
Multi-objective Digital VLSI

Design Optimisation

Linan Cao

Doctor of Philosophy

University of York

Electronic Engineering

August 2021

Abstract

Modern VLSI design’s complexity and density has been exponentially increasing
over the past 50 years and recently reached a stage within its development, allowing
heterogeneous, many-core systems and numerous functions to be integrated into a
tiny silicon die. These advancements have revealed intrinsic physical limits of process
technologies in advanced silicon technology nodes. Designers and EDA vendors have
to handle these challenges which may otherwise result in inferior design quality, even
failures, and lower design yields under time-to-market pressure. Multiple or many
design objectives and constraints are emerging during the design process and often
need to be dealt with simultaneously. Multi-objective evolutionary algorithms show
flexible capabilities in maintaining multiple variable components and factors in uncertain
environments. The VLSI design process involves a large number of available parameters
both from designs and EDA tools. This provides many potential optimisation avenues
where evolutionary algorithms can excel.

This PhD work investigates the application of evolutionary techniques for digital VLSI
design optimisation. Automated multi-objective optimisation frameworks, compatible
with industrial design flows and foundry technologies, are proposed to improve solution
performance, expand feasible design space, and handle complex physical floorplan
constraints through tuning designs at gate-level. Methodologies for enriching standard
cell libraries regarding drive strength are also introduced to cooperate with multi-
objective optimisation frameworks, e.g., subsequent hill-climbing, providing a richer
pool of solutions optimised for different trade-offs.

The experiments of this thesis demonstrate that multi-objective evolutionary algorithms,
derived from biological inspirations, can assist the digital VLSI design process, in an
industrial design context, to more efficiently search for well-balanced trade-off solutions
as well as optimised design space coverage. The expanded drive granularity of standard
cells can push the performance of silicon technologies with offering improved solutions
regarding critical objectives. The achieved optimisation results can better deliver
trade-off solutions regarding power, performance and area metrics than using standard
EDA tools alone. This has been not only shown for a single circuit solution but also
covered the entire standard-tool-produced design space.

ii

Table of Contents

Abstract ii

List of Tables viii

List of Figures ix

Acknowledgements xv

Declaration xvi

1 Introduction 1

1.1 Motivation . 2

1.2 Hypotheses and Objectives . 4

1.3 Contributions . 5

1.4 Thesis Structure . 7

2 Digital Integrated Circuit Design in EDA Flows 8

2.1 Overview . 9

2.2 Transistor Evolution . 10

2.2.1 Transistor Scaling . 10

2.2.2 Scaling Challenge . 13

2.3 Standard Cell in Digital Integrated Circuits 15

2.3.1 Standard Cell Library . 15

iii

Table of Contents

2.3.2 Standard Cell Design Flow and Automation 17

2.4 Digital VLSI Design Flow . 19

2.4.1 Logic Design and Circuit Design 20

2.4.2 Logic Synthesis . 21

2.4.3 Physical Design . 22

2.5 Modified Digital Flow . 26

2.6 Summary . 28

3 Multi-objective Optimisation 29

3.1 Overview . 30

3.2 Multi-objective Problem . 30

3.2.1 Pareto Optimality . 31

3.3 Decomposition of Multi-objective Problems 33

3.4 Evolutionary Multi-objective Optimisation 35

3.4.1 Operation of a Basic Evolutionary Algorithm 36

3.4.2 Multi-objective Evolutionary Algorithm 40

3.5 MOEA Application in VLSI Design Flow 43

3.6 Summary . 46

4 Multi-objective Circuit Optimisation using Layout Templates 47

4.1 Overview . 48

4.2 Automated Multi-Objective Design Flow 48

4.3 Parametric Physical Layout . 50

4.3.1 Pre-designed Standard Logic Cells 51

4.3.2 Layout Generation . 52

4.3.3 SKILL Script . 54

4.3.4 Parasitic Extraction . 55

4.4 Multi-objective Circuit Optimisation 55

iv

Table of Contents

4.4.1 Algorithm . 56

4.4.2 Objectives . 57

4.4.3 Circuit Simulation . 58

4.5 Experimental Results . 59

4.5.1 Full Adder Parametric Layout 59

4.5.2 Optimisation Results and Discussion 60

4.5.3 Optimisation Advancement at Physical Level 62

4.6 Summary . 64

5 Multi-objective (MO) EDA Framework 65

5.1 Overview . 66

5.2 Discrete Gate Sizing for PPA Optimisation 67

5.3 MOEDA Optimisation Framework . 69

5.3.1 Algorithm . 69

5.3.2 Multi-objective (MO) EDA Flow 70

5.4 Experimental Setup . 75

5.4.1 Tool Environment Setup . 75

5.4.2 Objective Evaluation in Tools 77

5.4.3 Multi-threads Running and Runtime 78

5.5 Multi-objective Optimisation Experiments 79

5.5.1 Initial Experiments with a Reduced Library 79

5.5.2 Experiments with a Full Commercial Library 84

5.5.3 Statistics of MOEDA Flow Convergence 92

5.6 MOEA Search vs. Stochastic Search 94

5.7 Summary . 95

6 Design Space Exploration in Large-scale Designs 96

6.1 Overview . 97

v

Table of Contents

6.2 Design Space Exploration using Standard Digital Flow 98

6.3 Multi-obejctive Design Space Exploration Flow 100

6.3.1 Algorithm . 100

6.3.2 MODSE using Multiple Seed Designs 100

6.4 Experimental Setup . 102

6.4.1 Tool Environment Setup . 103

6.4.2 Objective Evaluation in EDA Tools 104

6.4.3 Multi-threads Running and Runtime 104

6.5 Analysis of Tool-generated Design Space 105

6.5.1 Performance Variation in Synthesis Tool 107

6.6 Multi-objective Design Space Exploration 110

6.6.1 Squeeze Design Space for PPA Optimisation 110

6.6.2 Squeeze Design Space for Constrained Floorplan 116

6.6.3 Discussion . 119

6.7 Summary . 121

7 Improved Drive Granularity Standard Cells 122

7.1 Overview . 123

7.2 Drive Strength Design of Standard cells 124

7.2.1 Logic Design using Multiple Driving Options 124

7.2.2 Improved Drive Granularity Library Design 125

7.2.3 The Performance of the Proposed Libraries 129

7.3 MOEDA in Fine-grained Cell Selection 135

7.4 Experiment Setup . 137

7.4.1 Tool Environment Setup . 137

7.4.2 Objective Evaluation in EDA Tools 138

7.5 Experimental Results . 139

7.5.1 Original vs. Fine-grained Cells in the Standard Flow 139

vi

Table of Contents

7.5.2 Fine-grained Cells in MOEDA Flow 146

7.6 Summary . 157

8 Conclusions and Further Work 158

8.1 Conclusions . 159

8.2 Future Work . 164

Appendix A 167

Abbreviations 177

References 180

vii

List of Tables

5.1 Tool Settings in Digital Flow . 77

5.2 A Reduced Experimental Standard Cell Library 79

5.3 MOEDA design flow using the reduced library for full ISCAS-85 bench-
mark suite . 82

5.4 MOEDA design flow using the reduced library for full ISCAS-85 bench-
mark suite (cont.) . 83

5.5 Statistics of benchmarks for MOEDA using the full TSMC library . . . 84

5.6 MOEDA design flow with using the full commercial library 86

5.7 MOEDA design flow with using the full commercial library (cont.) . . . 87

6.1 Design Constraint and Tool Settings in Digital Flow 103

6.2 Test Case Summary . 105

6.3 Design Constraint Setup for Different Floorplans 118

7.1 Contents of Each Experimental Cell Library 126

7.2 Library Cell Information . 130

7.3 Design Constraint and Tool Settings in Digital Flow 138

7.4 Test Case Summary . 139

7.5 Results Comparison of C1908 . 149

7.6 Results Comparison of C2670 . 150

7.7 Results Comparison of C5315 . 151

viii

List of Figures

2.1 Moore’s law: The number of transistors on microchips doubles every
two years [1]. 10

2.2 Transistor architecture evolution from planar to GAA 11

2.3 (a) A lateral GAAFET using nanosheet structure proposed by Samsung.
(b) Projected GAA device architecture for 3D VLSI beyond 2030. . . . 13

2.4 CMOS technology scaling evolution: The gate length or maximum metal
pitch is hard to shrink in advanced technology nodes [2]. 14

2.5 Examples of common Boolean logic cells 15

2.6 Standard Cell Design Flow . 17

2.7 VLSI Design Flow . 20

2.8 A general Synthesis Flow . 22

2.9 Physical Design Flow . 23

3.1 Pareto optimality: Solution xa and xc exist on Pareto front and both
dominate solution xb. 32

3.2 Examples of convex and non-convex problems 34

3.3 A generic flow of EAs . 37

3.4 Example of a crossover operation, here single point crossover. 38

3.5 Example of mutation operation, here random bit-flip. 39

3.6 The overall NGSA-II procedure including non-dominated sorting and
diversity preservation mechanism in a population evolution. 41

4.1 The multi-objective physical design flow with a parametric layout engine. 49

ix

List of Figures

4.2 An inverter layout example. Input A and output B on both sides of the
layout are in the shape of strips corresponding to metal layer 1 (metal-1). 52

4.3 Example of circuit instance generation using parametric layout template
with subsequent circuit evaluation. A layout template is firstly defined
according to circuit specifications. The layout is then instantiated
through inserting inverters from a custom-designed cell library onto the
template. The produced layout instance is evaluated in regard to delay,
energy and area. 53

4.4 Truth table for the Full Adder circuit. The expanded view on the right
show all of the possible transitions for each output. 57

4.5 A schematic of the full adder circuit showing the NAND gates. In this
experiment, each NAND gate contains the base logic function and two
series connected inverters. 59

4.6 Example parametric layout of the full adder circuit, some layers have
been hidden for easy legibility. The yellow wires are interconnections in
metal layer 2 (metal-2). 60

4.7 Optimisation results for the 1-bit full adder (N = 200, M = 150, ρ =
1/18, output load=5fF). Plots (a), (c) and (e) show scatter graphs of
the initial (blue) and final (red) populations for each pair of objectives.
Plots (b), (d) and (f) only show the final population but include the
third objective as a diverging colour map. 61

4.8 Example of parametric layout generation with subsequent circuit evalu-
ation. 63

5.1 MOEDA Flow. The flowchart on the left side is the standard digital
flow and on the right side the MO extension is shown. The blue cross
indicates the position where the standard flow is broken. 70

5.2 A chromosome example of an individual in a population and how each
gene is mutated using a logic gate library. “D” represents the drive
strength. 72

x

List of Figures

5.3 It shows the concept of the overall MO evolutionary optimisation process
including original, parametric and optimised netlist examples. The
highlighted texts in the optimised netlist is mutated gates. Individuals
are represented by their circuit layout. For illustration, only a few
individuals are shown in Pt and in each non-dominated sorting rank.
Hundreds of individuals are typically used when running experiments.
Layout 1 and Layout 3 are in the F3, the Layout 1 is in a less-crowed
region so included into the Pt+1 and Layout 3 is rejected during the
crowding-distance sorting. 74

5.4 Conceptual testbench to define timing constraints in EDA tools. Virtual
logic parts and flip-flops allows end users to specify delays and clocks.
The design under test is Digital Design in the middle. 76

5.5 Conceptual waveform diagram to illustrate the relationship between
clock period (Tc), the output delay constraint (Tod) and the required
time (Tr). 76

5.6 MOEDA flow optimisation results using the full TSMC library for C1908,
C5315. 89

5.7 MOEDA flow optimisation results using the full TSMC library for C6288
and log2. 90

5.8 Statistics of MOEDA convergence. The annotations show the variations
between different runs. 93

5.9 MOEA search compared to two stochastic search. 94

6.1 MODSE flow using multiple circuit topology seeds. 101

6.2 The tool-generated design space under the drive strength D1 and D8
output load scenarios for C1908 (16-bit error detector/corrector) and
C5315 (9-bit ALU). 107

6.3 The tool-generated design space under the drive strength D1 and D8
output load scenarios for C6288 (16x16 multiplier) and log2 calculation
circuit. 108

6.4 The variation investigation inside of EDA synthesis tools is presented
by plotting the worst case delay Dwc of tool-generated solutions with
corresponding timing constraints Tr. 109

xi

List of Figures

6.5 Design space optimisation results under the drive strength D1 and D8
output load scenarios for C1908 16-bit error detector/corrector. N = 500,
M = 100, ρ = 1%. 111

6.6 Design space optimisation results under the drive strength D1 and D8
output load scenarios for C5315 9-bit ALU. N = 500, M = 100, ρ = 1%. 112

6.7 Design space optimisation results under the drive strength D1 and D8
output load scenarios for C6288 16x16 multiplier. N = 500, M = 100,
ρ = 1%. 113

6.8 Design space optimisation results under the drive strength D1 and D8
output load scenarios for log2 calculation circuit. N = 500, M = 100,
ρ = 1%. The runtime of largest case (log2.D8) is 162 hours. The
optimised design space of log2 with D1 and D8 loads is shown with
zoom-in views to present the improvements clearly. 114

6.9 Four study cases: MODSE optimisation with different physical die
shapes and pin location constraints. 117

6.10 The “Syn Frontier”s of tool-generated design space of all study cases
are illustrated. 118

6.11 MODSE is applied to optimise the design space of case (d) “L-Die +
Top-Side” generated by standard tools. The expanded design space (in
light blue scatters) are plotted in “Dwc vs. Ptotal” (left) and “Dwc vs.
Agate” (right). The survived seeds after applying MODSE are shown as
well. MODSE algorithm settings are N = 500, M = 100, ρ = 1%. . . . 119

7.1 Standard cell design flow including library characterisation and layout
abstract. 127

7.2 This plot shows cell rise/fall propagation delays of all inverters as
“Load Capacitance vs. Delay” for three different input slew rates.
The blue curves represent the original granularity inverters from the
“MINI_ORIG” library, and the red lines illustrate the fine-grained
“MINI_FINE” library’s inverters . 132

xii

List of Figures

7.3 This plot shows rise/fall output pin power consumption of all invert-
ers as “Load Capacitance vs. Power” for three different input slew
rates. The blue curves represent the original granularity inverters from
the “MINI_ORIG” library, and the red lines illustrate the fine-grained
“MINI_FINE” library’s inverters. 133

7.4 Layout examples of inverters created in this work. The inverter X0,
X0.5 and x1 have the same cell width due to the physical design rules
of the process technology used, but X1.5 is larger than others. 134

7.5 MOEDA framework works with custom-design “MINI_ORIG” and
“MINI_FINE” libraries instead of using the foundry libraries. 135

7.6 A chromosome example of an individual (i.e., layout instance in this case).136

7.7 The histogram of tool-selected inverters’ drive strengths of C1908. The
blue bars are the inverters in original granularity from “MINI_ORIG”
and red bars are the fine-grained inverters from “MINI_FINE”. 141

7.8 The histogram of tool-selected inverters’ drive strengths of C2670. . . . 142

7.9 The histogram of tool-selected inverters’ drive strengths of C5315. . . . 143

7.10 This shows the changes of circuit paths of each circuit after applying
“MINI_FINE” library under the standard flow. The path length is
achieved by calculating the gate count of a path. 145

7.11 The MOEDA flow optimisation results comparison between seeding with
“STD+ORIG” (blue) and “STD+FINE” (red). The circled solutions are
the best delay solution of each cluster. 146

7.12 The inverter histogram of the best delay solution of “MOEDA+ORIG”
solution space and “MOEDA+FINE” solution space from Figure 7.11.
EA run settings: N = 100, M = 100 and ρ = 0.5%. 147

7.13 Ten worst timing paths of test circuits for each corresponding tight
timing constraint case X4-(a). All paths above the dash line have
positive slacks which meet the timing. The slack is higher the circuit
timing is better. 152

7.14 The changes of drive strengths of critical paths and overall circuits
when applying “STD+ORIG”, “STD+FINE” and “MOEDA+FINE”.
The sum of drive strengths are reported from the X4-(a) case of each
benchmark. 153

xiii

List of Figures

7.15 For the X1-(a) case of each circuit, the left column plots in “Dwc vs. Ptotal”
and “Dwc vs. Agate” is on the right column. There are two individuals
in the round shape are the “STD+ORIG” and “STD+FINE” solutions.
All other individuals in the shape of cross are the final generation of
MOEDA optimised results based on the “STD+FINE” solution (i.e.,
MOEA seed). 155

7.16 For the X4-(a) case of each circuit, the left column plots in “Dwc vs. Ptotal”
and “Dwc vs. Agate” is on the right column. There are two individuals
in the round shape are the “STD+ORIG” and “STD+FINE” solutions.
All other individuals in the shape of cross are the final generation of
MOEDA optimised results based on the “STD+FINE” solution (i.e.,
MOEA seed). 156

xiv

Acknowledgements

I would like to thank my supervisors Dr. Martin Trefzer, Dr. Simon Bale, and my

thesis advisor Professor Andy Tyrrell for all of their tireless guidance and assistance

throughout the PhD life. I would also like to thank my parents and my girlfriend

Jinhui for their love, support, understanding and patience.

xv

Declaration

I declare that this thesis is a presentation of original work and I am the sole author. This

work has not previously been presented for an award at this, or any other, University.

All sources are acknowledged as References.

Publications

• L. Cao, S. J. Bale, and M. A. Trefzer, “Instrumenting parametric physical

layout for multi-objective optimisation,” in 2018 IEEE Symposium Series on

Computational Intelligence (SSCI). IEEE, 2018, pp. 1339–1345

• L. Cao, S. J. Bale, and M. A. Trefzer, “Multi-objective optimisation of digital

circuits based on cell mapping in an industrial eda flow,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, 2021, First Revision

• L. Cao, S. J. Bale, and M. A. Trefzer, “Multi-objective digital design optimisation

via improved drive granularity standard cells,” IEEE Transactions on Circuits

and Systems I: Regular Papers, 2021, in Press/Accepted

• L. Cao, S. J. Bale, and M. A. Trefzer, “Multi-objective design optimisation for

handling complex floorplan constraints,” Proc. Design, Automation and Test in

Europe (DATE), 2022, Under Review

Linan Cao

August 2021

xvi

Chapter 1

Introduction

1

1.1 Motivation

1.1 Motivation

The recent advancement of semiconductor technologies has revolutionised the use of

and capabilities of smart electronic devices. State-of-the-art electronic design now

allows the integration of numerous functions into a complex system on a single chip

comprised of billions of transistors.

These achievements are accomplished by pushing technology to its physical limits.

Transistor shrinking has succeeded with continuous improvements in the physical

dimension, switching frequency and power efficiency of integrated circuits (ICs), allowing

embedded electronic systems to be used in more and more real-world automated

applications. However, as modern semiconductor technologies come ever closer to the

atomic scale, the transistor scaling challenge and stochastic performance variations

intrinsic to fabrication emerge [7] [8].

Electronic system architectures has moved to system-on-chip (SoC), many-core and

heterogeneity. Such physical limits and variations further complicate the design process

to ensure the quality of results (QoRs), e.g., system resilience, reliability, performance,

power overheads, etc. Electronic design automation (EDA) tools handle the growing

size and complexity of modern electronic designs by breaking down systems into smaller

blocks or cells, introducing different levels of abstraction. In the field of digital very

large scale integration (VLSI) design, comprehensive and mature industry-standard

design flows are available to tape out chips. This complex process consists of several

steps including logic design, logic synthesis, physical implementation (place and route)

and pre-silicon physical verification [9] [10]. Each step has a dedicated EDA tool

capable of coping with the design issues related to the specific task [11].

However, in this staged, hierarchical design approach, where each step is optimised

independently, overheads and inefficiency can accumulate in the resulting overall design.

The semiconductor devices (i.e., typically transistors) are not straightforwardly used in

EDA tools for building digital VLSI circuits since significant computation efforts might

2

1.1 Motivation

be consumed for design analysis and evaluation. Abstraction models are therefore

created to speed up the design process. For instance, a standard cell library (containing

building blocks, i.e., logic gates, for digital ICs) provided by a foundry has already

contained two levels of abstraction, where cells are built with abstracted transistor

models while each cell is also modelled and all modelled cells compose a whole library.

Therefore, the abstraction error margins may be introduced in each step within the

whole design flow.

In addition, the EDA design kits have not realised the automation of a full flow for

building electronic designs from devices to systems. Human efforts from engineers are

still required in cases where the tool cannot completely solve the problem or fail to

meet design goals such as clock frequency, power consumption.

These limits prevent EDA tools from making full use of the full capability of semicon-

ductor technologies. Furthermore, the revealed challenges result in a shift in VLSI

design optimisation since it is hard to simultaneously improve all objectives to a

significant degree. Instead, seeking appropriate trade-off solutions between different

objectives (i.e., typically power, performance and area (PPA)) while satisfying all design

constraints (i.e., most derived from physical level such as design rules, power delivery,

signal integrity, etc.) is becoming the main design target for given specifications. This

often costs more design resources (e.g., engineer headcounts, the number of licenses)

and postpones the time to release next-generation chips for an IC company.

The modern integrated circuits design process and optimisation are still far behind

biological organisms which have long since accomplished the feat of not only operating

reliably with highly variable components, but also maintaining and tuning themselves in

changing environments, when faults occur or they are otherwise perturbed. Biological

mechanisms have co-evolved with their organisms, hence, they are perfectly adapted

to the requirements of their embodiment. In this context, getting inspirations from

biology with natural evolution as Nature’s guiding “design and optimisation” principle

3

1.2 Hypotheses and Objectives

could be a promising methodology to obtain high-quality solutions regarding such

design complexities and constraints.

The proposed research of this PhD project focuses on using bio-inspired techniques to

create multi-objective optimisation frameworks combined with circuit design enabling

a wide range of trade-off solutions for use in different case scenarios. The application

of evolutionary algorithms (EAs) is helpful for optimising complex circuits and config-

urations, which can potentially enlarge the feasible solution space from a more global

viewpoint. The proposed optimisation approaches are compatible with state-of-the-art

digital EDA flows and industrial silicon technologies.

1.2 Hypotheses and Objectives

The work presented in this thesis establishes how bio-inspired optimisation techniques

can improve digital circuits by augmenting industry-standard practice and design

environments, and how improved trade-off solutions can be achieved in several critical

design objectives at the physical implementation level.

In this thesis I propose and evaluate evolutionary computation inspired methods for

digital very large scale integration (VLSI) designs based on the following hypotheses:

Hypothesis: “Combining multi-objective evolutionary algorithms with digital VLSI

design processes can achieve solutions with improved performance down to physical

layout level, expand feasible design space, and handle complex physical layout con-

straints more efficiently via refining standard cell mapping and improving standard

cell granularity.”

With the following supporting sub-hypotheses:

Sub-hypothesis 1.1: “Multi-objective evolutionary algorithms can optimise the drive

strength mapping of logic gates in digital VLSI designs for superior performance with

a wide spread of feasible trade-off solutions better than standard tools.”

4

1.3 Contributions

Sub-hypothesis 1.2: “Multi-objective evolutionary algorithms in conjunction with

an industrial digital IC flow can achieve better Pareto-driven search space coverage

across various circuit topologies than standard tools alone.”

Sub-hypothesis 1.3: “Multi-objective evolutionary algorithms can explore a larger

feasible solution (objective) space to deal with complex physical floorplan constraints

more efficiently than standard tools can.”

Sub-hypothesis 1.4: “Fine-grained drive strength resolution of standard cells can

optimise digital VLSI designs for over-design mitigation and push performance of

silicon technologies.”

To verify these hypotheses, the objectives of this thesis are presented as follows:

Objective 1: Develop an automated multi-objective VLSI design optimisation frame-

work allowing the manipulation of digital circuit building blocks down to physical

layout level.

Objective 2: Demonstrate that framework capable of improving performance of VLSI

designs (including complex physical corner cases) offering a range of Pareto-optimised

solutions and better design space coverage over industrial-flow-generated ones.

Objective 3: Investigate the application to library level optimisation via improving

drive strength granularity of standard cells for better use of foundry technology nodes

and better resulting quality of VLSI design solutions.

1.3 Contributions

During the undertaking of this work, the following research contributions have been

made to the field of digital VLSI design:

5

1.3 Contributions

• The creation of an automated physical design flow for multi-objective VLSI

optimisation using parameterised layout templates.

• The creation of a multi-objective (MO) EDA framework for generating trade-off

solutions with improved performance through standard cell (re)mapping in an

industrial flow.

• A methodology of using the standard industrial flow to generate a set of initial

solutions with different topologies and different performance covering a large

design space, and seeding the MOEA with them to more efficiently sample the

entire feasible design space.

• The knowledge of how different physical floorplan constraints affecting the perfor-

mance of VLSI designs during the standard industrial flow, and the application of

the methodology of seeding the MOEA with diverse initial solutions to effectively

handle the most complex constraint.

• A methodology to broaden the drive-granularity of standard cell libraries, which

helps to further exploit capabilities of a foundry technology node, enhances design

quality and reduces design margins.

• The application of fine-grained drive strength cells into an industrial flow to

produce VLSI designs with improved PPA metrics over the original resolution

library. This also has been shown to improve efficiency of the MOEDA flow in

optimising circuit designs.

• The standard design tools demonstrate significant variations for producing high-

quality results particularly when timing constraints become stringent; The results

from this thesis show that the standard design tools can be run more efficiently

with the assistance of MOEAs.

6

1.4 Thesis Structure

1.4 Thesis Structure

This thesis consists of eight chapters and is structured as follows:

• Chapter 2 gives a background review of the modern VLSI design process from

device to physical layout before fabrication, and summarises the current design

challenges and future trends.

• Chapter 3 explores the multi-objective optimisation literature to gain the under-

standing on how multi-objective evolutionary algorithms (MOEAs) are promising

to solve the problems that need to deal with several conflicting objectives.

• Chapter 4, a feasibility investigation, introduces an automated design flow to

perform multi-objective design and optimisation at physical layout level for a

CMOS VLSI circuit.

• Chapter 5 presents an optimisation framework - MOEDA cooperating with

commercial design tools for enhancing the quality of design solutions regarding

critical metrics through refining drive strength mapping of standard cells.

• Chapter 6 illustrates a methodology to seed the MOEA with the entire design

space, accessible by standard tools, across various circuit topologies for multi-

objective design space exploration (MODSE) including dealing with different die

shapes and pin places of physical floorplans.

• Chapter 7 proposes an interpolation methodology to expand the drive strength

granularity of standard cells, and applies enriched libraries to standard digital

flow for evaluation and to the proposed MOEDA flow for further trading off

feasible solutions.

• Chapter 8 reviews all proposed frameworks and methodologies used in this thesis

for digital VLSI design optimisation, and suggests improvements and future work

that could be undertaken based on current findings.

7

Chapter 2

Digital Integrated Circuit Design in

EDA Flows

8

2.1 Overview

2.1 Overview

Modern electronic design complexity has enabled high-density integrated circuits

(ICs) to comprise billions of transistors at the physical layout level. Progress in

semiconductor technology has made this possible through down-scaling semiconductor

devices and introducing new device architectures. The technology development has

resulted in a large shift for designers to advance from manual circuit design to automated

specification-based design flows in a few decades. Since the first EDA tool introduced

in the 1960s, the development of EDA tools has always geared towards automating the

entire design process and linking each separate design step into a complete flow. Such

a hierarchical design methodology, constructing designs from transistors up to large

systems, heavily relies on the abstractions of every design step. The post-fabrication

design effects thus need to be accurately accounted for early in the design cycle. In

response to this challenge, modern EDA vendors start blurring boundaries of separate

steps towards a deeper level of integration within the digital EDA flow, providing

seamless transition across synthesis, place-and-route and sign-off steps. Such integration,

however, is difficult since some steps need additional design freedom allowing designers

to tackle independently, introducing engineering change order (ECO) efforts from

engineers.

This chapter will overview the modern digital IC design process from transistor scaling

to the pre-fabrication design stage and outline the current challenges of commercial

EDA flows. The chapter is structured as follows: Section 2.2 introduces transistor

scaling including its trends and challenges. Standard cell library design for digital IC

flow using is then explored in Section 2.3. Section 2.4 introduces the industry-standard

digital VLSI design flow and its challenges for modern circuit designs. The related

optimisation techniques for augmenting the standard flow to tackle these challenges

are discussed in Section 2.5. Section 2.6 summarises the chapter.

9

2.2 Transistor Evolution

2.2 Transistor Evolution

2.2.1 Transistor Scaling

The technology node (also process node, process technology or simply node) refers to a

specific semiconductor manufacturing process and its design rules. In the semiconductor

industry, the miniaturisation of technology devices (i.e., transistors) has continuously

enabled the next-generation process node, circuit and system architecture over the

last few decades. The transistor scaling allows ICs to obtain greater device density

following the well-known Moore’s law (shown in Figure 2.1) which projects a doubling

of transistors on a single chip about every two years [12]. Such scaling targets drive the

industry to push the semiconductor physical limits towards many process technology

innovations introducing new materials and new structures to fulfil Moore’s law.

Figure 2.1 Moore’s law: The number of transistors on microchips doubles every two
years [1].

10

2.2 Transistor Evolution

The metal-oxide-semiconductor field-effect transistor (MOSFET) is by far the most

commercially successful semiconductor device used in process technology, which is

created based on a sandwich-like metal-oxide-semiconductor (MOS) structure by super-

imposing several layers of conducting and insulating materials. Electric fields control

the transistor operation so the devices are called field-effect transistors (FETs) [13]. The

MOSFETs have been used for building logic functions in Complementary MOS (CMOS)

technology. The architecture of MOSFETs is planar at its primary development stage

as shown in Figure 2.2 (a), and the first MOSFET was successfully fabricated in the

late 1950s.

Oxide

Source

Silicon Substrate

Drain

Gate

(a) Planar FET

Silicon Substrate

Gate

Oxide

(b) FinFET

Silicon Substrate

Gate

Oxide

(c) GAAFET

Figure 2.2 Transistor architecture evolution from planar to GAA

In the early 2000s, before the 130nm node, MOSFETs rewardingly employed the

Dennard scaling methodology [14], in which the transistor size could be scaled by a

constant while delivering consistent improvements in transistor area, performance (e.g.,

delay) and power reduction [15]. However, this transistor shrinking trajectory has

broken down and can no longer be followed in advanced technology nodes because

the power cannot be dropped without simultaneously decreasing either the transistor

performance or increasing current leakage. The leakage has been particularly significant

beyond 65nm node, where it poses a greater proportion of overall power consumption

and causes thermal issues on the chip [16]. The architecture innovation of transistor has

been shifted from the planar FET to FinFET and to the cutting-edge gate-all-around

11

2.2 Transistor Evolution

(GAA) FET to reach the goal of increasing the control of channel for leakage reduction

and operating at lower power with good performance. Figure 2.2 presents the evolution

of transistor architecture from planar device to GAA.

Since the reporting of International Technology Roadmap for Semiconductors (ITRS)

in 2001 revealed the promise of FinFETs (as illustrated Figure 2.2 (b)) for CMOS

technology scaling limits elimination [7], FinFET technology has vested interests

from the semiconductor industry. Foundries have successfully rolled out FinFETs for

commercial production from the 2010s onwards, and they became mainstream devices

at 14nm, 10nm and 7nm process nodes [8]. Moreover, as stated in the latest report of

the Institute of Electrical and Electronics Engineers (IEEE) International Roadmap

for Devices and Systems (IRDS) in 2020, the FinFET architecture remains promising

for mainstream logic devices to sustain until 2025 [8]. Nowadays’s state-of-the-art

5nm technology node is still using FinFET architecture. Both giant semiconductor

manufacturers Samsung and Taiwan Semiconductor Manufacturing Company (TSMC)

entered their volume production in 2020.

The 2020 IEEE IRDS report further projects beyond 2022, where a transition to

lateral GAA devices for the next die shrink below 5nm and GAAFET will become the

mainstream device after 2025, taking the place of FinFETs [8]. A lateral GAAFET

architecture example, shown in Figure 2.2 (c), shows how the gate material surrounds

the source to drain channel region (i.e., using the nanowire structure in this case) on

all sides.

Most recently, Samsung has launched the plan to develop its own novel variant (i.e,

using lateral nanosheet structure) of GAAFET, called MBCFET TM shown in Figure 2.3

(a), for 3nm process node. From a long-term perspective for the next 15 years, the

projected evolution of device architectures is expected to potentially include vertically

stacked fine-pitch 3D GAA devices in hybrid formed with the lateral GAAFETs,

presented in Figure 2.3 (b) [8].

12

2.2 Transistor Evolution

Silicon Substrate

Oxide

Gate

(a) MBCFETTM

Silicon Substrate

Oxide

Gate

(b) Vertical stacked GAAFETs

Figure 2.3 (a) A lateral GAAFET using nanosheet structure proposed by Samsung.
(b) Projected GAA device architecture for 3D VLSI beyond 2030.

2.2.2 Scaling Challenge

A process technology is typically labelled with a node name indicating the device

dimension. However, the industry “Node Range” labelling scheme of modern process

technologies, particularly in FinFETs, starts losing their actual meaning. The node

names used to represent physical features of a transistor, such as the gate length or metal

half-pitch. Most recently, due to how the transistor architecture changed dramatically

from how it used to be, the “Node Range” labels simply become commercial names for

a generation of a certain size and its technology, and does not represent any geometry

of the transistor [17].

The projected few process nodes in the 2020 IEEE IRDS roadmap are defined with

labelling “3”, “2.1”, “1.5”, “1.0 eq” and “0.7 eq” from 2022 to 2034 [8]. These numbers

look like they are continuously shrinking, whereas the physical gate length of each

corresponding process node is not constantly dropping down. The expected physical

gate length of the “5nm” node starts with 18nm, and decreases to 12nm at “1.5nm”

node and stays constant for the following nodes [8]. Figure 2.4 presents the CMOS

13

2.2 Transistor Evolution

scaling evolution, in which it can be observed that gate length or metal pitch is no

longer shrinking significantly with each process node generation [2].

Figure 2.4 CMOS technology scaling evolution: The gate length or maximum metal
pitch is hard to shrink in advanced technology nodes [2].

These demonstrate that transistor scaling becomes extremely hard due to its physical

constraints. Novel 3D stacked GAA device architecture is indeed expected to feature in

the roadmap of 2020 IEEE IRDS as already shown in Figure 2.3 (b), which can further

increase the transistor density on the die area. This makes it possible to continuously

fulfil Moore’s law in future chip evolution. However, a single transistor’s physical

dimension (e.g., gate length, metal pitch) will not significantly change (scale-down) in

the upcoming MOSFET process nodes.

In such a background, one of the potential optimisation opportunities could be how to

make the most use of the full capability of current technology nodes for better design

performance. The transistors are the fundamental components used to build large

systems using a hierarchical design methodology. It is hard to pass transistors’ realistic

effects through each level of abstraction with one hundred percent accuracy. Significant

overheads and inefficiencies will be accumulated in the later stages of the design flow.

Enhancing design correlation between early and late design steps can mitigate the

impact caused by abstraction margins or errors on the overall design results. So there

14

2.3 Standard Cell in Digital Integrated Circuits

still exists a space in current process technology and EDA tools/flows for pushing

modern designs to obtain improved overall performance.

2.3 Standard Cell in Digital Integrated Circuits

2.3.1 Standard Cell Library

IN OUT

INV NAND

IN1

OUT

IN2

IN1

IN2

NOR

IN1

OUT

IN2

IN1 IN2

OUTIN OUT
IN2

IN1
OUTIN2

IN1

0

IN OUT

1 0
1

0

IN2 OUT

1
0

1

IN1

1

01
0

0
1

1

1

0

IN2 OUT

1
0

1

IN1

1

01
0

0
1

0

0

Figure 2.5 Examples of common Boolean logic cells

A standard cell is an implemented single function block through manipulating transistors

and interconnects to form a complete structure. Standard cells are pre-defined for

digital IC design and distributed in libraries often provided by foundries and pre-

qualified for manufacturing. A standard cell library typically offers a wide range of

Boolean logic (e.g., NOT, AND, OR, NAND) and storage or sequential (e.g., Flip-Flop,

Latch) functions so that they can meet universal design specifications and ensure

15

2.3 Standard Cell in Digital Integrated Circuits

overall functionality. Figure 2.5 presents a few basic logic cells including schematics,

symbols and their behaviour.

However, circuits not only must satisfy behavioral functionality but also have to meet

the constraints or requirements derived from physical level when taping out chips.

Foundries therefore create each standard cell function with multiple options in drive

strength, and each library provides multiple versions in routing track, threshold voltage

(Vth) and supply voltage (Vdd).

Drive strength of a logic gate refers to its relative capability to charge or discharge the

capacitance presented at its output. Large drive strength featuring bigger transistor

sizes has a larger drive force to speed up a logic cell’s performance (transition time)

but can consume more power and die area, and vice versa. Thus, the multiple drive

strength options for a single cell are used to drive different required loads of circuit

paths.

For the whole library, the cell height (e.g., 9-track or 12-track) of standard cell layouts

implies how many route channels can be used later at the circuit-level physical routing

stage. More tracks allowing more routing space above the cells could relax routing

congestion, which can reduce potential design rule violations. Higher cells also provide

larger drive capabilities for better circuit performance. However, this would also

consume more power and increase the die area significantly.

