Reddy, Steven Michael (1990) The structural, metamorphic and thermal history of the Sonnblick Dome, southeast Tauern Window, Austria. PhD thesis, University of Leeds.
Abstract
Within the southeastern Tauern Window, the Sonnblick Dome is a large, NE-verging, antiformal structure composed of orthogneisses of the Zentralgneis Complex. This unit represents part of the European crystalline basement, or Penninic domain, over which the Adriatic microplate was thrust during Alpine continental collision.
The igneous precursors to the gneisses formed as granitoids above a subduction zone during the Hercynian. During Alpine continental collision, overthrusting of the African-derived Austroalpine units toward the northwest produced a foliation that becomes more intense towards the tectonic contact of the gneiss and the overlying Peripheral Schieferhülle. This foliation was folded during the formation of the Sonnblick Dome, which is interpreted to have developed during progressive top-to-NW shearing in
the hangingwall of an oblique ramp.
Shear zones also developed oblique to the northwest transport direction and led to imbrication in the basement. These shear zones are commonly marked by retrogression
of the primary mineralogy and the development of mica-schists. Although this alteration is associated with syn-deformational fluid infiltration, a spatial relationship between reaction site and deformation suggests that the energy associated with deformation contributed to reactions during shear zone formation.
As a response to tectonic thickening, pressures and temperatures in the Pennine basement increased. Peak Alpine metamorphic conditions are estimated to be 540±50°C
and 8±lkbar and probably represent conditions developed during uplift from initially greater depths. White mica isotopic ages suggest that the peak of metamorphism took
place at 25-28Ma, with older ages being observed towards the southeastern end of the Dome. Post-metamorphic cooling rates appear to be variable throughout the Dome, with
faster rates being found for the southeastern end of the Dome. After 20Ma ago, cooling rates around the Dome became more uniform (17-27°C/Ma). Rapid cooling rates in the
area are associated with rapid, post-metamorphic uplift rates. These were probably accomodated by gravity-driven extension of the tectonically thickened crust. Evidence
for post-metamorphic extension is represented by ductile shear bands, which are associated with thinning of the more micaceous units found at higher levels in the Dome.
Metadata
Supervisors: | Cliff, B. and McCraig, A. |
---|---|
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.277510 |
Depositing User: | Ethos Import |
Date Deposited: | 01 Feb 2010 12:12 |
Last Modified: | 08 Aug 2013 08:43 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:380 |
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.