1982).

A detailed comparison of the plunging jet, at the time of jet impingement,

with the experimental and the BEM results are shown in figure 3.5. Both nu-

merical results (VOF and BEM) agree reasonably with experimental data. The

slight difference is that the jet obtained from the VOF model has a similar size to

that obtained from the BEM model and both are thicker than their experimental

counterpart as discussed by Li & Raichlen (1998). Nevertheless, since the numeri-

cal model cannot get the exact initial condition used in the experiment, any small

difference will lead to the change of the plunging jet, thus we do not expect to

match everything between the experiment and computation. In an overall sense,

the present code well predicts the overturning wave and a good agreement with

experimental data is obtained.

The overturning jet of breaking waves has been investigated mathematically

by Longuet-Higgins (1982), New (1983) and Greenhow (1983). New has found
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Figure 3.4: Comparison of wave surface profiles during wave overturning on a
sloping beach. Blue solid line: present results; red circles: experimental data (Li,
2000); black dashed line: results obtained by the MLPG R method (Ma & Zhou,
2009).
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Figure 3.5: Detailed comparison of the plunging jet. Blue solid line: present
results; red circles: experimental data (Li, 2000); black dashed line: profile at
t
√

g/D = 10.73 obtained by the BEM (Grilli et al., 1997); green dash-dotted line

is a
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3 aspect-ratio ellipse.
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Figure 3.6: Comparison of the profiles of the overturning wave obtained by differ-
ent meshes. Coarse mesh (900×90): black dashed line; medium mesh (1800×140):
blue solid line; fine mesh (2600 × 240): red dotted line.

that a certain section of the wave profile beneath overturning waves, in both deep

and shallow water, can be closely approximated by a
√

3 aspect-ratio ellipse. The

best fitted
√

3 aspect-ratio ellipse for the curve beneath the plunging jet obtained

from the present model is also shown in figure 3.5 with −30◦ orientation relative

to the x direction. It can be seen that the plunging jet follows New’s theory

and similar results have also been observed for deep-water breaking waves in the

numerical simulations by Chen et al. (1999) and Hendrickson (2005).

Convergence study

To investigate the convergence of the method, another two sets of mesh, a coarse

mesh (900×90) with minimum meshes ∆x/D = 0.01 and ∆z/D = 0.01 and a fine

mesh (2600 × 240) with minimum meshes ∆x/D = 0.0025 and ∆z/D = 0.0025,

are used to simulate the overturning wave. The comparison of the profiles of the

overturning wave is shown in figure 3.6. It is found that the results are convergent
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3.4 2D Overturning Waves on a Sloping Beach

and grid-independent results are obtained for the medium and fine meshes. The

finer mesh produces sharper plunging jet during wave overturning but it requires

more computational effort.

Velocity fields during wave overturning

Figure 3.7 shows the velocity fields during wave overturning. At t
√

g/D = 9.29

before wave breaking, the wave becomes steep and the velocity in the water

increases from the bottom to the water surface. The velocity and the water

surface profile all suggest the wave is in the pre-breaking region, which is classified

as u < C before wave breaking. At t
√

g/D = 9.87 during wave breaking, the

maximum velocity in the water is greater than the phase speed C, is nearly

horizontal and is located at the front face of the wave. Large velocity vectors are

produced in the air ahead of the front face of the wave due to the pushing of the

wave. At t
√

g/D = 9.87 during wave overturning, the velocity in the plunging jet

increases. At t
√

g/D = 10.73 during wave curling down, the maximum velocity in

the water is located at the tip of the plunging jet and large velocities beneath the

plunging jet are observed as the entrapped air tries to escape from the enclosed

cavity. It is worth noting that the air above the crest of the wave tries to follow the

water surface and the recirculation of air can be clearly observed above the wave

crest during wave breaking. These results are more detailed than experimental

measurements which cannot give velocities there. They are physically realistic so

support the model to simulate breaking waves.
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Figure 3.7: Velocity fields during wave overturning on a sloping beach. Velocities are normalized by the wave phase
speed C and the color bar represents the magnitude of the velocity.

83



3.5 2D Overturning Waves over a Reef

3.5 2D Overturning Waves over a Reef

3.5.1 Introduction

It is worth pointing out that several researchers in Helluy et al. (2005) have used

the overturning of a solitary wave over a reef (Yasuda et al., 1997) to validate

their models, in which only the time series of water surface profiles at fixed gauges

are compared against experimental data. In order to compare the model with

others, we present our numerical results here for completeness.

3.5.2 Computational Setup

We use a similar computational setup to Helluy et al. (2005). The detail of the

experimental setup can be found in Yasuda et al. (1997). The schematic of the

overturning of a solitary wave over a reef is shown in figure 3.8, where the origin

of the coordinate system is on the still water level above the toe of the reef, x

and z are the horizontal and vertical coordinates respectively. D = 0.31 m is the

still water depth, H = 0.1314 m is the solitary wave height, R = 0.263 m is the

height of the reef. The computational domain is 6 m long and 0.8 m high and

it is discretized by a 1500 × 200 uniform grid. The no-slip boundary conditions

are used for all boundaries and the solitary wave is initialized similar to that in

the previous section, but the centre is located at x = −2 m. The CPU time is

approximately 18h on a PC (Intelr Pentiumr D CPU 3.40GHz, 2GB RAM).

3.5.3 Results and Discussion

Comparison of numerical results and experimental data

Figure 3.9 shows the comparison of wave elevations between numerical results

and experimental data for the wave gauges P2-P4. At gauge P2 (x = 0 m),

the wave profile is similar to the initial solitary wave, but the wave steepness is

higher than that for the initial wave (H/D = 0.424). When the wave propagates

on the reef, the wave profile becomes asymmetrical (see from P3 and P4) and the

front of the wave becomes steeper during wave breaking. It is shown that the

computed water surface profiles agree well with the experimental measurements
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Figure 3.8: Schematic of the overturning of a solitary wave over a reef.
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all experimental data are shifted with a same period of time to match the wave
elevation in the first gauge P2.
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(Yasuda et al., 1997), and similar to the results obtained in previous numerical

studies (Helluy et al., 2005; Lin, 2007; Ma & Zhou, 2009).

Evolution of overturning waves

At the beginning of the solitary wave propagating towards the reef, there is little

change in the wave shape. As the solitary wave approaches the toe of the reef,

a small part of the wave is reflected back, whereas the main part of the wave

propagates on the reef. Since the top of the wave moves faster than the bottom

of the wave, the front of wave is steepened and the wave starts to overturn.

Figure 3.10 shows the evolution of water surface profiles during wave overturning.

At the onset of wave breaking (t = 1.2 s), the wave front becomes near vertical.

The plunging jet is observed during wave overturning (t = 1.3 s and t = 1.4 s).

The plunging jet impinges the water surface ahead to generate the secondary jet

(t = 1.6 s) and the jet-splash cycles are developed afterwards (t = 1.8 s). The

wave profiles at the breaking point and the jet-fall initiation, measured with a

high-speed video camera in Yasuda et al. (1997), are plotted in figure 3.10 as

well for comparison. It is noted that the shape of the computed wave profiles

agree reasonably with the experimental measurements, however, there is a phase

shift between the numerical results and experimental data, which has also been

observed in Lubin (2004). This might be attributed to the small domain used

in the simulation, whereas a much longer domain was used in the experiment.

Overall, the present model is capable of simulating the wave overturning, air

entrainment and splash-up processes.

3.6 Concluding Remarks

In this chapter, the 2D RANS model with the k − ǫ turbulence model has been

described to simulate 2D overturning waves. It is shown that good agreement

between numerical simulations and experimental measurements is obtained using

the RANS model presented here. The overturning jet, air entrainment and splash-

up during wave breaking have been captured by the two-phase flow model, which

demonstrates the capability of the model to simulate free surface flow and wave
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Figure 3.10: The evolution of water surface profiles during wave overturning over
a reef. The experimental water surface profiles measured with the high-speed
video camera during the overturning process are plotted in red lines (only two
profiles at the breaking point and jet fall initiation are available in the experiment
(Yasuda et al., 1997)).
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breaking problems. Hence, the RANS model is utilized to further study two-

dimensional breaking solitary waves in Chapter 4 and periodic breaking waves in

Chapter 5.
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Chapter 4

Two-Dimensional Breaking

Solitary Waves

The solitary wave was first discovered by John Scott Russell in 1834 while carrying

out experiments to determine the most efficient design for canal boats (Russell,

1844). The solitary wave, which can represent many characteristics of water waves

and tsunamis, is often used to study nearshore wave propagation and coastal

effects of tsunamis (Synolakis & Bernard, 2006).

This chapter begins with introduction of some relevant experimental and nu-

merical studies of breaking solitary waves. The RANS model is then employed

here to study breaking solitary waves on a sloping beach. The numerical results

are compared with experimental measurements in the absence of wind, and then

detailed wind effects on breaking solitary waves are presented and discussed.

4.1 Introduction

Many experimental investigations of breaking solitary waves have been performed,

which have important implications in understanding the run-up height of tsunamis

on shores and their hydrodynamic loads on coastal structures. Synolakis (1986)

carried out laboratory measurements to study the run-up of non-breaking and

breaking solitary waves on a 1:19.85 sloping beach. The empirical run-up rela-

tions for non-breaking waves were derived and improved our understanding of
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the run-up process. Water surface profiles were presented during the wave run-

up process and it was found that the maximum run-up of the incident wave

depends on its breaking characteristics. Yasuda et al. (1997) performed labora-

tory measurements to study the overturning of a solitary wave over a reef. The

shoaling effect of wave breaking was investigated by reefs instead of slopes and it

was found that the size of the overturning jet changes, depending on the relative

height of the submerged reef. Li (2000) experimentally investigated the splash-up

of breaking solitary waves on a 1:15 sloping beach and vertical walls. Detailed

profiles for the overturning jet and subsequent splash-up were presented in that

study. Two different wave breaking types were found from the experiments. If

the plunging jet impinges on a dry slope, no splash-up occurs and the break-

ing wave simply collapses. If the plunging jet impinges on a water surface, the

splash-up is observed and a reflected jet is generated with both clockwise and

counterclockwise vortices. Jensen et al. (2003) performed an experimental study

of solitary wave run-up at a steep beach and attention was paid to the dynamics

of the early stages of the run-up. It was found that the steepening wave front nei-

ther develops into plunging nor spilling breakers due to the steep beach. Jensen

et al. (2005) investigated the velocity and acceleration patterns of a collapsing

breaker through PIV measurements and the VOF computation. Good agreement

between experiments and simulations was obtained and it was found that the jet

is mainly formed at the crest of the wave in plunging breakers whereas the jet is

formed over the whole height of the wave in collapsing breakers.

Non-breaking and breaking solitary wave run-up has been studied intensively

by different numerical models, such as the shallow water equations (Li & Raichlen,

2002; Titov & Synolakis, 1995), Boussinesq equations (Zelt, 1991), shallow water

equations with the incorporation of Boussinesq terms (Borthwick et al., 2006;

Stansby, 2003), fully nonlinear potential flow (Grilli et al., 1997), single phase

Navier–Stokes model (Lin et al., 1999; Lo & Shao, 2002) and two-phase Navier–

Stokes model (Guignard et al., 2001). The depth-averaged models like the shallow

water and Boussinesq equations are able to model the general characteristics of

the run-up, but they only provide depth-averaged velocities and cannot model

the water surface profile during wave overturning and breaking. The discrepancy

is due to the hydrostatic pressure assumption and the lack of the treatment for
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the bottom friction effect as discussed by Lin et al. (1999) and Li & Raichlen

(2002). The fully nonlinear potential flow can simulate the physics of wave shoal-

ing on the beach and provide detailed information like the shape of plunging

jet, breaking index and velocity field during wave breaking, but it is not able

to calculate the maximum run-up and energy dissipation as the computation

terminates when the plunging jet impinges on the water surface. In the single

phase Navier–Stokes models by the VOF (Lin et al., 1999) and SPH (Lo & Shao,

2002) methods, the water surface profile and velocity distribution agreed with the

experiment, but the detailed information during wave breaking, such as the devel-

opment of the plunging jet and splash-up phenomena, were neglected. Guignard

et al. (2001) presented a two-dimensional DNS study of breaking solitary waves

on sloping beaches using the two-phase flow model. The pseudo-compressibility

method is employed to solve the Navier–Stokes equations and the SL-VOF (Seg-

ment Lagrangian- VOF) method is used to track the interface. The overturning

jet during wave breaking and the splash-up were obtained and compared with ex-

perimental measurements. It was suggested that the velocity and pressure fields

exhibit a highly non-hydrostatic flow near breaking, which cannot be predicted

by hydrostatic models.

It is worth noting that the effect of wind is neglected in all the above com-

putations. Therefore, the objective of this chapter is to investigate wind effects

on breaking solitary waves and provide more detailed information during wave

breaking. We calculate breaking solitary waves on a 1:19.85 sloping beach as

detailed water surface profiles and run-up in the absence of wind are provided in

the experiment (Synolakis, 1986), which is also considered as a 2D benchmark

problem for breaking solitary waves (Synolakis et al., 2008).

4.2 Computational Setup

4.2.1 Geometry

Wind effects on a two-dimensional breaking solitary wave running up a uniform

sloping beach of angle β are considered in this chapter. The schematic of this

problem is shown in figure 4.1, where the origin of the coordinate system is where

91



4.2 Computational Setup

D 

H 
η(x,t) 

h(x) 

R 
z

x 

slope β 

Wind 

wave 

x
L
 x

0
 

U 

Figure 4.1: Sketch of wind effects on a two-dimensional breaking solitary wave
run-up on a uniform sloping beach.

the still water surface meets the beach slope, x and z are the horizontal and

vertical coordinates respectively, D is the still water depth, H is the solitary

wave height, η(x, t) is the solitary wave profile, t is time, and xL is the initial

centre of the solitary wave. x0 is the toe location of the beach, h(x) is the local

still water depth, U is the wind speed and R is maximum run-up, which is defined

as the highest position the wave can reach on the slope.

4.2.2 Governing Equations

The governing equations used for this study are the Reynolds-averaged Navier–

Stokes equations (as discussed in § 3.1) and the standard k−ǫ model (3.16-3.17).

4.2.3 Computational Parameters

The detailed laboratory setup for breaking solitary waves can be found in Syn-

olakis (1986) and only the important parameters used in this study are sum-

marized here. The slope of the beach tan(β) = 1 : 19.85 and only the case

for breaking solitary waves is considered in this study, that is a solitary wave
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with the ratio of wave height to still water depth, H/D = 0.28, generated in

the experiment. In this study, the still water depth D = 0.2116 m is used and

the wave phase speed C =
√

g(D +H) = 1.6292 m/s. The computational do-

main starts from the toe of the beach and extends to the location beyond the

maximum run-up point 35.44D. The height of the computational domain is 2D

and it is discretized by a 550 × 100 nonuniform grid. Minimum meshes with

∆x/D = 0.025 and ∆z/D = 0.01 are uniformly distributed in the breaking re-

gion where x/D ∈ [−5, 0] and z/D ∈ [0, 0.3], and other meshes increase linearly

to the boundary. The CPU time is approximately 3h on a PC (Intelr Pentiumr

D CPU 3.40GHz, 2GB RAM).

4.2.4 Initial and Boundary Conditions

Boundary conditions

At the inlet, the solitary wave is generated by specifying the water surface el-

evation and velocity fields based on the analytical solutions (3.45). The effect

of wind is obtained by specifying different uniform wind speed above the water

surface. As the water surface elevation changes with time at the inlet, the lowest

point of wind forcing also changes with the movement of the water surface at a

distance about ha/D = 0.05, where ha is the height of the lowest point of wind

forcing above the water surface at the inlet. If the wind forcing is too close to

the water surface, the solitary wave profile may be changed during its generation

at high wind speeds, therefore we choose a distance about five minimum meshes

in the vertical direction away from the water surface based on our experience. It

is worth noting that the flux of the wind at the inlet is not a constant and has a

minimum value when the crest of the wave arrives at the inlet. A key parameter

for this problem is the ratio of wind speed U to wave phase speed C. Only the

onshore wind U/C in the range of 0 to 3 is considered in this study although the

offshore wind effect can be obtained in a similar way. We assume development

time for the boundary layer is negligible and for the sake of simplicity, only uni-

form wind profiles are considered here although other more physically realistic

wind profiles can also be studied. For the turbulence field, the turbulent kinetic

energy is obtained as k = 1
2
(I × C)2, where I = 0.005 is the turbulent intensity
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and the turbulent eddy dissipation is adjusted so the turbulent eddy viscosity is

ten times the dynamic viscosity of each fluid at the inlet.

The no-slip boundary condition is specified on the bottom and top of the

domain and along the sloping beach. The log law of the wall function for the

turbulence is applied at the no-slip boundaries (see § 3.2.1).

The zero gradient boundary conditions on the mean flow and turbulence are

applied at the outlet.

Near the air-water interface, the log law of the wall function for the turbu-

lence model on the water surface (see § 3.2.1) is employed in this study and the

boundary layer in water generated by wind (Tsanis, 1989; Wu & Tsanis, 1995) is

ignored here. Without using the wall function, when we calculate the turbulent

air flow over calm water (not shown here), the flow in the air would behave like

a laminar flow similar to a laminar flow near a solid wall.

Initial conditions

At t = 0, the water velocities and water surface are given by the results of the

analytical solution of a solitary wave (3.45), the velocity in the air is initialized

as zero, the pressure distribution in the whole domain is hydrostatic and the

turbulence field is initialized to the same value as the boundary conditions at the

inlet.

