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Abstract

The common practice of psychology in measuring the severity of a patient’s depressive symptoms

is based on an interactive conversation between a clinician and the patient. In this dissertation,

we focus on predicting a score representing the severity of depression from such a text. We

first present a generic graph neural network (GNN) to automatically rate severity using patient

transcripts. We also test a few sequence-based deep models in the same task. We then propose a

novel form for node attributes within a GNN-based model that captures node-specific embedding

for every word in the vocabulary. This provides a global representation of each node, coupled

with node-level updates according to associations between words in a transcript. Furthermore,

we evaluate the performance of our GNN-based model on a Twitter sentiment dataset to classify

three different sentiments and on Alzheimer’s data to differentiate Alzheimer’s disease from

healthy individuals respectively. In addition to applying the GNN model to learn a prediction

model from the text, we provide post-hoc explanations of the model’s decisions for all three

tasks using the model’s gradients.
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Chapter 1

Introduction

The present chapter describes the motivation of the work. The importance of designing Graph

Neural Network (GNN) models whose outputs can be understood by human experts is discussed.

The general clinical measurement of depression is introduced. Depression indicators which are

widely used in automated methods for assessing depression severity are summarized, including

both verbal signs and non-verbal signs of depression. In particular, symptoms of depression

that can be identified from the verbal modality are discussed. A brief summary of appropriate

depression datasets that researchers select for their depression detection models.

1.1 Research Motivation

According to a 2021 World Health Organization fact sheet, Major Depressive Disorder (MDD)

affects 264 million people globally (Islam et al., 2021; World Health Organization, 2017). It is

likely that the COVID-19 pandemic has raised heightened concerns about mental well-being,

especially with respect to MDD (Bakioğlu et al., 2021). In addition to the high prevalence of

major depressive disorder, there is a high number of undiagnosed depressive episodes. Overall,

85% of people suffering from depression are underdiagnosed (Falagas et al., 2007). Relevant

research also showed that about 30% of patients suffering from an episode of major depression

do not seek treatment, with only 10% of the 30% being adequately treated. There is a pressing

need to find a convenient and automated method to assess depression severity. The motivation

to pursue the development of a methodology could enhance accessibility to mental healthcare

by overcoming traditional barriers. Current technological means can provide the infrastructure
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1.1. Research Motivation Chapter 1

for monitoring psycho-emotional state in high-risk individuals as part of early detection. Given

the complexity of diagnosis, medical personnel should quicken intervention offering people help

promptly, particularly for those who are unaware of which depressed state they are experiencing.

In general, research which aims to make a diagnostic prediction of the severity of depression

from patient data uses machine learning regression methods. Most research implements mul-

tiple modalities including visual, audio and linguistic features relating to clinical symptoms of

depression for MDD detection (Al Hanai et al., 2018; Dham et al., 2017). Such automated joint

feature analyses indeed have improved diagnostic accuracy. However, in most clinical situa-

tions, we lack access to audio-video data, where Machine Learning (ML) algorithms designed

to learn clinical transcripts are relevant and important for developing automatic diagnosis sys-

tem. In addition, Williamson et al. (2016) argues that some clinical texts such as dialogue

transcriptions provide the most informative and effective indicator for predicting depression

compared to any other source (audio or video). Some studies using Natural Language Pro-

cessing (NLP) with ML models have been very successful in the mental health application

(pennebaker2015development; Lin et al., 2020; Morales & Levitan, 2016; Williamson et al.,

2016).

With the rise of social media, online blog posts and sites such as Twitter, Reddit and Facebook

provide an interesting domain to investigate depression (De Choudhury et al., 2013a; Nguyen

et al., 2014; Tsugawa et al., 2015). Not only does the NLP technique extend the performance

of automatic diagnosis approaches for depression to non-clinical settings, but can also be very

effective to generalize to another field such as analyzing text sentiment or to assess different

kinds of mental illness.

Implementing diagnostic tools to predict who may suffer from depression requires very little

human involvement of physicians. Those patients who are predicted to have depression could

potentially be referred straight to mental health professionals in their area or who accept their

health care coverage. However, current approaches which assess depression as a binary problem

have limitations since they can only make a coarse assessment of psychological state, rather

than a more fine-grained and nuanced one. The evaluations of the work that models depression

as a numerical rating scale rather than a binary prediction are still rare in the literature.

It is much more challenging to examine depression in a more fine-grained way than a binary

diagnostic threshold such as labeling an individual as depressed or not. Published methods

2



Chapter 1 1.1. Research Motivation

reviewed in this research tend to use a binary categorization: people with symptoms of depres-

sion that did not meet the diagnostic threshold are labeled as non-depressed. The diagnostic

categorization enables information to be processed rapidly (Andrews et al., 2007; Lewinsohn

et al., 2000). However, this mental health categorization blurs the intricacies of a mental illness

phenomenon and makes a diagnosis less reliable. I aim to develop an innovative way of modeling

depression precisely by deep learning on graphs. I leverage inductive bias in deep models to

assess the severity of depressive symptoms. Some researchers (van Borkulo et al., 2015; Wichers

et al., 2016) suggest that depression can be treated as a latent disease pattern strengthening

the symptom chain, and various states of depression can therefore be measured on the basis of

a network of symptoms of MDD. I learn to capture specific symptoms of depression and then I

predict depression states at different levels based on the detected symptoms. This approach to

detecting fine-grained depression may help us improve the validity of the mental illness expe-

rience and the reliability of the diagnosis, and provide clinical significance suggesting clues for

treatment.

A graph deep learning model may be a promising way of learning high-dimensional semantic

features that implicitly convey the clinical significance of depression. I design a GNN model that

takes into account high-level patterns in the language, where I propose to learn these patterns

to capture a specific schema or a structure of depression.

Since most work on predicting depression levels using deep models is developed without any

explanation of their outcomes, deep learning algorithms are treated as black-boxes. Without

reasoning about the mechanisms behind the predictions, clinical experts cannot understand

the decisions a deep model makes. My motivation is to develop a way of interpreting a deep

model in order to obtain a human understanding of the outcomes of the model. The results

of the GNN model can be explained by visualizing a group of latent layers of the model. This

research work demonstrates that the model makes a decision based on what it has learned. In

addition, I measure the importance of psychological variables in the context of depression using

the proposed GNN model, which can help human experts explore the potential values of clinical

data. For instance, aligning the model evidence with the empirical evidence found in cognitive

psychology.
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1.2 The Severity of Depressive Disorder Episode

In clinical settings, the diagnosis of a Major Depression Episode (MDE) requires five or more

symptoms to be present within a 2-week period (McDermott & Ebmeier, 2009). The symptoms

should include at least a depressed mood or anhedonia (loss of interest or pleasure-L1). The

secondary symptoms of MDE are appetite or weight changes, sleep difficulties (i.e., insomnia

or hypersomnia), psychomotor agitation or retardation, fatigue or loss of energy, diminished

ability to think or concentrate, feelings of worthless or excessive guilt, and suicidality. Previ-

ous investigations have reported that cognitive dysfunction, age, unemployment, and suicidal

ideation are associated with depressive severity (Johanson & Bejerholm, 2017).

Some research proposes that major depression symptoms are best represented by somatic and

non-somatic factors (Van Loo et al., 2012). The somatic items include sleep difficulties, appetite

or weight changes, poor concentration, fatigue, and psychomotor agitation or retardation. The

non-somatic items involve depressed mood, anhedonia, feelings of worthless and thoughts of

death. However, to our knowledge, there is a lack of a systematic study of the relationship

between depressive symptoms and depression severity. There is no consensus if the number of

symptoms is indicative of depression severity or if the degree of each symptom can be used as an

index to classify depression to more specific degrees: moderately depressed, severely depressed

and so on. Therefore, the severity of depression is commonly assessed with the aid of medical

instruments rating a continuous mental state of a patient based on his/her utterance, such as

self-reporting Patient Health Questionnaire (PHQ) which is used to screen for depression.

1.3 Depression Evaluation Instruments

Quantification of severity of depressive symptoms is often aided by rating scales completed

by a trained mental health professional. Most studies use labels such as the PHQ, which

are calculated based on a clinical Patient Health Questionnaire metric (Kroenke & Spitzer,

2002). The PHQ is a self-administered version of the Primary Care Evaluation of Mental

Disorders (PRIME-MD) diagnostic instrument for common mental disorders. Large clinical

studies use PHQ as a valid measure of depression severity (Thombs et al., 2014).

Most often diagnostic scales are generated by various versions of Patient Health Questionnaire

(PHQ)-2/8/9, comprised of 2, 8 or 9 items respectively (Thombs et al., 2014). In particular,
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an 8-item version (PHQ-8)(Burnard, 1991) is commonly used as an abbreviated and validated

version of PHQ. However, PHQ-9 (Kroenke & Spitzer, 2002) is also widely used, which includes

a ninth item related to suicidal ideation. In this thesis, PHQ-8 labels are used and treated

as objective truth for assessment purposes. In brief, this PHQ-8 generalizes the symptoms

following a regular catalog of eight issues:

■ Tiredness and Lethargy

■ Depressed Mood

■ Trouble Sleeping

■ Feelings of Failure or Worthlessness

■ Lack of Interest or Ability to Take Pleasure

■ Changes in Appetite

■ Trouble Concentration

■ Psychomotor Impairment

The PHQ-8 metric is defined by summarising these eight items (Kroenke et al., 2009) into a

single numeric score. Possible PHQ-8 scores can vary from 0 to 24. Additionally, a total score

of 0 to 4 represents no significant depressive symptoms. A total score of 5 to 9 represents mild

depressive symptoms; 10 to 14, moderate; 15 to 19, moderately severe; and 20 to 24, severe. A

cutpoint PHQ-8 score ≥ 10 representing clinically significant depression was applied to assess

subjects who may have a major depressive disorder.

1.3.1 Indicators of Depression

Machine learning tools analyze human dimensions, including facial expression, voice and speech,

and language to assess depression. I refer the depression assessment to the process of detecting

the presence of depression or evaluating the severity of signs of depression. This section provides

a review of each modality highlighting markers including face and gesture, voice and speech,

and language and social factors.
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1.3.1.1 Non-verbal Indicators

There are two major non-verbal signs of depression that have also been extensively reviewed in

the evaluation of depression: 1 visual indicators; 2 acoustic indicators.

Visual indicators including information related to facial, head, body and eye movements could

provide key clues with depressive symptoms (Dham et al., 2017). For instance, depressed people

tend to avoid eye contact. Joshi et al. (2013) demonstrated that body expressions, gestures, eye

and head movements can be significant cues for depression detection. Some research (Cummins

et al., 2013; Girard et al., 2014; Joshi et al., 2013; Scherer et al., 2013) has explored relationship

that exists between nonverbal behavior and depressive symptoms. Girard et al. (2014) inves-

tigated facial features using facial Action Units (AUs) and showed that high-level depressed

individuals made fewer affiliative facial expressions and more non-affiliative facial expressions

and decreased head motion (i.e., amplitude and velocity). Scherer et al. (2013) employed Facial

Action Coding System (FACS) (Ekman & Rosenberg, 1997) and concluded that visual signals

detected from nonverbal behaviors can be strong predictors of depression. For instance, their

investigations showed that depressed people perform a more downward angle of gaze, less in-

tense smiles, shorter average duration of smile, longer self-touches and fidget with both hands

(e.g. rubbing, stroking) and legs (e.g. tapping, shaking).

The properties of acoustic speech can be used as possible cues to detect depression. Some

studies investigated that cognitive and physical changes associated with depression can result

in differences in speech (Cummins et al., 2015; Dham et al., 2017; Williamson et al., 2016).

This idea has driven research into using speech as an important marker for depression. Some

research (Cummins et al., 2015; Mundt et al., 2012; Stolar et al., 2015; Trevino et al., 2011;

Williamson et al., 2013) investigated a number of feature sets for detecting depression, including

monotone pitch, reduced articulation rate, lower speaking volumes and loudness variation from

speech. For example, some research revealed that depressed patients tend to speak lower,

flatter and softer and can be perceived in a series of prosodic features (of speech) including

pitch, loudness and speaking rate (Stolar et al., 2015). Some research (Quatieri et al., 2015;

Williamson et al., 2013) applied spectral coordination measures, particularly Mel-frequency

Cepstral Coefficients (MFCCs) to estimate the severity of depression. Alghowinem et al. (2013)

found that loudness and intensity provide indications of a trend towards spontaneous speech

for depressed subjects.
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1.3.1.2 Linguistic & Social Indicators

Depression with multiple symptoms can be identified through a person’s spoken language (Al-

Mosaiwi, 2018). Depression can be considered in multiple dimensions and can be detected

from the language, such as depressed mood, depression history, and the amount of cognitive

impairment caused by the episode; for example, Durkheim (2005) points out that a person

expressing his or her mind not to be integrated into social life has a tendency to suicide – this is

also associated with the self-perception of the depressed person. I conclude that depression could

be driving the relationship between depressive symptoms and a particular lexicon. Moreover,

compared to visual and vocal features, such as those recorded in videos and audio, text-based

semantic features are often the most informative indicators obtained by analyzing the patient’s

textual records (Williamson et al., 2016).

Medical research (De Choudhury et al., 2013b; Poulin et al., 2014; Stirman & Pennebaker,

2001; Tsakalidis et al., 2018) shows that text sentiment analysis methods can be effective in

detecting depression. Shen et al. (2017) found that sentiment words with valence, arousal, and

dominance, as features, are predictive of depression. These indicators are composed of a class

of typical linguistic markers and their occurrences interact with other word entities within the

context of a depressed mind.

Topic modeling infers the emotional state of people living with different kinds of cognitive

disorders such as depression, Alzheimer’s Disease, etc. Topics are designed or selected from

a set of effective questions (i.e., a question “have you ever been diagnosed with depression”)

that can better reveal the conditions of patients (Arseniev-Koehler et al., 2018). Hand-crafted

topic features are very informative to identify symptoms from the text data. Latent Dirichlet

Allocation (LDA) (Blei et al., 2003) topic models are frequently used to select topic features.

However, LDA tools are less adaptive to other mental domain areas and this feature engineering

work may not be efficient to scale larger dataset (Lin et al., 2020). Hand-crafted topic features

are most informative to identify symptoms from the text data. Moreover, topic modeling can

be difficult to apply to assess new patient conditions because patients may refuse to respond to

some of the topics from the same feature set.

This research is motivated to learn to represent this type of high-level model available in the

language of a depressed person. To achieve this, I propose a novel form for node attributes within

a GNN based model that captures a node-specific embedding of every word in the vocabulary.
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I learn representations of each word which are shared globally and can be updated according

to associations among words in a transcript. I summarize the representations of all the words

in the transcript to predict depression states. The research focuses on modeling depression as

a continuous phenomenon where facts are aggregated on a transcript record until ideally all

possible major depressive features have been discovered.

Some research (Arseniev-Koehler et al., 2018; Morales et al., 2017) also argues that depression

should be modeled as a continuous phenomenon rather than simply a binary outcome. I provide

a fine-grained prediction of the severity of depressive disorders with a scale between 0 and 24

rather than simply predicting the presence of depression (i.e., depressed or non-depressed).

Moreover, this novel approach that contextualizes token embedding with graphs enhances the

predictive power of the model in the depression prediction task.

1.4 Thesis Outline

This thesis is organized into seven chapters. Chapter 2 exhaustively reviews the state-of-the-art,

presenting relevant machine learning methods employed in the literature. In this chapter, I also

discuss and analyze state-of-the-art word embedding feature representations applied in NLP.

Besides, I investigate existing post-hoc techniques that explain the predictions of deep models.

Chapter 3 introduces a novel paradigm of representation learning methods on graphs, including

how to convert text to graphs and how to generate graph-based representations for words. The

methodology of generating 2-dimensional word embeddings using graphs developed in this PhD

is described in chapter 4 with the main experiment conducted as part of the current study.

Chapter 5 presents several post-hoc analyses of explaining outputs generated by the designed

deep model. Chapter 6 evaluates the designed deep model on two different text datasets, with

a discussion of experimental results and model visualization. Finally, chapter 7 presents the

conclusions of this work.
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Chapter 2

Literature Review

2.1 Psychological Background of Depression

Depression, in general, is characterized by low mood, a lack of interest, cognitive and psycho-

motor impairment and suicidal ideation (American Psychiatric Association, DSM-5 Task Force,

2013). For clinical psychologists, depressive symptoms can be summarized into the integration

of psychological, physical, and social perspectives (see Figure2.1). These perspectives suggest

strong depressive evidence which has in turn provided support for depression diagnosis with

validity. Furthermore, a patient who has these symptoms persist for two weeks is considered to

have a major depressive disorder (American Psychiatric Association, DSM-5 Task Force, 2013).

Figure 2.1: Some examples describing depressive symptoms with three different perspectives.
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2.1.1 Linguistic Features in Depression

Psychological research (Al-Mosaiwi & Johnstone, 2018; Schoene & Dethlefs, 2016; Trifan et al.,

2020) has shown that people’s spoken and written language reflects their mental states. Thus a

collection of psycholinguistic evidence, such as pronouns, tense, and lexicon about depression,

is widely used to differentiate between depression and non-depression. For example, certain

lexical items, including the use of words such as “depressed”, “hopeless”, and “exhausted” are

often used by people who are diagnosed with depression. People with depressive symptoms tend

to use markers of linguistic style based on the depression lexicon which is quite different from

other people who do not exhibit depressive symptoms.

There are two major types of depression lexicon which can be categorized as follows:

1. Use of first person singular: Some clinical findings report that depressed patients express

their thoughts conveying significantly more first person singular pronouns, such as “me” and

“I”, fewer first person plural pronouns such as “we” and “us”, and fewer second and third person

pronouns, such as “they”, “them” or “she” (Zimmermann et al., 2017). From the perspective

of a clinical psychologist, people with depression repeat this pattern of pronoun usage because

they are more focused on themselves, and less connected with others, whereas people who do

not exhibit depressive symptoms do not display this preference.

2. Use of negatively valenced words: There is an existing certain style of language which can be

utilized to identify depression. Some research (Morales & Levitan, 2016; Nguyen et al., 2014) has

found that depressed people prefer to use more negatively valenced words and fewer positive

emotion words, which showed a good predictive validity in depression classification between

depressed and control groups from language. For example, depressed patients presumably have

more black and white views of the world and this would manifest in their style of language

(Holtzman et al., 2017). They have a tendency of using more “absolutist words” (Adam-Troian

& Arciszewski, 2020), such as “always”, “never”, “nothing” or “completely”.

2.1.2 Cognitive Biases

These two types of features mentioned above are mainly used to capture differences between

depressive and non-depressive patients. The features of cognitive biases are less widely involved

and used in the prediction of depression. Some empirical psychological results demonstrate

that utterances of depressed people directly and explicitly manifest cognitive biases presenting
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in their depressed thoughts (Al-Mosaiwi, 2018; Pennebaker et al., 2003). The study of the use

of cognitive biases to predict depression symptoms remains less focused.

