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Abstract

Solving the issue of privacy in the application of vision-based home monitoring has emerged

as a significant demand. The state-of-the-art studies contain advanced privacy protection by fil-

tering/covering the most sensitive content, which is the identity in this scenario. However, going

beyond privacy remains a challenge for the machine to explore the obfuscated data, i.e., utility.

Thanks for the usefulness of exploring the human visual system to solve the problem of visual

data. Nowadays, a high level of visual abstraction can be obtained from the visual scene by

constructing saliency maps that highlight the most useful content in the scene and attenuate

others. One way of maintaining privacy with keeping useful information about the action is

by discovering the most significant region and removing the redundancy. Another solution to

address the privacy is motivated by the new visual sensor technology, i.e., neuromorphic vision

sensor. In this thesis, we first introduce a novel method for vision-based privacy preservation.

Particularly, we propose a new temporal salience-based anonymisation method to preserve pri-

vacy with maintaining the usefulness of the anonymity domain-based data. This anonymisation

method has achieved a high level of privacy compared to the current work. The second contribu-

tion involves the development of a new descriptor for human action recognition (HAR) based on

exploring the anonymity domain of the temporal salience method. The proposed descriptor tests

the utility of the anonymised data without referring to RGB intensities of the original data. The

extracted features using our proposed descriptor have shown an improvement with accuracies

of the human actions, outperforming the existing methods. The proposed method has shown

improvements by 3.04%, 3.14%, 0.83%, 3.67%, and 16.71% for DHA, KTH, UIUC1, UCF

sports, and HMDB51 datasets, respectively, compared to state-of-the-art methods. The third

contribution focuses on proposing a new method to deal with the new neuromorphic vision do-

main, which has come up to the application, since the issue of privacy has been already solved

by the sensor itself. The output of this new domain is exploited by further exploring the local

and global details of the log intensity changes. The empirical evaluation shows that exploring

the neuromorphic domain provides useful details that have demonstrated increasing accuracy

rates for E-KTH, E-UCF11 and E-HMDB5 by 0.54%, 19.42% and 25.61%, respectively.
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Chapter 1

Introduction

1.1 Introduction

Today, the interaction between people and technology is considered the highlight feature of our

daily life, especially with all the ubiquitous computing devices. However, it can raise concerns

of interpolating the computation into the privacy of users by different aspects: such as em-

bedding it in the technology itself or through using the computing devices, e.g., computers, as

everyday objects. When the three pillars, i.e., human beings, computation, and the real world,

of this interaction fuse in a seamless approach, a smart environment (SE) can be obtained [7].

SE is the environment that reflects the interaction between people and ubiquitous computing.

SE can represent any area in which the needs of occupants are immediately served by acquiring

and analysing the contextual information in order to enhance the condition of performing their

usual daily actions/tasks [8]. Mainly, the communication and cooperation between the ambient

devices and sensor networks in the environment itself seem to be the paradigm of SE. Ac-

cordingly, SE seems to focus on supporting the daily activities of persons in their environment

regardless of its variation by enhancing their abilities in executing the tasks [9].

Typically, there are many scenarios to implement SEs in real life. Ambient assisted living

(AAL) is considered a typical scenario that can include both smart health, which is concerned

with the independent home care monitoring, and smart home paradigms [7]. AAL is considered

a new area of applications that can assist in finding solutions for the raised longevity problems,

aiming to target the ability of older adults to perform their activities of daily living (ADLs) in
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assistive environments (AEs) [10].

The concept of ADLs, which is used to assess a person’s functional condition to live in-

dependently, is addressed by exploiting the benefits of AAL technologies to safely help older

adults perform their daily activities [11]. Therefore, it is extremely important to automatically

monitor and evaluate a person’s ADLs by distributing sensors in smart areas, such as homes.

Nowadays, various types of sensors are widely developed and used in smart homes to provide

relevant information by analyzing the data obtained [12]. Table 1.1 summarises commonly used

smart home sensors to monitor ADLs.

In Table 1.1, we observe that there are variations of sensor technologies that can be used

to monitor ADLs and outputs useful information to identify the actions. One of the most func-

tional sensors in this application is the vision-based sensor. A video camera is a preferable

sensor that is exploited by researchers to collect data in vision-based monitoring approaches

[13]. Furthermore, the vision-based sensor is considered a rich resource of information because

detailed data can be obtained [12]. This vision sensor can be installed to monitor and recognize

actions based on the obtained data. This vision-based monitoring system witnesses a growth to-

wards building automated monitoring systems, increasingly to set-up cameras rather than other

sensors in in-home assisted systems [14, 15, 16, 17, 18].

However, vision-based in-home monitoring raises the concern of persons about violating

privacy [14, 11], since the vision sensor outputs intensities-based data. These data are easy to

violate, which restrict the usage of vision sensors in the home monitoring scenario.

Recently, the neuromorphic vision sensor, which is inspired by the human’s eye retina, is

presented [19, 20] and used in the application of the computer vision. This sensor outputs the

Table 1.1: Summarization of common sensors used in AAL environment.

Sensor Type of measurement Task
Infrared Motion Localization

Radio Frequency Identification (RFID) Motion Objects usage
Pressure Pressure on Fall detection

Magnetic switches Door/Cabinet Object usage
Ultrasonic Motion Localisation

Video camera Activity Localization
Microphone (Audio) Activity Object usage
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change of the intensity instead of acquiring the intensity, providing a new vision domain that

can be used in the applications of in-home monitoring. However, the output of this new sensor

is different compared to the standard camera. Therefore, we need a new method that can explore

the output of the neuromorphic sensor for semantic tasks, such as action recognition.

1.2 Motivation

To date, we have seen a significant trend in using the vision-based sensor for monitoring and

recognition of the daily activities of human in the literature. In-home monitoring and their

contribution to healthcare for the ageing application have emerged significantly according to

the needs for designing smart monitoring and recognition systems that can assist the elderly

persons to live independently and safely. However, this application offers several challenges

that have risen with incorporating the vision sensor for monitoring people in their properties.

The main concern is the privacy issue since the camera is an intrusive sensor that violates

individuals’ privacy. Generally, there are technical and non-technical solutions presented to

tackle this problem reasoning to increase the acceptance of using the camera sensor in the

assisted living environment. Though, even with these solutions, which have been contributed to

addressing the privacy problem, the trade-off between the privacy preservation and the ability

to explore the obfuscation domain data is still the main challenge that affects the practical usage

of such systems in real scenarios [11].

In the same context, technical and technological solutions have been proposed in this the-

sis. However, the proposed solutions aim to provide a reliable and robust framework which

maintains the identity, i.e., privacy, and, at the same time, provide a strong anonymity domain

that is reusable to recognise the actions regardless of the trade-off between the privacy and

intelligibility.

Non-technically, the human possesses one of the most complex visual systems and has an

extraordinary ability to respond to the most important visual details that attract the human visual

system (HVS). Modelling the visual attention of HVS plays an essential role in understanding

the visual information in the scene [21]. This mechanism of visual attention targets the salient

areas instead of the entire scene. The potential usefulness that arises from modelling the vi-
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sual attention is manifold and can be exploited in several applications, such as removing the

redundancy in visual data [22]. Therefore, modelling of this visual attention temporally, i.e.,

temporal salient regions, provides a rich source of information reflecting the behaviour of the

action overtime on which useful information can be extracted, and efficient recognition can take

place.

From the technical perspective, the new revolution camera, which is also inspired by the

HVS, i.e., neuromorphic vision sensor (NVS), offers a tool that acquires useful salient infor-

mation from the scene avoiding the redundant visual data [20]. This sensor seems to address

privacy since the output of the sensor does not include intensity information, instead the inten-

sity changes over time are obtained. This device is data-driven which relies on the magnitude of

the captured motion, avoiding recording the redundant intensity information [23]. This camera

outputs a stream of intensity changes, e.g., events, instead of the intensity values making is a

useful candidate in the application of AAL.

This thesis, therefore, aims to provide technical and non-technical solutions for the privacy

issue in visual data and targets the utility of obfuscated data for human action recognition.

The main research question is to obtain a reliable anonymisation method and provide useful

information for exploring the utility of the anonymity domain for human action recognition.

The obfuscated data and their improved accuracy is achieved without considering the trade-

off between privacy and intelligibility. The combination of privacy and utility can provide a

reliable, robust and flexible framework beyond solely the privacy that uniquely includes privacy

and utilities together without using distinct models.

1.3 Key contributions

The main contributions of this thesis are:

1. The proposal of a new vision-based privacy preservation method based on the tem-

poral salience detection for a useful anonymity domain

The proposed anonymisation method aims to make the vision sensor reliable and increase

the acceptance of a video camera used in an assisted living environment. The proposed

method focuses on modelling the action’s silhouette instead of modelling the subject’s
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silhouette. This modelling creates different silhouettes for different actions based on the

dynamics of each action over time. Moreover, the action content is preserved as well as

the temporal redundancy in the consecutive frames is omitted. The obtained temporal

salience map omits the intensities and they are substituted with the saliency values in the

anonymity domain. The subjective evaluation explains the robustness of the proposed

method in the context of privacy compared to the current work, which is included in

Chapter 3. The results of this evaluation prove that maintaining and anonymising only

the action’s relevant human body parts to construct the salience map leads to a higher

level of privacy.

2. A new descriptor for feature extraction from the action model in the anonymity

domain

The proposed descriptor aims to emphasise the utility of data in the anonymity domain,

which are modelled using the proposed method in Chapter 3. This new descriptor targets

the region of the salient and avoids extracting features from the representation of the

redundant data in the map. This outputs a robust description that is used to recognise

the action. The robustness of the descriptor refers to the method in which the action is

modelled, which, in turn, improves the discrimination among the actions and increases the

similarity inside the action itself. The experimental evaluations show that the containment

of this descriptor reduces the error rate in the matching process and improves the accuracy

level of DHA, KTH, UIUC1, UCF Sports, and HMDB51 datasets by 3.04%, 3.14%,

0.83%, 3.67%, and 16.71%, respectively.

3. A new method for exploring the neuromorphic sensing domain to represent the ac-

tions by extracting thier local and global characteristics

Introducing a new concept in vision-based sensor technologies, i.e., neuromorphic vision

sensor, and the nature of the data obtained from this device, opens up a new research

area for the exploitation of this device in the application of privacy preservation. This

camera outputs a stream of events synchronously, which indicates the intensity changes

at each location over time rather the intensities. The output of this sensor seems to be

useful to provide a reliable and robust anonymity domain. Chapter 5 of this thesis,
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therefore, proposes this device to address the privacy issue. Furthermore, this chapter

presents a new method to extract features by exploring the neuromorphic domain for daily

human actions. This proposed descriptor in this chapter analyses the patterns of events

locally and globally to capture the local and global representation. Then, these features

are fused to construct a robust description vector to recognise the action. In practice,

several experiments are conducted using challenges datasets, and we demonstrate the

ability of the neuromorphic domain to provide useful information that is exploited to

provide a robust descriptor. The evaluation stage demonstrates the outperforming of the

proposed method compared to the existing work on exploring the neuromorphic domain

for HAR and the improvement of the accuracy rate by 0.54%, 19.42% and 25.61% for

E-KTH, E-UCF11 and E-HMDB50 datasets, respectively.

1.4 Publications

Part of the work in this thesis has been published in the following conference papers:

1. S. Al-Obaidi and C. Abhayaratne, “Privacy protected recognition of activities of daily

living in video,” in 3rd IET International Conference on Technologies for Active and

Assisted Living (TechAAL 2019), 2019, pp. 1–6.

2. S. Al-Obaidi and C. Abhayaratne, “Temporal salience based human action recognition,”

in International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019,

pp. 2017–2021.

This work is also submitted in the following journal papers:

1. S. Al-Obaidi and C. Abhayaratne, “Making Sense of Neuromorphic Data for Human

Action Recognition,” submitted toward IEEE Access, March, 2020.

2. S. Al-Obaidi and C. Abhayaratne, “Privacy Aware Human Action Recognition,” submit-

ted toward IEEE Access, April, 2020.
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1.5 Outline

The thesis contains six chapters, which are listed as follows:

Chapter 2 provides a detailed description of the existing work on vision-based ADLs in

AAL. Section 2.2 gives a detailed description and the current contributions on using different

types of vision sensors for monitoring the individuals in assisted living environments. Sec-

tion 2.3 illustrates the existing anonymisation methods to preserve privacy based on the sensors

introduced in the previous section by explaining the exploitation of the anonymity domain for

action recognition. Then, the feature learning and deep learning methods for ADLs recognition

are reviewed in Section 2.4. This is followed by reviewing the RGB-based learning trend in

Section 2.5. In Section 2.6, the new neuromorphic sensing domain is reviewed regarding HAR.

Finally, the details of nine datasets which are commonly used in computer vision applications

are explained in Section 2.7.

Chapter 3 introduces a novel method for privacy preservation by modelling the action based

on the estimation of the temporal saliency. Section 3.1 provides a general introduction of the

proposed method. Section 3.2 discusses the related work on concealment of the identity and

creating the anonymity domain. Section 3.3 presents the proposed temporal salience detection

to address the issue of privacy and introducing a useful anonymity domain. Section 3.4 shows

the performance evaluation and discussions in terms of anonymisation, followed by a summary

of the work in Section 3.5.

Chapter 4 targets the utility of the outputs; i.e., obtained anonymity domain, of the proposed

temporal salience anonymisation presented in Chapter 3. This chapter proposes a new method

to explore the obfuscated data to extract a robust descriptor for action recognition. Section 4.1

introduces the proposed temporal salience-based action recognition. Section 4.2 discusses the

related contributions on exploited HAR in in-home monitoring systems. Then, the details of

the proposed method to explore the temporal salience are explained in Section 4.3, followed by

an evaluation of the utility of the proposed method based on conducting several experiments

using different datasets on different classifiers in Section 4.4. Finally, Section 4.5 summarises

the work and its performance.

Chapter 5 presents a new domain to the issue of privacy and a new method to explore
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it. In this chapter, we see how this new vision sensor is adopted for action recognition by the

intelligibility of the outputs of this device. Section 5.1 introduces the differences between the

neuromorphic vision sensor and the standard vision sensor. Section 5.2 reviews the related work

on exploring the neuromorphic domain and the challenges that have not been addressed yet.

The principle of using this sensor is explained in Section 5.3 followed by detailing the proposed

method to explore the output domain of the neuromorphic vision sensing globally and locally

in Section 5.4. The performance evaluation of the new descriptors on this new anonymisation

domain is shown in Section 5.5. Finally, this chapter is summarised in Section 5.6.

Chapter 6 concludes the contents of the thesis and outlines the future directions of the

ambient action recognition studies.
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Chapter 2

State of the art

2.1 Introduction

In this chapter, we review the most relevant existing work of video-based anonymisation in

the field of ambient assisted living (AAL) and its dominant area, i.e., HAR. In general, the

anonymity, i.e., privacy preservation, can be seen from two perspectives: technological and

technical. Technologically, in the in-home monitoring, the selected vision-based device can

provide the required anonymisation to conceal the identity without the need to conduct any

image or signal filtering algorithms to satisfy the anonymity. From the technical perspective,

instead of using specific camera technologies, the standard RGB camera is used to acquire video

sequence and applies a filtering or masking algorithm, for instance, to cover the identity.

This thesis aims to develop a reliable and useful anonymity domain to address the issue

of privacy and explore the anonymised data for HAR regardless of the trade-off between the

privacy and utility. To comply with these problems, we divide this chapter into six sections.

Initially, we review the type of visual sensors that are used to address the privacy issue in AAL.

Then, the existing methods to obfuscate the vision-based privacy are classified into two cat-

egories explaining the pros and cons of each category and the usefulness of their anonymity

domain, followed by reviewing the methods of recognising the vision-based daily human ac-

tions. The new vision domain, i.e., neuromorphic domain, is reviewed later. Finally, we give

information about the datasets that are used in this thesis. In the following sections, the head-

lines mentioned above will be explained in separate corresponding sections.
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2.2 Visual sensors in assisted living

In recent years, the designing of automated in-home monitoring systems has risen according to

the desire of most elderly people to independently age in their home. Although such ageing-

in-place systems seem to offer a promising service for higher senior health care, their success

depends on improving the technologies of AAL. AAL provides tools for monitoring the ADL

to improve health conditions of older adults life.

Usage of the sensors for monitoring and assessment of ADL is considered a crucial element

for AAL. The sensors impose several technical and non-technical issues, such as the choice

of the sensor, ease of use and installation, which are required to be considered for successful

and useful ADL monitoring. Nowadays, various types of sensors are developed and utilized

in smart homes to provide a significant source of information [12]. In general, sensors are

categorised into wearable and non-wearable according to the localization of the sensor [11].

On the one hand, the wearable sensors, such as body-worn devices, are attached to a person or

their clothes to measure the vital health metrics and motion characteristics. On the other hand,

non-wearable sensors are localized in stationary places of the environment and mainly used to

detect the subjects.

A video camera, for example, is considered a preferable sensor that is exploited by re-

searchers to collect data in vision-based monitoring approaches [13]. Furthermore, it is con-

sidered a rich resource to obtain detailed information [12]. This vision sensor can be installed

to monitor and recognize activities based on the obtained data. In some applications of AAL,

such as, fall monitoring and detection, the trend of using intelligent vision-based systems is

highly demanded. It witnesses a growth towards building automated monitoring systems to set

up cameras rather than other sensors in in-home assistive systems [15]. In the following, four

candidates vision-based sensors, e.g. low resolution, high definition, RGB-D and thermal, in

the application of AAL, are reviewed explaining the advantages and disadvantages of each one

of them.
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2.2.1 Low resolution vision sensor

The low-resolution visual sensor is used to reduce the concern of persons with respect to privacy

issue since this device captures low-resolution visual information. In general, this sensor is

restricted to the applications of behaviour monitoring, such as fall detection and sleeping.

Culurciello et al.[24] investigated an asynchronous temporal contrast (ATC) vision sensor

to detect motion. The ATC sensor responds to the changes in the light intensity of pixels to

raise alarm of an accident of the fall in the elderly care environment. The imaging system is

placed in front of the subject with a distance of 3 metres and a height of 0.8 meters to capture an

array of pixels with resolution 64×64 pixels. In this sensing work, multiple side-view images

of the scene are taken, alerting that an accident has occurred. This sensor is characterised by

its ability to instantaneously produce a motion vector to be computed and forwarded in order

to report accidents. This sensor is non-intrusive, has low power consumption, is small in size,

and is a self-contained system. Moreover, the most important challenge that it can overcome is

the privacy violation problem because the details of a patient’s appearance are filtered out and

processed locally.

Another low-resolution sensor technology is presented by Nyan et al.[25]. This sensor

comes with a lower resolution, which is 30×30 pixels, compared to ATC, and is used to build a

system for monitoring mobility patterns of older patients with cognitive disorders. A network of

these low-resolution cameras is proposed to robustly track people based on distributed process-

ing architecture. Despite the fact that multiple visual sensors are installed, the architecture is

considered a much cheaper solution than other solutions in terms of using high-resolution cam-

eras. Using these sensors can reduce cost, computational requirement, power consumption, and

privacy concern. In addition to detecting motion, this system can recognize between movement

of people and non-human objects. However, acquired images contain artifacts due to electrical

interference as well as significant shading can result. Thus, image pre-processing techniques,

such as, devignetting, are required to remove the effect of shading in order to correct the low

brightness of images.

These sensors are used again in [26] and [27] to analyse the sleep patterns and behaviour

of elderly persons, respectively. A network of 10 low-resolution sensors are used to analysis

long-term behaviour (10 months of senior citizen activities), such as, eating, cooking, sleeping,
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etc. The motivation is how to use low-cost sensors with little privacy concern. At the beginning,

because the quality of captured images is poor, de-noising and sharpening techniques are used to

remove noise and improve the quality of the images. Then, a foreground subtraction technique is

applied to track the motion patterns of observers. Although the result is reliable, using multiple

cameras increases the complexity of computation.

Despite the solution that this sensor offers to address the issue of privacy, the quality of the

captured visual data is poor which affects the usefulness of the features that can be extracted

from this low-quality data. Accordingly, the low-resolution camera-based system requires al-

gorithms to enhance the quality of the captured visual data, which means extra computations.

2.2.2 High definition video camera

There are attempts to use the video camera to develop intelligent video surveillance systems

for analysing ADLs of elderly people to offer a safe environment. Thus, different frameworks

are recently proposed to use a high definition video camera for indoor monitoring. The video

camera is classified as a sensor for AAL to monitor activities in smart homes [28].

To this end, Foroughi et al.[29] used a video camera with resolution 320×420 pixels for

monitoring movement pattern to detect falls. A fixed video camera is used to record 50 video

clips, representing 10 kinds of activities, which were captured and recorded in AVI format at

30 frames per second. Motion information, motion-energy image and motion-history image,

is extracted from the video sequence to reduce both the space and the time consuming. Then,

these features are fed directly to a classifier or firstly reduced by using eigenspace technique

and then transferred to the classifier. However, since the video sequences are recorded in a lab

environment, the results might be different in the real world.