4.3 Comparison of Numerical Results and Ex-

perimental Data Without Wind

In order to study the effect of wind on breaking solitary waves, we first simulate

breaking solitary waves in the absence of wind (U/C = 0) and compare with

experimental measurements in terms of water surface profiles and the evolution

of maximum wave height. The results obtained here will be used to compare with

results in the presence of wind in the next section.
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4.3.1 Water Surface Profiles

Figure 4.2 shows the comparison of the computational results with the experimen-

tal measurements in terms of the water surface profiles. Figure 4.2(a-b) shows the

wave shoaling process. As the water depth decreases, the wave height increases

and the wave shape becomes asymmetrical. The front of the wave is steepening

and nearly vertical in figure 4.2(b). Figure 4.2(c) shows the wave breaking pro-

cess, it can be seen that the wave starts to break when the critical ratio of wave

height to water depth is achieved and that air entrainment is observed during

wave breaking. After wave breaking, the wave continues to run up the beach as

seen in figure 4.2(d). After reaching the maximum run-up shown in figure 4.2(e),

the wave starts to run down the beach. The shoreline movement during wave

run-up agrees well with the experimental data.

It is shown from figure 4.2 that the computational results agree with the

experimental measurements in terms of the shape and location of the wave during

wave shoaling, breaking and the run-up processes. The favourable agreement

provides additional validation of this model for simulating breaking waves.

4.3.2 The Evolution of Maximum Wave Amplitude

In the absence of wind (U/C = 0), Synolakis & Skjelbreia (1993) studied the

evolution of the maximum amplitude of solitary waves on a 1:19.85 sloping beach

and found that breaking solitary waves are in the gradual shoaling zone, where

the amplitude variation can be identified as similar to Green’s law (Lamb, 1932):

ηmax ∼ 1/h1/4.

Figure 4.3 shows the comparison of evolution of maximum wave amplitude in

the absence of wind (U/C = 0) between the numerical simulation, experiment

and Green’s law. In the shoaling region where 0.3 < h(x)/D < 1, the numerical

results are underestimated compared to experimental measurements and Green’s

law. This might be caused by the incident wave generated in the simulation

differed slightly from the incoming wave in the experiment. However in the

breaking region where 0.1 < h(x)/D < 0.3, a good agreement with the experiment

of Synolakis & Skjelbreia (1993) is obtained. As Synolakis & Skjelbreia (1993)
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Figure 4.2: Comparison of numerical results of breaking solitary wave run-up in
the absence of wind (U/C = 0) with experimental data, blue solid line: numerical
results; red circles: experimental data (Synolakis, 1986). The vertical scale is
exaggerated by a factor of 10.
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Figure 4.3: Comparison of the evolution of maximum wave amplitude up the
beach in the absence of wind (U/C = 0) with the experiment of Synolakis &
Skjelbreia (1993) and Green’s law (Lamb, 1932).

indicated, Green’s law overestimates the amplitude during wave breaking as it

can be seen from figure 4.3.

4.4 Wind Effects on Breaking Solitary Waves

In this section we present the results of wind effects on breaking solitary waves,

with a focus on the effects during wave breaking. Numerical results are based on

the comparison of the cases between different wind speeds as well as the case in

the absence of wind.

4.4.1 Water Surface Profiles

In this section, we study the effect of wind on water surface profiles. As the scope

of the present study is breaking waves, only those results during wave breaking

are shown here.

Figure 4.4 shows the evolution of the water surface profiles during wave break-

ing at t
√

g/D = 20.0 − 21.0 for different wind speeds U/C = 0 − 3. At a fixed
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Figure 4.4: The evolution of water surface profiles during wave breaking for
different wind speeds: U/C = 0: black solid line; U/C = 1: green dashed line;
U/C = 2: blue dash-dotted line; U/C = 3: red dotted line.
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4.4 Wind Effects on Breaking Solitary Waves

time t
√

g/D = 20.0 in figure 4.4(a), the solitary wave with U/C = 0 is just at the

breaking point while the ones with U/C = 1− 3 have passed the breaking point,

which is defined as the point where the front of the wave becomes vertical. The

wave front moves faster as U/C increases. When t
√

g/D = 20.2 in figure 4.4(b),

the wave for U/C = 3 starts to curl down but others (U/C = 0−2) are still in the

overturning process. Figure 4.4(c) shows the plunging jets of breaking solitary

waves and we observe that the distance between the front of each wave increases

as U/C increases. At t
√

g/D = 21.0 in figure 4.4(d), the plunging jet for U/C = 3

first begins to strike the water surface and the splash-up is developed.

It is shown from figure 4.4 that the wind affects the wave breaking process and

the shape of the plunging jet. The wind has a significant effect on the front face

of the wave but a little effect on the rear face. As the wave receives the energy

from the wind, the distance between the front face of each wave with different

U/C increases monotonically with time. It can be seen from figure 4.4 that the

wave moves faster as the wind speed increases, and this causes the wave to break

earlier which is consistent with the previous laboratory investigation by Douglass

(1990).

4.4.2 Velocity Fields

In this section, we investigate the effect of wind on the velocity fields under

breaking waves. Figure 4.5 shows the evolution of the velocity vectors during

wave breaking for different wind speeds. For clarity (due to the large difference

in velocity between the air and water for higher wind speeds), only the velocity

fields for U/C = 0 (left figures) and U/C = 2 (right figures) are presented here.

Figure 4.5(a) shows the velocity field at t
√

g/D = 20.0 before wave breaking.

When U/C = 0 in the left figure, the air above the crest of the wave tries to

follow the water surface and the recirculation of air can be clearly observed above

the wave crest. The velocity in the water increases from the bottom to the water

surface with the maximum velocity in the water umax = 0.88C. The velocity

and the water surface profile are consistent with the wave in the pre-breaking

region, which is usually classified as u < C everywhere. When U/C = 2 in the

right figure, the recirculation of air doesn’t exist due to the presence of the wind.
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Figure 4.5: For caption see facing page.
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Figure 4.5: The evolution of velocity vectors during wave breaking for U/C = 0 (left of pair) and U/C = 2 (right of
pair). The velocity vectors have been normalized by C. The bold line is the water surface.
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4.4 Wind Effects on Breaking Solitary Waves

Above the crest of the wave, air flow separation can be observed downstream of

the front face of the wave. It is noted that the air is driven by the wave when

U/C = 0 and the wave is driven by the wind when the value of U/C is high,

respectively.

Figure 4.5(b) shows the velocity field at t
√

g/D = 20.5 during wave breaking.

When U/C = 0 in the left figure, the maximum velocity in the water is umax =

1.01C, and thus causes the wave to break. The maximum velocity vector at the

front face of the wave is nearly horizontal and large velocities are produced in the

air ahead of the wave. When U/C = 2 in the right figure, the wave is breaking,

similar to the case in the absence of wind, except for the separation of the air

flow above the crest of the wave.

In figure 4.5(c), the forming of the plunging jet at the front face of the wave

is presented for both cases at t
√

g/D = 21.0 during wave overturning. It can

be seen that the plunging jet is more advanced in the U/C = 2 case due to the

wind forcing. During wave overturning, large velocities below the plunging jet

are observed as the entrapped air tries to escape from the cavity for both cases.

Figure 4.5(d) depicts the splash-up phenomenon at t
√

g/D = 21.5 after wave

breaking. When U/C = 0, the plunging jet impinges on the water surface ahead

and reaches the maximum velocity during wave breaking. A secondary jet is

generated during the splash-up and an air cavity is enclosed by the plunging jet.

When U/C = 2, the second jet is more advanced due to the wind effects. The wind

may affect the splash-up process as the generated secondary jet obtains energy

from the wind, which affects the shape and height of the subsequent splash-up.

As discussed above, it is shown that the water particle velocity increases

during wave overturning, reaches a maximum when the plunging jet strikes the

water surface and decreases during the splash-up, which is consistent with the

experimental investigation of overturning waves by Chang & Liu (1998). The

onshore wind does have an effect on the velocity field of the water during wave

breaking as the wind assists the development of water particle velocity towards

the wave phase speed to initiate an earlier breaking. Hence, the higher the wind

speed, the earlier the wave breaks. This can be easily seen from figure 4.5(a–d)

when compared the water surface profiles between U/C = 0 (left figures) and
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Figure 4.6: The logarithmic profile of the velocity u at x/D = −3.4 above the
crest of the wave for U/C = 2 during wave breaking at t

√

g/D = 20.0.

U/C = 2 (right figures). The same effects are also observed in the cases for

U/C = 1 and U/C = 3 (not shown here).

Banner (1990) experimentally investigated the wind-wave interactions and

found the logarithmic wind profile over breaking waves. In the presence of wind

U/C = 2, the detailed velocity profile at x/D = −3.4 above the crest of the wave

in the right part of figure 4.5(a) is depicted in figure 4.6. It can be seen that

the turbulent velocity distribution above the water surface is obtained due to

the use of the wall function for the air-water interface and it follows logarithmic

profiles (Banner, 1990). Without using the wall function, we cannot capture the

turbulent shear layer above the wave and the velocity profile above the air-water

interface would behave like a laminar flow near a solid wall.

4.4.3 Pressure Distributions and Drag Force

The pressure distributions in the air and water have a significant effect on wave

breaking. The air pressure distribution on the water surface has important impli-

cations for the momentum and energy transfer at the air-water interface and the

103



4.4 Wind Effects on Breaking Solitary Waves

−4 −3.5 −3 −2.5

−0.2

0

0.2

0.4

0.6

x/D

z/
D 0.1

0.2

0.3

(a) U/C = 0

−4 −3.5 −3 −2.5

−0.2

0

0.2

0.4

0.6

x/D

z/
D

0.1

0.2

0.3

(b) U/C = 1

−4 −3.5 −3 −2.5

−0.2

0

0.2

0.4

0.6

x/D

z/
D

0.1

0.2

0.3

(c) U/C = 2

−4 −3.5 −3 −2.5

−0.2

0

0.2

0.4

0.6

x/D

z/
D

0.1

0.2

0.3

(d) U/C = 3

Figure 4.7: The contours of the pressure in the water during wave breaking for
different wind speeds U/C = 0 − 3 at t

√

g/D = 20.0. The reference pressure is
at the top of outlet and the pressure has been normalized by ρgD. The bold line
is the water surface.

form drag (Banner, 1990), and the water pressure distribution is the main con-

tribution of the force and wave loads on marine structures. Thus, in this section,

we investigate the effect of wind on the pressure field and drag force for breaking

solitary waves.

Figure 4.7 shows the pressure distribution in the water during wave breaking

for different wind speeds U/C = 0−3 at a representative time t
√

g/D = 20.0. It

is shown that the pressure distribution changes slightly in the presence of wind.

The effect of wind on the pressure of the water is small due to the large density

of water.

In the vicinity of the water surface, the pressure may be changed in the pres-

ence of wind, which has important consequence of the wind stress and associated
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Figure 4.8: Comparison of the drag coefficients for different wind speeds U/C =
0 − 3 at t

√

g/D = 20.0. Form drag Cp: diamond dashed line; friction drag Cτ :
circle dash-dotted line; total drag Ct = Cp + Cτ : square solid line.

form drag. The form drag Dp and friction drag Dτ along the water surface are

calculated as

Dp =

∫

η

−pi · ndS, (4.1)

Dτ =

∫

η

(τxxi · n + τxzk · n)dS, (4.2)

where τxx and τxz are turbulent stresses discussed in § 4.4.5. The drag coefficients

for the form drag Cp, friction drag Cτ and total drag Ct are obtained as

Cp =
Dp

1
2
ρaC2H

,

Cτ =
Dτ

1
2
ρaC2H

, (4.3)

Ct = Cp + Cτ .

Figure 4.8 gives the comparison of the drag coefficients for different wind
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4.4 Wind Effects on Breaking Solitary Waves

speeds during wave breaking at t
√

g/D = 20.0. It can be seen that the drag

forces have a relation with the wind speed relative to wave speed and the variation

for the form drag is larger than that for the friction drag.

We first investigate the form drag due to pressure. In the absence of wind

(U/C = 0), the wave creates a relative headwind with a speed equal to that of

the wave phase speed during wave propagation (as can be seen from the velocity

field in the left figure in figure 4.5(a)), thus the form drag is negative which

means that there is air resistance in front of the wave and it resists the wave

moving forwards. In the presence of wind (U/C = 1), where the wind speed

equals to the wave phase speed, as the water particle velocities in most part

of the wave are less than the wave phase speed, therefore the wind pushes the

wave forwards. The form drag has been changed dramatically with its sign from

negative to positive in the direction of the wave propagation. For higher wind

speeds (U/C = 2, 3), the stronger wind forcing changes the pressure distribution

and the associated form drag significantly. The form drag is a way in which the

wind can transfer energy to waves (Banner, 1990) and this is one reason why

we can see the wave breaks earlier in the presence of wind. It is noted that

only the form drag during the early stage of wave breaking at t
√

g/D = 20.0 is

calculated here. The form drag depends on the wave shape and differs during

wave propagation. The wave becomes steeper in the forward face and flatter in

the rear face before wave breaking, thus the form drag is affected by the changed

wave shape and the associated pressure distribution.

We next study the wind effects on the friction drag. In the absence of wind

(U/C = 0), the friction drag has very small negative value due to no wind forcing.

In the presence of wind (U/C = 1), the friction drag increases slightly and pushes

the wave forwards. For high wind speeds (U/C = 2, 3), the variation for the

friction drag is relatively larger when compared with low wind speeds (U/C = 1).

The total drag varies dramatically for different wind speeds. It is negative in

the absence of wind (U/C = 0) and positive in the presence of wind (U/C = 1−3).

It is worth remarking that there is a wind speed between U/C = 0 and U/C = 1,

at which the total drag is zero. At this wind speed, the wind forcing is balanced

by the air resistance in front of the wave. It is shown from figure 4.8 that the drag

force increases monotonically in the direction of the wave propagation as U/C
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increases. It is noted that the drag force is the main effect of wind on breaking

solitary waves. This is the reason for the increase of the water particle velocities

in § 4.4.2 and the change of water surface profiles by the wind in § 4.4.1.

4.4.4 Vorticity Generation

Wave breaking plays an important role in the generation of vorticity, turbulence

and air entrainment. In this section we analyze the generation of vorticity, which

is defined as

ω =
∂w

∂x
− ∂u

∂z
. (4.4)

Figure 4.9 shows the evolution of the vorticity field during wave breaking

for different wind speeds U/C = 0 − 3 from t
√

g/D = 20.0 to t
√

g/D = 21.0.

Through our numerical simulation, it is seen that the vorticity fields are totally

different for different wind speeds and the wind has a significant effect on the

generation of vorticity.

In the absence of wind (U/C = 0) shown in figure 4.9(a), the vorticity in the

water has a smaller value in comparison with the vorticity in the air. In the air

above the crest of the wave and plunging jet, there is a large positive vorticity

region due to the shear and the recirculation of air flow above the wave, which is

consistent with the velocity vectors shown in the left figure of figure 4.5(a). For

t
√

g/D = 21.0 shown in the right figure of figure 4.9(a), beneath the plunging jet

and in the thin region above the water surface, there are strong vortices because

the air is trapped by the plunging jet and it tries to escape from the cavity. This

is in agreement with the numerical results by Hendrickson (2005), who used DNS

to study steep breaking water waves with a coupled air-water interface in the

absence of wind.

In the presence of wind (U/C = 1− 3) shown in figure 4.9(b–d), the vorticity

field is totally different from the case without wind in figure 4.9(a). There is

no recirculation of air flow and the wind pushes the wave moving forwards. For

U/C = 1 in figure 4.9(b), since the wind speed is close to the wave phase speed,

the region of positive vorticity becomes thicker, smaller and closer to the tip

of the plunging jet when compared to the case for U/C = 0. When the wind is

blowing, there is a region of negative vorticity formed just above most of the water
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Figure 4.9: The contours of the vorticity during the wave breaking for different
wind speeds U/C = 0 − 3 at t

√

g/D = 20.0 (left of pair) and t
√

g/D = 21.0
(right of pair). The bold line is the water surface and the vorticity has been
normalized by

√

g/(D +H).
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surface, which means that there is a shear in the wind profile. With increased

wind speeds U/C = 2, 3 in figure 4.9(c,d), the region of positive vorticity becomes

even smaller while the region of the wind induced negative vorticity becomes

thicker and larger. From this, it is shown that wind plays an important role in

the generation of vorticity in the vicinity of the water surface.

In the right figure of figure 4.9(d), the vorticity for the splash-up process for

U/C = 3 at t
√

g/D = 21.0 is shown, in which the plunging jet strikes the water

surface and generates a secondary jet. There are three vortices during the splash-

up process. Two clockwise vortices form before and after the impingement point.

One of them is caused by the incident plunging jet and reverse flow under the jet,

and the other is formed by the reflected jet. Another counter-clockwise vortex is

formed above the jet of the splash-up. The splash-up obtained by the numerical

simulation is consistent with previous theory (Basco, 1985; Peregrine, 1983) and

experiments (Bonmarin, 1989; Li, 2000) in the absence of wind. In the presence

of wind, another clockwise vortex is generated by the wind above the crest of the

wave for higher wind speeds (shown in the right figure of figure 4.9(d)). This is

due to shear associated with flow separation ahead of the wave.