Cognition is a non-specific term that refers to mental processes associated with thinking, learn-

ing and memory. Cognitive bias can be treated as a systematic error in thinking that affects

a person’s behavior. The Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition

(DSM-5) suggests that cognitive impairment is a major indicator of an MDE. Self-reported

measures of diminished concentration and attention are frequently observed in individuals pre-

senting with an MDE as part of MDD. Cognitive deficits in MDD are consistent, replicable,

non-specific, and clinically significant. The magnitude of cognitive deficits has been demon-

strated to be proportionate to the frequency of depressive episodes and duration of illness

(Gorwood et al., 2008). For example, individuals with greater depressive symptom severity

are more likely to present with cognitive impairments as compared to those with milder illness

severity.

Some studies show that assessing the original euthymic subjects, such as recognizing the core

belief of a depressed individual, appears to be the best method of investigating the severity

of depressive symptoms (Gladstone et al., 2001; Korobkin et al., 1998). According to Beck’s

cognitive theory (Beck, 1979), depressed people report a negative spin of thoughts involving

pessimistic ideas about the self, the world, and the future. Some studies (Parker et al., 1998;

Young, 1999a) referring to the hypothesis of “lock and key” assume that there is an existing

salient pattern in depression. Such a lock and key hypothesis emphasizes the developmental

construction of mistaken beliefs based on the interaction between the self and the environment.

Young (1999a) identified a set of early maladaptive schema referring to a stable and constant

theme that emerges during childhood. Thus, these schema-driven features, which are implicitly

taken for granted by depressed individuals, play a substantial role in priori truths and could be

used as a classifier to detect MDD and assess different levels of depression symptoms. More-

over, according to Pyszczynski and Greenberg (1987)’s control theory of depression, depressed

individuals think a great deal about themselves, stressing the role of self-focused attention and

extreme self-criticism.
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Figure 2.2: Beck’s cognitive theory of depression.

2.1.3 Cognitive Schemata-based Theories of Depression

There are a variety of innovative postulates which have been researched to identify “cognitive

schema” in depressed thoughts. For instance, some studies show that assessing originally eu-

thymic subjects, such as recognizing the core belief of a depressed individual, appears to be

the best method of investigating the severity of depressive symptoms (Dozois & Beck, 2008;

Gladstone et al., 2001; Hammen & Zupan, 1984; Korobkin et al., 1998; Moore & Fresco, 2007;

Young, 1999b; Young & Lindemann, 1992).

According to Aaron Beck’s cognitive theory of depression (Beck, 2002), Beck assumes that

depressed thoughts, which are driven by schema, cause severe depressed affect (Beck, 2002,

1979; Riskind et al., 1989). The schema can lead a depressed individual to negative perspectives

about himself, the world, and the future (see the model of schema in Figure 2.2). We describe

the schema as a ‘package’ of knowledge, which stores information and ideas about ourselves and

the world around us.

Beck posits three mechanisms which are responsible for depression. The first mechanism is

called a “negative self-schema” –– in which self is associated with traits of helplessness (e.g., “I

feel inferior to some people”), unlovability (e.g., “I am undesirable”) and worthlessness (e.g.,

“I feel I have little value as a person”). According to Beck, negative self-schemas maintain

a negative triad made up of three components:(1) the self, (2) the world and (3) the future
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(Beck, 2002). For sufferers of depression, their thoughts describing negative and irrational

views of themselves, their future and the world around them are symptomatic of depressed

people. Some psychological literature (Brewin et al., 1992; Shestyuk & Deldin, 2010) in their

findings empirically supports the view that negative traits are disproportionately prominent in

the self-schemata of persons diagnosed with MDD. This indicates that people with MDD rate

themselves as exhibiting negative traits more strongly and positive traits less strongly compared

to healthy individuals.

The second mechanism is that people prone to depression possess a depressive schema, or a deep

level knowledge structure. This structural model states that depression forms a systematic

negativity pervading the cognitive processes — sufficiently produces a systematic bias in an

abstraction of interpretation, short-term memory, and long-term memory (American Psychiatric

Association, DSM-5 Task Force, 2013). For instance, a specific stressor, such as a huge financial

change and social isolation, can trigger these schemas, causing an episode of depression.

Negative schemas seem to then lead to the third and final mechanism: errors in logic or cognitive

biases. Beck argued that people who prone to depression possess cognitive schemas leading them

to perceive the event in a negative way such that they may exaggerate a minor setback and

believe that it is a complete disaster. Cognitive schemas enhance both automatic and controlled

processing of schema-consistent, negative information in turn leading to core MDD symptoms

such as sadness, hopelessness, worthlessness and guilt (American Psychiatric Association, DSM-

5 Task Force, 2013).

Similarly, other studies (Parker et al., 1998; Young, 1999a; Young & Lindemann, 1992) referring

to the hypothesis of “lock and key” assume that there is an existing salient schema in depression.

Such a lock and key hypothesis emphasizes the developmental construction of mistaken beliefs

based on the interaction between the self and the environment (Parker et al., 1998). Young

(1999a) identified a set of early maladaptive schemas referring to a stable and constant theme

that emerges during childhood. Thus, these schemas, which are implicitly taken for granted by

an individual, play a substantial role in priori truths and could be operated as templates to

detect MDD and assess different levels of depression (Korobkin et al., 1998; Moore & Fresco,

2007; Young, 1999b).

Clinical psychologists suggest that people with depression are more focused on themselves, and

less connected with others (Holtzman et al., 2017). Moreover, depressed persons presumably
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have more black and white views of the world and this would manifest in depression language

(Al-Mosaiwi & Johnstone, 2018). It is found that people with cognitive schemas become prone

to produce depressive thoughts, focusing selectively on certain aspects of a situation while

ignoring equally relevant information.

Given existing psychological theories of depression mentioned above, depression affects and

influences the way individuals feel, think, and communicate. We know that language use reflects

the thought processes of people and words they used can be assessed to gain insight into their

thought processes. Undoubtedly, the words we use in our daily life can express our mental state,

mood and emotion (Pennebaker et al., 2003). Both psychologists and linguists have investigated

how psychological theories could manifest in language (De Choudhury et al., 2013b; Poulin et

al., 2014; Stirman & Pennebaker, 2001). As a result, language analysis to identify and monitor

human mental health issues has been regarded as an appropriate means of modeling mental

health.

2.2 Depression Datasets

This section provides the details of a set of depression datasets that are widely employed in

depression assessment systems.

2.2.1 AVEC (2013 - 2014)

The Audio/Video Emotion Challenge (AVEC) 2013 uses a depression corpus that includes 340

video recordings of 292 subjects performing a human-computer interaction task (Valstar et al.,

2013). The video files each contain a range of vocal exercises, including free and read speech

tasks. The level of depression is labeled with a solitary score for each recording utilizing the Beck

Depression Inventory–Second Edition (BDI-II). Recording lengths fall between 20-50 minutes

with a 25-minute mean value. The AVEC 2014 corpus (Valstar et al., 2014) is a subset of the

AVEC 2013 corpus. The AVEC 2014 corpus includes 300 videos, with duration ranging from 6

seconds to 4 minutes. The files have a read speech passage (The North Wind and the Sun) and

an answer to one of a number of questions.
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2.2.2 AVEC (2016 - 2017)

The AVEC16 and AVEC17 focused on categorical assessment, and encouraged participants to

address prediction of self-reported scores on the PHQ-8 scale ranging from 0 to 24, employed

by a Wizard-of-Oz (DAIC-WOZ corpus). This is part of a larger corpus, the Distress Analysis

Interview Corpus (DAIC), that contains clinical interviews designed to support the diagnosis of

psychological distress conditions such as anxiety, depression, and post-traumatic stress disorder.

The provided dataset has been split into a training set having 107 patients and a development

set containing 35 patients. For each patient in the training and development sets, a PHQ-8

score and binary depression decision are provided.

2.2.3 AVEC 2019

The AVEC 2019 (Ringeval et al., 2019) proposes Detecting Depression with AI Sub-Challenge

(DDS). The level of depression (PHQ-8 questionnaire) was assessed from audiovisual recordings

of US Army veterans’ clinical interviews conducted by a virtual agent driven by a human as

a Wizard-of-Oz (DAIC-WOZ corpus). The DAIC corpus contains new recordings with the

virtual agent being, this time, fully driven by artificial intelligence, i.e., without any human

intervention. The AVEC 2019 corpus includes interviews of 275 subjects for a total duration of

more than 73 hours. Thus, besides the automatic assessment of the severity of depression, DDS

also seeks to understand how the absence of a human controlling the virtual agent influences

this automatic assessment.

2.2.4 DAIC-WOZ

Distress Analysis Interview Corpus (DAIC-WOZ) (Gratch et al., 2014) dataset is provided by

the University of Southern California. A total of 50 hours of data was collected from 189 folders

(clinical interviews) from 142 patients. The dataset contains video-based facial actions, audio

and the conversation transcribed to text for each participant. This corpus is created from semi-

structured clinical interviews where the participant speaks to a remote-controlled digital avatar

Ellie. The clinician, through the digital avatar, asks a series of questions specifically aimed at

identifying depressive symptoms. The agent prompts each patient, with queries that included

questions and conversational feedback. a PHQ-8 score ranging from 0 to 24 and a binary

depression decision are provided for each participant. D’mello and Kory (2015) and Kroenke et

al. (2009) defines cut-points at [0,5,10,15,20] for minimal depression, mild depression, moderate
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depression, moderately severe depression, and severe depression, respectively.

2.2.5 DementiaBank

The DementiaBank Database (Becker et al., 1994) represents data collected between 1983 and

1988 as a significant aspect of the Alzheimer Research Program at the University of Pitts-

burgh. DementiaBank is a shared database of combined media communications for the study

of correspondence in dementia. A subset of the participants from the dataset also has HAM-D

depression scores.

2.3 Depression and NLP Application for Text-based Diagnosis

of Mental Illness

Over 300 million people worldwide have been affected by depression which may cause suicide

(World Health Organization, 2017). The impact of depression can be exacerbated by other

societal and environmental factors such as COVID-19 (Santomauro et al., 2021). Thus there is

a pressing need to find a convenient and automated method to assess depression severity. More-

over, the automatic depression diagnostic system can provide effective support to psychologists

in the diagnostic process.

Textual data, including transcripts of clinical interviews or notes describing patients’ mental

states and non-clinical text such as social media posts, provide a wealth of information that

expresses the emotional state and mental health of the authors of their texts. Natural lan-

guage processing methods demonstrate promising improvements to enhance proactive mental

health care and facilitate early diagnosis of symptoms of major depression or moderate-to-severe

depressive symptoms (Haque et al., 2018; Lin et al., 2020; Valstar et al., 2016).

Detecting mental illness from text can be cast as a text classification or sentiment analysis

task, where we can leverage NLP techniques to automatically identify emotional indicators in

mental illness. In recent years, sentiment analysis — a subfield of NLP — has been applied

to automatically classify or detect disease-related emotional polarities in texts (Balani & De

Choudhury, 2015; Delahunty et al., 2018; Deshpande & Rao, 2017). The sentiment analysis

approach can be effective in detecting the level of depression by exploring how the depression

level relates to the emotions that people recall when asked to report their recent feelings (Li
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et al., 2020).

Depression, a worldwide mental illness, is the most likely negative emotion associated with a

psychopathological consequence (Blanco & Joormann, 2017; Lovibond & Lovibond, 1995; Rot-

tenberg, 2017). Depression is associated with profound dissatisfaction in emotional experiences,

such as hopelessness, lack of interest and etc (Yang et al., 2012). In order to capture complex

associations between emotional dimensions and depression levels, sentiment analysis approach is

used to monitor and analyze an individual’s mental well-being or psychological conditions from

a wide variety of textual data (Jackson et al., 2017; Mukherjee et al., 2020). Consequently,

sentiment analysis shows rapid growth in the domain of health and well-being.

Automatic depression detection based on sentiment-aware NLP techniques is an area of ongoing

research in the fine-grained classification of depression, such as recognizing a state of depression

in a range of non-depressive, mild depressive, moderate depressive and severe depressive indi-

viduals (de2021profile; Burdisso et al., 2019). Individuals prefer to use their own words to

express their mental states, moods, and feelings. The link between language and the psycholog-

ical state of people has led to the exploration of data from textual sources (Bathina et al., 2021).

Emotions which were proved to be veritable risk indicators for the development of depressive

disorder enhance the detection of signs of depression (Deshpande & Rao, 2017). However, many

clinical analyses, such as the assessment of emotional consequences of illness in depression or

pattern classification of valence in depression, make NLP challenging in this area. For instance,

a patient who may incorrectly report his mental state unconsciously or intentionally can mislead

the diagnosis.

2.4 NLP Techniques with Machine Learning

ML-based models have been used for NLP downstream tasks relying heavily on feature engi-

neering and feature extraction. Traditional machine learning algorithms used for mental illness

detection are based on feature selection procedures. The most frequently used features are based

on Linguistic Patterns of Part-of-speech (POS) (Birjali et al., 2017), Bag-of-words (BOW) (Lin

et al., 2017), Linguistic Inquiry and Word Count (LIWC) (Islam et al., 2018; Pennebaker et

al., 2001) and statistics such as n-gram (Shickel et al., 2020). However, these methods are

inapplicable due to limitations of quantitative performance evaluation (Bengio et al., 2000).

17



2.4. NLP Techniques with Machine Learning Chapter 2

Traditional machine learning models are designed to learn patterns from text in terms of a com-

bination of various extracted features. Designing these inflexible hand-engineered features can

be extremely time-consuming, expensive and difficult to be applied to dynamic and flexible situ-

ations (Hamilton et al., 2017). However, deep learning techniques allow models to automatically

capture valuable features without feature engineering, contributing to significant improvements.

For NLP applied to detecting mental illness from text, deep learning techniques have recently

attracted more attention and have shown better performance than traditional machine learning

methods (Collobert et al., 2011; Naseem et al., 2020; Yenduri et al., 2021; Zhang, Wang, et al.,

2020).

Deep learning-based frameworks mainly consist of two layers: 1. An encoder layer; 2. A decoder

layer:

The encoder layer generates embeddings by transforming inputs which are sparse one-hot en-

coded vectors into dense vectors. These embeddings can preserve semantic and syntactic in-

formation such that deep learning models can be better trained. Recent embedding techniques

such as language modeling Embeddings from Language Models (ELMo) (Peters et al., 2018) and

Bidirectional Encoder Representations from Transformers (BERT) (Devlin et al., 2018) shift the

paradigm from initializing the encoder layer (or the first layer) of deep models to pretaining

the entire model with hierarchical representations. These popular language modeling methods

enable to generate different embeddings for a word that capture the context of the word. Other

embedding techniques such as GloVe word embeddings (Pennington et al., 2014) and Word2vec

(Mikolov et al., 2013) boost two to three percentage points on most tasks with limited training

data (Kim, 2014). Word2vec and GloVe, as an approximation to language modeling, are widely

applied as a transfer learning baseline processing multiple NLP related downstream accelerating

convergence and, in the meantime, avoiding the overfitting issue (Socher et al., 2011; Turney &

Pantel, 2010).

For the decoder layer, we denote it as a classifier or a regressor performing a downstream task

such as mental illness detection or prediction. The most popular deep learning-based methods

used for downstream tasks are Convolutional Neural Network (CNN)-based methods, Recurrent

Neural Network (RNN)-based methods, transformer-based methods and hybrid-based methods.

Some studies utilizing CNN involve One-dimensional Convolutional Neural Network (1D-CNN)

used in the NLP field. A 1D-CNN obtains context information by imitating n-grams. In the
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first layer of 1D-CNN, the size of the filter region can be considered as n in the n-grams. The

work of Chen et al. (Chen, 2015) applied a 1D-CNN model with pre-trained word embeddings

for text classification. The RNN and its variants such as Long Short-term Memory (LSTM)

(Hochreiter & Schmidhuber, 1997) and Gated Recurrent Unit (GRU) (Cho et al., 2014) are

effective to capture contextual information of the text. In LSTMs, the input gate controls how

much new information from the current input is allowed into the cell state. The forget gate

determines how much information will be forgotten from the previous cell state. The output

gate controls how much the current output depends on the current cell state. GRUs are a

variant of LSTMs. GRUs have two gates, a reset gate and an update gate, that control how

much information from the past is forgotten or retained. Some studies based on LSTM or GRU

exploited an attention mechanism to find significant word information from text (Ahmed et al.,

2021; Luong et al., 2015).

Moreover, there are many other deep learning models such as transformer-based methods and

hybrid-based methods. Transformer architectures can capture long-range dependencies using

attention and recurrence (Zhang, Wang, et al., 2020). A Transformer consists of an encoder

and a decoder. An encoder block is mainly composed of a multi-head self-attention module

and a position-wise feed-forward network. Compared to the encoder block, a decoder block

additionally inserts an attention module between the multi-head self-attention module and the

position-wise feed-forward network that helps the decoder focus on relevant parts of the input

sentence. The Transformer relies entirely on self-attention to compute representations of its

input and output without using sequence-aligned RNNs or convolution.

Some research studies exploit pre-trained language models such as BERT or ELMo for NLP

tasks including text classification and sentiment analysis (Naseem et al., 2020; Zhang et al.,

2021; Zhang, Wang, et al., 2020). BERT is a transformer-based language representation model

that utilizes the masked language model to predict random words that are masked in a sequence

and to subsequently learn bidirectional representations. ELMo trains a bi-directional LSTM and

concatenates the results to produce word embedding. ELMo considers different aspects of words

including their usage in a specific context. The usage and development of large-scale pre-training

models achieved state-of-the-art on widely used NLP tasks including question answering, text

classification and other applications (Naseem et al., 2020; Terechshenko et al., 2020). Hybrid-

based methods (Naseem et al., 2019; Tadesse et al., 2019) that combine several neural networks
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for text classification have been used. Tadesse et al. (2019) employed an LSTM-CNN combined

model to extract local features and sequence features. Their model outperformed the individual

CNN or LSTM classifiers.

Convolutional neural models find it difficult to learn the dependencies between distant positions

(Battaglia et al., 2018). In comparison, sequential models can connect contextual memory and

store more long-term global information. Therefore sequential models, in general, achieve good

performances in text analysis (Battaglia et al., 2018; Liao et al., 2021). However, these methods

mainly focus on consecutive word sequences, they do not encode word co-occurrence information

in an explicit way, and their complex model structure is like a black-box (Castelvecchi, 2016;

Sarker, 2021; Zhang, Cui, et al., 2020).

GNNs belong to an emerging area that has also made a tremendous impact across technological

domains. Graphs, due to their unique structural properties, inherently capture relationships

between entities and are thus potentially very useful to encode relational information between

variables. Graph-based deep learning approaches apply message passing to learn feature repre-

sentations for each feature in a node, in which nodes iteratively aggregate feature vectors from

their neighborhood to compute a new feature vector at the next hidden layer in the network

(Kipf & Welling, 2016a). Different GNN variants use different aggregators to gather informa-

tion from each node’s neighbours and use varied methods to update the hidden states of nodes.

Convolutional GNNs, such as Graph Convolutional Neural Networks (GCNs) stack layers of

learned first-order spectral filters followed by a nonlinear activation function to learn graph rep-

resentations. There are two major types of GCNs: spatial convolutional networks (Defferrard

et al., 2016; Kipf & Welling, 2016a) and spectral convolutional networks (Hamilton et al., 2017;

Niepert et al., 2016). The Graph attention network (GAT) (Veličković et al., 2017) applies

the idea of self-attention to graph representation learning. It computes the hidden represen-

tations of each node on graph by assigning different importance weights to nodes of the same

neighborhood.