The threshold voltage (Vth) is the minimum voltage at the transistor gate (VG) required

to form an inversion layer (channel) in between source and drain so that can turn the

transistor on. Different threshold voltages can be achieved via tuning manufacture

parameters of a transistor such as doping concentration. Foundries usually provide

standard Vth (SVT), high Vth (HVT) and low Vth (LVT) cell libraries aiming to

effectively control the leakage power in digital ICs. Because Higher Vth can reduce the

leakage but cells require larger transition time, and vice versa.

Multiple Vdd libraries are an important technique to typically save dynamic power of

digital ICs, allowing using different power domains. Different blocks having different

16

2.3 Standard Cell in Digital Integrated Circuits

supply voltages can be integrated into a single system-on-chip (SoC) chip. Thus, some

blocks can use lower voltages or even be completely shut off for a specific operation

mode so that power-efficient systems can be obtained. This method increases power

planning complexity in terms of laying down the power rails and power grid structure.

Level shift cells are necessary to interface between different blocks.

The provision of cells in the library having different layout architectures and character-

istics tries to make the most of the physical features of transistors. The standard cell

library is the middle abstraction layer which bridges process technology and common

logic blocks. Achievable well-optimised libraries have therefore become crucial, which

could determine the overall quality of results (QoRs) of VLSI designs.

2.3.2 Standard Cell Design Flow and Automation

The commercial digital IC design flow requires pre-characterised cell libraries for circuit

analysis and physical implementation. Figure 2.6 demonstrates the overall standard

cell design flow.

Specifications

Circuit netlistCircuit Design

Layout Design

Characterization
Timing & power model,

Layout abstract, etc.

Cell layout,
Parasitic extraction

PDKs,

Design rules,

SPICE models

Figure 2.6 Standard Cell Design Flow

17

2.3 Standard Cell in Digital Integrated Circuits

A standard cell is designed with a schematic or hardware description language (HDL)

entry based on a cell specification. The transistors in physical formats, provided

in process design kits (PDK), are then placed and routed in the cell layout. If all

required cell layouts are created and verified, the standard cell library creation is

finished. However, it will consume much evaluation time and simulation effort if

straightforwardly manipulating physical layouts of cells to complete a circuit in EDA

tools. This is because all pre-fabrication verification is performed based on the parasitic

extracted design. So the extraction effort will be significant if all transistors of a design

are processed simultaneously, and the circuit analyser needs to deal with extracted

information of all elements at the same time.

The pre-processed timing and power models, typically Liberty (.lib) format, are

generated for each cell through simulation based on its parasitic extraction. These

characterised models can speed up the evaluation process of circuits. Thus, the full

physical layouts no longer need to retain all interconnects and transistor structures,

and only the top layer metal including input/output (I/O) pin positions is required

for the subsequent circuit-level place and route. The abstract view (.lef) containing

the geometry information (normally metal 1) of cells is produced. The process of

transforming a standard cell library into pre-processed formats (i.e., timing, power

models and layout abstract) is referred to as library characterisation. Once the overall

design layout is complete, all standard cells used will then be replaced by the full

layout ones for fabrication.

Creating standard cell libraries might take much human effort in a turnaround design

cycle for producing cell layouts (i.e., transistor placement and interconnects). In the

past two decades, automated layout generators of standard cells (or called transistor

synthesis tool) have been investigated to accelerate this iterative process. In the early

2000s, EDA vendors started offering full standard cell design flow kits (e.g., Prolific

ProGenesisTM, Synopsys CadabraTM and NanGate Library CreatorTM) for automating

optimised CMOS gate creation, including cell circuit design, physical layout and library

characterisation. However, most of them are no longer active and available excepting

18

2.4 Digital VLSI Design Flow

NanGate Library CreatorTM (acquired by Silvaco in 2018). Its latest library platform

celloTM [18] supports advanced process technology down to 7nm FinFET node for

standard cell library creation, migration and optimisation. It now excels in technology

migration and layout optimisation for further PPA gains based on legacy libraries for

optimised cell variants generation.

In addition, few standard cell creators were introduced for research in the early 2000s. A

home-brewed tool from IBM, called C-cell, could generate optimised cell layouts based

on primitive cells and was adopted for high-performance microprocessor design [19]. A

layout generation system from Kyoto University called VARDS [20] could produce a

cell layout with variable drive strength. It had been successfully employed for 130nm,

180nm and 350nm library generation [21], on-demand library generation in the full

digital IC flow [22] and post-layout transistor sizing for chip power reduction [23]. More

recently, a dedicated layout generator for area-efficient standard cells was proposed

by the same research team [24]. However, these research-purpose cell creators all

need to operate based on primitive cells and symbolic layouts, which means each logic

functional cell needs to create a corresponding layout template manually created by

human effort.

Automating the creation of standard cell libraries from scratch is an extremely challeng-

ing task. In particular, custom specifications on cell design such as special requirements

of Vdd, Vth (typically near-threshold operation [25–28]), or special drive strength [29],

are still in a dire need of experience-based designer efforts.

2.4 Digital VLSI Design Flow

The process of designing a digital VLSI circuit is highly complex. It starts with a

system specification, following a series of steps and eventually produces a packaged

chip. A typical design flow is represented by the flow chart shown in Figure 2.7. The

system specification defines the overall goals and high-level requirements of the system

19

2.4 Digital VLSI Design Flow

such as functionality, performance, physical dimension and production technology [9].

A basic architecture must then be determined to meet these specifications. Example

decisions include the number and types of computation cores, usage of memory, usage

of intellectual property (IP) blocks, power requirements, etc [9].

ENTITY test
port a: in;

end ENTITY;

DRC
LVS
ERC

System
Specification

Logic Design and
Circuit Design

Logic Synthesis

Physical Design

Verification and
Signoff

Fabrication

Chip

Architectural
Design

Figure 2.7 VLSI Design Flow

The emphasis of the work discussed in this thesis mainly involves logic design to

physical design, which refers to a register-transfer level (RTL) to graphic design system

II (GDSII) flow, also called digital flow in the EDA community.

2.4.1 Logic Design and Circuit Design

Logic design is performed at the RTL using an HDL, which defines the functional

behaviour. Two common, widely used HDLs are Verilog and VHDL (i.e., VHSIC (very

20

2.4 Digital VLSI Design Flow

high speed integrated circuit) hardware description language). All RTL modules must

be simulated and verified for the use of consequent design steps.

In addition, an IC does not only include logic designs but also some critical macros like

memory blocks, analogue circuits, and I/O cells, which are normally manually designed

at the transistor level by engineers. These macros have to be complete before running

the logic synthesis. They are also required to be characterised in advance, including

timing and power models, and physical layout abstracts need to be created.

2.4.2 Logic Synthesis

Logic synthesis is a process that automatically converts HDL designs into a list of

signal nets and low-level circuit elements. In general, the synthesis process, shown

in Figure 2.8, has two main steps: 1) a given HDL functionality description is firstly

transformed into a netlist comprised of generic logic gates (e.g., and, or, not, universal

sequential elements). The modern EDA synthesizer provides few optimisation options

for designers to manipulate design hierarchy and logic structure transformations in

the RTL during the generic synthesis step; 2) The generic netlist is then mapped into

logic gates from a given technology standard cell library. The library used in this step

is pre-characterised in terms of timing, power (.lib file) and layout abstract (.lef file),

as discussed in Section 2.3. The technology-specified gates that defined their drive

strength, threshold voltage (corresponding to a physical view from the library) and

their inter-connectivity refer to a gate-level netlist.

The synthesised design also needs to be checked whether it meets the constraints

like timing, power, etc. If not, the synthesis tool will perform optimisation through

remapping logic or resizing gates in an iterative loop until design metrics improved.

Incremental optimisation is being operated while synthesising the design concurrently.

In addition, the synthesis tool usually provides different optimisation levels (e.g., low,

medium, high, ultra), but engineers have to make a choice between runtime and QoRs.

21

2.4 Digital VLSI Design Flow

RTL

Technology Mapping
and Optimisation

Gate-level Netlist

Generic Netlist
Synthesis

ENTITY test

port a: in;

port b: out;

b <= ~a

end ENTITY;

module test(I/Os);

ND2D0 g0(..net_0..);

OR2D0 g1(..net_1..);

INVD2 g2(..net_2..);

AD2D0 g3(..net_3..);

endmodule

Figure 2.8 A general Synthesis Flow

However, it is not unreasonable that the obtained synthesised design failed to meet

some design constraints, particularly the critical one - timing, although the “try hard”

synthesis mode - ultra optimisation effort is enabled. So the failed timing paths then

might be best fixed manually in the RTL design by engineers. It can cause iterations

of the whole synthesis flow and exacerbates the design effort challenge.

2.4.3 Physical Design

The obtained synthesised gate-level netlist (i.e., an abstract circuit description) of a

design will then be transformed into a detailed geometric representation - layout for

fabrication [30]. This process refers to the physical design or physical implementation,

which is a crucial step in the digital VLSI flow to make designs manufacturable. During

physical layout generation, all components (macros and cells) are assigned spatial

locations (placement) and have appropriate interconnections (routing) completed in

multiple fabricating technology metal layers. The result of physical design, typically

GDSII stream, is a set of manufacturing specifications for fabrication. Nowadays’s

22

2.4 Digital VLSI Design Flow

physical implementation tools can complete the whole process in an automated way.

Figure 2.9 presents each distinct step of physical design.

Partitioning

Placement

Routing

Floorplanning

Figure 2.9 Physical Design Flow

Partitioning. The chip-level partitioning is a common strategy to lessen the complexity

of physical design by dividing the whole circuit into smaller subcircuits called modules

or blocks. Each block then can be designed or analysed independently. But this

process needs to be operated while considering other partitions to minimise connections

between subcircuits, which may otherwise cause performance degradation [30].

Floorplanning. After the circuit partitioning phase, each block has a known hard

or soft shape. Hard blocks have fixed dimensions and areas, while a soft block has

a fixed area but the aspect ratio can be changed. The entire arrangement of all

blocks including their shapes and positions without any design rule violations (e.g.,

no overlap) is floorplanning. The determined topology of a circuit layout is necessary

for the subsequent placement and routing steps [31]. Particularly for routing, an

poor-floorplanned layout would significantly affect the routing quality (e.g., heavy

23

2.4 Digital VLSI Design Flow

routing congestion), which could pessimistically impact the overall performance of the

design.

Placement. It seeks to determine the spatial locations of standard cells or logic

elements within each block on the layout die surface. All elements need to be placed

on their legal sites. During this step, it also requires addressing optimisation such as

minimising the distance between the cells or total wirelength of interconnections while

meeting timing constraints and keeping routability. A poor placement consumes a

larger die area and results in more timing violations. In addition, during the placement

step, detailed locations of elements could enable more accurate estimates of circuit

delay for earlier-stage timing optimisation [9].

Routing. Following the placement step, routing is to complete interconnections

between standard cells or blocks. The routing process needs to specify wiring segments

and topologies to connect all elements for a given placement and netlist while respecting

constraints such as design rules, routing resources (cell tracks, metal layers) [9]. The

simultaneous routing optimisation goal is minimising total wirelength and maximising

timing slack.

Physical design directly impacts final circuit timing, area, power and reliability. Par-

ticularly meeting timing is of the most importance when completing the physical

layout generation. So timing evaluation is performed at each step of physical design

flow, and any timing violations must be solved before carrying on to the next step.

Modern physical design EDA tools offer incremental optimisation techniques to fix

these problems automatically through gate resizing (drive strength remapping), buffer

insert/delete, logic refinement, instance movement, etc. These local optimisations

might not be able to consider the design globally, and limited in trading off design

metrics well.

The complete circuit layout must be fully verified to ensure behavioural and electrical

functionality before fabrication. Few changes on layouts may be required for solving

problems exposed at physical verification step. This is normally achieved through

24

2.4 Digital VLSI Design Flow

manual engineering efforts of experienced designers, called engineering change order

(ECO). It allows inserting logic directly into the gate-level netlist corresponding to a

change in the RTL due to design error fixes or a change request from the customer.

ECO flow is usually preferred as they save time and money in comparison to a full

chip re-spin. However, the changes of a design using an ECO flow should not in a

significant amount, which may otherwise require layout replacing and rerouting, often

lead to worse final QoRs [32].

The full flow of RTL-to-GDSII is an iterative process in practice. Commercial tools

have iterative mechanisms inside for optimisation in some dedicated steps. Although

the commercial design kit is indeed powerful, significant human efforts are still involved

in the design process. IC engineers normally check design quality at each step to meet

all constraints. If violations can not be solved at the current step, engineers turn back

to an earlier design stage for design adjustments to achieve design closure. Such a

cycle is time-consuming.

In addition, with the increasing complexity of VLSI design, the modern EDA tools

are required to manipulate a fast algorithm to deliver a feasible solution against the

time-to-market pressure. So deterministic algorithms, which can always deliver the

same solution for a particular given input, are in demand and have been developed

for most sub-design steps of digital flow. These algorithms only require one execution

for producing solutions but algorithm designers need to determine a mathematical

function mapping the specific problem domain for computing. Such methods used

might be limited to obtain a well compromised solution from a global point of view.

Therefore, to find possible optimal trade-off solutions regarding multiple design re-

quirements using appropriate library cells while consuming less turnaround time is the

challenge of design optimisation.

25

2.5 Modified Digital Flow

2.5 Modified Digital Flow

Modern chip complexity requires VLSI designers to simultaneously consider a growing

list of constraints and objectives including performance, power, signal integrity, relia-

bility and yield [10]. Design closure is a process that an IC design is modified from its

initial description to meet target constraints and objectives [10]. To achieve this goal,

industry engineers and academic researchers propose novel optimisation techniques to

augment designs during the digital flow.

Custom design methodologies are efficient to improve the QoRs of designs achieved

by experienced engineers. In the early 2000s, W. Dally and A. Chang evidenced the

role of custom design in application specific integrated circuit (ASIC) chips [33]. They

proposed to selectively apply a number of custom design techniques in the digital

flow, including custom floor-planning, place and route critical signals to achieve the

most compact layout structure. This manual design process enables reducing load on

paths, better density and ultimately achieves better PPA, but custom design requires

significant manual effort and is therefore not scalable to handle the complexity of large

designs.

Furthermore, D. Chinnery and K. Keutzer stated that there is a gap between full-

custom design and standard digital flow regarding speed and power [34] [35]. Digital

ICs implemented using the standard design flow may significantly reduce design cycle

time but have lost possible optimal trade-off solutions, which full-custom design can

achieve. However, the current extreme design complexity, as well as the time-to-

market pressure to continuously produce new generations of chips, designers in industry

still focus on synthesis-centred methodology to save design efficiency and resource

budgets. Therefore, implementing extra custom design and optimisation techniques as

enhancements to the standard digital flow is promising to achieve higher QoRs [36].

To accelerate custom design in the digital flow, H. Onodera et al. introduced an ASIC

design methodology with on-demand library generation during design loop. It can

26

2.5 Modified Digital Flow

produce cells with tailored drive strength from a set of symbolic layouts [22]. This

enabled tunability of the drive strength of cells, which is in contrast to the conventionally

used set of cells with fixed drive strengths. In [19] IBM also raised a similar semi-

custom design flow for microprocessor design. The method continuously iterates the

whole flow using pre-defined parameterized cells to recover the performance of designs

through auto-generating compensated cells into a fixed cell library. In [23] a post-layout

transistor down-sizing method was proposed for power reduction while preventing

interconnect modifications, so that straightforwardly save the design turnaround time.

Most recently, EDA vendors offer latest digital full flow solution, such as Cadence

iSpatialTM, Synopsys Fusion CompilerTM, to unify the power of logic synthesis and

physical implementation tools. The key enhancement of novel design methodologies is

migrating a part of physical implementation functions to logic synthesis for early-stage

accurate evaluation to reduce design margins, so as to enable faster throughput time

and improved PPA metrics.

Industry-standard IC design flow, to a large extent, is a closed-source design process.

Limited engineer change order (ECO) opportunities can only be executed by the

designer within the flow’s constraints at place and route stage, which is at a late stage

in the flow making efficient optimisation impossible. To address this issue, a number of

academic open source tools in logic synthesis, physical implementation and verification

have been developed [37]. The OpenROAD project, led by University of California San

Diego, seeks to develop an open source RTL-to-GDSII EDA flow through integrating to

achieve 24-hour, No-Human-In-The-Loop layout design with no PPA loss [38, 39]. This

opens up new possibilities to modify or hook into the design flow at a more detailed

level, enabling the application of popular techniques, including artificial intelligence

(AI) and machine learning (ML).

27

2.6 Summary

2.6 Summary

This chapter provides an overview of digital integrated circuit design in EDA flows

from transistor scaling to physical layout implementation. Some current challenges in

the modern digital IC design are explored both in terms of EDA tools and designers.

Process technology scaling trend is moving towards novel transistor structure (3D

stacked) investigation instead of further shrinking the absolute physical size of tran-

sistors, because significant variability has been introduced in small-scale transistor

so simultaneous improvements on power and performance are almost impossible to

achieve. This implies that power, performance and area gains for overall electronic

system optimisation no longer heavily depends on transistor scaling.

Each design step of digital flow introduces its own level of abstraction, so any margin

or error will accumulate and propagate. Hence, achieving a good solution in each

step is crucial for the success of subsequent design steps and the quality of the overall

solution. Increasing the correlations between front-end and back-end during the IC

design cycle is vital to reduce margins across different levels of abstraction.

Thus in today’s silicon-based IC industry, designing and optimising an electronic system

requires achieving design closures in regard to multiple constraints consuming less

throughput time. The potential avenues to make this possible are: 1) to make both

full use of current technology nodes and EDA design flows; 2) to trade off multiple

objectives and constraints, which become more challenging in modern designs. So

there is a demand to provide designers with choices and allow to select designs with

the most appropriate trade-off solutions for different application cases.

The next chapter will give a literature background of multi-objective problems and

commonly-used methodologies, as well as multi-objective optimisation techniques

applied in the VLSI design processes.

28

Chapter 3

Multi-objective Optimisation

29

3.1 Overview

3.1 Overview

The VLSI design process is often involved with multiple conflicting objectives and

constraints as discussed in Chapter 2. Investigating possible optimum trade-offs of

a design to satisfy all objectives and constraints is the ultimate goal that needs to

be achieved. This process heavily relies on the experience of designers, and they are

required to be familiar with the problem domain and design challenges. Therefore,

VLSI design can be considered as a multi-objective problem (MOP).

This chapter provides an introduction of the multi-objective problem at first in Sec-

tion 3.2. Decomposition-based method to solve MOPs is then discussed including its

limitations in Section 3.3. The evolutionary multi-objective optimisation techniques are

explored in Section 3.4. Section 3.5 introduces the evolutionary technique’s application

in VLSI design including its limitations, challenges and trends. Section 3.6 summarises

the chapter.

3.2 Multi-objective Problem

Most real-world engineering optimisation problems are inherently multi-objective.

Finding solutions has always been a challenge for researchers and engineers since they

must simultaneously satisfy several objectives. A general multi-objective problem [40]

with n decision variable vectors and m objectives can be defined as:

y = f(x) = [f1(x), f2(x), ..., fm(x)]T (3.1)

where x = [x1, x2, ..., xn]T ∈ X ⊂ Rn is an n-dimensional decision vector and X is the

n-dimensional design space. The y = [y1, y2, ..., ym]T ∈ Y ⊂ Rm is an m-dimensional

objective vector and Y is the m-dimensional objective space. The x defines m functions

mapping X to Y.

30

3.2 Multi-objective Problem

In most optimisation problems, there are restrictions imposed by particular character-

istics of environment resources available (e.g., physical limitations, time requirements,

etc.). All these restrictions, called constraints in general, must be complied with

in order to deliver a certain solution that is both feasible and acceptable. So the

constraints [41] can be expressed in the form of inequalities:

gi(x) ≤ 0 i = 1, ..., p (3.2)

or equalities:

hj(x) = 0 j = 1, ..., q (3.3)

Thus a MOP consists of m objectives, p + q constraints on the objective functions and

its optimisation is performed on n decision variables.

Such optimisation problems, often constrained, are not unreasonable in VLSI design

flows. Power, performance and area are fundamental objectives for a chip design. Thus

digital IC design optimisation (in terms of speed) normally aims to reduce the cost of

power and area without performance degradation. In addition to the physical design,

each step needs to complete the corresponding task while considering multiple specific

constraints, such as timing slack, design rules, power delivery, signal integrity, etc., to

ultimately ensure design reliability.

3.2.1 Pareto Optimality

The optimisation goal changes in MOPs since several objective functions and constraints

exist. It is rarely the case that there is a single solution point which simultaneously

optimises all the objective functions to a significant degree. Therefore, the optimisation

process is aimed at finding a potential set of compromises (or trade-offs) rather than a

single solution instead.

31

3.2 Multi-objective Problem

f2(x)

f1(x)

xb

xa

xc

Pareto front curve

Figure 3.1 Pareto optimality: Solution xa and xc exist on Pareto front and both
dominate solution xb.

The most commonly adopted notion of optimality is called Pareto optimum or Pareto

optimal [42]. In a multi-objective minimisation problem, one decision variable vector

xa ∈ X is said to dominate another xb ∈ X if for all i

fi(xa) ≤ fi(xb) i = 1, ..., m. (3.4)

In addition, if and only if there does not exist a x′ ∈ X that dominates xa, the solution

xa is said to be non-dominated or Pareto optimal. All Pareto optimal solutions exist

on the Pareto front when m = 2 or the Pareto surface when m > 2. However, if vectors

xa and xc both exist on Pareto front, the two vectors are not comparable. Figure 3.1

illustrates these concepts.

In other words, the Pareto optimality finds a possible solution that one objective better

off without making others worst off. In many real-world problems, the Pareto front is

32

3.3 Decomposition of Multi-objective Problems

hard (probably impossible) to achieve as problem solvers need to guarantee that no

solution behind it can exist.

3.3 Decomposition of Multi-objective Problems

To straightforwardly solve a problem involving multiple objectives and constraints is

quite complex. Decomposing the complexity of a MOP is a commonly adopted strategy

to tackle this kind of problems. The primal problem is often facilitated into a problem

abstraction resulting in a reduced search complexity. Using such a method normally

employs a scalarising function to aggregate all the objectives into one scalar objective

function. The scalarised function consists of a set of single objective sub-problems

that correspond to the objectives of the primal problem. The optimal solutions

to the one scalar objective optimisation problem are the Pareto optimal solutions

to the multi-objective optimisation problem. A set of parameters (i.e., scalarising

coefficients) for the scalarisation can be used to search for Pareto optimal solutions and

different parameter combinations can produce different solutions. Thus the definition

of scalarising coefficients is crucial for the optimisation process and it is normally

determined by decision makers according to specific problems.

For example, the weighted sum method (or linear scalarisation) is a frequently used

scalarising approach due to its lower computation efforts and high search efficiency. As

a common concept in multi-objective optimisation, the weighted sum method has been

discussed prominently [43] [44] since it was introduced by Zadeh [45]. The method

linearly aggregates all the single objective functions into one objective function by

using a weight vector w. So the decomposed MOP can be expressed as:

y =
m∑

i=1
wifi(x), s.t. x ∈ X (3.5)

33

3.3 Decomposition of Multi-objective Problems

It is a feasible methodology that can improve the optimisation efficiency with obtaining

compromised solutions. However, in the weighted sum method, aggregating all objective

functions needs to deal with weighting coefficients adjustment. One obvious problem

that may be hard is to precisely and accurately select a set of weights to scale all

objectives fairly [46]. Defining appropriate scalarising weights requires practitioners to

be familiar with the specific problem domain. This method also has problems with

selection. For instance, two solutions may have the same overall objective result, but

each single objective function may contribute completely different values, introducing

ambiguity in the selection process. Furthermore, the weighted sum method increases

the difficulty of producing the entire Pareto optimal sets because it may be difficult or

even impossible to obtain trade-offs concerning all proposed objectives only according

to overall objective function values.

This drawback of the linear scalarisation has been theoretically evidenced [47] [48]; it

cannot find the Pareto front on non-convex regions [49] [50]. However, many modern

complex systems (e.g., deep neural networks, the performance of semiconductor devices,

etc.) imply non-convexities that contain local minima during optimisation. In respect

of a convex problem, every local minimum is a global minimum. Figure 3.2 basically

illustrates convex and non-convex problems.

f(x)

x

f(x)

x

Convex Non-convex

Figure 3.2 Examples of convex and non-convex problems

34

3.4 Evolutionary Multi-objective Optimisation

If the problem is identified as convex, the scalarised MOP could be mapped into

the convex problem class, such as linear programming, geometric programming, etc.,

which have been widely used in electronic circuit modelling and design optimisa-

tion [51] [52] [53] [54]. Most of these techniques are inherently adapted to handle

continuous version problems.

However, the FinFET and the recent GAAFET technologies introduce additional

discreteness in transistor sizing. The increased complexity in modern semiconductor

devices causes non-convex delay functions, which lead to non-convexities in device

simulation results and non-linear delay model (NLDM) tables. In addition, capacitance

and slew constraints will further complicate the problem [55].

Kashfi in [56] empirically studied the modelling of power and delay for VLSI circuits

through comparing convex and non-convex analytical models in the multi-objective

optimisation process. This work concluded that the non-convex circuit model has much

more chance of finding the global optimum, which also demonstrates the non-convexity

of realistic circuit behaviour in power and delay. In contrast, although the convex

model could guarantee the optimum, it is possibly local and may have more modelling

errors. The weighted sum method also has been evidenced that it is less effective for

solving MOPs in non-convex functions [56].

Therefore, it is reasonable to consider modern VLSI design, particularly at the physical

level, as a non-convex problem to hold optimisation results close to design practice

behaviours.

3.4 Evolutionary Multi-objective Optimisation

Solving MOPs using evolutionary algorithms (EAs) is an alternative approach that can

provide global solutions for large complex problem space comprised of many potential

local minima.

35

3.4 Evolutionary Multi-objective Optimisation

Evolutionary algorithms are a class of population-based stochastic optimisation method-

ology inspired by Darwin’s evolutionary theory [57]. The optimisation, through genetics,

recombination and selection, allows populations to improve with evolutionary cycles.

Although many variants of EAs have been proposed over time, the general underlying

principle remains the same. That is, a population of individuals encoding the problem

evolves naturally over generations to result in better-adapted solutions eventually.

3.4.1 Operation of a Basic Evolutionary Algorithm

In detail, a population normally required in an EA contains a number of individuals

which are the candidate solutions of a problem. The natural environment is represented

as a cost function, called fitness, which allows evaluation and assignment of a fitness

score to each individual. Under the pressure of the environment, individuals are

reproduced through variation operations and involved in an iterative evolutionary

loop with a number of generations. At the end of each generation, better fitness

individuals survive the natural selection process for the subsequent generation until

the termination of the evolution process [58]. All poor fitness individuals will die out.

Figure 3.3 illustrates a generic flow of EAs.

Representation. Implementing an EA to solve a real-world problem requires a

representation mapping a genetic encoding to the problem. This is a preparation step

before routinely executing the EA. The representation usually refers to a specific data

structure (the genetic encoding) that the EA manipulates during optimisation. It

describes the problem in a set of necessary parameters or variables. This is called a set

of genes or a chromosome representing an individual. The genes normally need to be

defined with a feasible range according to the specific problem. A legal combination of

specified genes (chromosome) can represent an individual or a solution to a problem.

Initialisation. This establishes an initial population which can be either initialised

randomly or seeded with a set of specific configurations. The population size, i.e., the

number of individuals of the population, is variable and needs to be defined.

36

3.4 Evolutionary Multi-objective Optimisation

Initialisation

Selection

Variation

Evaluation

New Generation

Optimised
Results

No

Yes
Terminate?

Figure 3.3 A generic flow of EAs

Evaluation. Once genes have been specified and mapped to the chromosomes of

individuals can be inserted into an environment for fitness measuring (here, actual

hardware or a realistic simulation in the electronic design). So the evaluation is an

assessment scheme to assign performance results to individuals. A fitness function,

or cost function, needs to be defined in regard to problem objectives to calculate the

numerical fitness score of each individual.

Selection. Following evaluation, the fitness scores are used during the selection process

to determine which individuals should survive to form the population for the next

generation. The goal of selection is to promote the individuals which receive high

rewards from the fitness function and discard others.

However, one issue with selection is that, when an individual is found which has an

advantage over the other individuals, it can often be lost in the next generation since its

advantage may be removed by genetic variations [59]. So elitism strategy is commonly

37

3.4 Evolutionary Multi-objective Optimisation

used because it can ensure elitist individuals (i.e., having best fitness) to be preserved

unchanged and carried through to the next generation [60].

Variation. Crossover and mutation are often used variation operators. Since the

variations are performed on the chromosome of an individual, they are also called

genetic operators.

The crossover operator combines subsets of the chromosomes of usually two individuals

and mixes them to form two new chromosomes representing two new individuals.

Figure 3.4 shows an example of two offspring individuals that are produced through

separating and recombining the paternal chromosomes. Not all offspring individuals

will be reproduced through the crossover operation, and some of them will be copied to

the next generation without modifications. To do this, the crossover rate (probability)

refers to determine the number of times a crossover occurs for individuals in one

generation, which is the probability that two chromosomes exchange some of their

parts [61]. The 100% crossover rate means that all offspring individuals are produced

through crossover. If the crossover rate is 0%, then the offspring is exactly copied from

the old population.

Parent 1

Parent 2

Offspring 1

Offspring 2

Crossover Point

Figure 3.4 Example of a crossover operation, here single point crossover.

38

3.4 Evolutionary Multi-objective Optimisation

Mutation normally takes place after crossover is completed. The operator randomly

applies modifications to one or more genes of a chromosome or an individual. In

electronic design, the mutation is usually restricted with a modification range that

covers the valid parameter (ranges for the genes) to make the design realistic and

feasible. For example, shown in Figure 3.5, in a binary-coded chromosome, one or more

bits randomly chosen can be switched from ‘1’ to ‘0’ or from ‘0’ to ‘1’. The number of

genes to be altered in a chromosome of an individual refers to the mutation rate.

Parent

Offspring

Mutation Point

1 0 1 1 0 1 1 0 1 0 1 1

0 0 1 1 1 1 1 0 0 0 1 0

Figure 3.5 Example of mutation operation, here random bit-flip.

In the EA community, it is a common view that the crossover is the primary search

mechanism and that mutation is a secondary operator. In recent years, it has been

found that mutation is a much more important operator specifically in the context of

evolutionary strategies, and some of EAs developed only exclusively use mutation [59].

Crossover operation is not often used in the electronic design (typically in hardware)

due to its implementation difficulty. Since circuit topologies in electronic hardware are

varying during the design process, the overall design functionality will be modified if

performs crossover operator between different circuit topologies. Relying instead on

mutation is more commonly adopted in electronic hardware design [59].

Termination. Termination of the evolution process is triggered when specific criteria

are met, such as:

1) The quality of the solution is sufficient for use.

2) The maximum number of generations set by the decision-maker is reached.

39

3.4 Evolutionary Multi-objective Optimisation

3) The performance of EA produced solutions is stagnating during the evolution

process.

3.4.2 Multi-objective Evolutionary Algorithm

Evolutionary techniques have been widely used in solving MOPs. Before the emergence

of multi-objective evolutionary algorithms (MOEAs), it is common to decompose the

complexity of MOPs using scalarising methods in the EA community. The single-

objective evolutionary algorithm can then apply to solve the aggregated multi-objective

problem. This approach was very popular and adopted in the early stage of MOEA

development history [62], but its incapability of dealing with non-convex Pareto fronts

was soon reveled [63].

To cope with the real-world scientific and engineering MOPs that are often irregular due

to their high-dimensionality, discontinuance, and multi-modality [40], the development

of MOEAs derived from basic EAs provides an alternative approach to solving these

irregular problems. The ultimate optimisation goal of MOPs is to obtain a set of

Pareto-optimal solutions. Although a few compromised feasible solutions that the

scalarisation methodology can achieve, MOEAs instead explore the whole fitness

landscape approaching the entire set of the globally optimal solutions [64].

The first MOEA, called vector evaluated genetic algorithm (VEGA), is proposed

by David Schaffer [65]. This area has attracted a lot of interests from researchers

around the world since then. Multi-objective genetic algorithm (MOGA) [66] and

Non-dominated sorting genetic algorithm (NSGA) [67] were introduced and drawn

much attention in the EA community. Both dealing with selection problem are based

on the Pareto optimality ranking mechanism, but the diversity of Pareto fronts is

hard to maintain in these algorithms. This is because the Pareto optimal set may

eventually converge to a single solution [62]. To preserve diversity, the strength Pareto

evolutionary algorithm (SPEA) [68] was proposed using the idea of elitism to retain all

the best solutions. Thus its produced Pareto front diversity heavily relies on the large

40

3.4 Evolutionary Multi-objective Optimisation

archived non-dominated solution set, which would slow down the search. A revised

version of SPEA called SPEA2 [69] overcame the drawback of its predecessor through

introducing a nearest neighbour density estimation and an archive truncation method.

The non-dominated sorting genetic algorithm-II (NSGA-II) [70] is the most popular

MOEA that has been widely applied to solving many real-world MOPs, and it is still

widely used today by researchers. It features a fast non-dominated sorting approach and

a diversity preservation mechanism that does not require any user-defined parameters.

These provide selection with elitism as well as a good spread of solutions.

Figure 3.6 illustrates the principle of both non-dominated sorting and diversity preser-

vation running in an example population.

Figure 3.6 The overall NGSA-II procedure including non-dominated sorting and diver-
sity preservation mechanism in a population evolution.

Non-dominated sorting. As stated earlier in this chapter, if one individual p performs

better than another q in at least one objective while not performing worse in any other

objectives, then p is said to dominate q. In non-dominated sorting, each individual

(e.g., p) has two entities: the first is domination count, the number of solutions that

dominate p; the second is a set of solutions that p dominates. The individuals are

grouped based on their domination count into multiple fronts F = (F1, ..., Fi). The

non-dominated individuals which have the lowest domination counts (i.e., zero) form

41

3.4 Evolutionary Multi-objective Optimisation

Algorithm 1 NSGA-II
Procedure: NSGA-II (N , M , fm(xn)). ▷ N individuals evolved M generations to
solve fm(xn).

1: Initialize random parent population Pt in size N
2: Evaluate objective values
3: Non-Dominated-Sorting (Pt)
4: Generate offspring population
5: Binary-Tournament-Selection (Pt)
6: Qt ← Crossover (Pt)
7: Qt ← Mutation (Qt)
8: for t← 1 to M do
9: for each population Rt ← Pt ∪Qt in size 2N do

10: F ← Non-Dominated-Sorting(Rt) ▷ Assign Rank (level) based on Pareto
dominance.

11: Pt+1 ← Ø
12: i← 1
13: while |Pt+1|+ |Fi| ≤ N do
14: Crowding-Distance-Assignment(Fi)
15: Pt+1 ← Pt+1 ∪ Fi

16: i← i + 1
17: end while
18: Fi ← Descend-Sort(Fi)
19: Pt+1 ← Pt+1 ∪ Fi[1 : (N − |Pt+1|)] ▷ Less crowded individuals from the first

to the (N − |Pt+1|)th of Fi to fill Pt+1.
20: Create next generation
21: Binary-Tournament-Selection (Pt+1)
22: Qt+1 ← Crossover (Pt+1)
23: Qt+1 ← Mutation (Qt+1)
24: end for
25: end for

the first front F1. The individuals which have the second lowest domination counts

form the second front F2 and this will continue to the third and following fronts until

all individuals are assigned.

Diversity Preservation. This crowding distance sorting algorithm estimates the

solution density in the vicinity of each individual based on the Euclidean distance to

their nearest neighbours [57]. It mainly has two steps: the first is to calculate the

distance of each individual to others, and assign the value to each individual; the

second is to descendingly re-sort the F according to their distance values. So that if

42

3.5 MOEA Application in VLSI Design Flow

two individuals belong to the same non-dominated front, the one that resides in the

less crowded region is preferred.

Algorithm 1 illustrates the NSGA-II algorithm in detailed. Since the thesis work

investigates whether MOEAs can enhance the digital VLSI design processes instead of

finding the best EA for VLSI design, NSGA-II, a population-based algorithm, will be

selected as the main searching and optimisation technique.

All EA parameters set (population size, generation count, mutation rate) in this work

are widely-used in MOEA literature [59].

3.5 MOEA Application in VLSI Design Flow

Optimisation methods for VLSI computer-aided design (CAD) cooperating with evolu-

tionary algorithms firstly appeared in the late 1980s [71] [72]. The EA-based VLSI CAD

became an active and popular research area since then, which particularly attracted

much attention in the 1990s and 2000s.

In the VLSI design flow, a number of EA-based techniques made impressive contribu-

tions to logic synthesis [73–76], partitioning [77–79], floorplanning [80–83], placement

(standard cell placement [84, 85], macro cell placement [86, 87]) and signal rout-

ing [88, 89], which were even cover the whole VLSI design flow. Most of these works

were presented around 20 years ago. The complexity of VLSI design at that time

(e.g., around 100 million transistors on a chip) was not as high as today’s chips (i.e.,

normally dozens of billion transistors), which also has not been further complicated

with too many modern design constraints. The EA-based techniques had achieved

competitive high-quality VLSI circuits than the previously published excel works at

that moment.