4.4.5 Turbulent Stress

In this section, we investigate wind effects on the turbulent shear stress in the

turbulence closure which is defined as

τxz = (µ+ µt)(
∂u

∂z
+
∂w

∂x
). (4.5)

Figure 4.10 shows the comparison of the turbulent stress τxz during wave

breaking at a representative time t
√

g/D = 20.0 for different wind speeds U/C =

0− 3. The turbulent stress τxz changes dramatically for different wind speed. In

the absence of wind (U/C = 0), the large shear stress τxz is mainly located at

the front face of the wave and near the bottom of the wave. In the presence of

wind (U/C = 1), the shear stress τxz increases slightly as the wind is blowing at

the same speed as the water wave. For U/C = 2, 3, the shear stress τxz at the

crest of the wave increases significantly as the wind speed increases. The shear

stress near the air-water interface is much higher than that in the water. With

109



4.4 Wind Effects on Breaking Solitary Waves

x/D

z/
D

−4 −3.5 −3 −2.5

−0.2

0

0.2

0.4

0.6

(a) U/C = 0

x/D
z/

D

−4 −3.5 −3 −2.5

−0.2

0

0.2

0.4

0.6

(b) U/C = 1

x/D

z/
D

−4 −3.5 −3 −2.5

−0.2

0

0.2

0.4

0.6

(c) U/C = 2

x/D

z/
D

−4 −3.5 −3 −2.5

−0.2

0

0.2

0.4

0.6

(d) U/C = 3

−100 −50 0 50 100

Figure 4.10: The contours of the turbulent stress τxz during wave breaking for
different wind speeds U/C = 0 − 3 at t

√

g/D = 20.0. The bold line is the water

surface and the turbulent stress has been normalized by µw
√

g/(D +H).
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Figure 4.11: The evolution of maximum normalized wave induced pressure (p−
ρgh)/ρgD along the beach for different wind speeds: U/C = 0: black solid line;
U/C = 1: green dashed line; U/C = 2: blue dash-dotted line; U/C = 3: red
dotted line.

the increasing wind speed, there is a large shear layer near the air-water interface

on the top of the crest of the wave as well as in the region downstream of the

front of the wave. A wake is created downstream of the wave crest for high wind

speeds (U/C = 2, 3). It can be seen from figure 4.10 that the wind has a large

effect on the turbulent stress near the water surface and this accelerates the water

particle velocities, generates surface currents and thus causes the wave to break

earlier, which is consistent with the velocity field shown in the right column of

figure 4.5 for U/C = 2.

4.4.6 Wave Induced Pressure Distributions On the Beach

When water waves break, they place large hydrodynamic loads on sea walls,

breakwaters and other coastal structures (Peregrine, 2003). In this section, we

analyze the wave induced pressure distribution on the beach, which is relevant to

hydrodynamic loads and sediment transport on the beach.
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4.4 Wind Effects on Breaking Solitary Waves

Figure 4.11 shows the evolution of maximum normalized wave induced pres-

sure (p−ρgh)/ρgD along the beach during breaking solitary wave run-up. When

compared with the water surface profiles in § 4.4.1, it can be seen that the maxi-

mum pressure occurs in the breaking region (−5 ≤ x/D ≤ 0) and located below

the still water level. The higher the wind speed, the higher the maximum pressure

is on the beach. With increased wind speed, the maximum wave induced pressure

moves offshore, which is consistent with foregoing discussion for the water surface

profile in § 4.4.1 that the wind causes the wave to break earlier and move offshore.

Above the still water level, the wave induced pressure is increased by the wind

due to the wind pushing breaking water waves up the beach.

4.4.7 Maximum Run-up Height

To accurately predict the maximum run-up height plays an important role in de-

termining the design height of coastal structures (Ward et al., 1998) and studying

coastal effects of tsunamis (Synolakis, 1987). Previous empirical expressions for

the maximum run-up height are based on the incident wave steepness H/D and

the angle of the beach β, in which there is no relation with the effect of wind. In

this section, we investigate the effect of wind on the maximum run-up height for

breaking solitary waves.

Figure 4.12 shows the numerical results of the maximum run-up height for

different wind speeds U/C = 0 − 3. The numerical result for the maximum run-

up height when U/C = 0 is 0.52, which is very close to the experimental value

of 0.5287 obtained by Synolakis (1986). For U/C = 1, the maximum run-up

height increases slightly due to a weak effect of wind. For higher wind speed

(U/C = 2, 3), the maximum run-up height increases due to increased form drag

and the shear layer formed near the water surface by the wind, which is consistent

with the experimental investigation of the run-up under the influence of onshore

wind by Ward et al. (1998). The current results for the maximum run-up height

nearly linearly increase with wind speeds U/C. Figure 4.12 shows that the wind

has a significant effect on the maximum run-up height for solitary waves and it

is suggested that the effects of wind should be taken into account in the current

maximum run-up expressions in practical applications to better predict its value
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Figure 4.12: The numerical results of the maximum run-up height for different
wind speeds U/C.

when the wind is present. More general relations for the maximum run-up height

under the influence of wind should be studied by taking various different values

for the incident wave steepness H/D, the angle of the beach β and the wind speed

U/C. This relation is of much interest and it is beyond the scope of the present

study.

4.4.8 The Evolution of Maximum Wave Amplitude

The evolution of maximum wave amplitude during wave shoaling is essential for

nearshore hydrodynamics and has important implications for the design of coastal

structures and prediction of beach morphodynamic processes. Here, we analyze

the effect of wind on wave shoaling.

Figure 4.13 shows the comparison of the evolution of maximum wave ampli-

tude for different wind speeds U/C = 0 − 3. In the absence of wind (U/C = 0),

the maximum wave amplitude increases before the breaking point and decreases

after the breaking point, which agrees with the experimental measurement (Syn-
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Figure 4.13: Comparison of the evolution of maximum wave amplitude for dif-
ferent wind speeds: U/C = 0: black solid line; U/C = 1: green dashed line;
U/C = 2: blue dash-dotted line; U/C = 3: red dotted line. It is worth noting
that this is the profile of the maximum wave height along the beach rather than
a snapshot of the free surface profile.

olakis & Skjelbreia, 1993). In the presence of wind (U/C = 1 − 3), the evolution

of the maximum wave amplitude changes slightly when compared with the case

for U/C = 0. There is a phase shift for the wave amplitude transformation along

the beach in figure 4.13 because the wind affects the wave shoaling and breaking

processes. Higher winds lead to earlier breaking and hence the maximum wave

height is located further off shore. The maximum wave height reduces slightly

for U/C = 1 and increases slightly for U/C = 2, 3, thus the effect of wind on the

maximum wave height is small. It is shown from figure 4.13 that the evolution

of the maximum wave amplitude is altered by the presence of the wind and the

obtained results for wind effects on wave shoaling are consistent with previous

experiments (Douglass, 1990; Feddersen & Veron, 2005) as discussed in § 1.3.
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4.4 Wind Effects on Breaking Solitary Waves

4.4.9 Energy Dissipation

Energy loss and transfer during wave breaking play an important role in air-sea

interaction and nearshore hydrodynamics. Therefore, better understanding of the

energy dissipation due to wave breaking will provide more information for prac-

tical applications. In this section, we investigate the effect of wind on the energy

dissipation during wave shoaling, breaking, run-up and run-down processes.

We use the kinetic energy (KE) and potential energy (PE) in the water to

study the total energy (TE) dissipation. The PE considered here is the difference

between the potential energy with the wave present and with no wave present.

The KE, PE and TE are calculated from the whole computational domain for

the wave and obtained as (Dean & Dalrymple, 1984)

KE =

∫∫

F 6=0

ρ
(u2 + w2)

2
dzdx, (4.6)

PE =

∫∫

F 6=0

ρgzdzdx−
[
∫∫

F 6=0

ρgzdzdx

]t=0

, (4.7)

TE = PE + KE. (4.8)

Figure 4.14 shows the time history of the normalized energy for the breaking

solitary wave run-up on the beach as a function of normalized time for different

wind speeds U/C = 0 − 3. Once the solitary wave has completely entered the

computational domain (t
√

g/D = 8.0), the volume of water is constant during

the wave breaking, run-up and run-down, which means that mass is conserved

during the calculation for all cases U/C = 0 − 3 considered here.

In the absence of wind (U/C = 0), it is shown from figure 4.14 that from

the beginning to t
√

g/D = 8.0, the total energy increases as the solitary wave

enters the computational domain. The total energy contribution from the kinetic

energy decreases and potential energy increases as the solitary wave begins to run

up the beach. From t
√

g/D = 8.0 to t
√

g/D = 20.0 before wave breaking, KE,

PE and TE decrease with time as the wave shoals due to the viscous dissipation.

During wave breaking from t
√

g/D = 20.0 to t
√

g/D = 25.0, the total energy

decreases dramatically due to the generation of vorticity, production of turbulence

and air entrainment during wave breaking. During this time, the potential energy
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Figure 4.14: The time history of the normalized energy for the breaking solitary
wave run-up on the beach as a function of normalized time for different wind
speeds: U/C = 0: black solid line; U/C = 1: green dashed line; U/C = 2: blue
dash-dotted line; U/C = 3: red dotted line. (a) KE, (b) PE and (c) TE. The
energy has been normalized by the total energy E0 = [TE]U/C=0 in the absence

of wind (U/C = 0) at t
√

g/D = 8.0 when the solitary wave nearly completely
enters the computational domain.
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4.4 Wind Effects on Breaking Solitary Waves

decreases as it has been transformed to the kinetic energy and the kinetic energy

increases. After wave breaking, the wave starts to run up the beach and the total

energy decreases due to the effect of viscosity and bottom friction. The kinetic

energy decreases and potential energy increases as the wave runs up the beach.

When the wave reaches the maximum run-up position around t
√

g/D = 39.0,

the potential energy reaches its maximum value and the kinetic energy reaches

its minimum value. After this point, the wave starts to run down and potential

energy is converted back to kinetic energy. Li & Raichlen (2002) investigated a

breaking solitary wave run-up with H/D = 0.30 on a 1:15 slope using the shallow

water equations. The present result of energy dissipation for U/C = 0 is similar

to their results (see figure 14 in Li & Raichlen, 2002).

It can be seen from figure 4.14 that the wind has a significant effect on the en-

ergy dissipation and transformation. The kinetic energy KE (see figure 4.14(a)),

from the beginning to t
√

g/D = 8.0, has little dependence on the wind speeds

U/C as the solitary wave just completely enters the computational domain. From

t
√

g/D = 8.0 to t
√

g/D = 20.0 during wave shoaling, the KE decreases with time

for U/C = 0, 1 due to the viscous dissipation. As the wind speed increases to

U/C = 2, 3, the KE increases with time during wave shoaling. This is mainly

caused by the wind induced surface currents and shear layer near the water sur-

face. From t
√

g/D = 20.0 to t
√

g/D = 25.0 during wave breaking, the KE for

all cases U/C reaches its maximum value when the plunging jet strikes the water

surface. After that, the KE decreases. It is worth pointing out that the maxi-

mum value occurs earlier as U/C increases, as the wind causes the wave to break

earlier. Up to this stage, the difference in KE between different wind speeds U/C

is largest and we can see that the wind affects the KE significantly during wave

shoaling and breaking. During wave run-up and run-down (after t
√

g/D = 25.0),

the difference in KE between different wind speeds U/C becomes smaller and the

KE for all cases U/C reaches its minimum value at the maximum run-up. After

that, the KE increases as the PE is converted back to the KE during run-down.

The potential energy PE (see figure 4.14(b)), from the beginning to t
√

g/D =

8.0, has little dependence on the wind speeds U/C, which is similar to the KE.

From t
√

g/D = 8.0 to t
√

g/D = 20.0 during wave shoaling, the PE decreases

with time due to the viscous dissipation. From t
√

g/D = 20.0 to t
√

g/D = 25.0
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during wave breaking, the PE decreases and reaches its minimum value for all

cases U/C. It is worth pointing out that the PE for all wind speeds U/C comes

to a common minimum value after the plunging jet strikes the water surface.

This may be attributed to the similarity of the plunging breakers which means

that the wind has only a small effect on the shape of breaking waves. After

that minimum value, the difference in PE between different wind speeds U/C

becomes bigger. During wave run-up and run-down (after t
√

g/D = 25.0), it can

be clearly seen from figure 4.14(b) that the wind has a significant effect on the

PE and the difference in PE between different wind speeds U/C increases with

time. The PE for all cases U/C reaches its maximum value at the maximum

run-up and then decreases as the wave runs down the beach.

It is shown in figure 4.14(a,b) that in the presence of wind, both the kinetic

energy and the potential energy increase monotonically as U/C increases. The

energy transformation between the kinetic energy and potential energy is similar

to the case in the absence of wind. However, the kinetic energy increases more

than the potential energy during wave shoaling and breaking because wind in-

puts energy to the wave through increasing KE to accelerate the water, and the

potential energy increases more than the kinetic energy during wave run-up and

run-down because there is more KE converted back to PE and there is some small

additional acceleration by the form drag. In the whole process, compared to the

value in the absence of wind, the total energy TE (see figure 4.14(c)) increases

about 2%, 6% and 12% due to the presence of the wind for U/C = 1, U/C = 2

and U/C = 3, respectively.

4.5 Concluding Remarks

Previous studies have not considered the effect of wind on breaking solitary waves

and not presented such detailed results, in this chapter the RANS model is utilized

to investigate 2D breaking solitary waves on a sloping beach. In the absence

of wind, the computed water surface profiles are in agreement with previous

experiments.

Later, breaking solitary waves under the influence of wind are investigated.

All detailed information for water surface profiles, velocity distributions, pressure
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distributions and drag force, vorticity generation, turbulent stress, wave induced

pressure distributions on the beach, maximum run-up, evolution of maximum

wave height and energy dissipation are presented and discussed.
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Chapter 5

Two-Dimensional Periodic

Breaking Waves

In the nearshore region and engineering applications, most waves are irregular

breaking waves, classified as spilling or plunging breakers. These waves play an

important role in sediment transport in the surf zone and hence are the subject

of this chapter.

In this chapter, different models and numerical methods for simulating pe-

riodic breaking waves in the surf zone are discussed first. The RANS model is

then further used to study spilling and plunging breakers on a sloping beach.

In the absence of wind, the numerical results are compared with experimental

measurements, as well as other previous numerical studies. After that, detailed

wind effects on periodic breaking waves are presented and discussed.

5.1 Introduction

Several experimental investigations of periodic breaking waves in the surf zone

(shown in figure 5.1) have been carried out (as discussed in § 1.2.2). Both spilling

and plunging breakers were investigated on a 1:35 sloping beach and the details

of the water surface elevation, mean flow field and turbulence were presented

in Ting & Kirby (1994, 1995, 1996). They found that the turbulence level and

vertical variations of undertow and turbulence intensity are different for spilling

and plunging breakers, which are associated with the mechanism for sediment
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5.1 Introduction

Figure 5.1: Illustration of the nearshore environment. (The source of this mate-
rial is the COMET R© Website at http://meted.ucar.edu/ of the University Cor-
poration for Atmospheric Research (UCAR), sponsored in part through cooper-
ative agreement(s) with the National Oceanic and Atmospheric Administration
(NOAA), U.S. Department of Commerce (DOC). c©1997-2010 University Corpo-
ration for Atmospheric Research. All Rights Reserved.)

transport in the surf zone. As all detailed flow information was provided, this

laboratory study is considered as a benchmark problem to test the models for

simulating breaking waves and turbulence in the surf zone and we will study this

case in this chapter.

Many numerical models have been developed to simulate periodic breaking

waves in the surf zone. One of these is the Boussinesq-type model (Lynett, 2006;

Madsen et al., 1997; Veeramony & Svendsen, 2000), which is widely used in the

nearshore wave modelling. With developments of CFD and increases in com-

puter power, recent models for studying free surface flows, including breaking

waves, solve the Navier-Stokes equations coupled with a free surface calculation.

Lemos (1992) presented the RANS model, which is based on the SOLA-VOF1

code (Nichols et al., 1980) with the standard k − ǫ turbulence model. Breaking

1a solution algorithm for transient fluid flow with multiple free boundaries
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solitary waves and periodic breaking waves on a sloping beach were simulated,

however, the numerical results were not compared to experimental data and the

overturning wave was not shown in the simulations. Takikawa et al. (1997) in-

vestigated a plunging breaker on a slope. The RANS equations were solved by a

modified SMAC (Simplified Marker and Cell) method (Amsden & Harlow, 1970)

and the calculation was initialized from the FEM result to model the wave break-

ing process. A useful numerical model to study breaking waves in the surf zone

was the COBRAS (COrnell BReaking waves And Structures) model developed

by Lin & Liu (1998a,b), who combined the modification of the RIPPLE1 code

(Kothe et al., 1991) with implementation of the algebraic Reynolds stress k − ǫ

turbulence model. The RANS equations are solved by the two-step projection

method (Chorin, 1968) in the finite difference form and the VOF method is em-

ployed to capture the water surface. Periodic breaking waves on a sloping beach

were investigated and compared with the experimental measurements (Ting &

Kirby, 1994, 1995, 1996). Good agreement between numerical results and exper-

imental data was obtained in terms of water surface profiles, mean velocities and

turbulent kinetic energy. The plunging jet of an overturning wave on constant

water depth was computed in Lin & Liu (1998b). Since then, several investiga-

tions have been performed to study breaking waves in the experiment of Ting

& Kirby (1994, 1995, 1996). Bradford (2000) utilized the commercial software

FLOW-3D to investigate spilling and plunging breaking waves in the surf zone

and compared with the experimental measurements (Ting & Kirby, 1994, 1995,

1996). A comparison of the numerical results obtained by different turbulence

models was made, and detailed water surface elevation, time averaged fields for

the velocities and turbulence were analyzed. It was found that the location of

initial wave breaking is sensitive to the representation of waves from the inlet

boundary. In addition, the model has difficulty in capturing the plunging jet,

which may be attributed to a lack of spatial resolution or the VOF scheme used.