The claim that the vision sensors can collect data which is difficult to gain by other sensors is

presented by Skubic et al.[30]. Therefore, the proposed framework is to use a network of video

cameras for monitoring elderly adults in their home to detect falls. The network contains six

stationary video sensors, which are installed in the room with motion sensors to work together

to discover the presence of activity by persons and to distinguish between visitors and residents.

The privacy issue is addressed by applying a background/foreground subtraction approach to

extract the silhouettes of the person. Because there are several cameras that are installed with
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numerous sensors, moving to the real homes can be considered a challenge with respect to the

amount of equipments and effort to install all these sensors in one place.

Building a real-time fall detection system based on vision sensors is considered a challenge

in real life. Accordingly, a single high-speed camera with resolution 1280×1025 pixels is used

by Shi et al.[31] to record the falling motions. It is positioned orthogonally with the direction of

the fall and 5m away from the subject. Each sequence of recorded frames is analysed to compute

the change in the inclined angle with respect to the time in order to alarm the airbag system

and make it operate. The obtained data is firstly transferred into a digital signal processing

(DSP) system, which is developed for real-time fall detection before the airbag is opened. Fast

Fourier transform (FFT) and binary SVM filter are incorporated into an embedded algorithm to

discriminate regular motions, such as, walking, sitting, and standing, for example, from falling.

A static video camera is used in CIRDO project [32] for monitoring older adults to detect

falls automatically. After capturing a video stream, the position and the situation of the person

are continuously extracted from the processed stream to detect falls. The video is processed in

an automatic way to maintain the privacy of persons. Accordingly, it is captured and processed

directly without recoding a copy and sent to the server to avoid operator intervention. In the

stage of video processing, the silhouette is extracted based on foreground/background extrac-

tion, which is used to obtain useful characteristics for tracking the movement to identify the fall

event. The scenes may suffer from the problems of changing light conditions and modifications

of background. In this context, a Gaussian mixture method is used to enhance the illumination

in both chrominance-luminance and chrominance-only spaces and generate a global illumina-

tion. Using one static camera seems to limit the field of view and restrict the camera range.

However, this problem is solved by installing audio sensors in the region outside the camera

range.

To avoid the field of view limitation, an omnidirectional camera can be used for monitoring

and tracking because it can cover a large vision field. Thus, in [33], two omnidirectional video

cameras are used, one is mounted on the ceiling and the other positioned on the sidewall, for

monitoring the room space to introduce information about the actions of elderly people. They

are captured video sequences with resolution 640×480 at 8 fps. The captured visual data is

pre-processed by Gaussian mixture model (GMM) techniques to extract the foreground object.
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In addition, artifacts are processed by removing small changes in the chromaticity and intensity.

However, long time occlusions caused by multiple person participation in the same place can

lead to a high missing rate.

2.2.3 RGB-D camera (e.g., Kinect)

The entertainment device, Kinect, seems to offer a promising trend toward enabling detection

of the human body and its movement without having to put any markers on it. It has become a

preferred device to set-up in smart environmental systems following its capability and cheaper

price [34]. Three sensors, RGB camera, IR projector, and IR camera, are integrated in Kinect

to capture human body motions. It can preserve the privacy by acquiring depth images [35]. In

elderly care, Kinect and its application can mainly address the need for alarm tools in in-home

monitoring fall detection and risk reduction systems [36].

Falling is considered the indirect reason of death in the elderly. Several automatic ap-

proaches are proposed to monitor senior citizens to measure the expectation of a fall before

it happens based on Kinect. In this context, Kinect device is used by Parajuli [37] to obtain

3D information which is recorded by 3D depth sensors. The data is collected in frames, which

represent the posture of the person with its twenty joints (Hip Centre, Spine, Shoulder Centre,

Head, Left Shoulder, Left Elbow, Left Wrist, Left Hand, Right Shoulder, Right Elbow, Right

Wrist, Right Hand, Left Hip, Left Knee, Left Ankle, Left Foot, Right Hip, Right Knee, Right

Ankle and Right Foot). Finally, a high dimensional feature vector that concatenates the coor-

dinates of joints has resulted. It is positioned at the height of 1 metre from the ground. The

obtained data is previously processed with data transformation and cleaned to adjust the distor-

tion and reduce the scale of data to decrease the complexity, respectively. However, changing

the scale of data can lead to the inaccurate performance of the classifier.

Kinect is exploited by Booranrom et al.[34] to assist older people to be secure and live

independently. In particular, it is applied to a system to help older adults to switch on/off

electrical devices without interacting them as well as raising alarm when elderly persons fall

out of bed and any irregular behaviour during sleep. It can maintain the privacy of persons

in both daytime and nighttime because a human skeleton is only detected and not any image.

However, it may fail to detect the skeleton when the human body is covered by a blanket, for
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example. Furthermore, the ability to detect all the human skeleton joints is inaccurate because

only one Kinect camera is installed.

Moreover, Kinect is applied in an automatic system for monitoring the exercises that are

done by elderly persons and to obtain on-line feedback [38]. A single depth camera positioned at

about 3m distance from the subject is used to capture the whole body and estimate the poses. It is

incorporated with nine infrared cameras, which are fashioned circularly to cover workspace. All

these sensors are aimed to capture human poses and record 3D marker data. Although Kinect

generates less precise 3D data than infrared cameras, it is preferable because it is unnecessary to

do any user interaction, calibration or correction and therefore can preserve privacy. However,

frequent errors in pose tracking can result due to the use of a single Kinect camera. Occlusions,

such as self-occlusion by other body parts, or clutters seem to lead to frequent fails.

In an indoor environment with low conditions of light, Kinect may provide a solution to

capture images and detect subjects because it has both infrared laser-based IR emitter and an

infrared camera. Therefore, it is used by Michal and Bogdan [39] towards reliable, unobtrusive

fall detection of elderly adults. However, its usage is restricted to be set-up in dark rooms.

After capturing a depth image, the foreground object is extracted through the differencing of

the current image from stored reference depth images without a subject.

The majority of Kinect applications for monitoring elderly people are restricted to the fall

detection issue. The reason can be regarded with the risk of fall injuries for elderly adults and

the physical and psychological problems behind it. However, the occlusions in the monitored

scene can affect the accuracy of Kinect.

Following the limitation of the field of view, probably, integrating other vision sensors, such

as video camera, with Kinect is valuable to track persons in out of range because Kinect is stati-

cally set-up. In [40], Kinect is integrated with a single RGB video camera to monitor adults for

fall detection. Therefore, to meet the requirement of privacy concern, a foreground/background

subtraction approach is applied on RGB camera video to extract foreground map which is used

for human tracking rather than camera image. In the same context, Planinc and Kampel [41]

integrated depth camera (e.g., Kinect) is used with a 2D camera to build an automatic system

for fall detection as well. Here, firstly, motion detection and background subtraction approaches

are applied to extract the persons to enable detecting fall solely.
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2.2.4 Infrared or thermal camera

Another imagery sensor that is exploited for monitoring elderly citizens is the infrared camera.

It can serve to maintain the privacy of the observer. Since infrared cameras are less sensitive to

brightness and low light conditions, Tzeng et al.[42] used an infrared camera for fall detection

of elderly people in indoor environments. When the camera starts to track a subject, a sequence

of images is recorded and then filtered and expanded to produce clean images and extract the

features diagnosed by the expert system to alert fall detection. In spite of robust results, how-

ever, the infrared camera is unable to detect all the patterns of falls because it is difficult to

identify the fall of older adults based solely on visual data. Therefore, another sensor, such as

the pressure sensor, is combined with an infrared camera and an expert system addresses fall

detection based on the assessment of extracted features of both.

In the same context of fall detection, Sokolova et al.[43] build an infrared video-based

fall monitoring and detection system for elderly people. An infrared camera is used to record

a video with resolution 720×480 pixels for monitoring static and dynamic falls of a single

person. After capturing images, each image is normalized to unify the scale of pixel values

and then is subjected to a binarized thresholding process to isolate the elements of the human.

This segmentation is performed on both single infrared image or a sequence of infrared video

images to detect static or dynamic falls, respectively. Although the findings and the performance

were better than other technologies, testing the proposed method in the real world with a single

camera can change the expectations.

The thermal camera is also utilized to track people in ambient assisted living environments

[44, 45]. We found two scenarios to use this type of sensor: ceiling camera [44] and stand-

ing camera [45]. In the first scenario, the camera is positioned on the ceiling of the apart-

ment (kitchen, for example) at the height of 4.4m to cover approximately 6m2 of the monitored

area. A sequence of low-resolution images with 80×60 pixels is captured and fed into a set of

multi-hypotheses Monte-Carlo particle filters. Firstly, these images are pre-processed by static

background subtraction to eliminate image noise and to isolate the foreground object. Then,

8-neighbour connectedness for each pixel is applied to segment the resulting foreground image.

In the second scenario, the camera is fixed on standing at the corner of the room to measure the

temperature of the body using a low-resolution array of 8 pixels. The capture vector of pixels
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is then sent through the recurrent neural network (RNN) to detect the falling and to launch the

alert.

Recently, a low spatial resolution infrared sensor is used for ambient assisted living [46].

The proposed system is used to address privacy and daily action recognition. The thermal

sensor itself retains the privacy since this sensor outputs 8× 8 array includes the temperature as

the pixel intensity. The obtained thermal images are fed into a 3D convolution neural network

for the action representation.

However, the limitation field of view of the camera imposes to be mounted in an unusually

high position which can lead to capturing non-human heat sources caused by some local and

global sources, such as, some appliances and sunshine, respectively.

2.2.5 The Challenges

Mainly, there are common challenges that can be found when reviewing vision-based sensors

and need to be considered and addressed. These challenges can be classified into technical

and non-technical which are listed below. These limitations can affect the performance of the

overall system and may lead to failing.

Technical challenges:

1. The choice and set-up of sensors.

2. Signal processing techniques.

3. Machine learning algorithms.

4. Limitation of camera field of view and distance.

5. Occlusions.

6. Illumination changing.

Non-technical:

1. Ease of usage and installation.
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2. Privacy violation.

3. Real life environment.

Shadow field or light-less environments, for example, can significantly degrade the perfor-

mance of video camera-based home monitoring [36]. Therefore, several vision-based tracking

systems combine a variety of vision-based sensors in a single system to overcomes these obsta-

cles [47]. However, using different vision technologies means different multi-modal processing

and this multi-modality increases the complexity of the system. Moreover, how many sensors

will be adequate to offer rich data? What is the vision sensor technology that is better than

others? This needs to be addressed as well. Table 2.1 summarizes the main differences between

all visual sensors against different challenges.

We argue that extracting a useful abstract from the visual data is more effective to identify

the action instead of using extra computations, such as a multi-modal processing.

2.3 Vision-based camera anonymisation

In this section, the existing work on privacy preservation is presented, explaining the challenges

that are still not addressed yet. In this reviewing, both the technical and non-technical solutions

are discussed and argued, highlighting the weak points in these solutions that can be contributed

to improvements in the performance. The issue of privacy is still the main challenge in the ap-

plications of healthcare and smart homes whenever the identity, appearance and face details

Table 2.1: Summarization of camera-based sensors capabilities against different challenges.

Challenge Low resolution High definition Depth Infrared

Light change Sensitive Sensitive Less sensitive Less sensitive

Cost Low High Low Low

Image processing Required Required Required Required

Privacy maintenance High Low High High

Field of view Limited Limited Limited Limited

Occlusion Sensitive Sensitive High sensitive Sensitive

Image quality Low High Low Low
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raise the concern of the subjects. Privacy is also considered one of the highest demanded con-

cerns in the Internet of things (IoT) systems [48, 49]. This challenge is compounded when the

sensor is a camera which is one of the sensors that arouse the sensitivity of in-home monitoring

applications. So, the researchers work hard on this challenge to meet the requirements of the

subject to accept using the camera sensor. Because of using a video camera in our research, the

following review focuses on the technical and non-technical vision-based solutions to address

privacy in the anonymity domain and the existing challenges in these solutions.

2.3.1 Image processing-based anonymisation

Technically, several solutions based on processing visual information have been presented.

Most of these methods leveraged from image processing techniques to cancel the people’s sen-

sitive vision-based information. Accordingly, blocking [50], cartooning [51], and masking [52],

to obfuscate the sensitive information are the most dominant approaches used in this domain.

Blurring is one of the standard algorithms to protect people’s privacy through blurring the

face in the vision-based monitoring systems [53, 54, 55, 56, 57]. Though blurring the entire

person’s body is more useful to provide a full identity obfuscation [58, 50] since other body

parts can reflect the personality profile. This filter modifies each pixel in the privacy region or

the whole image by applying the Gaussian function using the neighbouring pixels.

Pixelating is another widely used method adopted to obfuscate the privacy in vision-based

assistive living environments [59, 60]. According to this filter, the image/frame is partitioned

into blocks of pixels, and the average value of the intensities in each block is assigned into those

pixels in the block. This method reduces the resolution of the privacy region and provides strong

data abstraction. However, this high-level of privacy leads to losing a considerable amount of

visual, leading to a low-level of utility [61].

Blocking/masking is a way to preserve the sensitive regions in still images and video se-

quences by covering the identification/sensitive appearance information to obfuscate the pri-

vacy. This approach takes several patterns; such as, blocking with a grey-level block [50],

background or black bounding box [62], or a solid silhouette [63]. Masking or blocking can be

in two different themes: face masking [52] or the whole body covering [63].

Encryption-based privacy obfuscation algorithms are used to conceal the personal de-
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tails in image/video [64, 65, 66, 67, 68]. The encryption is applied over the whole frame or

the region of the sensitive data to achieve privacy. The encryption-based methods scramble the

sensitive visual information to achieve a high level of privacy which means that the protected

region of privacy is unusable without decryption of the encrypted data [69]. Therefore, to make

the encrypted data intelligible, the original data has to be recovered, and this makes the privacy

vulnerable to piracy and increases the risk of it being compromised, which causes people’s

concern. Besides, the encryption-based method is computationally expensive. Thus this pri-

vacy approach generally is not efficient for real real-time requirement vision-based surveillance

applications [70].

Person removal/replacement are also used to address privacy in vision-based home moni-

toring. The methods that belong to this category include the techniques of cartooning [61, 71],

3D avatar replacement [72], cartoon picture replacement [73] and person removal [74]. The

algorithms of cartooning, avatar and picture replace the real sensitive identity region by another

representation of virtual reality. At the same time, person removal methods delete the sensitive

information and fill the gap by image in-painting algorithms [75, 76].

The above mentioned vision-based privacy preservation methods provide a low-level of util-

ity since increasing the level of privacy impairs the intelligibility of the obfuscated data [77].

This challenge is caused by considering the trade-off between the privacy and utility of the

anonymised sequences for monitoring tasks [78], and this trade-off affects the reliability of

these methods. However, other methods lose this balance, such as encryption-based anonymi-

sation since the encrypted information can not be used without a decryption method. In general,

a high level of privacy protection leads to low-level of utility and vice versa. This trade-off

between privacy and utility is one of the significant challenges associated with using the vision-

based sensor in AAL. Furthermore, most of these filters are weak to protect privacy and fail

against attacks [79]. The reason is that these filters are still keeping the intensity values in the

obfuscated version; therefore, it is easy to recover the sensitive information.

2.3.2 Sensor-based anonymisation

There have been a few solutions to address the privacy concerns that the sensor as a device can

offer. However, mainly there are two cameras: low-resolution sensor [80, 27, 81] and neuro-
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morphic sensor [19] that can create data in the anonymity domain without the need to conduct

additional data processing. The use of low-resolution sensors adopts a network of extremely

low-resolution cameras [27, 80, 82, 46] or low-resolution colour sensors [81] to capture low-

resolution visual images. This sensor has been successfully retaining privacy in the in-home

activity recognition systems [80]. Low-resolution visual information has been explored for be-

haviour understanding [27] and object localisation [81]. Recently, this sensor is explored to

recognise multi-class human action systems. In this context, Tao et al.[82] exploit a set of three

low-resolution cameras to recognise human activities based on hand-crafted features learning.

This topology is developed in [46] by exploiting the 3D CNN to leverage from the deep lean-

ing leading to increase the accuracy of recognition by 10%. However, these sensors are more

sensitive to the changes in the light conditions [27, 81], resulting in less accuracy in activity

recognition.

The Kinect is another vision sensor that can be used in an assisted living environment to

preserve privacy. However, the main obstacle is that the subject must be in the range of three

metres in front of the sensor in order to acquire the visual information; otherwise, the Kinect

fails to record this data.

Recently, neuromorphic vision sensing (NVS) camera has emerged as a new technology in

the field of vision-based sensors inspired by the eye retina that relies on capturing changes in

log intensities instead of recording colour intensities of the pixels[19, 20]. This sensor will be

explained in details in Section 2.6 and Chapter 5, respectively. Because the NVS camera out-

puts a stream of events instead of frame-based visual information, appearance details cannot be

detected or recognized. This concealment technique makes the NVS camera a suitable candi-

date sensor in the home monitoring applications to preserve privacy. To date, though the NVS

camera has been used for HAR, exploring this sensor in the applications of assisted living has

not been addressed yet. The domain of the data generated by this sensor inspired us to suggest

the NVS camera as a new tool that can be exploited in the applications of AAL.

2.3.3 Action recognition based on exploring the anonymity domain

Exploring the anonymity domain to recognise the human actions acquired by the vision-based

sensor is one of the main goals in the AAL system. This is important to track and analyse
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the daily actions of the older people in order to alert the emergency in the case of an urgent

situation. However, recognising the daily human actions using the vision-based sensor (or any

sensor) must take into account the issue of privacy. Therefore, in-home monitoring/tracking

systems must consider the concern of people, mainly whenever a vision camera is used for

monitoring.

The trade-off between privacy and intelligibility is more important to satisfy the reliability

and confidentially in the assisted living application. In this context, several researches have

been presented to address the trade-off between privacy preservation and utility [83, 63, 25, 26,

27, 46]. These systems depend on feature learning or deep learning to explore the anonymity

domain and recognise the actions. Although these methods have successfully achieved the

utility, the accuracy needs to be improved without affecting the privacy since these systems

are concerning about satisfying the trade-off between the privacy and intelligibility. In general,

most of the filtering algorithms, which are mentioned in Section 2.3.1, decrease the recognition

accuracy [83]. Therefore, it is essential to keep into account the level in which privacy is

preserved completely.

2.4 The techniques of recognising the activities in assisted liv-

ing (activities of daily living (ADLs))

In recent years, building automated in-home monitoring systems has been rising by the growing

desire of older adults to age in their own home independently. Although such ageing-in-place

systems seem to offer a promising service for senior health care, their success relies on the

improvement of AAL technologies. AAL provides tools for monitoring and supervising the

activities of daily living (ADL) in order to improve the living conditions of older adult life.

ADL can be defined as all the normal activities of everyday life that individuals can do in

their daily living, such as dressing, eating, walking, bathing, sleeping, etc. Thus, the ability of

a person to perform these activities can be used to assess the functional status of him/her to live

independently.

Automated monitoring and assessment of the ADLs is a technological tool that can be used

in AAL environments in order to assist older people in their homes [11]. In this context, sen-
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sory technologies can be adopted for monitoring and acquiring information from the ambient

environment (AE), then by feeding the gathered data into an automated system to recognize

the ADLs. However, the type of sensor offers additional challenges that need to be addressed

in monitoring ADLs. The sensors seem to impose several considerations, such as ease of use

and configuration effort [84], cost-effectiveness and preserving the privacy of the user [85], that

emerge and need to be addressed as well.

Generally, the sensors deployed to acquire data in the research of ADL recognition can be

distinguished into two categories: wearable sensors and non-wearable (ambient) sensors. In

the experiments with wearable sensors, the sensor is attached to the subject directly to measure

and monitor location, blood pressure, pulse rate, and other vital signs. The accelerometers,

gyroscopic, bracelet sensors, for example, are examples of wearable sensors. Although this

type of sensor is accurate to localise the subject [11], many disadvantages can be found [27],

such as the limitation of the battery life, missing data, and usage of multiple sensors attached to

specific body parts to obtain more reliable measurements [86].

In the ambient sensors applications, the sensor can be mounted on the wall or embedded in

the furniture. Broadly, the passive infrared (PIR), radio frequency identification (RFID), and

camera sensors are considered widely used sensors in the research of smart environments [12].

However, the main drawback is that these sensors are less intrusive, especially vision-based

sensors [86], which can raise the privacy concern of observers.

To recognise the activity of the observer based on the data acquired by the sensors, reasoning

over the data is performed to detect the activities. There are two approaches to recognise human

activities, i.e., data-driven and knowledge-driven approaches, based on the sensor technology

that is used to monitor the older observers [7]. In terms of ADL, the majority of research relies

on a data-driven approach. This is the commonly used approach in this context. It requires

data labelling, pre-processing, and training using machine learning techniques. Machine learn-

ing algorithms are considered the most intensive techniques that are used to recognise human

activities based on the information feed from sensors [87]. Machine learning techniques have

proven to strongly contribute to building systems to recognise the activities of human-based on

sensory data [7]. These methods are able to manage the uncertainty and temporal information

[88]. They are broadly classified into two categories: generative and discriminative model as
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presented in the following sections.