Recently, GNNs have been increasingly utilized for many NLP applications including text clas-

sification, relational reasoning, conversation generation, and question answering. High perfor-

mance in some text classification tasks has demonstrated the potential value of graph-based

deep learning models in NLP applications (Liang et al., 2022; Liao et al., 2021; Yao et al., 2019;

Yasunaga et al., 2021). Yao et al. (2019) showed a pioneering way of converting a text classifi-
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cation problem to a node classification problem. They used a Text Graph Convolutional Neural

Network (Text GCN) to achieve strong classification performances with a small proportion of

labeled documents without any external pre-trained word embeddings such as Word2vec and

GloVe. Peng et al. (2018) proposed a graph-CNN-based deep model to first convert text to

graph-of-words and then used graph convolution operations to convolve the word graph. Wang

and Li (2022) applied GAT model to update the representation of a node by assigning different

weights to its neighbours and then fused all the nodes in the graph together into the document

embedding. There remain challenges in applying graph-based deep learning methods such as in

selecting the appropriate types of graph structures and to what extent these graph structures

help to improve the performance of the domain task (Wang et al., 2021).

2.5 Automatic Depression Detection with Machine Learning

In general, automatic depression detection techniques first extract different types of features

from interview facial expressions/audio of patients who are asked a set of carefully crafted

questions from different topics. Models are trained using the extracted features, the indicators

include visual, speech and linguistics, to measure the severity of depressive symptoms or generate

a prediction of the presence of depression (Alhanai et al., 2018; Cummins et al., 2017; Gong &

Poellabauer, 2017; Haque et al., 2018; Lin et al., 2020; Sun et al., 2017; Tsakalidis et al., 2018;

Valstar et al., 2016; Williamson et al., 2016).

Early studies of automatic detection of depression have made great efforts to extract effective

features from highly correlated interview questions. Gong and Poellabauer (2017) proposed a

topic modeling to preserve important information in long interviews. They utilized a context-

aware analysis to enhance the performances of both depression detection and depression sever-

ity prediction. Some work (Cummins et al., 2017; Valstar et al., 2016) implemented statistical

functions (e.g., max, min) on short-term features over a long interview transcript, but they

fail to preserve useful temporal information (i.e., some short-term signs of regret, anxiety, etc.)

across the long interview. Williamson et al. (2016) proposed a Gaussian Staircase Model by

analyzing the semantic context to obtain coarse depressive descriptors. Sun et al. (2017) ex-

tracted text features from the topic-related questions such as “Have you been diagnosed with

depression/Post-traumatic Stress Disorder (PTSD)?” and applied a random forest to detect

depression.
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More recently, there has been an emergence of deep learning techniques that learn represen-

tations automatically without feature engineering, which helps make great improvements in

depression detection systems.

Some work (Alhanai et al., 2018; Haque et al., 2018; Ringeval et al., 2017) applied a sequence-

level deep learning model to capture implicit depressive signals. Such models, in general, use

a multi-modal sentence embedding to predict the severity of depressive symptoms. Alhanai

et al. (2018) proposed a deep model which was trained jointly with the acoustic and linguistic

features. Haque et al. (2018)introduced a new way of learning a multi-model sentence embedding

to predict depressive symptom severity. By building an innovative causal neural network, they

aimed to transform all multi-modal features to a sentence-level embedding, and then they made

a prediction based on this sentence-level embedding. Lam et al. (2019) proposed a deep learning

model using multi-head attention modules to extract contextual information from clinical text

and a 1D-CNN to extract audio features. They used text features and audio features that

were highly correlated with depression severity. Lin et al. (2020) utilized a Bidirectional Long

Short-Term Memory (BiLSTM) with an attention layer to deal with linguistic content and a

1D-CNN to deal with acoustic features. They implemented a fully connected layer to summarize

all embeddings from both audio and text and make a prediction for the severity of depression.

There are existing studies on utilizing deep learning models that leverage pre-trained language

modeling (i.e., ELMo or Bert) or pre-trained word embeddings (i.e., GloVe) to extract global

features from text (Mallol-Ragolta et al., 2019; Ray et al., 2019; Solieman & Pustozerov, 2021;

Zhang, Wang, et al., 2020). Their results demonstrate the effectiveness of training downstream

deep learning models with pre-trained language representations.

Although promising results have been obtained using both machine or deep learning methods,

great difficulties still exist in practice. For instance, videos of clinical interviews may not be

available due to the privacy problem. Since language functions play an important role in the

detection of cognitive impairment cross different levels of MDD, speech transcripts can assist in

the early detection of the disease. Hence techniques at the nexus of natural language processing

and deep learning offer an inexpensive solution to this early detection problem (Al-Mosaiwi,

2018; Croisile et al., 1996; Rude et al., 2004).

Furthermore, for methods (Lam et al., 2019; Lin et al., 2020; Ray et al., 2019; Williamson

et al., 2016; Zhang, Wang, et al., 2020) utilizing only one type of features, methods based on
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text features perform better than those based on either audio or visual features in both binary

classification of depression and prediction of severity of depressive symptoms. As a consequence,

research has achieved high performance in depression detection by utilizing text modality alone.

It was found that text features are often the most informative indicators obtained by analyzing

the patients’ utterances (Williamson et al., 2016), and human language alone can be a very

good predictor of depression among those multimodalities (De Choudhury et al., 2013b).

2.6 Interpretability and Explainability in Machine Learning

Molnar (Molnar, 2020) defines interpretability as the degree to which a human can understand

the cause of a decision or the degree to which a human can always predict the results of an ML

model, and explainability is a method for understanding why particular decisions were made

by the model.

Deep learning-based methods achieve good performance by utilizing feature extraction and

complex neural network structures for illness detection. Although they relieve much of burden

of hand designing features, it pays the cost of interpretability (Castelvecchi, 2016; Hamilton

et al., 2017; Zhang, Cui, et al., 2020). Augmenting existing clinical methods by improving

predictive accuracy is not enough for future research, as this high-level task may require an in-

depth study of understanding why the model made certain predictions. It is important, when

guiding clinicians, that they understand not only what has been extracted from text but the

reasoning underlying the predictions.

With the growing success of the usage of deep learning techniques applied in mental health,

the interpretation and explanation of model behavior has become important to boost the detec-

tion performance, to empower decision-making, and to avoid severe misdiagnosis consequences.

Recently, explainability of deep models on images and texts has achieved significant progress.

The development of post-hoc techniques to explain the predictions gives a rise to explanation

techniques of deep models. For instance, explaining a black box by using an approximation

model, derivatives, variable importance measures, or other statistics.

In general, the area of explainability of deep models focuses on studying the underlying re-

lationships behind the predictions of deep models. Some studies interpret the model using

input-dependent explanations, studying the important scores for input features, or a high-level
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understanding of the general behaviors of deep models (Dabkowski & Gal, 2017; Du et al., 2018;

Selvaraju et al., 2017; Simonyan et al., 2013; Zhou et al., 2016). Some existing approaches ap-

ply dimensionality reduction techniques to project high-dimensional data to a lower-dimensional

and human-comprehensible space (Du et al., 2018; Selvaraju et al., 2017; Zhou et al., 2016). Oh

et al. (2019) designed a gradient-based visualization method to highlight the important input

features. Wang et al. (2020) applied t-distributed stochastic neighbor embedding T-distributed

Stochastic Neighbor Embedding (t-SNE) to identify most important linguistic biomarkers which

help to detect a certain disease. Wang et al. (2018) provided an explanation on attention-based

networks with integrated gradients to analyze the sensitivity between the input features and the

predictions. Furthermore, Clough et al. (2019) explored the meaning of hidden neurons with

the called concept activation vector technique to understand the whole classification procedures.

Olah et al. (2017) interpreted the model using an input-independent explanation. They study

the input patterns by maximizing the predicted score of a certain class.

2.7 Conclusion

Literature review shows that NLP techniques can be effective at making inferences about a per-

son’s mental state. Psychological findings have shown that depressive symptoms can be effec-

tively captured by certain existing patterns in the language behaviors of depressed individuals.

The link between language use and depression is important and could lead to opportunities to

automatically detect people at risk of depression from textual data. The next chapter describes

how to use a GNN model to measure depression severity from patients’ clinical text.
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Chapter 3

Predicting the Severity of

Depression Using a Graph Neural

Network

3.1 Introduction

This chapter aims to demonstrate a depression prediction algorithm that learns patients’ tran-

scripts using graphs. The work implements an end-to-end graph representation learning to

measure the severity of depression indicated by the PHQ-8 score ranging from 0-24.

The dataset contains the conversation transcribed to text for each sample interview arranging

from 7 to 33 minutes. Thus the length of decision unit is much longer than for traditional

emotion detection tasks, where their databases usually provide labels for short-term record-

ings (Busso et al., 2008). The challenges of processing and evaluating large amounts of data,

how to discover, capture and preserve detailed temporal information over an entire interview

are significant. These short-term details within the interview are the most informative when

predicting the state of depression of an individual. However, using statistical functions (e.g.,

max, min, mean, etc.) on short-term features over an entire interview may lose useful temporal

information such as short-term signs in regret, despair and anxiety.

Analyzing a large data volume is typically beneficial for accuracy, since its contextual infor-

mation conveys the most relevant evidence for determining depression at different levels, such
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as mentioning previous depression diagnoses and ongoing therapy, having sleeping issues and

repetitive anxious mood states, etc. Therefore, it is important to map the whole interview to a

high-level space where we can obtain contextual features of depression.

Since each interview contains hundreds of spoken words, extracting short-term details according

to utterances (in the form of text) which are not context-oriented may lead to the issue of

dimensional explosion or overfitting. For example, both subject 1 and subject 2 mentioned the

same word, “hopeless”, in an utterance; although it is a strong short-term signal indicating

depressive states, weighting both instances of “hopeless” at a similar level may cause an error

due to different contexts (e.g. “I am hopeless” vs. “he is hopeless”). In contrast, using a graph

representation may allow us to exploit an intuitive and compact data structure for learning the

representation of a word using connection information between this word and its neighbors. For

instance, given a specific context, the “hopeless” is following the word “I” instead of the word

“he”, we can learn to represent the word “hopeless” which depends on the correlation between

(“i”, “hopeless”). Because of the way in which the graph structure encodes information about

the importance among words in a context, deep learning on graphs can efficiently represent the

regression using a small number of parameters.

In order to overcome these challenges, I introduce an automatic depression detection method

based on the GNN model to measure the severity of depressive symptoms ranging from 0 to 24

using only text. I investigate the effectiveness of graph representation learning for depression

prediction task by comparing to general deep learning models, such as CNN, LSTM and etc.

This chapter shows two advantages of using a graph representation learning: 1. It facilitates

learning context-level semantic features derived from word entities and relations. 2. It can learn

to efficiently represent high-dimensional probability distributions while requiring a very small

number of parameters.

3.2 Text-based Depression Indicators

Semantic context features: Inspired by the observation of a dataset provided with text

transcripts, there are a variety of words generated by patients as they describe their opinion

and depressive symptoms. Depressed language is common in the context of depression and

can be used to measure various levels of depression. Some empirical psychological findings

(Al-Mosaiwi, 2018) also demonstrate that utterances of depressed people directly and explicitly
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manifest cognitive biases presenting in their depressed thoughts. Depressed language reflecting

cognitive bias lives in depressed minds. It is composed of a class of typical linguistic markers

and their connections with other word entities. According to Beck’s cognitive theory, depressed

language can form a “depressive schema” storing information about depression.

There are two typical types of depression-related cognitive biases that can be effectively iden-

tified:

1. Self-oriented cognitive bias: One finding emphasizes a person’s expression conveying sig-

nificantly more first person singular pronouns, such as “me”, “myself” and “I”, and fewer

second and third person pronouns, such as “they”, “them” or “she” (Zimmermann et al.,

2017). From the perspective of a clinical psychologist, people with depression repeat this

pattern of pronoun usage because they are more focused on themselves, and less connected

with others, whereas people who do not exhibit depressive symptoms do not display this

preference.

2. Black-and-white cognitive bias: Another finding highlights a certain style of language

(Holtzman et al., 2017) which can be utilized to identify depression. Research has found

that “absolutist words”, such as “always”, “never”, “nothing” or “completely”, are more

effective markers for depression recognition, as depressed patients presumably have more

black and white views of the world and this could be manifestly found in their style of

language.

According to the above psychological studies (Bai et al., 2018; Beckham et al., 1986; Du et

al., 2019; Hamilton et al., 2017), I found that the associations between cognition-based word

indicators can strongly and explicitly signify depression in utterances. My motivation is to

learn underlying correlations between these key words and their adjacent and non-adjacent

words by using co-occurrence information among words; thus I could capture semantic context

features (i.e., depressive features) and utilize them to generalize depression levels. For example,

associations between first person singular pronouns and their adjacent words, i.e., (“I”, “am,

hopeless”) efficiently create a context of PHQ-8 criteria for depression. Examples are shown in

Figure 3.1. This kind of information uses graphs (Battaglia et al., 2018) can be encoded because

graphs are particularly capable of representing strong relational inductive biases, which could

perform efficient reasoning by exploiting the graphical structures within text.
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Figure 3.1: The figure on the left shows an example of a single text “I am hopeless” extracted
from a raw transcript. On the right-hand side, I build a graph for this single text. An edge
exists in the graph for all words which are in the neighborhood of that word. The size of the
neighborhood is defined by a parameter p. For the convenience of the display, I set p = 1 for
displaying associated edges among the nodes (colored in blue).

As a result, I propose to exploit the power of graphs to develop a deep neural network operating

over graphs (Battaglia et al., 2018; Hamilton et al., 2017; Kipf &Welling, 2016b), for the purpose

of learning a flexible graph representation for depression score prediction.

3.3 Proposed Model and Method

In this section, I present the model structure of a graph neural network in detail. I first show

how to construct the graph structure for each patient transcript. Then I introduce how to

use graphs to update node representations. Finally, the output and loss function of the model

applied for the domain task are introduced.

3.3.1 Graph Construction

I constructed individual graphs for each text. I represented words as nodes and the co-occurrence

relationship between words are edges, denoted as G = (V,E,H), where V is a set of nodes

representing all the unique words in a given text, and E is a set of undirected edges between

pairs of these nodes, each represented by a set of the two nodes at either end of the edge. The

embeddings of nodes in each text graph were initialized with pre-trained GloVe embedding,

denoted as H ∈ R|V |×d, where |V | denotes the total number of unique words in a transcript,

and d is the dimension of a word vector.

I first preprocessed the text, including cleaning and tokenizing (Adel & Shi, 2021) to obtain

the word sequence. Then I applied a fix-sized sliding window (I set p = 4 at default) to detect
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edges according to word co-occurrence on word sequence. I define the edge set E like this:

E =
{
eij |i ∈

[
1, |V |

]
; j ∈

[
max(1, i− p),min(|V |, i+ p)

]}

For example, given a sentence sequence S1 (in figure 3.2), if I set p = 1, there is an edge

between word ‘i’ and word ‘am’, word ‘am’ and word ‘i’, a self-edge of word ‘i’, a self-edge of

word ‘am’, and so on. An example of constructing a text graph is shown in Figure 3.2.

Figure 3.2: An illustration of constructing a text graph for a single sentence extracted from a
transcript of a subject. S1 represents the word sequence after preprocessing. I set p = 1 in the
figure for displaying associated edges among the nodes. A ∈ R|V |×|V | represents the adjacency
matrix. H represents the global shared feature matrix.

I consider a set of graphs {G1...GZ}, and their labels {y1, · · · , yZ}1. T is the total number of

transcripts (or the sample size). I aim to learn a representation vector hGi that can be used to

predict the label of a new unlabeled graph, Gq.

3.3.2 Graph Neural Network(GNN)

A GNN uses the graph structure and node features hv to learn a representation vector of an

entire graph, hG. I use the Message Passing Mechanism (MPM) (Battaglia et al., 2018; Gilmer

1For input graphs in the training process the labels are integers in the range 0− 24.
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et al., 2017; Xu et al., 2018) which is a message function applied to push messages from the

surrounding nodes around the node v.

The graph performs message passing between nodes in order to learn the representation of

each node which captures the structural information within its network neighborhood. MPM

is defined as:

mk+1
v =

∑
u∈N(v)

hku (3.1)

This message function is where I aggregate all messages coming from neighbors of node v shown

by N(v) and its message passing phase runs for K iterations. mk+1
v is a message vector of v at

(k + 1)-th iteration.

Next, node embedding is updated by message passing using a node update function:

hk+1
v = σk

(
mk+1

v , hkv

)
(3.2)

where σk(.) is a 1-layer Multi-layer Perceptron (MLP).

In this step, I get the new embedding of the node v which is updated by holding messages that

encode correlations between itself and its neighbors.

Finally, I obtain the final set of embeddings of each node in the convolution unit at the final

layer. I apply a READOUT function which aggregates node features from the final iteration

and sums them up together to get the graph-level embedding hGi :

hGi = READOUT
({

(hKv |v ∈ Gi}
})

(3.3)

Finally I apply a linear function, performing as a Fully Connected (FC) output layer. The

output of the FC layer is yi which is a PHQ score: yi = g(hGi , w) where w are the weights of

the FC layer.

3.3.3 Loss

I minimize a loss function by updating the parameters through backpropagation of gradients.

For assessing the severity of depressive symptoms, Root Mean Squared Error (RMSE) loss, as
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defined in Equation 3.4, is chosen to be the criterion function.

RMSE =

√√√√ 1

N

N∑
i=1

(ypredi − ytruei )2 (3.4)

where ypredi denotes the ith predicted value, ytruei the actual score. Note that, the RMSE

metric has the same units as the corresponding score, and lower values of RMSE indicate better

performances.

As we shall see later in section 3.4 which presents the experiments performed using this GNN

model. In those experiments, the GNN model demonstrates a strong representation learning

capability to learn more flexible and strong contextual semantic features. Because of the way in

which the model learns a mapping between a graph and a depression level, in the experiments

the proposed model improved the accuracy of the prediction compared to the state-of-the-art

methods.

3.3.4 Overall Pipeline

I present a pipeline of applying a GNN model to learn a mapping between a long text (i.e.,

a clinical transcript) and a domain task purpose (i.e., predict a depression score representing

the severity of a patient’s depression). The diagrams (Figure 3.3 + Figure 3.4) illustrate an

instance of using a graph representation learning method to examine a depressed state from a

patient transcript.

I first create a graph from a raw patient transcript. Next, I implement a GNN model to learn

representations of each node by aggregating information from their adjacency. Running the

message aggregation mechanism, the GNN model functions as a graph algorithm to update

each node representation of a graph (note that each graph represents a separate transcript).

Figure 3.3 displays these two steps. Finally, I concatenated all node embeddings for making a

graph-level prediction. The output of the model is a PHQ score (shown in 3.4).

3.4 Evaluation

The experiments consist of two parts. First, I predict the PHQ score for each participant. I

then compare (in section 3.4.3) the performance of the model to state-of-the-art deep models in
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Figure 3.3: The figure showing a pipeline of an embedding of node A (in yellow) in an input
graph generated by the proposed GNN model. The embeddings of the rest of the nodes are
generated in a similar way. In each graph input, nodes represent unique words in a transcript
and lines between nodes represent word-word relations. The information of a word is collected
by its adjacent nodes and is used to update the state of the node (represented by a colored
rectangle attached to the corresponding node).