However, the EA-based VLSI design corresponding to each sub-step started to reveal

its drawbacks compared to the modern EDA tools that can deliver a reasonably good

and deterministic solution as speedy as tools can. The weak capabilities are that

43

3.5 MOEA Application in VLSI Design Flow

(1) Since EAs are inherently stochastic search methods, randomness might influence the

solution quality. In other words, the solutions produced by EAs for multiple executions

are often different to each other. (2) The runtime of EAs are not competitive comparing

to the deterministic algorithms.

Most EAs’ applications in the VLSI start shifting to perform multi-objective design

optimisation and design space exploration, which are often out the scope of typical RTL

to GDSII design flow. At the library level, the work in [90] introduced a library-reduction

strategy based on an EA only using mutation, which allows saving logic synthesis efforts

while keep improving PPA of designs. At system or architecture level, many publications

are looking at evolutionary design space optimisation. The authors in [91] introduced

a GA-based approach to automatically tune the parameters of hardware intellectual

property (IP) generator, which successfully optimised a network-on-chip (NoC) router

and a fast Fourier transform for higher quality results (PPA) at a lower computational

cost. Both [92] and [93] proposed the use of a multi-objective evolutionary approach to

search for Pareto optimal configurations of a highly-parameterized system-on-chip (SoC)

architecture model, where computation, communication and memory elements can be

changed based on parameter values. This method has both improved quality of results

(QoRs) (i.e., power/speed trade-off) and exploration efficiency. Erbas in [94] compared

a mathematical model (i.e., weighted Chebyshev method) with two typical MOEAs:

SPEA2 and NSGA-II to optimise the processor network mapping onto multiprocessor

SoC architectures. Dey in [95] applied multi-objective design space exploration for

power grid networks of SoC using NSGA-II.

For VLSI design reliability, the authors in [96] applied NSGA-II to optimise the

soft error (transient faults) through refining gate drive strengths while compromising

area and delay of the circuits. Instead of relying on a general EA, a cooperative

co-evolutionary algorithm (CCEA) (i.e., decompose n-D decision vector into n 1-D

subcomponents) is proposed in [97] and applied in the tolerance to transient faults in

multiprocessor systems for better search efficiency.

44

3.5 MOEA Application in VLSI Design Flow

Moreover, MOEAs were used to augment high-level synthesis (HLS) efficiency and

outcomes. In [98] a GA was proposed to combine two sub-tasks running concurrently

during HLS of datapaths. It showed that the productivity of datapath generation was

enhanced significantly while considering area constraints. Ferrandi in [99] presented a

multi-objective genetic algorithm optimisation framework in HLS for area and latency

optimisation. Evaluation of candidate solutions was performed using a fast estimation

model, which saved evaluation time and ultimately improved the design exploration

efficiency.

Previous research confirms that MOEA based approaches could achieve superior QoRs

in completing the digital flow from logic synthesis to physical design. Due to revealed

limitations (e.g., runtime, randomness) of MOEAs, many MOEA applications shift to

system-level or even high-level synthesis. Early exploration of the design space plays a

crucial role as it allows evaluating alternative solutions without the burden of low-level

primitives [94, 100]. The existing research demonstrates that MOEAs are well-suited

for multi-objective design space exploration.

However, an MOEA developed for VLSI design might not create many interests within

the VLSI or EDA community unless its performance and robustness are competitive

in real-world large VLSI design problems. In addition to the academic results from

evolutionary-based design, they should not be separated from comparing the algorithms

with commercial EDA tools.

Researchers in [72] provide guidelines for developing MOEAs for VLSI design.

(1) It is of paramount importance to investigate the randomness of the solution quality

given the probabilistic nature of MOEAs. Designers will hesitate to use an algorithm

or method that requires running several times.

(2) The results produced from MOEAs neglect the practicability that solutions need to

be implemented and tested in the context of realistic constraints.

(3) Both runtime and quality have to be taken into account when using MOEAs.

45

3.6 Summary

3.6 Summary

This chapter provides an overview of multi-objective problems, and two general method-

ologies (i.e., decomposition-based and MOEA-based), as well as MOEA applications in

VLSI design, are discussed.

It is highlighted that MOEAs are able to solve MOPs, particularly for discrete, nonlinear,

non-convex problems. Although MOEAs have not been widely commercialised in

standard EDA tools/flows, some related global stochastic optimisation techniques

(simulated annealing is typical) have been used in state-of-the-art EDA tools/flows.

The critical issues of developing EAs for VLSI design are high-computing efforts and

randomness of results. So EDA vendors prefer to use deterministic algorithms for

completing VLSI designs, in which all decisions made by the algorithm are repeatable

(i.e., not random) [9].

However, the ever-growing complexity, also showing discontinuities, non-linearities and

non-convexities, of modern VLSI design make feasible solutions hard to be achieved by

EDA flows in a single execution cycle. Many cases need human efforts from engineers

to resolve the problems, and some might be beyond the experience of a specific designer.

Moreover, as explored in Chapter 2, modern hierarchical design flows might bring

significant overheads and pessimistic overall results (unable to reach the possible

optimum) due to the potential margins from multiple levels of abstraction.

In such a situation, it is a promising opportunity to reconsider applying MOEAs across

different abstraction levels as the global optimiser to assist the design process of VLSI,

particularly in balancing multiple objectives and constraints. The next chapter will

present an initial work that combines MOEAs and VLSI physical layout design to

perform multi-objective optimisation.

46

Chapter 4

Multi-objective Circuit

Optimisation using Layout

Templates

47

4.1 Overview

4.1 Overview

This chapter presents an automated physical design approach to perform multi-objective

optimisation on a CMOS VLSI design. An MOEA is applied to optimise the circuit by

performing adjustments on a parameterised layout template. This aims to produce a

set of layout instances representing optimised trade-off solutions regarding propagation

delay, energy consumption and layout area.

In order to accurately characterise the performance of a circuit close to a real fabrication

process, it is necessary to consider the design down to the physical level. Therefore,

in this initial work, the focus is on designing and optimising circuits based on their

layouts, enabling high-performance solutions both realistic and feasible. The specific

goal of this chapter is to provide a feasibility study of using parameterised layout

approach in the context of evolutionary multi-objective optimisation, and results for a

simple test case are shown.

The remaining parts of the chapter are as follows: Section 4.2 provides an overview of

the proposed automated physical design flow. Section 4.3 gives a detailed description

of the parametric layout. Thereafter, Section 4.4 introduces the multi-objective circuit

optimisation setup on a test case. Experimental results for a 1-bit full adder example

circuit are reported and discussed in Section 4.5. Section 4.6 outlines the summary of

this chapter.

4.2 Automated Multi-Objective Design Flow

This chapter delivers an initial feasibility study showing that MOEAs can help VLSI

design by straightforwardly modifying physical layouts while simultaneously improving

multiple objectives. The proposed automated design flow covers circuit specifications,

circuit layouts, and circuit evaluations. Figure 4.1 presents the design flow for the

parametric layout engine. It consists of four steps as follows:

48

4.2 Automated Multi-Objective Design Flow

Circuit Description and Specification

Parametric Layout Template

Layout Modification
(SKILL Script)

Parasitic Extraction
(SPICE Netlist)

Circuit Simulation and
Performance Evaluation

Multi-Objective EA
(NSGA-II)

Optimised Circuits

Optimisation
Loop

Figure 4.1 The multi-objective physical design flow with a parametric layout engine.

(1) An initial, parameterised, layout template is created using a standard design tool

(Cadence® Virtuoso® [101]) according to the circuit description and specification.

(2) The layout template combines with an MOEA which performs function-preserving

structural modifications on the template. Such layout modification is selecting appro-

priate standard cells for use in this case, and it is performed through using a Cadence®

SKILL® script.

(3) A parasitic extraction (PEX) is performed on each distinct resulting layout instance

using Mentor® Calibre® [102]. The PEX netlist is then evaluated for several performance

metrics using a standard SPICE simulator (Mentor® ELDO® [103]).

(4) The evaluation results feed the MOEA to update the layout with modifications

continuously. The MOEA ultimately finds possible optimised trade-off solutions for a

given circuit when the optimisation is complete.

49

4.3 Parametric Physical Layout

The test case considered in this work is a 1-bit full adder. The parametric layout

template for the 1-bit adder is constructed from fixed-size NAND gates, each with

two variable-sized inverters at its output. Each inverter cell has a unique integer ID

(genes), and the MOEA is then used to perform cell selection. In this initial work,

drive strengths are optimised for the NAND function’s output inverters by choosing

appropriate drive strengths from a given set of cells.

4.3 Parametric Physical Layout

Schematics do not fully model all circuit characteristics during the IC design pro-

cess, so performing design or simulation based on the schematic level are useful for

behavioural verification. However, manufacturing an IC requires a physical layout

created by transforming the circuit level representation (devices and interconnections)

into geometric representations of shapes in multiple layers. The parasitic extraction of

physical layouts can take wire lengths and more detailed physical device characteristics

into account.

For the purposes of optimisation in this chapter, circuit layouts must be parameterised

to provide representations for the MOEA using. A parametric layout template for an

example circuit has been created using building blocks of physical layout structures.

This allows modification of the design parameters such as the component sizes and cell

spacing. By adjusting the relevant design parameters, it is possible to swap instances

of the building blocks and thereby change the circuit’s physical layout characteristics

and performance while the circuit function is preserved. For the experiment in this

work, to initially keep the setup simple, positions of the different building blocks within

the layout are fixed, but their relative positions and wire lengths are automatically

adjusted depending on which instances are selected. Hence, the parametric layout

aims to more conveniently and efficiently adjust the circuit layout to achieve higher

performance designs.

50

4.3 Parametric Physical Layout

In this work, a number of standard logic cells (building blocks) are created (prior to

running the optimisation) in a commercial 65nm process technology. Each cell has

its physical characteristics defined by specific transistor sizes and the cell width. The

SKILL® scripting language in Cadence® Virtuoso® is a powerful EDA tool which can

be used to realise design automation on schematics and layouts in complex design

flows. SKILL in this case is used to select cells from the custom-created cell library

and automatically construct the physical layout based on the parameters supplied from

the outer-loop MOEA optimisation algorithm. A basic placement and routing process

is then performed based on these parameters and the layout template, as shown in

Figure 4.3. The relevant design parameters are provided as arguments to a SKILL

script which selects, places and routes the required cells from the library making it

ready for parasitic extraction and simulation.

4.3.1 Pre-designed Standard Logic Cells

The pre-designed library, containing logic cell schematics and layouts, includes one

fixed-size function cell (NAND gate) and ten inverters which are used to realise the

different drive strengths for each instance of the NAND function. The inverter’s NMOS

transistor widths are increased linearly from 120nm (minimum MOSFET width in the

process technology used) to 550nm. The PMOS widths are determined by the paired

NMOS transistor widths, specifically PMOSwidth = 1.4× NMOSwidth to account for

slower mobility of the charge carriers in the PMOS devices. All cells are designed with

the same height, 1.8um in this work, and some of them use a multi-fingered layout

style to fit larger-width transistors into the fixed cell layout height.

A layout example of one of the inverters is shown in Figure 4.2, the two vertical

strips on both sides near the cell boundary are the input and output pin physical

extensions which are used to make inter-cell routing more convenient and efficient for

the experiments in this case.

51

4.3 Parametric Physical Layout

S D

S D

B

B

Vdd!

gnd!

A Y

Figure 4.2 An inverter layout example. Input A and output B on both sides of the
layout are in the shape of strips corresponding to metal layer 1 (metal-1).

4.3.2 Layout Generation

Figure 4.3 shows an example of parametric layout generation. A layout template is

shown at the top, with the logic function cells (green blocks) and conceptual routing

in place to implement the overall function. After each logic function, there are two

reserved empty spaces where the optimisation algorithm can insert any combination

of inverters (orange blocks) from a cell library provided (shown on the right) for

fine-grained tuning of output drive strength. Each inverter in the cell library (G)

has a unique integer identity (gene), and the string of integers representing the set of

inverters to be inserted into the template forms the chromosome (g). To instantiate a

circuit layout is to look up the requested inverter layouts in the cell library and place

them into the circuit floorplan.

52

4.3
Param

etric
PhysicalLayout

Function
1

Function
2

Function
4

Function
3Template:

Chromosome
(g):

3 7 6 9 2 1 0 5

Circuit
Instance:

Function
1

Inv
3

Function
2

Inv
6

Function
4

Inv
0

Function
3

Inv
2

Inv
7

Inv
9

Inv
1

Inv
5

width

height

Parasitic extraction

Spice simulation

Delay Energy Area = h * w

Circuit
Evaluation:

…

…

…

Gene PMOS Size NMOS Size Cell Width Cell Area (um2)

0 170nm 120nm 1.80um 3.240

1 225nm 160nm 1.62um 2.916

2 280nm 200nm 1.55um 2.790

3 350nm 250nm 1.50um 2.700

4 420nm 300nm 1.90um 3.420

5 490nm 350nm 1.85um 3.330

6 560nm 400nm 1.81um 3.258

7 630nm 450nm 1.80um 3.240

8 700nm 500nm 1.76um 3.168

9 770nm 550nm 2.10um 3.780

Cell Library (G) of Inverters

Figure 4.3 Example of circuit instance generation using parametric layout template with subsequent circuit evaluation. A
layout template is firstly defined according to circuit specifications. The layout is then instantiated through inserting inverters
from a custom-designed cell library onto the template. The produced layout instance is evaluated in regard to delay, energy
and area.

53

4.3 Parametric Physical Layout

Once the inverters are chosen and put in place, the routing is automatically adjusted

for the different cell widths resulting in a completed layout instance of the template

circuit. Subsequently, the circuit instance is evaluated on the desired performance

characteristics (objectives) through parasitic extraction and SPICE simulation. All

steps are automated within standard EDA tools using the SKILL scripting language.

In this initial work, the parametric layout generation is focused on varying the com-

bination of inverters while the location and size of the NAND gates remain fixed.

Furthermore, the layout floorplan presents all cells next to each other in the shape of a

strip without gaps. This is to ensure that a simple routing solution is possible. The

upper layer metal paths (dark blue strips) connect the cells to form a complete circuit.

4.3.3 SKILL Script

To automatically generate the layouts, specifically the template creation and circuit

instantiation, a SKILL script is used. For placement and routing efficiency, a database

of all the inverters’ information is stored in this script which includes the inverters

identifier, cell width and the input/output (I/O) pin positions. During instantiation,

a determined circuit chromosome is placed into this script which then performs cell

placement, inter-cell routing and top-level I/O pin creation (See Appendix A for an

example).

(1) Cell placement. In order to perform cell placement, the SKILL script locates

the cell dimensions for each inverter cell by performing a look-up using the integer

identifiers. All cells (NAND and inverter) are then sequentially placed with reference

to their size in order to ensure the cells exactly and precisely touch each other in the

strip of the layout.

(2) Interconnection. The inter-cell routing process uses the stored I/O pin locations

for each cell. A total of five fixed routing channels are available due to the design rules

of the cell height, and an upper metal layer (metal-2) trace is created in each channel

54

4.4 Multi-objective Circuit Optimisation

to connect the cells. Metal-2 to metal-1 via placement is also performed at this stage.

All cells are currently in a fixed height, so routing is only performed in the horizontal

dimension.

(3) Top-level Pin creation. The final step of layout generation requires the creation

of the top-level pins for the whole circuit. These are placed in a fixed position in the

layout and allow the completed circuit to be connected to an external SPICE testbench.

4.3.4 Parasitic Extraction

Once layout generation is completed, evaluating the performance of a circuit from the

physical layout requires the extraction of parasitic information. Parasitic extraction is

the modelling and calculation of the parasitic effects in the circuit interconnect and de-

vices, which can include the parasitic capacitance, resistance and inductance [104][105].

It can create a more accurate analogue model of a circuit. In this work, Mentor®

Calibre® [102] runs the parasitic extraction (PEX). The extracted netlist is then com-

bined with a set of testbenches which evaluate the circuit performance for three metrics:

worst-case propagation delay, energy consumption and circuit area.

4.4 Multi-objective Circuit Optimisation

As illustrated in Figure 4.1, the optimisation loop performs modifications on the

parametric layout template to generate new layout instances with different properties,

such as different area, energy consumption, propagation delay. More importantly,

the MOEA, taking charge of such modifications above through defining different

chromosomes in the SKILL script, can automatically and more efficiently select cells to

perform function-preserving optimisation for producing a set of Pareto-driven solutions.

55

4.4 Multi-objective Circuit Optimisation

4.4.1 Algorithm

NSGA-II, a popular multi-objective optimisation algorithm, is adapted in this case.

It is a desirable method used in VLSI circuit design given the multiple conflicting

objectives, particularly in trading off circuit power, speed and area.

During the optimisation, NSGA-II takes charge of the optimisation loop involving

parametric layout generation and eventually reaching a more optimised set of trade-offs

through comparing all generated solutions. In detailed, NSGA-II is now automatically

performing circuit instantiation and circuit evaluation in Figure 4.3.

Algorithm 2 Adapted NSGA-II for MO Layout Optimisation
Procedure: NSGA-II (N , M , f(g)). ▷ N individuals evolved M generations to
solve the fitness function f(g). The vector ∀g ∈ G (pre-defined cell library) is a
chromosome consisting of a set of genes (inveters) representing an individual (layout
instance).

1: Randomly initialize parent population Pt = {g1, g2, ..., gN} in size N
2: Offspring population Qt ← Mutation(Pt)
3: for t← 1 to M do
4: for each population Rt ← Pt ∪Qt in size 2N do
5: Fitness evaluation ← f(Rt) ▷ Call fitness function f(g) for each individual

evaluation.
6: F ← Non-Dominated-Sorting(Rt)
7: Pt+1 ← Ø
8: i← 1
9: while |Pt+1|+ |Fi| ≤ N do

10: Crowding-Distance-Assignment(Fi)
11: Pt+1 ← Pt+1 ∪ Fi

12: i← i + 1
13: end while
14: Fi ← Descend-Sort(Fi)
15: Pt+1 ← Pt+1 ∪ Fi[1 : (N − |Pt+1|)] ▷ Less crowded individuals from the first

to the (N − |Pt+1|)th of Fi to fill Pt+1.
16: Qt+1 ← Mutation(Pt+1)
17: end for
18: end for

Both the fast non-dominated sorting approach and diversity preservation scheme of

NSGA-II are adopted, but only mutation operator is implemented in this case. The

56

4.4 Multi-objective Circuit Optimisation

used notations about the EA setup are: N is population size; M is the maximum

number of generations; ρ is the mutation rate. The adapted algorithm, in this case, is

presented in Algorithm 2.

4.4.2 Objectives

The three optimisation objectives considered in this work are: propagation delay, energy

consumption and circuit area. So the fitness function is:

f(g) = min [delay, energy, Area] s.t. ∀g ∈ G (4.1)

Measuring these objectives properly and observing any improvements is a key task

during the optimisation.

Figure 4.4 Truth table for the Full Adder circuit. The expanded view on the right show
all of the possible transitions for each output.

(1) Propagation Delay. Figure 4.4 shows the truth table for a full adder. It has three

inputs: A, B and Carry-in (Cin) and two outputs: Sum and Carry-out (Cout). The

expanded view on the right shows all of the possible transitions for each output. For

example, in the case of row one there are four possible input combinations which can

change the sum output from a zero to a one. In total, there are 32 possible transitions.

57

4.4 Multi-objective Circuit Optimisation

The proposed propagation delay which should be measured and minimised is the worst

case among all transitions.

(2) Energy Consumption. The energy consumption for each of the 32 transitions

was calculated from the transient simulation results using Equation (4.2).

En =
∫ tstop

tstart

i(t)dt× vdd (Joules) (4.2)

where tstart and tstop represent the start and end time of the transient simulation and

i(t) is the current drawn from the DC power supply. The total energy consumption

for the circuit instance was then calculated by summing the energy used during each

transition as shown in Equation (4.3). However, some internal transitions which the

intermediate gates that do not necessarily cause the primary output’s transients are

not included for power measurement.

Etotal =
n=32∑
n=1

En (4.3)

This calculation combines both the dynamic and static power consumption of the

circuit over all transitions. In future work, it may be desirable to extract these as

separate objectives.

(3) Circuit Area. For efficient placement and routing, standard logic cells are typically

in a fixed height. The full adder is laid out in a single strip. Therefore, the circuit area

can be calculated directly as width× height as show in Figure 4.3. The width value

for each cell is stored directly in the SKILL script.

4.4.3 Circuit Simulation

To evaluate the performance of each circuit, a SPICE testbench containing one transient

simulation for each of the transitions outlined in Figure 4.4 was created. Each circuit

was simulated using Mentor® ELDO® [103]. SPICE measurement expressions were

58

4.5 Experimental Results

used to extract each of the three objectives outlined above. The input stimuli consisted

of a periodic pulse with a 2.5ns pulse duration (i.e., 400MHz clock frequency) and

1ps edge rise/fall time, which is set according to the 65nm node performance. In

terms of the load capacitance, 2fF, 5fF and 10fF connected to each of the outputs

for experiments were used, and only the best optimisation results is shown in this

chapter. Extraction of the worst case delay, total energy consumption and circuit area

is implemented in a post-processing step using a python script and then passed to the

NSGA-II optimisation algorithm.

4.5 Experimental Results

In this work, a 1-bit full adder was chosen as the proof-of-principle test circuit. As

described previously, the cell library is currently constrained to minimum-sized, 2-input

NAND gates and a selection of inverters with varying drive strengths. This allows,

initially, to keep the circuit structure simple and understand what will be required to

scale to larger cell libraries and designs. Based on these building blocks, a parametric

layout of a 1-bit full adder is created and multi-objective optimisation is carried out.

4.5.1 Full Adder Parametric Layout

Cout

Sum

A

B

Cin

Figure 4.5 A schematic of the full adder circuit showing the NAND gates. In this
experiment, each NAND gate contains the base logic function and two series connected
inverters.

59

4.5 Experimental Results

Figure 4.6 Example parametric layout of the full adder circuit, some layers have been
hidden for easy legibility. The yellow wires are interconnections in metal layer 2
(metal-2).

In order to realise the 1-bit full adder circuit, as shown in Figure 4.5, nine NAND

gates are required and each of these NAND gates is equipped with two inverters at its

output. Hence, there are a total of eighteen inverters presented in a design. Figure 4.6

shows a physical layout example for one design taken from the optimisation population

where the ‘inv’ and ‘nand’ instances are labelled. It is these ‘inv’ instances that are

parametrised and can be swapped with other ‘inv’ instances from the cell library during

circuit optimisation. The SKILL script ensures that all layout design rules are met, all

cells are abutted to each other without gaps and that the metal-2 layer paths (yellow)

are properly routed between cells to ensure overall function as a 1-bit full adder.

4.5.2 Optimisation Results and Discussion

During optimisation, a population size N of 200 individuals is used and the maximum

run generations M is set to 150. One inverter out of total eighteen will be randomly

modified during each mutation process, so the mutation rate ρ is 1/18 in this case.

Each optimisation run took approximately 50 hours using a four-core 2.4 GHz Xeon

processor. The results shown in Figure 4.7 are for the experiment using 5fF output

load capacitance, which presents a Pareto-optimised solution spread in this case. The

sub-plots in the left column show the initial (blue) and final (red) populations for each

pair of objectives (delay, energy and area). The right column of plots shows only the

final population for a pair of objectives but includes the third objective as a colour

map.

With reference to plot 4.7 (b), it can be seen that larger circuits typically consume

more energy but provide higher speed and smaller circuits consume less energy but

are slower. It should be noted that in this plot, there is also a cluster of higher speed,

60

4.5 Experimental Results

0.50 0.55 0.60 0.65 0.70 0.75
Delay [ns]

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

En
er

gy
 [p
J
]

Delay vs. Energy
initial gen.
150th gen.

(a)

0.50 0.55 0.60 0.65 0.70 0.75
Delay [ns]

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

En
er

gy
 [p
J
]

Delay vs. Energy

84.0

85.5

87.0

88.5

90.0

91.5

93.0

94.5

96.0

97.5

Ar
ea

 [u
m

2
]

(b)

0.50 0.55 0.60 0.65 0.70 0.75
Delay [ns]

84

86

88

90

92

94

96

98

100

Ar
ea

 [u
m

2
]

Delay vs. Area
initial gen.
150th gen.

(c)

0.50 0.55 0.60 0.65 0.70 0.75
Delay [ns]

84

86

88

90

92

94

96

98
Ar

ea
 [u
m

2
]

Delay vs. Area

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

En
er

gy
 [p
J
]

(d)

84 86 88 90 92 94 96 98 100
Area [um2]

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

En
er

gy
 [p
J
]

Area vs. Energy
initial gen.
150th gen.

(e)

84 86 88 90 92 94 96 98
Area [um2]

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

En
er

gy
 [p
J
]

Area vs. Energy

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

De
la

y
[n
s]

(f)

Figure 4.7 Optimisation results for the 1-bit full adder (N = 200, M = 150, ρ = 1/18,
output load=5fF). Plots (a), (c) and (e) show scatter graphs of the initial (blue) and
final (red) populations for each pair of objectives. Plots (b), (d) and (f) only show the
final population but include the third objective as a diverging colour map.

61

4.5 Experimental Results

lower energy individuals in the bottom right, from 0.65ns to 0.7ns on delay axis. The

reason for this is that the minimum-size transistors do not have the smallest layout

area due to design constraints imposed by the foundy and PDK. Although solutions

in this cluster do not feature the smallest total circuit area, the specific transistors

widths are in fact smaller. Plots (d) and (f) also have separate clusters due to design

constraints. The cluster between 0.65ns and 0.7ns on delay axis in plot (d), delay vs

area, includes some slower speed circuits which are using the smallest transistors but

the total circuit areas are again not the smallest. A similar situation is also visible in

the plot (f), area vs energy.

4.5.3 Optimisation Advancement at Physical Level

In this part, an empirical comparison study is performed to present the difference in

circuit performance between schematic level and physical level during the optimisation.

The same multi-objective optimisation approach is applied at the schematic level of

the 1-bit full adder. The population size N is 200, the number of generations M is 150,

and the mutation rate ρ is set for 1/18, the same as in the layout level experiment.

Two sets of optimised results are achieved, and both final populations are plotted in

Figure 4.8. There are two clusters in the plot. The blue represents the optimised results

based on the schematic level, and the red cluster shows the results (same as shown in

Figure 4.7) that the optimisation is performed at the physical layout level. From the

plot, the blue cluster (schematic level) has better delay and lower energy consumption

than the red cluster’s (layout level). The margin looks significant between both levels,

but the layout level results have better diversity. This is because the simulation at

the schematic level does not include the parasitic effects of circuits, which could make

the circuit performance of different schematics not distinct from each other and the

resulting solution diversity limited.

To compare the optimisation efficiency, few individuals are selected from both clusters

for extra simulation and analysis. The five red crosses, at the lower left corner in

62

4.5 Experimental Results

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Delay [ns]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
En

er
gy

 [p
J
]

Delay vs. Energy
Schematic level
Layout level
Opt_schematics run in Layout
Opt_layouts run in schematic

Figure 4.8 Example of parametric layout generation with subsequent circuit evaluation.

Figure 4.8, are taken from the first non-dominated front of the layout level optimisation

results (red cluster). These five selected individuals were evenly distributed at the

original front. Thereafter, they are additionally run the simulation based on the netlists

of their schematics without parasitic extraction using the same chromosome (i.e.,the

selection of inverters).

Regarding the five blue crosses, at the upper right corner in the plot, they are the

schematic level (blue cluster) optimised solutions which also evenly positioned at their

first non-dominated front. The new results (blue crosses) are achieved by implementing

the schematic level optimised solutions to the physical layouts with running parasitic

simulation.

Based on the observation of this comparison study, operating optimisation at the

physical level, which includes all parasitic effects and layout design rules, not only

makes design realistic and feasible but also has superior optimised results (better

63

4.6 Summary

performance and wider solution diversity) than at the schematic level under the same

MOEA evaluation budget.

4.6 Summary

This chapter describes a methodology to maintain circuit building blocks (standard

cells) on parametric physical layouts for multi-objective circuit optimisation. The fully

automated approach is compatible with standard EDA design tools, making use of

the built-in scripting language SKILL to generate layout instances in the loop which

produces Pareto-optimised solutions for a CMOS VLSI design.

Such an optimisation keeps looking at the physical layout level, aiming to ensure that

the optimised circuits can be fabricated and that the measured performance metrics are

realistic. Although this might take more simulation efforts and runtime, it can quite

hold design quality practical. Specifically, this chapter demonstrated the feasibility of

the proposed parametric layout approach in the context of multi-objective optimisation,

and results for a 1-bit full adder are shown. In addition, an empirical study is performed

using the same test case to demonstrate that the optimisation at the physical level

advances the results compared to the schematic level optimisation.

The following chapter scales up the multi-objective optimisation framework to be

compatible with foundry libraries and industrial auto-synthesis, place and route flows.

The methodology and its experiments are presented in Chapter 5.

The optimisation avenue in this chapter is tuning standard cell selection. Particularly

when combined this with transistor sizing later (the work presented in Chapter 7), this

is something current approaches cannot exploit, as instead they are constrained by the

limited choices of pre-sized cells available in a library. This may lead to the automatic

place and route tool adding margin and selecting cells that are too large or vice versa.

64

Chapter 5

Multi-objective (MO) EDA

Framework

65

5.1 Overview

5.1 Overview

The procedure of building a digital integrated circuit using pre-processed blocks

or cells from a foundry is a common and mature methodology in modern VLSI

design. Comprehensive industry-standard flows are available to tape out digital chips.

Technology down-scaling enables high-density circuits and the EDA tools therefore

need to handle a large quantity of cells within the flow. Meanwhile, multiple versions

of each logic function, in terms of drive strength, cell height, threshold voltage, etc.,

are typically offered by the foundry in cell libraries. The possible design space is thus

huge and complex because a circuit can be composed of millions of gates. Different

selections and combinations of cells can directly determine the power, performance and

area (PPA) metrics of a circuit. Such a search space will be further complicated with

practical design rules and constraints in physical implementation. This can lead to the

rise of optimisation difficulty that designs must meet multiple conflicting objectives

simultaneously while satisfying all rules and constraints at the layout level, which

might be beyond what experienced engineers can manually handle.

In this chapter, a fully-automated, multi-objective (MO) EDA flow is introduced to

address this issue. It specifically tunes drive strength mapping, preceding physical

implementation, through an multi-objective population-based search algorithm. Designs

are evaluated with respect to their PPA metrics. The proposed approach is capable of

expanding the design space, offering a set of Pareto-optimised solutions for different

case-specific utilisation. The proposed MOEDA framework has been applied to ISCAS-

85 and EPFL benchmark circuits using a commercial 65nm standard cell library.

The experimental results demonstrate how the MOEDA flow enhances the solutions

initially generated by the standard digital flow, and how simultaneously a significant

improvement in PPA metrics is achieved.

The specific contributions made in this chapter are summarised as follows: 1) A multi-

objective (MO) EDA optimisation framework, fully-compatible with an industrial digital

flow from logic synthesis to physical implementation. 2) Global tuning of standard cell

66

5.2 Discrete Gate Sizing for PPA Optimisation

drive strength mapping using parameterised gate-level netlists. 3) Enhanced trade-off

design solutions with improved PPA metrics. 4) A comparison study of optimisation

efficiency between the MOEA search and the stochastic search.

The remaining parts of this chapter are structured as follows: Section 5.2 gives a

related background review of discrete gate sizing. Section 5.3 introduces the proposed

MOEDA flow. Experiment setup is described in Section 5.4. Section 5.5 presents

experimental results using a reduced cell library and a commercial full cell library, and

a statistical evaluation of MOEDA flow is included. A comparison experiment between

the used MOEA and the random search is performed in Section 5.6. Section 5.7 outlines

summary of this chapter.

5.2 Discrete Gate Sizing for PPA Optimisation

Gate sizing is a crucial step for achieving timing closure and power minimisation of

digital ICs. It originally refers to determining transistor widths inside of logic gates to

make designs meet constraints. Modern digital EDA flows synthesize designs using

a set of pre-designed cells [10]. The optimisation problem thus is shifted to focusing

on cell selection, in respect to drive strengths and often including threshold voltage

Vth assignment, from discretised gate libraries. This process exists in the technology

mapping step during logic synthesis and the gate resizing optimisation during physical

implementation. It also often happens in manual design adjustment to achieve timing

closures by engineers, particularly when EDA tools failed to meet the timing goal.

The optimisation objective in gate sizing is to minimise power consumption (mainly

leakage power) while meeting the timing constraints [10]. To achieve this goal, many

methods have been proposed to facilitate the gate sizing problem. Lagrangian Relax-

ation (LR) has been recently used for gate sizing optimisation, which moves the timing

constraints to the objective function weighted by Lagrange multipliers to penalise the

67

5.2 Discrete Gate Sizing for PPA Optimisation

overall results of the objective function. The problem is then simplified to find the

solution of weight factors.

In regard to the optimisation objectives in the related research using LR, the work

in [106] derived LR associated with finding trade-off between leakage power and

circuit timing. The authors in [107] expanded the primal objective function (power

minimisation) by adding the area objective using an extra weight factor while meeting

the timing constraint. More recently, A. Sharma in [108] considered more additional

realistic constraints, such as maximum load, maximum slew, of gates for simultaneous

gate sizing and clock skew scheduling. However, the LR theory is typically formulated

for continuous problems and might not naturally handle the discrete gate-sizing [109].

In addition, the LR often assumes convexity, which might not hold for practice circuit

delays (i.e., nonlinear, non-convex) [110].

Alternative multi-objective gate sizing frameworks, like geometric programming [53] [54],

simulated annealing [111], have been investigated using the weighted sum scalarizing

method to handle the multi-objective functions. In [109], J. Hu proposed a different way

to scalarise the objectives of leakage power and slacks into a sensitivity guided function

for solution ranking (non-dominated), and a heuristic-based stochastic searching method

was applied. The proposed method included two stages: global timing recovery seeks

violation-free solutions by up-sizing gates and down-sizing threshold voltage (Vth), and

then power minimisation with feasible timing reduces leakage power on the gates (gate

down-sizing and Vth up-scaling) that are oversized during the first stage.

Given the background review above, limited research completes the gate sizing si-

multaneously handling all critical objectives (PPA) through an industrial physical

design flow and libraries to investigate how beneficial these methods can be in prac-

tice [32] [107] [110]. Yella in [32] stated that significant changes in cell sizes of design

netlists, after applying gate-sizing optimisation, require re-placement and re-routing

for new wire load parasitics. Therefore, optimising designs with timely updating

corresponding layouts can make evaluations realistic, and achieved solutions feasible.

68

5.3 MOEDA Optimisation Framework

In earlier works, typical heuristic techniques like genetic algorithms were applied to

solving gate sizing problems. The methods for multi-objective optimisation in [112]

and [113] both are still based on scalarized cost functions. More recently, gate-sizing-

based soft error optimisation using MOEAs is proposed in [96] but its objectives are

soft error rate, critical path delay and area.

The gate sizing problem with its optimisation is multi-objective in nature. Most

introduced methods are scalarising based (e.g., a popular one, weighted sum function)

to decompose the optimisation complexity since its high search efficiency [50]. However,

as stated in Chapter 3, the device physics of ICs imply non-convexities and non-

linearity [55] where the weighted sum method is not sufficient to search for feasible

Pareto-optimal solutions [50].

Solving discrete gate sizing problems still lacks the theoretical guarantee and it is

not clear how far the current optimised solutions are away from the optimum [10].

Therefore, it is worthwhile to apply global search methods to optimise such a problem.

MOEAs excel in handling multiple design parameters and objectives inter-independently

particularly when designers are faced with a large, complex design space.

5.3 MOEDA Optimisation Framework

5.3.1 Algorithm

In this case, NSGA-II [70] has been adapted as the search tool. Particularly, the

fast non-dominated sorting approach and diversity preservation strategies used ensure

convergence while achieving a uniform spread of Pareto-optimal solutions. Only

mutation operator is adopted.

The used notations about the EA setup are: N is population size; M is the maximum

number of generations; ρ is the mutation rate. The adapted NSGA-II will be introduced

in the following subsection in detail.

69

5.3 MOEDA Optimisation Framework

5.3.2 Multi-objective (MO) EDA Flow

The MOEDA flow, illustrated in Figure 5.1, is a fully-automated multi-objective design

framework using compatible with an industrial digital flow. The industrial flow is

tapped between the logic synthesis and the physical implementation stage, where the

MO evolutionary optimisation loop is inserted. The novelty here lies in the additional

level of abstraction that can automatically fine-tune drive strength mapping during

the process of the flow. The proposed flow involves:

RTL Design

Netlist

Synthesis

Physical
Implementation

Layout

Signoff

Parametric Netlist

MOEA Seeding

Optimised Netlist

Evaluation

Genetic OperationOpt. Loop

Figure 5.1 MOEDA Flow. The flowchart on the left side is the standard digital flow
and on the right side the MO extension is shown. The blue cross indicates the position
where the standard flow is broken.

(1) Parametric netlist. Synthesised netlists are composed of technology-specific logic

gates and their connectivity. The MOEA representation encodes the drive strengths of

gates into a set of genes, in this case a string vector g (i.e., instance names), defining each

gate function and its drive strength. This information is used to produce a parametric

netlist from the synthesis results. Integer EA representations are a commonly used

70

5.3 MOEDA Optimisation Framework

encoding method, but in this work industrial logic gate libraries (a wide range of gate

types and driving options) are integrated into the loop, so it requires the representations

to cope with different gate types and their respective drive strengths.