2.4.1 Generative machine learning techniques

Generative models predict the most likely class based on estimation of the joint probability

distribution of the samples and the labels [11]. There are several models that belong to this

category. Typically, the hidden Markov model (HMM) is the most popular technique used in

recognising the ADLs. Patterson et al.[89] used the HMM to recognise the routine morning ac-

tivities based on data from wearable RFID, which is tagged on the subjects. Whereas HMM is

used to recognise the hand-related activities, such as sawing, hammering, filing, etc., in [90] us-

ing data of two accelerometers sensors. Modayil et al.[91] exploited this model to discriminate

between three ADLs, e.g., drinking a glass of water, making a stir-fry and making jelly. The

information to HMM is fed from a wrist-worn RFID reader and set of tags placed on objects.

Other proposed works to recognise the daily activities are introduced in [92]. Other wearable

sensors, such as smartphones, are exploited to recognise human activities by HMM. In this

context, Nickel et al.[93] applied HMM to classify the biometric gaits of users using the ac-

celerometer sensor in a Motorola smartphone. Other contributions based on using smartphones

capabilities and HMM are found in [94] and [95]. The HMM model is also exploited to deal

with a few action samples [96]. In this context, the information of motion is captured in 2D

modelling, spatial and temporal, from sensory data of multicamera video sequences.

The second generative model that has been proposed in terms of daily human activity recog-

nition is the Naı̂ve Bayes classifier. This model is exploited in [97] to build an on-line daily

monitoring system of cardiovascular disease patients based on the sensory data of both surveil-

lance of electrocardiogram (ECG) and blood-pressure sensors. It is used in well-being applica-

tions by Shoaib et al.[98]. The sensory data of accelerometer and gyroscope, which are build-in

smartphones, captures the information about the activities of observers. More recently, Wang et

al.[99] applied the Naı̂ve Bayes model to recognize the simultaneous and separated performed

human physical activities using two smartphone sensors, i.e., triaxial accelerometer and gyro-

scope.

Another model in this category is Dynamic Bayesian network (DBN). DBN is applied in

[100] and [101] to monitor the activities and physical and cognitive capabilities of residents
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in the smart home. However, the main drawback of the generative machine learning models

is their limited ability to deal with varied sensory data [88] because they are considered static

models [102]. Moreover, these models require that the training stage seems to be considered in

order to recognize all of the possible observation sequences of an activity [88].

2.4.2 Discriminative machine learning techniques

Contrary, the discriminative models are the alternative approach in recognition of human ac-

tions. The efficiency of these models is potentially inherent in their ability to manipulate with

high dimensional data [11]. There are a variety of statistical models that belong to this cate-

gory. There are four popular discriminative models, support vector machine (SVM), conditional

random field (CRF), artificial neural networks (ANNs), and k-Nearest Neighbour (KNN), pop-

ularly used by the existing work in the domain of ADL recognition.

SVM is considered the most widely used classifier in the domain of ADL classification. In

this framework, Brdiczka et al.in [103] used this discriminative data-driven machine learning

technique to label the training data by learning from data of the daily activities of observers.

More recently, SVM is combined with generative models, such as Bayesian networks [104], in

order to gain a more accurate hybrid model to recognize the activities of the users.

CRFs are considered flexible classifiers that can discriminate complex patterns of activities,

e.g., unarranged or unordered, [88]. CRFs are graphical models such as HMMs, but there are

considerable differences between both algorithms, such as concurrent and interleaved activities

are allowed with CRF. CRFs are applied starting from the simple scenario, such as in [105], to

more enhanced versions of CRFs in [106] and [107].

The third machine learning technique that has been applied to recognise human actions

in smart environments is ANN. This intelligent structure simulates the methodology of the

biological nervous system to works and processes information in reality. A neural network is

represented in the form of interconnected neurons, which are the processing elements of the

network that can solve the problem. ANN has been used by Khan et al.[108] to recognise a set

of daily physical activities ranging from static to dynamic activities.

Lastly, the KNN algorithm is a simple data-driven approach and used to recognise the human

physical actions [97, 87]. This classifier calculates the distance between the input feature vector
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and all references. The shorter distance is, the more similar to the compared action reference.

2.4.3 Vision-based deep learning for ADLs

Recently, the trend of using deep learning for vision-based AAL has witnessed an increased

interest from the researchers [109, 110, 111, 112]. This emerging interest is due to several

reasons; such as the high level of accuracy, no pre-processing, and no need to design a hand-

crafting feature extraction, that the deep learning algorithms introduce. The deep learning is

used to recognise a specific serious behaviour, e.g., fall detection [109, 111] or normal daily

activities [112]. However, these tools require a huge number of data for training and testing.

2.5 RGB vision-based HAR representation

In this section, we briefly present the recent work on HAR based on both local and global

representation explaining the challenges that have not been addressed so far in each theme.

2.5.1 Global descriptors

The previous RGB-camera approaches using the global descriptors are primarily based on either

space-time descriptors [113, 114, 115, 116, 117, 118, 119, 120, 121], shape-based analysis

[122, 123], or deep learning based [124, 125, 126]. They either represent the action using the

whole silhouettes or extracting holistic description from these silhouettes. In the first category of

global description, the shape is encoded using a space-time representation along both the spatial

and time dimensions to model the human motion. Different approaches, such as, the motion

energy image (MEI) and the motion history image (MHI) [113] or volume [116], space-time

shape [118, 114, 115], silhouette and optical flow [119], shape and flow [120], and silhouette

[121] are applied to describe the actions. In shape-based learning, the global features; such as,

appearance and motion features [122], frequency domain-based features [127] and hand gesture

recognition [123], are extracted based on generating the silhouette or the shape of the human

body.

These descriptors are sensitive to occlusion and cluttering [127, 128] leading to shortcom-
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ings in the results [129]. In addition, these methods rely on using complex approaches, such

as background subtraction, to extract and describe the foreground object. All these methods

extract the whole body part without focusing on the most significant points in the body, i.e. the

moving parts. Recently, the video-based saliency estimation offers the mechanism to determine

the most dynamic parts of the human body based on plausible simulation of the human visual

system. The calculated saliency map provides an efficient approach to highlight the salient

parts of the body without using high complexity motion estimation algorithms and reducing the

amount of the redundancy. Creating a temporal salience-based silhouette seems to provide a

means to filter the redundant temporal information between the consecutive frames and high-

lighting the locations when the intensity changes are found. This can enable the descriptor to

extract meaningful features that can accurately discriminate among the action.

2.5.2 Local descriptors

The previous works on extracting local features using vision sensors are primarily based on

either detecting interest points (IPs) [4, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139]

or densely sampling [130, 140, 126]. These descriptors extract either the dense trajectories

features or space-time interest point (STIP) based features. These features are common and

more resistant against the background noise and the occlusions [141]. The local descriptors,

such as HOG and HOF, are widely used to obtain the local features in HAR applications.

In IPs representation, the feature vector is extracted around the candidate points based on

STIPs. The histogram of local features [4], SIFT descriptor [131], dense features [132], dense

trajectories [133] are commonly used to explore these STIPs.

In the second category of the local description, the dense descriptors, e.g., HOG, HOF,

and motion boundary histogram (MBH), are used to encode the action exploring the whole

image/frame regions. By applying these descriptors directly on the visual data, redundant infor-

mation is used to describe the action which is inefficient since irrelevant content is included to

encode the human action. Therefore, the extracted features usually are subject to extra filtration,

such as the quantisation using a bag of features or Fisher vector methods [142], to improve the

description of the action. However, these descriptors are typically suffering from many short-

comings when dealing with long-term actions [126] and exploring high complexity algorithms
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to estimate the motion. Therefore, proposing action modelling and description without using

complex algorithms and exploring the representation without post-processing is considered ur-

gent in HAR.

2.6 Neuromorphic sensing domain for HAR

In this section, we will present the techniques that are used to generate the event stream firstly

and then we will explain the existing methods on exploring the neuromorphic data for action

recognition. Technically, the hardware and the software approaches will be introduced in details

to explain the pros and cons of each one. Though the rarity of the research in the field of HAR

which is still in early stages [143, 144, 145, 146], we can recognise two themes of the research

area: behaviour monitoring [147, 148, 20] and high-level semantic action recognition[146, 144,

143]. Accordingly, the current work that has been done on each category will be explained in

detail.

2.6.1 Dynamic vision sensor (DVS) data acquisition techniques

There are two frameworks to capture neuromorphic sensing data: using neuromorphic cameras

or emulators. Both techniques achieve effectively in the applications of applying the neuro-

morphic sensing data to solve real-life problems. However, there are some advantages and

disadvantages relevant to each technique that need to be considered before using them. In the

beginning, we will explain each technique giving examples and then make a comparison be-

tween them.

Neuromorphic sensors

The neuromorphic camera has undergone many changes in the last two decades. The first model

of this type of sensor was developed in 1992 by Mahowald (and his assistants) as part of his

PhD project [149]. This silicon retina based sensor produced the events using addresses-event

representation (AER) protocol. However, several problems were found in this design; such as

there is a miss-match between silicon-based pixels since this camera combines two different

paradigms with large pixel cells making it difficult to use it practically in the real world. In the
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next couple of years, efforts were modest and insufficient to discover the potential computations

of this type of camera and address the shortcomings of this camera. Since 2003, the idea of

the AER-based sensor has attracted the researchers to develop new versions that address the

potential problems of the conventional active pixel sensor (APS).

Commercially, Table 2.2 depicts the widely used branded neuromorphic cameras that repre-

sent the revolution in the vision sensors nowadays and summarises their characteristics. Some

of these models contain an APS sensor to record intensity-based frames if needed.

Simulators and emulators

Due to the rarity of neuromorphic cameras and the high cost of them, several simulators and

emulators have been developed to meet the increasing demand for this sensor. Some of these

simulators are publicly available now to conduct experiments on converting the RGB versions of

sequences to neuromorphic event streams. In the following, we explain a list of these simulators:

• VSBE [155]: It is a vision sensor behavioural emulator that can be used to simulate the

architecture and the function of any neuromorphic vision sensor. VSBE provides a high

frame rate up to 128 frames per second. This emulator contains PS3-Eye camera, which

is expensive, providing the higher frame rate using mono and colour OVGA modes. This

camera provides a (320× 240) resolution to be compatible with the installed frame rate.

This emulator is then linked into one of the large library tools used to develop the event-

based sensors; i.e., jAER [156]. This emulator can be used to evaluate the performance

of several NVS-based sensors; for instance, DVS and cDVS.

Table 2.2: Common Neuromorphic cameras and the main characterizes of these sensor: The
characterizes focuses on the features of the resolution, pixel’s size, dynamic range and if there
is an APS sensor or non.

Device Resolution Pixel’s size APS included
Dynamic

range (dB)
DVS128 [150] 128× 128 40× 40µm2 No 120

ATIS [151] 304× 240 30× 30µm2 Yes 143
DAVIS240 [152] 240× 180 18.5× 18.5µm2 Yes 130
DVS-Gen2 [153] 640× 480 9× 9µm2 No >80
CeleX-IV [154] 768× 640 18× 18µm2 No -

DAVIS346redColor [6] 346× 260 18.5× 18.5µm2 Yes 120
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• DAVIS simulator [157]: The simulator generates three types of data streams: the event

stream, the intensity frame and the depth map. This simulator is used to evaluate the new

products of dynamic and active-pixel vision sensors.

• ViSim [158]: It is used to assist creating monocular or stereo camera trajectories and

synthesize related ground truth. The simulator provides a user-friendly interface while

adding our simulation functionality behind. It contains a Design View and a collection

of Parameter Options to configure camera calibration, distortion coefficients, stereo view,

and frame rate and travel time.

• ESIM [159]: This simulator combined the rendering engine and the event simulator.

ESIM generates the stream of events by using an adaptive sampling method.

• pyDVS [160]: This emulator contains two parts: a conventional digital camera to record

frames-based information and a PC to convert these frames into a stream of events. Figure

2.1 displays the layout of this emulator.

• PIX2NVS [161]: the PIX2NVS is a software-based released emulator available for aca-

demic research usage. The main application of this emulator was to provide a cheap tool

to convert a conventional of video sequences into NVS streams of events. It is a software

codebase used to generate neuromorphic vision streams from any pixel-domain video

format. Conducting experiments using this emulator proved its suitability to generate the

artificial NVS streams.

Figure 2.1: The layout if pyDVS emulator.
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2.6.2 Behaviour monitoring exploring neuromorphic sensing domain

To date, the current work on using the NVS sensor has been limited to monitoring and analysis

of specific human actions; such as finger/hand movement [147, 162] and fall detection [148].

If we start from the first research on this topic, we find that Belbachir et al.in [148] introduce

a stereo vision system to monitor fall detection for older people. The system incorporates two

DVS cameras to create a 3D spatio-temporal scene. From this volume, the depth information

and the event rate are concatenated to detect the fall. This system offers promising results for

real-time fall detection; however, the system fails to distinguish between the real and false rates

due to use of a few features and considering a few examples of falls. The real-time applications

regarding the usage of the DVS cameras attract the researcher to investigate algorithms for

more interactive and immediate response applications. For instance, Lee et al.in [147] were

firstly exploring the neuromorphic sensing data to present a real-time interface to recognise the

moving finger that touches a mobile phone screen. The NVS camera has been used to track

the finger movement and its direction by exploring the events, which are generated from the

DVS camera, around the edge of the finger. To track the finger, a two-dimensional array of

leaky integrated and fire neurons (LIF) are used while the direction is determined using winner-

take-all configurations of neurons. Despite the outperforming of this proposal, its application is

restricted to the mobile devices due to using a low-resolution NVS sensor which is 128× 128.

In 2014 Lee at al. developed his first prototype for fingertip detection to hand gesture recog-

nition [162]. The work presented a graphical user interface (GUI) control system by deploying

stereo neuromorphic vision system. The spatiotemporal output of the stereo DVS cameras is

fed into a spike neural network using LIF neurons to construct the feature vectors. However,

developing the neuromorphic-based user interface for hand gesture recognition shows several

challenges that degrade the accuracy of the recognition. This system was the first work that

combined both the neuromorphic sensor and hand gesture recognition. To develop this system,

Amir et al.[1] thought that this prototype could be improved by adding an event-based neuro-

morphic processor which includes a deep convolution neural network (CNN) to achieve a high

level of accuracy of recognition of the hand gesture in the real-time. This processor had been

already tested on recognising the playing cards [163], and the results inspired the authors to use

this processor to improve event-based hand gesture recognition. The integrated processor runs
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the CNN to process the stream of events passed from the DVS128 camera. Figure 2.2 shows

the prototype of the system, including both the DVS128 camera and its attached processing

unit. Again, the spike neural network (SNN) had been exploited to process the spikes or events

to recognise the hand gesture by [164]. However, in [164], the events are fed to the classifier

without any pre-processing. The prototype uses a spike neural network (SNN) with less layer

compared to the system in [1].

Recently, both Wang et al.[165] as well as Chen et al.[166] made a different proposition

to what is presented in the current work, focusing on exploring the event domain instead of

accumulating the events into frame-based representation and learning. The prototype for hand

gesture recognition presented in [165] had been tested on simple and short term datasets, and

the results are not enough to judge on the superiority of this model compared to the existing

methods in the field. Chen et al.in [166] avoided this obstacle by recording a larger scale

hand gesture dataset with 2,040 instances of a set of 17 gesture classes. This model has a

problem to deal with low hand gesture activities since these activities have low event density

and confuse the classifier leading to reducing the accuracy of recognition. Table 2.3 summarises

the characteristics of all the existing work on multi class-action recognition.

Figure 2.2: Hand gesture recognition system proposed by Amir et al.[1].
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Table 2.3: Summarizing the main characteristics of event-based neuromorphic behaviour mon-
itoring systems.

Feature [148] [147] [162] [1] [164] [165] [166]

Application
Fall

detection
Finger

localization Gesture Gesture Gesture Gesture Gesture

Real time X X X X X X X
Topology of

camera
Stereo
vision Single

Stereo
vision Single Single Single Single

Camera model Two DVS128 DVS128 Two DVS128 DVS128 DVS128 DVS128 DVS128

Learning Hand-crafted Hand-crafted
SNN-based

feature
Deep

learning
Deep

learning
Deep

learning Hand-crafted

Classifier - - HMM CNN SNN PointNet RNN

2.6.3 High semantic multi-class action recognition exploring neuromor-

phic sensing domain

Exploring the NVS camera has been upgraded beyond a single action to highly semantic appli-

cations, including multiclass action recognition. Exploring the neuromorphic sensing data for

HAR is still at the beginning. Most of the existing methods focus on converting the neuromor-

phic domain events into other domains; such as artificial frames [167], suitable to learn by the

classifier or deep learning because the nature of NVS sensing data makes it challenging to use

it directly. This approach of exploring NVS-based framing leads to loss of the high frame rate,

which is one of the advantages of NVS domain over APS domain.

One of the early contributions in this category had been introduced by Sullivan et al.[146]

that combines the neuromorphic camera with CNN. In the beginning, the motion is represented

by extracting its direction and magnitude from the events and then feeding these features into

CNN. The presented method relies on modelling the motion using the event stream. Accord-

ingly, the events are converted into frame-based representation and then stacked into interval-

based frames. The number of stacked frames each time depends on the level of the action, i.e.,

fast action or slow action. Then, a new feature vector called motion event features (MEFs) is

constructed from these stacked frames by counting and normalising the number of events in

a grid centred at each location (x, y). Finally, CNN is applied to the obtained event feature

maps to identify the actions. Baby et al.[143] follow the same idea to convert the events into

frames/maps. However, the difference compared to [146] is that hand-crafted features are ex-

tracted from these constructed maps and used to train the SVM classifier instead of constructing
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maps with CNN. The framework is started by converting the events from the neuromorphic do-

main into the intensity domain. By this, we think that the essence of the neuromorphic sensing

data foregoes the events towards the pixels. This mapping approach aims to generate useful

NVS frame representations that can be exploited by the conventional feature extraction method

to extract a meaningful set of frame-based features. These extracted features are SURF and

MBH, which are encoded using the histogram of the bag of features. These are combined and

used to learn the SVM classifier. The results of recognition point out that incorporating the DVS

for HAR is considered a promising framework in this field.

Recently, new emulators; such as pyDVS [160], PIX2NVS [161] and DAVIS simulator

[157] have been designed and publicly available. These emulators provide cheap software-based

tools to generate the events from the RGB video frames overcoming some of the limitations of

the neuromorphic cameras and fill in the shortage of annotated NVS-based datasets. Using these

emulators contributes to filling the gap of the lack of available labelled NVS training data. There

is existing work exploiting these emulators for producing higher-level action datasets for HAR.

Chadha et al.in [144] conduct experiments using PIX2NVS emulator. This software-based NVS

sensor is used to generate large-scale labelled training datasets, e.g., HMDB51. The polarities

of the generated events are aggregated based on a specified time interval to provide frame-based

representations suitable to learn the CNN classifier. The teacher pre-trained optical flow net-

work is used to transfer the knowledge to the NVS student network instead of transferring to the

motion vector network. This is a two streams-based learning approach attempting to leverage

the advantages of NVS sensing data. However, this work degrades the performance signifi-

cantly on the experimental datasets due to converting the asynchronous events casting back into

synchronising, losing the advantages of neuromorphic sensing data. This work has been im-

proved later in [168] by proposing a graph topology to represent the events. DAVIS240c sensor

is used firstly to convert the RGB video sequences into neuromorphic sequences by recording

the neuromorphic sensing data from the monitor. Although, this presented framework learning

from the event providing a spatial and temporal feature learning, frame-based representation is

also generated during the learning to feed them temporal representation into CNN. This frame-

based stacking again leads to include redundant information diluting the advantage of reducing

the redundancy in neuromorphic sensing data. Table 2.4 summarises the characteristics of all

34



Chapter 2 – State of the art

Table 2.4: Summarizing the main characteristics of event-based neuromorphic-based multi class
action recognition systems.

Feature [146] [143] [144] [168]
Recording scenario Monitor display Monitor display RGB reading Monitor display

Events generating
Neuromorphic

camera
Neuromorphic

camera Emulator
Neuromorphic

camera
Camera model DVS DVS128 - DAVIS240c

Learning Deep learning Hand-crafted Deep learning Deep learning
Classifier CNN SVM CNN CNN

the existing work on simple behaviour monitoring.

2.7 Datasets

In order to confirm the outperforming of the proposed descriptor, eight challenge action datasets

have been chosen. These datasets are commonly and widely used in computer vision research.

These datasets are KTH, Weizmann, UCF sports, UIUC1, UCF11, UCF50, HMDB51, and

DHA. We also includes the N-Actions dataset which is a native neuromorphic dataset. Table 2.5

shows static information about the datasets that have been used in our experiments and reports

the results of accuracy. These datasets have been chosen since it is difficult to find publicly

available AAL datasets. At the same time, the human activity is a set of successive actions and

in this context we focus on the actions which represents the atoms of the activities. These are

the reasons for using these datasets in our experiments. The details of these datasets will be

explained in the following.