Comparison between different turbulence models indicated that a one equation

turbulence model is inadequate to get good results, and the RNG (Re-Normalized

Group) turbulence model predicts lower turbulence intensities in the outer surf

zone compared to the k − ǫ model. Mayer & Madsen (2000) investigated spilling

1a computer program for incompressible flows with free surfaces
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breakers (Ting & Kirby, 1996) by solving the RANS equations with the k−ω tur-

bulence model. A surface tracking approach and a VOF method were employed to

model the interface and it was shown that the VOF method gives better results.

Zhao et al. (2004) performed a numerical simulation of periodic breaking waves.

The space filtered Navier–Stokes equations with a multi-scale turbulence model

were proposed and solved by the finite difference approach. Improved agreement

with experimental measurements was obtained in terms of water surface eleva-

tions, wave height distribution and mean velocities when compared to the RANS

models (Bradford, 2000; Lin & Liu, 1998a). In addition, it was found that tur-

bulent production is mainly located at the front of the wave whereas turbulent

dissipation is mainly located at the rear face of the wave. Similar to Bradford

(2000), the plunging jet was not captured in the plunging breaker case because

the air entrainment was not taken into account as indicated by Zhao et al., but

the plunging jet of an overturning wave was presented in that paper. Shao (2006)

presented the simulation of both spilling and plunging breaking waves by the

SPH method coupled with the k − ǫ model and later extended with the LES

Smagorinsky model (Shao & Ji, 2006). The curling forward of the plunging jet

was captured by the SPH method and it was shown that the SPH method pro-

vides a useful tool to investigate surf zone dynamics. Hsieh et al. (2008) solved

the RANS model with the VOF and embedding methods to simulate spilling

breaking waves. More recently, Bakhtyar et al. (2009) employed the RANS equa-

tions with the standard k−ǫ turbulence model to investigate the turbulent flow in

the surf and swash zones. Good agreement for the undertow between numerical

results and experimental data was obtained for spilling and plunging breakers,

however, the obtained turbulence intensity was much higher than experimental

measurements and the plunging jet was not shown. It is worth remarking that

all the models discussed above are based on one-phase flow, in which only the

flow in the water is considered in the computation. In order to take the air into

account for wave breaking, two-phase flow models are developed, in which both

flows in the air and the water are solved. Hieu et al. (2004) developed a two-

phase flow model to investigate two-dimensional breaking waves in the surf zone.

The sub-grid scale Smagorinsky model, which is similar to the large eddy simu-

lation, is employed to get the turbulent eddy viscosity. Spilling breaking waves
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are considered in that paper and compared with the experiment of Ting & Kirby

(1996). Wang et al. (2009b) performed a two-dimensional DNS study of spilling

breaking waves in the surf zone. A mass conservative level set method was used

for capturing the air-water interface and the solver was based on a curvilinear

coordinate system. There are also some attempts for 3D large eddy simulation

of breaking waves (Christensen & Deigaard, 2001; Lubin et al., 2006; Watanabe

et al., 2005), and Christensen (2006) presented the 3D simulation of spilling and

plunging breakers in the surf zone. It was found that the modelled mean velocity

field is in good agreement with experimental data of Ting & Kirby (1994, 1995,

1996) but the model predicts higher turbulence intensities. Earlier breaking in

spilling breakers and later breaking in plunging breakers were found in the sim-

ulation when compared to experimental measurements. Christensen indicated

that the reason might be due to the coarse resolution or the effect of the air.

However, wind effects on periodic breaking waves in the surf zone have received

less attention in previous studies. Therefore, the objective of this chapter is to

investigate wind effects on periodic breaking waves. First, we calculate spilling

and plunging breaking waves on a 1:35 sloping beach in the absence of wind, and

compare with the experimental measurements (Ting & Kirby, 1994, 1995, 1996)

and other published results. Then, computational results for breaking waves

under the influence of wind are presented and discussed.

5.2 Computational Setup

5.2.1 Geometry

A sketch of the laboratory setup (Ting & Kirby, 1994) and the computational

domain are shown in figure 5.2, where the origin of the coordinates is located at

the still water level at which the local still water depth is 0.38 m, x and z are the

horizontal and vertical coordinates respectively, H is the wave height, d0 = 0.4

m is the water depth in the horizontal region, ζ(x) is the water surface elevation,

ζ(x) is the mean water surface elevation, d(x) is the local still water depth, and

h(x) = d(x) + ζ(x) is the local mean water depth.
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Figure 5.2: Sketch of experimental setup and computational domain for periodic
breaking waves in the surf zone. The boxes are the location of wave gauges in
the experiment.

125



5.2 Computational Setup

5.2.2 Governing Equations

The governing equations used for this study are the Reynolds-averaged Navier–

Stokes equations (as discussed in § 3.1) and the standard k− ǫ turbulence model

(3.16-3.17).

5.2.3 Computational Parameters

In the simulation, the computational setup is the same as the laboratory setup,

except that we use the analytical solution to generate the cnoidal wave at the

inlet. The computational domain (started from x = −4.3 m) is 22 m long and 0.8

m high, and it is discretized by a uniform grid with ∆x = 0.02 m and ∆z = 0.008

m, which is similar to that of Zhao et al. (2004) and Bradford (2000). The

computation is run up to 50 s for spilling breakers and 60 s for plunging breakers,

and the period of the last five waves are used to obtain the mean value for the

analysis. The CPU time is approximately 10h on a PC (Intelr Pentiumr D

CPU 3.40GHz, 2GB RAM). Table 5.1 shows the wave conditions for the spilling

and plunging breakers in the experiment, where T is the wave period, H0 and L0

are the wave height and wave length in deep water, and xb and db are the location

and water depth of wave breaking.

Table 5.1: Wave conditions in the experiment of Ting & Kirby (1994)

Breaker H0 H T H0/L0 xb db

type (m) (m) (s) (m) (m)
Spilling 0.127 0.125 2.0 0.02 6.400 0.196
Plunging 0.089 0.128 5.0 0.0023 7.795 0.156
the subscripts 0 and b denote deep water and breaking point

5.2.4 Initial and Boundary Conditions

Boundary conditions

At the inlet, the cnoidal wave is generated by specifying the water surface eleva-

tion and water particle velocities based on the third-order cnoidal wave theory
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(Horikawa, 1988) as

ζ(x, t) = d0

3
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In the above equations, cn, sn, and dn are Jacobian elliptic functions, and K is

the complete elliptic integrals of the first kind. The details of the coefficients An

and Bnm are given in Appendix A.

The effect of wind is obtained by specifying an uniform wind speed above

z = 0.1 m at the inlet. For clarity, only the onshore wind U/C = 2 is considered

to investigate the wind effects on periodic breaking waves in this study.

Following Lin & Liu (1998a), the turbulent kinetic energy is obtained as

k = 1
2
(I × C)2, where I = 0.0025 is the turbulent intensity and the turbulent

eddy dissipation is adjusted so the turbulent eddy viscosity is ten percent of the

dynamic viscosity of each fluid at the inlet.

The no-slip wall boundary condition is applied at the sloping beach and the

top of the domain, while open boundary conditions are applied at the outlet of

the computational domain (described in § 3.2.1).

Initial conditions

At t = 0, the water surface is given as the initial still water depth, the velocity field

is initialized as zero, the pressure distribution in the whole domain is hydrostatic

and the turbulence field is initialized to the same value as the boundary conditions

at the inlet.
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5.3 2D Spilling Breaking Waves

5.3.1 Comparison of Experimental Data and Numerical

Results Without Wind

Figure 5.3 shows the comparison of the computational and experimental distribu-

tion of wave amplitudes and mean water level for the spilling breaker case. The

modelled results by Bradford (2000), Zhao et al. (2004) and Shao (2006) are also

plotted in figure 5.3 for comparison. It is shown that the minimum water surface

elevation is well simulated by all models when compared to experimental data.

The present model predicts the mean water level accurately while Bradford (2000)

slightly overestimates the wave set-up after wave breaking. In the outer surf zone,

all models predict similar results for the maximum water surface elevation. In

the breaking and inner surf zone, the maximum water surface elevation is well

computed by the present model. However, during wave breaking, the maximum

water surface elevation is underestimated by the present model when compared

to experimental data, which is also observed in other RANS models (Bradford,

2000; Lin & Liu, 1998a). On the contrary, it is noticed that the maximum water

surface elevation is slightly overestimated in the breaking and inner surf zone by

the multi-scale turbulence model of Zhao et al. (2004). The SPH method (Shao,

2006) predicts the shape of maximum water surface elevation well, but with a

slight phase shift which predicts the breaking point later.

In the surf zone, since waves have shoreward net volume flux, then accord-

ing to mass conservation there must also be a seaward going current, which is

called the undertow (Svendsen, 2005). Figure 5.4(a) shows the comparison of

the computational and experimental variation of time-mean horizontal velocity

with depth. After wave breaking (x = 6.665 − 8.495 m), the present model rea-

sonably predicts the vertical structure of the undertow in comparison with the

experimental data. It is noticed that Bradford (2000) generally underestimated

the undertow after wave breaking compared to experimental data. Shao (2006)

obtained improved results for the vertical structure of the undertow. Zhao et al.

(2004) got better results near the trough level but slightly underestimated the

undertow near the bottom while the present model predicts better results near
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Figure 5.3: Comparison of the computational and experimental distribution of
wave amplitudes and mean water level for the spilling breaker case. Red circles are
experimental data (Ting & Kirby, 1994); blue solid lines are the present results;
green dashed lines are the results by Zhao et al. (2004); black dash-dotted lines
are the results by Bradford (2000); magenta dotted lines are the results by Shao
(2006).
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Figure 5.4: Comparison of the undertow and turbulence intensity with experi-
mental measurements and other models for the spilling breaker case. For caption
see figure 5.3.
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the bottom but slightly underestimates the undertow near the trough level when

compared to experimental data. After wave breaking, there is air entrainment

near the trough and also some bubbles, this strong mixing of two-phase flow could

be one reason why our model slightly underestimates the undertow structure. In

the bore region (x = 9.11 − 9.725 m), all models slightly underestimate the un-

dertow near the bottom while Zhao et al. (2004) predicted better results near the

water surface. Overall, the present model predicts reasonable vertical structure

of the undertow in comparison with the experimental data and is also similar to

previous numerical studies.

Figure 5.4(b) shows the comparison of the computational and experimental

variation of time-mean turbulent kinetic energy with depth. It is worth remark-

ing that only the computed turbulent kinetic energy in the water is considered

here, which is the turbulent kinetic energy times the corresponding value of the

volume fraction. As the turbulence was not presented in Zhao et al. (2004),

only the results in Bradford (2000) and Shao (2006) are included for compari-

son. The turbulence is weak in the outer surf zone as the turbulence is primarily

originated from the breaker. Once the wave breaks, the turbulence intensities

increase gradually in the onshore direction and vary slowly with the water depth

which is consistent with experimental measurements (Ting & Kirby, 1994). Af-

ter wave breaking (x = 7.275 m), the present model matches with most part of

SPH results by Shao (2006) and both slightly overestimate the turbulence level,

while the RNG model in Bradford (2000) underestimated the value when com-

pared to experimental data. At x = 7.885 m, the present model predicts the

turbulence intensity well. At x = 8.495 m, all models slightly overestimate the

turbulence level and the SPH method provides the best result. In the bore region

(x = 9.11 − 9.725 m), good agreement between the present model and exper-

imental measurements is obtained while Bradford (2000) slightly overestimated

the turbulence level. In general, the present model predicts reasonable turbulence

intensities in comparison with the experimental data, and is similar to previous

numerical investigations.

131



5.3 2D Spilling Breaking Waves

−0.1

−0.05

0

0.05

0.1

0.15

0.2

S
ur

fa
ce

 e
le

va
tio

n 
(m

) ζmax-ζ

ζ

ζmin -ζ

ζmax-ζ

ζ

ζmin -ζ

−2 0 2 4 6 8 10 12
−0.4

−0.2

0

x (m)

z 
(m

)

Figure 5.5: Wind effects on the distribution of wave amplitudes and mean water
level for the spilling breaker case. Blue solid lines: U/C = 0; red dashed lines:
U/C = 2.

5.3.2 Spilling Breaking Waves under the Influence of Wind

In this study, the effect of the onshore wind with speed U/C = 2 on spilling

breaking waves is investigated although the offshore wind effect can be obtained

in a similar way. The simulations are run up to 50 s and the result in the last

wave period is used for the analysis and comparison.

Figure 5.5 shows the wind effects on the distribution of wave amplitudes and

mean water level. During wave shoaling, the maximum wave elevation increases

in the presence of wind while there is a slight change of the slope for the minimum

wave elevation. In the presence of wind, the wind transfers energy to the waves

by means of wind-induced form drag and shear stress, which are the contribution

for the increase of the maximum wave elevation. During wave breaking, it can

be seen from figure 5.5 that the wave breaks earlier and further from shore in
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the presence of wind, which is consistent with the previous laboratory studies by

Douglass (1990) and King & Baker (1996). This is attributed to the direct push

of the wind and the increased kinetic energy obtained from the wind in water

waves. The water particle velocity is increased by the wind and thus the wave

breaks earlier. This phenomenon is also observed in the study of wind effects on

breaking solitary waves in Chapter 4. After wave breaking in the bore region, the

wind has little effect on the crest and trough level of the wave. It is shown from

figure 5.5 that the mean water level has been changed by the wind. In the surf

zone, the radiation stress (Longuet-Higgins & Stewart, 1962) increases before

the breaking point due to the decreasing water depth, and decreases after the

breaking point due to the energy dissipation. Therefore, through the horizontal

momentum flux balance, the slope of the mean water level, namely, the wave

set-up and set-down, are related to the change of radiation stress across the surf

zone (Sorensen, 2006). In the presence of wind, the slope of the mean water level

increases in comparison with the case in the absence of wind, which is attributed

to wind forcing.

Figure 5.6 shows the velocity fields for the spilling breaker when U/C = 0

in one wave period at t/T = 0.0, 0.1, 0.2, 0.4, where t/T = 0.0 corresponding to

when the wave is close to the breaking point. At t/T = 0.0, the front of the

wave becomes nearly vertical and the velocity in the water is slightly smaller

than the wave phase speed. A recirculation of air flow can be easily seen on the

top of the wave as the air is driven by the wave motion. During wave breaking

at t/T = 0.1, an overturning jet is formed at the front face of the wave with

increasing velocity in the water. It is shown that the maximum velocity in the

water is nearly horizontal and located on the tip of the overturning jet. During

wave curling down at t/T = 0.2, large velocities are produced in front of the

overturning jet as the air is pushed by the wave. At t/T = 0.4, it can be seen

that the overturning jet spills down the front face of the wave and large velocities

are observed in that region. It is noted that the present model is capable of

producing the spilling breaker which has rarely been shown in previous studies.

Figure 5.7 shows the velocity fields for the spilling breaker when U/C = 2

in one wave period at t/T = 0.0, 0.1, 0.2, 0.4. The air flow has been changed

significantly due to wind forcing. The recirculation of air flow does not exist with
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Figure 5.6: Velocity fields during wave breaking for the spilling breaker case when
U/C = 0 at t/T = 0.0, 0.1, 0.2, 0.4. Velocities are normalized by the wave phase
speed C.
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Figure 5.7: Velocity fields during wave breaking for the spilling breaker case when
U/C = 2 at t/T = 0.0, 0.1, 0.2, 0.4. Velocities are normalized by the wave phase
speed C.
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all air moving onshore instead. It is worth remarking that the wave is driven by

the wind when U/C = 2 while the air is driven by the wave when U/C = 0. The

wave breaking process is similar to the case for U/C = 0, but the location of

the breaking point has been changed significantly. The breaking point is about

xb = 6.4 m for U/C = 0 but xb = 4.95 m for U/C = 2. It is shown that under

the influence of wind, the wave breaks in deeper water and further from shore

which is consistent with the previous laboratory studies by Douglass (1990) and

King & Baker (1996).

Figure 5.8 shows the mean vorticity fields for the spilling breaker when U/C =

0 in one wave period at t/T = 0.0, 0.1, 0.2, 0.4. The vorticity in the water has a

smaller value in comparison with the vorticity in the air. Close to wave breaking

(t = 0.0), only small negative vorticity is observed near the front face of the wave,

which is consistent with experiment where the vortices are initially generated in

the wave front due to surface rollers (Ting & Kirby, 1994). Large positive vorticity

can be seen above the wave crest due to the recirculation of air flow. During wave

breaking (t/T = 0.1− 0.4), the region of negative vorticity in the water increases

and spreads above the trough region of the breaker. The vorticity is confined to

the region near the water surface and the bottom which means that the vertical

mixing is weak in spilling breakers. In the air, the region of positive vorticity

is moving forward and a region of negative vorticity is produced near the water

surface in front of the wave. This is attributed to the air flow induced by the

breaking wave.