(2) MOEA seeding. In this work, initial populations are seeded from a set of solutions

obtained from the synthesis tool. This is achieved by converting the output netlists

from the standard tool to parametric netlists, allowing the MOEA to modify them.

(3) Genetic operations. Only mutation is used in this work. The mutation operation

modifies the drive strength of components based on a given probability ρ. This results

in a new netlist, which is then ready for physical implementation. With the pressure to

promote beneficial mutations and discard the others, the evolutionary loop continues

to keep producing increasingly optimised solutions.

(4) Evaluation. This calculates the fitness scores of each individual. MOEA-optimised

netlists are propagated to place and route in the physical implementation step, produc-

ing layout instances for accurate evaluation metrics. Three objectives are used here

which are worst case delay (Dwc), total consumption power (Ptotal) and area of all logic

gates (Agate), and fitness scores are evaluated at post-route stage from the place and

route tool. Fitness scores are then fed back to the MOEA for ranking and selection.

The optimisation goal in this work is to simultaneously minimise Dwc, Ptotal and Agate

so the fitness function is:

f(g) = min [Dwc(g), Ptotal(g), Agate(g)]

s.t. g = (g1, ..., gi), ∀gi ∈ G
(5.1)

where the chromosome vector g is the input variables to the fitness function, which are

drive strengths of gates (gi) selected from a standard cell library (G).

Figure 5.2 demonstrates a population example where Pt consists of N layout individuals

(L1, L2, ..., Ln). Each L has a chromosome g consisting of a set of genes (g1, g2, ..., gi).

71

5.3 MOEDA Optimisation Framework

Population Pt
L1

(g1)
L2

(g2)
L3

(g3)
L4

(g4)
...

LN
(gN)

Gate1.Type.D

(g1)
… Chromosome g

Gate1.Type

…

D3,D4
D1,D2

Gate2.Type.D

(g2)

Gatei.Type.D

(gi)

Gate2.Type

…

D3,D4
D1,D2

Gatei.Type

…

D3,D4
D1,D2

Gate Lib G…

Figure 5.2 A chromosome example of an individual in a population and how each gene
is mutated using a logic gate library. “D” represents the drive strength.

The chromosome overall represents all the logic gates of a netlist. Each single g

(Gate.Type.D) represents the drive strength of a logic gate. When mutation is triggered,

the gates to be mutated are randomly selected according to the mutation rate ρ. For

each selected gate, it will first identify its function (Gate.Type) and then perform an

online look-up to achieve all drive strength options (D) of this gate function from G,

and randomly choose one drive strength from them to replace the previous one.

The optimisation process is continuously producing different circuit layout instances

by adjusting the netlists and keeping improved solutions generation-by-generation.

The adapted NSGA-II algorithm is explained in Algorithm 3. Figure 5.3 presents the

overall process of MOEDA in the context of the NSGA-II.

72

5.3 MOEDA Optimisation Framework

Algorithm 3 Adapted NSGA-II for MOEDA flow
Procedure: NSGA-II (N , M , f(g)). ▷ N individuals evolved M generations to solve
f(g).

1: Initialize parent population Pt in size N . ▷ Seed with a specific synthesis-optimised
solution generated by the tool.

2: Offspring population Qt ← Mutation(Pt)
3: for t← 1 to M do
4: for each population Rt ← Pt ∪Qt in size 2N do
5: Fitness evaluation ← f(Rt) ▷ Call fitness function f(g) for each individual

evaluation.
6: F ← Non-Dominated-Sorting(Rt)
7: Pt+1 ← Ø
8: i← 1
9: while |Pt+1|+ |Fi| ≤ N do

10: Crowding-Distance-Assignment(Fi)
11: Pt+1 ← Pt+1 ∪ Fi

12: i← i + 1
13: end while
14: Fi ← Descend-Sort(Fi)
15: Pt+1 ← Pt+1 ∪ Fi[1 : (N − |Pt+1|)] ▷ Less crowded individuals from the first

to the (N − |Pt+1|)th of Fi to fill Pt+1.
16: Qt+1 ← Mutation(Pt+1)
17: end for
18: end for

73

5.3
M

O
ED

A
O

ptim
isation

Fram
ework

Layout 1

Pt

Qt

F1

Rejected

module design(I/Os);

...

ND2D0 g0(..net_0..);

OR2D0 g1(..net_1..);

INVD2 g2(..net_2..);

AD2D0 g3(..net_3..);

OR3D0 g4(..net_4..);

INVD1 g5(..net_5..);

...

endmodule

module design(I/Os);

...

EA_GENO_0 g0(..net_0..);

EA_GENO_1 g1(..net_1..);

EA_GENO_2 g2(..net_2..);

EA_GENO_3 g3(..net_3..);

EA_GENO_4 g4(..net_4..);

EA_GENO_5 g5(..net_5..);

...

endmodule

module design(I/Os);

...

ND2D0 g0(..net_0..);

OR2D2 g1(..net_1..);

INVD0 g2(..net_2..);

AD2D3 g3(..net_3..);

OR3D0 g4(..net_4..);

INVD0 g5(..net_5..);

...

endmodule

Original Netlist Parametric Netlist Optimised Netlist

Physical

Implementation

and

Metrics

Evaluation

Layout 2

Layout 3

Layout 4

Layout 5

Layout 6

Layout 5

Layout 4

Layout 1

Layout 3

Layout 6

Layout 2

F2

F3

Layout 5

Layout 4

Layout 1Layout 1

Layout 3

Pt+1

Non-dominated

sorting

Crowding

Distance sorting

Layout

P
a
r
a
m
e
t
e
r
i
s
a
t
i
o
n

G
e
n
e
t
i
c

O
p
e
r
a
t
i
o
n

Figure 5.3 It shows the concept of the overall MO evolutionary optimisation process including original, parametric and
optimised netlist examples. The highlighted texts in the optimised netlist is mutated gates. Individuals are represented
by their circuit layout. For illustration, only a few individuals are shown in Pt and in each non-dominated sorting rank.
Hundreds of individuals are typically used when running experiments. Layout 1 and Layout 3 are in the F3, the Layout 1 is
in a less-crowed region so included into the Pt+1 and Layout 3 is rejected during the crowding-distance sorting.

74

5.4 Experimental Setup

5.4 Experimental Setup

The proposed algorithm is implemented in C++ and the proposed MOEDA design

flow experiments is run on a 2.2GHz Xeon E5-2650 CPU. The ISCAS-85 benchmark

suite [114] and EPFL benchmark circuits [115] are implemented and optimised using

the Cadence® digital flow suite. Benchmark circuits in the form of RTL designs are

synthesised into gate-level netlists using GenusTM (v17.11) [116]. These netlists are

then optimised using the proposed flow in tandem with the physical implementation

tool InnovusTM (v17.11) [117] to generate the layouts from the optimised netlists. The

versions of used EDA tools represented the most up-to-date flow when we performed

the experiments. We also have full optimisation licences of Cadence® digital flow.

All experiments are using a TSMC 65nm low-power core cell library (TCBN65LP) in

standard threshold voltage containing about 400 combinational cells.

5.4.1 Tool Environment Setup

The MOEDA flow is applied to further enhance designs which are already well-optimised

by the industrial tools. In order to take advantage of the GenusTM synthesis tool as

much as possible, it is necessary to push it to the limit of what it can achieve with

the user options available. Hence, the synthesis compile effort is set to high and ultra

optimisation is enabled. Apart from that, each benchmark is repeatedly synthesised,

tightening its timing constraint bit-by-bit until it fails timing. The last working solution

before timing failure is the best in speed, delay or slack that the tool can achieve. This

solution is then chosen as a seed for initialising the MOEA.

In the timing constraint setup, an ideal general clock for all inputs and outputs of

a circuit is created, which means all paths are clocked with two ideal flip-flops at

the beginning and the end of each path. The benchmarks used are all combinational

circuits, so that the ideal clock was not applied with any uncertainties or transition

delays.

75

5.4 Experimental Setup

Output Delay

Constraint

clk

D Q Digital

Design
clk

D QLogicLogic

Input Delay

Constraint

Clock

Definition

Figure 5.4 Conceptual testbench to define timing constraints in EDA tools. Virtual
logic parts and flip-flops allows end users to specify delays and clocks. The design
under test is Digital Design in the middle.

To tighten the timing constraint, the output delay constraint (Tod) (illustrated in

Figure 5.4) is gradually increased for a given clock period (Tc). So the required time

(Tr) (illustrated in Figure 5.5) is:

Tr = Tc − Tod (5.2)

Tc

TodTr

clk

Figure 5.5 Conceptual waveform diagram to illustrate the relationship between clock
period (Tc), the output delay constraint (Tod) and the required time (Tr).

The circuit path arrival time (Ta) should be less than the required time (Tr) to the meet

the timing constraint. The settings of both synthesis step and physical implementation

step are summarised in Table 5.1.

The timing constraint covers different general clocks for different test circuits and they

will be specified in corresponding experiments. In the physical design flow, all die area

is shaped in the ratio of 1.0, and core utilisation is 70%. Timing-driven placement

76

5.4 Experimental Setup

and routing, and signal integrity (SI) driven routing are enabled for better timing

performance.

Table 5.1 Tool Settings in Digital Flow

Synthesis Setup Place & Route Setup

syn_generic_effort = high
aspect ratio = 1.0

iopt_ultra_optimisation = true
core utilisation = 0.7

timing-driven placement = true
timing-driven routing = true

SI-driven routing = true

5.4.2 Objective Evaluation in Tools

Evaluation for all objectives takes place after place-and-route with InnovusTM as

follows:

(1) Dwc, worst-case arrival time Ta which is the value of required time Tr minus the

worst negative slack (WNS) amongst all path delays. Static timing analysis (STA) is

performed at the post-route stage. STA is an important method to validate the timing

performance of a design by checking all possible paths for timing violations. Specifically,

STA breaks a design down into timing paths, calculates the signal propagation delay

along each path, and checks thoroughly for violations (total negative slacks, TNS)

of timing constraints inside the design. STA is much more efficient because it is not

necessary to enumerate all possible combinations of state and given input vectors to

perform full circuit simulation (also referred as dynamic timing analysis) [9].

(2) Ptotal, which is the result from power analysis in InnovusTM. This is an approach

that estimates the switching activity of the circuit without running a costly detailed

simulation.

Ptotal = Pswitching + Pinternal + Pleakage (5.3)

77

5.4 Experimental Setup

The total power consumption, shown in Equation (5.3), includes three parts: Switching

power (Pswitching) consumed in the charging and discharging of interconnect and load

capacitance; Internal power (Pinternal), or called short-circuit power, is the power

dissipated by an instantaneous short-circuit current flowing between the supply voltage

and the ground at the time the gate switches state. Leakage power (Pleakage) consumed

by devices when not switching.

Both internal and leakage power are calculated based on power tables from the Liberty

(.lib) file, which contains the specifications and characterisations of the standard cells.

Switching power in the power analyser is calculated based on Equation (5.4),

Pswitching = 0.5 ∗ CLV 2F ∗ A, (5.4)

where CL is the output capacitive loading, V is the voltage, F is frequency, and A

is the average switching activity (the value 0.2 used in this work is the default from

InnovusTM).

(3) Agate, which is calculated by adding the areas of each single gate used. This is

directly reported by InnovusTM.

All evaluations above are performed on a single mode under typical corner conditions

(PVT: TT, 1.2V, 25◦C). PVT means process, voltage and temperature. TT refers to

both typical corner for PMOS and NMOS.

5.4.3 Multi-threads Running and Runtime

According to the computing resources and licenses, all experiments in this work were

run in parallel using 24 threads in an MOEDA run for evaluating individuals.

The evolutionary multi-objective approach requires a larger number of evaluations,

which increases the runtime of the algorithm. The majority of runtime is spent on

completing place and route. This aims to achieve accurate metrics as close as possible

78

5.5 Multi-objective Optimisation Experiments

to sign-off. However, due to the inherent parallelism of the population-based approach,

this can be overcome (sped up) using a larger number of licenses and high-performance

computing (HPC) resources. In addition, the MOEDA algorithm feature is able to

deliver a set of trade-off solutions spanning the feasible design space in one go, rather

than a single, case-specific solution. Therefore, the runtime is not the primary concern

in this work.

5.5 Multi-objective Optimisation Experiments

5.5.1 Initial Experiments with a Reduced Library

The first step is to quickly evidence the argument that the proposed optimisation

method is capable of enhancing designs in the context of an industrial digital flow. To

achieve that, initially circuits are implemented using a reduced set of standard cells

only including two functions: a two input nand (ND2) and inverters (INV) which are

taken from the TSMC library. The aim is to initially reduce the complexity of the

problem and to make analysis of results simpler, before moving to the full real-world

cell library. In terms of drive strengths of both functions, only the nand gate with the

smallest drive strength D0 is included, but inverters feature 11 different drive strengths

shown in Table 5.2. The nand gate is a universal gate capable of realising complete

overall behavioural function and the various inverters can meet different drive strengths

required in the different timing paths.

Table 5.2 A Reduced Experimental Standard Cell Library

Function Drive Strength
ND2 D0
INV D0 D1 D2 D3 D4 D6 D8 D12 D16 D20 D24

At first, optimisation is performed exclusively on drive strengths of inverters. Synthe-

sising with only one minimum nand gate is biasing the synthesis tool towards using a

79

5.5 Multi-objective Optimisation Experiments

large number of different inverters. This, in turn, creates a larger and richer search

space for optimisation with the MOEDA.

In this experiment, all ISCAS-85 benchmark circuits have been implemented and

optimised with the proposed MOEDA digital flow using a population size of 200

individuals. Designs are optimised over 400 generations for the largest circuits C5315,

C6288 and C7552. For all others, the number of generations is 200. In addition, the

output load constraints have not been applied in this case.

The netlist parameterisation is performed on the inverters of the synthesised netlist,

converting their drive strength setting into genes for optimisation. The algorithm is

seeded with the best tool-generated solution in terms of delay to provide a starting

point where PPA over standard flow can be improved from the beginning of the search.

Tables 5.3 and 5.4 present each testing case with its required timing (Tr), the total

number of synthesised gates (# Syn Gates), and the total number of genes (# Genes)

which are the inverters in this experiment. The Syn-Opt. column is the best solution

(using Genus synthesis tool) of each circuit in terms of delay. The general clock is set to

250MHz in order to make the tool deliver working solutions for most of the benchmark

circuits as timing constraints are easily met when they are first synthesised. The timing

limit of each circuit is found by gradually tightening the timing constraints by 0.05ns

increments. However, the general clock of C6228 benchmark has to be lowered to

200MHz (5ns clock period), because it fails the 4ns clock period even without any

further output delay constraints applied.

Under the MOEDA solution in Tables 5.3 and 5.4 there are four columns, where the

first three report solutions with the best scenarios in delay, power and area, respectively.

Each solution is the best improvement on one of objectives that can be achieved

strictly without worsening any others. Column four takes all objectives into account

simultaneously and shows the optimised trade-off solution, which is defined here as

the individual from the final generation that is positioned at the shortest Euclidean

80

5.5 Multi-objective Optimisation Experiments

distance to the origin. The trade-off solutions demonstrate the optimisation capability

of achieving improvements in all objectives simultaneously.

The result shows that each circuit can be improved (up to 2.2% in Dwc, 35.3% in Ptotal

and 26.9% in Agate of C17 circuit trade-off solution) using the MOEDA flow. The

runtime of the largest circuit C7552 is about 12 hours. The complexity (in terms of

gate count and function) of the benchmarks shown in the tables increases from top

to bottom. It can be observed that PPA of the smaller circuits can be improved to a

larger degree. The reason for this may be a result of the smaller design space allowing

the optimisation to achieve results approaching an exhaustive search. For this reason,

the focus will be on the larger benchmark circuits in subsequent experiments.

These initial experiments suggest that the MOEDA flow is a promising and viable

approach to tackling multi-objective problems in a standard digital flow. However,

with the constraint of only using two types of logic functions, i.e., nand and inverter, it

can not make full use of all features of the EDA tool’s own optimisation algorithms or

the process technology.

81

5.5
M

ulti-objective
O

ptim
isation

Experim
ents

Table 5.3 MOEDA design flow using the reduced library for full ISCAS-85 benchmark suite

N = 200, M = 200, M∗ = 400, ρ = 1%

Test Case (Tr) #Syn Gates Syn-Opt. MOEDA Solution
#Genes Solution Best Dwc (∆%) Best Ptotal (∆%) Best Agate (∆%) Trade-off (∆%)

C17 (0.10ns) 10 Dwc: 0.092 0.084 (8.7%) 0.090 0.090 0.090 (2.2%)

3 Ptotal: 1.324 0.900 0.856 (35.3%) 0.856 0.856 (35.3%)
Agate: 18.72 14.04 13.68 13.68 (26.9%) 13.68 (26.9%)

C432 (1.50ns) 316 Dwc: 1.459 1.388 (4.9%) 1.444 1.453 1.417 (3.6%)

138 Ptotal: 37.81 37.61 35.40 (6.4%) 35.55 35.80 (4.7%)
Agate: 401.76 401.40 386.64 385.20 (4.1%) 387.00 (2.7%)

C499 (1.20ns) 650 Dwc: 1.167 1.104 (5.4%) 1.167 1.162 1.143 (2.1%)

214 Ptotal: 112.2 111.4 105.2 (6.2%) 105.9 105.9 (5.6%)
Agate: 944.64 942.84 883.08 880.92 (6.7%) 884.52 (6.4%)

C880 (1.10ns) 674 Dwc: 1.019 0.980 (3.8%) 0.993 1.014 0.993 (2.6%)

243 Ptotal: 89.44 87.89 86.49 (3.3%) 87.32 86.49 (3.3%)
Agate: 875.16 874.08 873.00 871.92 (0.4%) 873.00 (0.2%)

C1355 (1.30ns) 669 Dwc: 1.201 1.159 (3.5%) 1.194 1.194 1.194 (0.6%)

224 Ptotal: 109.5 0.1093 105.1 (4.0%) 105.1 105.1 (4.0%)
Agate: 929.88 929.52 893.88 893.88 (3.9%) 893.88 (3.9%)

C1908 (1.30ns) 366 Dwc: 1.281 1.191 (7.0%) 1.248 1.273 1.231 (2.9%)

168 Ptotal: 86.43 84.10 81.19 (6.1%) 83.13 81.77 (5.4%)
Agate: 749.52 729.00 711.36 709.56 (5.3%) 713.52 (4.8%)

Units: Dwc [ns] Ptotal [uW] Agate [um2]

82

5.5
M

ulti-objective
O

ptim
isation

Experim
ents

Table 5.4 MOEDA design flow using the reduced library for full ISCAS-85 benchmark suite (cont.)

N = 200, M = 200, M∗ = 400, ρ = 1%

Test Case (Tr) #Syn Gates Syn-Opt. MOEDA Solution
#Genes Solution Best Dwc (∆%) Best Ptotal (∆%) Best Agate (∆%) Trade-off (∆%)

C2670 (1.00ns) 948 Dwc: 0.988 0.938 (5.1%) 0.967 0.969 0.943 (4.6%)

314 Ptotal: 136.0 136.0 133.0 (2.2%) 135.2 134.3 (1.3%)
Agate: 1248.12 1246.68 1247.4 1239.84 (0.7%) 1245.6 (0.2%)

C3540 (2.00ns) 1311 Dwc: 1.890 1.809 (4.3%) 1.809 1.809 1.809 (4.3%)

478 Ptotal: 275.5 268.0 268.0 (2.7%) 268.0 268.0 (2.7%)
Agate: 1706.04 1701 1701 1701 (0.3%) 1701 (0.3%)

∗C5315 (1.40ns) 2075 Dwc: 1.359 1.319 (2.9%) 1.354 1.354 1.319 (2.9%)

632 Ptotal: 318.7 314.0 311.4 (2.3%) 314.3 314.0 (1.5%)
Agate: 2723.4 2719.44 2718.72 2709.72 (0.5%) 2719.44 (0.15%)

∗C6288 (4.50ns) 4221 Dwc: 4.478 4.296 (4.2%) 4.369 4.39 4.296 (4.2%)

1403 Ptotal: 1946 1915 1911 (1.8%) 1925 1915 (1.6%)
Agate: 5270.4 5270.04 5270.04 5268.6 (0.3%) 5270.04 (0.0%)

∗C7552 (1.85ns) 2403 Dwc: 1.700 1.652 (2.8%) 1.684 1.691 1.652 (2.8%)

753 Ptotal: 438.0 435.1 434.5 (0.8%) 435.7 435.1 (0.7%)
Agate: 3090.24 3087.36 3087.36 3086.64 (0.1%) 3087.36 (0.09%)

Units: Dwc [ns] Ptotal [uW] Agate [um2]

83

5.5 Multi-objective Optimisation Experiments

5.5.2 Experiments with a Full Commercial Library

The proposed MOEDA flow is now scaled up to optimise designs using the full

TSMC library. Instead of only adjusting the drive strength of inverters, the designs

are synthesised using the full library and the MOEDA is handling drive strength

optimisation for all types of logic cells.

The selected three benchmarks from ISCAS-85 suite, in different structures and func-

tions, are a 16-bit error detector/corrector (C1908), a 9-bit ALU (C5315) and a 16x16

multiplier (C6228). One large circuit used from EPFL benchmark suite is an arithmetic

function for log2 calculation. The statistics of benchmarks are summarised in Table 5.5.

The reason that only combinational circuits were used is all large squential circuits are

built from basic combinational blocks, and the optimisation of a sequential circuit will

eventually collapse into the optimisation of its combinational parts [115]. In addition,

although most gate-sizing related research optimises sequential circuits, they still only

manipulate on combinational components [106][109, 108, 110].

Table 5.5 Statistics of benchmarks for MOEDA using the full TSMC library

Test Case #Inputs #Outputs # Primal Gates
C1908 33 25 880
C5315 178 123 2307
C6288 32 32 2406
log2 32 32 32060

In the previous experiment using the reduced library it was possible to efficiently

explore the feasible design space starting from a single seed pushed to the timing limit

of what the standard tools can achieve. This is no longer sufficient in this case, where

the use of the full library causes a dramatic increase in both complexity of the design

space and the behaviour of the greedy optimisation algorithms built into the standard

flow. In addition, the largest circuit has around 30,000 gates. Each gate has five drive

strength options on average, so the search space will be approximately comprised of

530000 alternative solutions. So the MOEA is used to handle the search complexity.

84

5.5 Multi-objective Optimisation Experiments

Three different seeds are used here to initialise the MOEDA algorithm, which are

obtained from running synthesis and implementation under three different timing

constraints for each benchmark: the first (named a) is the tightest constraint that

can just be met, resulting in a solution with the best delay. In the second case (c),

the timing constraint is relaxed so that it can be easily met, allowing the standard

flow room to optimise for power and area. The third timing constraint (b) is chosen

in the middle between the first and second. The three different solutions obtained

will be used as seeds for three independent runs of the MOEDA flow. This aims to

investigate how the synthesis tool optimises solutions in trading off PPA metrics when

setting different timing goals, and how the MOEDA flow further compensates these

tool-generated solutions.

85

5.5
M

ulti-objective
O

ptim
isation

Experim
ents

Table 5.6 MOEDA design flow with using the full commercial library

N = 200, M = 200, ρ = 1%
Test clock (#) Tr

#Syn Gates Syn-Opt. MOEDA Solution
Case (Tc) #Genes Solution Best Dwc (∆%) Best Ptotal (∆%) Best Agate (∆%)

C1908 250MHz

(a) 0.60ns
299 Dwc: 0.580 0.569 (1.9%) 0.580 0.580

299 Ptotal: 222.9 221.9 211.0 (5.3%) 211.0
Agate: 1452.96 1451.88 1388.16 1388.16 (4.5%)

(b) 0.76ns
178 Dwc: 0.697 0.687 (1.4%) 0.688 0.696

178 Ptotal: 111.1 107.9 107.5 (3.2%) 0.1078
Agate: 698.04 682.92 682.2 678.96 (2.7%)

(c) 1.50ns
105 Dwc: 1.263 1.234 (2.3%) 1.249 1.251

105 Ptotal: 42.1 39.69 39.32 (6.6%) 39.51
Agate: 344.52 344.52 343.08 342.72 (0.5%)

C5315 250MHz

(a) 0.74ns
750 Dwc: 0.723 0.706 (2.4%) 0.715 0.72

750 Ptotal: 472.9 470.5 458.9 (3.0%) 461.2
Agate: 2762.64 2755.44 2729.16 2724.48 (1.4%)

(b) 0.88ns
516 Dwc: 0.824 0.805 (2.3%) 0.819 0.823

516 Ptotal: 310.9 309.0 304.6 (2.0%) 305.7
Agate: 1873.44 1869.48 1859.76 1852.56 (1.1%)

(c) 1.50ns
400 Dwc: 1.305 1.241 (4.9%) 1.289 1.302

400 Ptotal: 225.2 222.3 217.4 (3.5%) 220
Agate: 1346.76 1343.52 1343.16 1336.68 (0.8%)

Units: Dwc [ns] Ptotal [uW] Agate [um2]

86

5.5
M

ulti-objective
O

ptim
isation

Experim
ents

Table 5.7 MOEDA design flow with using the full commercial library (cont.)

N = 200, M = 200, ρ = 1%
Test clock (#) Tr

#Syn Gates Syn-Opt. MOEDA Solution
Case (Tc) #Genes Solution Best Dwc (∆%) Best Ptotal (∆%) Best Agate (∆%)

C6288 250MHz

(a) 2.34ns
2178 Dwc: 2.225 2.204 (0.9%) 2.206 2.204

2178 Ptotal: 5509 5495 5481 (0.5%) 5495
Agate: 9382.32 9364.68 9377.28 9364.68 (0.2%)

(b) 2.90ns
1555 Dwc: 2.726 2.673 (1.9%) 2.708 2.708

1555 Ptotal: 3829 3785 3732 (2.5%) 3732
Agate: 6363.00 6331.32 6278.76 6278.76 (1.3%)

(c) 4.00ns
1140 Dwc: 3.591 3.528 (1.8%) 3.59 3.585

1140 Ptotal: 2824 2821 2754 (2.5%) 2777
Agate: 4194.00 4191.84 4183.92 4137.48 (1.3%)

log2 40MHz

(a) 16.4ns
11838 Dwc: 16.355 15.839 (3.2%) 16.24 16.355

11838 Ptotal: 19610 19090 19070 (2.8%) 19610
Agate: 38547.0 38728.1 (-0.5%) 38797.6 (-0.6%) 38547.0 (0.0%)

(b) 17.9ns
11272 Dwc: 17.751 17.364(2.2%) 17.72 17.751

11272 Ptotal: 18000 18000 17890 (0.6%) 18000
Agate: 36623.9 36840.6 (-0.6%) 36726.8 (-0.3%) 36623.9 (0.0%)

(c) 18.8ns
11119 Dwc: 18.435 17.795 (3.5%) 18.357 18.435

11119 Ptotal: 17590 17510 17390 (1.1%) 17590
Agate: 35999.6 36227.5 (-0.6%) 36203.0 (-0.5%) 35999.6 (0.0%)

Units: Dwc [ns] Ptotal [uW] Agate [um2]

87

5.5 Multi-objective Optimisation Experiments

All circuits are optimised with running 200 generations with a population size of 200

individuals. The number of synthesised gates and the number of genes are the same

as shown in Tables 5.6 and 5.7 because all gates are encoded into chromosomes, so

that the MOEDA flow is optimising the drive strength of all gates. In terms of the

number of synthesised gates in each circuit, it is much less than the number in original

benchmarks shown in Table 5.5. The TSMC library has a large range of complex logic

cells such as AOI (AND-OR-Inverter), IINR (NOR with 2 Inverted Inputs), full adders,

etc., which are already comprised of few basic simple logic gates like XOR, NAND, OR,

etc. In contrast, original benchmarks used basic simple generic gates. This makes the

synthesis tool to automatically merge the simple gates into complex gates for the total

transistor count and physical area reduction, so finally reduce the number of gates.

This may compact the design space and reduce the search complexity but still increases

the difficulty of PPA extra optimisation. In real-world libraries, complex logic cells

have less options of drive strengths (normally no more than 5) due to the physical

design complexity, and a large number of complex cells are used by tools evidenced by

the significant decreasing in gate numbers. This may block the optimisation results for

achieving huge improvements.

Under such difficulties, the optimised results are still promising compared to the

Syn-Opt. solutions which are obtained by running the synthesis tool with “try hard”

mode. MOEDA solutions demonstrate significant improvements in most test cases (up

to 4.9% in Dwc, 6.6% in Ptotal and 4.5% in Agate) as shown in results tables above. The

reported improvement of an objective does not (or slightly) sacrifice the metrics of

other objectives. Although numbers might be small, even 1% or 2% of improvements

could be helpful for designs under tight constraints and particularly when they just

fail timing [110].

88

5.5 Multi-objective Optimisation Experiments

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Dwc [ns]

0

50

100

150

200

250

P
to
ta
l [
u
W

]

a

b

c

C1908
MOEDA
Syn_Opt.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
Dwc [ns]

200

400

600

800

1000

1200

1400

1600

A
ga
te
 [u
m

2
]

a

b

c

C1908
MOEDA
Syn_Opt.

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Dwc [ns]

200

250

300

350

400

450

500

P
to
ta
l [
u
W

]

a

b

c

C5315
MOEDA
Syn_Opt.

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Dwc [ns]

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

A
ga
te
 [u
m

2
]

a

b

c

C5315
MOEDA
Syn_Opt.

Figure 5.6 MOEDA flow optimisation results using the full TSMC library for C1908,
C5315.

89

5.5 Multi-objective Optimisation Experiments

2.0 2.5 3.0 3.5 4.0 4.5
Dwc [ns]

2500

3000

3500

4000

4500

5000

5500

6000

P
to
ta
l [
u
W

]

a

b

c

C6288

MOEDA
Syn_Opt.

2.0 2.5 3.0 3.5 4.0 4.5
Dwc [ns]

3000

4000

5000

6000

7000

8000

9000

10000

A
ga
te
 [u
m

2
]

a

b

c

C6288

MOEDA
Syn_Opt.

15 16 17 18 19 20 21
Dwc [ns]

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

P
to
ta
l [
u
W

]

1e4

a

b

c

log2
MOEDA
Syn_Opt.

15 16 17 18 19 20 21
Dwc [ns]

3.55

3.60

3.65

3.70

3.75

3.80

3.85

3.90

3.95

A
ga
te
 [u
m

2
]

1e4

a

b

c

log2
MOEDA
Syn_Opt.

Figure 5.7 MOEDA flow optimisation results using the full TSMC library for C6288
and log2.

90

5.5 Multi-objective Optimisation Experiments

In Figures 5.6 and 5.7, the final generation of each circuit with three independent

seeding runs is shown, plotting “Dwc vs. Ptotal” (left column), “Dwc vs. Agate” (right

column) and the corresponding Syn-Opt. reference solutions. The three clusters (a, b

and c) correspond to the three seed timing constraints, listed in Tables 5.6 and 5.7. In

all cases, the MOEDA produces a wide range of useful trade-off solutions, with reduced

power consumption or area, within the boundaries of the given seed topology.

From these plots, a number of solutions are improved regarding all objectives in four test

circuits. The MOEDA-generated Pareto-driven clusters of C1908, C5315 and C6288 are

smooth with good solution spreads, whereas the log2 circuit’s is not. This is because

the algorithm in MOEDA flow needs to handle the increased size of design, where larger

EA parameters (the number of generations M and population size N) are required

for producing Pareto-driven results. The improved performance of log2 circuit is still

promising and considerable in power and delay objectives under such an optimisation

run with using the same EA parameters as other smaller test cases used. This implies

that standard digital flow is also struggling to produce well trade-off solutions for a

relatively larger design, so that the MOEDA flow has more optimisation room to get

improved solutions run with relatively less iterations and smaller population.

From smaller cases of C1908, C5315 and C6288, the tool’s performance can be further

observed when different constraints are applied. For timing settings corresponding

to clusters a and b, the tool is operating under tight timing requirements, causing

the synthesis tool to spend the most effort on timing closure and less on power and

area, so the MOEDA flow does not achieve significant improvements on delay (but

much more trade-offs with less power and area). However, for relative relaxed timing

settings corresponding to clusters c, the tool does not make the solution trade-off on

timing too much but spend more efforts on power and area, where the MOEDA flow

enhances the solution particularly in timing. It can be concluded that the MOEDA

flow demonstrates the capability of balancing these three objectives to a greater extend

while tools have not.

91

5.5 Multi-objective Optimisation Experiments

Furthermore, as the circuit size increasing, the improvement of area is hard to be

achieved (particularly in log2). This explicitly shows that area optimisation needs to

include tuning the circuit structure (i.e., reducing gate count or transforming between

complex and simple gates) instead of only focusing on drive strength refinement. But

it is still worthwhile to take the area as one of objectives in the optimisation, which

otherwise may have much degradation on area when optimising other objectives.

The runtime for the largest case optimisation (log2.a) needs 138 hours. Although the

proposed optimisation method is at the cost of longer computing time, this investment

will be worthwhile when considering the enhancements in delay and savings in power

consumption or area that could not otherwise be achieved, particularly for feasible

circuit solutions that are produced in large numbers.

5.5.3 Statistics of MOEDA Flow Convergence

In this subsection, a statistical evaluation is performed for the proposed MOEDA flow,

which specifically run the NSGA-II algorithm ten times using the same population size

(N = 200), generation count (M = 200) and mutation rate (ρ = 1%). The selected

test case is C5315 circuit with its tightest timing constraint (a). Figure 5.8 shows

how the PPA metrics (i.e., Dwc, Ptotal, Agate) have been optimised and converged with

the evolutionary process. Experiments confirm that the algorithm reliably converges

to similar performance when run the MOEDA flow multiple times with the same

evaluation budget. Slight variations (around 2% of each objective) are shown between

different runs due to the inherent randomness of MOEAs.

Since the focus here is not on investigating the statistical analysis of MOEAs, the

algorithm is run once for each benchmark to manage runtime.

92

5.5 Multi-objective Optimisation Experiments

0 50 100 150 200
Generations

0.68

0.69

0.70

0.71
D
w
c [
n
s]

1.7%

C5315-(a)

0 50 100 150 200
Generations

3.8

4.0

4.2

4.4

4.6

4.8

P
to
ta
l [
u
W

]

1e2

2.4%

0 50 100 150 200
Genearations

2.35

2.45

2.55

2.65

2.75

A
ga
te
 [u
m

2
]

1e3

2.4%

Figure 5.8 Statistics of MOEDA convergence. The annotations show the variations
between different runs.

93

5.6 MOEA Search vs. Stochastic Search

5.6 MOEA Search vs. Stochastic Search

This section performs an optimisation efficiency comparison between MOEA search

and stochastic search. The selected test case is C5315-(a), a 9-bit ALU with a tight

timing constraint (a). For MOEA search, the NSGA-II is initialised using 1% mutation

rate in 200-individual population size for 200 generations, so 40000 evaluations are

generated in total. The MOEA optimisation results (red cluster) shown in Figure 5.9

are seeded with the tool-optimised Syn_Opt solution (black round scatter).

Two stochastic search experiments are then run here for comparison. The first one,

referred to a local stochastic search (grey cluster shown in Figure 5.9), is to randomly

produce 40000 individuals seeding with the same Syn_Opt solution, and each of them

is achieved by randomly mutating the chromosome using the same probability. The

second one is completely randomised results referred to a global stochastic search,

which produces 40000 individuals seeding with the same Syn_Opt solution but all

genes (i.e., drive strength of logic gates) of each individual are modified (100% mutation

rate). The results of global stochastic search are the blue cluster in Figure 5.9.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Dwc [ns]

350

400

450

500

550

600

650

P
to
ta
l [
u
W

]

C5315-(a)

Syn_Opt
Global Stochastic Search
Local Stochastic Search
MOEA Search

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Dwc [ns]

2200

2400

2600

2800

3000

3200

3400

3600

3800

A
ga
te
 [u
m

2
]

C5315-(a)

Syn_Opt
Global Stochastic Search
Local Stochastic Search
MOEA Search

Figure 5.9 MOEA search compared to two stochastic search.

Based on the observations made from the plots, it demonstrates that MOEAs have

superior optimisation performance than the stochastic search when evaluation budgets

94

5.7 Summary

are the same. Since the focus of this thesis is not on investigating which MOEA is

the best to achieve the optimum results in VLSI design optimisation, only NSGA-II is

used for experiments.

5.7 Summary

This chapter proposes a fully-automated multi-objective electronic design automation

(MOEDA) flow extension to enhance the current industry-standard logic synthesis and

physical implementation process. The MOEDA flow is fully compatible with commercial

design tools and specifically optimises drive strength of gates during technology mapping

in such a way that the subsequent physical implementation stage can achieve designs

with better PPA metrics. The proposed method has been successfully applied to the

optimisation of ISCAS-85 benchmark suite and a large circuit from EPFL benchmark

set using TSMC 65nm low power standard cell library.