Figure 3.4: An illustration of a training phase of the proposed GNNmodel. Each node represents
a unique word in a transcript. I initialized each node with a pre-trained word embedding and
all nodes were updated during training. Overall, the feature extraction process in test phase is
similar to the process in this training phase. I learned a regression model and used it to predict
the depression severity score of the patient.
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Figure 3.5: Example of automated extraction of questions(or queries) and responses

Table 3.1: DAIC-WOZ dataset summary with the total number of participants gathered, in
addition to the number of participants categorized as depressed. Since the test set is not in the
public domain, I use both training and development sets.

Train Set Devel. Set Test Set Sum

Total participants 107 35 47 189
Depressed participants 31 12 9 52

measuring the severity of depression (see Table 3.3). Second (in section 3.4.4), I compare the

GNN to baseline models using the text modality alone. The experimental results demonstrates

the effectiveness of learning graph-level embeddings. The proposed approach is superior to

state-of-the-art methods in both Table 3.2 and Table 3.3.

3.4.1 Text Features

Data: The DAIC-WOZ dataset contains video-based facial actions, audio and the conversa-

tion transcribed to text for each participant. Both the 6th and 7th International AVEC (Valstar

et al., 2016) used this dataset (see Table 3.1). I utilized only the text transcripts of all 142

individuals within the dataset. 43 out of 142 subjects (30%) were labeled as depressed. The
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Figure 3.6: A histogram describes the distribution of ground-truth depression labels (PHQ
scores) on the training set. The x-axis represents a PHQ score ranging from 0 to 24. The y-axis
represents the number of subjects for each score.

Figure 3.7: A histogram describes the distribution of ground-truth depression labels (PHQ
scores) on the development set. The x-axis represents a PHQ score ranging from 0 to 24. The
y-axis represents the number of subjects for each score.
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provided dataset has been split into a training set having 107 patients and a development set

containing 35 patients. In line with prior work (Alhanai et al., 2018; Cummins et al., 2017;

Haque et al., 2018; Valstar et al., 2016) and to ensure comparable results, I test on the devel-

opment set from the original competitions (Valstar et al., 2016), since the actual test set is not

in the public domain.

Privacy: This data2 does not contain Protected Health Information (PHI). Personal names,

specific dates and locations were removed from the audio recording and transcription by the

dataset curators.

Preprocessing

• Given a raw transcript, question-answer pairs were formed each time a remote-controlled

digital avatar Ellie asked a new question. Examples are shown in Figure 3.5. In the

experiments, the features used for depression prediction were extracted from patients’

responses. To avoid relying on the clinicians’ expertise and to increase the generalization

capability, I adopt just patients’ answers as the model’s training inputs. The average

length of the patient transcripts is nearly 1402 words.

• Slang words present in the transcripts are canonicalized. For example, ‘lookin’ was trans-

lated to ‘looking’, ‘wanna’ was translated to ‘want to’ and ‘bout’ was translated to ‘about’.

All text is forced to be lowercase. Lemmatization is applied to pre-process raw transcripts.

• The most frequently occurring stopwords such as ‘a’, ‘on’, ‘at’, and ‘in’, were automatically

removed based on the hypothesis that these words do not carry much information.

• Word tokenization is applied before feeding into the training model.

3.4.2 Experiment Setup

I set the size of the word node embedding as 200 and initialized with GloVe (Mikolov et al.,

2013). I set p as 4 in equation 3.2 giving the sliding window size of 9 (i.e., 2p+1). I set the

learning rate as 10−3, L2 weight decay as 10−4, and dropout rate as 0.5. The batch size of the

model is 16. The loss objective is RMSE. I trained the GNN for a maximum of 500 epochs

using the ADAM optimizer (Kingma & Ba, 2014) and stopped training if the validation loss

does not decrease for 10 consecutive epochs.

2https://dcapswoz.ict.usc.edu/ last accessed on 18/09/20
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3.4.3 A Comparison Against Baselines

Deep learning models, in general, learn distributed representations of words sequentially. Two

representative deep learning networks are LSTM (or GRU) and CNN. These two models are

frequently used to measure the severity of depressive symptoms (a regression task) or to detect

depressed or non-depressed (a classification task). However, given the challenges mentioned in

section 3.1, I propose a graph-based deep learning model to estimate various depressive states.

I evaluated the performance of two types of embeddings summarized from different DL models

respectively: 1. A sentence-level embedding ; 2. A graph-level embedding. The experimental

result of the comparative methods evaluated on the DAIC-WOZ dataset is shown in Table 3.2.

The following section gives a detailed description of these DL models.

3.4.3.1 Experimental Approach

Experiment 1 with LSTM:

LSTMs: A LSTM network has embedding vectors that are passed to the LSTM layer. The

final hidden state is connected through a fully connected layer and then it is connected to a

linear layer which outputs a PHQ score. The model consists of three layers, followed by a fully

connected layer. The output of the connected layer is fed into a linear layer to produce a PHQ

score. For the loss function, I used MAE for regression. The optimizer algorithm was the adam

optimizer with β1 = 0.9 and β2 = 0.999 with L2 weight decay of 1e-4. Dropout was applied

with a 0.5 probability of being zeroed. The initial learning rate was 1e-4. A batch size of 16

was used.

Experiment 2 with GRU:

GRUs: GRUs are similar to LSTMs but they have fewer tensor operations; therefore, they are

a little speedier than LSTMs. The experiment setup used for the GRU model is as same as for

the LSTM model.

Experiment 3 with T-CNN:

Temporal Causal Neural Network (T-CNN) : T-CNN (Cummins et al., 2017) is derived from

a CNN model and has a causal convolution as a sequence model that convolves only on the

elements from current timestamp or earlier in previous layers for prediction. I implemented a

10-layer causal convolutional network with kernel size of 5 with 128 hidden nodes per layer.

Then it is sent to a fully connected layer through ReLU activation and finally it is connected
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Table 3.2: Baseline comparisons. Row 1-3 are learned a sentence-level embedding. Row 4 is
learned a graph-level embedding. I adopt 10-fold stratified cross-validation and report mean
with standard deviation in the parentheses.

Regression: PHQ score

Model Feature MAE ↓ RMSE ↓
1) LSTM L 5.20 (0.6494) 7.49(0.6827)
2) GRU L 4.83 (0.5994) 7.12(0.6258)
3) T-CNN L 5.42 (0.6096) 6.32(0.7559)
4) proposed GNN L 4.16(0.4120) 4.95(0.4107)

by a linear layer for generating a PHQ score. Dropout was applied to all non-linear layers with

a 0.5 probability of being zeroed. The loss objective was RMSE for regression. The model was

optimized with the Adam optimizer with β1 = 0.9 and β2 = 0.999 with L2 weight decay of

10−4. The initial learning rate was 10−4 for regression. A batch size of 16 was used.

To give more reliable results, I perform a 10-fold cross-validation on the combined training

and development dataset. Also, I initialized sequence inputs with 200-dimensional GloVe word

embeddings. I concatenated responses of the same question (in a transcript) as a long sentence

and I generated embeddings of individual responses to all questions, for a total of 8,050 training

examples, 272,418 words, and a vocabulary size of 7,411.

3.4.3.2 Experiment Result

Since the proposed method and some other state-of-work methods have a lot of differences in

terms of multiple feature set combinations (e.g., visual+audio, audio+text, etc.), it is hard to

check the effectiveness and advantage of using a graph-based deep learning model to perform

the task of depression prediction. Therefore, I compared the proposed GNN model with three

baseline methods that only accept text features (see the Table 3.2).

Row 1, 2 and 3 learn a sentence-level embedding. Both row 1 and 2 implement sequence-based

modeling, where it uses the last hidden state as the sentence-level representation of the text.

Row 3 uses convolutional neural layers operating on word embeddings to get the sentence-level

representation of text.

Row 4 learns a graph-level embedding. It shows the work of using a GNN model to learn a

representation of an entire text graph. Compared with the state-of-the-art results on the same

dataset, the approach based on the GNN achieves the best performance.
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Table 3.3: Comparison of DL based approaches for measuring depression symptoms severity
on development set using MAE. The task is evaluated: PHQ score regression. Modalities: A:
audio, V: visual, L: linguistic(text), A+V+L: combination. The results marked with a * are
taken from the cited papers. − represents that there are no reported results in the original
work. Experimental results are obtained from the provided development set; therefore, there is
no reported variance.

Regression: PHQ score

DL-based models Features MAE ↓ RMSE ↓

* Baseline Challenge (Valstar et al., 2016) A + V 5.52 6.62
* C-CNN (Haque et al., 2018) A + V + L 5.18 -
* LSTM (Alhanai et al., 2018) A + L 5.10 6.37
* LSTM (Haque et al., 2018) A 5.78 -
* LSTM (Alhanai et al., 2018) L 5.18 6.38
* CNN (Song et al., 2018) V 5.15 6.29
* DepArt-Net (Du et al., 2019) V 4.65 5.88
* DCGAN (Yang et al., 2020) A 4.63 5.52
* BERT + CNN-LSTM (Yang et al., 2020) L - 4.22
* BERT + LSTM (Yang et al., 2020) L - 4.97
* ELMo + BiLSTM (Lin et al., 2020) L 3.88 5.44
GNN (the proposed approach) L 4.2 -
* CNN + GNN (Chen et al., 2022) V 3.23 3.96

In conclusion, compared with baseline models adopting only text features, the proposed GNN

model based on text features performs even better, with an MAE value of 4.2.

3.4.4 A Comparison Against the Literature

In Table 3.3, I compare the proposed method to prior work on measuring depressive symptom

severity under the same condition of utilizing deep learning algorithms.

The major difference between the proposed method and prior work is that this method con-

centrates on learning context-aware semantic features. I convert the text to the graph level to

achieve the goal of learning a mapping of high dimensional probability distributions of corre-

lations between both adjacent words and between non-adjacent words through an entire tran-

script. On the other hand, prior work performs a context-free modeling to capture sensor-based

features from audio, visual, and (or) text. Their feature fusion models, in general, learn a map-

ping of sentence-level embedding, which relies on capturing content-based semantic features

across an interview.(Cummins et al., 2017) connected to the pre-trained word embeddings.

In conclusion, from Table 3.3 it can be seen that for the methods utilizing only one type of

features, the methods based on text features perform better than those based on either audio
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or visual features in depression severity assessment task.

3.4.5 Metaparameter Setting Analysis of GNN

The hyperparameters are tuned with different sizes of hidden layers. The hyperparameters

that were used in the GNN model are shown in Table 3.4. I adopted 10-fold stratified cross-

validation and reported MAE values. Here I used the same window size of 9, a dropout of 0.5,

and 200-dimensional GloVe word embeddings in the experiment.

Table 3.4: Result of 10-fold cross-validation using different hyperparameters of the GNN model.
I report mean with standard deviation in the parentheses.

Regression: PHQ score

Size of
Node
Embedding

Size of
Readout

# Params MAE (SD) ↓ RMSE (SD) ↓

16 8 3841 3.97 (0.5652) 4.86 (0.4258)
16 16 4321 3.85 (0.5074) 4.56 (0.4990)
32 8 8097 3.97 (0.2978) 4.85 (0.6520)
32 16 8833 4.02 (0.7055) 4.64 (0.5723)
32 32 10689 3.83(0.5625) 4.41(0.5625)
64 16 19393 3.93 (0.3104) 4.53 (0.5037)
64 32 22273 3.98 (0.5209) 4.62 (0.4771)
64 64 29569 3.86 (0.6831) 4.45 (0.5931)
128 16 46657 3.84 (0.3538) 4.70 (0.0583)
128 32 51585 3.95 (0.3199) 4.53 (0.3468)
128 64 62977 3.99 (0.3109) 4.61 (0.6185)
128 128 91905 4.02 (0.3108) 4.42 (0.5224)

3.4.6 Qualitative Analysis

Some incorrect results predicted by the model may be caused by the unequal distribution

of dataset across PHQ scores (see figure 3.6 and 3.7). In figure 3.8, the model made worse

predictions on those patients diagnosed with the most severe depressive symptoms. For example,

the model predicts a depression score of 43 to the patient whose ground truth score is 17, and

the patient who has the depression score of 23 has been wrongly predicted with a score of 8.

Given that 43 out of 142 subjects (30%) have been labeled with a major depressive disorder of

PHQ (a PHQ score ≥ 10), I suggest that additional samples with a PHQ score ≥ 10 can help

the model learn more major depressive features from text. Consequently, the addition of more

clinical transcripts can be useful as having more data could better reveal complex patterns for

3This score and all subsequent predicted PHQ scores in this thesis are rounded to the nearest integer.
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Figure 3.8: Results on development set for the graph-level PHQ prediction system, with pre-
dicted PHQ plotted as a function of true PHQ.

models to improve predictions with fewer features needed.

3.5 Conclusion

Instead of learning a transcript as a sequence input, which is most widely applied to many state-

of-the-art methods, I treat a long text as a graph. To achieve this, I converted an unstructured

raw transcript to a text graph. I learned a mapping encoding high dimensional probability

distributions over a text-level graph. Most previous work relies on utilizing multiple modalities

including visual, audio and linguistic features of an interview ranging between 7-33 minutes

to make a score-level depression prediction. However, the proposed GNN model is capable of

evaluating depression level for each subject in an end-to-end automated manner using just text. I

showed the experimental results on the DAIC-WOZ benchmark demonstrating the effectiveness

of the proposed approach and its superiority over other state-of-the-art methods.

By comparing performances of individual feature sets from visual, audio and text respectively,

some research studies (Lin et al., 2020; Williamson et al., 2016) found that semantic analyses of

dialogue transcript provided the highest performing features, and thus I suggest that future work

on measuring depression intensity should also exploit semantic features to capture contextual

information from patient transcripts.

Moreover, the accuracy improvement in the performance of the task of predicting the severity
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of depression indicates the advantage of using graph structures to learn a long text. In my

hypothesis, graphs can help to capture contextual semantic features of depression from clinical

text. For example, a deep graph model with its nature of relational inductive bias can exploit

word co-occurrence information to capture general depressive features in an explicit way. This

motivated us to learn a graph representation for a long text and to measure depressive symptoms

in terms of PHQ scores.

Compared with other methods that learn sequences, the proposed approach quantifies depression

levels by learning graph representation. The graph-based deep learning model is capable of

evaluating depression levels for each subject in an end-to-end manner. To the best of our

knowledge, this is the first study to use a GNN model to score depression.

In addition, this work focused on the evaluation of the efficacy of the use of the graph-level

embedding by comparing with the other three sequence-based deep learning models that work on

the text-to-numeric word embeddings. The experimental results on the DAIC-WOZ benchmark

demonstrate the effectiveness of the proposed approach and its superiority over other state-of-

the-art methods.

The natural strength of deep graph learning models enables to provide a straightforward inter-

face for producing structured representations. These graph representations are interpretable in

the structure of word entities and relations. The work in chapter 5 introduces multiple ways of

visualizing the learned hidden layers of deep graph learning models. This could further convert

the underlying weakness of the “black box” mechanism within deep learning architectures to its

strength by utilizing its much more implicit and flexible learning capability dealing with more

challenging work.
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Predicting the Severity of

Depression Using a Schema-based

GNN

4.1 Motivation

PHQ-oriented concepts are key to identifying certain depressive symptoms. We know that the

PHQ metric for depressive disorder forms a context constructed with eight items, such as “sleep

problem”, “anxiety problem”, “fatigue problem”, “depression problem”, and “no motivation or

interest in things” (Kroenke et al., 2010). This PHQ-8 checklist given for depressive disorders

can create a PHQ-oriented context of eight elements, we therefore consider these eight elements

as depression concepts. These depression concepts can be primarily identified in the PHQ-

centered context of a transcript, for example, a PHQ-based concept of “sleep issue” may be

described with a word pair (“not”, “sleep”), and a PHQ-based concept of “fatigue issue” may be

described with another word pair (“feel”, “tired”). This indicates that word-word associations

can naturally capture contextual information relevant to concepts of PHQ.

I observed that each text (see Figure 4.1) covers information relating to at least one of these

eight topics and word association might provide complementary information relevant to PHQ-

centered concepts. The more frequent the occurrence of PHQ-related concepts, the greater the

degree of the severity of depressive symptoms. Consequently, I hypothesize that the context of
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words in a transcript can be used to generate PHQ scores. This motivates generating a context

at each word of a transcript and learning a graph representation of the transcript to generate a

PHQ score.

I first propose a novel form for node attributes within a GNN-based model that captures node-

specific embeddings for every word in the vocabulary. The representation of each word is shared

globally and can be updated according to associations among words in a transcript. Intuitively,

the generated node-level embeddings maintain records linking PHQ-based concepts as facts that

indicate the known symptoms of a subject.

When subsequent facts are discovered which indicate additional depressive symptoms, records

will be updated by aggregating both old and new facts. In other words, those records will be

updated via a message passing mechanism over the transcript context until ideally all major

depressive features (characterizing depressive symptoms) have been discovered.

I produce a graph-level embedding of a transcript by summarizing the representations of all

the unique words in the transcript. Using graph structures to capture contextual features is an

innovative pathway which I hypothesize can be used to measure different levels of depression.

In this chapter, the present research work demonstrates the efficacy of the proposed approach by

showing that the accuracy of MDD measurement can be improved. Prior research has sought to

make a diagnostic prediction of depression levels from patient data utilizing several modalities,

including audio, video, and text. This research also demonstrates that the proposed method

based on the text features achieves high performance with fewer parameters than methods based

on multiple modalities. On the DAIC-WOZ benchmark, the proposed method outperforms the

state-of-art methods by a substantial margin, including those using multiple modalities. It also

outperforms the method presented in the previous chapter. Moreover, I evaluate the efficiency

of 2-D node attributes and show that the proposed model outperforms a generic GNN model

by leveraging 2-D node attributes.

4.2 Proposed Approach and Models

In this section I present a Schema-based Graph Neural Network (SGNN) in detail. Firstly I

show how to build a graph and describe how to create 2D node attributes at each node of the

graph using schema encoders. Secondly, I introduce how to use the message passing layer to
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Figure 4.1: An extract from a raw transcript.

update node representations. Finally, I demonstrate how to extract node features to obtain a

graph representation and learn a mapping between the graph embedding and a single value (the

output is a PHQ score).

Building a Text Graph: For a given transcript, I build a text graph.

Let G = (V,E) denote a text graph. V is a set of nodes representing all the unique words

in a given transcript and E is a set of undirected edges between pairs of these nodes, each

represented by a set of the two nodes at either end of the edge. V and E are defined as in

Chapter 3.

Each node has an attribute which is a 2D array. To emphasise this representational structure

of the attribute matrix, we refer to it as a ‘schema’ (Dozois & Beck, 2008; Hammen & Zupan,

1984; Rudolph et al., 1997; Soygüt & Savaşir, 2001) Ui ∈ Rn×d. The jth row of Ui is a vector of

length d containing the representation that node vi has of vj ; and n denotes the total number

of unique words (the vocabulary size) in a corpus.