Figure 5.9 shows the mean vorticity fields for the spilling breaker when U/C =

2 in one wave period at t/T = 0.0, 0.1, 0.2, 0.4. In the air, the vorticity field is

totally different from that for U/C = 0. There is no positive vorticity above the

wave crest as the wind is moving onshore. Large negative vorticity is generated

in the vicinity of the water surface due to the wind-induced shear. A small region

of positive vorticity appears in front of the wave during wave breaking as the air

tries to escape from the cavity. In the water, the vorticity generation during wave

breaking is similar to that for U/C = 0, except that the wave breaks in a deeper

region.
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Figure 5.8: Mean vorticity fields during wave breaking for the spilling breaker
case when U/C = 0 at t/T = 0.0, 0.1, 0.2, 0.4. The vorticity has been normalized
by
√

g/(d0 + a) and the contours are shown for ±[1, 2.5, 5, 10, 15, 20, 25].
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Figure 5.9: Mean vorticity fields during wave breaking for the spilling breaker
case when U/C = 2 at t/T = 0.0, 0.1, 0.2, 0.4. The vorticity has been normalized
by
√
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5.4 2D Plunging Breaking Waves

5.4.1 Comparison of Experimental Data and Numerical

Results Without Wind

Figure 5.10 shows the comparison of the computational and experimental distri-

bution of wave amplitudes and mean water level for the plunging breaker case. It

is shown that the mean water level is well simulated by all models when compared

to experimental data. However, differences are found in all the models considered

here for the maximum and minimum water surface elevations. The present model

predicts the minimum water surface elevation accurately and similar results are

found in Zhao et al. (2004). Higher and lower trough levels when compared to the

experimental data are found in Bradford (2000) and Shao (2006), respectively. In

the shoaling zone, all models well predict the maximum water surface elevation,

except Bradford (2000) which slightly overestimates the value. In the breaking

and inner surf zone, unlike the spilling breaker case in which all models predict

earlier or later breaking, it is surprising that all models predict earlier break-

ing in the plunging breaker case when compared to experimental measurements.

The reason is unknown yet and one possibility is that there is a slight difference

between the laboratory and computational setup, which will slightly change the

transformation of the wave during its propagation. The maximum wave height

during wave breaking is overestimated slightly in Zhao et al. (2004) and under-

estimated slightly in all other models. In the bore region, similar results are

found in all models except Bradford (2000) which slightly overestimates the max-

imum water surface elevation after wave breaking. In general, the distribution

of wave amplitudes and mean water level are reasonably predicted in the present

model when compared to experimental measurements and are comparable and

sometimes better than other modelling studies.

Figure 5.11(a) shows the comparison of the computational and experimental

variation of time-mean horizontal velocity with depth. After wave breaking (x =

7.795−8.795 m), the present model slightly overestimates the undertow near the

bottom of the beach at x = 7.795 m and 8.345 m and predicts the value well at

x = 8.795 m. This is attributed to the earlier wave breaking that is predicted in
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Figure 5.10: Comparison of the computational and experimental distribution of
wave amplitudes and mean water level for the plunging breaker case. Red circles
are experimental data (Ting & Kirby, 1994); blue solid lines are the present
results; green dashed lines are the results by Zhao et al. (2004); black dash-
dotted lines are the results by Bradford (2000); magenta dotted lines are the
results by Shao (2006).
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Figure 5.11: Comparison of the undertow and turbulence intensity with experi-
mental measurements and other models for the plunging breaker case. For caption
see figure 5.10.
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the present model, which gives higher onshore velocity near the wave trough and

thus has a higher offshore velocity near the beach. It is noticed that Bradford

(2000) slightly underestimated the undertow at x = 8.345 m. Zhao et al. (2004)

and Shao (2006) obtained better results for the vertical structure of the undertow

when compared to experimental data. In the inner surf zone (x = 9.295 m

and 9.795 m), both the present model and Zhao et al. (2004) overestimate the

undertow in the lower part of water. Bradford (2000) and Shao (2006) did a

good job in this area after wave breaking. In the bore region (x = 10.395 m), the

present model well predicts the structure of the undertow whereas the undertow

profile was overestimated in Bradford (2000) and Zhao et al. (2004). In general,

the present model predicts reasonable undertow in comparison with experimental

data and is also similar to previous numerical studies.

Figure 5.11(b) shows the comparison of the computational and experimental

variation of time-mean turbulent kinetic energy with depth. Compared to spilling

breakers shown in figure 5.4(b), the vertical variation of turbulence intensity is

smaller in plunging breakers as the plunging wave can penetrate into a deeper

region in the water and has stronger vertical mixing, which is consistent with

experimental measurements (Ting & Kirby, 1994). Just after wave breaking

(x = 8.345 m), the present model slightly overestimates the turbulence level due

to the predicted earlier breaking, while the RNG turbulence model (Bradford,

2000) and the SPH model (Shao, 2006) well predict the value. Better results are

obtained by the present model at x = 8.795 m. In the inner surf zone and bore

region (x = 9.295 − 10.395 m), all models overestimate the turbulence level and

better results were obtained by Shao (2006) and Bradford (2000) at x = 9.795

m. In this region, higher turbulence intensities in comparison with experimental

measurements are found in many 2D (Bakhtyar et al., 2009; Bradford, 2000;

Lin, 1998; Shao, 2006) and 3D (Christensen, 2006) simulations. Lin (1998) and

Shao (2006) indicated the primary reason for overestimating the turbulence level

near the breaking point is that the coefficients used in the turbulence model are

derived from quasi-steady turbulent flows rather than oscillatory flows. Lin also

discussed that this discrepancy is due to the uncertainty of the initial and inflow

boundary conditions for the turbulence field, and the limitation of numerical

solution, as the overturning jet is not captured during wave breaking. Christensen
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et al. (2002) indicated that the overpredicted turbulence intensities are due to the

stronger mixing, as the effect of air is not taken into account in their model and

a large part of the production and dissipation take place in the mixture of air

and water before the impingement of the overturning jet. In the present model,

the turbulence intensities near the breaking point are reasonably predicted as

the overturning jet is captured during wave breaking. However, the turbulence

intensities are significantly overestimated in the bore region. The reason is that

the turbulence production during jet-splash cycles is complicated, and the strong

two-phase flow mixing and the generation of bubbles are not able to be captured in

the present turbulence model, therefore the improvement of the turbulence model

after wave breaking, especially during jet-splash cycles which are not considered

here, is needed in the future research.

5.4.2 Plunging Breaking Waves under the Influence of

Wind

Figure 5.12 shows the wind effects on the distribution of wave amplitudes and

mean water level. In the whole region, there is nearly no difference for the evolu-

tion of minimum wave elevation between these two cases, while the evolution of

maximum wave elevation has been changed significantly in the presence of wind,

which is similar to the case for spilling breakers. It is shown from figure 5.12

that the mean water level has been changed slightly by the wind. In the presence

of wind, the mean water level decreases in the shoaling region and increases in

the bore region when compared to the case in the absence of wind. The driving

mechanism for the change of the slope of the mean water level is similar to that

discussed in the spilling breaker case (see § 5.3.2).

Figure 5.13 shows the velocity fields for the plunging breaker when U/C = 0

in one wave period at t/T = 0.0, 0.05, 0.1, 0.2, where t/T = 0.0 corresponding to

when the wave is close to the breaking point. Compared to the spilling breaker,

the flow in the air is similar as the recirculation of air flow is also observed above

the wave crest. However, the flow in the water is slightly different due to the

stronger breaking in the plunging breaker. At t/T = 0.0, the front of the wave

becomes vertical and an overturning jet is formed when the wave passes the
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Figure 5.12: Wind effects on the distribution of wave amplitudes and mean water
level for the plunging breaker case. Blue solid lines: U/C = 0; red dashed lines:
U/C = 2.

breaking point at t/T = 0.05. It is shown that the maximum velocity in the

water is nearly horizontal and located on the tip of the overturning jet, and the

air beneath the overturning jet moves fast and tries to escape from the enclosed

cavity. During the splash-up at t/T = 0.1, the overturning jet curls down and

impinges on the water surface ahead to generate a secondary wave, where large

velocities are found. It can be seen that the first plunging point, which is before

x = 8.795 m in the experiment (Ting & Kirby, 1995), is reproduced in the

simulation. During the jet-splash cycles at t/T = 0.2, the jet generated during

wave splash-up propagates with the wave and strikes the water ahead to generate

another jet, which is consistent with the laboratory observation (Ting & Kirby,

1994). It can be seen that the velocity in the water decreases after the first
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Figure 5.13: Velocity fields during wave breaking for the plunging breaker case
when U/C = 0 at t/T = 0.0, 0.05, 0.1, 0.2. Velocities are normalized by the wave
phase speed C.
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splash-up. It is worth noting that the overturning jet curls down and impinges

on the water ahead to generate the splash-up in plunging breakers, whereas the

overturning jet only spills down the front face of the wave during wave breaking

in spilling breakers. The jet-splash cycles only occur in the plunging breaker case.

It it worth remarking that with similar spatial resolution as used in previous

studies, the present model is able to capture the overturning jet during wave

breaking. Bradford (2000) discussed this problem and he stated that the model

used in Bradford (2000) has difficulty in capturing the overturning jet, even when

increasing the grid resolution. However, the detailed wave breaking processes are

captured here for both spilling and plunging breakers due to the use of two-phase

flow model and the sophisticated interface capturing scheme.

Figure 5.14 shows the velocity fields for the plunging breaker when U/C = 2

in one wave period at t/T = 0.0, 0.05, 0.1, 0.2. Similar to the spilling breaker,

the air flow has been changed significantly due to wind forcing and the breaking

point has been moved seaward. The breaking point is about xb = 7.7 m for

U/C = 0 while xb = 6.25 m for U/C = 2. It is noted that the breaking point has

been shifted about 1.5 m seaward in both spilling and plunging breakers. This

is attributed to the fixed wind speed (U/C = 2) used here. It can be seen that

the evolution of the wave shape has been slightly changed under the influence of

wind. The wind also affects the shape of the overturning jet and the subsequent

splash-up.

Figure 5.15 shows the mean vorticity fields for the plunging breaker when

U/C = 0 in one wave period at t/T = 0.0, 0.05, 0.1, 0.2. The vorticity fields in

the air are similar to the spilling breaker case, but there is much difference in the

water. Close to wave breaking at t = 0.0, only small negative vorticity is observed

near the front face of the wave. During wave breaking at t/T = 0.05, the region

of negative vorticity in the water increases and spreads to the rear face of the

wave. Both positive and negative vorticities with large magnitude are observed

in the air beneath the overturning jet. During wave curling down at t/T = 0.1,

large negative vorticity is generated in the vicinity of the plunging point, and

the region of negative vorticity in the water becomes even larger. During the

jet-splash cycles at t/T = 0.2, strong vortex motions are generated and it can be

seen that the negative vorticity is spread downward close to the bottom in the
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Figure 5.14: Velocity fields during wave breaking for the plunging breaker case
when U/C = 2 at t/T = 0.0, 0.05, 0.1, 0.2. Velocities are normalized by the wave
phase speed C.
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Figure 5.15: Mean vorticity fields during wave breaking for the plunging breaker
case when U/C = 0 at t/T = 0.0, 0.05, 0.1, 0.2. The vorticity has been normalized
by
√

g/(d0 + a) and the contours are shown for ±[1, 2.5, 5, 10, 15, 20, 25].
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whole region underneath the wave front, whereas the vorticity is only confined to

the region near the water surface in spilling breakers. It is shown that vorticity

generation is much stronger in the plunging breaker than that in the spilling

breaker.

Figure 5.16 shows the mean vorticity fields for the plunging breaker when

U/C = 2 in one wave period at t/T = 0.0, 0.05, 0.1, 0.2. In the air, similar to the

spilling breaker, large negative vorticity is generated in the vicinity of the water

surface due to the wind shear compared to the case for U/C = 0. There is only

negative vorticity in the air before wave breaking, whereas both the positive and

negative vorticities coexist in front of the overturning jet after wave breaking. In

the water, small negative vorticity is observed just underneath the water surface.

However, the vorticity generation has been weakened in comparison with the

case for U/C = 0 as the region of negative vorticity becomes thinner and moves

upward. This is because the wind affects the wave to break earlier in a deeper

water, which leads to the change of the vortex motion after wave breaking. Also

there is reduced shear due to the wind and hence less vorticity.

5.5 Concluding Remarks

In this chapter, the RANS model is utilized to simulate 2D periodic breaking

waves in the surf zone. Both spilling and plunging breakers in Ting & Kirby

(1994) have been investigated, and numerical results of the distribution of wave

amplitudes, vertical variations of the undertow and turbulence field have been

compared with the experimental data and previous numerical studies in the ab-

sence of wind.

Later, wind effects on periodic breaking waves are investigated, which has

not been considered in previous studies. Comparisons are made for the results

between U/C = 0 and U/C = 2 in terms of water surface profiles, velocity and

vorticity fields. It is worth remarking that the overturning jet in both spilling

and plunging breakers, which are rarely shown in previous studies, have been

reproduced in the simulations for both cases.
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Figure 5.16: Mean vorticity fields during wave breaking for the plunging breaker
case when U/C = 2 at t/T = 0.0, 0.05, 0.1, 0.2. The vorticity has been normalized
by
√

g/(d0 + a) and the contours are shown for ±[1, 2.5, 5, 10, 15, 20, 25].
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Chapter 6

Large Eddy Simulation of

Three-Dimensional Breaking

Waves

It is shown from pervious chapters that the RANS model is capable of simulating

two-dimensional breaking waves. However, most water waves in nature break

in a three-dimensional (3D) feature (see figure 6.1 for a 3D nearshore breaking

wave). In order to simulate three-dimensional breaking waves, we cannot use

direct numerical simulation due to high computational requirements and hence

large eddy simulation is employed in this study.

This chapter is devoted to the kinematics and dynamics of three-dimensional

breaking waves. After reviewing previous numerical studies for 3D breaking

waves, the mathematical model and numerical implementation are briefly de-

scribed, and then the benchmark problem of a solitary wave run-up on a conical

island is used to validate the 3D model. Afterwards, three-dimensional overturn-

ing waves are investigated and discussed in detail.

6.1 Introduction

Several potential flow models have been developed to study three-dimensional

overturning waves in deep or shallow water (as discussed in § 1.2.3), which provide

much insight into the characteristics of breaking waves up to impingement. With
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Figure 6.1: Breaking waves on St Andrews beach, Scotland, UK (photograph by
Z. Xie).

increases in computational power and developments of numerical methods, some

attempts have been made to investigate three-dimensional breaking waves using

direct numerical simulation (DNS) or large eddy simulation (LES).

Miyata et al. (1996) performed a DNS study of three-dimensional breaking

waves around bodies. The Navier–Stokes equations are solved by the MAC-

type algorithm and the density function is employed to capture the interface.

Several cases for ship waves and flow over a cylinder were simulated and it was

shown that the model can predict qualitatively realistic nonlinear free surface

phenomena when compared to experimental photos. This model was later used

in a 3D viscous numerical wave tank for wave-structure interaction by Park et al.

(1999).

Hodges & Street (1999) performed a three-dimensional large eddy simulation

of finite-amplitude waves in a turbulent channel flow. The governing equations are

discretized in curvilinear coordinates and solved by the fractional step method,

and a dynamic model is employed to model subgrid-scale turbulence effects. The

free surface is tracked by the boundary-fitted grid that moves in each time step.

The interaction between nonlinear non-breaking surface waves and a turbulent

current was investigated in a periodic space domain, and it was indicated that

this method can be further modified to simulate overturning waves.
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Watanabe & Saeki (1999) carried out a three-dimensional large eddy simula-

tion of breaking waves. The Navier–Stokes equations are solved by the fractional

step method, a modified Smagorinsky model is used in the subgrid-scale model

and the density function is employed to capture the interface. The overturning

wave and subsequent splash-up were investigated and qualitatively compared with

experiments. The velocity field after wave breaking and the three-dimensional

vortex structures under spilling and plunging breaking waves were further ex-

plored in Watanabe & Saeki (2002) and Watanabe et al. (2005), respectively.

Christensen & Deigaard (2001) presented a three-dimensional large eddy sim-

ulation of breaking waves. The governing equations are solved by the SOLA-

VOF (Nichols et al., 1980) procedure, the Smagorinsky model is employed as

the subgrid-scale model, and the surface markers method is used to track the

interface. Several different types of breaking waves on a sloping beach were in-

vestigated and the velocity field during wave breaking was shown in that paper.

It was found that the obliquely descending eddies can be seen from the velocity

fields in two longitudinal sections. Later, Christensen (2006) used the Navier–

Stokes solver (Mayer et al., 1998) to further investigate the detail of breaking

waves in the surf zone. Two different approaches, the Smagorinsky model and a

model based on the k-equation, are implemented for the subgrid-scale turbulence.

The VOF method is utilized to capture the interface. Both spilling and plung-

ing breakers in the surf zone were investigated and compared with experimental

measurements (Ting & Kirby, 1994, 1995, 1996). Although a rather coarse mesh

was used in the simulation, satisfactory results for the wave setup and undertow

were obtained, but turbulence intensities were overpredicted as the effect of air

was not taken into account.

Wu (2004) developed a three-dimensional finite volume solver, based on the

TRUCHAS1 code (Kothe et al., 1997) developed in Los Alamos National Labo-

ratory (LANL), to study breaking waves and turbulence effects. Both 3D RANS

and LES models were proposed in that study. The governing equations are solved

by the two-step projection method and the VOF method is employed to capture

the interface. The spilling breaker case in 2D (Ting & Kirby, 1996) was investi-

gated and the details of the turbulence effect of a dam-break flow over a square

1http://telluride.lanl.gov/
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cylinder were analyzed. A moving solid algorithm was implemented in the model

and applied to investigate the run-up from three-dimensional sliding masses (Liu

et al., 2005), in which good agreement with the experimental measurements was

obtained.

In contrast to other methods which often use numerical schemes to discretize

the governing equations, there are some studies for breaking waves using the

finite analytic method (Chen et al., 1981), in which local analytical solutions

to the PDEs are used for discretization. Wang (2007) developed a 3D viscous

numerical wave tank and performed a DNS study of the propagation of a solitary

wave and periodic waves over 3D breakwaters with the MAC method to treat the

3D free surface. The SIMPLER method is employed to couple the velocity and

pressure.