The MOEDA framework is the main novel contribution which exploits more optimisa-

tion opportunities within the standard digital flow. Experimental results show that

the proposed MOEDA flow has operated design optimisation gaining significant im-

provements on PPA over the standard design tool’s solutions. It can be concluded that

optimising technology mapping to refine drive strength selection of cells is beneficial to

the critical performance of VLSI circuits.

In addition, optimising circuits for a given timing constraint with one circuit topology

solution (single seed) is not capable enough to offer a larger design space when circuit

structures are changing. Therefore, the next chapter will investigate how running

synthesis multiple times can be harnessed to expand, access and explore the design

space with respect to different circuit topologies.

95

Chapter 6

Design Space Exploration in

Large-scale Designs

96

6.1 Overview

6.1 Overview

The experiments in Chapter 5 confirm that MOEDA framework is able to assist

standard flows to more efficiently produce trade-off solutions. However, this only has

been achieved through seeding the MOEA with a single synthesis-optimised solution

(single topology). Such an optimisation is not compatible with various circuit topologies

to offer a larger coverage of optimised design space.

To deal with this issue, this chapter performs multi-objective design space exploration

(MODSE) of VLSI designs, which allows the MOEA to handle circuit optimisation

with multiple solution seeds (i.e., different topologies). Such an approach also has been

applied to tackle the complex physical floorplan constraints.

The specific contributions are summarised as follows: 1) An analysis of tool-generated

design space comprised of a set of initial solutions with different circuit structures

and different performance. 2) A methodology to seed the MOEA with these initial

solutions to more efficiently sample the entire feasible design space for better PPA

metrics and design space coverage. 3) An investigation of how different floorplan

constraints affecting the overall results of VLSI designs during physical implementation.

4) The application of the proposed methodology of seeding the MOEA with a solution

population to effectively handle the most complex physical floorplan constraint.

The following sections in this chapter are structured as: Section 6.2 gives the related

work review on design space exploration using standard digital flows. Section 6.3

introduces the MODSE approach and the experiment setup is presented in Section 6.4.

Section 6.5 gives an analysis of the design space generated by standard digital flow.

The optimisation results of MODSE are demonstrated in Section 6.6. Section 6.7

provides summary of this chapter.

97

6.2 Design Space Exploration using Standard Digital Flow

6.2 Design Space Exploration using Standard Digi-

tal Flow

Design space exploration (DSE) aims at searching for feasible solutions in the objective

space (i.e., often multiple dimensions). Optimisation using the steps of a standard

digital flow from RTL to GDSII in the loop can be viewed as black-box design

space exploration. While many of the algorithms used in commercial EDA flows are

proprietary and not accessible by end users, logic synthesis and physical design tools

provide a range of parameters and optimisation options for designers to choose from

such as logic reconstruction, area constraints, synthesis effort level, place and route with

timing or power optimisation, etc. These parameters can be tuned with an optimisation

method like machine learning or any other intelligent auto-search approaches to fully

utilise the optimisation potential that the tools are capable of.

Efficient design space exploration approaches promise to simultaneously balance mul-

tiple design objectives. As stated in Chapter 3, MOEAs are often used for DSE at

the VLSI architecture level and up to high level synthesis. However, within the full

digital flow, alternative intelligent techniques have been adopted such as automated

design-parameter tuning [118–120] and machine learning [121–123].

A. Kahng presented in [120] that there is unpredictable “noisiness” in tool-generated

solutions causing variability in the resulting PPA metrics. Multi-armed bandit (MAB)

sampling strategies, a probability theory, was applied in a fully-automated digital flow,

which aims to determine the optimal utilisation (parameter settings) of EDA tools

to “de-noise” the design results. In [119], Ziegler proposed an automated method to

explore the search space via tuning parameters at the synthesis step for multi-objective

optimisation. This is a rank-based iterative process using an aggregate cost function

composed of the normalised weighted sum of PPA metrics.

Running through the whole design flow leads to more computing resource consumption.

To improve the exploration efficiency, in [118], the authors exploited an automated

98

6.2 Design Space Exploration using Standard Digital Flow

selection mechanism based on searching the design space in parallel. Generated solutions

were evaluated at each step of the digital flow and those that were not competitive

in terms of PPA were pruned early rather than being propagated through the entire

design flow. This approach can improve search efficiency and save computing time.

More recently, Kwon in [123] introduced a learning-based “recommender system” for

auto-tuning design flows, whereby a previously trained learning network suggests what

parameter settings would be beneficial for a specific design. This can dramatically

save exploration and runtime but gathering and archiving useful and sufficient training

data is still time consuming. Circuits from which training data could be derived are

often proprietary, which represents another major obstacle to creating a sufficiently

large and useful training data set.

Growing design complexity and aggressive technology scaling make it hard to evaluate

realistic, post-fabrication metrics without running the design flow through to the

physical level. In [121] [122], machine learning approaches were employed to bridge

the synthesis solution space to the physical solution space, with the goal to enable

Pareto-driven exploration for high speed and power efficient adder designs. In their

design evaluation they used a weighted sum cost function. The results showed that

learning approaches could trade-off solutions in terms of PPA and find Pareto frontiers.

It is challenging to minimise computational effort in the process of design space

exploration while balancing multiple design objectives due to the large number of

evaluations necessary. Accurately predicting results of designs can dramatically save the

effort of evaluations where the implementation and simulation time could be reduced

or even completely removed. Machine learning based methodologies are promising for

prediction but this requires a high prediction accuracy of learning algorithms [124] [125].

Even a small margin might result a significant variation in overall implemented design

results, and also achieving appropriate training data set is difficult. These further leads

to a wide research domain beyond the scope of this study.

99

6.3 Multi-obejctive Design Space Exploration Flow

6.3 Multi-obejctive Design Space Exploration Flow

6.3.1 Algorithm

The NSGA-II including its fast non-denominated sorting approach and diversity

preservation scheme will be considered here to address the problem of design space

exploration. Only mutation operator is adopted in this case. The used notations about

the EA setup still are that: N is population size; M is the maximum of generations; ρ

is the mutation rate. The adapted NSGA-II algorithm for MODSE will be introduced

in the next subsection.

6.3.2 MODSE using Multiple Seed Designs

The multi-obejctive design space exploration (MODSE) method is altered from MOEDA

framework (introduced in Chapter 5). Instead of starting with seeding the initial

population using a single synthesis-optimised solution, how the proposed algorithm

can explore the design space simultaneously using a set of multiple different seeds is

investigated. The seeds are a range of different solutions (circuit topologies) generated

using the standard digital flow under a number of different timing constraints.

Therefore, in this case, a more fine-grained range of timing constraints are applied in

100 increments from minimum (a constraint that the tool can easily meet) to maximum

(solutions start to fail timing) in order to investigate how the standard tools deal

with the different constraints and what design space coverage they can achieve. Each

benchmark has been synthesised once for each timing constraint setting to generate

the 100 solutions for seeding. The tool-generated design space (with enabling synthesis

optimisation) comprised of 100 seed solutions, in different circuit topologies, is the

baseline for the MODSE to perform optimisation on.

With regard to the specific execution steps of MODSE, the majority of the steps are

same as in the MOEDA framework, excepting the MOEA seeding (MOEA initialisation)

100

6.3 Multi-obejctive Design Space Exploration Flow

step that installs an initial population using 100 seeds. This allows the algorithm to

evaluate and select the best-suited seeds (circuit topologies) for breeding the optimised

design space. Figure 6.1 illustrates the MODSE flow using seed population.

Optimised Netlist (.v)Optimised Netlist (.v)Optimised Netlist (.v)Optimised Netlist (.v)

Layout (.gds)
PPA Metrics

Layout (.gds)
PPA Metrics

Layout (.gds)
PPA Metrics

Layout (.gds)
PPA Metrics

Gate-level
Netlist (.v)
Gate-level
Netlist (.v)
Gate-level
Netlist (.v)
Gate-level
Netlist (.v)

Logic Synthesis
GenusTM

Physical
Implementation

InnovusTM

Layouts (.gds)
PPA Metrics

MOEA Seeding

Optimised Netlists (.v)

Evaluation

Genetic OperationOpt. Loop

Parametric Netlists
Gate-level

Netlists (.v)

Figure 6.1 MODSE flow using multiple circuit topology seeds.

The optimisation objectives and fitness function f(g), shown in Equation (6.1) are the

same that simultaneously minimise the worst case delay (Dwc), total power consumption

(Ptotal) and all logic gate area (Agate).

f(g) = min [Dwc(g), Ptotal(g), Agate(g)]

s.t. g = (g1, ..., gi), ∀gi ∈ G
(6.1)

The algorithm 4 introduces MODSE flow in detail.

101

6.4 Experimental Setup

Algorithm 4 Adapted NSGA-II for MODSE
Procedure: NSGA-II (N , M , f(g)). ▷ N individuals evolved M generations to solve
f(g). The vector g ∈ the cell library G, is the chromosome consisting of a set of genes
(logic gates) defining an individual.

1: Initialize parent population Pt in size N ▷ Seed with 100 different solutions (circuit
topologies) generated by the standard flow.

2: Offspring population Qt ← Mutation(Pt)
3: for t← 1 to M do
4: for each population Rt ← Pt ∪Qt in size 2N do
5: Fitness evaluation ← f(Rt) ▷ Call fitness function f(g) for each individual

evaluation.
6: F ← Non-Dominated-Sorting(Rt)
7: Pt+1 ← Ø
8: i← 1
9: while |Pt+1|+ |Fi| ≤ N do

10: Crowding-Distance-Assignment(Fi)
11: Pt+1 ← Pt+1 ∪ Fi

12: i← i + 1
13: end while
14: Fi ← Descend-Sort(Fi)
15: Pt+1 ← Pt+1 ∪ Fi[1 : (N − |Pt+1|)] ▷ Less crowded individuals from the first

to the (N − |Pt+1|)th of Fi to fill Pt+1.
16: Qt+1 ← Mutation(Pt+1)
17: end for
18: end for

6.4 Experimental Setup

The proposed MODSE methodology is implemented in C++ and the experiments

are conducted on a 2.2GHz Xeon E5-2650 CPU. Three selected benchmarks from

ISCAS-85 suite [114] and a large design from EPFL benchmark suite [115] are used

in this chapter. All benchmarks are implemented and optimised using the Cadence®

digital flow suite. The experimental circuits in the form of RTL designs are synthesised

into gate-level netlists using GenusTM (v17.11) [116]. These netlists are then optimised

using the proposed flow in tandem with the physical implementation tool InnovusTM

(v17.11) [117] to generate the layouts from the optimised netlists. The versions of

102

6.4 Experimental Setup

EDA tools used here represented the most up-to-date flow including full optimisation

licences when experiments were performed.

All experiments are using a TSMC 65nm low-power core cell library (TCBN65LP), i.e.,

G in algorithm 4, in standard threshold voltage containing about 400 combinational

cells.

6.4.1 Tool Environment Setup

Table 6.1 summarised specific settings for both logic synthesis and physical layout

implementation, which are the same as the settings in Chapter 5. However, in the

place and route process, the die area is initially shaped in the ratio of 1.0, but it will

be customedly reshaped later in the experiment to investigate how different floorplan

settings will affect the design results.

Table 6.1 Design Constraint and Tool Settings in Digital Flow

Synthesis Setup Place & Route Setup

syn_generic_effort = high aspect ratio = 1.0
iopt_ultra_optimisation = true core utilisation = 0.7

Design Constraint
timing-driven placement = true

set_load = D1/D8

timing-driven routing = true

create_clock = 40MHz/250MHz

SI-driven routing = true

The set of timing constraints for multiple synthesis runs (to achieve the 100 seed

solutions) is obtained through gradually increasing the output delay constraint (Tod)

with a constant increment factor. The required time (Tr) equals to clock period (Tc)

minus Tod. The arrival time (Ta) of the critical path of a design thus has to meet the

required timing constraint (Tr) for achieving the timing closure.

103

6.4 Experimental Setup

The design constraints also cover the different clock frequencies (create_clock) and

output load capacitance (set_load) applying to various benchmark circuits. These will

be specified in the following experiments. The benchmarks used are combinational

circuits, so that the ideal clock was not applied with any uncertainties or transition

delays.

6.4.2 Objective Evaluation in EDA Tools

The fitness function is to simultaneously minimise all objectives: Dwc, Ptotal and Agate.

All specific evaluations take place after place-and-route with InnovusTM based on

typical corner conditions (PVT: TT, 1.2V, 25◦C), which is same as in Chapter 5.

(1) Dwc: The arrival time of critical path calculated at the post-route stage by static

timing analysis engine in InnovusTM.

(2) Ptotal: The result from the average power analysis in InnovusTM. It is the sum of

leakage power, internal power and switching power.

(3) Agate: The sum area of all logic gates and it is directly reported by the InnovusTM.

6.4.3 Multi-threads Running and Runtime

According to the computing resources and number of licenses available, all experiments

in this work are running 24 MODSE evaluation threads in parallel.

The runtime is still not the key focus in this work. The MODSE flow needs more

computing resources due to the continuous generation of design layouts in a large

quantity. This aims for accurate and real-world evaluation. It is easily to speed up

the flow through making design evaluations at an earlier design stage, but what is

investigated in this work is comprehensively evidence the proposed MODSE flow has

generic optimisation capability in an industrial design environment.

104

6.5 Analysis of Tool-generated Design Space

6.5 Analysis of Tool-generated Design Space

This section firstly investigates the tool-generated design space. The selected bench-

marks from ISCAS-85 suite, in different structures, are a 16-bit error detector/corrector

(C1908), a 9-bit ALU (C5315) and a 16x16 multiplier (C6228). One large circuit from

EPFL benchmark suite is an arithmetic function for log2 calculation.

Table 6.2 Test Case Summary

Test Function clock Tr set_load #Syn Gates #Orig.
Case (Tc) (Increment Factor) #Genes Gates

C1908 16-bit error 250MHz 1.50ns− 0.51ns D1 105 - 445 880detector/corrector (4ns) (0.01ns) D8 105 - 468

C5315 9-bit 250MHz 1.50ns− 0.51ns D1 396 - 1323 2307ALU (4ns) (0.01ns) D8 401 - 1287

C6288 16x16 250MHz 4.00ns− 2.02ns D1 1105 - 3208 2406multiplier (4ns) (0.02ns) D8 1123 - 3222

log2 log2 40MHz 25.00ns− 15.10ns D1 10801 - 12561 32060calculation (25ns) (0.10ns) D8 10797 - 12555

Table 6.2 summarises specific timing constraint settings for each test case including

the clock period (Tc), the required timing (Tr) range with output delay increment

factor when tightening the timing. So the 100 different timing requirements determine

the 100 seeds in the synthesis tool. Different output load scenarios, including loading

with drive strength D1 and D8, are applied to all test cases under the same set of

timing constraints. The output load values (D1 and D8) are specified as the input pin

capacitance of inverters with drive strength D1 and D8 from the TSMC TCBN65LP

cell library. The reason for selecting D1 and D8 as output loads is that D1 load is a

nominal scenario in practice and D8 load with larger capacitance is the middle sized

one from all available inverters.

The number of synthesised gates (i.e., also the number of genes for the MOEA) are

presented from minimum to maximum of corresponding synthesised netlists. The

original gate number of each test case stated in the benchmark suite report is also

included in Table 6.2. The number of synthesised gates in most test circuits is much

105

6.5 Analysis of Tool-generated Design Space

less than the number in their original benchmarks. This is because the TSMC library

has a large range of complex logic cells such as AOI (AND-OR-Inverter), IINR (NOR

with 2 Inverted Inputs), full adders, etc. In contrast, original benchmarks used basic

generic gates like and, not, or, etc. The synthesis tool is able to automatically merge

the simple gates into complex ones. This is also consistent with the results in Chapter 5

Section 5.5.

In case of C6288, the number of synthesised gates is beyond its original number when

tight timing constraints are applied. The likely reason is that the structure of C6288

(16x16 multiplier) requires a large number of adders to form an “array-like” topology.

So the synthesis tool finds it hard to merge them, and more large drive strengths

need to be mapped with large buffers inserted in circuit paths against stringent timing

constraints.

Figures 6.2 and 6.3 illustrate the standard tool’s design space for each benchmark

circuit under D1 (left column) and D8 (right column) output load scenarios. From

plots, all cross markers represent tool-generated solutions in “Dwc vs. Ptotal” and their

face colours correspond to the colour bar relating to the area objective Agate ranging

from large (red) to small (blue). Solutions additionally marked with squares have failed

to meet timing constraints. The red line highlights the synthesis optimised (Syn Opt.)

“elite” solution front, which is calculated using the non-dominated sorting approach

in three dimensions with regard to Dwc, Ptotal and Agate. All solutions in the first

domination rank are connected with a line to highlight the “Syn Frontier” more clearly.

The “Syn Frontier”s shown in the figures are projections from the 3D objective space

onto the 2D plots.

Looking at the design space of the standard flow, it can be observed that the 16-bit

error detector/corrector (C1908), the 9-bit ALU (C5315) and the log2 calculation

circuit can be synthesised and optimised well by the tool as the set of solutions forms

a relative smooth Pareto frontier.

106

6.5 Analysis of Tool-generated Design Space

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Dwc [ns]

0

50

100

150

200

250

300

350

400

P
to
ta
l [
u
W

]

C1908 D1
Syn Opt.
Timing Failed
Syn Frontier

500

750

1000

1250

1500

1750

2000

2250

A
ga
te
 [u
m

2
]

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Dwc [ns]

0

200

400

600

800

1000

1200

1400

P
to
ta
l [
u
W

]

C5315 D1
Syn Opt.
Timing Failed
Syn Frontier

1800

2400

3000

3600

4200

4800

5400

6000

A
ga
te
 [u
m

2
]

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Dwc [ns]

0

50

100

150

200

250

300

350

400

450

P
to
ta
l [
u
W

]

C1908 D8
Syn Opt.
Timing Failed
Syn Frontier

500

750

1000

1250

1500

1750

2000

2250

A
ga
te
 [u
m

2
]

Standard Flow

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Dwc [ns]

200

400

600

800

1000

1200

P
to
ta
l [
u
W

]

C5315 D8
Syn Opt.
Timing Failed
Syn Frontier

1800

2400

3000

3600

4200

4800

5400

6000

A
ga
te
 [u
m

2
]

Standard Flow

Figure 6.2 The tool-generated design space under the drive strength D1 and D8 output
load scenarios for C1908 (16-bit error detector/corrector) and C5315 (9-bit ALU).

However, the 16x16 multiplier (C6288), which is a highly structured circuit, yields a

less regular frontier with more clustered solutions. This indicates that the standard

tools struggle to effectively trade-off multiple objectives when optimising a complex

design with a relatively fixed circuit topology. So the design might not gain sufficient

optimisation at the logic synthesis step.

6.5.1 Performance Variation in Synthesis Tool

In terms of the timing closures in tool-generated design space, some solutions start

to fail timing when synthesising with tight constraints. To investigate this, for each

107

6.5 Analysis of Tool-generated Design Space

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
Dwc [ns]

2000

3000

4000

5000

6000

7000

8000

9000

10000

P
to
ta
l [
u
W

]

C6288 D1
Syn Opt.
Timing Failed
Syn Frontier

4500

6000

7500

9000

10500

12000

13500

15000

A
ga
te
 [u
m

2
]

14 16 18 20 22 24 26
Dwc [ns]

1.6

1.7

1.8

1.9

2.0

2.1

2.2

P
to
ta
l [
u
W

]

1e4 log2 D1
Syn Opt.
Timing Failed
Syn Frontier

3.44

3.52

3.60

3.68

3.76

3.84

3.92

4.00

A
ga
te
 [u
m

2
]

1e4

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
Dwc [ns]

2000

3000

4000

5000

6000

7000

8000

9000

10000

P
to
ta
l [
u
W

]

C6288 D8
Syn Opt.
Timing Failed
Syn Frontier

4500

6000

7500

9000

10500

12000

13500

15000

A
ga
te
 [u
m

2
]

Standard Flow

14 16 18 20 22 24 26
Dwc [ns]

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

P
to
ta
l [
u
W

]

1e4 log2 D8
Syn Opt.
Timing Failed
Syn Frontier

3.44

3.52

3.60

3.68

3.76

3.84

3.92

4.00

A
ga
te
 [u
m

2
]

1e4

Standard Flow

Figure 6.3 The tool-generated design space under the drive strength D1 and D8 output
load scenarios for C6288 (16x16 multiplier) and log2 calculation circuit.

benchmark under D8 output load scenario, 30 solutions are selected constrained by the

tightest timing out of the primal 100 tool-generated ones. The performance (i.e., Dwc -

worst case delay) of these 30 solutions (in blue crosses) are plotted with corresponding

required timing Tr in Figure 6.4.

From these plots, the Tr is gradually tightened from right to left on the x-axis and the

timing failed solutions are further marked with square. The circuit delay Dwc of tool-

produced solutions should have been dropped when tightening the timing constraint.

However, it can be observed that the synthesis tool starts delivering solutions with

significant variations in terms of the circuit delay Dwc when applying strict constraints.

The circuit delay Dwc of two adjacent solutions is often quite distinct from each other

108

6.5 Analysis of Tool-generated Design Space

0.50 0.55 0.60 0.65 0.70 0.75 0.80
Required Timing Tr [ns]

0.55

0.60

0.65

0.70

0.75

D
w
c [
n
s]

C1908 D8

Timing Failed
0.50 0.55 0.60 0.65 0.70 0.75 0.80

Required Timing Tr [ns]
0.6

0.7

0.8

0.9

1.0

1.1

D
w
c [
n
s]

C5315 D8

Timing Failed

2.0 2.1 2.2 2.3 2.4 2.5 2.6
Required Timing Tr [ns]

2.1

2.2

2.3

2.4

2.5

2.6

D
w
c [
n
s]

C6288 D8

Timing Failed
15.0 15.5 16.0 16.5 17.0 17.5 18.0

Required Timing Tr [ns]
15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

D
w
c [
n
s]

log2 D8

Timing Failed

Figure 6.4 The variation investigation inside of EDA synthesis tools is presented by
plotting the worst case delay Dwc of tool-generated solutions with corresponding timing
constraints Tr.

although the required timing Tr difference between them is minor. These indicate

the unpredictability or “noisiness” of tool outcomes, which is consistent with the

conclusion in [120]. In such a situation, designers run a given flow for multiple times

with small perturbations to constraints or other initial conditions, in order to take the

best resulting solution forwards in the subsequent design steps. This might result in a

time-consuming design cycle and it is hard for designers to obtain a globally-optimum

solution.

109

6.6 Multi-objective Design Space Exploration

6.6 Multi-objective Design Space Exploration

6.6.1 Squeeze Design Space for PPA Optimisation

The design space generated by standard digital flow is the baseline for the MODSE

engine to perform global optimisation on. The 100 seed designs are loaded into the

initial population of the MODSE flow and optimised with the evolutionary process.

All test cases are optimised over 100 (M) generations using a population size N of 500,

so the initial population comprises five copies of each seed circuit.

The plots in Figures 6.5 (C1908), 6.6 (C5315), 6.7 (C6288) and 6.8 (log2) show the

improved solution space, plotting “Dwc vs. Ptotal” and “Dwc vs. Agate”. The red line

presents the “Syn-Frontier”s from the baseline design space (tool-generated). All those

seed solutions that have survived until the last generation, although with modified drive

strengths, are marked with a red cross. The solutions shown as blue crosses are those

produced by the MODSE flow comprising of all individuals of the final generation.

110

6.6 Multi-objective Design Space Exploration

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Dwc [ns]

0

50

100

150

200

250

300

350

P
to
ta
l [
u
W

]

C1908 D1
MODSE
Survived Seeds
Syn Frontier

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Dwc [ns]

200

400

600

800

1000

1200

1400

1600

1800

2000

A
ga
te
 [u
m

2
]

C1908 D1
MODSE
Survived Seeds
Syn Frontier

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Dwc [ns]

0

50

100

150

200

250

300

350

400

P
to
ta
l [
u
W

]

C1908 D8
MODSE
Survived Seeds
Syn Frontier

MODSE Flow

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4
Dwc [ns]

0

500

1000

1500

2000

2500

A
ga
te
 [u
m

2
]

C1908 D8
MODSE
Survived Seeds
Syn Frontier

MODSE Flow

Figure 6.5 Design space optimisation results under the drive strength D1 and D8 output
load scenarios for C1908 16-bit error detector/corrector. N = 500, M = 100, ρ = 1%.

111

6.6 Multi-objective Design Space Exploration

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Dwc [ns]

100

200

300

400

500

600

700

800

900

P
to
ta
l [
u
W

]

C5315 D1
MODSE
Survived Seeds
Syn Frontier

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Dwc [ns]

1000

1500

2000

2500

3000

3500

4000

4500

5000

A
ga
te
 [u
m

2
]

C5315 D1
MODSE
Survived Seeds
Syn Frontier

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Dwc [ns]

200

400

600

800

1000

1200

P
to
ta
l [
u
W

]

C5315 D8
MODSE
Survived Seeds
Syn Frontier

MODSE Flow

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
Dwc [ns]

1000

2000

3000

4000

5000

6000

7000

A
ga
te
 [u
m

2
]

C5315 D8
MODSE
Survived Seeds
Syn Frontier

MODSE Flow

Figure 6.6 Design space optimisation results under the drive strength D1 and D8 output
load scenarios for C5315 9-bit ALU. N = 500, M = 100, ρ = 1%.

112

6.6 Multi-objective Design Space Exploration

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
Dwc [ns]

2500

3000

3500

4000

4500

5000

5500

6000

6500

P
to
ta
l [
u
W

]

C6288 D1
MODSE
Survived Seeds
Syn Frontier

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
Dwc [ns]

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

A
ga
te
 [u
m

2
]

C6288 D1
MODSE
Survived Seeds
Syn Frontier

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
Dwc [ns]

2000

3000

4000

5000

6000

7000

8000

P
to
ta
l [
u
W

]

C6288 D8
MODSE
Survived Seeds
Syn Frontier

MODSE Flow

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8
Dwc [ns]

2000

4000

6000

8000

10000

12000

14000

16000

A
ga
te
 [u
m

2
]

C6288 D8
MODSE
Survived Seeds
Syn Frontier

MODSE Flow

Figure 6.7 Design space optimisation results under the drive strength D1 and D8 output
load scenarios for C6288 16x16 multiplier. N = 500, M = 100, ρ = 1%.

113

6.6 Multi-objective Design Space Exploration

16 18 20 22 24
Dwc [ns]

1.7

1.8

1.9

2.0

2.1

P t
ot

al
 [u

W
]

1e4 log2 D1
MODSE
Survived Seeds
Syn Frontier

3.2%

14 16 18 20 22 24 26
Dwc [ns]

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

A g
at

e [
um

2]

1e4 log2 D1

MODSE
Survived Seeds
Syn Frontier

16 18 20 22
Dwc [ns]

1.7

1.8

1.9

2.0

2.1

2.2

P t
ot

al
 [u

W
]

1e4 log2 D8
MODSE
Survived Seeds
Syn Frontier

2.4%

1.5%

MODSE Flow

14 16 18 20 22 24 26
Dwc [ns]

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

A g
at

e [
um

2]

1e4 log2 D8

MODSE
Survived Seeds
Syn Frontier

MODSE Flow

Figure 6.8 Design space optimisation results under the drive strength D1 and D8 output
load scenarios for log2 calculation circuit. N = 500, M = 100, ρ = 1%. The runtime
of largest case (log2.D8) is 162 hours. The optimised design space of log2 with D1 and
D8 loads is shown with zoom-in views to present the improvements clearly.

114

6.6 Multi-objective Design Space Exploration

The results confirm that the MODSE flow can push the baseline frontier further

to extend the design space of all test cases in all three objectives, across different

circuit topologies. For the largest circuit log2, the optimised design space is shown

with additional zoom-in views to present the quantified improvements which are still

considerable. Furthermore, the relative improvement looks marginal from the plots

due to the wide axis range, but the total absolute values for saved power and improved

delay are significant.

In the case of circuit C1908, the optimised solutions that form a smooth Pareto

frontier, whereas there are some gaps in the optimised design space of C5315, log2

and particularly of C6288 (see Figure 6.7). The gaps are artefacts from the baseline

design space due to limitations of the tool’s optimiser and properties of the circuit.

Although the proposed MOEDA flow could not fully bridge these large gaps, it has

been achieved that the optimised design space covers the baseline design space and

beyond more uniformly. This makes better choices for design-specific using as a richer

set of solutions is available.

Only about one-fourth of the initial seeds survive until the final generation in design

C1908, C5315 and C6288, and about half of the initial seeds survive in log2 circuit until

the final generation after applying MODSE. Most of the surviving seeds are positioned

on the “Syn-Frontier”s, while others have been discarded in the evolution process. This

further indicates that there is “noisiness” inside of standard flow tools and not all

solutions generated by tools are presumably optimised, potentially losing some of good

solutions. So design iterations within the flow with human engineer efforts are often

required to obtain possible best solutions. The MODSE flow can auto-iterate designs

without throughout the whole flow for better trade-offs in PPA metrics.

In the case of log2 calculation circuit (see Figure 6.8), the optimised solution cluster

covers a larger space, where there a number of dominated solutions are behind the

Pareto front. This is because the log2 circuit is comprised of more logic gates than other

benchmarks, which requires more computing time for MODSE against the enlarged

115

6.6 Multi-objective Design Space Exploration

design space. This also reveals the optimisation limit of exploited MODSE which is its

optimisation scalability.

Although the limitations of the proposed MODSE is shown, the optimisation improve-

ments are still considerable compared to the primal tool-generated design space.

6.6.2 Squeeze Design Space for Constrained Floorplan

In all prior experiments, the physical die is always shaped in a square without considering

any placements of hard blocks, so the whole physical die is only utilised to place and

route standard cells. In modern system-on-chip (SoC) design, the overall physical die

is normally in a rectangle shape but consists of few hard blocks been placed first. The

remaining limited core space then becomes a non-regular polygon. In addition, the

input/output (I/O) pin positions are often constrained by the fixed location of hard

blocks since some of I/O pins are required to connect with them. Some dedicated pins

therefore should be placed as close to certain blocks to reduce routing wirelength.

In this set of experiments, the proposed MODSE method is employed to optimise the

design space specifically when circuits need to be implemented to fit in a non-regular

polygon die with constrained pin places. A generic function benchmark C5315 (9-bit

ALU) is selected as the test circuit. Figure 6.9 conceptually presents four different

floorplan settings. The first, (a) “S-Die + All-Side”, represents square physical die

with randomly placed pins at all sides. This is also the setup for all prior MODSE

experiments. The others are (b) “S-Die + TopLeft-Side”: square physical die with

randomly placed pins only at top and left sides; (c) “L-Die + All-Side”: “L” shape

physical die with randomly placed pins at all sides; (d) “L-Die + Top-Side”: “L” shape

physical die with randomly placed pins only at the two top sides.

The area of “L-Die” is set to be the same as the “S-Die” ’s and the core utilisation

keeps consistent to 70%. This can ensure the congestion of the place and route is

unchanged. The set of experiments in this case aims to investigate how the performance

116

6.6 Multi-objective Design Space Exploration

(a) S-Die + All-Side (b) S-Die + TopLeft-Side

(c) L-Die + All-Side (d) L-Die + Top-Side

Figure 6.9 Four study cases: MODSE optimisation with different physical die shapes
and pin location constraints.

of synthesised solutions will be in physical implementation when applying different

floorplan settings.

The tool-generated design space of C5315 with the floorplan setting of “S-Die + All-Side”

under the drive strength D8 output load scenario is presented in Figure 6.2.

For other floorplan settings, the same synthesis constraint setup is used, as shown

in Table 6.3, in terms of clock (Tc), required timing (Tr) and output capacitive load

(set_load). All tool run settings for logic synthesis and physical implementation are

kept consistent for all experiments in this chapter (shown in Section 6.4 Table 6.1).

So the synthesis outcomes (gate-level netlists) will not be changed because the extra

floorplan constraints is only set for physical implementation.

Apart from the case of (a) “S-Die + All-Side”, three new sets of seeds (i.e., still 100

for each) are then obtained through running standard digital flow for the cases (b),

117

6.6 Multi-objective Design Space Exploration

Table 6.3 Design Constraint Setup for Different Floorplans

Test Common Settings No. Die Pin
Circuit clock (Tc) Tr (Increment Factor) set_load Shape Location

C5315 250MHz (4ns) 1.50ns− 0.51ns (0.01ns) D8

(a) S-Die All-Side
(b) S-Die TopLeft-Side
(c) L-Die All-Side
(d) L-Die Top-Side

(c) and (d). The evaluation metrics are still the worst case delay (Dwc), total power

(Ptotal) and the sum of all gate area (Agate).

Four tool-generated design space is achieved. Each corresponding “Syn Frontier” (i.e.,

Pareto frontiers) is presented in Figure 6.10, plotting “Dwc vs. Ptotal” (left) and “Dwc

vs. Agate” (right). The “Syn Frontier” lines represent the “elite” solutions in the first

domination rank of each design space. These are calculated by the non-dominated

sorting with regard to all objectives.

0.6 0.8 1.0 1.2 1.4 1.6
Dwc [ns]

200

400

600

800

1000

1200

P
to
ta
l [
u
W

]

C5315 D8
(a) S-Die + All-Side
(b) S-Die + TopLeft-Side
(c) L-Die + All-Side
(d) L-Die + Top-Side

0.6 0.8 1.0 1.2 1.4 1.6
Dwc [ns]

1000

2000

3000

4000

5000

6000

A
ga
te
 [u
m

2
]

C5315 D8
(a) S-Die + All-Side
(b) S-Die + TopLeft-Side
(c) L-Die + All-Side
(d) L-Die + Top-Side

Figure 6.10 The “Syn Frontier”s of tool-generated design space of all study cases are
illustrated.

From plots, it can be observed that the restricted die shape and pin locations pose a

serious effect on the quality of results (QoRs) of the design. In addition, the non-regular

polygon die has a greater negative influence on the design than the restrictions from

pin locations. This indicates the physical implementation tool is struggling to fit the

synthesised design (logic gates) into further constrained floorplans.

118

6.6 Multi-objective Design Space Exploration

Based on the observation, the worst case in QoRs is the (d) “L-Die + Top-Side” (red

line). This is also the baseline where the MODSE performs optimisation on. So the

tool-generated 100 seeds from case (d) are loaded in MODSE for expanding design

space. The optimisation runs with N - 500 individuals for M - 100 generations. The

mutation rate ρ is still kept for 1%.

The MODSE-optimised outcome of the case (d) in terms of all objectives are shown in

Figure 6.11. The “Syn Frontier” of the best case, (a) “S-Die + All-Side”, is included

for comparison. The light blue scatters, representing the expanded design space,

demonstrate distinct improvements in PPA and better coverage beyond the baseline

design space (red line), although the MODSE method has not been able to completely

closed the gap from the worst case (d) to the best case (a).

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Dwc [ns]

200

400

600

800

1000

1200

P
to
ta
l [
u
W

]

C5315 D8
MODSE (d)
Survived Seeds (d)
Syn Frontier (d)
Syn Frontier (a)

0.6 0.8 1.0 1.2 1.4 1.6 1.8
Dwc [ns]

1000

2000

3000

4000

5000

6000

A
ga
te
 [u
m

2
]

C5315 D8
MODSE (d)
Survived Seeds (d)
Syn Frontier (d)
Syn Frontier (a)

Figure 6.11 MODSE is applied to optimise the design space of case (d) “L-Die + Top-
Side” generated by standard tools. The expanded design space (in light blue scatters)
are plotted in “Dwc vs. Ptotal” (left) and “Dwc vs. Agate” (right). The survived seeds
after applying MODSE are shown as well. MODSE algorithm settings are N = 500,
M = 100, ρ = 1%.

6.6.3 Discussion

The experimental results confirm the capabilities of the MODSE flow in producing

better design space coverage with significant PPA improvements (up to 3.2% in worst-

119

6.6 Multi-objective Design Space Exploration

case delay in the largest log2 circuit) over the entire primal tool-generated design

space. This has not only been demonstrated with a set of benchmark circuits covering

different structures and functions, but has also been evidenced when designs are further

constrained at physical flooplan step with the non-regular polygon die and restricted

pin locations.

However, although the proposed method is capable of exploiting design opportunities

by adjusting drive strengths at the gate-level netlists, circuit topology optimisation

is currently not yet included. This current limitation is likely the reason that the

MODSE-produced design space gaps cannot be fully closed, which would provide

potential optimum trade-off design choices. It is particularly visible in the results of

C6288 circuit, due to is fixed topology. From these results it can be concluded that

including circuit toplogy modification in the MODSE approach could enable further

design optimisation opportunities.

120

6.7 Summary

6.7 Summary

In this chapter, a fully-automated multi-objective design space exploration (MODSE)

method is introduced to augment the standard-flow-generated design space. The

proposed method optimises the design across various circuit topology solutions in

terms of power, performance and area (PPA), and significant improvements with better

design space coverage have been achieved.

The MODSE method is invented based on the MOEDA flow which also tunes drive

strength mapping for logic gates, but the MODSE is able to handle different tool-

generated circuit structures with considering different practical floorplan settings.

The proposed method has been successfully applied to the optimisation of ISCAS-85

benchmark circuits and a large circuit from EPFL benchmark suite using the TSMC

65nm low power standard cell library.

The next chapter will perform an optimisation focusing on library level to enrich drive

strength granularity for foundry standard cells. It is expected to present better final

results (PPA) at physical layout level than using original drive strength granularity.