4.2.1 Schema Encoders

I generate a schema for each word node which performs the role of recording a global context.

This global context retains information from interactions between the current word and every

other word. In this way, each word node maintains “a dynamic record” (in the form of a schema)

of the context from the given transcript. The schemas are progressively updated by a GNN

model. This resulting model produces final embeddings of the words in a transcript in relation

to all words in the vocabulary, including the other words that make up the current training

transcript.
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Schemas preserve structures that represent relationships between a particular word and every

other word. Thus we can exploit these schemas to capture contextual features in an explicit way

by learning a GNN model. The innovation is to represent word proximity through the graph

structure and co-occurrence within the same transcript within the schema at each node.

Figure 4.2: For one of the layers of an SGNN model k, the upper right part of the figure
showing an output is a schema generated for the word node “hopeless”. This schema can be
treated as an “inner record” of the node “hopeless”, which is formed as Uk

hopeless ∈ n × dk,
where the generated dk-dimensional representation of a node presents as a row. The blank rows
correspond to word nodes that have not been encountered with the node labeled by “hopeless”
in the current text context. The left part of the figure shows an example of a modified schema of
the same word node “hopeless” after learning. The model using schemas can encode information
about associations between the node “hopeless” and its new neighbors, such as a node “his”
(colored in green). As a result, the internal representation of the node labeled by “hopeless”
is updated by the model. Moreover, its original record containing its other already existing
neighbors has been explicitly preserved while learning. Note: For the convenience of display,
in this figure, I set the window size of +/− 1 for displaying associated edges among the nodes;
in the actual experiments I use a larger window size.

4.2.2 Layer Initialization

I use multiple passes (layers) of the MPM (Gilmer et al., 2017; Xu et al., 2018) to update the

schema at each node of the text graph.

I first initialize an n× d matrix as the schema U
(1)
i at each node vi ∈ V using a linear transfor-

mation. The schema is all zeros apart from the row corresponding to the word associated with

this node, which is a random d-dimensional vector.
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4.2.3 Schema-based Message Passing Layer

In this thesis, the operation of message passing is split into two steps to update the schema at

each node.

I first modify the schema at each node vi:

Ûi
k
= Uk

i W
k
1 +

1

n
11TUk

i W
k
2 +

1

n
1i1

TUk
i W

k
3 (4.1)

where 1 ∈ Rn is a vector of ones.

The first term updates each row independently. The second term operates on the sum of the

columns, replicated in each row. The third term operates on the row corresponding to the

current word, replicated in each row. These terms are a subset of equivariant linear functions

which are computed by Maron et al. (2018).

Second, I compute the message function, which is defined as:

Mk
(
Ûi

k
, Ûj

k
)
= Ûj
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+RELU

([
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k||Ûj
k]
W k

4

)
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where || denotes concatenation along the second axis.
(
W k

m

)
1≤m≤5

are learnable parameters.

This is essentially a stack of two identical 1D convolution layers.

In the next step, each node’s schema is updated as:

Ui
k+1 =

∑
j∈N(i)

Mk
(
Ûi

k
, Ûj

k
)
∈ Rn×dk+1 (4.3)

I apply equation 4.3 as the sum aggregator over the k-th layer of the SGNN.

4.2.4 Pooling Layer

After all K message passing layers have been applied, I apply a max function to pool schema

UK
i in the word embedding space by taking the maximum across all rows of the schema:

hvi = max
(
UK
i [i, :]

)
(4.4)

As a result, the schema at each node by a row vector contains the maximum value in each
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column. Thus, the corresponding word is now represented by a row vector that captures the

dominant values in the embedding spaces for all words in the vocabulary.

Next I apply a READOUT (Xu et al., 2018; Ying et al., 2018) function to capture graph-

level features from row vectors. The READOUT (Xu et al., 2018; Ying et al., 2018) function

aggregates node features by averaging them together:

hG =
1

|V |
∑
vi∈V

f(hKvi ) (4.5)

where f(.) is a final linear layer. The READOUT function performs a graph prediction task.

I use hG to predict a PHQ score for each transcript. In the experiments, I apply a 2-layer MLP

(1 hidden layer + 1 output layer) to generate a PHQ score. A ReLU layer and the following

dropout layer are placed after the hidden layer of the MLP.

4.3 Evaluation

The results generated by the proposed method on the task of measuring the severity of depressive

symptoms are shown in this section. I predict a PHQ score for each participant. The loss

objective is RMSE for regression.

I evaluate the SGNN model on the DAIC-WOZ benchmark and I then compare the method to

the state-of-art works including learning one single modality or multiple modalities on the same

test set (i.e., the development set)

The model with randomly initialized word embeddings outperforms other works using pre-

trained word embedding in the literature (Alhanai et al., 2018; Haque et al., 2018; Williamson

et al., 2016). This shows that the approach is useful for text domains that may not have a large

training corpus or pre-built dictionary.

I also investigate the effectiveness of pre-training for depression prediction. I employ GloVe word

embeddings to generate 2-D node attributes. The SGNN model with pre-trained embeddings

greatly improves the accuracy of assessing the severity of depression. I further investigate

the effect of sliding window size on depression level prediction accuracy. I demonstrate the

effectiveness of 2-D node attributes on minimizing errors in the prediction of depression severity

and achieving a better generalization on a small group of subjects having PHQ scores higher
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than 14.

4.3.1 Experimental Setup

I set the learning rate as 10−3, L2 weight decay as 10−4, the dropout rate as 0.5, the window

size as 4 to gather word-word occurrence statistics, di = 32 for all i, and the batch size as 7. The

loss objective is RMSE. I trained the SGNN for a maximum of 300 epochs using the Stochastic

Gradient Descent (SGD) optimizer (Kingma & Ba, 2014) and stopped training if the validation

loss does not decrease for 10 consecutive epochs.

4.3.2 Experimental Performance & Analysis

I compare the method to prior work on measuring depressive symptom severity. The perfor-

mance of the proposed method and eleven other methods, including the state-of-the-art method,

is set out in Table 4.2. It is noted that results of some models are directly taken from their

original papers. The method outperforms all other methods, despite using only the textual

modality.

I found that the proposed model performs better than the standard GNN (Gilmer et al., 2017).

The GNN without the schemas utilizes node representations which are initialized by pre-trained

300-dimensional GloVe word embeddings (Mikolov et al., 2013). However, the method con-

structs schemas which are initialized with random vectors. Moreover the standard GNN prop-

agates node features in terms of vectors while the model uses 2-D node attributes. This change

increases the expressive power of the MPM, resulting in better accuracy.

The machine learning algorithms of Valstar et al. (2016) and Williamson et al. (2016) perform

modeling statistics using handcrafted features derived from audio, text and (or) visual inputs.

However, the proposed method uses just text.

I also note that the model performs better than other prior work (Alhanai et al., 2018; Du et al.,

2019; Haque et al., 2018; Lin et al., 2020; Ray et al., 2019; Song et al., 2018). That is likely

due to the difference of representation learning. Their work uses a multi-modal sentence-level

embedding to predict a PHQ score while the model is trained to learn a graph-level embedding

of each transcript. The method (Lin et al., 2020) based on the BiLSTM model reaches to a

similar lower MAE. Their work employs pre-trained word2Vec embeddings. However, I train

word embeddings initialized with random vectors.
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4.3.2.1 Ablation Study

To further analyze the model, I perform three ablation studies (see Table 4.3). To give more

reliable measures of performance, I perform a 10-fold cross-validation on the combined training

and development dataset. I concatenate the training and development set as one set and then

divide it into 10 folds in a stratified manner. Each time one fold is used for testing and the

other 9 folds are used for training.

In (i), I give equations 1-4 (in section 2.2) for ‘point-wise’ multiplication. According to the

results in Table 4.3, we can see that using convolution layers can better model the relations

between words compared with point-wise multiplication layers.

In (ii), I remove the second and third (equivariant) terms in (1). There was a significant

reduction in performance (Table 4.3). From the ablation study, the representation power of

the model can increase when parametrized with these layers, thereby improving the model’s

performance on the data set.

In (iii), the max operator, which operates as a max function (in section 4.2.3), is replaced by

a mean operator to take an average over each row of a schema to obtain node features. From

Table 4.3, we can see that the result was not good when applying an average operator. The

max operator highlighting the strongest node features can enhance discriminating depressive

features, which helps to achieve a better result.

4.3.3 Metaparameter Setting Analysis of SGNN

The hyperparameters are tuned to find an optimal setting of the SGNN model. The hyper-

parameters that were used in the model are shown in Table 4.1. I adopted 10-fold stratified

cross-validation and reported MAE values. Here I used the same window size of 9, a dropout of

0.5. The model is initialized with 32-dimensional random word embeddings in the experiment.

4.3.4 The Effect of Window Size

In this experiment, I applied different sizes of a sliding window on each text document. A larger

window size w captures long term dependency while a smaller p enforces the local dependency.

I presented its impact in Table 4.4. Test accuracy on i)-iiii) expresses no clear patterns in model

performance when different window sizes are employed. However, a much greater window has a

negative impact on model performance. Since each patient’s transcript is a long text, I finally
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Table 4.1: Result of 10-fold cross-validation using different hyperparameters of the SGNNmodel.
I report mean with standard deviation in the parentheses.

Regression: PHQ score

Dim. of the Output of
per Update Layer
(node feature
extractor)

Dim. of the Output of
per Readout Layer
(graph feature
extractor)

# Params MAE (SD) ↓ RMSE (SD) ↓

32 32 15745 3.84 (0.3482) 3.61(0.3106)
32 16 13889 3.05(0.4565) 3.53(0.2311)

Table 4.2: Comparison of machine learning approaches for measuring the severity of depressive
symptoms on the DAIC-WOZ development set using MAE. The task evaluated is: PHQ score
regression. Modalities: A: audio, V: visual, L: linguistic(text), A+V+L: combination. Note:
the results marked with a * are taken from the cited papers.

Regression: PHQ score

Methods Modalities MAE ↓
*Baseline Challenge (Valstar et al., 2016) A+V 5.52
*Gaussian Staircase Regression (Williamson et al., 2016) A+V+L 4.18
*LSTM (Haque et al., 2018) A+V+L 5.18
*LSTM (Alhanai et al., 2018) A+L 5.1
*DCGAN (Yang et al., 2020) A 4.63
*DepArt-Net (Du et al., 2019) V 4.65
*LSTM (Alhanai et al., 2018) L 5.2
*C-CNN (Haque et al., 2018) L 6.14
*BiLSTM (Lin et al., 2020) L 3.88
*Multi-level Attention network (Ray et al., 2019) L 4.37
* ELMo + BiLSTM (Lin et al., 2020) L 5.44
* CNN + GNN (Chen et al., 2022) V 3.96
the GNN (chapter 3) L 4.24

Proposed Model L 3.54

selected w = 9 as the relatively small sliding window for this domain task.

4.3.5 The Effectiveness of using pre-trained 2-D node attributes

I treat pre-trained word embeddings as node attributes xi of node vi ∈ V . I initialize U
(1)
i

at each node vi by mapping the pre-trained word embeddings to rows corresponding to words

associated with node vi. I append these features to the same row of U
(1)
i : U

(1)
i [i :, ] = [1 : xi] at

first, then I apply a linear transformation to get an updated schema, which is a n× d1 matrix.

I still set d1 = 32 as same as the default size of schema.

I use the GloVe word embedding 50−, 100−, 200− dimensional training on the Wikipedia

2014+Gigaword 5 dataset. In Table 4.5, the results show equally high performances between
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Table 4.3: Results of ablation studies. I apply 10-fold stratified cross-validation and give mean
results with standard deviation in the parentheses.

Metric MAE ↓ RMSE ↓

Setting Train Test Train Test

Original(SGNN) 3.48(0.4521) 3.39(0.4260) 4.20(0.5430) 4.05(0.5491)
i) Fast(SGNN) 3.67(0.5222) 3.48(0.5273) 4.31(0.6036) 3.94(0.4151)
ii) Without equivariant linear layers
(Maron et al., 2018) 3.60(0.6120) 4.40(0.6630) 4.16(0.5229) 4.01(0.5150)
iii) Mean Reduction 4.48(0.1595) 4.58(0.3739) 4.41(0.5541) 4.18(0.4147)

Table 4.4: Performance Effects of window size. The accuracy with multiple sizes of a sliding
window is shown in the table. I adopt 10-fold stratified cross-validation and report mean with
standard deviation in the parentheses.

Train Test

Window Size MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

i) #W = 5 3.24(0.6041) 4.11(0.7579) 3.73(0.5034) 4.04(0.4301)
ii) #W = 7 3.72(0.5556) 4.75(0.5982) 3.63(0.4007) 4.35(0.4936)
iii)#W = 9 3.32(0.3775) 4.18(0.4643) 3.19(0.4138) 3.75(0.6245)
iiii)#W = 11 3.81(0.4631) 4.83(0.3211) 3.87(0.4572) 4.29(0.4043)

models utilizing three different word feature dimensions. I therefore choose 50-dimensional word

embeddings for less computation.

I further evaluate the performance of the model with 50-dimensional word embeddings on the

DAIC-WOZ development set; the result shown in Table 4.6 notes that the SGNN model with

pre-trained word embeddings can effectively improve the accuracy with MAE and RMSE.

4.3.6 Performance Analysis of 2-dimensional Node Attributes

In Table 4.2, I compared the result of the performance of the GNN models with and without

2-D node embeddings. I argued that 2-D node embeddings generated by schema encoders

obtained most informative information about the depressive state, particularly in the high-level

depressive state. In this section, I analyze the model performance of a standard GNN model

and the SGNN model using 2-D node attributes.

Figure 4.3 shows that the latter (in the middle and on the right of the figure) generalized the

development set much better, particularly for the small group of samples in the class of having

scores higher than 13. The graph representation learning framework using schemas achieves

better generalization on the very limited dataset. I suggest that using 2-D node attributes
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Table 4.5: Performance comparison using different word feature dimensions. I apply 10-fold
stratified cross-validation and give mean (standard deviation) results.

Feature size Train Test

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

d = 50 3.12 (0.2255) 3.36(0.2820) 3.21 (0.1729) 3.36 (0.3368)
d = 100 2.68 (0.2144) 3.63 (0.6101) 2.61 (0.2485) 3.08(0.4269)
d = 200 2.40(0.3007) 3.90 (0.3640) 2.37(0.6243) 3.30 (0.2243)

Table 4.6: Results of experiments on the development set. Performances of SGNN model with
and without pre-trained word embeddings.

Model Test

MAE ↓

Proposed Approach 3.54
Proposed Approach+50d Glove 2.92

(i.e., schemas) can improve the expressive power of the MPM. By setting a global context

(matrices) of each node (as the input), I can obtain some parameters, in an explicit way, that

capture the context of a word using each node’s schema. Moreover, using pre-trained global

word embeddings to learn 2-D node attributes can further improve the overall accuracy of the

performance. On the contrary, using a 1D node embedding may result in losing contextual

information when they are processed by several layers of a learning model.

Qualitative Analysis of Experimental Results: In figure 4.3, the SGNN model without

pretrained embeddings (in the center) made more biased predictions on those subjects having

PHQ scores in range [10, 15]: For instance, the model predicted a PHQ score of 3 for a patient

with an actual PHQ score of 14, while the SGNN model which employed GloVe embeddings

achieved a higher predictive score of 12 for the same patient. The original SGNNmodel predicted

a PHQ score of 20 for a patient with an actual PHQ score of 15, while the SGNN model with

GloVe embeddings achieved a predicted score of 14. Moreover, the patient who has the PHQ

score of 23 has been underpredicted by both SGNN and SGNN+GloVe models. To improve

the learning capacity of the model, additional training samples with PHQ scores higher than

20 would be needed.

Qualification Analysis of Word-Word Associations: I used a hidden layer output of the

SGNN by equation 4.4 to qualitatively visualize word embeddings (= 32 dimensions) in the form
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Figure 4.3: Results on the development set for the graph-based PHQ prediction system, with
the true PHQ plotted as a function of predicted PHQ. The figure on the left describes the
performance of applying a generic GNN model (Gilmer et al., 2017), while the figures in the
middle and on the right respectively show the performance of implementing the SGNN model.
It can be seen that GNN model cannot give a good generalization performance of a small group
having scores greater than 13

.

of bi-grams. Table 4.7 shows the most important word pairs that have been learned to capture

contextual semantic features, such as “feel, tough”, “therapy, asleep”, “sleeping, depression”

or “depression, psychiatrist” related to PHQ topics. This demonstrates that high depression

scores are predicted on the basis of appropriate semantics.

Table 4.7: Performance of top-10 bi-gram word associations on the DAIC-WOZ development
set. The word-word connections, in the context of PHQ-related topics, are generated by the
output of the final message passing layer of the SGNN model. gt: ground truth

Transcript 1 Transcript 2

gt score of 16 gt score of 19
predicted score of 16.46 predicted score of 17.30

(‘married’, ‘upset’) (‘almost’, ‘thought’)
(‘getting’, ‘upset’) (‘cheated’, ‘marry’)
(‘anyone’, ‘argued’) (‘unconditional’, ‘trip’)
(‘family’, ‘issue’) (‘depression’, ‘psychiatrist’)
(‘feel’, ‘tough’) (‘certainly’, ‘argent’)
(‘energy’, ‘explore’) (‘exhausted’, ‘never’)
(‘helping’, ‘sleep’) (‘therapy’, ‘asleep’)
(‘lack’, ‘achieve’) (‘development’, ‘issue’)
(‘missing’, ‘every’) (‘married’, ‘upset’)
(‘sleeping’, ‘depression’) (‘especially’, ‘breath’)
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4.4 Conclusion

This chapter demonstrates a novel method to improve the performance of predicting depression

states by training a deep graph learning model to learn contextual features from the text. The

results have demonstrated that it is possible to apply deep learning methods to tackle more

specific problems within the field, and not just a more general problem, even with limited data.

The proposed approach exploits the strong learning ability of schema encoders to capture impor-

tant features from the clinical context of patients’ verbal behaviors. The experiments demon-

strate that good predictions can be made with little prior patient information based on their

transcripts. The promising results of this chapter open the possibility for further applications

in this or other domains.

Future work might address finding a way of explaining a GNN model such as visualizing the

relationship between the underlying depression features and depression scores, which helps us

better understand clinical context behind the data.
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Using the SGNN model to Interpret

Fine-grained Prediction of Severity

of Depression

5.1 Motivation

In chapter 4, we trained the SGNN model to learn a regression task that predicts a numerical

rating scale representing the severity of depression. In this chapter, I investigate the learn-

ing process of the SGNN model. Since graph representation learning using graph structures

naturally elucidates its predictive results, I provide a natural approach of interpretability to

describe the model’s predictions in terms of its gradients. I deliver human understandable

post-hoc explanations of the model’s decisions with semantic measures.

The following three ways of interpretability analysis for the depression level prediction task

utilizing the output of an internal layer of the SGNN model are introduced:

1. I explore semantic measures to visualize patterns between depression levels using the

output of the model’s pooling layer.

2. I use the output of the model’s final message passing layer to measure semantic similarity

between words. I show by examples that the highlighted words generated by the model

provide useful information.
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3. I implement word cloud, a data visualization technique, to visualize the performance of the

SGNN model. The output of the model’s final message passing layer is applied to identify

linguistic features of a transcript from a subject who may be suffering from depression

over a time period.

