Hong, Simin (2023) Measuring the Severity of Depression from Text using Graph Representation Learning. PhD thesis, University of Leeds.
Abstract
The common practice of psychology in measuring the severity of a patient's depressive symptoms is based on an interactive conversation between a clinician and the patient. In this dissertation, we focus on predicting a score representing the severity of depression from such a text. We first present a generic graph neural network (GNN) to automatically rate severity using patient transcripts. We also test a few sequence-based deep models in the same task. We then propose a novel form for node attributes within a GNN-based model that captures node-specific embedding for every word in the vocabulary. This provides a global representation of each node, coupled with node-level updates according to associations between words in a transcript. Furthermore, we evaluate the performance of our GNN-based model on a Twitter sentiment dataset to classify three different sentiments and on Alzheimer's data to differentiate Alzheimer’s disease from healthy individuals respectively. In addition to applying the GNN model to learn a prediction model from the text, we provide post-hoc explanations of the model's decisions for all three tasks using the model's gradients.
Metadata
Supervisors: | Cohn, Anthony and Hogg, David |
---|---|
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering (Leeds) > School of Computing (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.874978 |
Depositing User: | Miss Simin Hong |
Date Deposited: | 20 Feb 2023 10:48 |
Last Modified: | 11 Apr 2023 09:53 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:32303 |
Download
Final eThesis - complete (pdf)
Filename: SiminHong_computing_PhD_2023.pdf
Licence:
This work is licensed under a Creative Commons Attribution NonCommercial ShareAlike 4.0 International License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.