Few attempts have been made in the development of 3D two-phase flow model

to study three-dimensional breaking waves. Mutsuda & Yasuda (2000) investi-

gated the turbulent air-water mixing layer of a breaking solitary wave over a

double reef by LES. The compressibility is taken into account in the governing

equations with a dynamic subgrid-scale model, and the density function is used to

capture the interface. The development of the overturning jet and the splash-up

were presented along with the velocity field. It was found that the water sur-

face profile and the motion of air bubbles develop quickly into three-dimensional

turbulent flow during jet-splash cycles, and the strongest turbulence intensity is

generated when the overturning jet impinges on the water surface.

Lubin et al. (2006) performed a three-dimensional LES of air entrainment

under plunging breaking waves. The governing equations are solved by the aug-

mented Lagrangian method. A dynamics subgrid-scale model is employed and

an explicit Lax-Wendroff TVD scheme is used for the VOF equation to capture

the interface. The overturning wave, leading from a planar Stokes wave, was

investigated in a periodic space domain. The plunging jet, splash-up cycles, vor-

ticity generation and energy dissipation were analyzed in detail. It was found

that three-dimensional turbulence is more dissipative than the two-dimensional

turbulence obtained by Chen et al. (1999).

Liovic & Lakehal (2007) developed a finite difference MFVOF-3D (multi-fluid

VOF in 3D) code for turbulent interfacial flows. The governing equations are
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solved by the two-step projection method and a VOF method, resolved on a

twice-as-fine sub-mesh nested within the underlying solver mesh, is employed to

capture the interface. A damping function, based on the normalized distance to

the interface in the air side, was introduced in the modified Smagorinsky model.

Periodic breaking waves on a slope, similar to Christensen & Deigaard (2001),

were investigated. Some qualitative results were presented and special attention

was given to resolve the sublayer near the air-water interface. It was shown that

the proposed approach is capable of providing more detailed information for near

interface multi-physics treatment.

Recently, Yang & Stern (2009) presented a 3D LES two-phase flow model for

ship hydrodynamics. The sharp interface immersed boundary method and a level

set/ghost-fluid method were employed to deal with the solid-fluid and fluid-fluid

interface, respectively. The Navier–Stokes equations are solved by a four-step

fractional-step method and a Lagrangian dynamic Smagorinsky model is used

to solve the subgrid-scale turbulence. A variety of application cases were well

simulated by the model, such as the bubble dynamics, water entry and exit of a

cylinder, landside-generated waves (Liu et al., 2005), and three ship flow cases.

Some hybrid models are developed to reduce the computational effort in 3D

computations. Biausser et al. (2004) carried out a DNS study of the internal

kinematics and dynamics of a three-dimensional overturning solitary wave on

slopes. The governing equations are based on the coupling between potential

flow equations, solved by high order BEM, and Euler equations, solved by the

pseudo-compressibility method with the VOF method for interface capturing.

The plunging jet during wave overturning was observed and detailed analysis of

the velocity field was shown in the study. It was found that overturning waves

were more dissipative in VOF simulations than the BEM.

It is worth remarking that only planar waves are considered in most previous

3D models. Hence, the present study is devoted to the kinematics and dynamics

of three-dimensional breaking waves.
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6.2 Large Eddy Simulation

6.2.1 Spatial Filtering

In LES, scales are separated by applying a low-pass filter and the filtered variable

is defined as

φ(x) =

∫

φ(x′)G(x, x′)dx′, (6.1)

where G(x, x′) is the filter kernel, which is associated with a cutoff length scale

∆. In general, eddies of size larger than ∆ are explicitly modelled large eddies

while those smaller than ∆ are small eddies, which need to be parameterized.

The filter has following fundamental properties (Sagaut, 2002):

(i). a = a, a is a constant (6.2)

(ii). φ+ ψ = φ+ ψ (6.3)

(iii).
∂φ

∂t
=
∂φ

∂t
,

∂φ

∂xi

=
∂φ

∂xi

(6.4)

In the FVM, the top-hat filter is usually used and the one-dimensional case

is written as

G(x, x′) =







1, if |x′ − x| ≤ ∆

2
;

0, otherwise.
(6.5)

6.2.2 Filtered Navier–Stokes Equations

Applying the filter to the Navier–Stokes equations (2.8–2.9), we can obtain

∂ui

∂xi
= 0, (6.6)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

[

µ

(

∂ui

∂xj
+
∂uj

∂xi

)]

+ ρgi +
∂τSGS

ij

∂xj
. (6.7)

It is worth noting that

uiuj 6= uiuj , (6.8)
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and the difference between this inequality is

τSGS
ij = −ρ(uiuj − uiuj), (6.9)

which is defined as subgrid-scale Reynolds stress in LES.

6.2.3 Subgrid Scale Models

Similar to the RANS equations, the governing equations are not closed, and

subgrid-scale models have to be introduced to solve the filtered Navier–Stokes

equations. In general, there are two modelling strategies (Sagaut, 2002):

Functional modelling

The subgrid terms are modelled based on the resolved quantity u not the tensor

τSGS itself. The modelling assumption is based on the form ∇ · τSGS = H(u),

where H is an arbitrary function.

Structural modelling

Contrary to functional modelling, the tensor τSGS is solved and approximated

by the evaluation of the resolved quantity u or a formal series expansion. The

closure hypothesis consists in using the relation τSGS = H(u) or u′ = H(u).

In the present study, we focus on the conventional LES modelling with a

Smagorinsky subgrid-scale closure scheme. Various other subgrid-scale models

are presented and discussed in Sagaut (2002).

6.2.4 Smagorinsky Model

The earliest and most commonly used subgrid-scale model in LES is the one

developed by Smagorinsky (1963). It is based on the subgrid viscosity concept,

and similar to the eddy viscosity model in RANS modelling, the subgrid-scale

Reynolds stress can be expressed as

τSGS
ij − 1

3
τSGS
ij δij = µSGS

(

∂ui

∂xj
+
∂uj

∂xi

)

= 2µSGSSij , (6.10)
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where µSGS is the subgrid-scale eddy viscosity and Sij is the strain rate of the

resolved field.

Based on the dimensional analysis, the subgrid-scale eddy viscosity can be

obtained as

µSGS = ρL2
S

∣

∣S
∣

∣ = ρ(CS∆)2
∣

∣S
∣

∣ , (6.11)

in which
∣

∣S
∣

∣ =
(

2SijSij

)1/2
, (6.12)

and LS = CS∆ is the Smagorinsky length scale, in which CS is the Smagorinsky

coefficient and the cut-off length scale ∆ in the present study is defined as

∆ = (∆x∆y∆z)1/3 , (6.13)

where ∆x, ∆y and ∆z are the grid lengths in the x, y and z directions in a control

volume, respectively.

It is noted that different values of the Smagorinsky coefficient (0.1 ∼ 0.2) have

been employed in different flow simulations, and in the present study, CS = 0.1

is used in the simulation.

6.3 Initial and Boundary Conditions

Initial and boundary conditions for the continuity and momentum equations are

the same as in § 2.2, so only the near-wall treatment for large eddy simulation is

presented here.

In the near-wall region, the characteristic length scale has to be reduced,

which corresponds to a reduction in the subgrid-scale viscosity (Sagaut, 2002).

One commonly used technique is employing the von Driest’s damping function

(van Driest, 1956). The usual relation:

LS = CS∆, (6.14)

is replaced by

LS = CS∆dw(n+), (6.15)
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where dw(n+) is the damping function, n+ is the nondimensionalized distance

from the wall (similar to the wall function in the RANS model) and from van

Driest (1956) we obtain

dw(n+) = 1 − e−n+/A+

, (6.16)

in which A+ is a constant usually equal to 25. However, it is suggested that the

subgrid-scale model should depend solely on the local properties of the flow field

and it is difficult to justify how the distance affects the subgrid model (Ferziger

& Peric, 2002).

The structure of the boundary layer in the near-well region has certain char-

acteristics and therefore special attention has to be paid in LES modelling. There

are two possible approaches to deal with the near-wall dynamics (Sagaut, 2002):

• Resolving the near-wall dynamics directly. In this approach, very fine grids,

the first grid in the zone (0 ≤ n+ ≤ 1), are required to represent the

near-wall turbulence, and thus limit the LES application for high Reynolds

number flows.

• Modelling the near-wall dynamics. In this approach, a special subgrid-scale

model called a wall model, is used to represent the near-wall turbulence at

the first grid point outside the wall (similar to the wall function used in

the RANS model), and thus a relatively coarse mesh can be used in the

near-wall region which gives us much advantage in LES modelling.

In the present study, the second approach is employed with the wall model pro-

posed by Cabot & Moin (2000). The subgrid eddy viscosity at the first grid point

off the wall is obtained by a RANS type mixing-length eddy viscosity as

µSGS

µ
= κn+

(

1 − e−n+/A+
)2

, (6.17)

with n+ =
ρuτn

µ
and A+ = 19. In Cabot & Moin’s model, the empirical velocity

profile in the logarithmic region is used to approximate the friction velocity uτ

from the instantaneous tangential velocity ut as

ut

uτ

=
1

κ
ln (E+

ρuτn

µ
), (6.18)
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where E+ = 9.7393 is the coefficient for a smooth wall. In order to take all regions

in the turbulent boundary layer into account, the Spaldings’ universal formula

(3.25) is used here.

6.4 Special Numerical Implementation

6.4.1 Numerical Discretization

Table 6.1 shows the various values of φ, Γ and QS
φ in the general integral formu-

lation (see § 2.3.2) to represent the filtered Navier–Stokes equations. The same

numerical discretization used in Chapter 2 is employed here for the LES model.

Table 6.1: Values of φ, Γ and QS
φ in the general integral formulation to represent

the filtered Navier–Stokes equations.

Equation φ Γ QS
φ

Continuity 1 0 0

Momentum u µ+ µSGS −∇p+ ρg

6.4.2 Near-wall Treatment in LES

The friction velocity uτ is needed to get the subgrid eddy viscosity at the first

grid point off the wall in (6.17). In this study, the Spaldings’ universal formula

(3.25)

n+ = u+ +
1

E+

[

eκu+ − 1 − κu+ − (κu+)2

2!
− (κu+)3

3!

]

, (6.19)

is used to approximate the friction velocity uτ , where

n+ =
ρuτn

µ
, u+ =

ut

uτ
. (6.20)

Since uτ is nonlinear in Spaldings’ universal formula, it can be solved iteratively

via the Newton-Raphson method as

uni
τ = uni−1

τ +
X

X ′
, (6.21)
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where ni is the number of iteration and X and X ′ are

X = −n+ + u+ +
1

E+

[

eκu+ − 1 − κu+ − (κu+)2

2!
− (κu+)3

3!

]

,

X ′ =
∂X

∂uτ

=
1

uτ

{

−n+ − u+ +
1

E+

[

−κu+eκu+

+ κu+ + (κu+)2 +
(κu+)3

2

]}

.

(6.22)

6.5 Solitary Wave Run-up on a Conical Island

6.5.1 Introduction

For three-dimensional breaking solitary waves, a laboratory experiment was car-

ried out by Briggs et al. (1995) for the run-up of solitary waves on a conical

island, which was motivated by the tsunamis which happened in Babi island of

Flores (Indonesia) and Okushiri island (Japan). Liu et al. (1995) presented an

early numerical study of a solitary wave run-up over a conical island based on

the two-dimensional shallow water wave equations, and good agreement between

the numerical model and the laboratory data for the water surface displacement

and maximum run-up heights was obtained. Later, Kanoglu & Synolakis (1998)

presented an analytical method for determining the wave evolution for piecewise

linear topographies and also calculated the run-up of solitary waves on a conical

island. Since then, this experiment is considered as a benchmark problem for

validating several numerical models for free surface flows, such as shallow water

equations (Bradford & Sanders, 2002; Hubbard & Dodd, 2002; Titov & Syno-

lakis, 1998; Valiani & Begnudelli, 2006; Wei et al., 2006), Boussinesq-type equa-

tions (Chen et al., 2000; Fuhrman & Madsen, 2008; Lynett et al., 2002), depth-

integrated non-hydrostatic model (Yamazaki et al., 2009), three-dimensional hy-

drodynamic model (Chen, 2004), and the commercial CFD code FLOW-3D (Choi

et al., 2007).

6.5.2 Experimental and Computational Setup

Physical model studies for a solitary wave run-up on a conical island were con-

ducted at the coastal and hydraulic laboratory, engineer research and develop-
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Figure 6.2: Sketch of experimental setup and computational domain for a solitary
wave run-up on a conical island.
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ment center, U.S. Army Corps of Engineers (Briggs et al., 1995). Figure 6.2 shows

the schematic of the laboratory setup, where a conical island was constructed in

the centre of a 25 m long and 30 m wide wave basin. The conical island is 0.625

m high with diameters of 7.2 m at the toe and 2.2 m at the crest, and the slope

is 1:4. 27 capacitance wave gages were used to measure the water surface eleva-

tions and the maximum run-up heights were recorded in 20 locations around the

perimeter of the island. The details of the experiment can be found in Briggs

et al. (1995) and Liu et al. (1995).

Three incident wave cases for H/D = 0.05, 0.1, 0.2 with the water depth

D = 0.32 m are considered in the present study, but only the results for the

steepest wave case H/D = 0.2 are presented here for the sake of brevity. The

computational domain is discretized by a 250 × 250 × 30 nonuniform grid, with

minimum meshes of ∆x = ∆y = 0.072 m uniformly distributed in the island

region and ∆z = 0.01 m in the vicinity of the water surface. It is noted that this

grid resolution is sufficient to give representative flow features in comparison with

other researchers although the mesh is not refined for validated LES and further

refinement is necessary. The initial time step is ∆t = 0.01 s and changed with

the CFL condition due to the interface capture scheme. The computation is run

up to 20 s which is similar to previous studies.

In the simulation, the solitary wave is generated at the inlet by specifying the

water surface elevation and velocity field based on the analytical solution (3.45)

similar to the 2D simulations in Chapter 4. The no-slip boundary condition (2.17)

is specified on the bottom, top and both side walls of the domain and along the

island. The radiative boundary condition (2.16) is applied at the outlet to let the

wave propagate out of the computational domain. This work was undertaken on

the White Rose Grid and the CPU time was approximately 30h.

6.5.3 Results and Discussion

Comparisons between laboratory measurements and numerical results

Figure 6.3 shows the comparison of the wave run-up on the lee side of the is-

land between the experiment and numerical simulation. The wave paddles can
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(a) experiment (b) simulation

0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4

Figure 6.3: Comparison of the wave run-up on the lee side of the island be-
tween the experiment and simulation. Top figures are the top view and bot-
tom figures are the back view. The computed water surfaces are colored based
on local values of wave height z. The experimental photos are obtained from
http://chl.erdc.usace.army.mil/chl.aspx?p=s&a=Projects;35.
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be seen from the experimental photo and it is shown that the run-up height in-

creases due to the collision of two trapped waves on the lee side of the island. In

general, acceptable agreement between the experiment and numerical simulation

is obtained.

Figure 6.4(a) shows the comparison of the computed wave surface displace-

ment against experimental measurements at five representative gauges. Gauge

3 is located half a wave length upstream from the toe of the island, gauge 6 is

located on the front side of the toe of the island, and gauges 9, 16 and 22 are on

the front, side and rear face of the island near the still water shoreline (see fig-

ure 6.2 for the location of wave gauges). The primary wave height and shape are

well predicted by the present model, however, the secondary depression wave is

slightly underestimated compared to the experimental measurements. It is noted

that wave breaking is observed during the experiment on the lee side of the island

due to the collision of two trapped waves for H/D = 0.2, some previous numer-

ical models overestimated the wave height at this region as the wave breaking

process was not taken into account, but it is shown that good agreement of the

wave height is obtained for gauge 22 in the present model. It is worth remarking

that there is a slight phase difference for the wave surface displacement on the

lee side of the island gauge 22, which predicts later wave arrival in comparison to

the experiment and this has also been found in all previous numerical studies.

Figure 6.4(b) presents the comparison of the locations of computed maximum

run-up heights against experimental measurements, where the local coordinate

270o corresponding to the front face of the island (see figure 6.2(a)). The vertical

run-up heights (using a minimum shoreline depth as 0.002 m) are converted to

the horizontal directions and normalized by the radius of the initial shore line. It

is shown that good agreement between numerical simulations and experimental

measurements is obtained. It is observed that the run-up height is higher on the

front side of the island and decreases as the wave bends towards the lee side of

the island. Compared to other cases for H/D = 0.05, 0.1 (not shown here), the

higher incident wave (H/D = 0.2) produces higher run-up height on the front

side of the island as more kinetic energy contained in the higher incident wave

has been converted to the potential energy associated with the run-up height.
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Figure 6.4: Comparison of numerical results against experimental measurements
for H/D = 0.2. Blue solid lines are numerical results and red circles are experi-
mental data. In (b), the inner black solid line is the crest of the island and the
outer black solid line is the initial shoreline.
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Snapshots of water surface profiles

Figure 6.5 presents the snapshots of water surface profiles for the incident wave

case H/D = 0.2 when the solitary wave is in the vicinity of the conical island. The

crest line is nearly parallel to the wave generation before reaching the island. Once

the wave approaches the island, the crest line bends due to the wave shoaling and

scattering by the island. When the wave reaches the maximum run-up height on

the front face of the island (figure 6.5(a)), it can be seen that the wave is highest

in the middle of the shoreline. After that, two trapped waves are formed and

propagate along both sides of the shoreline around the island (figure 6.5(b)). As

the wave moves faster due to greater depth, it is shown that when the incident

wave in the offshore region reaches the middle of the island, the wave on the

island shore is left behind with a slower speed. After the wave runs up the front

face of the island, the wave starts to run down and generates a cylindrical wave

pattern (figure 6.5(c)), which is similar to Liu et al. (1995). The two trapped

waves wrap around the island and move towards the lee side. Eventually, the two

trapped waves collide with each other on the lee side of the island and high run-

up height is observed (figure 6.5(d)), which is consistent with the experimental

measurements (Briggs et al., 1995) and tsunamis which happened in Babi island

(Yeh et al., 1994). At this moment, the incident wave is moving offshore while the

trapped waves are moving alongshore. The depression wave during wave running

down the island can also be observed in figure 6.5(d).
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(a) wave reaches the maximum run-up height on the front face of the island at t = 6.7 s

(b) wave reaches the middle of the island at t = 7.7 s

0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4

Figure 6.5: For caption see facing page.
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(c) two trapped waves wrap around the island at t = 9.0 s

(d) two trapped waves collide on the lee side of the island at t = 11.0 s

0.3 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4

Figure 6.5: Snapshots of water surfaces during the run-up of the solitary wave
on a conical island. The water surfaces are colored based on local values of wave
height z. Four images at different times are shown for different stages.
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6.6 3D Overturning Waves Over a Submerged

Conical Island

6.6.1 Introduction

The numerical results for the solitary wave run-up on a conical island are shown

in the previous section, however, due to the relatively low wave steepness, the

overturning jet of the breaking wave (like figure 6.1) is not observed in the nu-

merical computation. Apart from the study for water waves, similar research has

been performed for shallow water flow around conical islands (Lloyd & Stansby,

1997a,b). Both laboratory experiments and numerical simulations were carried

out when the conical island was surface piercing or submerged. It was found that

vortex shedding occurs in the wake of conical islands and the slope of the island

has little effect on the island wakes. As the water depth increases for submerged

islands, the shedding becomes weaker and eventually stops. In this section, in

order to study the kinematics and dynamics of three-dimensional breaking waves,

we investigate 3D overturning waves over a submerged conical island, which have

not been studied elsewhere to the best of our knowledge.