My research demonstrates the explainability of the SGNN model with either embedded nodes

(or words) as well as embed graphs (a graph represents a transcript), which provide linguistic

insights into the degree of severity of subjects.

5.2 Semantic Network Relatedness

Depressed people recall bad or negative memories when they are exposed to information that is

related to their knowledge (Dillon & Pizzagalli, 2018; Gorwood et al., 2008; MacQueen et al.,

2002). The way their mind encodes knowledge is an associative semantic network (Bartczak &

Bokus, 2017). An associative semantic network consists of a set of nodes and a set of edges.

Each node in the network denotes a concept in semantic memory such as sleep, and edges

representing associations between concepts can be used to indicate a semantic relation such

as temporal co-occurrence, featural similarity, etc. I borrowed the concept of this associative

semantic network to explore a network that identifies the relationship between different severity

levels in depression. In my hypothesis, links between information in a semantic network can

be determined by cognitive deficits in depression, such as cognitive schemas. As a result,

connections within the semantic network are highly associative (Bartczak & Bokus, 2017).

My focus of interest is the relation between groups where individuals in each group have the

same degree of severity of depression. My research question is how the levels of depression

severity between groups can be indicated with semantic features extracted from their text. I

exploit the structure of an associative semantic network to explore the difference in levels of

severity of depression.

To achieve this, I treat an associative semantic network as a graph where the concept of a

graph node represents an individual’s transcript and the concept of the node features represents

semantic features related to depression derived from the individual’s transcript. The concept of a

graph edge, as a feature-feature association, represents semantic similarities between individual

nodes (or transcripts). I measure the influences of feature-feature relations in terms of semantic
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relatedness.

A semantic relatedness effect is an inverse correlation between semantic distance and relevance

assessment (Budanitsky & Hirst, 2006; Miller & Charles, 1991; Weeds & Weir, 2005). I measure

semantic relations between two nodes with semantic similarity metrics. A node pair has a strong

association if their semantic similarity or relatedness is high, and otherwise they are “unrelated

(or distant)”. To estimate the scale of structure of an associative semantic network, semantic

similarity metrics provide a quantitative way of measuring strengths of relationships between

nodes in the network. The semantic relatedness features can be utilized to visualize the strengths

of semantic networks, which capture a pattern in depression levels (from mild to severe).

Del and Fishel (2021) presents a model interpretation and analysis with cosine similarity to

measure the similarity between the representations of sentences in different languages. I adopt

this method to quantify the strength of an associative semantic network by measuring cosine

similarity between a node pair:

cosine similarity(vi,vj) =
vi · vj

∥vi∥∥vj∥
(5.1)

, where vi and vj are feature vectors of two distinct nodes (representing a pair of transcripts).

5.3 Semantic Measures Reflecting Patterns of Depression Lev-

els

Since depression levels are indicated by scores 0–4 (no depression), 5–9 (mild), 10–14 (moderate),

15–19 (moderately severe) and 20–24(severe) as we discussed in section 1.3 of chapter 1, I

applied four cut-points to partition the scales of depression into five groups. However, group

five contains only a very small number of samples so I decided to combine group four and group

five into one group. I partitioned the development dataset into four groups such that group one

represents no depression (or the lowest level of depression) and group 4 represents the highest

level of depression. Therefore I now have four new groups representing four distinct degrees of

depression severity.

I applied t-SNE (van der Maaten & Hinton, 2008) to visualize high-dimensional embeddings of

graphs (or transcripts). I quantified plots in the visualization (see figure 5.1) It can be shown in
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Figure 5.1: Visualizing semantic similarity of embeddings for transcripts in development set
using t-SNE. The 16-dimensional embedding hG is extracted from each transcript by equation
4.5.

figure 5.1 that graphs (in dark colors) with higher levels of depression (i.e. levels 3 and 4) are

mostly clustered and distinct from graphs (in light colors) with lower levels of depression (i.e.,

level 1 and level 2). Furthermore, I also plotted node embeddings of transcripts with t-SNE.

The visualization in figure 5.2 also illustrates correlations between relations of node embeddings

and depression levels. I found that clusters of nodes (e.g., clusters coloured red) in the same

depression level are not closely clustered, and some are even close to clusters of different levels.

To explore the reason why some transcript embeddings with high levels of depression are clus-

tered together with low levels of depression shown in figure 5.3, I compute the similarity of two

58



Chapter 5 5.3. Semantic Measures Reflecting Patterns of Depression Levels

Figure 5.2: Visualizing semantic similarity of node embeddings of transcripts in development set
using t-SNE. The 32-dimensional embedding hVG

is extracted from each transcript by equation
4.4.

transcripts based on node embeddings with cosine similarity measure.

Node embeddings of a transcript i are the output of the 2nd message passing layer by equation

4.4. HvGi
is made by stacking row vectors hvi , which is 32-dimensional, for all vi ∈ VGi .

The result of pairwise cosine similarity between node embeddings of transcript i and node

embeddings of every other transcript, such that cos sim(HvGi
, HvGj

) for vGj ∈ V{G1,...,GN−1}

where N is the total number of transcripts, is concatenated to obtain a final embedding HVGi
∈

|VGi | × d.

t-SNE is applied to visualize the closeness of node representations (i.e., HVGi
) between four

groups. Figure 5.3 shows that texts from various group levels have similar representations

based on PHQ-related concepts, suggesting a shared context among the groups.

Furthermore, I quantified the semantic network relatedness between each pair of graphs in the

high-dimensional representations. Graphs with the same level of depression are assigned to the

same group. I treated each group as an associative semantic network. Graphs (i.e., transcripts)

in the same group are network nodes and the features of each node are embeddings of each
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Figure 5.3: A bird’s-eye view of semantic similarity of node embeddings of each transcript in
development set via t-SNE.

graph. The learned features, for instance, hG1 is the representation of the transcript 1, hG2

is the representation of the transcript 2 and so on, of each transcript are extracted from the

pooling layer of the SGNN model.

To measure the strength of each network, I calculated a relatedness score for a pair of nodes

using the cosine similarity (as we introduced in section 5.2). For each pair of transcript i and

j, I quantified the semantic network relatedness with a score cij : cij = cos sim(hGi , hGj ).

I set the threshold value of 0.5 to filter out node pairs if their scores are low. A boxplot is

applied to visualize the correlation between the quantity of relatedness and group categories.

Figure 5.4 shows that group four has the strongest semantic associative relations compared to

the other three groups. It is noted that group one of subjects who have no or minor depressive

symptoms is significantly distant from group four of subjects who suffer from severe depression.

I argue that intergroup differences (or distances) shown in 5.4 reflect a pattern of depression

levels.
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Figure 5.4: Quantifying semantic associative relations of each group with cij . The group dis-
tribution describes a certain trendline in depression levels on the development set: the median
frequency indicates the strength of a network (of a group). The 16-dimensional embedding hG
is used.

5.4 Illustration of Depression Level Prediction

Six examples are presented (see Figures 5.5,5.6,5.7,5.8,5.9,5.10) to reveal salient words selected

by the model in a transcript. I applied features extracted from a hidden layer of the SGNN

model for visualization.

I applied a cosine similarity function to calculate a similarity score between a pair of nodes

using their representation features, such that cos sim(hvi , hvj ). hvi and hvj which are a 32-

dimensional embedding by equation 4.4 are used.

To measure the importance of a node such as vi in a graph, I first computed all similarity scores

between that node vi and the rest of the nodes. After that, I averaged those similarities to obtain

a final score for that node. A threshold of 0.996 is used to capture the most informative words

that have scores higher than the threshold. According to the experimental results, applying

a threshold of 0.996 captures an average of 22% of all words in each transcript, compared

to applying threshold values of 0.997, 0.998, and 0.999, which capture an average of 22.05%,

21.83%, and 21.53% of words, respectively.

This method of utilizing word-word semantic associations allows us to visualize word indicators

that contribute to the final decision. The high average similarity measure also does a good job

of emphasizing words that are meaningful in the context of depression.
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Figure 5.5: an example of extraction of patient transcript with a ground truth PHQ score of 0

Figure 5.6: an example of extraction of patient transcript with a ground truth PHQ score of 10

Figure 5.7: an example of extraction of patient transcript with a ground truth PHQ score of 16
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Figure 5.8: an example of extraction of patient transcript with a ground truth PHQ score of 16

Figure 5.9: an example of extraction of patient transcript with a ground truth PHQ score of 19

Figure 5.10: an example of extraction of patient transcript with a ground truth PHQ score of
23
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Those figures show that informative keywords that are semantically relevant to diagnostic cat-

egories of PHQ-8 are highlighted for prediction. For instance, in figure 5.10 the highlighted

words “i”, “do”, “not”, “sleep” and “well” are highly informative to identify a “sleep problem”,

one of PHQ-8 topics. The visualization of highlighted words indicates that the model captured

information associated with depressive features, and took them into account when making its

final decision.

5.5 Visualization of Linguistic Features

Horizontal bar charts have been applied to qualitatively visualize word embeddings in terms

of the 20 top keywords. The output of the hidden layer of the SGNN model as described by

equation 4.4 is used.

I used the method described in section 5.4 to compute cosine scores for each word and thus to

compute the 20 most informative words. For comparison, I also computed the 20 most common

words based on their frequency. Each of the figures 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18,

5.19, 5.20, 5.21, 5.22, 5.23 and 5.24 presents the 20 most informative keywords for each text

in development set. A horizontal bar plot shows the 20 words in a transcript, with the length

of each bar representing the total number of times the word appears. The longer the bar, the

higher the frequency of appearance. Based on the figures, the low frequency of keywords does

not affect the decisions made by the model. In fact, the model is able to successfully capture

PHQ-related context-level keywords, even if they appear less frequently in a transcript.

Moreover, bar graphs, for example figures 5.21, 5.22, 5.23 and 5.24, can explain the model’s

incorrect predictions – the model generated high scores but not close to the actual scores.

Figures show that the model successfully captures global keywords from different texts, including

“ptsd”, “therapy”, “tired”, “bad”, “annoyed” and “stress”, that are highly indicative of certain

PHQ-8 topics, such as ”depressed mood,” ”feelings,” and ”mental health impairments.” This

demonstrates that high depression scores are predicted on the basis of appropriate semantics.

The bar plot graphs demonstrate that the SGNN model can distinguish between semantic

features in the text that are related to depressive symptoms and those that are not.
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5.6 Conclusion

I showed multiple visualizations illustrating how the model made its prediction with learned

graph features and word features. I quantified the strength of associative semantic networks

with overall semantic relatedness. This approach provides a quantitative framework for showing

the correlation between semantic closeness between networks and their nodes. Each network

represents a category of depression levels. I found a pattern reflecting depression levels in

categories.

Furthermore, I also applied semantic measures to highlight the words that are most informative

from the model’s perspective. In this way, I provided an alternative human understandable

explanation for the predictive results by taking the advantage of context-aware word features.

For instance, depression level reveals depressing words revealing depressive features in the text.

The presence of the most common keywords indicates that the model has primarily focused on

them, which helps us understand its learning process to some extent

In summary, I presented a way to interpret gradients of the SGNN model using semantic mea-

sures. I provided several intuitive visualizations measuring depression levels in text in a manner

that may also be applied to different clinical domain tasks.
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Figure 5.11: The bar graph on the left side shows that the 20 most informative keywords (e.g.,
‘tired’, ‘guilty’, ‘shy’, ‘therapy’, ‘struggle’, ‘bad’, ‘work’, and ‘extremely’), selected by the SGNN
model, are relevant to PHQ topics, indicating the score of 20.44 is estimated on the basis of
appropriate semantics. The bar graph on the right side displays 20 most common words selected
based on word frequency.

Figure 5.12: The bar graph on the left side shows that the 20 most informative keywords (e.g.,
‘diagnosed’, ‘interest’, ‘child’, ‘stressful’, ‘life’, ‘pushed’, ‘ptsd’, and ‘medicate’), selected by the
SGNN model, are strongly related to PHQ topics. The bar graph on the right side displays 20
most common words selected based on word frequency.
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Figure 5.13: Horizontal bar chart of 20 most common words. The bar graph on the left side
shows that the 20 most informative keywords (e.g., ‘stress’, ‘communicate’, ‘ptsd’, ‘work’, ‘day-
time’, ‘life’, and ‘motivation’), selected by the SGNN model, are irrelevant to PHQ topics,
indicating the score of 2.59 is estimated on the basis of appropriate semantics. The bar graph
on the right side displays 20 most common words selected based on word frequency.

Figure 5.14: Horizontal bar chart of 20 most common words. The bar graph on the left side
shows that the 20 most informative keywords (e.g., ‘tiring’, ‘shy’, ‘therapy’, ‘hospital’, ‘nothing’
and ‘worry’), selected by the SGNN model, are strongly related to PHQ topics. The bar graph
on the right side displays 20 most common words selected based on word frequency.
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Figure 5.15: Horizontal bar chart of 20 most common words. The bar graph on the left side
shows that the 20 most informative keywords (e.g., ‘miserable’, ‘stress’, ‘alone’, ‘work’, ‘hard-
ship’, ‘ptsd’, ‘bother’, ‘bad’, ‘therapy’ and ‘disheartening’), selected by the SGNN model, are
related to PHQ topics. The bar graph on the right side displays 20 most common words selected
based on word frequency.

Figure 5.16: Horizontal bar chart of 20 most common words. The bar graph on the left side
shows that the 20 most informative keywords (e.g., ‘stressful’, ‘travel’, ‘tired’, ‘stress’, ‘illness’,
‘therapy’, ‘ptsd’ and ‘concern’), selected by the SGNN model, are strongly related to PHQ
topics. The bar graph on the right side displays 20 most common words selected based on word
frequency.

68



Chapter 5 5.6. Conclusion

Figure 5.17: Horizontal bar chart of 20 most common words. The bar graph on the left side
shows that the 20 most informative keywords (e.g., ‘ptsd’, ‘bothered’, ‘bad’, ‘horrifying’, ‘guilty’,
‘exciting’, ‘offended’, ‘ex-boyfriend’, and ‘confronted’), selected by the SGNN model, are related
to PHQ topics. The bar graph on the right side displays 20 most common words selected based
on word frequency.

Figure 5.18: Horizontal bar chart of 20 most common words. The bar graph on the left
side shows that the 20 most informative keywords (e.g., ‘move’, ‘people’, ‘luck’, ‘travel’, and
‘project’), selected by the SGNN model, are less relevant to PHQ topics. The bar graph on the
right side displays 20 most common words selected based on word frequency.
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Figure 5.19: Horizontal bar chart of 20 most common words. The bar graph on the left side
shows that the 20 most informative keywords (e.g., ‘ptsd’, ‘struggle’, ‘bad’, ‘enjoyed’, ‘work’,
‘kid’, ‘stronger’, and ‘outgoing’), selected by the SGNN model, are related to PHQ topics. The
bar graph on the right side displays 20 most common words selected based on word frequency.

Figure 5.20: Horizontal bar chart of 20 most common words. The bar graph on the left side
shows that the 20 most informative keywords (e.g., ‘intervene’, ‘ambivalence’, ‘shy’, ‘therapy’,
‘ptsd’, ‘struggle’, ‘bad’ and ‘false’), selected by the SGNN model, are related to PHQ topics. The
bar graph on the right side displays 20 most common words selected based on word frequency.
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Figure 5.21: Horizontal bar chart of 20 most common words. The bar graph on the left side
shows that the 20 most informative keywords (e.g., ‘restless’, ‘fun’, ‘shy’, ‘ptsd’, ‘busy’ and
‘nothing’), selected by the SGNN model, are related to PHQ topics. The bar graph on the right
side displays 20 most common words selected based on word frequency.

Figure 5.22: Horizontal bar chart of 20 most common words. The bar graph on the left side
shows that the 20 most informative keywords (e.g., ‘disturbed’, ‘bad’, ‘work’, ‘outgoing’, ‘noth-
ing’, ‘kid’, ‘happy’, ‘lose’, and ‘guilt’), selected by the SGNN model, are related to PHQ topics.
The bar graph on the right side displays 20 most common words selected based on word fre-
quency.
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Figure 5.23: Horizontal bar chart of 20 most common words. The bar graph on the left side
shows that the 20 most informative keywords (e.g., ‘screamed’, ‘ptsd’, ‘therapy’, ‘break’, ‘work’,
and ‘nothing’), selected by the SGNN model, are related to PHQ topics. The bar graph on the
right side displays 20 most common words selected based on word frequency.

Figure 5.24: Horizontal bar chart of 20 most common words. The bar graph on the left side
shows that the 20 most informative keywords (e.g., ‘relationship’, ‘partner’, ‘household’, ‘family’,
and ‘work’), selected by the SGNN model, are related to PHQ topics. The bar graph on the
right side displays 20 most common words selected based on word frequency.
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Evaluation on Two Further Datasets

6.1 Motivation

This chapter shows that the proposed model can well generalize to two other domains with

good experimental results.

1. Twitter Sentiment Classification I chose the Twitter Sentiment dataset because it is

large, with millions of annotated tweets, which makes it suitable for training deep learning

models. The sentiment analysis technique is widely used to analyze mental knowledge of

web, social media, and related references. Online social media such as Twitter is a popular

platform for people to express their emotions on various topics. Twitter has become

an important data source to analyze public emotional reactions and mood oscillations

to traumatic events (Pellert et al., 2022). Individual words in tweets cumulatively add

predictive information to the sentiment classification performance. Processing raw text

is the crucial first step in text classification and sentiment analysis. For example, some

conventional stop words like (am, be, at, my, your, on, to), considered to carry little

information by default, are bearing low importance scores based on their word embedding.

Thus the use of a widely applied dictionary of stop words can limit the overall performance

of sentiment classification in Twitter domain.

Moreover, due to the noisy nature of tweets and ambiguous usage of words, traditional

lexicon-based algorithms using pre-built word dictionaries, such as a default sentiment

dictionary, lack optimization for tweets (domain), sentiment analysis and a specific context
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(e.g., sentiment towards a subject matter). For instance, two words of different polarity

(good and bad) appear in the same tweet which can complicate Twitter sentiment analysis

in a particular context.

To address this problem, I provided a novel way of a DL-based text-to-graph algorithm

to obtain in-domain and context-aware embeddings using word co-occurrence information

in tweets. I build a text graph for each tweet and I regard all unique words appearing in

a tweet as the nodes of the graph. I apply a sliding window in a tweet to detect word

co-occurrences and express these as edges.

I suggest that the strength and polarity of words can be captured using co-occurrence

patterns of words. I demonstrate that the schema effectively builds all word associations

for a given word into the corresponding node. This innovation improves the accuracy of

sentiment classification on Twitter data.

