Cao, Linan ORCID: https://orcid.org/0000-0002-0439-7979 (2021) Multi-objective Digital VLSI Design Optimisation. PhD thesis, University of York.
Abstract
Modern VLSI design's complexity and density has been exponentially increasing over the past 50 years and recently reached a stage within its development, allowing heterogeneous, many-core systems and numerous functions to be integrated into a tiny silicon die. These advancements have revealed intrinsic physical limits of process technologies in advanced silicon technology nodes. Designers and EDA vendors have to handle these challenges which may otherwise result in inferior design quality, even failures, and lower design yields under time-to-market pressure. Multiple or many design objectives and constraints are emerging during the design process and often need to be dealt with simultaneously. Multi-objective evolutionary algorithms show flexible capabilities in maintaining multiple variable components and factors in uncertain environments. The VLSI design process involves a large number of available parameters both from designs and EDA tools. This provides many potential optimisation avenues where evolutionary algorithms can excel.
This PhD work investigates the application of evolutionary techniques for digital VLSI design optimisation. Automated multi-objective optimisation frameworks, compatible with industrial design flows and foundry technologies, are proposed to improve solution performance, expand feasible design space, and handle complex physical floorplan constraints through tuning designs at gate-level. Methodologies for enriching standard cell libraries regarding drive strength are also introduced to cooperate with multi-objective optimisation frameworks, e.g., subsequent hill-climbing, providing a richer pool of solutions optimised for different trade-offs.
The experiments of this thesis demonstrate that multi-objective evolutionary algorithms, derived from biological inspirations, can assist the digital VLSI design process, in an industrial design context, to more efficiently search for well-balanced trade-off solutions as well as optimised design space coverage. The expanded drive granularity of standard cells can push the performance of silicon technologies with offering improved solutions regarding critical objectives. The achieved optimisation results can better deliver trade-off solutions regarding power, performance and area metrics than using standard EDA tools alone. This has been not only shown for a single circuit solution but also covered the entire standard-tool-produced design space.
Metadata
Supervisors: | Trefzer, Martin and Bale, Simon |
---|---|
Awarding institution: | University of York |
Academic Units: | The University of York > School of Physics, Engineering and Technology (York) |
Academic unit: | Electronic Engineering |
Identification Number/EthosID: | uk.bl.ethos.842859 |
Depositing User: | Mr Linan Cao |
Date Deposited: | 12 Nov 2021 19:11 |
Last Modified: | 21 Mar 2024 15:49 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:29746 |
Download
Examined Thesis (PDF)
Filename: Cao_203012433_Thesis.pdf
Licence:
This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 4.0 International License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.