Luo, Wenlei (2014) Large Eddy Simulation of turbulent supersonic combustion and characteristics of supersonic flames. PhD thesis, University of Leeds.
Abstract
In this thesis we investigate the supersonic combustion in scramjet combustors with strut and cavity flame holders through the Reynolds-Averaged Navier–Stokes (RANS) and Large Eddy Simulation (LES) strategies.
Firstly, the Unsteady Flamelet/Progress Variable (UFPV) model for turbulent combustion in low-speed flows is introduced and extended to supersonic flows and a new strategy is developed to create probability density function look-up tables for the UFPV model.
Secondly, the RANS modelling is employed to a strut-based scramjet combustor using the flamelet and UFPV models and the latter shows a better performance. Subsequently, the LES modelling is performed with the UFPV model and the UFPV model gives good predictions on comparing the numerical results to the experimental data.
Thirdly, the LES modelling is employed to a cavity-based scramjet combustor. The results obtained indicate that the local extinction and autoignition events are very common phenomena in the supersonic flame and the UFPV model is able of predicting these events with reasonable accuracy. Further, an activation-energy-asymptotic-based Damköhler number concept is a valuable metric to identify flame weakening and extinction in supersonic flames. Together with the OH radicals, the distribution of the HO2 radicals can assist in identifying the autoignition events in the supersonic flame.
Finally, analysing the flameholding mechanisms of the cavity, it is found that the cavity provides a stable ignition source to the fluid. Further, the combustion in the cavity is dominated by flame propagation. However, on the outer interface of the air and hydrogen streams, the combustion is mainly dominated by autoignition. Both autoignition and flame propagation contribute to the combustion in the mixing layer. Also the combustion in the cavity mixing layer has effects on the induction reactions in the wake of the hydrogen jet and reduces the induction time of the autoignition.
Metadata
Supervisors: | Mohamed, Pourkashanian and Derek, Ingham and Lin, Ma |
---|---|
Keywords: | Scramjet, Large Eddy Simulation, Unsteady Flamelet/Progress Variable model, extinction, autoignition |
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering (Leeds) > School of Chemical and Process Engineering (Leeds) > Energy and Resources Research Institute (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.638884 |
Depositing User: | Mr Wenlei Luo |
Date Deposited: | 23 Feb 2015 13:11 |
Last Modified: | 25 Nov 2015 13:48 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:7641 |
Download
Final eThesis - complete (pdf)
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.