Table 2.5: Datasets used in our experiments sorted by year of creation.

Dataset Actions/Activities Year #Videos #Classes Used in papers Accuracy %
KTH [4] Actions 2004 2391 6 [169, 170, 128, 171, 172, 126] 96.8 [126]

Weizmann [114] Actions 2005 81 9 [140, 173, 174, 175, 170, 176, 177, 178, 179] 100 [179]
UCF Sports [180] Actions 2008 150 10 [181, 182, 183, 184, 185, 186, 187] 96.22 [187]

UIUC1 [119] Activities 2008 532 14 [188, 189, 190, 191] 98.9 [191]
UCF11 [192] Actions 2009 1600 11 [193, 194, 195, 196, 197, 198, 199] 96.94 [199]
UCF50 [200] Actions 2010 6618 50 [201, 136, 202, 138, 137, 203, 204] 96.4 [204]

HMDB51 [205] Actions 2011 6849 51 [206, 207, 208, 209, 210, 211] 82.48 [211]
DHA [212] Actions 2012 532 23 [212, 213, 214, 215, 216, 217] 96.69 [216]

N-Actions [6] Actions 2019 450 10 − −
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KTH dataset

KTH was proposed by Schuldt et al.[4] and showing 6 actions; i.e., boxing, handwaving, hand-

clapping, jogging, running and walking. The dataset is recorded with different cameras and

viewpoints. There are 25 different subjects performing the aforementioned actions in four dif-

ferent scenarios. The sequences were captured over homogeneous backgrounds with a static

camera recording 25 fps frame rate. Each sequence has a resolution of 160 × 120 with an

average of 4 seconds length.

Weizmann dataset

This dataset was first proposed by Blank et al.in [114] and contains 93 video sequences. These

sequences have low-resolution sequences of 144×180 with a frame rate of 50 frames per second

(fps). The dataset shows nine actors, each of them performing 10 actions, i.e. bend, run, walk,

skip, jack, jump, pjump, side, one hand wave and two hands wave. This dataset is widely used

in the applications of action recognition.

University of Central Florida (UCF) sports dataset

UCF Sports [180, 183] is a set of action sequences collected from the broadcast channels from

various sports containing 150 video sequences with the resolution of 720×480 and and 10 fps

frame rate over 10 classes. The actions feature a wide range of scenes and viewpoints. This

dataset has been used for the application of computer vision; such as action recognition and

action localization.

UIUC1

This is an indoor dataset [119] includes 532 video sequences showing 14 human actions, i.e.,

walking, running, jumping, waving, jumping jacks, clapping, jump from situp, raise one hand,

stretching out, turning, sitting to standing, crawling, pushing up and standing to sitting, captured

by a static camera. These 14 actions are performed by 8 actors where each actor does the same

action several times. The sequences came with a resolution of 1024×768 and 15 fps frame rate.
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University of Central Florida (UCF) 11

UCF11 contains 11 action categories: basketball shooting, biking/cycling, diving, golf swing-

ing, horse back riding, soccer juggling, swinging, tennis swinging, trampoline jumping, volley-

ball spiking, and walking with a dog, collected from YouTube. There are around 1600 video

clips grouped into 25 groups with more than 4 action clips in it. The video clips have a frame

rate of 29.97 fps.

University of Central Florida (UCF) 50

UCF50 is an action dataset including 6676 video clips collected from YouTube. This dataset

is an extension of UCF11 dataset to represent 50 real-world human actions, such as, Baseball

Pitch, Basketball Shooting, Bench Press, Biking, Billiards Shot,Breaststroke, Clean and Jerk,

Diving, Drumming, Fencing, Golf Swing, Playing Guitar, High Jump, Horse Race, Horse Rid-

ing, Hula Hoop, Javelin Throw.

HMDB51

The human motion database (HMDB) [205] is one of the largest dataset used to recognise the

human motion containing 6849 clips distributed in 51 action classes; each video has∼ 20–1000

frames. The actions categories of this dataset can be grouped in five types based on the body

movements. This dataset is considered a challenge due to it includes sequences collected from

the Internet and YouTube; therefore, this dataset is a real-world video sequences collection.

Depth-included Human Action (DHA)

DHA dataset was suggested by Lin et al.[212]. The dataset consists of 532 sequences compro-

mising 23 action categories performed by 21 subjects (12 males and 9 females). It is recorded

using a static Kinect camera in three different scenes with 480×640 resolution. The RGB ver-

sions of sequences are used in the experiments.
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Neuromorphic Actions dataset (N-Actions)

N-Actions is a dataset captured with a DAVIS346redColor neuromorphic camera. This dataset

is firstly presented in [6]. It contains 450 sequences with a resolution of 346× 260 to represent

10 human actions using 15 subjects.

2.8 Concluding Remarks

In this chapter, we have outlined the existing work on privacy anonymisation and the relevant

contribution on exploring the anonymity domain. In this context, we presented the vision-based

sensors that are already used to protect privacy and the relative challenges in each type of sen-

sor. We also explained the exploited solutions to address privacy and exploiting beyond the

anonymisation. Furthermore, this chapter introduced a new sensor technology, i.e., neuromor-

phic camera, which has come up to the application. Based on the existing work, we draw several

conclusions:

1. The image filtering methods are considered the standard solution to the preserve the pri-

vacy in vision-based monitoring systems. However, the output of these methods is re-

stricted to address privacy and cannot go beyond the privacy for more semantic problems

such as action recognition. To overcome this limitation, in Chapter 3 and Chapter 4, we

present an anonymity domain that preserves the privacy and provides a useful abstract

as a temporal salience data for HAR. The proposed method maintains the action data

in each frame as a temporal salience-based silhouette and removes the redundant data.

Since these silhouettes are constructed differently based on the actions, discrimination is

also formed in these silhouettes. Therefore, extracting the features from these silhouettes

improves the accuracy rates for HAR.

2. The video camera is the common vision-sensor that is used widely in monitoring and

surveillance applications. This sensor produces frames of intensities-based data includ-

ing redundancy since the video camera records everything in the field of view (FOV).

Processing such intensities consumes the resources of the computer as well as affecting

the performance of application. The new technology of vision-sensor, i.e., neuromorphic,
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addresses the limitation of recording the intensities by acquiring the change in the in-

tensity instead of the intensity magnitude. This approach reduces the size of the output

because the output is in the form of a stream of events. This sensor also addresses the

issue of privacy since the output is the orientation of the change in the intensities without

any indicating for the intensities.

3. We demonstrate that the standard methods to analysis of the intensity-based data are

enabled to process the output of the neuromorphic sensor. Thus, a new method able to

explore the neuromorphic domain for more semantic problems, e.g., HAR, is required.

Therefore, in Chapter 5, we introduce a new method to extract a meaningful abstract

from the events to represent the actions.
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Chapter 3

Temporal salience modelling for

video-based anonymisation

This chapter presents the proposed method that has been used to increase the level of privacy

protection and balancing between the utility and the privacy. It also includes the results of both

the subjective and objective evaluations to judge between the proposed method and the existing

privacy preservation methods.

3.1 Introduction

This chapter proposes a novel method for video-based identity and appearance preservation and

providing an informative anonymity domain. Different hardware and software products have

been offered to provide tools for AAL applications. In this context, fusing video-based sensors

and computer vision has gained the attention for monitoring human daily living activities and

personal wellbeing in AAL applications [14, 218, 16, 219, 220, 221]. Although, these systems

and tools have performed well in monitoring, exploring vision sensors for in-home monitoring

has often found concerns in protecting privacy [14, 11, 49, 222, 223].

There have been solutions to deal with privacy concerns of video cameras by processing the

pixel intensity values spatially to cover the identity details, such as the face or the whole body,

by means of masking [62, 63], blurring [224], pixelation [60], etc.. However, after visually

anonymising, the utility of such sequences in high level processing, such as, action recognition,
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is affected since these methods focus only on the spatial content of the visual data and omit the

temporal context information. Such anonymisation methods also cause distortion of the visual

data instead of maintaining the visual content. However, these methods require consideration

of the trade-off between the visual anonymity and the utility of the anonymised sequences for

monitoring tasks [78]. Achieving this trade-off is one of the major challenges associated with

using the video camera in AAL. Therefore, maintaining the quality of the obfuscated content is

required to improve the reliability of the anonymity domain.

Recently, video-based saliency detection has been proposed to highlight the most dynamic

salience content in the video sequences [3, 225, 226, 2, 227]. The outcome of video saliency is a

useful abstract for the most dominant visual information in the scene without showing the details

since the salient content is represented through highlighting the essential content, simulating

perception in the HVS. Visual saliency can be due to the spatial attentive cues as in images as

well as due to the temporal saliency due to the motion in a video sequence. Although, salience

estimation for video has become a widely addressed topic recently, all methods consider joint

spatial and temporal salience modelling. However, since our focus is in the utility, such as HAR,

in this chapter we propose a novel temporal salience estimation and demonstrate the use of such

salience maps for visual anonymisation. The temporal saliency also seems to be a useful tool

for addressing the challenges, such as background clutter often seen in computer vision, since

the spatial content is excluded in modelling the temporal salience.

In the case of privacy concealment, the existing filtering-based models lose the accuracy of

modelling the most dominant human body parts that are responsible for representing the ac-

tion due to including the redundant spatial content. Thus, the discrimination among the actions

tends to be inaccurate from the perspective of both the HVS and the machine. Therefore, ex-

ploring the spatial content to obfuscate the identity leads to inaccurate modelling and misses the

discrimination among the actions. Accordingly, utilising the anonymised information obtained

by these saliency models seems to be unreliable. This relation between privacy and utility is

verified in this chapter from the perspective of HVS, and, in the next chapter, we will test it

again from the perspective of the machine.

To address the aforementioned problems, we propose a new temporal salience-based method

for video-based privacy preservation. Our proposal is to replace the video sequences with the
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computed temporal salience map sequences and then explore the salience sequence for utility

tasks, such as, HAR. The computed temporal salience sequences not only capture the temporal

events, as in emerging neuromorphic (event-based) cameras [228], but also record significance

of those events by means of recording the magnitude of pixel-wise salience in a 0-255 range.

Early results of our work were presented as conference papers in [222, 229].

The proposed method captures the motion of the human action in the scene to replace the

corresponding spatial information leading to accurate discrimination and a convincing anonymis-

ing. This mimics the functionality of emerging neuromorphic (event-based) cameras [228] to

capture events by modelling the temporal intensity changes. The anonymised video maps de-

rived from the temporal saliency modelling are further analysed by extracting HOG features

for activity recognition tasks. The proposed method provides useful anonymous information

which can be further explored in activities of daily living monitoring applications such as ac-

tion recognition efficiently without making an extra processing, like motion estimation. The

main contributions of this work include:

1. Proposing a new temporal saliency based method to increase the accuracy of modelling

the saliency in the video sequences and decreasing the complexity of modelling.

2. Proposing a new method to achieve a high level of privacy; and

3. Exploring the anonymised video sequences for highly accurate action recognition [222],

i.e., utility.

The rest of this chapter is organised as follows: Section 3.2 reviews the current work on pri-

vacy preservation. Section 3.3 presents the proposed method for anonymising video sequences.

The performance evaluation of the proposed system for anonymising efficiency as well as utility

achievement is presented in Section 3.4 followed by concluding remarks in Section 3.5.

3.2 Related work

Besides the work in this chapter, other anonymity methods have emerged and been presented,

which are valuable efforts to preserve privacy. However, contrary to our contribution, these

methods are mostly focused on covering the identity silhouette using image processing in the

43



Chapter 3 – Temporal salience modelling for video-based anonymisation

spatial domain [63, 50, 51, 224] or installing low-resolution sensors [80, 27, 81, 46, 230], where

less information for visual recognition is present. Using low-resolution sensors adopts a net-

work of extremely low-resolution cameras [27, 80] or low-resolution colour sensors [81, 46]

to capture low-resolution visual images. These sensors have been successfully exploited in the

applications of activity recognition [80], behaviour understanding [27] and object localisation

[81, 46]. However, these sensors are more sensitive to the local changes in the light conditions

[27, 81], which affects the reliability of exploiting the outputs of them in HAR.

The second category of solutions is to adopt the image processing techniques, such as,

blocking [50], cartooning [51], Gaussian blurring [224], pixelation [60] and masking with sil-

houettes [62, 63], to obfuscate the sensitive information. These image filtering-based methods

destroy the original intensity magnitudes and include redundant data in the anonymised map.

Therefore, exploring the anonymity domains of these methods for HAR affects the accuracy

rate of recognising. Furthermore, in these methods, consideration of the trade-off between the

privacy protection and utility of the anonymised sequences for monitoring tasks is required

[78]. Often, a higher level of privacy protection means a low level of utility and vice versa.

This trade-off is one of the major challenges associated with using video-based vision sensors

in the application of AAL. Therefore, our proposed approach is a valuable contribution to the

development of algorithms to preserve privacy while enabling the subsequent analysis utility

tasks, such as HAR.

The current work is a valuable contribution to the development of algorithms to preserve

privacy. Nevertheless, only covering the identity details with including a redundancy reduces

the usability of the anonymised data for more semantic task, i.e., action recognition. Therefore,

modelling the privacy based on the temporal change of the action instead of the intensities seems

to provide an informative abstract about the action and presents a useful anonymity domain that

can be explored for HAR. Thus, the contribution of this chapter is to provide an anonymity

domain considering the obstacles above to address the privacy. The proposed method in this

chapter focuses on modelling the action temporally to preserve privacy and presents useful

anonymised data for action recognition.
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3.3 The proposed method

This section presents the proposed method for estimating temporal visual saliency for visually

anonymising the video sequences as detailed in Section 3.3.1 to protect privacy and explore the

obtained obfuscated information for action recognition. Figure 3.1 depicts the proposed method

to preserve privacy and provide a useful anonymity domain.

3.3.1 Temporal visual salience modelling for visual anonymisation

The proposed method generates the anonymised map of the human action to protect privacy

by modelling the temporal saliency in the video sequence. This method depends on distribut-

ing the temporal saliency magnitudes based on the most dynamic parts to conceal the privacy,

which is crucially attributed in action signature and then action representation. The privacy

preservation by modelling the action improves the ability to utilise the anonymised data beyond

privacy without using extra information or additional algorithms. The details of modelling the

anonymised silhouette of the RGB-based human action are shown in Figure 3.2.

Generating the anonymised map of privacy consists of the following steps. Let s be a video

sequence with F frames. First, for every two successive frames, ft and ft−1 ∈ s, where t is the

frame index, the frame difference, Dt, is computed to define the change in the pixel intensity

over time as

Dt(x, y) = ft(x, y)− ft−1(x, y), (3.1)

Figure 3.1: Proposed privacy protection model.
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Figure 3.2: Proposed silhouette modelling method based on multiple temporal saliency estima-
tion.

for all (x, y) spatial coordinates in order to measure the magnitude of the movement. The

difference at a given pixel can occur for several reasons, for example, illumination change and

global motion. Therefore, the frame difference is compared with a user-defined threshold, τ , in

order to eliminate the small changes and maintain the dominated moving pixels as follows:

Dt(x, y) =

{Dt(x,y) if Dt(x,y)≥τ

0 Otherwise

, (3.2)

where Dt(x, y) and Dt(x, y) are the frame difference at location (x, y) before and after thresh-

olding with τ , respectively.

Second, Dt is partitioned into M overlapped blocks, B = {b1, b2, · · · , bM} where each

bm ∈ B has the size β × β and β is odd. Then, for a given block bm centred at (x, y), a block-

based two dimensional fast Fourier transform (2DFFT) is applied on to get the magnitudes of

the frequencies of bm. In order to make up the blocks for pixel at the frame borders, the frame

borders are padded with relevant number of zero values according to the chosen β.

Third, the power spectral density (PSD), Sbm , for each block is defined as

Sbm(u, v) =
1

β2
Abm(u, v)2, (3.3)
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whereAbm(u, v) is the magnitude of the 2DFFT coefficient at frequency location (u, v) in block

bm and β2 is the size of bm. The PSD is useful to define the distribution of the power of the

frequencies in a signal [231]. PSD in our proposed method contributes to describe the distri-

butions of the intensity changes in a region. Sbm is normalised to suppress the high variation

among those in different blocks. This is achieved by normalising with respect to the sum of all

PSD components of a given block, such as

P̂ (u, v) =
Sbm(u, v)∑u=β

u=1

∑v=β
v=1 Sbm(u, v)

, (3.4)

where P̂ (u, v) is the normalized PSD of Sbm(u, v). This is followed by the computation of the

spectral entropy, Ẽ , such as

Ẽbm(x, y) =
k=x+1∑
k=x−1

l=y+1∑
l=y−1

P̂ (k, l) log(P̂ (k, l)), (3.5)

where Ẽbm(x, y) is the obtained entropy of the element located at the centre of the block bm and

P̂ (·, ·) is the normalised PSD at (·, ·) in bm. The computation of Ẽbm(x, y) captures the contri-

bution of the Dt values in the neighbourhood of Dt(x, y). The entropy Ẽbm(x, y) is proportional

to the amount of variation of magnitudes of the corresponding Sbm . For example, the higher the

variation in magnitudes in Sbm the higher the value of Ẽbm(x, y).

This local spectral entropy, Ẽbm(x, y), fairly captures the variations in Dt to identify the

temporal salience in a frame. It exploits the source of the most dominant intensity changes

to model the underlying motion (with respect to the action). Most of the time, it is difficult

to determine the perfect value of τ in Eq. (3.2) to maintain the desired changes and suppress

other noisy changes because the motion levels vary according to the actions in sequences. To

make this representation more robust and generalised, we further vary τ by defining a set of

thresholds, τh = 2h, where h = 1, · · · ,N , with maximum number of user defined threshold

levels,N . For each pixel location (x, y), a set of entropy values, Ẽτhbm(x, y) for the corresponding

block, bm, considering all τh is computed as

Ẽτhbm(x, y) =
k=x+1∑
k=x−1

l=y+1∑
l=y−1

P̂ τh
bm

(k, l) log(P̂ τh
bm

(k, l)), (3.6)

47



Chapter 3 – Temporal salience modelling for video-based anonymisation

where P̂ τh
bm

are the normalised PSD of block bm, respectively, according to the threshold τh.

Finally, the weighted entropy, Ê(x, y), across all entropy maps, Ẽτhbm(x, y), over allN thresholds

is computed as

Ê(x, y) =

∑N
h=1 τhẼ

τh
bm

(x, y)∑N
h=1 τh

. (3.7)

Ê highlights the silhouette of the foreground object by modelling the distribution of the

saliency based on the relation between the action and the human body parts. Furthermore, this

approach is considered a crucial factor in the distinction between actions since the magnitudes

of the entropies will be distributed across the silhouette based on the action class. The Ê map

is normalised to be in the range of grey level values in the range [0 255] and smoothed by

applying a 2-D Gaussian kernel in order to fill in the small holes and obtain the final spectral

entropy based temporal visual salience map based silhouette, SÊ , for privacy preservation. It

links the neighbouring pixels that are close to each other to construct the temporal silhouette

region.

Figure 3.3 shows an example of generated silhouettes using the proposed method. It demon-

strates the benefit of using multiple thresholds to compute the weighted entropy, Ê(x, y). It

can be seen in Figure 3.3 (c) that the generated silhouette further highlights the most dynamic

body parts used in the action compared to the rest since the moving parts are represented with

(a) (b) (c)

Figure 3.3: Anonymising modelling of frame #15 from the walking sequence of the participant
#1 in DHA dataset: (a) original frame, (b) single threshold based anonymising Eq. (3.6) with a
single threshold and (c) Silhouette modelling using Eq. (3.7) with multiple thresholds.
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high temporal visual salience magnitude values. These moving parts are represented by in-

creasing the highlighting of their temporal salience magnitude using the proposed approach of

anonymity. Otherwise, if we depend only on a single threshold formula, Figure 3.3 (b), affects

the accuracy of modelling the silhouette of the action since the human body parts seem to have

the same magnitude without focusing on the main moving part. Instead, with the proposed lo-

cal spectral-entropy based obfuscating method, the variation in movements will be reasonably

modelled. The proposed method protects the privacy as well as maintaining the most useful

information about the action. More examples have been displayed in Figure 3.4 to show the

performance of the proposed method. This modelling can help to discriminate among the ac-

tions from using their temporal salience maps without extra information.

In Figure 3.4, we notice that the silhouette for a specific action is changed with time based

on modelling the action over time. This modelling depends on the amount of motion that has

been generated from each part of the human body at a specific time. For instance, in the case

of jacking action, third row, the silhouette has a different pattern every time, as some parts are

attenuated, and others gain extra highlighting. In addition, the algorithm generates different

saliency maps for one-hand waving and two-hands waving actions, as we can see in row 4 and

row 6, respectively, since the patterns of these two actions are different. This representation

is important to create a useful abstract that can be useful to extract the action description by

accurately identifying the variation between the actions.

