AL-OBAIDI, SALAH MAHDI ORCID: https://orcid.org/0000-0003-4521-7193 (2020) Privacy aware human action recognition: an exploration of temporal salience modelling and neuromorphic vision sensing. PhD thesis, University of Sheffield.
Abstract
Solving the issue of privacy in the application of vision-based home monitoring has emerged as a significant demand. The state-of-the-art studies contain advanced privacy protection by filtering/covering the most sensitive content, which is the identity in this scenario. However, going beyond privacy remains a challenge for the machine to explore the obfuscated data, i.e., utility.
Thanks for the usefulness of exploring the human visual system to solve the problem of visual data. Nowadays, a high level of visual abstraction can be obtained from the visual scene by constructing saliency maps that highlight the most useful content in the scene and attenuate others. One way of maintaining privacy with keeping useful information about the action is
by discovering the most significant region and removing the redundancy. Another solution to address the privacy is motivated by the new visual sensor technology, i.e., neuromorphic vision sensor. In this thesis, we first introduce a novel method for vision-based privacy preservation. Particularly, we propose a new temporal salience-based anonymisation method to preserve privacy
with maintaining the usefulness of the anonymity domain-based data. This anonymisation method has achieved a high level of privacy compared to the current work. The second contribution involves the development of a new descriptor for human action recognition (HAR) based on exploring the anonymity domain of the temporal salience method. The proposed descriptor tests
the utility of the anonymised data without referring to RGB intensities of the original data. The extracted features using our proposed descriptor have shown an improvement with accuracies of the human actions, outperforming the existing methods. The proposed method has shown improvements by 3.04%, 3.14%, 0.83%, 3.67%, and 16.71% for DHA, KTH, UIUC1, UCF sports, and HMDB51 datasets, respectively, compared to state-of-the-art methods. The third contribution focuses on proposing a new method to deal with the new neuromorphic vision domain, which has come up to the application, since the issue of privacy has been already solved by the sensor itself. The output of this new domain is exploited by further exploring the local and global details of the log intensity changes. The empirical evaluation shows that exploring the neuromorphic domain provides useful details that have demonstrated increasing accuracy rates for E-KTH, E-UCF11 and E-HMDB5 by 0.54%, 19.42% and 25.61%, respectively.
Metadata
Supervisors: | Charith, Abhayaratne |
---|---|
Keywords: | Human action recognition, histogram of oriented gradients in salience (HOG-S), privacy, visual anonymity, anonymisation, temporal visual salience, utility, global descriptor, histogram of run length encoding of polarities (HRLEP), local descriptor, neuromorphic vision sensing (NVS) domain, neuromorphic camera. |
Awarding institution: | University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Electronic and Electrical Engineering (Sheffield) |
Identification Number/EthosID: | uk.bl.ethos.816927 |
Depositing User: | Mr SALAH MAHDI AL-OBAIDI |
Date Deposited: | 25 Oct 2020 23:27 |
Last Modified: | 01 Nov 2021 10:54 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:27917 |
Download
Final eThesis - complete (pdf)
Filename: SA_thesis7.pdf
Licence:
This work is licensed under a Creative Commons Attribution NonCommercial NoDerivatives 4.0 International License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.