6.6.2 Computational Setup

In the simulation, the computational setup is similar to that in § 6.5, but for

a smaller conical island with the same slope (1:4) submerged in the water. Fig-

ure 6.6 shows the schematic of the computational setup, where the origin of the

coordinates is located at the still water level in the centre of the conical island and

all lengths are normalized by the water depth D = 0.32 m. The conical island is

0.8D high with diameters of 8.0D at the toe and 1.6D at the crest, and the slope

is 1:4. The incident planar solitary wave with H/D = 0.5 is considered here. The

computational domain, which has a length of 14.0D, width of 8.0D, and height

of 2.0D, is discretized by a 350× 80× 70 grid in the normalized streamwise (X),

spanwise (Y ) and vertical (Z) directions, respectively. The grid is uniform in

the x and y directions, and nonuniform (finer meshes in the vicinity of the water

surface) in the z direction, with minimum meshes of ∆x/D = 0.04, ∆y/D = 0.1
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Figure 6.6: Sketch of computational domain for overturning waves over a sub-
merged conical island.
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and ∆z/D = 0.02. This work was undertaken on the White Rose Grid and the

CPU time was approximately 30h.

6.6.3 Water Surface Profiles and Kinematics

Figures 6.7-6.10 show a sequence of snapshots of water surface profiles during

wave overturning over a submerged conical island. The color contour on the

water surface represents the distribution of normalized velocity components u, v

and w, respectively.

When the wave approaches the submerged island at t = 1.0 s (figure 6.7), there

is only a small change in the shape of the incident planar wave, and the crest line

is nearly straight and parallel to the spanwise direction. The velocity component

u has similar magnitude on the front and rear face of the wave, with higher value

in the vicinity of the wave crest. The velocity component w is nearly symmetrical

with respect to the crest line, which follows the elliptical water particle trajectory.

Both u and w velocities resemble the feature of 3D planar waves, however, the

velocity component v is still small compared to u and w. Due to the change

of bottom topography and wave scattering by the submerged island, it can be

seen that the water moves towards both sides in front of the island whereas it

moves towards the central plane in the rear side of the island. It is noted that

the spanwise velocity is higher on the rear side than that on the front side of the

island.

When the wave arrives at the crest of the submerged island at t = 1.4 s

(figure 6.8), there is a significant change in the wave shape which leads to a

three-dimensional wave profile. The wave profile is nonuniform in the spanwise

direction and the crest line becomes a curve instead. The streamwise velocity

u is highest in the central plane and gradually decreases at both sides, and the

maximum value increases from 0.4C (t = 1.0 s) to 0.6C (t = 1.4 s). The vertical

velocity w becomes asymmetrical and the magnitude in the positive direction is

twice that in the negative direction. The highest vertical velocity is located in the

central plane similar to the streamwise velocity. The spanwise velocity v increases

from 0.02C (t = 1.0 s) to 0.1C (t = 1.4 s) during wave passing the island, which
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Figure 6.7: Snapshots of water surfaces during wave overturning over a submerged
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of normalized velocity component u/C (top), v/C (middle) and w/C (bottom),
respectively. 173
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Figure 6.8: As in figure 6.7, but at t = 1.4 s.
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can be clearly seen on the front face of the wave. All these phenomena are related

to focusing of the wave over the submerged island.

Because the wave in the central plane propagates faster due to wave focusing

after the island, the wave crest plunges forward to overturn when passing the

crest of the submerged island at t = 1.8 s. A three-dimensional overturning wave

can be easily seen in figure 6.9. During wave overturning, it is shown that the

streamwise velocity u in the plunging jet is higher than the wave phase speed C,

which is consistent with the common sense criterion that u/C ≥ 1 during wave

breaking. Far from the central plane, the streamwise velocity is less than the

wave phase speed C and the wave propagates forward without breaking. The

vertical velocity w is positive on the front face of the wave and negative on the

rear face and the tip of the plunging jet. At this moment, the overturning wave

starts to curl down as it can be seen from the sign of the vertical velocity. During

wave overturning, the spanwise velocity v in the plunging jet is very small and

the highest spanwise velocity is located near the toe of the plunging jet on both

sides.

At t = 2.0 s (figure 6.10), the plunging jet curls down and impinges on the

water surface ahead to generate the splash-up, and an air cavity is enclosed

beneath the overturning jet. During the wave splash-up, breaking region gets

wider as time increases when more of the wave plunges forward and it is apparent

that u/C ≥ 1 is observed in the plunging jet and the subsequent splash-up.

The vertical velocity w is different from that during wave overturning, as the

plunging jet moves downward before the plunging point and upward after the

plunging point. Contrast to the spanwise velocity v in the plunging jet during

wave overturning, it changes significantly during wave splash-up. The shoulders

of the plunging jet move away from the tip whereas the top of the plunging

jet moves towards the central plane. Wave scattering by the island can also be

observed from the spanwise velocity on the back face of the wave.

By comparing the velocity components u, v and w from the stage when the

wave approaches the island to the overturning stage, it is shown that there is a

significant change in surface velocities within the crest of the submerged island

near the central plane. The maximum u velocity is tripled during wave overturn-

ing which means that the strongest motion is in the longitudinal direction. For

175



6.6 3D Overturning Waves Over a Submerged Conical Island

X

-4

0

4

8

Y

-4

-2

0

2

4

Z

-1

0

1

Y

X

Z

u/C
1
0.8
0.6
0.4
0.2
0

t=1.8 s

X

-4

0

4

8

Y

-4

-2

0

2

4

Z

-1

0

1

Y

X

Z

v/C
0.1
0.06
0.02

-0.02
-0.06
-0.1

t=1.8 s

X

-4

0

4

8

Y

-4

-2

0

2

4

Z

-1

0

1

Y

X

Z

w/C
0.3
0.21
0.12
0.03

-0.06
-0.15

t=1.8 s

Figure 6.9: As in figure 6.7, but at t = 1.8 s.
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Figure 6.10: As in figure 6.7, but at t = 2.0 s.
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the magnitude of vertical velocity w, the positive w on the front face of the wave

is doubled, whereas the negative w on the back face of the wave is nearly un-

changed. The spanwise velocity v is initially zero and gradually increases when

the wave passes the submerged island. The region of large v values increases

significantly when the plunging jet impinges on the water surface ahead. But

in general, the spanwise motion of the wave, which is important in generating

convergence and enhancing flow near the centreline, is weakest compared to the

longitudinal and vertical motions.

Figure 6.11 shows detailed views of the overturning wave during and after wave

breaking. Perspective, side and front views are shown in the top, bottom left and

bottom right, respectively. A typical three-dimensional overturning jet can be

seen in figure 6.11(a) during wave breaking and the width of the overturning jet

is about half of the crest diameter of the submerged island. A tube is formed

beneath the overturning wave during the splash-up shown in figure 6.11(b) and

the width of the overturning jet increases as more of the wave plunges forward.

It is worth remarking that the overturning waves are different between 2D and

3D simulations. In 2D, the air is enclosed by the overturning jet, but in 3D, the

air in the tube can escape in the spanwise direction.

6.6.4 Velocity Fields

3D velocity vectors

Figure 6.12 shows a sequence of three-dimensional velocity vectors corresponding

to the water surface profiles shown in § 6.6.3 for t = 1.0 s and t = 1.8 s. All

velocity vectors are normalized by the wave phase speed C = 2.17 m/s and only

velocity vectors in the water are shown for clarity. It is shown that the velocities

increase from the bottom to the water surface and large velocity vectors are

located under the crest of the wave. It is apparent that the wave is dominated

by the longitudinal motion and the spanwise motion is very weak. The velocity

is highest near the central plane and maximum velocity vector is observed during

wave overturning.
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(a) t = 1.8 s

(b) t = 2.0 s

Figure 6.11: Detailed views of the overturning wave from different angles during
(a) and after (b) wave breaking. The water surfaces are colored based on local
values of z/D.
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Figure 6.12: Snapshots of 3D velocity field during wave overturning over a sub-
merged conical island.
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Evolution of velocity vectors in Y -planes

Figure 6.13 shows the evolution of the velocity vectors in the vertical Y -planes.

The velocities in the central plane (Y = 0) are shown on the top, whereas the

velocities near the edge of the computational domain (Y = −3.9) are presented on

the bottom. When the wave approaches the submerged island (figures 6.13(a)),

there is nearly no change of the water surface between the centre and edge, and

thus the flow patterns in two planes are very similar, apart from the area near the

island. Recirculation of air flow can be clearly seen above the crest of the wave

as the air is driven by the water. When the wave arrives at the crest of the island

(figure 6.13(b)), due to wave focusing after the island, the wave in the central

plane moves faster and this is evident by comparing the water surface profiles and

the velocities near the centre of the island. Up to this stage, there is no significant

change in the flow pattern near the edge plane. During wave overturning over

the submerged conical island (figure 6.13(c)), large velocity vectors are observed

beneath the plunging jet as the air tries to escape from the enclosed cavity. The

velocity vectors in the wave crest are nearly horizontal during wave breaking. In

contrast to the central plane, the wave near the edge plane is moving with lower

speed without wave breaking.

Velocity vectors in Z-planes

Figure 6.14 shows the velocity vectors of the horizontal Z-planes in the water.

Two instantaneous results when the wave approaches the island (t = 1.0 s) and

when the wave passes the island (t = 1.8 s) are presented, respectively. Three

Z-planes corresponding to the bottom (z/D = 0.02), middle (z/D = 0.14) and

top (z/D = 0.30) layers of the water are shown. It is apparent that the wave

is scattered by the submerged island as the water moves towards both sides in

front of the island and towards the central plane in the lee side of the island.

It is worth noting that the horizontal velocities increase from the bottom to the

top layer of the water, which is inconsistent with the uniform horizontal velocity

assumptions in depth-integrated models.
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Figure 6.13: Evolution of the velocity vectors in the vertical Y -planes at different
times. Top is in the centre and bottom is near the sidewall.
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Figure 6.14: Velocity vectors of the horizontal Z-planes in the water. Left column
is when t = 1.0 s and right column is when t = 1.8 s.
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Velocity vectors in X-planes

Figure 6.15 shows velocity vectors of vertical X-planes, from the front edge (X =

−4) to the rear edge (X = 4) of the island, during wave breaking at t = 1.8

s. It is observed that the wave moves away from the island on the front side of

the island (X = −4 to X = 0) due to wave scattering, whereas the wave moves

towards the island on the rear side of the island (X = 2 and X = 4) due to

wave focusing. X = 2 plane is near the crest of the wave and it is shown that

large velocity vectors are located near the water surface as the wave overturns

and curls down. It is noted that the water moves upward on the front face of the

wave (X = 4), whereas the water moves downward on the back face of the wave

(X = −4 to X = 2).

6.6.5 Vorticity

In this section we analyze the generation of three-dimensional vorticity under

breaking waves. The streamwise, spanwise and vertical vorticities are defined as

ωx =
∂w

∂y
− ∂v

∂z
, (6.23)

ωy =
∂u

∂z
− ∂w

∂x
, (6.24)

ωz =
∂v

∂x
− ∂u

∂y
. (6.25)

The vorticities are normalized by
√

g/(H +D) in the following analysis.

Figure 6.16 shows the isosurfaces of the streamwise, spanwise and vertical

vorticities in the water, as well as the water surface profile. Due to wave scattering

by the island, the counter-rotating streamwise vorticities are generated on the

back face of the wave. Large negative spanwise vorticities are observed on the

tip of the overturning jet. Counter-rotating streamwise and vertical vorticities

arise surrounding the overturning jet, generating a three-dimensional vorticity

field, which is consistent with the previous numerical study of three-dimensional

vortex structures under breaking waves (Watanabe et al., 2005).
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Figure 6.15: Velocity vectors of the vertical X-planes during wave breaking at
t = 1.8 s.
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Figure 6.16: Isosurfaces of the streamwise (top), spanwise (middle) and vertical
(bottom) vorticity during wave breaking at t = 1.8 s. Isosurfaces are only shown
for the value ±0.25.
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6.6.6 Energy Dissipation and Transformation

Here, the energy dissipation and transformation for the overturning wave over

the submerged conical island is studied. It is worth emphasizing that the energy

defined here is calculated in the whole computational domain, rather than in a

fixed volume of water in one wave length. The kinetic energy (KE), potential

energy (PE) and total energy (TE) are obtained as (Dean & Dalrymple, 1984)

KE =

∫∫∫

F 6=0

ρ
(u2 + v2 + w2)

2
dzdxdy, (6.26)

PE =

∫∫∫

F 6=0

ρgzdzdxdy −
[
∫∫∫

F 6=0

ρgzdzdxdy

]t=0

, (6.27)

TE = PE + KE. (6.28)

In order to study the effect of the submerged island on water waves, another

simulation is performed for the flat bottom case. Figure 6.17 shows the time

history of normalized energy for the overturning wave over the submerged coni-

cal island, together with the corresponding energy when there is no island. All

energies increase up to t = 1.0 s as the wave propagates into the computational

domain and decrease after t = 2.0 s as the wave leaves the domain.

When there is no island, it is shown that the energies decrease slightly due to

the viscous dissipation and there is no significant energy transformation between

the kinetic and potential energies. When the submerged island is present, there

is more energy dissipation compared to the case in the absence of island as the

wave breaks. Due to the bathymetry of the island, the kinetic energy is converted

to the potential energy when the wave approaches the island. When the wave

arrives at the crest of the island, the potential energy is converted back to the

kinetic energy, which attains its maximum value during wave breaking. After

wave breaking, the kinetic energy decreases and potential energy increases slightly

during the jet-splash cycles.
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Figure 6.17: The time history of the normalized energy for the overturning wave
over a submerged conical island (red solid lines) and a flat bottom (black dash-
dotted lines). The energies have been normalized by the total energy E0 = [TE]
for the flat bottom case at t = 1.0 s when the solitary wave nearly completely
enters the computational domain.
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6.7 3D Overturning Waves under the Influence

of Wind

6.7.1 Introduction

In the previous section ( § 6.6), three-dimensional overturning waves over a sub-

merged conical island are studied. In this section, 3D overturning waves under

the influence of wind are going to be investigated and discussed. Since there are

many similarities for the breaking waves if the wind is present or absent, we focus

on the wind effects on overturning waves and differences between these two cases.

6.7.2 Computational Setup

The computational setup is the same as that in § 6.6, except that a uniform wind

speed U/C = 2 is specified at the inlet.

6.7.3 Water Surface Profiles and Kinematics

Figures 6.18–6.21 show a sequence of snapshots of water surface profiles for 3D

overturning waves under the influence of wind over a submerged conical island.

The color contour on the water surface represents the distribution of normalized

velocity components u, v and w, respectively. It is shown that water surface

profiles and wave kinematics are very similar to those shown in figures 6.7–6.10

where the wind speed is U/C = 0 due to the short upstream fetch considered

in this study. In contrast to the surface velocities u, v and w when U/C = 0,

it is apparent that there is a significant change of the surface velocities on the

back face of the wave and there is a slight change on the front side of the wave.

The spanwise velocity v is strengthened whereas the vertical velocity w is weaken

under the influence of wind. The streamwise velocity u on the back face of the

wave increases due to wind forcing and a larger region with u/C ≥ 1 is observed

in the overturning jet. The wave breaks earlier and closer to the submerged island

due to the wind pushing.

Figure 6.22 shows the evolution of water surface profiles in the central plane

for different wind speeds. There is not much difference before wave breaking and
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Figure 6.18: Snapshots of water surfaces during wave overturning under the in-
fluence of wind U/C = 2 over a submerged conical island at t = 1.0 s. The water
surfaces are colored based on local values of normalized velocity component u/C
(top), v/C (middle) and w/C (bottom), respectively.
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Figure 6.19: As in figure 6.18, but at t = 1.4 s.
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Figure 6.20: As in figure 6.18, but at t = 1.8 s.
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Figure 6.21: As in figure 6.18, but at t = 2.0 s.
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Figure 6.22: The evolution of water surface profiles between t = 1.6 − 2.0 s for
different wind speeds: U/C = 0: red lines; U/C = 2: blue lines.

only the water surface profiles during wave overturning are shown for clarity. It

is apparent that as the streamwise velocity u increases due to wind forcing, the

wave moves faster and breaks earlier under the influence of wind. The wind also

affects the shape of the enclosed cavity during the jet-splash cycles.