The examples in Figure 3.4 show that the proposed method can be used for two useful

purposes: protecting the privacy efficiently by obfuscating the essential information in the

scene and eliminating unnecessarily redundant information. The output of the proposed method

makes the video-based sensor less intrusive and more acceptable in the real world. Furthermore,

modelling the anonymity in the form of saliency maps provides useful abstract to be explored

by the descriptor to extract powerful discriminating features and achieve efficiency in the action

recognition application.
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Figure 3.4: Temporal saliency based silhouettes for six actions from Weizmann dataset: rows 1
& 2 are the original frames and their corresponding temporal salience maps for run, rows 3 &
4 are the original frames and their corresponding temporal salience maps for one hand waving,
and rows 5 & 6 are the original frames and their corresponding temporal salience maps for two
hand waving. Rows 2, 4, and 6 show how the silhouettes are changed over time for these three
actions.
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3.4 Performance evaluation

For the evaluation of the proposed video-based anonymisation method, we use both subjective

and objective approaches to evaluate it. In this evaluation, we explore four publicly available

datasets, i.e., DHA [212], KTH [4], Weizmann [118], and UIUC1 [119]. These datasets are

common and widely used in computer vision applications. They are also considered challenging

datasets due to the variation in the environment (outdoor and indoor), the usage of single and

multiple cameras and the variation in participants race and age groups. In the beginning, the

proposed temporal salience based method is evaluated by objective metric and comparing it to

the existing video-based saliency methods followed by the anonymisation subjective evaluation.

3.4.1 Experiment setup

In our experiments, we use β = 3 and h = 7 for evaluating the proposed visual anonymization

algorithm. The weighted entropy maps, Ê(x, y), are smoothed using a 2D Gaussian kernel with

σ = 6.

3.4.2 Temporal salience evaluation

The performance of the proposed temporal salience-based detection method is evaluated by

conducting an objective evaluation using the Area Under Curve (AUC) values of Receiver Op-

erating Characteristics (ROC), which is the most widely used metric when comparing different

saliency models. The AUC is used to evaluate the performance of the saliency models by con-

sidering saliency map as a binary classifier of fixations at various threshold values [232]. AUC

is adopted to compare the performance of the proposed method with video-based saliency state

of the art, Fang et al.[3], Kim et al.[2] and Wang et al.[225] in terms of the accurate salient

region detection and the time of computation.

The experiments have been conducted on DHA, Weizmann, and UIUC1 datasets. The result

of AUC is depicted in Table 3.1 for each method. This table also includes the average AUC and

the average execution time for each method at the bottom of this table. These results show that

the proposed method, which only models temporal salience, has comparable accuracy in terms

of AUC with the existing methods, while taking low computational time. The reason for this
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outperforming is that AUC calculating depends on comparing the saliency map with the ground

truth, which means that the saliency maps include a redundancy. This redundancy impacts on

the process beyond the saliency computing, e.g., feature extraction, because the discrimination

among the actions can be reduced (we will prove this argument in the next chapter). Most of

the redundancy comes from including the spatial-saliency in computing the final saliency map.

Therefore, depending on the temporal salience data reduces the redundancy and improves the

saliency-based feature extraction.

Table 3.1 also shows the average execution time per frame which is calculated based on

collecting the execution time for all frames across all the datasets in accordance with the speci-

fication of the PC that will be explained in Section 3.4.5. Then, the average is taken to represent

the execution time for modelling each saliency map. We notice that Wang and the proposed

method have less computational complexity compared to Fang and Kim. However, the pro-

posed method produces AUC value better than Wang, which makes it a reliable candidate in

real-life applications. These average AUC values and the corresponding execution time are also

shown in Figure 3.5 to illustrate the performance of each method in terms of modelling the

silhouette and the required time to achieve this modelling.

Examples of salience maps for various action sequences from DHA and Weizmann datasets

using our proposed method and existing work are shown in Figure 3.6. These maps represent

different human actions that are obtained by using the methods in Table 3.1. In Figure 3.6, we

observed that the differences in modelling the actions whenever using our temporal saliency

maps and those computed using the existing video-based saliency models. For instance, in row

3, hand clapping activity where the furniture of the room has been highlighted more than the

hands that act during the action.

Table 3.1: Average AUC and the corresponding execution time of the proposed method and
state of the art.

Sequences Fang Kim Wang Proposed
DHA 0.87 0.92 0.82 0.91

Weizmann 0.95 0.96 0.95 0.95
UIUC1 0.98 0.98 0.98 0.92

Average AUC 0.93 0.95 0.92 0.93
Average time (sec) 31.8 34.4 4.21 5.4
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Furthermore, in other cases, the existing methods highlight the human body parts that are

irresponsible for the action, e.g., row 4, and obfuscate the responsible parts; such as running and

walking activities. This modelling makes it difficult to obtain meaningful features from these

maps and confuses both the machine and the HVS to discriminate among the actions. It is evi-

dent that our proposed salience maps only capture the body parts relevant to the action, whereas,

other methods capture other spatial information and the full body which are not relevant to the

action.

3.4.3 Subjective evaluation of the proposed temporal salience-based anonymity

We evaluated the effectiveness of the proposed visual anonymisation using human observers.

A survey with 30 individuals participants was conducted to evaluate the proposed method and

state-of-the-art filtering algorithms for visual anonymisation. In this survey, the participants

were divided into four groups, where each group evaluated a specific anonymised dataset using

the proposed methods and the existing methods. The datasets of DHA, KTH, Weizmann, and

Figure 3.5: Average AUC and the execution time per frame measured by seconds for video-
based saliency state of the art and the proposed method.
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Running Walking Clapping Bending Jacking Two waving

Figure 3.6: Representing the action using the video-based salience detection for a set of hu-
man actions. Row1: original RGB frames, Row2 corresponding temporal salience maps of our
method, Row3 corresponding spatio-temporal saliency maps using method in [2] and Row4 cor-
responding spatio-temporal saliency maps using method in [3]. The first fourth columns have
four actions from DHA dataset while the last two columns have two actions from Weizmann
dataset.

UIUC1 were used in this subjective evaluation since they are recorded using a static camera,

and our method is proposed to use a static camera as well.

In total, 108 anonymised video sequences for different actions were selected equally from

five methods (blurring with σ = 5, blurring with σ = 8, pixelation, solid silhouette and binary

silhouette) and the proposed method. These sequences have been spread out into four groups

and each group was allocated to separate a set of participants for evaluation. Table 3.2 shows

information of each group of evaluation and the number of sequences that have been assigned to

each group. For each anonymised sequence, the participants were asked to answer two questions
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Table 3.2: Evaluation groups and their information.

Dataset No. of video sequences No. of participants Participants’ details

DHA 30 8

• gender (7 Males and 1 Fe-
male)

• age (30-35)

• experience (academic)

KTH 24 7

• gender (5 Males and 2 Fe-
males)

• age(30-55)

• experience (academic and
non-academic)

Weizmann 24 7

• gender (7 Males)

• age (30-35)

• experience (academic)

UIUC1 30 8

• gender (6 Males and 2 Fe-
males)

• age(30-40)

• experience (academic and
non-academic)

about what they were able to see in the sequence.

Figure 3.7 shows an example of a few selected frames from the sequences that are used in

the survey. Concerning the used sequences, we selected a set of anonymised action sequences

for different living daily human actions obtained from the datasets mentioned above. In the next

sections, we describe the planning for this subjective evaluation and present the obtained results

and the explanation of them.
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Table 3.3: The questions and their corresponding answers.

# Question Possible Answers
1 Which of the following activities better

match the video sequence?
[walking, running, jumping, standing,
waving, · · · , I don’t know]

2 How well the person is anonymised in the
video sequence?

[0 (not anonymised), . . ., 5 (perfectly
anonymised)]

3 Can you recognise the following features
from the video sequence?

tick one or more choices from the follow-
ing (gender, age group, face, hair, clothes,
race, and non ).

Planning of the subjective evaluation

The purpose of the survey is two fold. Firstly it aims to find out the effectiveness of the proposed

method’s visual anonymisation. Secondly, to evaluate whether the utility of the video is affected

due to the anonymisation. In this case the utility was considered as the ability for an observer

to accurately recognize the action present in the sequence. Three questions, shown in Table 3.3,

were included in the survey to achieve these two purposes.

The first question aims to evaluate the level of visual anonymisation achieved by a particular

method as perceived by the observer. They are asked to score the level of anonymity on a

Figure 3.7: Example of the anonymisation state of the art and the proposed method for sampled
frames from three datasets: row1 DHA, row2 Weizmann, and row3 UIUC1. The columns from
left to right: original, blurring with σ = 5, blurring with σ = 8, pixelation, silhouette, binary
and the proposed method, respectively.
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discrete scale from 0 (no anonymisation) to 5 (perfect anonymisation). The score is regarded to

which one they thought could provide enough protection and reduce the concern about privacy

protection. The second question collects the identity attributes, such as, gender, apparent age,

facial features, clothes, hair and race, that can be recognised by the participants. These attributes

are considered sensitive information that has to be protected by a visual privacy preservation

model. The unmeasurable attributes were not considered due to the difficulty to determine them

in the visual domain. The response to this question needs to be compatible with that for the

first question. For example, a score of 5 for the anonymisation level means none of the identity

clues can be recognized from the anonymised video. Finally, the third question estimates the

ability of anonymisation method to retain useful information that can be used to identify the

human action present in the video. This quality relies on the level of anonymity. In other words,

if we need to increase the anonymity, the quality of the information has to be discarded and

vice versa. The participants were asked to label the action presented in the obfuscated sequence

using the information that was retained in the concealment model.

At the beginning of a survey session, the purpose of the evaluation is conveyed to the survey

participants. The region of anonymity of a scene is restricted to the human in the scene, but not

for the background. The test video set used in the survey consists of various people performing

various actions. We aimed to minimize the repetition of the same person doing different actions.

Using the same video sequences with versions can help the participants to use their memory to

recall the missed details and/or biased to the same answer ignoring the difference between the

models. However, in a few cases we use two different models for the same sequence in order

to analyse the ability of the participants to recognise between them and if the method can make

the difference for the participant or not.

Concerning the appearance clues identification, a list of measurable variables, i.e., a person’s

visual clues that take specific values in a determined domain, such as the gender is measurable

in the domain [male, female], and so on. The unmeasurable clues have been discarded due to

the difficulty to determine the domain for these features.

As we mentioned before, the number of the video sequences in this evaluation is 108 se-

quences distributed as follows: DHA=30, UIUC1=30, KTH=24 and Weizmann=24. The num-

ber of video sequences that have been used in the evaluation depends on the size of the dataset

57



Chapter 3 – Temporal salience modelling for video-based anonymisation

Table 3.4: Number of questions collected from the datasets.

Dataset Number of answers
DHA 720
KTH 504

Weizmann 504
UIUC1 720

and the number of actions in each dataset. Thus, the number of the video sequence is distributed

among the anonymisation model, which is six models except for KTH dataset, where there are

four models. The evaluation results in a total of 324 questions (three per sequence) to collect

the responses of this evaluation.

In this survey, we avoid using the same sequence that has been tested by the anonymised

model in the evaluation as much as possible and make the samples of the video sequences

diverse. Using the same video sequences with versions can help the participants to use their

memory to recall the missed details and/or biased to the same answer ignoring the difference

between the models. However, in a few cases we use two different models for the same sequence

in order to analyse the ability of the participants to recognise between them and if the method

can make the difference for the participant or not. We also distributed the video sequences

into four groups based on the dataset as aforementioned in order to use as much sequences as

possible, and, at the same time, this way can avoid the biasing to one dataset. Table 3.4 shows

the number of the answers that have been collected for each dataset.

Subjective experiment results analysing

The results of the subjective evaluation have been presented in Figures 3.8-3.21. These figures

aim to interpret the results and make it easy to understand. The first part of the evaluation, where

the visualisation identity concealment models are used to evaluate the utility the viewpoint

of HVS, is shown in Figures 3.8-3.11 for the DHA, KTH, Weizmann and UIUC1 datasets,

respectively. The correct answers for each anonymisation model are collected and the average

amount, Av, is calculated as

Avd =
Ad

Pd ×Gd

, (3.8)
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where Ad, Pd and Gd are the total correct answers, number of participants and the number of

ground truth answers for each anonymisation method, respectively, for the dataset d. We used

equal number of anonymised sequences and thus there is also equal number of ground truth for

all datasets.

Figures 3.8-3.11 show the average values of the correct participants’ answers for six anonymi-

sation models, except KTH dataset where four anonymisation methods were evaluated, as Sil-

houette and Binary masks were not available for the actions in the KTH dataset. The overall

average of the results in these figures is shown in Figure 3.12. In this figure, we can observe

that the average value of some anonymity methods is better than the proposed method. On the

one hand, for instance, blurring model with σ = 5 in Figure 3.12 seems to achieve better re-

sults from the viewpoint of the participants. On the other hand, this means that the quality of

the anonymity is low because this method considers the trade-off between privacy and utility.

These obtained results explain the dependency of each method in considering this trade-off.

However, the judgement of the superiority of any model will be suspended until the results of

the anonymity are interpreted.

In general, in Figure 3.12, we observe that the methods of blurring and silhouette seem to

Figure 3.8: The average activity recognition considering all the participants’ response for the
DHA dataset.
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Figure 3.9: The average activity recognition considering all the participants’ response for the
KTH dataset.

have the best action identifying despite low levels of protection. Furthermore, we can see that

the results of these models lose the stability due to the quality of the visual content in each

Figure 3.10: The average activity recognition considering all the participants’ response for the
Weizmann dataset.
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Figure 3.11: The overall average activity recognition considering all the participants’ response
for the UIUC1 dataset.

dataset. For instance, in KTH dataset, the blurring presented a low level of action recognition

compared to the pixelation, while the same method is the best one in the case of using Weizmann

dataset. This fluctuation in the results is due to the variation in the quality of visual data of the

datasets.

For the protection level that meets the desires of the participants, Figures 3.13-3.16 show

the relevance the participants assigned to the privacy protection for DHA, KTH, Weizmann and

UIUC1 dataset, respectively, on a scale from zero, non-anonymity, to five, perfect anonymity.

The average amount has been interpreted using the following formula:

Avd =
Ad

Pd × Vd
, (3.9)

where Ad, Pd and Vd are the total correct answers based on the responses of the participants,

number of participants and the number of video sequences that are used in the survey, respec-

tively, for the dataset d.

The interpretation of the participants’ answers indicates that the proposed method achieves

better performance than the filtering algorithms in terms of concealment of the privacy and

all relevant attributes. The results in Figures 3.13-3.16 confirm that the proposed method of
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Figure 3.12: The average activity recognition considering all the participants’ response for all
datasets.

anonymisation achieves the perfect anonymisation, reaching to a high level of privacy protection

from the viewpoint of the participants. The reason of this achievement of the proposed method

is due to modelling the action using the temporal information instead of covering the silhouette

spatially. This reasoning conclusion can be observed from the average scoring in Figure 3.17 of

Figure 3.13: The average of anonymisation degree considering all the participants’ response for
the DHA dataset.
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Figure 3.14: The average of anonymisation degree considering all the participants’ response for
the Weizmann dataset.

the participants’ answers for the proposed method compared to the state of the art anonymisation

methods. We can also observe that non-intensity-based methods, i.e., binary and the proposed

methods, achieve intensity-based algorithms. The low-level of privacy based on blurring and

pixelation is because these methods include the intensities in the anonymity domain and these

Figure 3.15: The average of anonymisation degree considering all the participants’ response for
the KTH dataset. The average degrees for Silhouette and Binary methods are excluded because
the ground truth maps are unavailable for this dataset that can be used for getting the binary
masks and forming the silhouettes.
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Figure 3.16: The average of anonymisation degree considering all the participants’ response for
the UIUC1 dataset.

intensities are used to identify privacy.

Finally, the third part of the evaluation focuses on identification of a set of appearance

attributes, i.e., gender, age group, clothes, hair, facial and race. Bi-charts in Figures 3.18-3.21

Figure 3.17: The overall average of anonymisation degree considering all the participants’ re-
sponse for all datasets.
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illustrate the percentages of recognising the appearance clues in DHA, KTH, Weizmann and

UIUC1 datasets, respectively. These clues are considered sensitive information that has to be

protected by the vision privacy preservation model. The responses of the participants show

that the proposed method of anonymity conceals the attribute of human appearance completely.

The perfect anonymisation using the proposed method is a result of depending on the temporal

salience modelling leading to model the action across time instead of modelling the body of the

human.

A similar result is obtained by using a binary silhouette method. However, our method out-

performs the binary silhouette because the binary silhouette method uses the spatial information

to construct the silhouette which means that the appearance details, such as the hairstyle, for

example, can be used to recognise the gender of the person. In Figures 3.18 (f)-3.21 (f), the

percentage of the difficulty to recognise the appearance attributes is the highest compared to the

filtering algorithms. Thus, the proposed anonymisation method achieves between 89%− 100%

of concealment, which is the highest compared to the current work. This high level of anonymi-

sation proves that temporal modelling achieves better compared to spatial modelling.

At the end of this subjective evaluation, we conclude that converting the visual data into a

useful abstract is more informative, i.e., intelligible, and secure, i.e., anonymised. This con-

clusion can be illustrated in Figure 3.22, where each method used in the subjective evaluation

is located in this figure based on satisfying both privacy and utility scores using the average

answers of the participants. It is clear from Figure 3.22 that the proposed temporal salience

method achieves the highest level of privacy and outperforms the existing methods. We also

notice that blurring with = 5 achieves a high level of utility. The reason for blurring is because

this method has a low level of obfuscation; therefore, it is easy to recognise the action. If we

increase the level of privacy for blurring, the level of utility is reduced. This trade-off can be

noticed whenever comparing the results of two blurring methods in Figure 3.22.

Besides, the binary mask-based anonymity gives a high privacy preservation level compared

to the first four methods. However, the obtained privacy based on the binary mask is less than

the proposed method because the binary mask creates a silhouette with sharp edges that can

explain some details of the appearance, such as the gender.

The results in Figure 3.22 indicate that the proposed method obtains a higher level of pri-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: Percentages of recognising the appearance attributes in DHA dataset using each
method: a comparison.

vacy protection and produces informative domain that can be explored for action recognition.

Outperforming the proposed method for achieving both privacy and utility at the same time

encourages the researchers towards leverage of using the vision camera for AAL.
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(a) (b)

(c) (d)

Figure 3.19: Percentages of recognising the appearance attributes in KTH dataset using each
method: a comparison. The Silhouette and Binary methods are excluded because this dataset
does not have a ground truth that can be used for getting the binary masks and forming the
silhouettes.

3.4.4 Temporal salience-based anonymity objective evaluation

We adopted an objective evaluation, the magnitude of mean cross-correlation (MMCC), to eval-

uate the robustness of the proposed privacy protection approach and the current filtering algo-

rithms w.r.t. the unmodified video frames from the perspective of similarity. Table 3.5 depicts

the calculated MMCC for four filtering methods and the proposed method over all the sequences

in DHA, KTH, Weizmann, and UIUC1 datasets. As we can see, the proposed method outper-

forms all filtering methods. This outperforming means that the temporal salience maps contain

silhouettes that mostly have no similarity with RGB versions. By this, we can conclude that

the proposed method achieves a high level of anonymity in terms of its ability to conceal the

appearance details.

The objective evaluation results match the results of the subjective evaluation, which indi-

cates that the proposed method achieves up to 100% of anonymity. Both the proposed method
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(a) (b)

(c) (d)

(e) (f)

Figure 3.20: Percentages of recognising the appearance attributes in Weizmann dataset using
each method: a comparison.

and the binary silhouette got the lowest scores of similarity. The MMCC values point out that

our method achieves a high level of privacy preservation which is expected due to its strong

anonymised action abstraction and modelling. The lowest MMCC means that the temporal

saliency maps are considered masks which make the proposed anonymising method achieve a
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(a) (b)

(c) (d)

(e) (f)

Figure 3.21: Percentages of recognising the appearance attributes in UIUC1 dataset using each
method: a comparison.

high level of privacy protection similar to the binary mask. However, the difference between

the binary mask and the saliency map is that the saliency map distributed the magnitudes in

the silhouette region based on the dynamic changes acquired at each location. In contrast, the

binary mask assigns the same magnitude overall locations. These variations will be observed in
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Figure 3.22: Privacy vs. utility of the vision-based anonymisation methods. The result of
Silhouette and Binary results are collected from DHA, Weizmann, and UIUC1 datasets and
excluded KTH dataset, since KTH dataset does not have binary masks that can be used to
generate the Silhouette and the Binary models.

the human action recognition stage in the next chapter.

Back to Table 3.5, other methods of anonymisation in this table retain the intensity values of

the origin and include them in the obfuscated version. These intensities maintain the appearance

clues of the human leading to decreasing the privacy preservation. Therefore, depending on the

spatial information to model the anonymity reduces the protection of privacy.

Table 3.5: Anonymising performance using the MMCC computed on the bounding box.