121

Chapter 7

Improved Drive Granularity

Standard Cells

122

7.1 Overview

7.1 Overview

As discussed in Chapter 2, in a standard cell library, the provided drive strength

options of a logic cell are limited and therefore of relatively coarse granularity and

range. Although limiting and discretising drive options accelerates cell selection to

handle modern, large complex designs fast, an optimum scenario would be that EDA

tools could select cells of exact drive to meet load requirements thereby avoiding over-

design in terms of power and area. Methods like improving drive strength resolution

in adjacent most commonly used cells (i.e., most selected by standard tools) can

potentially improve designs particularly for lowering power [21] [126]. The authors

in [29] investigated drive granularity on small sizes for leakage power minimisation in

planar MOSFET technology. The work in [127] performed exhaustive FinFET sizing

to provide all possible drive options for few basic logic gates to achieve better PPA

metrics in physical implementation.

Seeking to achieve richer cell libraries, implementing logic designs using mixed-height

(i.e., routing tracks such as 9-track and 12-track) or double-row-height standard cells

are recently proposed [128–131]. Smaller-height cells feature compact area and lower

power dissipation, but are weaker in drive strength. Cells with a larger height provide

higher cell drive capabilities, but consume more area and power. Mixing different-

height cell libraries, available from foundries, is an alternative efficient approach to

achieve richer drive options. However, current EDA tools cannot directly handle the

mixed-height cell placement legalization so that dedicated place and route tools need

to be developed for each case. Interpolating fine-grained drive strength of logic gates

based on an existing cell library and inserting them to expand the original granularity

can be straightforwardly implemented in standard tools. This approximates circuit

optimisation close to transistor-level, although it might still require custom-design

effort, but can ensure the design legalization for fabrication.

This work first investigates how to create standard cells featuring fine-grained drive

options and an interpolation methodology is proposed. Two sets of custom-designed

123

7.2 Drive Strength Design of Standard cells

standard cells, one in normal and another in fine-grained drive strength granularity,

are then developed using a commercial 65nm technology to demonstrate the benefits

of using fine-grained cells for logic circuits.

In addition, enriched standard cell libraries (larger cell quantity) lead to increasingly

difficult logic synthesis for producing well-optimised technology-mapped netlists. The

MOEDA optimisation framework is used to assist tools to further trade-off solutions in

PPA when synthesising designs with an improved drive granularity library.

The remaining parts of the chapter are structured as follows: Section 7.2 illustrates

the design of fine-grained drive strength library. Section 7.3 provides an introduction

of adapted MOEDA framework in this chapter. Experiment setup is described in

Section 7.4. Section 7.5 demonstrates experimental results and Section 7.6 outlines the

summary of this chapter.

7.2 Drive Strength Design of Standard cells

7.2.1 Logic Design using Multiple Driving Options

To have multiple drive strengths for logic functions in a cell library is crucial to achieve

timing closure. It is normally indicated using a post-fix after a cell function name,

such as X1, X2, X3, etc., in a library. This can provide various drive capabilities to

meet different loads when building real circuits at the physical level. Using larger drive

strength cells generally consumes more electrical power, die area and pin capacitance,

but it is able to drive larger loads or to speed up the circuit clock frequency.

Synthesis tools are mapping drive strength from a finite set of discrete drive options

for a generic functional gate, and usually needs to select the smallest possible one

to minimise power consumption and area while trying to meet the timing constraint

simultaneously. Hence, a limited number of coarse-grained cell drive strengths will

inherently lead to over-design. For example, when a wire delay corresponds to a drive

124

7.2 Drive Strength Design of Standard cells

equivalent of X1.5, and choices available are only X1 and X2, then X2 would be selected

in order to meet timing requirement [126]. Improving drive granularity of cells, such

as adding some intermediate-sized cells X1.2, X1.5, X2.5, etc., thus could avoid this

problem.

Industry-standard cell libraries are designed in a proprietary way. This limits design

optimisation to whatever drive strength options are available in a given library to

effect design-specific transistor sizing when implementing designs in the digital flow.

Pre-designing a richer set of drive strengths for each functional cell can approach a

more ideal scenario where the selected drive strength can meet required loads in a

more accurate way. However, this would require a huge manual design effort for fab

designers when creating cell libraries, and it is too expensive and time consuming to

make libraries larger. This is because they have already contained 600-1000 logic gates

typically in a library, and the design effort will be further increased significantly since

different library versions, regarding threshold voltages, cell heights, supply voltages,

are required be created.

In [29], it proposes using different drive strength compositions but keeping the original

library resolution (i.e., the total number of drive options of each logic gate is fixed)

to minimise leakage power consumption especially when circuits operating at relative

lower clock frequency or in the sleep mode. This work particularly brings more smaller

drive strength which are less than the typical drive strength X1.

However, limited research to date investigates how the synthesis tools deal with the

different drive granularity of cells and how this would affect the final results of digital

circuits.

7.2.2 Improved Drive Granularity Library Design

The new proposed design methodology for improving cell drive resolution is to in-

terpolate custom-designed cells into the original library in the middle of two cells

125

7.2 Drive Strength Design of Standard cells

with adjacent drive strengths. Instead of generating a large number of cells with

fine-grained drive strength, this method aims to expand drive granularity of cells based

on a well-optimised industrial library, and all newly produced cells are aligned with

the original library in terms of logic cell drive capabilities.

Here, the TSMC 65nm technology is used, but its pre-designed standard cell library

(TCBN65LP) including schematics and full layouts is proprietary and therefore un-

available. Hence, in order to create a representative test case for the 65nm technology

used, a reduced library is firstly initialised including 11 inverters (INV) which have the

same drive strengths as those in the TSMC TCBN65LP library, and one nand logic

function (NANDX0) with minimum drive strength (transistors are of smallest width).

This re-designed cell library that is modelled to match the original drive granularity of

the commercial library is named “MINI_ORIG”.

Subsequently, a set of inverters of more fine-grained drive strengths are interpolated

into “MINI_ORIG” to form another library named “MINI_FINE”. Both custom-

designed libraries and their drive granularity are summarised in Table 7.1. To focus

the investigation on the drive strength selection and simplify the problem, only drive

strength expansion of inverters is considered in this case.

Table 7.1 Contents of Each Experimental Cell Library

Library Name Functions Inverters (INV)
MINI_ORIG NANDX0 X0, X1, X2, X3, X4, X6, X8, X12, X16, X20, X24

MINI_FINE NANDX0 X0, X0.5, X1, X1.5, X2, X2.5, X3, X3.5, X4, X5, X6,
X7, X8, X10, X12, X14, X16, X18, X20, X22, X24

To define the drive strength of a gate needs to be based on its performance evaluation

(i.e., the speed to drive a load capacitance). For example, if the X1 can drive a unit

load capacitance Cunit_load in a period time Tunit_load (i.e., circuit delay), the X2 needs

to be designed through iterative transistor-sizing until it can drive double unit load

capacitance 2×Cunit_load taking a near-exact same time Tunit_load. So the definition of

drive strength:

126

7.2 Drive Strength Design of Standard cells

X = CX_load

Cunit_load
s.t. TX = Tunit_load (7.1)

In addition, the transistor size of drive strength X1.5 in “MINI_FINE” library is

defined when it can drive the 1.5×Cunit_load in the same time Tunit_load. The following

drive strengths in both “MINI_ORIG” and “MINI_FINE”, such as X2.5, X3, X3.5,

X4, etc., are all created using the same approach.

The inverter drive strength X1 is defined by PMOSsize = 230nm and NMOSsize =

165nm, so the P/N ratio adapted in this work is 1.39 for all cells. The X0 cell is defined

by the minimum-sized NMOSmin and PMOSsize = 1.39× NMOSmin according to the

minimum design rules from the technology. The X0.5 inverter is then interpolated

in the middle between X0 and X1 through transistor-sizing until it can drive a load

capacitance value in the middle between X0 and X1’s in Tunit_load. All created cells

keep the same transistor length 60nm.

Standard Cell (schematic, layout)

Cadence® Virtuoso®

DRC/LVS
Clean ?

No

Layout
Abstract

Abstract GeneratorTM

Library
Characterisation

LiberateTM

NDLM (.lib) Abstract (.lef)

Yes

Figure 7.1 Standard cell design flow including library characterisation and layout
abstract.

Both custom-designed “MINI_ORIG” and “MINI_FINE” libraries are implemented

including schematics and layouts using Cadence® Virtuoso® [101]. All library cells are

127

7.2 Drive Strength Design of Standard cells

designed in body tapped structure. The cell layouts are characterised respectively into

timing and power models (Liberty file) and physical abstractions (LEF file, top layer

view of layouts) using Cadence® LiberateTM [132] and Abstract GeneratorTM [133]

tools. The standard cell design flow is illustrated in Figure 7.1.

The Non-Linear Delay Model (NLDM) is a 2D look-up-table-based model containing

timing and power information of each gate. The two input indexes given are input slew

and load capacitance. The output index is the circuit’s delay or power under different

compositions of the input slew and the load capacitance to separately produce delay

and power look-up tables. Both delay and power are evaluated through a series of

SPICE-based simulations run by the Liberate characterisation tool.

The Liberty (.lib) file contains two main parts: the first contains the technology library

including all environment descriptions such as operating conditions, wire load mode,

etc., and the second contains the cell descriptions obtained by running the library

characterisation tool. The technology library, in this case, is using the typical corner

(PVT: TT, 1.2V, 25◦C) of TSMC65nm technology, which is the same as the TCBN65LP

library uses, and the environment descriptions are kept the same as well. In addition, a

7x7 look-up-table NLDM is used for cell descriptions and characterisation input index

values are inferred from the original TCBN65LP library.

The input slew in this case is a fixed range where the input signal transition ranges

from a close-ideal step to a larger slew time. The same input slew set is used for all cells.

Furthermore, each designed drive strength has a specific capacitive load set ranging

from a small to large capacitance value. The inverters in “MINI_ORIG” library use

the corresponding load capacitance indexes from the TCBN65LP library, but the load

capacitance index for each fine-grained inverter is found through calculating the middle

(or average) value of two adjacent cells’ load capacitance indexes.

The characterised information of each gate includes both timing and power consumption

tables. The timing tables of each gate include cell delay (i.e., measured from 50% to

50%) and transition time (i.e., measured from 30% to 70% in this case). Both the cell

128

7.2 Drive Strength Design of Standard cells

delay and transition time are specified during the characterisation. Hence, four tables

per input pin of a logic gate are generated, including cell rise, cell fall, rise transition

and fall transition. The power consumption information in NLDM includes two parts:

internal power and leakage power. The internal power, or called short-circuit power,

is the power dissipated by an instantaneous short-circuit current flowing between

the supply voltage and the ground at the time the gate switches state. The power

dissipation table describes each cell’s internal power consumption as the combination

of energy consumed by output and input pin transitions with respect to a given clock

frequency. The values provided represent the amount of energy consumed (in uW/MHz

or pJ) within the cell when the corresponding output pin state changes. Input pin

energy consumption is included to increase accuracy of estimated power consumption,

where the consumed energy value is measured for each input pin toggle while output

pin state remains unchanged. In order to obtain the internal power consumption,

the consumed energy needs to be considered with a clock frequency applied in the

EDA tool’s power analysis. The average/minimum/maximum leakage power values

are provided in nanowatts (nW) for immediate use.

7.2.3 The Performance of the Proposed Libraries

To verify whether the proposed libraries are designed in an appropriate way, and

particularly the fine-grained drive inverters are properly interpolating into the original

granularity, the delay and power of each gate are analysed to determine the relationship

between two adjacent drive strengths and the overview of all cells.

Table 7.2 shows the transistor count, cell width and leakage power (i.e., specifically

contains minimum, average and maximum values) of each cell for both “MINI_ORIG”

and “MINI_FINE” libraries. Based on the characterisation results, the leakage power

increases linearly when the transistor width increases with each drive strength. Since

the transistor sizes of inverters X0, X0.5 and X1 are close to each other, the minimum

leakage power is close to each other and does not increase as the transistors size up.

129

7.2 Drive Strength Design of Standard cells

The likely reason is the inherent variation of transistors. All cells are created at the

same height 1.8um, so the cell area also increases as the cell width increases from small

to large drive strength, as transistors of increasing size need to be accommodated.

Drive strengths X0 and X0.5 have the same width as X1 due to constraints of the

physical design rules.

Table 7.2 Library Cell Information

PVT: TT, 1.2V, 25◦C
Cell Transistor Cell Leakage Power [nW]

Name Count Width [um] Min. Ave. Max.
INVX0 2 0.6 0.0106 0.0108 0.0111
INVX0.5 2 0.6 0.0114 0.0117 0.0120
INVX1 2 0.6 0.0112 0.0133 0.0153
INVX1.5 2 0.7 0.0184 0.0225 0.0265
INVX2 4 0.8 0.0282 0.0297 0.0311
INVX2.5 4 1.0 0.0388 0.0406 0.0423
INVX3 6 1.2 0.0511 0.0516 0.0522
INVX3.5 6 1.3 0.0627 0.0637 0.0646
INVX4 8 1.4 0.0704 0.0731 0.0759
INVX5 10 1.6 0.0894 0.0948 0.1002
INVX6 12 1.8 0.1070 0.1167 0.1264
INVX7 14 2.2 0.1301 0.1441 0.1581
INVX8 16 2.4 0.1497 0.2575 0.1853
INVX10 20 3.0 0.1931 0.2191 0.2451
INVX12 24 3.4 0.2325 0.2673 0.3022
INVX14 28 4.0 0.2766 0.3201 0.3636
INVX16 32 4.4 0.3165 0.3686 0.4207
INVX18 36 5.0 0.3605 0.4223 0.4841
INVX20 40 5.6 0.4044 0.4760 0.5475
INVX22 44 6.2 0.4482 0.5295 0.6109
INVX24 48 6.6 0.4885 0.5790 0.6695
NANDX0 4 0.8 0.0028 0.0152 0.0303

130

7.2 Drive Strength Design of Standard cells

Figure 7.2 and Figure 7.3 respectively visualise delay (cell rise/fall tables) and internal

(short-circuit) power (output pin rise/fall power) information of all inverters, and how

the fine-grained drive strengths interpolate into the original granularity. The inverters

only have output pin power consumption, because they only have one input and one

output. To best visualise the data in these plots, two 2D figures “Load Capacitance

vs. Delay” and “Load Capacitance vs. Power” are projected. For the third index, the

input slew, 3 different slews out of 7 in total, are selected to show the gate circuit delay

and power when driving various loads under different input slews. The smallest slew

(slew 1), the medium slew (slew 4) and the largest slew (slew 7) are shown.

131

7.2 Drive Strength Design of Standard cells

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Load Capacitance (pf)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
la

y
(n

s)

X24X0

Cell Rise (Slew1)

Orig_Granularity
Fine_Granularity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Load Capacitance (pf)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
la

y
(n

s) X24X0

Cell Fall (Slew1)

Orig_Granularity
Fine_Granularity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Load Capacitance (pf)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
la

y
(n

s)

X24X0

Cell Rise (Slew4)

Orig_Granularity
Fine_Granularity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Load Capacitance (pf)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
De

la
y

(n
s)

X24X0

Cell Fall (Slew4)

Orig_Granularity
Fine_Granularity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Load Capacitance (pf)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
la

y
(n

s)

X24X0
Cell Rise (Slew7)

Orig_Granularity
Fine_Granularity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Load Capacitance (pf)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

De
la

y
(n

s)

X24X0

Cell Fall (Slew7)

Orig_Granularity
Fine_Granularity

Figure 7.2 This plot shows cell rise/fall propagation delays of all inverters as “Load
Capacitance vs. Delay” for three different input slew rates. The blue curves represent
the original granularity inverters from the “MINI_ORIG” library, and the red lines
illustrate the fine-grained “MINI_FINE” library’s inverters

132

7.2 Drive Strength Design of Standard cells

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Load Capacitance (pf)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Po
w

er
 (p

J)

1e 2

X24

X0

Rise Power (Slew1)

Orig_Granularity
Fine_Granularity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Load Capacitance (pf)

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Po
w

er
 (p

J)

1e 3

X24

X0

Fall Power (Slew1)
Orig_Granularity
Fine_Granularity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Load Capacitance (pf)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Po
w

er
 (p

J)

1e 2

X24

X0

Rise Power (Slew4)

Orig_Granularity
Fine_Granularity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Load Capacitance (pf)

1.5

1.0

0.5

0.0

Po
w

er
 (p

J)
1e 3

X24

X0
Fall Power (Slew4)

Orig_Granularity
Fine_Granularity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Load Capacitance (pf)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Po
w

er
 (p

J)

1e 2

X24

X0

Rise Power (Slew7)

Orig_Granularity
Fine_Granularity

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Load Capacitance (pf)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Po
w

er
 (p

J)

1e 3

X24

X0

Fall Power (Slew7)
Orig_Granularity
Fine_Granularity

Figure 7.3 This plot shows rise/fall output pin power consumption of all inverters as
“Load Capacitance vs. Power” for three different input slew rates. The blue curves
represent the original granularity inverters from the “MINI_ORIG” library, and the
red lines illustrate the fine-grained “MINI_FINE” library’s inverters.

133

7.2 Drive Strength Design of Standard cells

Both cell rise and fall propagation delays shown in the plots demonstrate that fine-

grained drive inverters (red curves) are interpolating into the original drive granularity

(blue curves) in an appropriate way. All inverters can drive the specified sets of

loads with approximately same speed. Exceptions are X0 and X0.5 which, due to the

minimum physical design constraints, cannot be down-sized further. Regardless of

that, the X0.5 inverter is properly interpolated between X0 and X1. In terms of power

consumption, the plots also show that all fine-grained drive inverters are positioned in

the middle of adjacent original granularity inverters. Figure 7.4 shows the layouts of

X0, X0.5, X1 and X1.5 inverters.

INVX0 INVX0.5 INVX1 INVX1.5

Figure 7.4 Layout examples of inverters created in this work. The inverter X0, X0.5 and
x1 have the same cell width due to the physical design rules of the process technology
used, but X1.5 is larger than others.

Following on from the analysis and discussion of both custom-designed libraries, these

will be firstly loaded into the standard digital flow in order to investigate how the

EDA tools trade-off design solutions when using a rich (finer-grained) drive strength

library compared to the original, coarser-grained one. The MOEDA flow will then

optimise drive strength selection based on the tool-optimised gate-level netlists in order

to search for better solutions in PPA.

134

7.3 MOEDA in Fine-grained Cell Selection

7.3 MOEDA in Fine-grained Cell Selection

The enriched “MINI_FINE” library is double the size of its original “MINI_ORIG”

library. The synthesis tool then faces exponentially increased search space where the

produced circuit solutions are not well-optimised trade-offs regarding PPA metrics.

Therefore, same adapted algorithm (NSGA-II) used in Chapter 5 with only using

mutation operator is used for this work. The optimisation process is exclusively

optimising selection on inverters, which is similar to the first initial experiment using

reduced commercial library presented in Chapter 5 Section 5.5, but this work instead

uses custom-designed fine-grained library.

Gate-level
Netlist (.v)

Logic Synthesis
GenusTM

Physical
Implementation

InnovusTM

Layout (.gds)
PPA Metrics

MOEA Seeding

Optimised Netlist (.v)

Evaluation

Genetic Operation
Opt. Loop

RTL Design (.v)

MINI_ORIG
MINI_FINE

Parametric Netlist

Figure 7.5 MOEDA framework works with custom-design “MINI_ORIG” and
“MINI_FINE” libraries instead of using the foundry libraries.

Figure 7.5 specifically presents the MOEDA flow used in this chapter to cooperate with

custom-designed different drive granularity cell libraries. From the figure, the MOEDA

framework is the same as introduced in Chapter 5 included in the flowchart on the

135

7.3 MOEDA in Fine-grained Cell Selection

left side (white boxes) which is the standard digital flow and the MO evolutionary

optimisation engine (blue boxes) shown on the right.

The MOEDA engine still automatically performs fine-tuning on drive strength selection

of logic gates (i.e., inverters in this case). The optimisation is operated on the

synthesised gate-level netlists and they are then implemented into physical layouts for

design evaluations.

Only inverters will be manipulated by the MOEA, so in this case a set of integer param-

eters (EA representations) define each inverter’s drive strength to form a parametric

netlist. Converting the solution netlist from the tool into a parametric netlist allows

the MOEA to modify it. The modification is based on the “MINI_FINE” library

(called G later) that includes all drive options of inverters.

The optimisation objectives are worst case delay (Dwc), total power consumption (Ptotal)

and all gate area (Agate). So the fitness function is to minimise them simultaneously,

as shown in Equation (7.2). Evaluation metrics are calculated by the physical design

EDA tools based on the physical layout instance.

f(g) = min [Dwc(g), Ptotal(g), Agate(g)]

s.t. g = (g1, ..., gi), ∀gi ∈ G
(7.2)

INV.X

(g1)
Chromosome g

INV.X

(g2)

INV.X

(gi)

MINI_FINE.INV.X[21]=[X0,X0.5,X1,X1.5,...,X24] Gate Lib G

Individual

INV.X

(g3)
...

Figure 7.6 A chromosome example of an individual (i.e., layout instance in this case).

The chromosome vector g represents the input variables to the fitness functions, which

in this case are drive strengths of inverters (gi) available from the “MINI_FINE”

library (G). Fig. 7.6 demonstrates a chromosome example of an individual where the

g = (g1, ..., gi) represents all inverters of it. Each single g (INV.X) shows the drive

136

7.4 Experiment Setup

strength of an inverter. When mutation is triggered, the inverters to be mutated are

randomly selected by the MOEA based on the given mutation rate ρ. For each selected

inverter, the algorithm will randomly choose a new one from G (including all drive

options) to replace the previous one.

7.4 Experiment Setup

The proposed algorithm is implemented in C++ and all experiments are running on

a 2.2GHz Xeon E5-2650 CPU. Three ISCAS-85 benchmark circuits [114] are used

as the test cases. The circuits (RTL designs) are synthesised into gate-level netlists

using Cadence® GenusTM [116]. Cadence® InnovusTM [117] tool completes the physical

implementation, producing layout instances. The evaluation is also performed in

InnovusTM, reporting all objective metrics.

7.4.1 Tool Environment Setup

Most of tool settings in both synthesis and physical implementation steps, summarised

in Table 7.3, are the same as used in Chapter 5 and Chapter 6. However, the

pre-place optimisation, “PrePlaceOpt”, that is to delete buffers or inverters on the

gate-level netlists before the placement is disabled in this case. This is because we

are investigating how the tools select cells, it is worthwhile to keep netlists consistent

during both synthesis and physical implementation steps.

In terms of design constraint for synthesis, an ideal clock is created running at 250MHz,

so the worst path arrival time should be less than the required time (i.e., 4ns in this

case) for timing closure. The testing cases used in this work are combinational circuits,

thus, the clock is ideal without any uncertainties or transition delays.

137

7.4 Experiment Setup

The environment electrical constraint is applied by setting drive strength X1 and

X4 output capacitive loads. The specific values chosen correspond to the respective

inverter X1 and X4’s input pin capacitance from “MINI_FINE” library.

Table 7.3 Design Constraint and Tool Settings in Digital Flow

Synthesis Setup Place & Route Setup

syn_generic_effort = high aspect ratio = 1.0
iopt_ultra_optimisation = true core utilisation = 0.7

Design Constraint
noPrePlaceOpt = true

set_load = X1/X4

timing-driven placement = true

create_clock = 250MHz

timing-driven routing = true
SI-driven routing = true

7.4.2 Objective Evaluation in EDA Tools

All evaluations of Dwc, Ptotal and Agate take place after place-and-route with InnovusTM

based on typical corner conditions.

(1) Dwc: This is the signal propagation time of the critical path calculated by static

timing analysis in InnovusTM.

(2) Ptotal: It is the sum of leakage power, internal power and switching power, which is

from the average power analysis in InnovusTM.

(3) Agate: The sum area of all logic gates and it is directly reported by the InnovusTM.

All experiments in this work are running 24 MOEDA evaluation threads in parallel

and the runtime is still not the key focus in this work.

138

7.5 Experimental Results

7.5 Experimental Results

7.5.1 Original vs. Fine-grained Cells in the Standard Flow

Firstly both “MINI_ORIG” and “MINI_FINE” libraries are loaded into the standard

digital flow to investigate how the tools deal with different drive-granularity libraries

and which drive strengths that the tool prefers. Three benchmarks with different

circuit structures and functions from ISCAS-85 benchmark suite are synthesised and

implemented in physical layouts. They are: a 16-bit error detector/corrector (C1908),

a 12-bit ALU and controller (C2670) and a 9-bit ALU (C5315). Each circuit is

implemented under three different timing constraints and two different output load

constraints, resulting in 6 test cases per circuit and 18 in total. This aims to verify that

the improved drive-granularity library can demonstrate generic benefits for designs when

applying different timing goals (stringent or relaxed) and load capacitance (nominal or

larger). The experiment information is summarised in Table 7.4.

Table 7.4 Test Case Summary

Design Lib Load (#) Required Timing [ns]
C1908 ORIG/FINE X1/X4 (a)1.25 (b)1.40 (c)1.55
C2670 ORIG/FINE X1/X4 (a)1.20 (b)1.35 (c)1.50
C5315 ORIG/FINE X1/X4 (a)1.35 (b)1.50 (c)1.65

Since the synthesise tool will automatically use more logic gates when timing constraints

are stringent, the test cases with tightest timing constraint are selected as representatives

for inverter drive strength selection analysis. Figures 7.7, 7.8 and 7.9 present histograms

of inverters used in each tool-synthesised benchmark circuit when applying tightest

timing requirements from case (a). The blue bars represent the histogram of the

“MINI_ORIG” library and the red ones show the histogram of the “MINI_FINE”

library. The number of all synthesised inverters and nand gates are reported in the

legends to show the change of logic gates after “MINI_FINE” library is applied.

139

7.5 Experimental Results

From these plots, the drive strengths X1 and X2 are the most commonly used cells.

They are most dominant in the histograms of all test cases using the “MINI_ORIG”

library. A number of fine-grained drive strength inverters are selected by the synthesis

tool when using the “MINI_FINE” library. The peak around drive strength X2 is

significantly flatter when fine-grained inverters are selected, although the number of

drive strength X1 is still high. The likely reason for this is that, for many circuit

paths, drive strength X1 is capable of driving the load at the endpoint, which is

often a single gate. In addition, the improved drive strength resolution around X1 is

exploited, although it may still not be fine enough to reduce the dominant X1 peak in

the histograms of inverters used.

140

7.5 Experimental Results

0 0.5 1 1.5 2 2.5 3 3.5 4 5 6 7 8 10 12 14 16 18 20 22 24
Drive Strength(X)

0

20

40

60

80

100

Nu
m

be
r

6 7

1

70 72

24

67

27
30

13 13
10

15

1 2

9 10

3 3 1 2 1 2 1 1 1 1

C1908 X1 (a)
MINI_ORIG
MINI_FINE
#INV/NAND:187/403
#INV/NAND:188/379

0 0.5 1 1.5 2 2.5 3 3.5 4 5 6 7 8 10 12 14 16 18 20 22 24
Drive Strength(X)

0

20

40

60

80

100

Nu
m

be
r

8 6
1

70 70

18

89

26

32

4
1

12 14

2 2
6 8

2 3 2 4 4
1 2 1 1 1 1 1

C1908 X4 (a)
MINI_ORIG
MINI_FINE
#INV/NAND:200/385
#INV/NAND:186/372

Figure 7.7 The histogram of tool-selected inverters’ drive strengths of C1908. The blue
bars are the inverters in original granularity from “MINI_ORIG” and red bars are the
fine-grained inverters from “MINI_FINE”.

141

7.5 Experimental Results

0 0.5 1 1.5 2 2.5 3 3.5 4 5 6 7 8 10 12 14 16 18 20 22 24
Drive Strength(X)

0

50

100

150

200

Nu
m

be
r

1
6 7

188

164

32

88

30

69

13

1
8 12

6
1 5 1 4 1 1 3 3 2 3 1 3

C2670 X1 (a)
MINI_ORIG
MINI_FINE
#INV/NAND:317/634
#INV/NAND:336/593

0 0.5 1 1.5 2 2.5 3 3.5 4 5 6 7 8 10 12 14 16 18 20 22 24
Drive Strength(X)

0

50

100

150

200

Nu
m

be
r

6 5

183
189

33

125

26

54

7
1

8
16

2 2 1 2 3 2 1 3 3 1 2 1 1

C2670 X4 (a)
MINI_ORIG
MINI_FINE
#INV/NAND:345/611
#INV/NAND:329/615

Figure 7.8 The histogram of tool-selected inverters’ drive strengths of C2670.

142

7.5 Experimental Results

0 0.5 1 1.5 2 2.5 3 3.5 4 5 6 7 8 10 12 14 16 18 20 22 24
Drive Strength(X)

0

100

200

300

400

Nu
m

be
r

12 12
2

375
364

55

187

58
75

17
5

14

37

8 2 7 2 1 2 1 1 1 4 3 1 2 2

C5315 X1 (a)
MINI_ORIG
MINI_FINE
#INV/NAND:641/1442
#INV/NAND:607/1399

0 0.5 1 1.5 2 2.5 3 3.5 4 5 6 7 8 10 12 14 16 18 20 22 24
Drive Strength(X)

0

100

200

300

400

Nu
m

be
r

13 6 2

365362

58

184

56

79

27

1
21

33

4 2
11

1 1 5 1 3 1 1 2 1 2

C5315 X4 (a)
MINI_ORIG
MINI_FINE
#INV/NAND:643/1454
#INV/NAND:599/1379

Figure 7.9 The histogram of tool-selected inverters’ drive strengths of C5315.

143

7.5 Experimental Results

These histograms of using “MINI_FINE” library also show that the most-selected

fine-grained inverters of the synthesis tools are X1.5, X2.5, X3.5. This indicates which

fine-grained gate sizes will be most useful and show significant benefits to designs

particularly when applying this interpolation method to more common logic functions,

e.g., NAND, NOR, AND, etc. Therefore, adding non-integer gate sizes between X0

and X4 (i.e., predominantly-selected by the tool) will be promising for better PPA

metrics during synthesis of real-world chip design process, whereas the provided drive

options (i.e., normally integer sizes) in foundry libraries are relatively coarse-grained.

All circuit evaluations in terms of PPA are performed based on the physical layouts.

Tables 7.5, 7.6 and 7.7 summarise the PPA metrics for each test case, including worst

case delay Dwc, total power consumption Ptotal and area sum of all gates Agate. The

normalised (N.) results are shown for easier improvement comparison. Each test case has

three sets of results that are (1) “STD+ORIG”: synthesising and implementing designs

using the standard flow with the “MINI_ORIG” library; (2) “STD+FINE”: synthesising

and implementing designs using the standard flow with the “MINI_FINE” library; (3)

“MOEDA+FINE”: optimising designs using the MOEDA flow with the “MINI_FINE”

library starting from the “STD+FINE” results. The results of “STD+ORIG” and

“STD+FINE” are discussed first, followed by an illustration of the “MOEDA+FINE”

results in the next section.

Based on the results shown in Tables 7.5, 7.6 and 7.7, using the “MINI_FINE” library

can generate designs that achieve better trade-off solutions in PPA compared with

using “MINI_ORIG” library running in the standard digital flow (with improvements

up to 10% in Dwc of C2670-X1-(c), 14% in Ptotal and 13% in Agate of C1908-X4-(b)),

although degradation occurred in one of the objectives in some cases, e.g., C1908-X1-

(b), C2670-X4-(a) and C5315-X4-(b). This may be due to the richer library leading

to a larger design search space and the therefore increased computational complexity

increasing synthesis and implementation effort.

144

7.5 Experimental Results

The result tables also explicitly show that the synthesis tools can take advantage

of the full capabilities of the fine-grained library “MINI_FINE” evidenced by the

large amount of fine-grained inverters used, as shown in column “FINE INV UI.” (i.e.,

fine-grained inverters utilisation).

The number of inverters, NANDs and total number of gates are also reported in

Tables 7.5, 7.6 and 7.7 to show how their utilisation changes when synthesising designs

using different drive granularity libraries. The total number of gates has decreased in

most cases, and up to 6% (119 gates) reduction in the case of C5315-X4-(a), directly

saving circuit area.

C1908-X4-(a) C2670-X4-(a) C5315-X4-(a)
0

5

10

15

20

25

30

35

40

#
 G

at
es

26 25

30
27

22

8

21

8

28

13

29

12

STD+ORIG
STD+FINE

Length of critical path
Ave. length of all paths

Figure 7.10 This shows the changes of circuit paths of each circuit after applying
“MINI_FINE” library under the standard flow. The path length is achieved by
calculating the gate count of a path.

Synthesising designs with different granularity libraries may produce solutions with

different circuit structures. Figure 7.10 investigates whether applying fine-grained drive

strength cells will change the circuit structure when using the standard flow. So a

comparison is made here between the results of “STD+ORIG” and “STD+FINE” in

the X4-(a) case of each circuit. The length of the critical path and average length of

all paths are plotted here. Slight difference are shown between “STD+ORIG” and

“STD+FINE” in terms of the circuit paths. This confirms when applying fine-grained

145

7.5 Experimental Results

drive cells in the standard flow, the synthesis tool chose more suitable cells (fine-grained

ones in a significant amount) from a wider available set to meet timing of each path,

but the whole circuit structure did not change too much.

7.5.2 Fine-grained Cells in MOEDA Flow

To further improve solutions while balancing multiple objectives, which the standard

digital flow is not capable of and instead prioritises timing alone, the MOEDA flow is

used to enlarge the solution space, offering a wide range of Pareto-optimised solutions.

The subsequent optimisation performed by the MOEDA flow is starting from a set

of solutions obtained by the standard digital flow with the “MINI_FINE” library

(“STD+FINE”). This is because the results of “STD+FINE” has achieved better

circuit evaluation metrics than the solution of using the “MINI_ORIG” library initially,

so that the MOEDA’s optimisation efforts are focused on finding better trade-off

solutions in regard of PPA, rather than starting from scratch.

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
Dwc [ns]

63

64

65

66

67

68

69

70

71

P
to
ta
l [
u
W

]

MOEDA ORIG vs. FINE
MOEDA+ORIG
MOEDA+FINE
STD+ORIG
STD+FINE

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
Dwc [ns]

8.0

8.2

8.4

8.6

8.8

9.0

9.2

A
ga
te
 [u
m

2
]

1e2 MOEDA ORIG vs. FINE
MOEDA+ORIG
MOEDA+FINE
STD+ORIG
STD+FINE

Figure 7.11 The MOEDA flow optimisation results comparison between seeding with
“STD+ORIG” (blue) and “STD+FINE” (red). The circled solutions are the best delay
solution of each cluster.

Figure 7.11 compares the optimisation results of MOEDA flow using the “MINI_ORIG”

and the “MINI_FINE” libraries in the C1908-X1-(a) case. Both run with N=100

146

7.5 Experimental Results

0 0.5 1 1.5 2 2.5 3 3.5 4 5 6 7 8 10 12 14 16 18 20 22 24
Drive Strength(X)

0

20

40

60

80
Nu

m
be

r

9 9

2

68 70

24

67

26
31

11 9

17

1 2

10 10

3 1 1 2 2

MOEDA ORIG vs. FINE
Best Dwc of MOEDA+ORIG
Best Dwc of MOEDA+FINE
#INV/NAND:187/403
#INV/NAND:188/379

Figure 7.12 The inverter histogram of the best delay solution of “MOEDA+ORIG”
solution space and “MOEDA+FINE” solution space from Figure 7.11. EA run settings:
N = 100, M = 100 and ρ = 0.5%.

individual of a population for M=100 generations using mutation rate ρ=0.5%. The

optimisation run seeded with “STD+FINE” solutions can achieve a wider coverage

of the design space featuring solutions with better PPA metrics than those based on

“STD+ORIG” alone. Figure 7.12 shows the inverter histogram of each best-delay solu-

tion of the “MOEDA+ORIG” solution space (in blue bars) and the “MODEA+FINE”

solution space (in red bars). Both are circled as shown in the plots (Figure 7.11).

This histogram shows similar drive strength distribution compared to the one of

C1908-X1-(a) from Figure 7.7, which shows the synthesis results without the MOEDA

flow. But the drive strength selection results from the tool still has been refined

after applying the optimisation of MOEDA flow. In both cases of “MOEDA+ORIG”

and “MOEDA+FINE”, drive strengths smaller than X1 are selected more often and

drive strengths larger than X2.5 are used less, resulting in power saving. Compar-

ing the solution space of the “MOEDA+ORIG” with the “MOEDA+FINE” ’s, the

“MOEDA+FINE” ’s results further reduce the use of drive strengths larger than X2.5,

so that the power and area of the best Dwc solution of “MOEDA+FINE” is much

lower than the “MOEDA+ORIG” ’s. This confirms that the MOEDA flow can balance

147

7.5 Experimental Results

multiple objectives through selection of more appropriate drive strengths for digital

circuits. Also, the MOEDA flow can efficiently deal with the richer drive granularity

library in trading off solutions.

Due to the previous findings, MOEDA flow optimisation is carried out for the next

experiments, only initialised with “STD+FINE” seed solutions from the standard flow.