Figure 6.23 shows the time history of the maximum velocities in the wave for

different wind speeds. It is apparent that the longitudinal motion is strongest

and the spanwise motion is weakest which is consistent with foregoing discussion

in § 6.6.3. The effect of wind on the wave is dominated by its wind direction

and the effect on other perpendicular directions is weak. Compared to the case

U/C = 0, the maximum streamwise velocity increases when the wave passes the

island under the influence of wind. The maximum spanwise velocity increases

before wave breaking and decreases afterwards. The maximum vertical velocity
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Figure 6.23: The time history of the maximum velocities in the wave for different
wind speeds: U/C = 0: red lines; U/C = 2: blue lines.

decreases before the wave reaches the crest of the island and increases afterwards.

There is a phase difference for the peak value of the maximum velocities between

the two cases which indicates that the waves break at different times.

6.7.4 Velocity Fields

Evolution of velocity vectors in the vertical central plane

Figure 6.24 shows the evolution of the velocity vectors in the vertical central

plane for the case U/C = 2. Compared to the case U/C = 0, the water surface

profiles and velocities in the water are very similar. However, there is significant

difference in the air flow as the recirculation of air above the wave crest does not

exist when the wind is present. It is worth remarking that the air is driven by

the wave when U/C = 0, whereas the wave is driven by the wind when U/C = 2.

It is apparent that the air flow structure ahead of the wave front is very complex

and changes gradually during wave overturning.
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Figure 6.24: Evolution of the velocity vectors in the vertical central plane at
different times for U/C = 2.
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Cross sections

In order to investigate wind effects on the velocity fields in different planes, we

present the results at a representative time t = 1.8 s during wave overturning

under the influence of wind U/C = 2. Since the results are close to those for

U/C = 0, only the differences are discussed here.

Figure 6.25 shows the velocity vectors of the vertical X-planes. The velocity

vectors in the air are totally different from those for U/C = 0. On the back face

of the wave, the wave goes downward whereas the air goes upward due to wind

forcing. Recirculation of air flow with large velocity vectors is observed in front

of the overturning jet.

Figure 6.26 shows the velocity vectors of the vertical Y -planes. It is shown

that the air flow structure is similar on the back face of the wave with decreasing

velocity magnitude towards the side wall. However, the air flow structure is

different on the front face of the wave and the vertical motion is strongest in the

central plane due to the shape of the overturning wave.

Figure 6.27 shows the velocity vectors of the horizontal Z-planes. It is ap-

parent that the velocity in the water increases from the bottom to the top

layer. Higher velocity vectors are observed in the air and the spanwise motion is

strengthened ahead of the overturning wave.

6.7.5 Vorticity

Figure 6.28 shows the isosurfaces of the streamwise, spanwise and vertical vor-

ticities in the water, together with the water surface profile for U/C = 2. By

comparing the isosurfaces in figure 6.16, it is apparent that the structure of the

streamwise vorticity has been modified by the wind, the spanwise vorticity is

strengthened due to the surface shear, and there is little change of the vertical

vorticity.

6.7.6 Energy Dissipation and Transformation

Figure 6.29 shows the comparison of the time history of normalized energy for

the overturning wave over the submerged conical island between U/C = 0 and
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Figure 6.25: Velocity vectors of the vertical X-planes during wave breaking under
the influence of wind U/C = 2 at t = 1.8 s. It is noted that different length scale
is used for X = 4.
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Figure 6.26: Velocity vectors of the vertical Y -planes during wave breaking under
the influence of wind U/C = 2 at t = 1.8 s.
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Figure 6.27: Velocity vectors of the horizontal Z-planes during wave breaking
under the influence of wind U/C = 2 at t = 1.8 s. The solid line in (d) is the
water surface profile and it is noted that different length scale is used in (d).
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Figure 6.28: Isosurfaces of the streamwise (top), spanwise (middle) and vertical
(bottom) vorticity during wave breaking under the influence of wind U/C = 2 at
t = 1.8 s. Isosurfaces are only shown for the value ±0.25.
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U/C = 2. It is shown that the energy transformation under the influence of wind

is similar to that for the case U/C = 0. As the wave receives the energy from

the wind during wave propagation, all energies increase compared to those when

there is no wind. In the whole process, the kinetic energy increases more than

the potential energy which indicates that the energy input from wind forcing is

mostly transformed into the momentum of the wave. Overall, the total energy

increases about 3% under the influence of wind U/C = 2.

6.8 Concluding Remarks

In this chapter, the three-dimensional breaking waves have been investigated

by the large eddy simulation with the Smagorinsky subgrid-scale model. The

benchmark test, solitary wave run-up on a conical island, is used to validate the

3D model, where a good agreement between numerical and experimental results

for the water surface elevation and maximum run-up heights around the island is

obtained.

Later the model is further used to investigate three-dimensional overturning

waves over a submerged conical island. The detailed water surface profiles and

wave kinematics are analyzed, and the overturning jet and subsequent jet-splash

cycles are presented.

Finally, the three-dimensional overturning waves under the influence of wind

are studied, where the discussion is focused on the wind effects on breaking waves

and the differences of important phenomena between U/C = 0 and U/C = 2. It

is found that wind affects the wave profiles during wave overturning, increases the

surface velocities of the wave and causes the wave to break earlier. In addition,

the wind also leads to the increase of the generation of the vorticity and the total

energy of the wave.
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Figure 6.29: The time history of the normalized energy for the overturning wave
over a submerged conical island: U/C = 0: red solid lines; U/C = 2: blue
dashed lines. The energies have been normalized by the total energy E0 = [TE]
for U/C = 0 at t = 1.0 s when the solitary wave nearly completely enters the
computational domain.
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Chapter 7

Conclusions and Future Work

The objective of the thesis is to develop a numerical model to study two- and

three-dimensional breaking waves under the influence of wind, which has impli-

cations in air-sea interaction and coastal engineering. In this chapter, the main

findings and conclusions are summarized first, and then possible recommenda-

tions for further work are discussed.

7.1 Conclusions

Numerical model

A two-phase flow model, which solves the flow in the air and water simultane-

ously, was developed in the present study. The model was based on the Reynolds

averaged Navier–Stokes equations with a k−ǫ turbulence model in 2D and a large

eddy simulation with the standard Smagorinsky subgrid-scale model in 3D. The

governing equations were solved by the finite volume method in a Cartesian stag-

gered grid and the partial cell treatment was implemented to deal with complex

geometries, which is slightly different from other commerical CFD codes. The

SIMPLE or PISO algorithms were employed for the pressure-velocity coupling

and a backward finite difference discretization was used for the time derivative,

which lead to an implicit scheme for the governing equations. The air-water in-

terface was captured by the high resolution VOF scheme CICSAM, which can
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predict the overturning jet and splash-up during wave breaking. In order to vali-

date the model, 2D overturning waves on a sloping beach and over a reef, and 3D

solitary wave run-up on a conical island were computed and compared with ex-

perimental measurements. Overall, good agreement was obtained which showed

the capability of the numerical model in simulating breaking wave problems.

2D breaking solitary waves

In Chapter 4, the RANS model was utilized to investigate effects of wind on 2D

breaking solitary waves. In the absence of wind, the computed water surface

profiles were in agreement with previous experiments.

The wind effects on breaking solitary waves are summarized as follows:

• Wind affects the water surface profile during wave breaking and splash-up.

Onshore wind causes water waves to break earlier, in deeper water further

from shore.

• The water particle velocity in breaking waves increases with the wind speed

and thus affects the wave breaking process. There is a recirculation of air

above the crest of the wave in the absence of wind while there is a separation

of air flow in the presence of a sufficiently strong wind.

• During wave breaking, the wind affects the pressure field in both the air

and water, and increases the form drag and friction drag along the water

surface. Wind increases the generation of vorticity and turbulent stress

near the air-water interface.

• Wind affects the breaking characteristics of the wave, such as the evolution

of maximum wave height and maximum particle velocities. The maximum

run-up of solitary waves increases with the wind speed. Wind increases the

potential and kinetic energy of water waves and alters the energy transfor-

mation during wave breaking.
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2D periodic breaking waves

In Chapter 5, the RANS model was employed to simulate 2D periodic breaking

waves in the surf zone. Both spilling and plunging breakers were investigated,

and numerical results of the distribution of wave amplitudes, vertical variations

of the undertow and turbulence field were compared with the experimental data

and previous numerical studies in the absence of wind. The water surface profiles

and velocity fields during wave breaking were discussed, and the overturning jet

in both spilling and plunging breakers, which are rarely shown in previous studies,

were presented in the numerical simulation.

The wind effects on periodic breaking waves are summarized as follows:

• Wind affects the distribution of wave amplitudes and mean water level for

both spilling and plunging breakers. The effect of wind on the breaking

point is significant and onshore winds cause the wave to break earlier in

deeper water further from the shore. The slope of the mean water level

has been slightly changed in the presence of wind due to the wind-induced

shear formed in the vicinity of the water surface.

• Onshore wind assists the development of water particle velocity towards the

critical wave phase speed, leading to earlier wave breaking. The wind affects

the wave breaking process due to the wind-induced shear and the change of

the breaking water depth. The recirculation of air flow, which is observed

above the crest of both spilling and plunging breakers in the absence of

wind, do not exist in the presence of wind due to the wind forcing.

• The shape of the overturning jet in both spilling and plunging breakers

has been changed in the presence of wind and the wind also affects the

subsequent jet-splash cycles.

• Wind affects the generation of vorticity during wave breaking due to the

change of breaking water depth.
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3D overturning waves

In Chapter 6, the LES model was used to investigate three-dimensional overturn-

ing waves over a submerged conical island. The detailed water surface profiles

and wave kinematics from pre-breaking to post-breaking were analyzed, and the

overturning jet and subsequent jet-splash cycles were presented.

The wind effects on 3D overturning waves are summarized as follows:

• Similar wind effects on breaking waves in 2D, which cause the wave to break

earlier, are also observed in 3D overturning waves. In addition, it was found

that the effect of wind is significant in the region where the wave overturns.

• Wind affects the wave kinematics during wave overturning. It was found

that there is significant change of the surface velocities on the back face of

the wave and there is slight change on the front side of the wave. The effect

of wind on the wave is dominated by its wind direction and the effect on

other perpendicular directions is weak. The structure of air flow in front of

the overturning jet changes significantly in the presence of wind.

• The structure of the steamwise vorticity has been modified by the wind,

the spanwise vorticity is strengthened due to the wind-induced shear, and

there is little change of the vertical vorticity.

• As the wave receives the energy from the wind during wave propagation, all

energies increase compared to those in the absence of wind. In the whole

process, the kinetic energy increases more than the potential energy which

indicates that the energy input from the wind forcing is mostly transformed

into the momentum of the wave.
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7.2 Future Work

The present study should be regarded as a step towards understanding the kine-

matics and dynamics of breaking waves. Due to the complex processes during

wave breaking, much future effort should be devoted to further this study. In this

section, two areas of future work are identified as: improvements of the numerical

model and extension of the application.

Due to the length of study, it is unlikely that the developed numerical model

can perfectly simulate all kinds of wave breaking phenomenon. The improvements

of the numerical model are discussed as follows:

• Two-phase flow validation cases are needed to improve the performance

of the model. Although good agreement between numerical results and

experimental measurements was obtained in the water, there is little known

for the flow in the air, as it is difficult to measure the flow in the water and

air simultaneously in the experiment. With the development of measuring

techniques, detailed two-phase PIV measurements of breaking waves are

expected in the near future to validate the two-phase flow field in the present

model.

• In two-phase flow models, the discretization of the mass flux plays an im-

portant role in the numerical solutions. The consistency between mass and

momentum conservation has to be guaranteed otherwise non-physical ve-

locities might be generated in the vicinity of the air-water interface. The

consistency can be fulfilled in a collocated grid when using the same mass

flux for all equations. However, to the author’s best knowledge, it is not

clear yet how to deal with this consistency in a single staggered grid if the

mass flux is not calculated based on the explicit interface advection (such

as surface capturing methods), and especially when the implicit scheme is

employed for the momentum equation. In this study, interpolation was

adopted to obtain the mass flux on the face of the momentum control vol-

ume, and further improvements should be addressed to tackle this problem

in the future.
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• In order to resolve the turbulent flow field in the vicinity of the air-water

interface, the wall function for the air above the air-water interface is pro-

posed and applied in the 2D RANS model. Similar ideas should be taken

into account in future developments of the 3D LES model.

• Surface tension, which is weak for long waves, is neglected in the present

study. In order to take full length scales of water waves into account,

the method for modelling surface tension should be implemented in the

numerical model in the future.

• Due to the step by step development of the numerical model, only the stan-

dard k − ǫ model and the Smagorinsky subgrid-scale model were adopted

for the turbulence effect in the 2D RANS and 3D LES models, respectively.

Dynamic subgrid-scale models should be implemented in the future to bet-

ter represent the turbulence in the LES.

• Running 3D two-phase simulations is still expensive in terms of CPU times

and computational effort. There are three ways to improve the efficiency

and reduce computational efforts in 3D calculations. One is to use the

adaptive mesh during the computation, in which a fine mesh is used in the

vicinity of the interface during wave propagation whereas a coarse mesh is

employed away from the interface. Another is to perform parallel comput-

ing, in which calculations are carried out simultaneously on several CPUs.

Finally, the development of hybrid models for water waves is recommended

to study large scale problems, in which the two-phase flow model is used in

the breaking and post-breaking region whereas other more efficient models

are used in the pre-breaking region.

Extension of the application in the present study is discussed as follows:

• The present study focused on unsteady breaking waves in shallow water,

which has practical implications in coastal engineering. However, other

wave breaking phenomena, such as unsteady breaking waves in deep water

and steady breaking waves over submerged bodies, can also be investigated

through the numerical model.
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• Due to the CPU time for 3D calculations, only 3D breaking solitary waves

were considered in the present study. The numerical model should be fur-

ther employed to investigate 3D periodic breaking waves in the future. In

addition, irregular waves should also be taken into account in the future.

• Much attention has been paid to the wave overturning process in this study.

The detailed wave post-breaking process should also be considered in the

future and compared with available experimental measurements of aeration

in spilling breakers.

• The numerical model can be modified to investigate three-dimensional wave-

structure interaction and moving body problems. In addition, the numerical

model is capable of simulating a wide range of free surface flow problems,

which will be our future research direction.
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Appendix A

Coefficients in Cnoidal Wave

Theory

The coefficients An and Bnm in equation (5.1) of the third-order cnoidal wave

theory (Horikawa, 1988) are

A0 = ǫ(λ− µ) + ǫ2(−2λ+ µ− 2λ2 + 2λµ)/4

+ǫ3(133λ− 16µ+ 399λ2 − 466λµ+ 100µ2

+266λ3 − 466λ2µ+ 200λµ2)/400

A1 = ǫ+ ǫ2(−3/4) + ǫ3(50 − λ− 60µ)/80

A2 = ǫ2(3/4) + ǫ3(−151 + λ+ 60µ)/80

A3 = ǫ3(101/80)

B00 = ǫ(λ− µ) + ǫ2(λ− µ− 2λ2 + 2µ2)/4

+ǫ3(−71λ+ 47µ− 23λ2 + 97λµ− 50µ2

+153λ3 − 153λ2µ− 25λµ2 + 25µ3)/200

B01 = ǫ2(−3λ/4) + ǫ3(6λ+ 24λ2 − 21λµ)/8

B02 = ǫ3(3λ− 3λ2)/16

B10 = ǫ+ ǫ2(1 − 6λ+ 2µ)/4

+ǫ3(−19 − 27λ+ 10µ+ 101λ2 − 100λµ+ 15µ2)/40 (A.1)
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B11 = ǫ2(−3 + 3λ)/2 + ǫ3(6 + 36λ− 21µ− 24λ2 + 21λµ)/4

B12 = ǫ3(6 − 39λ+ 6λ2)/16

B20 = ǫ2(−1) + ǫ3(−2 + 32λ− 15µ)/10

B21 = ǫ2(9/4) + ǫ3(30 − 120λ+ 63µ)/8

B22 = ǫ3(−45 + 45λ)/16

B30 = ǫ3(6/5)

B31 = ǫ3(−15/2)

B32 = ǫ3(45/16)

with

ǫ=H/d0 (A.2)

λ = (1 − κ2)/κ2 (A.3)

µ = E/κ2K (A.4)

where K and E are the complete elliptic integrals of the first and second kind,

respectively, and κ is the modulus of the elliptic integrals and functions.

Once d0, T , and H are given, the modulus κ can be determined by

gHT 2

d2
0

=

[

16κ2K2

3

]/[

1 + ǫ
−1 − 2λ

4
+ ǫ2

8 + 33λ− 10µ+ 33λ2 − 20λµ

40

]

.

(A.5)

From κ, the wavelength L can be calculated as

L = T
√

gd0

[

1 + ǫ(1 + 2λ− 3µ)/2 + ǫ2(−6 − 16λ+ 5µ− 16λ2 + 10λµ+ 15µ2)/40

+ ǫ3(150 + 1079λ− 203µ+ 2337λ2 − 2653λµ+ 350µ2

+ 1558λ3 − 2653λ2µ+ 700λµ2 + 175µ3)/2800
]

.

(A.6)
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