Method DHA KTH Weizmann UIUC1
Blurring
σ = 8

0.90 0.8151 0.66 0.9653

Blurring
σ = 5

0.94 0.8608 0.78 0.9836

Pixilation 0.74 0.8874 0.58 0.8795
Silhouette 0.68 N/A 0.84 0.8901

Binary Silhouette 0.48 N/A 0.75 0.691
Proposed Method 0.02 0.3710 0.27 0.047
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3.4.5 Computational complexity of the temporal salience detection

All experiments in this chapter were implemented using Matlab R2017b on a PC with Intel

processor, CPU@2.7GHz and RAM 8GB. The required time to obtain the temporal salience

map is about 5.4 seconds. Table 3.6 explains the breakdown of the average times for each step

of the proposed method. In our algorithm, we have three main steps to calculate the complexity.

At the beginning, the frame difference is calculated, which is a simple absolute subtraction and

this takesO(1). The next two steps are the 2DFFT and the spectral entropy for each 3×3 block

size. Since these operations are executed based on the number of blocks extracted from each

frame, the complexity for each one is O(M), where M is the number of blocks. Therefore,

to complete processing all the blocks, we need O(2M). Thus, the total time complexity to

compute each entropy map is O(2M) + O(1). Since M � 1, the overall time complexity

becomes O(M). This time complexity is calculated and explained in Table 3.1 whenever the

execution time of the proposed anonymisation method is the best compared to the state of the

art methods.

3.5 Concluding Remarks

In this chapter, we have presented a new temporal salience-based anonymisation method for

privacy preservation in the application of video-based home monitoring. The proposed method

relies on detecting the temporal change in the pixel intensities to model the daily human actions

instead of filtering the spatial content of the visual data. The temporal salience-based silhouettes

are used to achieve a high level of privacy obfuscation and present a useful content that can

be utilised to identify the actions, i.e., utility, regardless of the trade-off between the privacy

Table 3.6: The complexity of the proposed temporal salience estimation and obtaining HOG-S
.

Step Computational complexity
Frame difference O(1)

2DFFT O(M)
Spectral entropy O(M)

Total O(2M) +O(1)
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and utility. The proposed method has been evaluated using subjective and objective metrics to

stand on the performance of the temporal salience-based privacy preservation. The results of

the evaluation show that the proposed method achieves in a high level of privacy protection as

well as concealment of the appearance clues up to 100% outperforming the existing filtering

methods. The results of the subjective evaluation prove that the proposed method presents

an informative abstract in the anonymity domain that can be used beyond the anonymisation

to action recognition. The utility of the anonymity domain will be evaluated more from the

perspective of the machine in the next chapter by extracting feature directly from the anonymity

domain.
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Anonymised domain Human Action

Recognition

This chapter proposes a new descriptor to represent the human action in the anonymised se-

quences. The proposed descriptor aims to emphasise the utility of exploring the anonymised

content from the perspective of action recognition. This descriptor depends on exploring the

anonymised video sequences for HAR. These obfuscated sequences have been already pro-

duced using the proposed temporal salience-based anonymisation method in Chapter 3.

4.1 Introduction

Vision-based Human Action Recognition (HAR) plays an important role in many applications,

such as video surveillance [233], human-computer interaction [234], healthcare monitoring

[235], assisted living [14, 16], smart homes [236] etc. Vision-based HAR is still a challenge due

to different limitations, such as light conditions, occlusion and inherent redundant background.

Although some of these problems can be overcome by acquiring a set of features to train a clas-

sifier leading to promising results, uncorrelated and lost information may be obtained during the

feature extraction [237]. Therefore, the representation of action features is considered a critical

stage affecting the performance of any action recognition system [238].

Low-level feature extraction is the conventional approach to represent the actions [237, 238,

133, 140, 135, 239, 189, 240, 241, 242, 243, 244, 118]. Accordingly, many works have been
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proposed to represent the actions using either local visual descriptors [133, 140, 135, 239, 189,

240, 241, 242] or global visual descriptors [243, 244, 118]. Local descriptors, such as a His-

togram of Oriented Gradient (HOG), Histogram of Optical Flow (HOF) and Motion Boundary

Histogram (MBH), are widely used to represent the actions for HAR [245]. The global category

of descriptors is also exploited to represent the actions in different scenarios [118, 243, 244].

However, vision-based algorithms suffer from several problems, such as the redundancy in suc-

cessive frames, leading to extracting features that do not discriminate the actions accurately.

One solution is to extract these features based on determining candidate local interest points

to describe the actions [246]. However, these selected locations represent some parts of the

human body, making the extracted features from these points adversely affect the accuracy of

the classification.

Other problems, e.g., privacy and utility, arise whenever vision-based HAR is exploited in

the home monitoring scenarios. These systems struggle to find a compact methodology that can

achieve both: good concealment for the privacy and exploring anonymity domain. The current

solutions [50, 51, 224, 60], which have been explained in Chapter 3, attempt to find the trade-

off between the privacy and utility. This trade-off means that increasing the privacy reduces

opportunities to exploit that anonymised data and vice versa. Therefore, looking for a domain

that achieves both the privacy and intelligibility using the same domain is considered the goal

of every anonymity algorithm.

Recently, saliency estimation has attracted much attention in image and video processing

[247, 3, 225]. The saliency estimation algorithms highlight the most important visual con-

tent, i.e. foreground, and attenuate others, i.e. background. The saliency also seems to be a

useful tool for addressing the problems mentioned above of visual information that makes the

saliency-based representation reliable and accurate for the feature learning applications. This

representation has been exploited in [222] to improve the human action modelling by highlight-

ing the most dominant foreground region and eliminating the background content to build an

essential feature learning HAR system.

This chapter proposes a new approach that explores the temporal salience-based anonymity

domain for HAR. The proposed method models the action without using high complexity mo-

tion estimation algorithms. Instead, the proposed method generates temporal saliency maps,
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considering the spatial changes within successive frames. This modelling is followed by extract-

ing HOG features leading to the histogram of oriented gradient of salience (HOG-S ) features

that are finally classified using the classifiers. The main contributions of this chapter are:

1. Exploring the temporal saliency domain instead of RGB domain for HAR [222]; i.e.,

utility.

2. Proposing a salience-based descriptor to encode each action using the HOG of salience

(HOG-S).

The rest of this chapter is organized as follows: Section 4.2 explains the related work in

the field of HAR. Section 4.3 presents the proposed method to model the action and extract the

features. Section 4.4 shows the experimental results and discussion followed by the conclusions

in Section 4.5.

4.2 Related work

As we explained in chapter two, several works have been presented to represent the actions using

the local dense trajectories representation, such as Histogram of Oriented Gradients (HOG)

[245], due to its robustness [141]. The existing works on HOG-based HAR are categorised into

two themes: 2D HOG [248, 249, 250] and 3D HOG [140, 251, 252] representations. In the first

category, the dense features are extracted from a single image/frame to show the motion history.

In the second category, a volumetric representation in space-time is exploited to represent the

action. However, in both categories, redundant data, such as, the background, is exploited to

extract features that represent the actions. This redundancy affects the discriminating power of

the descriptor and increases storage requirements for this information and makes the complexity

higher. Mainly, there is interest to address these problems based on determining candidate local

interest points [246]; however, interested point-based learning has also many problems.

Recently, saliency estimation has attracted much attention in image and video processing

[247, 3, 225]. The visual saliency estimation algorithms highlight the most important visual

content, i.e. foreground, and attenuate others, i.e. background. The visual saliency offers a tool
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for addressing the problems mentioned above of visual information [22, 253], and makes the

saliency-based representation useful and accurate for the feature learning applications.

The usefulness of the saliency can be exploited to improve the human action modelling

by highlighting the most dominant foreground region and eliminate the irrelevant background

content to build an essential feature learning for HAR system. Besides, the saliency can improve

the feature learning by guiding the descriptor toward the most important content in the scene,

i.e., the region of the action, and extract a reliable representation for the action to avoid the

irrelevant content. The salience modelling also includes a variation in highlighting the details

of the scene, which means that the discrimination is included in the content of the saliency map.

Therefore, building feature learning based on the saliency leads to extract more discriminated

features that can improve the feature learning and action recognition.

4.3 The proposed method

The flowchart of the proposed method is illustrated in Fig. 4.1. Let C = {sFi , li}Vi=1 be the

action dataset with V video sequences and L classes, where si is the ith RGB video sequence

containing F frames and label l ∈ L. We aim to recognise V accurately into L classes using

the new HOG-S descriptor. Our recognition system is composed of two main stages:

1. Temporal salience-based action anonymisation: The proposed anonymisation method has

been done in Chapter 3.

2. Exploring the temporal saliency-based anonymised maps to extract the HOG-S . Based on

modelling the actions, new efficient and more discriminating features are extracted from

the anonymised maps to describe the action. This stage will be detailed in this chapter.

4.3.1 HOG-S feature extraction

The proposed description approach aims to construct a compact descriptor by excluding redun-

dant information. Most current human action descriptors depend on the original RGB content

to extract the features. The RGB domain has redundant regions, and the obtained features from
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Figure 4.1: Proposed human action representation model.

these regions are included in the description and cause shortcomings in the accuracy of recog-

nition. Therefore, guiding the descriptor toward the area included the action abstraction, i.e.,

the saliency-based silhouette, leads to the outperforming in recognising the action.

HOG-S is a local descriptor exploring the anonymised sequences. This descriptor focuses

on the salience region, avoiding unnecessary data to extract more informative content. By this,

we guarantee that the redundant data is bound to be less contribution in describing the action.

Our HOG-S is calculated from the saliency-based silhouette using the bounding box. All HOG-

S vectors for the key-frame are calculated and collected to train the classifier.

The HOG-S focuses on the salience region, Rt, spanning in a rectangular bounding box of

K×L pixels, from the silhouette in frame t. Major steps of our approach include HOG-S feature

vector extraction from the bounding boxes, HOG-S feature vector processing and training a

classifier as illustrated in the block diagram in Figure 4.2. We start by computing gradients,

ORt = (dx, dy) for each pixel in the region RSÊ
, where dx and dy represent the horizontal and

vertical components approximated by finite differences. The gradient magnitude, Gt, and the

direction, θt, are computed as follows:

Gt =
√
d2x + d2y, (4.1)

θt = arctan

(
dy
dx

)
. (4.2)

Rt is partitioned into BK × BL blocks, each containing qm × qm pixels. Then each block

is further partitioned into q× q patches, with each patch containing m×m pixels. The gradient
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Figure 4.2: Proposed flowchart for HOG-S exploring the saliency-based silhouette of the human
action.

magnitudes and the corresponding directions in each patch are formed into 9-bin histograms

and all histograms are concatenated into a single feature vector, ~v, of length 9q2BKBL. This is

followed by normalizing the vector as follows:

v̂t =
~vt
‖~vt‖22

. (4.3)
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However, just considering individual v̂t for individual frames cannot perfectly marginalise

among features from other frames in accordance with the variations inside the action itself and

similarities among other actions. This is addressed by considering the accumulated temporal

changes to the feature vectors, V̂ = {v̂0, v̂1, v̂2, · · · , v̂t} up to frame t to compute the final

feature vector, ṽt, at the time instant, t, as follows:

ṽt =

∣∣∣∣∣
t−1∑
k=0

v̂t−2k −
t−1∑
k=0

v̂t−(2k+1)

∣∣∣∣∣ , (4.4)

where t− k > 0.

Eq. (4.4) improves the HOG-S features by increasing the discrimination among the actions.

Besides, the approach can be further improved by applying the principal component analysis

(PCA) on ṽt to satisfy the following two objectives:

1. To reduce the length of the HOG-S descriptor.

2. To improve the discrimination of our HOG-S descriptor.

In the section of the performance evaluation, we verify the improvement of the temporal

salience-based feature extraction algorithm for HAR by exploring the region of the action; i.e.,

the temporal salience silhouette, and avoiding the redundancy.

4.4 Performance evaluation

In this section, the proposed HOG-S descriptor is evaluated on six publicly available action

recognition datasets, namely Weizmann[118], KTH[4], DHA [212], UIUC1 [119], UCF sports

[183, 180], and HMDB51 [205], to verify the utility of the proposed method in Chapter 3.

4.4.1 Datasets

In the following, we will briefly explain the datasets that are used in the experiments. These

datasets have been already explained in Chapter 2, however, we will explain them in terms of

the notations specified in Section 4.3.
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1. Weizmann dataset was first proposed by Blank et al.in [114] and contains 93 video se-

quences. These sequences have low-resolution sequences of 144×180 with a frame rate

of 50 frames per second (fps). The dataset shows nine actors, each of them perform-

ing L = 10 different actions, i.e. bend, run, walk, skip, jack, jump, pjump, side, one

hand wave and two hands wave. This dataset is widely used in the applications of action

recognition.

2. KTH dataset was proposed by Schuldt et al.[4] and showing L = 6 actions, i.e., boxing,

handwaving, handclapping, jogging, running and walking. The dataset was acquired over

homogeneous backgrounds with a static camera recording 25 fps frame rate. Twenty-five

different subjects are performing the actions mentioned above in four different scenarios.

Each sequence has a resolution of 160× 120 with an average of 4 seconds length.

3. UIUC1 is an indoor dataset [119] includes V = 532 sequences showing L = 14 human

actions, i.e., walking, running, jumping, waving, jumping jacks, clapping, jump from

situp, raise one hand, stretching out, turning, sitting to standing, crawling, pushing up

and standing to sit, captured by a static camera. These 14 actions are performed by eight

actors, where each actor does the same action several times. The sequences came with a

resolution of 1024×768 and 15 fps frame rate.

4. Depth-included Human Action (DHA) dataset was suggested by Lin et al.[212]. The

dataset consists of V = 532 sequences compromising L = 23 action categories per-

formed by 21 subjects (12 males and 9 females). It is recorded using a static Kinect cam-

era in three different scenes with 480×640 resolution. The RGB versions of sequences

are used in the experiments.

5. Human Motion Database (HMDB) [205] is one of the largest datasets used to recognise

the human motion contains V = 6849 clips distributed in L = 51 action classes; each

video has ∼ 20–1000 frames. The actions categories of this dataset can be grouped

into five types based on body movements. This dataset is considered a challenge due to

including sequences collected from the Internet and YouTube; therefore, this dataset is a

real-world video sequences collection.
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6. University of Central Florida (UCF) sports dataset [180, 183] is a set of action sequences

collected from the broadcast channels from various sports contains V = 150 sequences

with the resolution of 720×480 over L = 10 classes. The action features a wide range of

scenes and viewpoints. This dataset has been used for the application of computer vision;

such as action recognition and action localization.

4.4.2 Experiment Setup

In the experiments, the considered number of user-defined thresholds equals to 7. All silhouette

maps are resized to the resolution of 256×256 to apply the same parameters on all datasets. We

adopt a bounding box approach with 168 × 72 resolution to crop the temporal salience region

of the silhouette. We found that the patch size 4× 4 with P = 16, resulting in 144-dimensional

descriptors for each block achieves the best results. The final dimension of HOG-S descriptor

for each frame in all datasets is 23040.

4.4.3 Comparison Results

Experiments reported in this section perform an objective evaluation of the visually anonymised

sequences from the proposed anonymisation method from the machine perception. We report its

performance in the datasets mentioned above, i.e., Weizmann, KTH, UIUC1, DHA, HMDB51,

and UCF sports using both KNN and SVM classifiers with five-fold cross-validation and com-

pare with the existing methods.

We will start by showing the confusion matrix and the table of comparison with the existing

work on each dataset, separately. The experimental results on Weizmann dataset are illustrated

in Table 4.1. Our descriptor achieves average recognition accuracies of 99.46% and 99.66%

using QSVM and KNN, respectively, outperforming most state of the art methods. Figures 4.3

and 4.4 show the confusion matrices of QSVM and KNN classifiers, respectively, based on

HOG-S . The results show that 30% of the actions are recognised with 100% accuracy using

QSVM and 50% are recognised with 100% accuracy using KNN. This performance proves that

the proposed HOG-S accurately recognises between the actions, though there are similarities

between the actions; such as between one hand wave and two hand wave actions. Besides, we
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Table 4.1: Recognition accuracy (%) of the proposed HOG-S and the state of the art on Weiz-
mann dataset: a comparison.

Method Accuracy %
Klaser et al.(2008)[140] 84.3

Weinland and Boyer (2008)[173] 93.6
Ta et al.(2010)[174] 94.5
Xie et al.(2011)[175] 95.60

Wu and Shao (2013)[170] 97.98
Zhang et al.(2015)[176] 96.3
Zeng et al.(2018)[177] 98.77
Xu et al.(2017)[178] 99.1

Rodriguez et al.(2017)[179] 98.9
Proposed using QSVM 99.46
Proposed using KNN 99.66

observe that KNN fully distinguishes the frames of run action despite the existence of simi-

larity of action patterns with the walk action. The reason is that the new HOG-S descriptor is

efficiency discriminate between the actions, even though they have the same patterns in some

cases.
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Figure 4.3: The confusion matrix of classification all views using QSVM on Weizmann (Overall
accuracy: 99.46%).
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Figure 4.4: The confusion matrix of classification all views using KNN on Weizmann (Overall
accuracy: 99.66%).

This good discrimination is due to applying the proposed temporal salience method of mod-

elling the human body parts. Variation in actions modelling is formed based on the motion

pattern of each action that can make it easy to distinguish between those actions since the mo-

tion patterns are fundamentally different from action to action.

The next dataset in our experiments plan is KTH. The comparison results of the accuracy

rates are shown in Table 4.2. We can see that the proposed descriptor outperforms the existing

work on this dataset by achieving average recognition accuracies of 98.53% and 99.06% using

QSVM and KNN classifiers, respectively.

The accuracy results in Table 4.2 show that exploring the temporal salience of the actions is

useful in a multi-view HAR scenario because the saliency highlights the same regions regardless

of the view orientation of the camera, i.e., view-invariant. Thus, the descriptor will target the

same salience content that leads to calculating a description with high similarity to those from

other camera views. This outperforming is due to the proposed method of modelling the action

as a temporal salience silhouette. The corresponding confusion matrices of recognising the

actions in KTH dataset using QSVM and KNN classifiers are shown in Figures 4.5 and 4.6,
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respectively.

The third experiment has been applied on another indoor dataset; i.e., UIUC1. The re-

sults of the accuracy and the comparison have been shown in Table 4.3. Our proposed method

achieves an overall recognition accuracy of 99.15% and 99.06% using KNN and QSVM classi-

fiers, respectively. Regarding the accuracies in Table 4.3, the proposed descriptor outperforms

improvement by 0.25% compared to state of the art on this dataset. The confusion matrices of

Table 4.2: Recognition accuracy (%) of the proposed HOG-S and the state of the art on KTH
dataset: a comparison.

Method Accuracy %
Ikizler-Cinbis and Sclaroff (2012) [169] 81.17

Wu and Shao (2013)[170] 83.30
Liu et al.(2013) [128] 94.8

Veeriah et al.(2015)[171] 93.96
Yadav et al.(2016)[172] 98.20
Shi et al.(2017) [126] 96.8

Proposed using QSVM 98.53
Proposed using KNN 99.06

0.50 0.20 0 0 0.10

1.60 1.90 0 0 0

0.50 1.00 0 0 0

0.10 0 0 5.60 1.70

0.60 0 0.90 0.90 0

0.30 0 0.10 1.90 0.40

99.20

96.50

98.50

92.60

97.60

97.40

bo
xi
ng

ha
nd

w
av

in
g

ha
nd

cl
ap

pi
ng

jo
gg

in
g

ru
nn

in
g

w
al
ki
ng

Predict

boxing

handwaving

handclapping

jogging

running

walking

A
c
tu

a
l

Figure 4.5: The confusion matrix of classification all views using QSVM on KTH (Overall
accuracy: 98.53%).
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Figure 4.6: The confusion matrix of classification all views using KNN on KTH (Overall accu-
racy: 99.06%).

KNN and QSVM classifiers are depicted in Figures 4.7 and 4.8, respectively. In Figure 4.8,

we can see that the classifier recognises the jumping action with 100% of accuracy despite the

similarity between this action and other actions in the dataset. Besides, 79% of activities have

been recognised with > 99% accuracy. These results prove the outperforming of the proposed

method compared to state of the art. The results of a perfect discrimination are also obtained in

Figure 4.7.

The fourth dataset in this scenario is DHA. This dataset contains twenty-three controlled

Table 4.3: Recognition accuracy (%) of the proposed HOG-S and the state of the art on UIUC1
dataset: a comparison.

Method Accuracy %
Parikh and Grauman (2011)[188] 93.4

Wang et al.(2013) [189] 98.4
Zhang et al.(2015) [190] 98.87
Shan et al.(2015) [191] 98.9
Proposed using QSVM 99.06
Proposed using KNN 99.15
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Figure 4.7: Confusion matrix of KNN classifier on UIUC1 dataset (Overall accuracy: 99.15%).

scene actions which are used to evaluate the utility of the temporal saliency maps for HAR. The

results of recognising the actions in DHA dataset are shown in Table 4.4, Figure 4.9 and Figure

4.10, respectively. Though DHA dataset includes several actions with high similarity, our pro-

posed method discriminates them accurately and outperforms the existing methods to achieve

approximately 3% improvement, as can be seen Table 4.4. This outperforming is because our

Figure 4.8: Confusion matrix of QSVM classifier on UIUC1 dataset (Overall accuracy:
99.06%).
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Table 4.4: Recognition accuracy (%) of the proposed HOG-S and the state of the art for DHA:
a comparison.