All the rest of experiments also run with 100 individuals for 100 generations using

0.5% mutation rate. The MOEDA optimisation results, highlighted in Tables 7.5, 7.6

and 7.7, are the best trade-off solutions from the entire final solution space. The

best trade-off solution is taking all objectives into account simultaneously, which

is defined here as an individual from the final generation that is positioned at the

shortest Euclidean distance from the origin. These trade-off solutions demonstrate

the optimisation capability of achieving improvements in all objectives simultaneously.

Four testing cases marked with stars represent that “STD+ORIG” solutions have

already failed timing requirements. Most of these failed cases have been improved in

Dwc in “STD+FINE” solutions, and all of them have been improved by the MOEDA

flow without compromising on other objectives to the point that they achieve timing

closure.

148

7.5
Experim

entalR
esults

Table 7.5 Results Comparison of C1908

N = 100, M = 100, ρ = 0.5%
Design (#) Required Flow Lib # Total FINE INV Dwc (N.) Ptotal (N.) Agate (N.)

(set_load) Timing (MINI) INV/NAND # Gates UT.[%] [ns] [uW] [um2]

C1908 (X1)

(a) 1.25ns
STD ORIG 187/403 590 0% 1.233 (1.00) 67.69 (1.00) 897.12 (1.00)
STD FINE 188/379 567 37.2% 1.176 (0.95) 65.69 (0.97) 845.28 (0.94)

MOEDA FINE 188/379 567 37.8% 1.138 (0.92) 65.26 (0.96) 844.38 (0.94)

(b) 1.40ns
STD ORIG 192/396 588 0% 1.211 (1.00) 67.59 (1.00) 893.16 (1.00)
STD FINE 173/362 535 37.0% 1.244 (1.03) 61.65 (0.91) 797.04 (0.89)

MOEDA FINE 173/362 535 35.8% 1.186 (0.98) 60.23 (0.89) 790.92 (0.88)

(c) 1.55ns
STD ORIG 189/386 575 0% 1.218 (1.00) 67.31 (1.00) 881.64 (1.00)
STD FINE 183/363 546 35.5% 1.212 (0.99) 62.46 (0.93) 819.36 (0.93)

MOEDA FINE 183/363 546 34.4% 1.164 (0.95) 60.96 (0.90) 815.76 (0.92)

C1908 (X4)

(a) 1.25ns*
STD ORIG 200/385 585 0% 1.306 (1.00) 71.56 (1.00) 889.56 (1.00)
STD FINE 186/372 558 37.1% 1.200 (0.92) 67.56 (0.94) 852.12 (0.96)

MOEDA FINE 186/372 558 37.1% 1.164 (0.89) 66.75 (0.93) 838.80 (0.94)

(b) 1.40ns
STD ORIG 205/421 626 0% 1.255 (1.00) 78.08 (1.00) 970.56 (1.00)
STD FINE 183/372 555 38.8% 1.210 (0.96) 67.20 (0.86) 842.76 (0.87)

MOEDA FINE 183/372 555 36.1% 1.191 (0.95) 65.99 (0.84) 824.94 (0.85)

(a) 1.55ns
STD ORIG 205/407 612 0% 1.247 (1.00) 75.05 (1.00) 938.88 (1.00)
STD FINE 192/387 579 39.6% 1.255 (1.01) 72.31 (0.96) 887.94 (0.95)

MOEDA FINE 192/387 579 41.1% 1.180 (0.94) 70.41 (0.94) 870.12 (0.92)

149

7.5
Experim

entalR
esults

Table 7.6 Results Comparison of C2670

N = 100, M = 100, ρ = 0.5%
Design (#) Required Flow Lib # Total FINE INV Dwc (N.) Ptotal (N.) Agate (N.)

(set_load) Timing (MINI) INV/NAND # Gates UT.[%] [ns] [uW] [um2]

C2670 (X1)

(a) 1.20ns
STD ORIG 317/634 951 0% 0.982 (1.00) 98.23 (1.00) 1377.72 (1.00)
STD FINE 336/593 929 35.7% 0.952 (0.97) 95.43 (0.97) 1375.56 (0.99)

MOEDA FINE 336/593 929 36.6% 0.902 (0.92) 94.75 (0.96) 1368.36 (0.99)

(b) 1.35ns
STD ORIG 360/633 993 0% 1.013 (1.00) 103.5 (1.00) 1485.00 (1.00)
STD FINE 359/627 986 34.5% 0.957 (0.94) 103.1 (0.99) 1464.48 (0.99)

MOEDA FINE 359/627 986 35.1% 0.895 (0.88) 102.2 (0.98) 1463.76 (0.98)

(c) 1.50ns
STD ORIG 332/601 933 0% 1.116 (1.00) 98.29 (1.00) 1430.28 (1.00)
STD FINE 336/601 937 28.9% 1.007 (0.90) 92.85 (0.94) 1355.22 (0.95)

MOEDA FINE 336/601 937 29.2% 0.972 (0.87) 92.13 (0.93) 1355.22 (0.95)

C2670 (X4)

(a) 1.20ns
STD ORIG 345/611 956 0% 1.041 (1.00) 100.8 (1.00) 1376.64 (1.00)
STD FINE 329/615 944 30.4% 0.986 (0.95) 101.9 (1.01) 1373.22 (0.99)

MOEDA FINE 329/615 944 31.3% 0.921 (0.88) 101.8 (1.009) 1358.10 (0.98)

(b) 1.35ns
STD ORIG 387/662 1049 0% 1.073 (1.00) 115.4 (1.00) 1559.16 (1.00)
STD FINE 347/616 963 30.5% 1.046 (0.97) 101.0 (0.88) 1403.28 (0.90)

MOEDA FINE 347/616 963 32.0% 0.937 (0.87) 100.0 (0.86) 1402.56 (0.90)

(c) 1.50ns
STD ORIG 338/644 982 0% 1.083 (1.00) 107.0 (1.00) 1458.72 (1.00)
STD FINE 331/580 911 37.5% 1.081 (0.99) 99.07 (0.93) 1400.58 (0.96)

MOEDA FINE 331/580 911 38.7% 0.981 (0.90) 98.64 (0.92) 1379.34 (0.94)

150

7.5
Experim

entalR
esults

Table 7.7 Results Comparison of C5315

N = 100, M = 100, ρ = 0.5%
Design (#) Required Flow Lib # Total FINE INV Dwc (N.) Ptotal (N.) Agate (N.)

(set_load) Timing (MINI) INV/NAND # Gates UT.[%] [ns] [uW] [um2]

C5315 (X1)

(a) 1.35ns *
STD ORIG 641/1442 2083 0% 1.405 (1.00) 249.4 (1.00) 2968.20 (1.00)
STD FINE 607/1399 2006 25.0% 1.417 (1.01) 234.9 (0.94) 2850.66 (0.96)

MOEDA FINE 607/1399 2006 24.9% 1.291 (0.92) 232.0 (0.93) 2841.12 (0.95)

(b) 1.50ns
STD ORIG 624/1416 2040 0% 1.433 (1.00) 238.9 (1.00) 2875.32 (1.00)
STD FINE 620/1378 1998 23.4% 1.408 (0.98) 234.6 (0.98) 2820.60 (0.98)

MOEDA FINE 620/1378 1998 23.9% 1.332 (0.93) 229.5 (0.96) 2814.48 (0.97)

(c) 1.65ns
STD ORIG 624/1374 1998 0% 1.437 (1.00) 235.9 (1.00) 2821.68 (1.00)
STD FINE 622/1371 1993 22.8% 1.469 (1.02) 231.5 (0.98) 2801.16 (0.99)

MOEDA FINE 622/1371 1993 24.0% 1.325 (0.92) 226.5 (0.96) 2798.46 (0.99)

C5315 (X4)

(a) 1.35ns *
STD ORIG 643/1454 2097 0% 1.486 (1.00) 259.2 (1.00) 3018.60 (1.00)
STD FINE 599/1379 1978 27.4% 1.413 (0.95) 236.5 (0.91) 2812.50 (0.93)

MOEDA FINE 599/1379 1978 27.7% 1.342 (0.90) 236.4 (0.91) 2808.36 (0.93)

(b) 1.50ns *
STD ORIG 605/1357 1962 0% 1.592 (1.00) 244.3 (1.00) 2784.24 (1.00)
STD FINE 604/1372 1976 25.7% 1.543 (0.97) 237.6 (0.97) 2798.28 (1.005)

MOEDA FINE 604/1372 1976 25.5% 1.356 (0.85) 231.6 (0.95) 2796.30 (1.004)

(c) 1.65ns
STD ORIG 652/1457 2109 0% 1.343 (1.00) 255.9 (1.00) 2989.08 (1.00)
STD FINE 619/1397 2016 24.1% 1.365 (1.02) 242.2 (0.95) 2870.82 (0.96)

MOEDA FINE 619/1397 2016 24.7% 1.268 (0.94) 239.7 (0.93) 2863.26 (0.95)

151

7.5 Experimental Results

C1908-X4-(a) C2670-X4-(a) C5315-X4-(a)

0.1

0.0

0.1

0.2

0.3

0.4

0.5
Sl

ac
k

[n
s]

Timing
Met

Timing
Failed

STD+ORIG
STD+FINE
MOEDA+FINE

Figure 7.13 Ten worst timing paths of test circuits for each corresponding tight timing
constraint case X4-(a). All paths above the dash line have positive slacks which meet
the timing. The slack is higher the circuit timing is better.

Figure 7.13 plots the ten worst timing paths of the X4-(a) case (tightest timing

constraint in this work) of each test circuit. This shows how the timing of paths,

particularly the critical path, has been optimised. The results of “MOEDA+FINE”

(red lines) recovered the all timing failed paths and performed the hill-climbing on

the slack of critical paths, where only applying “MINI_FINE” library in the standard

(STD) flow (“STD+FINE” in blue lines) is not capable of. In addition, the results

of applying “MINI_ORIG” in the STD flow (“STD+ORIG” in gray lines) explicitly

show inferior timing performance, especially in C1908 and C5315 circuits with negative

slacks.

To investigate the changes of drive strength selection when using different libraries and

flows, Figure 7.14 presents the sum of drive strength sizes of each whole circuit and

their corresponding critical paths. The tight timing case X4-(a) of each benchmark is

still used for analysis here. Based on the observation of this plot, the overall drive size

sum of all circuit paths has decreased after applying “STD+FINE” and has further

152

7.5 Experimental Results

been optimised by the MOEDA flow. This straightforwardly saves the resulting power

and area of designs.

C1908-X4-(a) C2670-X4-(a) C5315-X4-(a)
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Dr
iv

e
Si

ze
 S

um

1e3

468

48

434.5

72

402.5

71

632

64

612.5

20

579

38

1160

82

989

62

976

83

STD+ORIG
STD+FINE
MOEDA+FINE
Drive size sum of all paths
Drive size sum of critical path

Figure 7.14 The changes of drive strengths of critical paths and overall circuits when
applying “STD+ORIG”, “STD+FINE” and “MOEDA+FINE”. The sum of drive
strengths are reported from the X4-(a) case of each benchmark.

In terms of critical paths relating to the circuit worst slack, more larger drive cells from

“MINI_FINE” library are selected by MOEDA flow to solve timing violations in C1908

and C5315, since they had timing failed paths in the initial solution generated by

“STD+ORIG”. The critical path delay of “STD+FINE” solution in C1908 and C5315

was improved over the “STD+ORIG”, but the total size of selected drive strengths

is not always increased. This indicates that to optimise the path timing it needs to

choose drive strengths in a proper way instead of significantly scaling up the gate sizes.

In C2670 circuit, the drive strength sum of “STD+FINE” solution is reduced greatly

while all paths are meeting the timing constraint and the worst slack is improved. The

MOEDA flow then selects more larger cells to push the timing performance but the

used drive strengths is still less than the “STD+ORIG” one.

In addition, since margins shown in the EDA tools for drive strength mapping, that

redundant larger cells are selected by the standard flow using the coarse-grained library,

153

7.5 Experimental Results

the performance of EDA tools is variable and might be not capable of getting an

optimum solution, particularly when handling enlarged search space.

To show the complete trade-off solutions and optimised solution space, Figures 7.15

and 7.16 respectively present the final generation of MOEDA optimisation of the

tight timing constraint case, X1-(a) and X4-(a), of each benchmark circuit. The

“STD+ORIG” and “STD+FINE” solutions of each corresponding case are plotted for

comparison. The MOEDA flow has successfully enlarged the feasible solution space

while simultaneously achieve significant improvements in respond to PPA. If designers

focus on one or two of these objectives, the available solutions from MODEA flow

can obtain greater objective improvements than the trade-off solutions’ reported in

the result Tables 7.5, 7.6 and 7.7. The runtime of the largest and most complex case

C5315-X4-(a) is 5.5 hours.

154

7.5 Experimental Results

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
Dwc [ns]

64.0

64.5

65.0

65.5

66.0

66.5

67.0

67.5

68.0

68.5

P
to
ta
l [
u
W

]

MOEDA C1908 X1 (a)
MOEDA+FINE
STD+ORIG
STD+FINE

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
Dwc [ns]

820

840

860

880

900

A
ga
te
 [u
m

2
]

MOEDA C1908 X1 (a)
MOEDA+FINE
STD+ORIG
STD+FINE

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25
Dwc [ns]

93

94

95

96

97

98

99

P
to
ta
l [
u
W

]

MOEDA C2670 X1 (a)
MOEDA+FINE
STD+ORIG
STD+FINE

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25
Dwc [ns]

1340

1350

1360

1370

1380

1390
A
ga
te
 [u
m

2
]

MOEDA C2670 X1 (a)
MOEDA+FINE
STD+ORIG
STD+FINE

1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70
Dwc [ns]

225

230

235

240

245

250

255

P
to
ta
l [
u
W

]

MOEDA C5315 X1 (a)
MOEDA+FINE
STD+ORIG
STD+FINE

1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70
Dwc [ns]

2820

2840

2860

2880

2900

2920

2940

2960

2980

A
ga
te
 [u
m

2
]

MOEDA C5315 X1 (a)
MOEDA+FINE
STD+ORIG
STD+FINE

Figure 7.15 For the X1-(a) case of each circuit, the left column plots in “Dwc vs. Ptotal”
and “Dwc vs. Agate” is on the right column. There are two individuals in the round
shape are the “STD+ORIG” and “STD+FINE” solutions. All other individuals in
the shape of cross are the final generation of MOEDA optimised results based on the
“STD+FINE” solution (i.e., MOEA seed).

155

7.5 Experimental Results

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
Dwc [ns]

65

66

67

68

69

70

71

72

P
to
ta
l [
u
W

]

MOEDA C1908 X4 (a)
MOEDA+FINE
STD+ORIG
STD+FINE

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50
Dwc [ns]

810

820

830

840

850

860

870

880

890

900

A
ga
te
 [u
m

2
]

MOEDA C1908 X4 (a)
MOEDA+FINE
STD+ORIG
STD+FINE

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25
Dwc [ns]

100

101

102

103

104

105

106

107

P
to
ta
l [
u
W

]

MOEDA C2670 X4 (a)
MOEDA+FINE
STD+ORIG
STD+FINE

0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25
Dwc [ns]

1330

1340

1350

1360

1370

1380

1390

1400
A
ga
te
 [u
m

2
]

MOEDA C2670 X4 (a)
MOEDA+FINE
STD+ORIG
STD+FINE

1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70
Dwc [ns]

230

235

240

245

250

255

260

265

P
to
ta
l [
u
W

]

MOEDA C5315 X4 (a)
MOEDA+FINE
STD+ORIG
STD+FINE

1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 1.70
Dwc [ns]

2750

2800

2850

2900

2950

3000

3050

A
ga
te
 [u
m

2
]

MOEDA C5315 X4 (a)
MOEDA+FINE
STD+ORIG
STD+FINE

Figure 7.16 For the X4-(a) case of each circuit, the left column plots in “Dwc vs. Ptotal”
and “Dwc vs. Agate” is on the right column. There are two individuals in the round
shape are the “STD+ORIG” and “STD+FINE” solutions. All other individuals in
the shape of cross are the final generation of MOEDA optimised results based on the
“STD+FINE” solution (i.e., MOEA seed).

156

7.6 Summary

7.6 Summary

This chapter has shown that digital synthesis and implementation tools produced

solutions can be improved when provided with fine-grained drive strength cell libraries.

The industrial tool flow exploited the finer drive strengths to improve PPA of all

benchmarks used. The results indicate that providing finer drive resolution around

predominantly-selected drive strengths is particularly useful. This suggests that enrich-

ing drive options of functions of a standard cell library around predominantly selected

drive strengths (typically between X0 and X4) is a promising method to get better

performance for large-scale designs out of the standard EDA tools.

The main challenge of the proposed fine-grained cells approach is that enlarged standard

cell libraries result in a larger design search space. The EDA tools have to make a

greater effort during drive strength mapping, due to the increased computational

complexity, and may not always arrive at an optimum solution (PPA metrics cannot be

improved simultaneously) in a given time frame. The proposed MOEDA digital design

flow can overcome these issues as it is capable of further balancing PPA trade-offs and

provide a range of design solutions where standard EDA tool performance is quite

variable and cannot trade-off PPA well.

The capability of the proposed MOEDA flow to offer a set of well-balanced, and often

improved, trade-off solutions with regard to PPA also opens up opportunities for

designers to choose the most appropriate solution for different applications.

157

Chapter 8

Conclusions and Further Work

158

8.1 Conclusions

8.1 Conclusions

This thesis has developed an automated optimisation framework combining multi-

objective evolutionary algorithms (MOEAs) with industry-standard digital VLSI design

processes down to the physical layout level. The goals of this thesis are two-fold: first,

to deliver solutions with improved overall performance in PPA. Second, to provide a

flexible global optimisation framework that seamlessly fits with existing EDA design

tools to achieve this. Multi-objective approaches have been applied to more efficiently

run industrial EDA tool flows to produce Pareto-optimised solutions, expanding solution

space across various circuit topologies, and dealing with complex floorplan constraints.

In addition, combining this framework with transistor sizing, an essential part of

standard cell design, a methodology for improving the drive granularity of a standard

cell library has been proposed. This opens up opportunities to further take advantage

of an existing technology node by reducing design margins and pushing its performance.

This work starts with exploring the research background, in Chapter 2 and Chapter 3,

regarding silicon technology devices, standard digital VLSI design process, multi-

objective problems (MOPs) and MOEAs. The demand identified for modern digital

VLSI design and optimisation is how to find good trade-off solutions through efficiently

running standard EDA flows to deal with the intrinsic limitations and scalability

challenges of advanced silicon devices, and the growing size and complexity of the

designs themselves. The capability of MOEAs in solving MOPs can fit in such a

context involving multiple design objectives, or goals. The existing research showed

that limited work focused on using evolutionary-inspired techniques to aid real-world

chip design for solution quality enhancement regarding power, performance, and area

down to physical circuit layout.

Chapter 4 developed an automated multi-objective physical design framework to

adjust standard cell (drive strength) selection in physical layouts for a CMOS VLSI

design. The experimental results of this feasibility study confirmed that the MOEA

was able to successfully apply Pareto-driven search for a set of solutions optimised in

159

8.1 Conclusions

three objectives (i.e, delay, energy and area) allowing designers to choose appropriate

solutions for use of different case scenarios.

A multi-objective (MO) EDA framework was developed in Chapter 5 to cooperate with

an industry-standard RTL-to-GDSII flow in the optimisation process. The MOEDA

flow has successfully optimised a series of benchmark circuits using a foundry library

through refining drive strength mapping on gate-level netlists. In such a way, designs

were improved with better PPA (power, performance, area) metrics in subsequent

physical implementation step. The optimised quality of results (QoRs) demonstrated

the significantly enhanced performance over the standard EDA tool flow.

Given the contributions made in Chapter 4 and Chapter 5, the objective 1, “Develop

an automated multi-objective VLSI design optimisation framework allowing the ma-

nipulation of digital circuit building blocks down to physical layout level”, has been

completed.

In Chapter 6, a methodology was proposed for seeding MOEAs with various circuit

topologies to expand the standard-flow-generated design space. The performance

variation has been revealed inside commercial synthesis tools in producing trade-off

solutions, particularly when timing constraints are tight. The proposed methodology

performed multi-objective design space exploration (MODSE) on the basis of an

initially tool-generated design space. The optimised design space showed better

coverage with significant PPA improvements over the entire baseline. This has not

only been demonstrated in nominal floorplan settings but also been empirically studied

with practical cases when applying complex floorplan constraints (e.g., polygon die

shape, restricted pin placement).

The experimental results achieved shown in Chapter 5 and the entire work of Chapter 6

correspond to objective 2 that is “Demonstrate that framework capable of improving

performance of VLSI designs (including complex physical corner cases) offering a range

of Pareto-optimised solutions and better design space coverage over industrial-flow-

160

8.1 Conclusions

generated ones”. These contributions can reasonably support marking objective 2 as

successfully completed.

Chapter 7 proposed a methodology to enrich a standard cell library through appropriate

interpolation of fine-grained drive strength options into the original drive granularity

present in the cell library. This process aimed at making better use of a process

technology, thereby avoiding over-design of solutions with regards to power and area.

The empirical study was performed by using fine-grained drive cells in an industrial

digital flow. A number of fine-grained cells (around 30% out of all gates for a design)

were selected by commercial tools while improving the PPA of generated solutions.

However, not all objectives (PPA) of designs always got simultaneously improved and

some of them were slightly degrade. Therefore, the proposed MOEDA framework was

used here to adjust drive strength mapping from expanded libraries in order to further

balance the PPA objectives.

Chapter 7 corresponds to objective 3 that is “Investigate the application to library

level optimisation via improving drive strength granularity of standard cells for better

use of foundry technology nodes and better resulting quality of VLSI design solutions”.

Contributions made in this chapter fully support the related objective and it can be

considered as successfully completed.

Hypothesis Review:

Based on the conducted work and achieved objectives, a review of hypotheses will be

discussed. At the beginning of the thesis, a main hypothesis was stated:

“Combining multi-objective evolutionary algorithms with digital VLSI design process

can achieve performance-improved solutions down to physical layout level, expand

feasible design space, and handle complex physical layout constraints more efficiently

via refining standard cell mapping and improving standard cell granularity.”

with sub-hypotheses:

161

8.1 Conclusions

Sub-hypothesis 1.1: “Multi-objective evolutionary algorithms can optimise the drive

strength mapping of logic gates in digital VLSI designs for superior performance with

a wide spread of feasible trade-off solutions than standard tools.”

Sub-hypothesis 1.2: “Multi-objective evolutionary algorithms in conjunction with

an industrial digital IC flow can achieve better Pareto-driven search space coverage

across various circuit topologies than standard tools alone.”

Sub-hypothesis 1.3: “Multi-objective evolutionary algorithms can explore a larger

feasible solution (objective) space to deal with complex physical floorplan constraints

efficiently.”

Sub-hypothesis 1.4: “Fine-grained drive strength resolution of standard cells can

optimise digital VLSI designs for over-design mitigation and pushing performance of

silicon technologies.”

Two multi-objective optimisation frameworks were proposed in Chapters 4 and 5, which

combined the MOEAs with digital VLSI design process. One is an automated place

and route flow for a custom layout design, and another is the MOEDA flow compatible

with industry-standard synthesis, place and route tools. Both successfully performed

the drive strength refinement down to physical layouts for accurate evaluations close

to post-fabrication scenario. In case of the MOEDA flow, it showed the superiority

in generating trade-off solutions than standard tools can. The evidence provided can

fully support the sub-hypothesis 1.1.

The methodology proposed in Chapter 6 for seeding MOEAs with many circuit topolo-

gies expanded the industrial-flow-generated design space for a more uniform spread of

trade-off solutions. This has also been experimented with different physical floorplan

settings for efficiently exploring lager feasible design space. The resultant evidence

from Chapter 6 can reasonably support sub-hypothesis 1.2 and 1.3.

The interpolation methodology proposed in Chapter 7 for improving drive strength

resolution of standard cells offered more drive options in order to push performance

162

8.1 Conclusions

of silicon technologies. This improved the achievable performance (delay, slack) of

digital VLSI designs while mitigating over-design (power, area) to a significant extent.

The results and evidence from Chapter 7 can conclude that sub-hypothesis 1.4 is

completely supported.

Critical Comments:

This PhD work has successfully pushed the research boundary in general that MOEAs

are promising techniques to solve MOPs of digital VLSI designs in the context of

industrial practice and design environment. The thesis mainly provides knowledge con-

tribution to the VLSI community where using MOEAs for VLSI design and optimisation

lacked practicability [72].

Although this cross-disciplinary field was investigated around 20 years ago, both areas

of evolutionary computation and digital VLSI design have significantly changed from

what they used to be. It is therefore worthwhile to combine the existing popular

evolutionary-inspired techniques with state-of-the-art digital IC design methodologies,

practice, tools/flows regarding nowadays’s chip design common challenges.

However, a few limitations of this PhD work are listed below, which can be potential

research topics for the future.

• The proposed evolutionary multi-objective optimisation framework requires a

long runtime.

• The proposed MOEDA flow and the MOEA seeding methodology for MODSE

do not support circuit topology optimisation beyond the topologies present in

the seed population, also presented in Chapters 5 and 6.

• The proposed methodology for standard cell drive strength expansion shows

benefits for improving performance of VLSI designs, but it still needs custom

design efforts from engineers.

163

8.2 Future Work

8.2 Future Work

Based on the current findings of this thesis, few directions can be explored in the

future.

Runtime of MOEA Optimisation Approaches:

Due to the inherent mechanism (i.e., population-based method) of MOEAs, the

evolutionary optimisation approach requires numerous evaluations and computing

resources. This will increase the runtime of the algorithm and limit the optimisation

efficiency. Particularly when dealing with large designs, it often needs exponentially

increased population size and the number of generations to achieve better results.

Investigating how to efficiently run MOEAs for fast optimisation convergence will be a

potential research avenue for the future. In detail, a number of opportunities within

MOEA setup configurations, e.g. tuning mutation rate and crossover operations, can

be explored.

The mutation rate used in this work is a constant during the proposed optimisation

frameworks. However, applying different mutation rates to run EAs will deliver different

results for a given MOP. Selecting an appropriate mutation rate of EAs to solve a

specific problem, getting the possible optimum through running with fewer generations

and smaller population size, is hard but is worthwhile to investigate. Determining

mutation rates is case-specific and often based on designers’ experience, which can

be automatically decided by machine learning techniques in the future. In addition,

exploring varying mutation rate during the evolutionary process will be an interesting

and promising area for saving EA runtime.

The crossover operator has not been applied in this work. The main reason mentioned

earlier is that the crossover operator can not generally handle the function-preserved

variation when different circuit topologies are present. For a single circuit topology

optimisation, it is possible to implement the crossover operator, but researchers need

to define the crossover points (including the number of points and the position of each)

164

8.2 Future Work

within a chromosome. In this work, a chromosome represents all logic gates of a circuit.

Defining the number of crossover points and their corresponding cutting positions is

similar to the partitioning step of physical design which will lead to another research

domain. Manipulating evolutionary optimisation using crossover variation combining

with physical design partitioning will be an interesting research avenue for MOEA

running efficiency.

The used MOEA in this work is NSGA-II. It can produce a set of trade-off solutions

close to the Pareto-optimum scenario. Alternative MOEAs such as evolution strategy

(ES) instead excel in searching for a possible best solution with balanced objectives in

an efficient way. This will also be one of the future work fields for runtime efficiency.

The significant runtime in proposed optimisation frameworks is mainly owing to the

large search space of the entire design (all logic gates considered). For instance, if a

design has 10000 gates (i.e., relative small-scale in real-world chip design) and each gate

has five drive strengths on average. The solution space complexity is 510000 alternative

options, and this will be further complicated with multiple threshold voltage (Vth)

versions (typically SVT, HVT and LVT), so the solution space will then exponentially

grow to 1510000. Therefore, focusing on critical paths of a design in the evolutionary

process will be useful to improve the optimisation efficiency particularly for extreme-

large modern designs (millions of gates). This will also provide multi-objective methods

to fix and optimise timing-violated paths.

Standard Cell Design Efficiency:

The methodology introduced in Chapter 7 investigates how to enrich the drive strength

granularity on an existing standard cell library. To ensure the design feasibility and

manufacturability, the proposed methodology still manually handles standard cell

design complying with all foundry design rules. However, the logic cells used in the

synthesis and physical implementation flow are abstracted models. Creating fake cells

to optimise a library in drive granularity based on abstracted models can efficiently

165

8.2 Future Work

co-design and co-optimise ICs close to exhaustive transistor sizing, making most of

the potential capabilities of a technology node. The most selected fake cells can be

designed in real physical layouts later by engineers who can try to make the real-world

cells’ performance close to the ideal fake ones as much as possible.

Circuit Topology Co-optimisation:

As shown in Chapters 5 and 6, circuit topologies can significantly influence the optimi-

sation results. Highly structured circuits are hard to optimise for high-performance

only through tuning drive strength mapping. Although circuit topologies often lead

to system-level design, gate-level structure optimisation is crucial to achieving design

closures. During the standard digital flow, if design violations appeared in physical

design, engineers need to perform minor modifications on gate-level designs or even

have to re-synthesis the design with perturbations of constraints and initial conditions

to resolve the violations. Co-tuning gate-level design topologies with standard cell

mapping will further explore the solution space that has already been achieved in this

work. Therefore, a multi-loop multi-objective optimisation approach will be a promis-

ing and viable direction. For instance, one loop can take charge of circuit topology

adjustment to minimise the number of gates and length of critical paths. Another

loop selects promising circuit candidates from the first loop to optimise standard cell

mapping for the solutions with better PPA achievable at physical implementation step.

Analog Circuit Optimisation: For a larger picture of the future work, the opti-

misation methodology proposed in the thesis is mainly focusing on tuning the size of

transistors. Such an approach can be migrated to the analog circuit design process.

Determining appropriate transistor sizes using MOEAs for different analog circuits can

be interesting research avenue.

166

Appendix A

SKILL Scripts for Creating Parametric Layouts:
procedure (StripeLayoutCreate(G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17)

Inv_Lib = ’(list("Inv0" 1.8 0.135 1.665)

list("Inv1" 1.62 0.135 1.485)

list("Inv2" 1.55 0.135 1.415)

list("Inv3" 1.5 0.135 1.365)

list("Inv4" 1.9 0.135 1.765)

list("Inv5" 1.85 0.135 1.715)

list("Inv6" 1.81 0.135 1.675)

list("Inv7" 1.8 0.135 1.665)

list("Inv8" 1.76 0.135 1.625)

list("Inv9" 2.1 0.135 1.965))

;inverters library ’("name"; width; input_pos; output_pos)

nand_width = 2.2

nand_A = 0.135 ;nand input A position

nand_B = 1.895 ;nand input B position

nand_Y = 1.625 ;nand output Y position

;channel for routing metal2

channel_1 = 1.46

channel_2 = 1.18

channel_3 = 0.9

channel_4 = 0.62

channel_5 = 0.34

cursor = 0 ;drawing cursor

Inv_count = 0 ; inverter names counter

Path_count = 0 ; path names counter

nand_count = 0

Appendix A

;start layout

cv = dbOpenCellViewByType("design" "f_adder_auto" "layout" "maskLayout" "w")

tf = techGetTechFile(cv)

viaDef=techFindViaDefByName(tf "M2_M1")

nand_id = dbOpenCellViewByType("std_cell" "nand2" "layout")

;————————————–nand and buffer————————————–;

FuncBuffer(G0 G1)

FuncBuffer(G2 G3)

FuncBuffer(G4 G5)

FuncBuffer(G6 G7)

FuncBuffer(G8 G9)

FuncBuffer(G10 G11)

FuncBuffer(G12 G13)

FuncBuffer(G14 G15)

FuncBuffer(G16 G17)

;————————————–Channel 5 Routing ——————————–;

Path_start = 0

Path_end = 0

;————————————–Path 1————————————————-;

inst = dbFindAnyInstByName(cv "Inv1")

Path_start = car(inst >xy) + nth(4 nth(G1 Inv_Lib))

ViaPlacement(Path_start channel_5)

inst = dbFindAnyInstByName(cv "nand1")

Path_end = car(inst >xy) + nand_B

ViaPlacement(Path_end channel_5)

PathCreate(Path_start Path_end channel_5)

Path_start = Path_end

inst = dbFindAnyInstByName(cv "nand2")

Path_end = car(inst >xy) + nand_A

ViaPlacement(Path_end channel_5)

PathCreate(Path_start Path_end channel_5)

Path_start = Path_end

inst = dbFindAnyInstByName(cv "nand6")

Path_end = car(inst >xy) + nand_B

ViaPlacement(Path_end channel_5)

168

Appendix A

PathCreate(Path_start Path_end channel_5)

;————————————–Path 2————————————————-;

inst = dbFindAnyInstByName(cv "Inv15")

Path_start = car(inst >xy) + nth(4 nth(G15 Inv_Lib))

ViaPlacement(Path_start channel_5)

inst = dbFindAnyInstByName(cv "nand8")

Path_end = car(inst >xy) + nand_B

ViaPlacement(Path_end channel_5)

PathCreate(Path_start Path_end channel_5)

;————————————————————————————————-;

;————————————–Channel 4 Routing ——————————–;

Path_start = 0

Path_end = 0

;————————————–Path 1————————————————-;

inst = dbFindAnyInstByName(cv "Inv5")

Path_start = car(inst >xy) + nth(4 nth(G5 Inv_Lib))

ViaPlacement(Path_start channel_4)

inst = dbFindAnyInstByName(cv "nand3")

Path_end = car(inst >xy) + nand_B

ViaPlacement(Path_end channel_4)

PathCreate(Path_start Path_end channel_4)

;————————————–Path 2————————————————-;

inst = dbFindAnyInstByName(cv "nand4")

Path_start = car(inst >xy) + nand_B

ViaPlacement(Path_start channel_4)

inst = dbFindAnyInstByName(cv "nand7")

Path_end = car(inst >xy) + nand_B

ViaPlacement(Path_end channel_4)

PathCreate(Path_start Path_end channel_4)

;————————————————————————————————-;

;————————————–Channel 3 Routing ——————————–;

Path_start = 0

Path_end = 0

;————————————–Carry out signal ——————————–;

inst = dbFindAnyInstByName(cv "Inv13")

169

Appendix A

CoutVia = car(inst >xy) + nth(4 nth(G13 Inv_Lib))

ViaPlacement(CoutVia channel_3)

Path_start = CoutVia - 0.3

Path_end = CoutVia + 0.3

PathCreate(Path_start Path_end channel_3)

;————————————————————————————————-;

;————————————–Channel 2 Routing ——————————–;

Path_start = 0

Path_end = 0

;Path 1

inst = dbFindAnyInstByName(cv "nand0")

Path_start = car(inst >xy) + nand_B

ViaPlacement(Path_start channel_2)

inst = dbFindAnyInstByName(cv "nand2")

Path_end = car(inst >xy) + nand_B

ViaPlacement(Path_end channel_2)

PathCreate(Path_start Path_end channel_2)

;Path2

inst = dbFindAnyInstByName(cv "Inv9")

Path_start = car(inst >xy) + nth(4 nth(G9 Inv_Lib))

ViaPlacement(Path_start channel_2)

inst = dbFindAnyInstByName(cv "nand5")

Path_end = car(inst >xy) + nand_B

ViaPlacement(Path_end channel_2)

PathCreate(Path_start Path_end channel_2)

Path_start = Path_end

inst = dbFindAnyInstByName(cv "nand6")

Path_end = car(inst >xy) + nand_A

ViaPlacement(Path_end channel_2)

PathCreate(Path_start Path_end channel_2)

Path_start = Path_end

inst = dbFindAnyInstByName(cv "nand7")

Path_end = car(inst >xy) + nand_A

ViaPlacement(Path_end channel_2)

170

Appendix A

PathCreate(Path_start Path_end channel_2)

;————————————————————————————————-;

;————————————–Channel 1 Routing ——————————–;

Path_start = 0

Path_end = 0

;Path 1

inst = dbFindAnyInstByName(cv "nand0")

Path_start = car(inst >xy) + nand_A

ViaPlacement(Path_start channel_1)

inst = dbFindAnyInstByName(cv "nand1")

Path_end = car(inst >xy) + nand_A

ViaPlacement(Path_end channel_1)

PathCreate(Path_start Path_end channel_1)

;Path2

inst = dbFindAnyInstByName(cv "Inv3")

Path_start = car(inst >xy) + nth(4 nth(G3 Inv_Lib))

ViaPlacement(Path_start channel_1)

inst = dbFindAnyInstByName(cv "nand3")

Path_end = car(inst >xy) + nand_A

ViaPlacement(Path_end channel_1)

PathCreate(Path_start Path_end channel_1)

;Path3

inst = dbFindAnyInstByName(cv "Inv7")

Path_start = car(inst >xy) + nth(4 nth(G7 Inv_Lib))

ViaPlacement(Path_start channel_1)

inst = dbFindAnyInstByName(cv "nand4")

Path_end = car(inst >xy) + nand_A

ViaPlacement(Path_end channel_1)

PathCreate(Path_start Path_end channel_1)

Path_start = Path_end

inst = dbFindAnyInstByName(cv "nand5")

Path_end = car(inst >xy) + nand_A

ViaPlacement(Path_end channel_1)

171

Appendix A

PathCreate(Path_start Path_end channel_1)

;Path4

inst = dbFindAnyInstByName(cv "Inv11")

Path_start = car(inst >xy) + nth(4 nth(G11 Inv_Lib))

ViaPlacement(Path_start channel_1)

inst = dbFindAnyInstByName(cv "nand8")

Path_end = car(inst >xy) + nand_A

ViaPlacement(Path_end channel_1)

PathCreate(Path_start Path_end channel_1)

;Path5

inst = dbFindAnyInstByName(cv "Inv17")

S_Via = car(inst >xy) + nth(4 nth(G17 Inv_Lib))

ViaPlacement(S_Via channel_1)

Path_start = S_Via - 0.5

Path_end = S_Via + 0.1

PathCreate(Path_start Path_end channel_1)

;————————————————————————————————-;

;—————————————-Pin Create —————————————–;

Pin_pos = 0

;————————vdd——————————;

rodCreateRect(

?name "vdd!"