2. Alzheimer’s Disease Detection

Alzheimer’s Disease (AD) is a debilitating disease with no known cure that affects all facets

of cognition, including the use of language. Unrecognized dementia has adverse effects

that range from anxiety, unexplained symptoms, family discord, and catastrophic events;

early diagnosis can help manage symptoms and minimize impact on a person’s quality of

life (Stokes et al., 2015). However, early diagnosis of neurodegenerative disorders such as

AD and related dementia is currently a challenge. Diagnosis of AD dementia, at present,

relies on patient and caregiver reports, extensive neuropsychological examinations such as

the Mini-Mental State Examination or the Montreal Cognitive Assessment, and invasive

imaging and diagnostic procedures (Orimaye et al., 2014). Therefore, there may be a

number of obstacles to early diagnosis, including cost, location, mobility and time. Our

interest lies in the binary diagnosis of AD dementia using verbal utterances of patients

only. Analyzing spoken language which reflects cognitive status fits this purpose.

Deep learning on graphs nowadays is well developed on learning brain images of a patient

for the purpose of AD diagnosis (Cuingnet et al., 2011; Hosseini-Asl et al., 2016; Suk

et al., 2014). Applying a graph representation for the same purpose with the use of word

embeddings obtained from verbal utterances of patients, although, is unstudied.

I evaluate the performance of the SGNN model on AD detection. On a sparse clinical
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language dataset, the SGNN model could predict AD-type dementia with an accuracy of

nearly 96%. Moreover the proposed approach performs better than the state-of-the-art

methods by 1–4% in accuracy in patient data.

The proposed model captures semantic contextual clues such as semantic abnormality

from patient speech, and these semantic deficits are highly associated with AD (Revonsuo

et al., 1998). I suggest that patient utterances help to identify semantic deficits in AD. I

identify dementia from language samples using dementia and control groups. I also exploit

the model’s learned features to explain its prediction, allowing individuals and medical

experts to understand its decision-making.

6.2 Twitter Sentiment Classification

6.2.1 Dataset

Borderlands Sentiment Twitter1dataset includes 74682 tweets labeled as positive (28%),

negative (30%) and neutral (42%) respectively. Tweets shorter than two characters are removed.

I classified 32,800 tweets in the experiment. Tweets range in length from 3 to 126 words with

an average length of 25.3 words per tweet. The distribution of the dataset (32,800 tweets) is

shown in Figure 6.1.

Figure 6.1: A histogram showing the distribution of Twitter sentiment classes on the dataset
of 32800 tweets. The Y-axis represents the number of tweets for each class.

.

1https://www.kaggle.com/cameronwatts/bag-of-words-sentiment-analysis-with-keras/data?scriptVersionId=
78350767last accessed on 11/11/21
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6.2.2 Data Pre-processing

I preprocess raw text of tweets before training the model:

URL link & HTML reference character elimination. There are many URLs such as http

or https, or HTML entities such as &lt; &gt; &amp, which are embedded in the original Twitter

dataset. The removal of links helps improve the performance of sentiment analysis.

Non-Letter character & emotion elimination. Non-Letters, non-English characters, num-

bers, and the punctuation that is commonly used in emojis or hash marks are removed from the

dataset. Punctuation which is not usually associated with an emoji is also removed. In future

work, we plan to study the effect of emojis by including emojis to see any improvement in the

accuracy of the classification.

Stopword elimination. The words that happen most often do not bear much information.

Common words such as “a” and “on” are automatically removed because no other discriminative

information of sentiment is added.

Lemmatization. Lemmatization is applied to pre-process raw Twitter dataset.

6.2.3 Experimental Setup

The model is trained to minimize the cross-entropy loss function of classifying sentiments in

the training set. I set the learning rate as 10−3, L2 weight decay as 10−4, the dropout rate as

0.5, and the window size as 7 to gather word-word occurrence statistics. The batch size used

in training is 128. I set the size of the word embedding as 300 and initialized with GloVe for

baseline models. I used stochastic SGD (Kingma & Ba, 2014) as the optimizer for training and

stopped training if the validation loss does not decrease for 10 consecutive epochs.

6.2.4 Experimental Performance & Analysis

I train the model with a total of 32800 tweets. 10-fold stratified cross-validation is adopted

for all experiments. I compare the SGNN model with a GNN baseline model (Johanson &

Bejerholm, 2017) by evaluating the performance of sentiment classification.
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6.2.4.1 Model Comparison

I evaluate the extent to which the 2-D structure is key to improving performance as opposed to

simply having more parameters. I scale the size of feature vectors in the GNN to keep it having

the same number of training parameters as of the SGNN, so that the number of parameters to

be estimated in training is the same as in the SGNN. Table 6.1 shows the performance gains

of the proposed model on the Borderlands Sentiment Twitter data when 2-D node attributes

are applied. This gain demonstrates that a GNN model with 2-D node attributes can capture

more context-level features of sentiments from text, and thus can greatly improve the accuracy

of this domain task.

I further evaluate the efficiency of the proposed method by comparing the performance of

text-to-numeric word embedding generated by two different types of deep learning models re-

spectively:

1. I used a general LSTM model, which performs as a sequence-based deep learning method,

with 300-dimensional pre-trained GloVe embeddings.

2. I used a standard 1D-CNN model, which performs as a sequence-based deep learning

method, with 300-dimensional pre-trained GloVe embeddings.

Compared to the performance of general deep learning methods, the SGNN model with and

without pre-trained word embeddings performed well in text sentiment classification tasks (see

Table 6.1). The experimental results demonstrate that an SGNN model can also achieve a good

result on short texts like tweets.

6.2.4.2 Test Performance Analysis

Table 6.1 shows the effectiveness of the proposed method on a short text dataset like Twitter.

Furthermore, the results demonstrate the effectiveness of the proposed schema encoders in

modeling consecutive and short-distance semantics.

The 1-D CNN model performs better than the proposed SGNN with and without pre-trained

word embeddings for short text. Similarly, Bi-LSTM models using pre-trained word embeddings

perform better than the proposed SGNN model. This is likely due to the fact that word orders

are important in sentiment classification or short text. Another reason might be that tweet

graphs have few nodes and few edges. The lack of edges limits the message passing among the
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nodes. Thus there are only a few word connections that can be encoded for learning because

the tweet text is very brief.

For more in-depth performance analysis, I note that SGNN with randomly initialized word

embedding outperforms the SGNN model with GloVe embedding and improves the accuracy of

sentiment classification. This increase in accuracy may suggest that the proposed model helps

to develop and analyze word embeddings to capture directly from domain-specific contexts and

trending keywords using large corpora.

Moreover, Kumawat et al. (2021) proposes a hybrid deep-learning method that combines a

Long Short-Term Memory model and a Transformer model to capture long-distance contextual

semantics. Their results demonstrate the effectiveness of this method in the same task. GCN-

based (Tang et al., 2020) models aggregate information from only the direct neighbor nodes.

They have limited capacity to capture long-range contextual dependency information.

Table 6.1: Performance comparison of the proposed deep neural network and state-of-the-art
multi-class sentiment classification methods on Twitter dataset. I used a 10-fold cross-validation
scheme and gave mean(standard deviation) results. − represents that standard deviations are
not reported in the original work.

Sentiment Classification

DL Methods Accuracy

LSTM+GloVe 0.918 (0.0212)
RNN+GloVe 0.837 (0.0221)

Bi-LSTM+GloVe 0.977 (0.0043)
1D-CNN+GloVe 0.970 (0.0051)
GNN+GloVe 0.878 (0.0963)
SGNN+GloVe 0.948 (0.0019)

SGNN 0.958(0.0013)
Bert (Kumawat et al., 2021) 0.812

Transformer+LSTM (Kumawat et al., 2021) 0.914
GAT (Tang et al., 2020) 0.699 ( – )
GCN (Tang et al., 2020) 0.684 ( – )

GCN+BiLSTM(Tang et al., 2020) 0.738 ( – )

6.3 Model Visualization

To intuitively show the learned embeddings of tweets, I visualize graph representations in 2D

space using the t-SNE algorithm (van der Maaten, 2014). From the visualization (see figure

6.2), it shows that the SGNN did a good job of clustering tweets in a low-dimensional space.

The model successfully classified all tweets in the test set into three classes.
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Figure 6.2: 2D visualization of node representations on Twitter using t-SNE. The figure shows
the t-SNE visualization of the graph embedding layer (i.e. the pooling layer) of the proposed
model.

6.4 Alzheimer’s Disease Detection

6.4.1 Dataset & Data Pre-processing

Dementia Bank Pitt Corpus2 I used an existing Dementia Bank clinical dataset in this study.

A detailed description of this dataset is available in Becker et al. (1994). The dataset was created

during a longitudinal study conducted by the University of Pittsburgh School of Medicine on

Alzheimer’s and related Dementia. The dataset contains transcripts of verbal interviews with

AD and related Dementia patients. The average length for each speech transcript is nearly 83

words.

2https://https://dementia.talkbank.org/last accessed on 01/02/22
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Cookie Theft stimuli. A Raw Speech
Transcript Sam-
ple

A Binary Predic-
tion Score

“oh any anything
I see well there’s
a little girl here
she’s pointing at
something and
that looks like
her brother is
and here on her
right side there’s
a young lady
there she’s

washing the what
she she’s cleaning
the she’s cleaning
what is she she”

1 (=AD) or 0
(=CT) ?

Table 6.2: A sample from Pitt Dataset

There are 169 subjects classified as an AD dementia group on the basis of clinical or pathological

examination, and 99 subjects classified as Control (CT) group. Many participants had multiple

visits over the duration of this longitudinal study. I use 309 transcript samples from those in

the AD group, and 243 from those in the CT group.

In brief, interviews were conducted in the English language and were based on the Cookie-

Theft picture description from the Boston Diagnostic Aphasia Examination (Kaplan, 1983), a

widely-used diagnostic test for language abnormality detection. During the interview, patients

were presented with a “Cookie Theft” picture stimulus (see Figure 6.2) and were told to dis-

cuss everything they could see happening in the picture. The patients’ verbal utterances were

recorded and then subsequently transcribed verbatim (MacWhinney, 2000). Thus, in this study,

I train the model using verbatim transcriptions of the audio recordings. I pre-processed raw

transcripts using lemmatization and stopword removal (Camacho-Collados & Pilehvar, 2017;

HaCohen-Kerner et al., 2020).
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6.4.2 Experimental Setup

The model is trained to minimize the cross-entropy loss function of predicting the class label

of participants’ speech records in the training set. The window size of 9 is used to detect word

co-occurrences. I set the learning rate as 10−3, L2 weight decay as 10−4, and dropout rate as

0.5. The batch size of the model is 32. For models
(
1-6 in Table 6.3

)
using pre-trained word

embeddings, I used 300-dimensional GloVe word embeddings. Each model is trained using the

stochastic SGD optimizer.

6.4.3 Experimental Performance & Analysis

In the experiments, I compare the proposed model with five state-of-the-art deep models on

the task of binary detection of AD-type dementia. It can be seen from Table 6.3 that the

method with and without pre-trained embeddings outperforms the state-of-the-art methods

with accuracy of around 95% and 96% respectively, and F1 scores of 0.958 and 0.962 respectively.

I evaluate the efficiency of 2D node structure employed in SGNN model. I scale the feature

vectors in the GNN model so that the number of parameters in the GNN model to be estimated

in training is the same as in the SGNN (A total of around 30, 000 parameters). I compare the

GNN using 1D node attributes (in row 5) to SGNN model using 2D node attributes (in row

7). From Table 6.3, it can be seen that the proposed model yields higher performance with

a detection accuracy of around 95% and F1 score of 0.958. Thus the schema-based method

can effectively improve the AD disease detection accuracy with more than 40% relative gain

compared to the GNN model.

I also explore the effectiveness of utilizing GloVe word embedding in AD detection. As shown

in Table 6.3, the proposed SGNN model with GloVe embedding outperforms the SGNN model

with randomly initialized embedding and achieves a detection accuracy of around 96% and F1

score of 0.962.

Moreover, I compare the proposed method to four deep learning models that usually treat text

as sequences and encode them for classification: 1. LSTM; 2. Bi-LSTM; 3. RNN; 4. CNN

models (models are introduced in section 2.3 in chapter 2.).

These four models require lengths of inputs to be the same. I set the total length of utterances (of

a speech transcript input) to 80 because 99% of transcripts have words less than 80. I truncated
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lengths of the speech transcripts that contain more than 80 words and added padding for the

others that contain less than 80. On the contrary, the SGNN model accepts flexible size inputs,

which allows us to learn representations of text inputs with variable lengths.

Unlike the sequence-based deep learning models that learn a sentence (or sequence)-level map-

ping, the proposed method can learn a node-level embedding to obtain word features that can be

updated internally based on the associations between words in a transcript. I demonstrate that

encoding the information from word-word associations can help to learn word embeddings from

the dementia context. According to the experimental results, the SGNN model can enhance the

overall performance of AD detection of dementia. The results of the comparison experiments

using different deep models are shown in Table 6.3.

Table 6.3: Performance of evaluated models. I adopted 10-fold stratified cross-validation and
report mean(standard deviation). − represents that standard deviations are not reported in
the original work.

Detection:AD or CT

DL models Accuracy F1 Precision Recall

LSTM+GloVe 0.929 (0.0929) 0.934 (0.0911) 0.938 (0.1011) 0.931 (0.0863)
Bi-LSTM+GloVe 0.944 (0.0731) 0.955 (0.0727) 0.952 (0.0800) 0.958 (0.0652)
RNN+GloVe 0.916 (0.1348) 0.923 (0.1285) 0.918 (0.1258) 0.928 (0.1328)
CNN+GloVe 0.948 (0.0798) 0.958 (0.0843) 0.951 (0.0962) 0.960(0.0720)
GNN+GloVe 0.675 (0.0165) 0.723 (0.0180) 0.697 (0.0129) 0.760 (0.0315)
Attention-CNN+Attention-BiGRU
(Chen et al., 2019) 97.42 (3.0900) – – –
BERT (Searle et al., 2020) 0.84 ( – ) 0.82 ( – ) 0.86 ( – ) 0.85 ( – )
textBert (Zhu et al., 2021) 0.82 (2.8300) 0.80 (3.5500) 0.88 (2.0900) 0.74 (5.5300 )
GCN (Millington & Luz, 2021) 0.75 ( – ) – – –
SGNN+GloVe 0.957(0.0837) 0.962(0.0789) 0.964 (0.0771) 0.952 (0.1067)
SGNN 0.948 (0.1158) 0.958 (0.0880) 0.970(0.0600) 0.942 (0.1181)

6.4.4 Qualitative Analysis

Table 6.4 shows some samples of false positive and false negative respectively produced by the

proposed model. Label 0 indicates that the description was uttered by a healthy individual (in

the CT group) and label 1 indicates that the description was uttered by a patient (in the AD

group).

According to samples of patient voice transcripts listed in the Table 6.4, there are several obvious

language cues such as semantically related but incorrect words (i.e., calling a stool a chair) and

language fluency problems. These false predictions therefore indicate that the model failed to
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capture these types of language cues that are very useful in distinguishing AD from controls

(Jarrold et al., 2014; Nebes, 1989; Nicholas et al., 1985).

False Negative samples
• “faucet turned water overflowing sink grass growing tree
growing indication wind coming window mother washing
drying standing water johnny cookie out of handing cookie
falling sister putting finger nose i action johnny of course
reaching cookie jar”

• “boy stool ladder stool tipped ladder step stool i upset cookie
sink flowing floor mother boy i i wanna step stool step stool
stool water overflowing floor water back i i i”

• “boy cookie jar fall floor chair stool mom drying dish paying
attention water running water floor girl i begging brother
give cookie i summer time window open grass shrubbery
dish mom dried”

False Positive sample
• “child falling chair taking cookie jar girl standing floor cookie
door cabinet door open mother washing dish sink overflow-
ing water running i drying washing kitchen window curtain
window open view back dish counter”

Table 6.4: Samples of false positive and false negative respectively produced by the proposed
model.

6.5 Model Visualization

The advantage of the proposed model is that we can interpret the binary classification process

of the model. I exploit the graph structures to explain model’s decision-making process of

classifying AD group and CT group. I argue that the anomaly of the words chosen in the

language of dementia patients can be identified by the relationship between words in the content

of the image description. To achieve this, I use the schema encoders to encode word-word co-

occurrence information from the context derived from descriptions of a cookie theft picture.

Some research (Nebes, 1989; Nicholas et al., 1985; Rohrer et al., 2008) indicates that patients

with dementia struggle to communicate their thoughts. For instance, a person with dementia

may have a hard time finding the right words to express themselves such as describing an image.

I treat word-finding difficulties as symptoms of dementia. I quantify correlations between words

using semantic contextual word embeddings extracted from the latent layer of the SGNN model.

I plot in figures 6.3, 6.4 and 6.5 for 3 words (“girl”, “boy”, “mother”) in a transcript from the
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test set.

Figure 6.3 shows the input of the 1st message passing layer to obtain a schema where all rows

are identical except the row corresponding to the word associated with this node. It applies

a linear mapping to the schema rows and adds in a schema of identical rows derived from the

second and third invariant terms of the update equation 4.1.

Figure 6.4 shows the schemas in the output of the 1st message passing layer. Figure 6.5 shows

the schemas in the output of the 2nd message passing layer. Rows which are identical in a

schema correspond to nodes that have not been encountered in the neighborhood of the current

node. The schema of each node is updated via propagation by encoding information from its

neighbors.

After pooling the 2nd message passing layer by equation 4.4, H is made by stacking row vectors

hvi (hvi is 64-dimensional) for all vi ∈ V . I take variance value across all row vectors of H in

each dimension of all nodes to measure the salience or influence of the node. Hij denotes the

value of j-th dimension of word i. The method is taken from the work of Li et al. (2015). The

salience of each word is defined by the expression: ||Hij − 1
|V |

∑
i′∈|V |Hi′j ||. Figure 6.6 shows

the saliency heatmap for the same transcript.

Figure 6.3: Input of the 1st message passing layer for a particular transcript. The x-axis
represents the size of a row vector.

Moreover, I present eight saliency heatmaps for eight speech transcripts, including four predic-

tive AD patients and four healthy control participants. Each row corresponds to a saliency score

for the correspondent word embedding with each grid representing each dimension. The visual-

ization of heatmaps describes abnormalities (the absence of essential indicator words) existing

in the language of demented individuals and healthy individuals respectively.
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Figure 6.4: Schemas in the output of the 1st message passing layer for the same transcript
applied in figure 6.3. The x-axis represents the size of a row vector.

Figure 6.5: Schemas in the output of the 2nd message passing layer for the same transcript
applied in figure 6.3. The x-axis represents the size of a row vector.

I found a set of salient words in plots that are recognized as word anomalies by the model. For

instance, I discovered several keywords, such as “mom”, “mother”, “child”, “girl”, “boy”, and

“sister”, in four heatmaps (see figures 6.11, 6.12, 6.13, 6.14) that were recognized as inconse-

quential by the model. The lack of keywords reveals a lack of understanding of the content

of the cookie theft picture and may therefore be identified as abnormalities by the model.

Furthermore, some terms (words) such as “standing”, “washing”, and “running”, treated as

abnormalities, did not appear salient in the heatmaps, referring to another sign of word-finding

difficulty in speech of AD patients. As a result, the absence of content words in the context of

cookie theft picture reflects that AD patients tend to produce less or no content words and low

information content.

In contrast, heatmaps from predictive healthy controls (see figures 6.7, 6.8,6.9,6.10) showed

a few words, such as “pointing”, “coming”, “grass”, and “talking”, which are identified as

non-salient by the model in some speech transcripts of healthy individuals. The abnormalities
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Figure 6.6: Saliency heatmap of the same transcript applied in figure 6.3. The x-axis represents
the size of a row vector.

captured from healthy controls convey less pertinent information about the picture.