Method Accuracy (%)
Liu et al.(2012) [212] 87

Yang et al.(2012) [213] 86.5
Gao et al.(2015)[214] 95
Liu et al.(2017)[215] 95.45

Zhang et al.(2017)[216] 96.69
Liu et al.(2018)[217] 95.44

Proposed using QSVM 97.98
Proposed using KNN 99.59

proposed method models the action silhouette differently for each action. Figures 4.9 and 4.10

also show the performance of the proposed method. The confusion matrix of KNN classifier

shows that 8 out of 23; i.e., 34%, of actions have been fully recognised based on exploring the

silhouettes obtained by the proposed modelling method. Besides, the proposed representation

leads to full recognition between the actions with high similarities, such as side-box and side-

clap actions. The perfect discrimination among the actions indicates the accuracy of modelling

the actions based on the proposed temporal salience method, and the reliability of applying the

proposed HOG-S .

Figure 4.9: Confusion matrix of QSVM classifier on DHA dataset (Overall accuracy: 97.98%).
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Figure 4.10: Confusion matrix of KNN classifier on DHA dataset (Overall accuracy: 99.59%).

Fifth, in this experiment, the proposed descriptor has been tested on more natural wild

sequences collected from the Internet using HMDB51 dataset. The results of recognising the

actions in this dataset are shown in Table 4.5 and Figure 4.11, respectively. Our new descriptor

outperforms the existing work on this dataset and achieves approximately 16.55% improvement

(see Table 4.5). This particular outperforming is due to considering the variation in collecting

the sequences for each action class and the number of sequences included in each class. The

confusion matrix of KNN classifier shows that 21 out of 51; i.e., 41%, of actions have been fully

recognised based on exploring the silhouettes obtained by the proposed modelling method. The

accurate discrimination between the actions in HMDB51 dataset also proves the superiority

of the proposed modelling method and the proposed HOG-S descriptor. In this part of the

experiments, we have excluded the results of QSVM classifier because the specification of

our pc hardware prevents us from completing the results since the size of this dataset set is

huge compared to other datasets in this research. Therefore, we presented the results of KNN

classifier only for HMDB51 dataset.

In the sixth experiment, the proposed descriptor has applied on more natural wild sequences

collected from the Internet, i.e., UCF sports action dataset. Applying the HOG-S to extract the
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Table 4.5: Recognition accuracy (%) of the proposed HOG-S and the state of the art for
HMDB51: a comparison.

Method Accuracy (%)
Tran et al.(2015) [206] 51.6
Tran et al.(2017) [207] 54.9

Girdhar et al.(2017) [208] 66.9
Carreira and Zisserman (2017) [209] 80.9

Choutas et al.(2018 ) [210] 80.9
Wang et al.(2018) [211] 82.48
Proposed using KNN 99.03

features improves the accuracy of state of the art by 3.49%, as we observe in Table 4.6. Using

the HOG-S with KNN classifier results in full recognition of around 77% of the actions (see

Figure 4.12). The confusion matrix of using QSVM in Figure 4.13 also shows that 54% of the

action are recognised with 100%.

The useful abstract created by the temporal salience and targeting this salience area for ex-

tracting the features has been entirely affected by the discrimination among the actions, leading

to improving the accuracy of recognition. The results of this chapter explain that the anonymity

domain based on the proposed method has a high level of utility with maintaining a high-level of

anonymisation. Both privacy and utility are achieved together using the same approach without

using other algorithms.
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Figure 4.11: Confusion matrix of KNN classifier on HMDB51 sport dataset (Overall accuracy: 99.03%).
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Table 4.6: Recognition accuracy (%) of the proposed HOG-S and the state of the art for UCF
sports: a comparison.

Method Accuracy (%)
O’Hara and Draper [181] (2012) 91.3

Shao et al.[182] (2013) 93.4
Soomro et al.[183] (2014) 92.67
Wang et al.[184] (2017) 93.6

Ghodrati et al.[185] (2017) 95.7
Wang et al.[186] (2018) 91.89

Siddiqi et al.[187] (2019) 96.22
Proposed using QSVM 98.15
Proposed using KNN 99.71

4.4.4 PCA-based HOG-S improvement

The proposed HOG-S descriptor is reliable to deal with different scenarios to satisfy the utility

in HAR. However, this descriptor can be improved by reducing the length of the feature vector

to optimise the complexity of training. This improvement can be made by applying the principal

component analysis (PCA) and by choosing the optimal amount of components that can achieve
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Figure 4.12: Confusion matrix of KNN classifier on UCF sports dataset (Overall accuracy:
99.71%).
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Figure 4.13: Confusion matrix of QSVM classifier on UCF sports dataset (Overall accuracy:
98.15%).

the best accuracy. Besides, reducing the dimensionality of the HOG-S , applying the PCA

also increases the discrimination among the actions leading to improving the accuracy rates of

recognition. For instance, the experiments on UCF sports dataset shows that the accuracy rate

of recognition has been increased after applying PCA on HOG-S by 3.67% compared to state

of the art. Table 4.7 shows more results of improvements before and after applying PCA on the

extracted feature vector.

The number of PCA components that are selected to achieve the improvement in each

dataset is depicted in Table 4.8. These PCA components are also explained in Figures 4.14

to 4.19 for Weizmann, KTH, DHA, UIUC1, UCF sports, and HMDB51, respectively. The se-

lected number of components is highlighted with an orange colour in these figures. We notice

that KNN classifier needs PCA components less than QSVM since QSVM classifier considers

more information when classifying.
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Table 4.7: Recognition accuracy (%) and the percentage of improvement of the proposed HOG-
S before and after applying PCA on six datasets.

Method Accuracy (%)
Weizmann DHA KTH UIUC1 UCF sports HMDB51

Proposed using
HOG-S +QSVM

99.46 97.98 98.53 99.06 98.15 −
Proposed using
HOG-S +KNN

99.66 99.59 99.06 99.15 99.71 99.03
Proposed using
HOG-S +PCA+QSVM 99.81 99.18 99.87 99.73 99.23 −
Proposed using
HOG-S +PCA+KNN

99.74 99.73 99.94 99.72 99.89 99.19
Percentage of improvement
before PCA

N/A 2.9% 2.26% 0.25% 3.49% 16.55%
Percentage of improvement
using PCA components N/A 3.04% 3.14% 0.83% 3.67% 16.71%

4.4.5 Privacy vs. action recognition: a machine perspective

To sum up the results of the utility, i.e., action recognition, from the perspective of the machine,

we compare the response of the classification versus privacy. In this context, we used the

results of privacy subjective evaluation from Chapter 3 and also included the results of the

KNN classifier as the machine’s utility to verify the comparison. This comparison is shown in

Figure 4.20, where the methods of blurring, pixelation, silhouette, and binary mask are used to

evaluate the utility of the anonymity domain from the viewpoint of the machine compared to

the proposed temporal salience anonymisation method. The results in Figure 4.20 are collected

from DHA, Weizmann, and UIUC1 datasets, and we used these datasets as samples in this

comparison. Table 4.9 shows the accuracy rates for the anonymisation methods that are used in

Figure 4.20.

We notice that the proposed method outperforms the existing methods and achieves the

Table 4.8: The number of PCA components used to improve the accuracies for five datasets.

Dataset PCA components
KNN QSVM

Weizmann 400 900
KTH 700 1300
DHA 300 1400

UIUC1 500 1700
UCF sports 400 400
HMDB51 900 −
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Table 4.9: Accurate rates (%) of state of the are anonymisation methods and the proposed
method for HAR.

Method DHA Weizmann UIUC1 Average
Blurring5 94.62 94.05 98.94 95.87
Blurring8 94.51 91.15 99.18 94.95
Silhouette 93.9 89.36 98.99 94.08

Binary 91.97 93.61 98.19 94.59
Pixelation 79.35 69.16 93.23 80.58
Proposed 99.39 99.64 99.15 99. 39

highest accuracy rate for HAR. This result is because the proposed temporal salience-based

anonymisation maintains the quality of the data and provides a useful action model that can be

exploited beyond the anonymisation. The worst accuracy rate is caused by pixelation method

which means that this method does not maintain data quality. The results in Figure 4.20 are

comparable to those in Figure 3.22. We observe that the proposed method still has the best

performance compared to the state of the art.

4.5 Concluding Remarks

In this chapter, a new descriptor exploring the temporal saliency maps for HAR has been pro-

posed; i.e., histogram of oriented gradient of salience (HOG-S ). HOG-S exploits the temporal

saliency maps to extract discriminated features. The salience region guides the descriptor to-

ward the region of the action to capture the representation of the action leading to avoid the

redundancy and the wasted time required to process the background contents. Two classifiers,

i.e. QSVM and KNN, have been utilised for training and testing the temporal saliency maps.

Several experiments using six standard datasets for HAR are conducted to evaluate the pro-

posed descriptor. The presented results of the accuracy show the superiority of the proposed

descriptor over the existing methods. These accuracy rates show that the proposed descrip-

tor can efficiency discriminate the actions despite including similarities between them. This

outperforming of HOG-S is due to the proposed method of modelling the temporal salience

silhouettes, which contributes to calculating a useful description.

Besides, the accuracy rates have been increased by applying PCA on HOG-S vectors. This
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outperforming reinforces the hypothesis of utilising the anonymised information, i.e. the utility,

for HAR applications instead of using the RGB version. Thus, the original data can be dis-

pensed, leading to a high level of privacy preservation and utility at the same time. Moreover,

the proposed method proves its ability to deal with different scenarios of visual information.

These scenarios include multi-view and real-world video sequences in order to pay attention to

applying this method in real life. The proposed method has shown an improvement compared

to the state of the art methods for five datasets by 3.04%, 3.14%, 0.83%, 3.67%, and 16.71%

for DHA, KTH, UIUC1, UCF sports, and HMDB51 datasets, respectively, and a comparable

accuracy rate for Weizmann dataset.

However, the accuracy rates can be improved by addressing the global motion in some of the

datasets, i.e., KTH, UCF sports and HMDB51, since our proposed algorithm for computing the

temporal saliency (Chapter 3) avoids this issue. This global motion is included in the temporal

salience map and also it contributes in calculating the feature vector which in turn affects the

rate of recognition.
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(a) Using KNN classifier

(b) Using QSVM classifier

Figure 4.14: PCA components-based accuracies of Weizmann dataset.
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(a) Using KNN classifier

(b) Using QSVM classifier

Figure 4.15: PCA components-based accuracies of KTH dataset.
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(a) Using KNN classifier

(b) Using QSVM classifier

Figure 4.16: PCA components-based accuracies of DHA dataset.
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(a) Using KNN classifier

(b) Using QSVM classifier

Figure 4.17: PCA components-based accuracies of UIUC1 dataset.
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(a) Using KNN classifier

(b) Using QSVM classifier

Figure 4.18: PCA components-based accuracies of UCF sports dataset.
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Figure 4.19: PCA components-based accuracies of HMDB51 dataset using KNN classifier.

Figure 4.20: Privacy vs. action recognition based on the video-based anonymisation methods.
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Chapter 5

Neuromorphic domain Human Action

Recognition

5.1 Introduction

The standard active pixel sensor (APS) performs well in monitoring the human in AAL [16, 219,

220, 221], since action recognition is mainly classified using the APS by exploring the visual

information in video sequences. These actions are typically represented by detecting a set of

features. Although APS-based HAR has been successful, acquiring the actions by APS devices

involves many limitations [20, 23]; for instance: limited frame rate, redundancy between the

successive frames, motion blurring, and also the APS camera has a high power consumption.

Some of these problems may be exacerbated when applied in the real world. Besides all these

problems, privacy is lost in these systems, and people are concerned about using the APS for

in-home monitoring [14, 11].

Considering the limitations mentioned above, a new neuromorphic vision sensing (NVS)

camera, which is inspired by the retina of the human’s eyes, is recently innovated [19, 20]. This

NVS device measures the change of intensity at each pixel at a rendering frame rate up to 2000

fps asynchronously, i.e., independently, instead of acquiring the intensities with consuming

low power. The intensity change is encoded at each pixel in the form of event or spike. This

encoding scheme makes the NVS camera assigns an adaptive sampling rate at each pixel based

on the motion in the scene instead of using a fixed sampling rate for all pixels. The use of such
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independent sampling rate addresses the motion blur caused by the high-speed objects which

means that the NVS based camera is a data-driven sensor [23]. Combining these characteristics

in one device may make the neuromorphic camera the preferred vision sensor for robotic and

mobile applications [157, 254, 255, 146].

Since the NVS generates a stream of events without intensity values, the identity details

of the human cannot be recognised. This characteristic makes the NVS a useful candidate

to address the issue of privacy in the application of AAL. However, the output of the NVS

is different compared to the APS camera, which means that it is difficult to apply the standard

vision-based algorithms to deal with the visual data since the output represents intensity changes

rather intensities. Therefore, we need a new method that can explore the NVS domain-based

data for achieving the utility of this new sensor beyond the anonymisation.

Recent work on exploring the neuromorphic sensing domain for HAR has been focused on

involving the NVS devices for low-level semantic tasks, such as, hand tracking. Furthermore,

exploring the NVS sensor for higher-level semantic tasks, such as multi-classes action recog-

nition and behaviour understanding, is still limited. One reason for obstructing the progress in

this field is due to the higher cost of the neuromorphic sensors [152], resulting in a scarcity of

annotated NVS-based training datasets [144, 256]. Another reason is that the current methods

of exploring the visual data are unable to deal with the events, as above mentioned.

However, there are two scenarios to address the lack in providing NVS datasets, the first

solution is proposed by displaying the standard APS sequences on the screen under controlled

settings and standing the NVS sensor on the opposite side to acquire the events [256, 146]. By

this method, the sensor also captures the brightness changes of the underlying electronics of the

screen itself and generated noisy events which affect the accuracy of identifying the content of

the stream of events. To overcome this obstacle, the second category of the solutions presents

software-based tools, such as in [160] and [161], to provide a useful and cheap framework to

generate annotated training datasets for the higher-level action recognition tasks. These sim-

ulators guarantee that the stream of events is generated without including noisy events since

the events are generated based on the log intensity differences without displaying the video

sequence on a screen [161].

Considering any new research or device in the applications of HAR imposes challenges. For
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Figure 5.1: Representation of the events of a running action from KTH dataset [4] using an
emulator to generate the events. Green/Red points are for visualisation of ON and OFF events.

instance, in the AAL application, privacy is one of the most critical issues that must be consid-

ered and addressed. Therefore, applying the neuromorphic sensor in AAL should consider these

requirements. Since the neuromorphic sensing domain produces a stream of events instead of

intensities, privacy seems to be addressed and provides a vision domain without any concern

about the identity violation. Addressing the privacy issue by such sensor can be observed in

Figure 5.1. This Figure shows events, which are generated in the neuromorphic domain, for a

subject doing an indoor running activity from KTH dataset [4]. The events are represented in

a 3D space to refer to the locations of the brightness change, spatially and temporally, without

including any details about the subject’s identity. These events can preserve privacy and pro-

vide an obfuscated sensing domain to be exploited in AAL. These events also have potentially

valid information that can be used to recognise the action. Each event represents a log intensity

change in a specific time in the scene, i.e., motion. In other words, the motion is computed and

included in the events and re-computing of the motion is avoided. Therefore exploring these

events and their potential information in a reliable approach is an essential goal to prove the

utility of the event-based domain.

In this chapter, the issue of privacy preservation is addressed by using the neuromorphic

sensing domain. Mainly, this chapter emphasises on achieving the compatibility between pri-

vacy and utility. Therefore, we conduct extensive experiments on different neuromorphic sce-

narios in order to test the proposed method for this new domain.
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The main contributions of this chapter are:

1. Exploiting the NVS domain for preserving the privacy in AAL application.

2. Proposing a new set of local and global temporal features on NVS domain for HAR.

3. Proposing a new de-noising algorithm to remove the noisy events that can be acquired by

the native NVS cameras.

This chapter is organised as follows: First, Section 5.2 explains the related work on explor-

ing the NVS domain for HAR. Second, in Section 5.3, operation of the NVS-based camera is

introduced as well as the advantages and disadvantages of this sensor. Third, exploring the NVS

domain data to extract meaningful descriptions to use it to recognise the actions is presented in

Section 5.4. Fourth, the experimental results are shown in Section 5.5 where the proposed de-

scriptors are tested on several standard datasets for HAR. Finally, the conclusions are drawn in

Section 5.6.

5.2 Related Work

Recently, NVS has been explored for HAR with limited contributions, such as in [144, 146].

Since this sensor has never been used before in AAL applications, reviewing the current work

focuses on the utility of the NVS domain for HAR.

One of the problems in exploring NVS for HAR is the availability of annotated NVS training

datasets [144] leading to the rarity of contributions in this area. In Chapter 2, we explained that

the existing works on NVS-based HAR are categorised into two themes: behaviour monitoring

[148, 147, 162, 20, 1, 164, 165, 166] and higher-level semantic action recognition [146, 144,

143, 168]. In the first category, NVS data was limited to monitor specific actions, such as

finger/hand movement [147, 162, 1, 164, 165, 166], fall detection [148] and sleep monitoring

[20]. The specifications inspire interest in using the neuromorphic camera in these applications

that this device presents: including the low power consumption and low latency, which make

this sensor suitable and functional for real-time applications that require an immediate response.

The topologies of exploiting this sensor for action monitoring are a single device and stereo

cameras.
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In the second category, the NVS camera has been explored beyond a single action into multi-

class action recognition. Specifically, the current work mostly focuses based on deep learning

[146, 144, 168] or hand-crafted feature learning [143]. On the one hand, in deep learning-based

methods, a set of NVS-based frames is stacked to construct a new domain-based frame and

used to train the neural network. Although the existing methods, such as in [144], present good

qualitative results, the accuracy rates of recognition depend on the quality of constructing the

frames. On the other hand, the hand-crafted based approach constructs a set of motion maps

from the NVS events to label the data and then extracts standard features to learn the classifier.

In both themes mentioned above, the events are converted into a frame-based formulation

using a non-neuromorphic domain for learning, ignoring the native NVS domain for learning.

These contributions are valuable efforts to develop new event-based algorithms, but these are

considered computationally expensive, especially in the case of two-stream learning, such as in

[144]. Furthermore, these methods focused on converting the events from the NVS domain into

frame-based modelling in other domains leading to losing the nature of the events. Therefore,

focusing on the NVS domain, i.e., exploring the events directly, for learning, can be useful to

improve the performance of recognition, and this chapter aims to verify the usefulness of the

neuromorphic domain for HAR. Accordingly, we propose a new method to explore the NVS

domain by considering the temporal patterns of ON and OFF events locally and globally to

extract a reliable feature learning for HAR. The proposed method analyses the patterns of the

polarities using only NVS domain-based events and avoids converting the events into other

domains without losing the essence of neuromorphic computing.

5.3 The operation of the NVS camera

The operation of the NVS camera is illustrated in Figure 5.2. Contrary to the standard pixel-

domain based camera, where the camera records the information of the pixels at a constant

frame rate based on the intensities, the NVS camera acquires the luminance change instead of

intensity with a variable sampling rate at each pixel. Accordingly, the event is triggered if the

luminance change, i.e., log intensity, exceeds the predefined threshold. Generating the events is

asynchronously and independently at each pixel in the chip’s array, Figure 5.2(c), where each
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(a) Circuit diagram of the pixel (b) The principle of operation

(c) Four pixels layout chip

Figure 5.2: Dynamic vision sensor: structure and operation [5].

pixel continues monitoring the brightness changes over the time and launches the event if the

magnitude of the intensity change is sufficient to generate an event.

The NVS camera, also called a dynamic vision sensor (DVS), generates the events only

in the case that the brightness change at a specific pixel is sufficient to exceed the predefined

threshold and the pixel is set to idle if there is no luminance change. This mechanism makes

the DVS camera consumes low power and avoids acquiring redundant information. In general,

when an event, e, is detected, it is generated and recorded with the x and y coordinates of the

corresponding pixel’s location in the array and the timestamp, t, as well as the orientation of

the shifted log intensity, i.e., polarity p. This is the only required information to represent the

e-th event. The amount of the luminance change makes the NVS sensor a data-driven device.

Moreover, the NVS sensor can capture the high-speed objects by generating more events, i.e.,

increasing the sampling rate, contrary to the slow-motion objects where the sampling rate is

reduced. Therefore, the sampling rate is temporally adapted based on the density of the motion
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in the scene, meaning that the rate of each pixel is independent of other pixels in the array.

The DVS camera timestamps the events in a microseconds resolution and the delay of trans-

mission is measured in milliseconds. Finally, the generated event is then transmitted over a

shared bus; namely, the address-event bus (AER) [257, 258].

5.3.1 Modelling the event

As mentioned in the introduction, the pixels in the NVS camera respond independently to the

change in the brightness [150], such as the log intensity, L of pixel Pk is

L(Pk) = log(Ik), (5.1)

where Ik is the intensity of pixel Pk. Accordingly, an event ek = (xk, yk, tk, pk) is generated at

pixel Pk with coordinates (xk, yk) at time tk when the magnitude of L(Pk) is shifted since the

last event at Pk, i.e.