?layer list("M1" "pin")

?width 0.09

?length 0.09

?origin 1:1.755

?cvId cv

?netName "vdd!"

?termName "vdd!"

?pin t

?pinLabel t

?pinLabelHeight 0.09

?pinLabelLayer list("M1" "pin")

)

172

Appendix A

;————————gnd——————————;

rodCreateRect(

?name "gnd!"

?layer list("M1" "pin")

?width 0.09

?length 0.09

?origin 1: -0.045

?cvId cv

?netName "gnd!"

?termName "gnd!"

?pin t

?pinLabel t

?pinLabelHeight 0.09

?pinLabelLayer list("M1" "pin")

)

;———————–Input A —————————;

Pin_pos = Pin_pos + nand_A

rodCreateRect(

?name "A"

?layer list("M2" "pin")

?width 0.1

?length 0.1

?origin (Pin_pos - 0.05):(channel_1- 0.05)

?cvId cv

?netName "A"

?termName "A"

?termIOType "input"

?pin t

?pinLabel t

?pinLabelHeight 0.1

?pinLabelLayer list("M2" "pin")

)

;———————–Input B —————————;

inst = dbFindAnyInstByName(cv "nand0")

Pin_pos = car(inst >xy) + nand_B

rodCreateRect(

173

Appendix A

?name "B"

?layer list("M2" "pin")

?width 0.1

?length 0.1

?origin (Pin_pos - 0.05):(channel_2- 0.05)

?cvId cv

?netName "B"

?termName "B"

?termIOType "input"

?pin t

?pinLabel t

?pinLabelHeight 0.1

?pinLabelLayer list("M2" "pin")

)

;———————–Input Cin —————————;

inst = dbFindAnyInstByName(cv "nand7")

Pin_pos = car(inst >xy) + nand_B

rodCreateRect(

?name "Cin"

?layer list("M2" "pin")

?width 0.1

?length 0.1

?origin (Pin_pos - 0.05):(channel_4- 0.05)

?cvId cv

?netName "Cin"

?termName "Cin"

?termIOType "input"

?pin t

?pinLabel t

?pinLabelHeight 0.1

?pinLabelLayer list("M2" "pin")

)

;———————–Output Cout —————————;

inst = dbFindAnyInstByName(cv "Inv13")

Pin_pos = car(inst >xy) + nth(4 nth(G13 Inv_Lib))

rodCreateRect(

?name "Cout"

?layer list("M2" "pin")

?width 0.1

174

Appendix A

?length 0.1

?origin (Pin_pos - 0.05):(channel_3- 0.05)

?cvId cv

?netName "Cout"

?termName "Cout"

?termIOType "output"

?pin t

?pinLabel t

?pinLabelHeight 0.1

?pinLabelLayer list("M2" "pin")

)

;———————–Output S —————————;

inst = dbFindAnyInstByName(cv "Inv17")

Pin_pos = car(inst >xy) + nth(4 nth(G17 Inv_Lib))

rodCreateRect(

?name "S"

?layer list("M2" "pin")

?width 0.1

?length 0.1

?origin (Pin_pos - 0.05):(channel_1- 0.05)

?cvId cv

?netName "S"

?termName "S"

?termIOType "output"

?pin t

?pinLabel t

?pinLabelHeight 0.1

?pinLabelLayer list("M2" "pin")

)

dbSave(cv)

dbClose(cv)

)

let((G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17)

G0 = 9

G1 = 9

G2 = 1

G3 = 2

G4 = 0

G5 = 1

175

Appendix A

G6 = 0

G7 = 1

G8 = 2

G9 = 0

G10 = 0

G11 = 0

G12 = 1

G13 = 0

G14 = 3

G15 = 0

G16 = 4

G17 = 0

StripeLayoutCreate(G0 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17)

)

176

Abbreviations

2D Two Dimensions

3D Three Dimensions

ALU Arithmetic Logic Unit

ASIC Application Specific Integrated Circuit

CAD Computer-aid Design

CCEA Cooperative Co-evolutionary Algorithm

CMOS Complementary Metal-Oxide-Semiconductor

DRC Design Rule Checking

DSE Design Space Exploration

EA Evolutionary Algorithm

ECO Engineering Change Order

EDA Electronic Design Automation

FET Field-effect Transistor

GAA All-Gate-Around

GDSII Graphic Design System II

HDL Hardware Description Language

HLS High-level Synthesis

HVT High Voltage Threshold

177

Abbreviations

I/O Input/Output

IC Integrated Circuit

ID Identity

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

IRDS International Roadmap for Devices and Systems

ISCAS International Symposium on Circuits and Systems

ITRS International Technology Roadmap for Semiconductors

LR Lagrangian Relaxation

LVS Layout Versus Schematic

LVT Low Voltage Threshold

MAB Multi-armed Bandit

MODSE Multi-objective Design Space Exploration

MOEA Multi-objective Evolutionary Algorithm

MOEDA Multi-objective Electronic Design Automation

MOGA Multi-objective Genetic Algorithm

MOP Multi-objective Problem

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MOS Metal-Oxide-Semiconductor

MO Multi-objective

NLDM Non-linear Delay Model

NMOS N-type Metal-Oxide-Semiconductor

NSGA-II Non-dominated Sorting Genetic Algorithm-II

NSGA Non-dominated Sorting Genetic Algorithm

178

Abbreviations

NoC Network-on-chip

PDK Process Design Kit

PEX Parasitic Extraction

PMOS P-type Metal-Oxide-Semiconductor

PPA Power, Performance and Area

PVT Process Voltage Temperature

QoR Quality of Results

RTL Register-Transfer Level

SI Signal Integrity

SPEA2 Strength Pareto Evolutionary Algorithm 2

SPEA Strength Pareto Evolutionary Algorithm

SPICE Simulation Program with Integrated Circuit Emphasis

STA Static Timing Analysis

SVT Standard Voltage Threshold

SoC System-on-Chip

TNS Total Negative Slack

TSMC Taiwan Semiconductor Manufacturing Company

VEGA Vector Evaluated Genetic Algorithm

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

VLSI Very Large Scale Integration

WNS Worst Negative Slack

179

References

[1] Wikipedia, “Moore’s law — Wikipedia, The Free Encyclopedia,” http://en.
wikipedia.org/wiki/Moore%27s_law, [Online; accessed 15-May-2021].

[2] P. McLellan, “Imec’s plan for continued scaling,” https://semiengineering.com/
imecs-plan-for-continued-scaling/, 2021, online; Accessed 2021-01-01.

[3] L. Cao, S. J. Bale, and M. A. Trefzer, “Instrumenting parametric physical
layout for multi-objective optimisation,” in 2018 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE, 2018, pp. 1339–1345.

[4] L. Cao, S. J. Bale, and M. A. Trefzer, “Multi-objective optimisation of digital
circuits based on cell mapping in an industrial eda flow,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 2021, First Revision.

[5] L. Cao, S. J. Bale, and M. A. Trefzer, “Multi-objective digital design optimisation
via improved drive granularity standard cells,” IEEE Transactions on Circuits
and Systems I: Regular Papers, 2021, in Press/Accepted.

[6] L. Cao, S. J. Bale, and M. A. Trefzer, “Multi-objective design optimisation for
handling complex floorplan constraints,” Proc. Design, Automation and Test in
Europe (DATE), 2022, Under Review.

[7] “International technology roadmap for semiconductors (itrs),” http://www.itrs2.
net/, 2001, online; Accessed 2021-01-01.

[8] “International roadmap for devices and systems (irds),” https://irds.ieee.org/,
2020, online; Accessed 2021-01-01.

[9] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI physical design: from
graph partitioning to timing closure. Springer Science & Business Media, 2011.

180

http://en.wikipedia.org/wiki/Moore%27s_law
http://en.wikipedia.org/wiki/Moore%27s_law
https://semiengineering.com/imecs-plan-for-continued-scaling/
https://semiengineering.com/imecs-plan-for-continued-scaling/
http://www.itrs2.net/
http://www.itrs2.net/
https://irds.ieee.org/

References

[10] L. Lavagno, I. L. Markov, G. Martin, and L. K. Scheffer, Electronic Design
Automation for IC Implementation, Circuit Design, and Process Technology:
Circuit Design, and Process Technology. CRC Press, 2016.

[11] A. Sengupta, “Design flow of a digital ic: The role of digital ic\/soc design in ce
products,” IEEE Consumer Electronics Magazine, vol. 5, no. 2, pp. 58–62, 2016.

[12] G. E. Moore et al., “Cramming more components onto integrated circuits,” 1965.

[13] N. H. Weste and D. Harris, CMOS VLSI design: a circuits and systems perspective.
Pearson Education India, 2015.

[14] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and A. R.
LeBlanc, “Design of ion-implanted mosfet’s with very small physical dimensions,”
IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[15] M. T. Bohr and I. A. Young, “Cmos scaling trends and beyond,” IEEE Micro,
vol. 37, no. 6, pp. 20–29, 2017.

[16] E. N. Shauly, “Cmos leakage and power reduction in transistors and circuits:
process and layout considerations,” Journal of Low Power Electronics and Appli-
cations, vol. 2, no. 1, pp. 1–29, 2012.

[17] “Wikichip,” https://en.wikichip.org/, online; Accessed 2021-01-01.

[18] “Cello library creation, migration and optimization,” https://silvaco.com/, online;
Accessed 2020-01-10.

[19] G. A. Northrop and P.-F. Lu, “A semi-custom design flow in high-performance
microprocessor design,” in Proceedings of the 38th Design Automation Conference.
IEEE, 2001, pp. 426–431.

[20] T. Hashimoto, “Layout generation of primitive cells with variable driving
strength,” Proc. SASIMI, 2000, 2000.

[21] M. Hashimoto, K. Fujimori, and H. Onodera, “Standard cell libraries with
various driving strength cells for 0.13, 0.18 and 0.35/spl mu/m technologies,” in
Proceedings of (ASP-DAC) Asia and South Pacific Design Automation Conference.
IEEE, 2003, pp. 589–590.

181

https://en.wikichip.org/
https://silvaco.com/

References

[22] H. Onodera, M. Hashimoto, and T. Hashimoto, “ASIC design methodology with
on-demand library generation,” in 2001 Symposium on VLSI Circuits. Digest of
Technical Papers. IEEE, 2001, pp. 57–60.

[23] M. Hashimoto and H. Onodera, “Post-layout transistor sizing for power reduc-
tion in cell-base design,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. 84, no. 11, pp. 2769–2777, 2001.

[24] S. Nishizawa, T. Ishihara, and H. Onodera, “Layout generator with flexible grid
assignment for area efficient standard cell,” IPSJ Transactions on System LSI
Design Methodology, vol. 8, pp. 131–135, 2015.

[25] J. Zhou, S. Jayapal, B. Busze, L. Huang, and J. Stuyt, “A 40 nm dual-width
standard cell library for near/sub-threshold operation,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 59, no. 11, pp. 2569–2577, 2012.

[26] M. Kondo, S. Nishizawa, T. Ishihara, and H. Onodera, “A standard cell optimiza-
tion method for near-threshold voltage operations,” in International Workshop
on Power and Timing Modeling, Optimization and Simulation. Springer, 2012,
pp. 32–41.

[27] J. Morris, P. Prabhat, J. Myers, and A. Yakovlev, “Unconventional layout
techniques for a high performance, low variability subthreshold standard cell
library,” in VLSI (ISVLSI), 2017 IEEE Computer Society Annual Symposium
on. IEEE, 2017, pp. 19–24.

[28] J. Jun, J. Song, and C. Kim, “A near-threshold voltage oriented digital cell library
for high-energy efficiency and optimized performance in 65nm cmos process,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 5, pp.
1567–1580, 2017.

[29] A. M. Islam, S. Nishizawa, Y. Matsui, and Y. Ichida, “Drive-strength selection
for synthesis of leakage-dominant circuits,” in 2019 International Symposium on
Quality Electronic Design (ISQED). IEEE, 2019, pp. 298–303.

[30] N. A. Sherwani, Algorithms for VLSI physical design automation. Springer
Science & Business Media, 2012.

[31] C. J. Alpert, D. P. Mehta, and S. S. Sapatnekar, Handbook of algorithms for
physical design automation. CRC press, 2008.

182

References

[32] A. K. Yella, G. Srivatsa, and C. Sechen, “Are standalone gate size and VT
optimization tools useful?” in 2017 IEEE 30th Canadian Conference on Electrical
and Computer Engineering (CCECE). IEEE, 2017, pp. 1–6.

[33] W. J. Dally and A. Chang, “The role of custom design in ASIC chips,” in
Proceedings of 37th Design Automation Conference (DAC), 2000, pp. 643–647.

[34] D. G. Chinnery and K. Keutzer, “Closing the gap between ASIC and custom: an
ASIC perspective,” in Proceedings of 37th Design Automation Conference (DAC),
2000, pp. 637–642.

[35] ——, “Closing the power gap between ASIC and custom: an ASIC perspective,”
in Proceedings of 42nd Design Automation Conference (DAC), 2005, pp. 275–280.

[36] ——, “High performance and low power design techniques for ASIC and custom in
nanometer technologies,” in Proceedings of 2013 ACM International Symposium
on Physical Design, 2013, pp. 25–32.

[37] J. Chen, I. H.-R. Jiang, J. Jung, A. B. Kahng, V. N. Kravets, Y.-L. Li, S.-T. Lin,
and M. Woo, “Datc rdf-2019: Towards a complete academic reference design
flow,” in 2019 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, 2019, pp. 1–6.

[38] T. Ajayi, D. Blaauw, T. Chan, C. Cheng, V. Chhabria, D. Choo, M. Coltella,
S. Dobre, R. Dreslinski, M. Fogaça et al., “Openroad: Toward a self-driving, open-
source digital layout implementation tool chain,” Proceedings of GOMACTECH,
pp. 1105–1110, 2019.

[39] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng,
M. Kim, J. Lee, U. Mallappa, M. Neseem et al., “Toward an open-source digital
flow: First learnings from the openroad project,” in Proceedings of 56th Design
Automation Conference (DAC), 2019, pp. 1–4.

[40] C. A. C. Coello, G. B. Lamont, D. A. Van Veldhuizen et al., Evolutionary
algorithms for solving multi-objective problems. Springer, 2007, vol. 5.

[41] C. A. C. Coello, “A short tutorial on evolutionary multiobjective optimiza-
tion,” in International Conference on Evolutionary Multi-Criterion Optimization.
Springer, 2001, pp. 21–40.

[42] V. Pareto, Cours d’économie politique. Librairie Droz, 1964, vol. 1.

183

References

[43] K. Miettinen, Nonlinear multiobjective optimization. Springer Science & Business
Media, 1999, vol. 12.

[44] R. T. Marler and J. S. Arora, “The weighted sum method for multi-objective
optimization: new insights,” Structural and multidisciplinary optimization, vol. 41,
no. 6, pp. 853–862, 2010.

[45] L. Zadeh, “Optimality and non-scalar-valued performance criteria,” IEEE trans-
actions on Automatic Control, vol. 8, no. 1, pp. 59–60, 1963.

[46] A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using
genetic algorithms: A tutorial,” Reliability Engineering & System Safety, vol. 91,
no. 9, pp. 992–1007, 2006.

[47] M. Ehrgott, Multicriteria optimization. Springer Science & Business Media,
2005, vol. 491.

[48] G. Chiandussi, M. Codegone, S. Ferrero, and F. E. Varesio, “Comparison of multi-
objective optimization methodologies for engineering applications,” Computers
& Mathematics with Applications, vol. 63, no. 5, pp. 912–942, 2012.

[49] I. Giagkiozis and P. J. Fleming, “Methods for multi-objective optimization: An
analysis,” Information Sciences, vol. 293, pp. 338–350, 2015.

[50] R. Wang, Z. Zhou, H. Ishibuchi, T. Liao, and T. Zhang, “Localized weighted sum
method for many-objective optimization,” IEEE Transactions on Evolutionary
Computation, vol. 22, no. 1, pp. 3–18, 2018.

[51] D. G. Chinnery and K. Keutzer, “Linear programming for sizing, vth and vdd
assignment,” in 2005 International Symposium on Quality Electronic Design
(ISQED), 2005, pp. 149–154.

[52] K. Jeong, A. B. Kahng, and H. Yao, “Revisiting the linear programming frame-
work for leakage power vs. performance optimization,” in 2009 International
Symposium on Quality Electronic Design (ISQED). IEEE, 2009, pp. 127–134.

[53] A. Farshidi, L. Rakai, L. Behjat, and D. Westwick, “A self-tuning multi-objective
optimization framework for geometric programming with gate sizing applications,”
in Proceedings of 23rd ACM Great Lakes Symposium on VLSI, 2013, pp. 305–310.

[54] ——, “Optimal gate sizing using a self-tuning multi-objective framework,” Inte-
gration, vol. 47, no. 3, pp. 347–355, 2014.

184

References

[55] A. B. Kahng, S. Kang, H. Lee, I. L. Markov, and P. Thapar, “High-performance
gate sizing with a signoff timer,” in 2013 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 2013, pp. 450–457.

[56] F. Kashfi, S. Hatami, and M. Pedram, “Multi-objective optimization techniques
for vlsi circuits,” in 2011 International Symposium on Quality Electronic Design
(ISQED). IEEE, 2011, pp. 1–8.

[57] C. C. Coello, “Evolutionary multi-objective optimization: a historical view of the
field,” IEEE computational intelligence magazine, vol. 1, no. 1, pp. 28–36, 2006.

[58] Y. Wang, “Circuit clustering for cluster-based fpgas using novel multiobjective
genetic algorithms,” PhD Thesis, University of York, 2015.

[59] M. A. Trefzer and A. M. Tyrrell, Evolvable hardware: From practice to application.
Springer, 2015.

[60] A. E. Eiben, J. E. Smith et al., Introduction to evolutionary computing. Springer,
2003, vol. 53.

[61] K. A. De Jong and W. M. Spears, “A formal analysis of the role of multi-point
crossover in genetic algorithms,” Annals of mathematics and Artificial intelligence,
vol. 5, no. 1, pp. 1–26, 1992.

[62] C. A. C. Coello, S. G. Brambila, J. F. Gamboa, M. G. C. Tapia, and R. H.
Gómez, “Evolutionary multiobjective optimization: open research areas and
some challenges lying ahead,” Complex & Intelligent Systems, vol. 6, no. 2, pp.
221–236, 2020.

[63] I. Das and J. E. Dennis, “A closer look at drawbacks of minimizing weighted sums
of objectives for pareto set generation in multicriteria optimization problems,”
Structural optimization, vol. 14, no. 1, pp. 63–69, 1997.

[64] H. R. Maier, S. Razavi, Z. Kapelan, L. S. Matott, J. Kasprzyk, and B. A. Tolson,
“Introductory overview: Optimization using evolutionary algorithms and other
metaheuristics,” Environmental Modelling & Software, vol. 114, pp. 195–213,
2019.

[65] J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic
algorithms,” in Proceedings of the First International Conference on Genetic

185

References

Algorithms and Their Applications, 1985. Lawrence Erlbaum Associates. Inc.,
Publishers, 1985.

[66] C. M. Fonseca, P. J. Fleming et al., “Genetic algorithms for multiobjective
optimization: Formulation discussion and generalization.” in Icga, vol. 93, no.
July, 1993, pp. 416–423.

[67] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondominated sorting
in genetic algorithms,” Evolutionary computation, vol. 2, no. 3, pp. 221–248,
1994.

[68] E. Zitzler and L. Thiele, “An evolutionary algorithm for multiobjective optimiza-
tion: The strength pareto approach,” TIK-report, vol. 43, 1998.

[69] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto
evolutionary algorithm,” TIK-report, vol. 103, 2001.

[70] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjec-
tive genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation,
vol. 6, no. 2, pp. 182–197, 2002.

[71] R. Drechsler, “Evolutionary algorithms for vlsi cad [book review],” IEEE Trans-
actions on Evolutionary Computation, vol. 3, no. 3, pp. 251–253, 1999.

[72] J. Cohoon, J. Kairo, and J. Lienig, “Evolutionary algorithms for the physical
design of vlsi circuits,” in Advances in Evolutionary Computing. Springer, 2003,
pp. 683–711.

[73] B. Becker and R. Drechsler, “Ofdd based minimization of fixed polarity reed-
muller expressions using hybrid genetic algorithms,” in Proceedings 1994 IEEE
International Conference on Computer Design: VLSI in Computers and Proces-
sors. IEEE, 1994, pp. 106–110.

[74] K. Ohmori and T. Kasai, “Logic synthesis using a genetic algorithm,” in 1997
IEEE International Conference on Intelligent Processing Systems, vol. 1. IEEE,
1997, pp. 137–142.

[75] P. Thomson and J. F. Miller, “Comparison of and-xor logic synthesis using a
genetic algorithm against misii for implementation on fpgas,” in Second Interna-
tional Conference On Genetic Algorithms In Engineering Systems: Innovations
And Applications. IET, 1997.

186

References

[76] R. Drechsler and W. Günther, “Evolutionary synthesis of multiplexor circuits
under hardware constraints,” in Proceedings of the 2nd Annual Conference on
Genetic and Evolutionary Computation, 2000, pp. 513–518.

[77] T. N. Bui and B. R. Moon, “A fast and stable hybrid genetic algorithm for
the ratio-cut partitioning problem on hypergraphs,” in 31st Design Automation
Conference. IEEE, 1994, pp. 664–669.

[78] S. M. Sait, A. H. El-Maleh, and R. H. Al-Abaji, “Evolutionary algorithms for
vlsi multi-objective netlist partitioning,” Engineering Applications of Artificial
Intelligence, vol. 19, no. 3, pp. 257–268, 2006.

[79] M. Bhuvaneswari, Application of evolutionary algorithms for multi-objective
optimization in VLSI and embedded systems. Springer, 2014.

[80] M. Rebaudengo and M. S. Reorda, “Gallo: A genetic algorithm for floorplan
area optimization,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 15, no. 8, pp. 943–951, 1996.

[81] C. L. Valenzuela and P. Y. Wang, “Vlsi placement and area optimization using a
genetic algorithm to breed normalized postfix expressions,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 4, pp. 390–401, 2002.

[82] M. Tang and X. Yao, “A memetic algorithm for vlsi floorplanning,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37,
no. 1, pp. 62–69, 2007.

[83] J. Chen and W. Zhu, “A hybrid genetic algorithm for vlsi floorplanning,” in
2010 IEEE International Conference on Intelligent Computing and Intelligent
Systems, vol. 2. IEEE, 2010, pp. 128–132.

[84] R. M. Kling and P. Banerjee, “Esp: Placement by simulated evolution,” IEEE
transactions on computer-aided design of integrated circuits and systems, vol. 8,
no. 3, pp. 245–256, 1989.

[85] K. Shahookar and P. Mazumder, “A genetic approach to standard cell placement
using meta-genetic parameter optimization,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 9, no. 5, pp. 500–511,
1990.

187

References

[86] V. Schnecke and O. Vornberger, “An adaptive parallel genetic algorithm for vlsi-
layout optimization,” in International Conference on Parallel Problem Solving
from Nature. Springer, 1996, pp. 859–868.

[87] H. A. Rahim, R. B. Ahmad, W. N. S. F. W. Ariffin, M. I. Ahmad et al., “The
performance study of two genetic algorithm approaches for vlsi macro-cell layout
area optimization,” in 2008 2nd Asia International Conference on Modelling &
Simulation (AMS). IEEE, 2008, pp. 207–212.

[88] J. Lienig and K. Thulasiraman, “A genetic algorithm for channel routing in vlsi
circuits,” Evolutionary Computation, vol. 1, no. 4, pp. 293–311, 1993.

[89] J. Lienig, “A parallel genetic algorithm for performance-driven vlsi routing,”
IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 29–39, 1997.

[90] A. Ricci, I. De Munari, and P. Ciampolini, “An evolutionary approach for
standard-cell library reduction,” in Proceedings of the 17th ACM Great Lakes
symposium on VLSI. ACM, 2007, pp. 305–310.

[91] M. K. Papamichael, P. Milder, and J. C. Hoe, “Nautilus: Fast automated ip
design space search using guided genetic algorithms,” in Proceedings of the 52nd
Annual Design Automation Conference, 2015, pp. 1–6.

[92] M. Palesi and T. Givargis, “Multi-objective design space exploration using
genetic algorithms,” in Proceedings of 10th International Symposium on Hard-
ware/software Codesign, 2002, pp. 67–72.

[93] G. Ascia, V. Catania, and M. Palesi, “A framework for design space exploration
of parameterized vlsi systems,” in Proceedings of ASP-DAC/VLSI Design 2002.
7th Asia and South Pacific Design Automation Conference and 15th International
Conference on VLSI Design. IEEE, 2002, pp. 245–250.

[94] C. Erbas, S. Cerav-Erbas, and A. D. Pimentel, “Multiobjective optimization and
evolutionary algorithms for the application mapping problem in multiprocessor
system-on-chip design,” IEEE Transactions on Evolutionary Computation, vol. 10,
no. 3, pp. 358–374, 2006.

[95] S. Dey, S. Nandi, and G. Trivedi, “Pgopt: Multi-objective design space exploration
framework for large-scale on-chip power grid design in vlsi soc using evolutionary
computing technique,” Microprocessors and Microsystems, vol. 81, p. 103440,
2021.

188

References

[96] W. Sheng, L. Xiao, and Z. Mao, “Soft error optimization of standard cell circuits
based on gate sizing and multi-objective genetic algorithm,” in Proceedings of
46th Design Automation Conference (DAC), 2009, pp. 502–507.

[97] B. Yuan, H. Chen, and X. Yao, “Toward efficient design space exploration
for fault-tolerant multiprocessor systems,” IEEE Transactions on Evolutionary
Computation, vol. 24, no. 1, pp. 157–169, 2020.

[98] V. Krishnan and S. Katkoori, “A genetic algorithm for the design space explo-
ration of datapaths during high-level synthesis,” IEEE Transactions on Evolu-
tionary Computation, vol. 10, no. 3, pp. 213–229, 2006.

[99] F. Ferrandi, P. L. Lanzi, D. Loiacono, C. Pilato, and D. Sciuto, “A multi-objective
genetic algorithm for design space exploration in high-level synthesis,” in 2008
IEEE Computer Society Annual Symposium on VLSI. IEEE, 2008, pp. 417–422.

[100] M. Holzer, B. Knerr, and M. Rupp, “Design space exploration with evolutionary
multi-objective optimisation,” in Industrial Embedded Systems, 2007. SIES’07.
International Symposium on. IEEE, 2007, pp. 126–133.

[101] “Virtuoso layout suite,” https://www.cadence.com, Cadence Design Systems.

[102] “Calibre,” https://eda.sw.siemens.com/, Mentor Graphics.

[103] “Eldo,” https://eda.sw.siemens.com/, Mentor Graphics.

[104] W. H. Kao, C.-Y. Lo, M. Basel, and R. Singh, “Parasitic extraction: current
state of the art and future trends,” Proceedings of the IEEE, vol. 89, no. 5, pp.
729–739, 2001.

[105] R. Tayrani, J. E. Gerber, T. Daniel, R. S. Pengelly, and U. L. Rohde, “A new and
reliable direct parasitic extraction method for mesfets and hemts,” in Microwave
Conference, 1993. 23rd European. IEEE, 1993, pp. 451–453.

[106] G. Flach, T. Reimann, G. Posser, M. Johann, and R. Reis, “Effective method
for simultaneous gate sizing and v th assignment using lagrangian relaxation,”
IEEE Transactions on computer-aided design of integrated circuits and systems,
vol. 33, no. 4, pp. 546–557, 2014.

[107] T. J. Reimann, C. C. Sze, and R. Reis, “Cell selection for high-performance
designs in an industrial design flow,” in Proceedings of 2016 ACM International
Symposium on Physical Design, 2016, pp. 65–72.

189

https://www.cadence.com
https://eda.sw.siemens.com/
https://eda.sw.siemens.com/

References

[108] A. Sharma, D. Chinnery, and C. Chu, “Lagrangian relaxation based gate sizing
with clock skew scheduling-a fast and effective approach,” in Proceedings of 2019
International Symposium on Physical Design, 2019, pp. 129–137.

[109] J. Hu, A. B. Kahng, S. Kang, M.-C. Kim, and I. L. Markov, “Sensitivity-guided
metaheuristics for accurate discrete gate sizing,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2012, pp. 233–239.

[110] H. Fatemi, A. B. Kahng, H. Lee, J. Li, and J. P. de Gyvez, “Enhancing sensitivity-
based power reduction for an industry ic design context,” Integration, vol. 66, pp.
96–111, 2019.

[111] T. Reimann, G. Posser, G. Flach, M. Johann, and R. Reis, “Simultaneous gate
sizing and vt assignment using fanin/fanout ratio and simulated annealing,” in
2013 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,
2013, pp. 2549–2552.

[112] X.-D. Wang and T. Chen, “Performance and area optimization of vlsi systems
using genetic algorithms,” VLSI Design, vol. 3, no. 1, pp. 43–51, 1995.

[113] S. Benkhider, F. Boumghar, and A. Baba-ali, “A parallel genetic approach to
the gate sizing problem of vlsi integrated circuits,” in Proceedings of of the 12th
International Conference on Microelectronics. IEEE, 2000, pp. 169–173.

[114] F. Brglez and H. Fujiwara, “A Neutral Netlist of 10 Combinational Benchmark
Circuits and a Target Translator in Fortran,” in Proceedings of IEEE International
Symposium Circuits and Systems (ISCAS 85). IEEE Press, Piscataway, N.J.,
1985, pp. 677–692.

[115] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The epfl combinational bench-
mark suite,” in Proceedings of the 24th International Workshop on Logic &
Synthesis (IWLS), 2015.

[116] “Genus synthesis solution,” https://www.cadence.com, Cadence Design Systems.

[117] “Innovus implementation system,” https://www.cadence.com, Cadence Design
Systems.

[118] M. Anwar, S. Saha, M. M. Ziegler, and L. Reddy, “Early scenario pruning for
efficient design space exploration in physical synthesis,” in 2016 29th International

190

https://www.cadence.com
https://www.cadence.com

References

Conference on VLSI Design and 2016 15th International Conference on Embedded
Systems (VLSID). IEEE, 2016, pp. 116–121.

[119] M. M. Ziegler, H.-Y. Liu, G. Gristede, B. Owens, R. Nigaglioni, and L. P. Carloni,
“A synthesis-parameter tuning system for autonomous design-space exploration,”
in 2016 Design, Automation & Test in Europe, (DATE). IEEE, 2016, pp.
1148–1151.

[120] A. B. Kahng, S. Kumar, and T. Shah, “A no-human-in-the-loop methodology
toward optimal utilization of eda tools and flows,” Proceedings of DAC, WIP
Track, 2018.

[121] S. Roy, Y. Ma, J. Miao, and B. Yu, “A learning bridge from architectural synthesis
to physical design for exploring power efficient high-performance adders,” in 2017
IEEE/ACM International Symposium on Low Power Electronics and Design
(ISLPED). IEEE, 2017, pp. 1–6.

[122] Y. Ma, S. Roy, J. Miao, J. Chen, and B. Yu, “Cross-layer optimization for high
speed adders: A pareto driven machine learning approach,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 12,
pp. 2298–2311, 2019.

[123] J. Kwon, M. M. Ziegler, and L. P. Carloni, “A learning-based recommender
system for autotuning design fiows of industrial high-performance processors,”
in Proceedings of 56th Design Automation Conference (DAC). IEEE, 2019, pp.
1–6.

[124] D. Hyun, Y. Fan, and Y. Shin, “Accurate wirelength prediction for placement-
aware synthesis through machine learning,” in 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 324–327.

[125] A. B. Kahng, “Mlcad today and tomorrow: Learning, optimization and scaling,”
in Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD,
2020, pp. 1–1.

[126] X. Zhang and M. X. Wang, “Standard cell library having cell drive strengths
selected according to delay,” Sep. 16 2008, uS Patent 7,426,710.

[127] X. Xu, N. Shah, A. Evans, S. Sinha, B. Cline, and G. Yeric, “Standard cell
library design and optimization methodology for asap7 pdk,” in 2017 IEEE/ACM

191

Appendix A

International Conference on Computer-Aided Design (ICCAD). IEEE, 2017,
pp. 999–1004.

[128] S. Dobre, A. B. Kahng, and J. Li, “Mixed cell-height implementation for improved
design quality in advanced nodes,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2015, pp. 854–860.

[129] Y.-X. Chiang, C.-W. Tai, S.-R. Fang, K.-C. Peng, Y.-D. Chung, J.-K. Yang, and
R.-B. Lin, “Designing and benchmarking of double-row height standard cells,” in
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE, 2018,
pp. 64–69.

[130] Y.-C. Zhao, Y.-C. Lin, T.-C. Wang, T.-H. Wang, Y.-R. Wu, H.-C. Lin, and S.-Y.
Kao, “A mixed-height standard cell placement flow for digital circuit blocks,” in
2019 Design, Automation & Test in Europe, (DATE). IEEE, 2019, pp. 328–331.

[131] Z. Zhu, J. Chen, W. Zhu, and Y.-W. Chang, “Mixed-cell-height legalization
considering technology and region constraints,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 39, no. 12, pp. 5128–5141,
2020.

[132] “Liberate characterization,” https://www.cadence.com, Cadence Design Systems.

[133] “Virtuoso abstract generator,” https://www.cadence.com, Cadence Design Sys-
tems.

192

https://www.cadence.com
https://www.cadence.com

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Declaration
	Introduction
	Motivation
	Hypotheses and Objectives
	Contributions
	Thesis Structure

	Digital Integrated Circuit Design in EDA Flows
	Overview
	Transistor Evolution
	Transistor Scaling
	Scaling Challenge

	Standard Cell in Digital Integrated Circuits
	Standard Cell Library
	Standard Cell Design Flow and Automation

	Digital VLSI Design Flow
	Logic Design and Circuit Design
	Logic Synthesis
	Physical Design

	Modified Digital Flow
	Summary

	Multi-objective Optimisation
	Overview
	Multi-objective Problem
	Pareto Optimality

	Decomposition of Multi-objective Problems
	Evolutionary Multi-objective Optimisation
	Operation of a Basic Evolutionary Algorithm
	Multi-objective Evolutionary Algorithm

	MOEA Application in VLSI Design Flow
	Summary

	Multi-objective Circuit Optimisation using Layout Templates
	Overview
	Automated Multi-Objective Design Flow
	Parametric Physical Layout
	Pre-designed Standard Logic Cells
	Layout Generation
	SKILL Script
	Parasitic Extraction

	Multi-objective Circuit Optimisation
	Algorithm
	Objectives
	Circuit Simulation

	Experimental Results
	Full Adder Parametric Layout
	Optimisation Results and Discussion
	Optimisation Advancement at Physical Level

	Summary

	Multi-objective (MO) EDA Framework
	Overview
	Discrete Gate Sizing for PPA Optimisation
	MOEDA Optimisation Framework
	Algorithm
	Multi-objective (MO) EDA Flow

	Experimental Setup
	Tool Environment Setup
	Objective Evaluation in Tools
	Multi-threads Running and Runtime

	Multi-objective Optimisation Experiments
	Initial Experiments with a Reduced Library
	Experiments with a Full Commercial Library
	Statistics of MOEDA Flow Convergence

	MOEA Search vs. Stochastic Search
	Summary

	Design Space Exploration in Large-scale Designs
	Overview
	Design Space Exploration using Standard Digital Flow
	Multi-obejctive Design Space Exploration Flow
	Algorithm
	MODSE using Multiple Seed Designs

	Experimental Setup
	Tool Environment Setup
	Objective Evaluation in EDA Tools
	Multi-threads Running and Runtime

	Analysis of Tool-generated Design Space
	Performance Variation in Synthesis Tool

	Multi-objective Design Space Exploration
	Squeeze Design Space for PPA Optimisation
	Squeeze Design Space for Constrained Floorplan
	Discussion

	Summary

	Improved Drive Granularity Standard Cells
	Overview
	Drive Strength Design of Standard cells
	Logic Design using Multiple Driving Options
	Improved Drive Granularity Library Design
	The Performance of the Proposed Libraries

	MOEDA in Fine-grained Cell Selection
	Experiment Setup
	Tool Environment Setup
	Objective Evaluation in EDA Tools

	Experimental Results
	Original vs. Fine-grained Cells in the Standard Flow
	Fine-grained Cells in MOEDA Flow

	Summary

	Conclusions and Further Work
	Conclusions
	Future Work

	Appendix A
	Abbreviations
	References