Consequently, I found that heatmaps created by the model’s latent embedding can explain the

differences between two groups of individuals. I observed that AD patients produced fewer

content elements than healthy people (from the CT group). Also, the AD patients produced

more irrelevant, unrelated, or inappropriate content elements than the healthy group. These

findings corroborate reports in the literature (Croisile et al., 1996; Groves-Wright et al., 2004;

Nebes, 1989; Nicholas et al., 1985; Rohrer et al., 2008). Features extracted from the model

help to discover latent meanings capable of capturing psychologically interesting dimensions of
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language.

6.6 Conclusion

This thesis shows that the SGNN model outperforms the GNN model that we have discussed in

chapter 3 by leveraging the novel 2-D node attributes. I evaluate the performance of the novel

model on both a Twitter sentiment dataset and a dementia dataset. The relative performance

demonstrates the benefit of using 2-D schema node attributes as opposed to vectors.

I trained the proposed SGNN model as a classifier and applied the trained classifier in Twitter

sentiment classification, a different domain task from depression severity regression. I demon-

strate the effectiveness of deep graph model through experiments by comparing it with sequence-

based deep models. In this research, I achieved an accuracy of around 98% over three sentiments:

positive; negative; neutral. I note that the proposed model with pre-trained word embeddings

performs much better on Twitter data than the one with randomly initialized word embeddings.

The possible reason might be that each tweet is very short and has few word-word connections.

Therefore, the edges in a tweet (as a graph) are much fewer than in a transcript of conversations,

which limits the message passing among the nodes.

Moreover, I tested the proposed model on dementia data. I trained the model to detect AD

using patient speech transcripts. When pre-trained GloVe word embeddings are provided, the

proposed SGNN model performs the best and outperforms all baseline models, achieving an

accuracy of around 96% in classifying AD patients and healthy controls. I extracted and used

the output of a latent layer of the model to explain its results. Below, I present heatmaps that

illustrate abnormalities existing in the context of patient utterances and this finding is also

reported in psychological research. The model visualization explains the difference in semantic

context between the language use of AD and CT groups.
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Figure 6.7: Example of a saliency heatmap for a predicted control. Emphasized words: wet,
stool, boy, cookie, water, sink, mother, falling. true: ground truth label. pred: predicted label.
The x-axis represents the size of a row vector.
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Figure 6.8: Example of a predicted saliency heatmap for a control. Emphasized words: stool,
water, kid, dish, mother, slipping, sister, hand. true: ground truth label. pred: predicted label.
The x-axis represents the size of a row vector.

89



6.6. Conclusion Chapter 6

Figure 6.9: Example of a predicted saliency heatmap for a control. Emphasized words: stool,
taking, drying, happening, movement, jar, overflowing, woman, mother, standing, girl, dish,
cookie, snickering, hand. true: ground truth label. pred: predicted label. The x-axis represents
the size of a row vector.
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Figure 6.10: Example of a predicted saliency heatmap for a control. Emphasized words: busy,
girl, cup, washing, reaching, stool, boy, cookie, dish, curtain, mother, falling. true: ground
truth label. pred: predicted label. The x-axis represents the size of a row vector.
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Figure 6.11: Example of a predicted saliency heatmap for an AD. Emphasized words: falling.
true: ground truth label. pred: predicted label. The x-axis represents the size of a row vector.

92



Chapter 6 6.6. Conclusion

Figure 6.12: Example of a predicted saliency heatmap for an AD. Emphasized words: crossed,
yeah, started, mother, sister. true: ground truth label. pred: predicted label. The x-axis
represents the size of a row vector.
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Figure 6.13: Example of a predicted saliency heatmap for an AD. Emphasized words: drying,
floor, jar, stool, dish, leg, falling. true: ground truth label. pred: predicted label. The x-axis
represents the size of a row vector.
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Figure 6.14: Example of a predicted saliency heatmap for an AD. Emphasized words: running,
mama, sink, alright, girl, thing, hold. true: ground truth label. pred: predicted label. The
x-axis represents the size of a row vector.
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Conclusions

In the research, I found that the relationship between language use and depression is signifi-

cant and could lead to opportunities to automatically detect individuals at risk of depression

from textual data (i.e., clinical interviews and questionnaire surveys conducted by hospitals or

agencies). The proposed text-only method outperforms the state-of-the-art methods, including

multi-modal methods, on the DAIC-WOZ depression benchmark.

Deep learning methods have been widely applied in text sentiment analysis. The most popular

deep neural networks used for capturing linguistic indicators through patients’ interview tran-

scripts are CNNs and LSTMs. In a CNN, the text features representation is constructed by

acquiring the local information in the filter region, which makes it difficult to learn the depen-

dencies at the level of individual words between distant positions. In comparison, an LSTM (or

RNN) connects contextual memory and stores more long-term global information than a CNN.

However, these models focus on learning a mapping of consecutive word sequences, they do not

explicitly use word co-occurrence information, and the complex model structures are not easy

to interpret their results.

My research addressed the above barriers by introducing a deep graph learning model to predict

depression on different scales. I created a graph for a patient’s self-reported transcript and

learned a mapping between a graph and a depression score. Contrasting with a standard vector

representation, I introduced a novel way of using graphs to learn word features at the node

level.

My research demonstrated that graph representation learning enhanced the automation of
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decision-making without human intervention. Furthermore, the performance of this work on

the evaluation of two new datasets demonstrated the generality of the proposed method. Be-

sides, the proposed graph-based deep model is explainable, which helps domain experts better

understand the clinical context behind the data.

7.1 Major Contributions

The main contributions of this research work are:

• I introduced a novel deep graph learning model on a patient transcript (a long text) to

capture contextual semantics for depression language. I utilized a graph representation

algorithm to generate a fine-grained depression score ranging from 0 to 24. My method

enhances the prediction accuracy of the generic depression detection as well as facilitating

fine grain analysis of depression from mild to severe.

• I designed innovative 2D “schema” encodings that provide global representations of every

vocabulary word for node attributes. Schemas are updated using a GNN-based message

passing algorithm. My text-only method outperforms the state-of-the-art, including multi-

modal methods, on the DAIC-WOZ depression benchmark.

• I investigated the benefits of leveraging a graph representation to learn a mapping of a

long text. I exploited graphs to learn the relative importance of word-word connections

to capture semantic features from domain context. The results using both depression

clinical transcripts and Alzheimer speech transcripts indicate that the proposed graph

representation learning network can significantly improve the domain task of estimating

a patient’s clinical symptoms from their language.

• Sequence-based deep models require all text inputs to be represented in equal length

vectors for training. If the length of a transcript input exceeds the default length, it

should be split into multiple inputs, and the corresponding PHQ scores should become

new ground truth labels assigned for each separate input of that transcript. This can lead

to an erroneous diagnosis of a patient if one trains a model to learn from such samples

because the original PHQ score is based on assessing a complete transcript.

Moreover, the proposed deep graph learning model allows transcripts to be represented

regardless of the length. This novel methodology addressed the limitation of learning
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variable-length text. I evaluated different text data and achieved the best performance

compared to the state-of-the-art sequence-based deep models. My research at the nexus

of NLP and DL contributes to the enhancement of automated medical decision-making

for diagnosis.

• In chapter 6, I investigated the effectiveness of a 2D node embedding mechanism by com-

paring the performance of SGNN and GNN models with the same number of parameters.

I evaluated the performance of the method across two domains: 1. Twitter sentiment

classification; 2. AD binary detection.

• I explained the proposed deep model using its gradients. The generated examples can

be explained by visualizing the model’s hidden layers using either node-level features or

graph-level features. In the depression severity prediction task and AD binary detection

task, the proposed model generated explanations that can provide some clinical domain-

related findings and these findings are consistent with the findings reported in the clinical

domain literature.

• My research has empirically demonstrated the generality of the proposed method that out-

performs the current state-of-the-art models on different text data. My research suggests

directions for future work that we expect to further improve accuracy performance.

7.2 Limitations

More research is needed on the effects of the word processing step and how this could impact the

regression step on the final performance, such as medical decision processing. I observed that

routinely removing stop words from corpora emphasizes more informative words. However, this

exclusion may inadvertently leave out elements that can be informative in a clinical context.

Most importantly, aggressive removal of words can dramatically reduce a piece of word message

that determines a patient’s current status seriously. This substantial loss of data can adversely

affect the performance of deep learning models. We suggest the importance of paying attention

to this usually-overlooked step in the pipeline, particularly when applying this step to some

particular domain areas, such as psychological medicine and sentiment analysis.

Diagnostic modelings for profiling depressive symptoms for detecting depression always use

different assessment tools, different data sources (i.e., text, video or speech), and datasets.
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Since there are no standards to define depression severity, it is difficult to compare different

approaches based on their experimental results. Instead of utilizing a gold standard metric

from self-report diagnostic scales, such as the PHQ, some other self-report measures should be

taken into account for evaluating ML/DL models’ performance. There is some evidence that

indicates mismatches between a depression score and depressive symptoms in a patient’s self-

reporting. For example, a patient mentions I cannot even fathom happiness while reporting a

PHQ-8 score just above the cutoff for mild depression. The lack of standardized definitions of

depression requires to use multiple physicians’ ratings as well as a variety of other clinical and

non-clinical measures of depression. In turn, comparing errors across these metrics might also

shed light on the future improvement of the automated medical decision-making system, which

could better support corresponding domain experts.

Another limitation is the absence of expert judgment on the importance of keywords in the

data determined by the SGNN model. While machine learning algorithms can identify patterns

and relationships in the data, they do not have the same level of understanding and context as

humans. As a result, experts in the field are needed to interpret the results and determine the

relevance and the significance of specific keywords identified by the model.

7.3 Future Work

MDD is a growing problem that may cause people to commit suicide. Future research could

better utilize longitudinal and temporal information such as depression scores across interview

sessions that are weeks or months apart, therefore improving prediction performance.

As language functions play an important role in the detection of cognitive biases across different

states of depression, clinical transcripts can assist in measuring disease with confidence. My

hypothesis is that cognitive biases due to depression underlying an individual’s opinions can be

manifested from the language of depression. Cognitive biases could form an effective and robust

framework that is invariant to personal biases underlying each individual’s behavior. Thus they

could be used to efficiently filter out individual differences, and focus on symptom similarities

as the key features to assessing depression levels for each individual. Future work may consider

incorporating insights from psychology into designing a model algorithm. For instance, training

a deep learning model to represent concept-based depressive features, such as cognitive biases,

that capture features from the context of depression. Using psychological heuristics to test a

99



7.4. Social Impact Chapter 7

psychological hypothesis regarding cognitive bias can help develop a common language that

draws together the fields of psychological medicine, automated medical decision-making and

NLP.

Another direction for further work is to explore the combination of transformers and graphs

for learning node representations. Transformer-based language models, such as BERT, have

shown great success in a variety of natural language processing tasks, but they are not designed

to capture the structural relationships between nodes in a graph. Graph embeddings, on the

other hand, are specifically designed to represent the relationships between nodes in a graph,

but they do not have the same ability to capture the meaning and context of the nodes. By

combining transformers and graph embeddings, it may be possible to improve the performance

of inductive representation learning on large graphs. For example, the work of Dai et al. (2022)

applies a way of incorporating dependency trees into a transformer-based machine translation

model. Their work improves the quality of machine translation. This shows the potential for

combining transformers and graphs for inductive representation learning on large graphs and

suggests that this is an important direction for further research.

Moreover, understanding why the model made predictions could also be valuable. In the domain

of mental health, work on explainable AI has started to emerge in importance to address the

problem of trustworthy of AI systems. Future work should employ adequate explainability

in the model, for example, proposing an explainable AI model for measuring depression states

using attention mechanisms. It may provide a specific way of delivering the explainability of the

learning algorithm with inter and intra-feature attentions that capture the relative importance

between different feature classes as well as the relative importance of features within a class.

These can be used to provide explanations of the model’s conclusions.

7.4 Social Impact

Knowing all possible facts and data is not knowing the meaning of a certain situation. Big data

and machine learning approaches are not only limited to efficiently producing a promising result

but also help humans explore the meaning behind those data and facts. This motivated us to

explore a possible way of enhancing both the interpretability and explainability of deep learning

systems. This research work shared insights on leveraging GNN baseline models. I found

that deep graph networks operating over word entities and relations provide a straightforward
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interface to produce structure behaviors. As a result, the decision-making process of GNN

models becomes straightforward – perhaps more straightforward in understanding the reasoning

behind its decisions – than general DL models.

The area of mental health needs both interpretable learning process of models and explicable

results if we aim to build an automated diagnostic system deployed in practice. The main

concern in this area is that if AI systems make illogical decisions and are not able to explain

their decision-making. So it brings us to the question of how to interface a deep learning model

with domain knowledge to solve that domain problem. Thus we could improve the explainability

of the deep model such as why certain predictions were made.

To better align machine learning technology with domain challenges, it is important to under-

stand how machine learning algorithms actually work. For instance, in healthcare applications,

questions of accountability and transparency are particularly significant. If we aim to deploy ar-

tificial intelligence and deep learning systems to such areas, we have to properly deliver enhanced

interpretability and ultimately explainability in our algorithms to address potential limitations

of artificial intelligence.

Further, automatic detection of MDD using a single modality or multiple modalities is not

new. My research focuses on modeling depression as a continuous rather than binary outcome,

and models might detect specific symptoms in addition to detecting depression as an overall

construct. Diversity in how mental distress or cognitive disease is expressed in many literature

reviews (Beck et al., 1961; Kroenke et al., 2001). Apart from the absence of a gold standard,

model performance and errors should be evaluated in depth. For example, there might be

consistent types of symptoms or depression experiences not being detected. It is possible that

some linguistic features are better predictors of depressive symptoms (or types of depression)

than audio/visual features (De Choudhury et al., 2013b; Williamson et al., 2016).

We need to review our understanding of mental health and what we are exactly detecting. And

we need to think about how to develop predictive models that incorporate the uncertainty in our

understanding of depression and other clinical and non-clinical measures of depression. Research

efforts can then turn to realize the vision that underpins these models: their deployment for

early, scalable, and low-burden intervention and diagnosis of depression.
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Soygüt, G., & Savaşir, I. (2001). The relationship between interpersonal schemas and depressive

symptomatology. Journal of Counseling Psychology, 48 (3), 359.

Stirman, S. W., & Pennebaker, J. W. (2001). Word use in the poetry of suicidal and nonsuicidal

poets. Psychosomatic medicine, 63 (4), 517–522.

Stokes, L., Combes, H., & Stokes, G. (2015). The dementia diagnosis: A literature review of

information, understanding, and attributions. Psychogeriatrics, 15 (3), 218–225.

Stolar, M. N., Lech, M., & Allen, N. B. (2015). Detection of depression in adolescents based

on statistical modeling of emotional influences in parent-adolescent conversations. 2015

115



References Chapter 7

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

987–991.

Suk, H.-I., Lee, S.-W., Shen, D., Initiative, A. D. N., et al. (2014). Hierarchical feature represen-

tation and multimodal fusion with deep learning for AD/MCI diagnosis. NeuroImage,

101, 569–582.

Sun, B., Zhang, Y., He, J., Yu, L., Xu, Q., Li, D., & Wang, Z. (2017). A random forest regres-

sion method with selected-text feature for depression assessment. Proceedings of the 7th

annual workshop on Audio/Visual emotion challenge, 61–68.

Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2019). Detection of suicide ideation in social media

forums using deep learning. Algorithms, 13 (1), 7.

Tang, H., Mi, Y., Xue, F., & Cao, Y. (2020). An integration model based on graph convolutional

network for text classification. IEEE Access, 8, 148865–148876.

Terechshenko, Z., Linder, F., Padmakumar, V., Liu, M., Nagler, J., Tucker, J. A., & Bonneau,

R. (2020). A comparison of methods in political science text classification: Transfer

learning language models for politics. Available at SSRN 3724644.

Thombs, B. D., Benedetti, A., Kloda, L. A., Levis, B., Nicolau, I., Cuijpers, P., Gilbody, S.,

Ioannidis, J. P., McMillan, D., Patten, S. B., et al. (2014). The diagnostic accuracy of

the patient health questionnaire-2 (PHQ-2), patient health questionnaire-8 (PHQ-8),

and patient health questionnaire-9 (PHQ-9) for detecting major depression: Protocol

for a systematic review and individual patient data meta-analyses. Systematic reviews,

3 (1), 1–16.

Trevino, A. C., Quatieri, T. F., & Malyska, N. (2011). Phonologically-based biomarkers for ma-

jor depressive disorder. EURASIP Journal on Advances in Signal Processing, 2011 (1),

1–18.

Trifan, A., Antunes, R., Matos, S., & Oliveira, J. L. (2020). Understanding depression from

psycholinguistic patterns in social media texts. European Conference on Information

Retrieval, 402–409.

Tsakalidis, A., Liakata, M., Damoulas, T., & Cristea, A. I. (2018). Can we assess mental health

through social media and smart devices? addressing bias in methodology and evalu-

ation. Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, 407–423.

116



Chapter 7 References

Tsugawa, S., Kikuchi, Y., Kishino, F., Nakajima, K., Itoh, Y., & Ohsaki, H. (2015). Recognizing

depression from twitter activity. Proceedings of the 33rd annual ACM conference on

human factors in computing systems, 3187–3196.

Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of seman-

tics. Journal of artificial intelligence research, 37, 141–188.

Valstar, M., Gratch, J., Schuller, B., Ringeval, F., Lalanne, D., Torres Torres, M., Scherer, S.,

Stratou, G., Cowie, R., & Pantic, M. (2016). Avec 2016: Depression, mood, and emotion

recognition workshop and challenge. Proceedings of the 6th international workshop on

audio/visual emotion challenge, 3–10.

Valstar, M., Schuller, B., Smith, K., Almaev, T., Eyben, F., Krajewski, J., Cowie, R., & Pan-

tic, M. (2014). Avec 2014: 3d dimensional affect and depression recognition challenge.

Proceedings of the 4th international workshop on audio/visual emotion challenge, 3–10.

Valstar, M., Schuller, B., Smith, K., Eyben, F., Jiang, B., Bilakhia, S., Schnieder, S., Cowie, R.,

& Pantic, M. (2013). Avec 2013: The continuous audio/visual emotion and depression

recognition challenge. Proceedings of the 3rd ACM international workshop on Audio/vi-

sual emotion challenge, 3–10.

van Borkulo, C., Boschloo, L., Borsboom, D., Penninx, B. W., Waldorp, L. J., & Schoevers,

R. A. (2015). Association of symptom network structure with the course of depression.

JAMA psychiatry, 72 (12), 1219–1226.

van der Maaten, L. (2014). Accelerating t-SNE using Tree-Based Algorithms. Journal of Ma-

chine Learning Research, 15, 3221–3245.

van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine

Learning Research, 9, 2579–2605.

Van Loo, H. M., De Jonge, P., Romeijn, J.-W., Kessler, R. C., & Schoevers, R. A. (2012).

Data-driven subtypes of major depressive disorder: A systematic review. BMC medicine,

10 (1), 1–12.
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