∆L (xk, yk, tk) = L (xk, yk, tk)− L (xk, yk, tk −∆t) , (5.2)

overcomes a temporal contrast threshold, ±Θ , where Θ > 0. ∆t is the time when the pixel Pk

is idle since the last event at Pk. When the log intensity at Pk exceeds Θ , ek is triggered with

the orientation of log intensity change, i.e. polarity pk ∈ {−1, 1}.

Refer to Eq. (5.2); we notice that this formula is similar to find the pixel difference between

successive frames. This means that the log intensity is evidence of including the motion in the

events. Therefore, the motion can be instantly represented instead of computing this motion

again [259], reducing the complexity of exploring the events.

5.3.2 The advantages of the NVS camera

The NVS sensor offers several advantages over the standard vision sensor:

• Temporal Resolution: The sensor presents a high temporal resolution in microseconds

compared to the conventional camera, which has a temporal resolution measured in sec-

onds. This temporal resolution makes the NVS camera captures fast changes in the bright-
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ness of high-speed objects without blurring noise which represents one of the challenges

in the frame-based vision cameras.

• Low Latency: The change in the intensity is captured and the event is generated instan-

taneously with delay in microseconds (about 10 µs [23]). Thus, the events are generated

asynchronously without wasting time waiting for other events to trigger.

• Low Power: The NVS sensor produces and processes only the events of the brightness

changes without redundancy, leading to consuming low power. The power consumption

in some NVS cameras can be measured in µW [260, 1], which is much less than the

power consumed by the standard cameras.

• High Dynamic Range: The sensor has a high dynamic range up to more than 120 dB

versus 60 dB of the standard cameras since the events can be generated regardless of the

illumination conditions.

These advantages make the neuromorphic sensor useful for mobile applications, such as

robots, and it is also functional in the environments where the light condition is uncontrolled

and cluttered.

5.3.3 The disadvantage of the NVS camera

Though attractive characteristics of the NVS cameras, a number of challenges are included in

this sensor:

• Cost: Commercially, the neuromorphic sensors are costly compared to the standard cam-

eras [152]. For instance, the price for the DAVIS346 camera is around six thousand

dollars [159] following the low production of this type of sensors. Therefore, only a few

research groups can afford this sensor.

• Resolution: Because the vision chip of the sensor array of pixel photo-circuits and this

pixels’ array occupies a large size in the hardware, the resolution of this sensor is re-

stricted to limited dimensions. For instance, the recent DVS-Gen2 has a 640× 480 reso-

lution [153], which is considered the highest resolution so far.
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• Noise: Like any vision sensor, the noise can be generated following the noise of the

transistor circuit, leading to generating noisy events which requires designing algorithms

to eliminate there events.

Others, such as the complexity of design and reliability of processing, with the limitations

mentioned above, restrict the usage and benefit of such sensor.

5.4 The proposed method

In this section, we present the proposed method to build two descriptors to explore NVS

domain-based data. Figure 5.3 depicts the pipeline of the proposed method exploring the NVS

domain for HAR. In the following, we explain the steps of processing the events to extract

features in order to test the utility of the NVS domain for HAR.

5.4.1 Pre-processing the noisy events

Depending on the threshold magnitude, some events are recorded in isolation without leading

to any semantic meaning. These events can be caused by various reasons, such as, the local

Figure 5.3: The pipeline of the proposed method to explore the NVS domain for HAR.
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light change in the scene or the flickers of the electronic parts. We denote such events as noisy

events and a pre-processing step for removing such events (de-noising) is applied on the events

stream. In the proposed method, de-noising is applied on the events that are generated by using

the native DVS camera because the native neuromorphic camera generates a lot of such noisy

events compared to other scenarios.

Let E = {en|en = (xk, yk, tk, pk), and 1 ≤ n ≤ N , is a stream of events, where N is the

length of the event stream. E is partitioned into time slices, T = {Tw}Ww=1, where Tw is the time

slice w. This partitioning is based on the principle of the frame rate that one would expect for

a conventional camera video sequence. For example, if we have an NVS stream for 5 seconds,

we generate 150 event slices assuming a 30 frames per second frame rate.

After partitioning the stream into event slices, for each slice let Ew = {e`|e` = (x`, y`, t`, p`)},

and 1 ≤ ` ≤ L, be the event stream in slice w, where L is the length of the event stream in a slice,

the following operations are applied. For each event e` at spatio-temporal location (x`, y`, t`), a

3×3 window on xy plane centred on the event location (x`, y`, t`) is considered and the number

of events C`(x,y) recorded on each of nine spatial coordinates (x, y) of the window over the total

time of the slice is counted. This is followed by computing the total number of events in the 3D

window-slice, S`, and the maximum events over the slice length, m`, as follows:

S` =

x`+1∑
i=x`−1

y`+1∑
j=y`−1

C`(x,y) . (5.3)

m` =
i=x`+1,j=y`+1

max
i=x`−1,j=y`−1

C`(x,y) . (5.4)

Finally, e` is processed to obtain new polarity, ṕ`, of the event as follows:

ṕ` =

{p` if S`≤(k×3×3×m`),

0 otherwise,

(5.5)

where {k ∈ R+|k ≤ 1} is a user defined parameter for controlling the number of events to

be removed. Figure 5.4 shows an example for de-noising a sampled slice from walking action

recorded by a native neuromorphic camera from the dataset in [6] using k = 0.25. In this case

the pre-processing step has resulted in removing approximately 70% of events in each slice and
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(a) Before de-noising (b) After de-noising

Figure 5.4: Event de-noising based on adaptive masking applied on a stream of events from the
walking action. The time slice for the events in this figure is 0.03 second and k = 0.25.

retaining the relevant events of the action.

We observe that the native camera generates a large number of noisy events. These noisy

events can affect the exploitation of the exploiting the NVS domain for feature extraction. The

effect of these noisy events on action recognition task will be tested in the evaluation section.

The de-noising is applied on the native DVS based dataset since the emulator-based datasets

output a neuromorphic domain without such noisy events.

5.4.2 Local temporal feature extraction

An action event stream can be represented considering the overall spatio-temporal patterns that

appear in the overall action sequence, as well as considering the local variations corresponding

to the actions. In this section we address how to extract local features from the events stream,

considering the events in partitioned time slices, Tw. Since each action results in different

spatio-temporal patterns of events at each time window, the local descriptors aim to recognise

these patterns leading to representing discriminating features for specific action streams.

The process is started with Ew at Tw by sorting all e` in the ascending order of the x coordi-

nate followed by grouping these events in Tw into {sg|1 ≤ g ≤ G}, where sg defines ρ events

that are successive and have the same polarity, such that:
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sg = {ei|ei = (xi, yi, ti, pi), and 1 ≤ i ≤ ρ}, (5.6)

where xi+1 ≥ xi and pi+1 = pi ∀i. According to Eq. (5.6), all events in sg represent a pattern of

log intensity change. Processing such patterns of polarities contributes to tracking the dynamic

changes for each action and capturing the local structure of the events. This is achieved by

modelling these changes in terms of the relationship of horizontal and vertical locations, i.e.,

(x, y) coordinates of the events in each set, sg in terms of the following quantities:

mg = µx(sg)− µy(sg), (5.7)

vg = σ2
x(sg)− σ2

y(sg), (5.8)

dg = σx(sg)− σy(sg), (5.9)

where µ, σ2 and σ are the mean, variance and the standard deviation of the spatial coordinate x

and y of the events in sg, respectively. This gives us three data vectors, Mw = {mg|1 ≤ g ≤ G},

Vw = {vg|1 ≤ g ≤ G} and Dw = {dg|1 ≤ g ≤ G}, for each Tw. Then these data vectors are

transformed into three vectors containing higher order statistics of the data vectors as follows:

F1w =
[
µ(Mw),max(Mw),min(Mw), σ(Mw), σ2(Mw), γ(Mw), κ(Mw)

]
, (5.10)

F2w =
[
µ(Vw),max(Vw),min(Vw), σ(Vw), σ2(Vw), γ(Vw), κ(Vw)

]
, (5.11)

F3w =
[
µ(Dw),max(Dw),min(Dw), σ(Dw), σ2(Dw), γ(Dw), κ(Dw)

]
, (5.12)

where γ and κ denote the skewness and the kurtosis, respectively. Then, for each element in

feature vectors, F1w , F2w and F3w , the average over allW slices are computed to get the average

feature vectors, F1w , F2w and F3w , respectively. An example on extracting these three vectors for
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two different actions from E-KTH dataset is shown in Figure 5.5. This figure displays examples

of time interval-based events which are corresponding to a single RGB frame and converting

these events into local temporal features using the spatial coordinates of the polarities. These

three feature vectors are concatenated to get the local feature vector, FS = {F1w , F2w , F3w},

with 21 feature elements for the event stream E. As an example, these feature vector elements

for six sequences of one of the datasets (E-KTH) in Figure 5.6.

5.4.3 Global temporal feature extraction

The second descriptor has been proposed to collect the discriminative features over the whole

event stream without resorting the event into time-based slices. Global features are extracted by

considering the event stream for an action as a whole without resorting it into time-based slices.

On the spatio-temporal event space, for each spatial coordinate (x, y), all temporal events are

(a) Walking

(a) Waving

Figure 5.5: Two examples of extracting the local temporal feature vectors by applying the
aforementioned procedure. Green and red dots represent ON and OFF polarities, respectively,
and they are used here for the visualisation.
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105 Local temporal features

boxing
handwaving
handclapping
jogging
running
walking

Figure 5.6: Local features for six human actions in KTH dataset: boxing, hand waving, hand
clapping, jogging, running and walking. Each action is represented by four sequences.

stacked into temporal groups,HE = {δh|1 ≤ h ≤ H}, where H is the total number of temporal

groups for the given (x, y). A group is defined as the continuous occurrence of events (either

pl = +1 or pl = −1) at user-specified temporal sampling periods. The minimum events for a

group are considered as 2, while just the isolated single events are disregarded as noise. For all

events in δh, the consecutive similar polarity counts are recorded as run-length encoding (RLE).

RLE keeps only the counts of consecutive occurrences without the keeping the magnitudes of

the polarities. Run lengths of allHE for all spatial locations are collected as a set, R.

The first part of the global feature vector represents R by computing the histogram of run-

length encoded polarities (HRLEP), H. Our experiments have found that partitioning H into 5

bins is sufficient to capture the discriminative features from R. In addition, we use the following

global statistics considering both R and E.

1. The maximum value obtained by RLE, as follows:

F4 = max(R). (5.13)
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2. The maximum timestamp in seconds

F5 = max(W ). (5.14)

3. The number of ON events in E

F6 =

|E|∑
l=1

pl, if pl ≡ +1. (5.15)

4. The number of OFF events in E

F7 =

|E|∑
l=1

|pl|, if pl ≡ −1. (5.16)

These four feature element with a five bin H produce a nine dimension global temporal

feature vector, FT (E) = {H, F4, F5, F6, F7}, for the whole events stream. Figure 5.7 shows

two examples of tracking the events at each pixel for two different actions and extracts the

(a) Walking

(a) Waving

Figure 5.7: Examples of building HRLEP features for two different actions.
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HRLEP for these actions.

The global features that are extracted from four samples of action sequences of the neuro-

morphic version of KTH dataset are shown in Figure 5.8. The first five features in Figure 5.8

represent H, and the other features, i.e., F4, F5, F6, and F7, are represented in the indexes 6 to 9

in Figure 5.8. On the one hand, we observe that the HRLEP descriptor achieves higher discrim-

ination for most actions compared to other components in FT (E). Furthermore, we notice that

H has weak discrimination for the jogging and the running actions since these two actions have

a similarity in behaviour. On the other hand, the features F4, F5, F6, and F7 have a lesser level

of discrimination, however, these features are concatenated with H to obtain a more reliable

feature vector.

These feature vector elements have different dynamic ranges and some of them have values

near 0 value, i.e., 4, 5, 6 and 7, in Figure 5.8. Therefore, these four elements are plotted in a

separate figure in order to show them clearly. Figure 5.9 shows the feature vector elements with
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Figure 5.8: Global features for different human actions in KTH dataset for 6 actions: boxing,
hand waving, hand clapping, jogging, running and walking. Each action has been represented
by four sequences. Features 4, 5, 6 and 7 have a little value of magnitudes near 0, therefore,
these features seem to be null in this figure.
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Figure 5.9: The global temporal features that have the indexes 4, 5, 6 and 7 in Figure 5.8. These
features are represented.

indexes 4, 5, 6 and 7 in Figure 5.8. We observed that these elements can discriminate among

the actions and there are several examples for the discrimination in Figure 5.9, such as the

discrimination between handclapping and handwaving actions and the discrimination between

running and walking actions.

5.4.4 Feature fusion

Finally, bothFS(E) andFT (E) are fused to construct a local and global temporal feature vector,

F(E), that overcomes the shortcomings of each descriptor, such as:

F(E) = {FT (E),FS(E)}. (5.17)

This F(E) is a 30 dimensions feature vector to represent the action in E, and it is used to

train the classifier to improve the accuracy. This feature learning method aims to emphasize that

exploring the NVS domain leads to a higher level of usefulness, i.e., utility, of this new vision

domain.
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5.4.5 Classification

For the multi-class classification problem, two classifiers were tested, which are KNN and

QSVM. Each classifier will be used to classify three feature vectors,FS(E),FT (E), and F(E),separately,

to find the best formulated features.

5.5 Performance evaluation

In this section, several experiments have been conducted using challenging datasets in the com-

puter vision to demonstrate the utility of NVS domain. These experiments show the level of

utility that is achieved using this new domain of anonymity.

5.5.1 Datasets and experiments set up

To explore the proposed method, we partitioned the experiments into three scenarios based on

the method of obtaining the neuromorphic data. These scenarios are:

1. Emulator-based: In this scenario, the neuromorphic data is generated by using an emula-

tor. There are several emulators, such as, PIX2NVS [161], pyDVS [160] and ESIM [159],

that are designed to simulate the native DVS cameras. In our experiments, PIX2NVS em-

ulator is used to generate the events from the video sequences since the only published

results on using the emulators are based on PIX2VNS. For this purpose, we used four

datasets; which are KTH, UCF11, UCF50 and HMDB51 and converted them into the neu-

romorphic version. We call these datasets E-KTH, E-UCF11, E-UCF50 and E-HMDB51

during the experiments.

2. Recording-based: We used the available dataset which is recorded from the UCF50

dataset [256] using DAVIS346redColor neuromorphic camera, and we call it R-UCF50

in this chapter. This dataset is a real-world scene containing 10 human actions: arm-

crossing, getting-up, kicking, picking-up, jumping, sitting-down, throwing, turning around,

walking, and waving. The details of this dataset are explained in Table 5.1.
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Table 5.1: Characteristics of the two neuromorphic datasets acquired by neuromorphic devices
in two different scenarios.

Name No. of sequences Scenarios Resolution No. of classes
N-Actions [6] 450 Office 346 × 260 10

R-UCF50 [256] 6681 YouTube 240×180 50

3. Native DVS-based: The DVS camera is used to acquire a real NVS dataset, which is

published in [6]. This dataset is obtained by recording 10 real human actions in an office

environment using DVS240C camera. We call this dataset N-Actions during the experi-

ments. The details of this dataset are also illustrated in Table 5.1.

The third scenario generates noisy events compared to the other scenarios and the amount

of these events are much more than the action’s events, as we observed previously in Figure

5.4. Therefore, we apply the de-noising preprocessing, which is explained in Section 5.4.1, on

N-Actions only.

In order to test the NVS domain datasets of all scenarios, a five-fold cross-validation proce-

dure is implemented to find the optimal classifier that can improve the rate of action recognition.

Two classifiers, i.e., KNN and QSVM, are used to evaluate the proposed method. KNN classi-

fier is set up with K=1 neighbour.

5.5.2 Evaluation using emulator-based datasets

In this part of the experiment, we evaluate the proposed method on the emulator-based datasets,

i.e., E-KTH, E-UCF11, E-UCF50 and E-HMDB50. The frame rates of the corresponding pixel-

domain version of these datasets are used to define the size of time interval window, w. Several

experiments have been conducted to evaluate the proposed local and global feature extraction,

i.e., FT (E) and FS(E), respectively, as well as the concatenated feature vector, i.e., F(E). The

results of all experiments have been shown in Table 5.2.

The proposed method with concatenated local and global features achieves average accu-

racy rates of 93.14%, 94.55%, 87.61% for E-KTH, E-UCF11, E-HMDB51, respectively, using

QSVM classifier and 69.45% for E-UCF50 using KNN classifier (see Table 5.2). This feature

learning improves the accuracy rate of state of the art on the neuromorphic domain for HAR

by 0.54%, 19.42% and 25.61% for E-KTH, E-UCF11 and E-HMDB50, respectively. In some
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Table 5.2: Accuracy (%) versus the existing work for four datasets: E-KTH, E-UCF11, E-
HMDB51 and E-UCF50. These datasets are collected using PIX2NVS emulator.

Method E-KTH E-UCF11 E-HMDB51 E-UCF50
Static DVS camera + Hand-crafting − 75.13 [143] − −

Static DVS camera + CNN 92.6 [146] − − −
NVS(emulator) + RGB + CNN − − 62.0 [144] −

NVS(emulator) + Proposed hand-crafting (local only) +KNN 51.17 82.15 73.60 63.66
NVS(emulator) + Proposed Hand-crafting (local only) + QSVM 61.04 76.21 65.41 49.6
NVS(emulator) + Proposed hand-crafting (global only) +KNN 91.47 89.36 73.32 36.62

NVS(emulator) +Proposed Hand-crafting (global only) + QSVM 92.47 92.99 82.82 40.46
NVS(emulator) + Proposed hand-crafting (local-global temporal) +KNN 80.27 93.36 86.38 69.45

Proposed Hand-crafting (local-global temporal) + QSVM 93.14 94.55 87.61 65.07

cases, the confusion matrix shows that the classifier cannot discriminate between the actions

perfectly. Such cases can be seen in Figure 5.10, when the QSVM classifier recognises between

the jogging and running actions because those actions have a similarity. However, the same

classifier recognises the boxing action with 98.0% of accuracy.

In general, we conclude that fusing both global and local feature vectors in a single vector

outperforms the existing methods on exploring NVS domain in all cases. This concatenated

feature vector also achieves the pixel domain-based HAR dataset and improves the accuracy

rate of recognition in the RGB version of E-HMDB51 datasets, which is 82.48% [211], by

5.13%. The corresponding confusion matrices of recognizing the actions for these four datasets

using QSVM are shown in Figure 5.10, Figure 5.11, Figure 5.12 and Figure 5.13, respectively.
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Figure 5.10: Confusion matrix of NVS-based HAR on E-KTH dataset using QSVM (Overall
accuracy: 93.14%). The descriptors have been applied on the emulator-based NVS domain.
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Figure 5.11: Confusion matrix of NVS-based HAR on E-UCF11 dataset (Overall accuracy:
94.43%). The descriptors have been applied on the emulator-based NVS domain.
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Figure 5.12: Confusion matrix of NVS-based fusion of global and local features on E-HMDB51 dataset using QSVM classifier (Overall
accuracy: 87.61%). The descriptors have been applied on the emulator-based NVS domain.
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Figure 5.13: Confusion matrix of NVS-based HAR on E-UCF50 dataset (Overall accuracy: 69.81%). The descriptors have been applied
on the emulator-based NVS domain.
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5.5.3 Evaluation using DVS camera-based datasets

In this part of the experiments, we used two publicly available NVS domain datasets which

are acquired using native DVS cameras. The details of these datasets are already explained

in Table 5.1. Each one of these datasets is recorded based on a different scenario using two

different DVS cameras. In the first scenario, N-Actions dataset in [6] is recorded in an office

scene with ten subjects using DAVIS346redColor camera. The second dataset is R-UCF50,

which is acquired by playing the original RGB version of UCF50 on the monitor and positioning

the DAVIS240C vision sensor camera opposite to the monitor to record the events.

Due to recording these datasets using real DVS cameras, the problem with extracting the

local features is in determining the size of the time window. This problem was solved when

the emulator is used to generate the event-based version by considering the frame rate of the

corresponding pixel-domain version of the dataset to define the size of the window, i.e., w.

Thus, we follow the same principle by supposing a 30fps to segment the events at each second

into 30 time slice windows, w = 0.03 seconds.

We started the experiments by applying the de-noising preprocessing step on N-Actions

dataset only since the scenario of acquiring this dataset generates a lot of noisy events. These

noisy events constitute a large proportion of the total number of events. Thus, removing these

events results in a reliable set of features that leads to improve the accuracy rate. The results

of the accuracies before and after the de-noising are shown in Table 5.3. As we can see the

de-noising improves the accuracy to double because the amount of the noisy events is reduced,

and this has been explained in Figure 5.4. We notice that around 70% of the events are noisy

and reducing/removing such noisy events improves both the accuracy and the computational

complexity of processing the stream of events. To our knowledge, the results in Table 5.3 are

the first results on this dataset. The confusion matrix of recognising the actions in N-Actions is

shown in Figure 5.14.

In the second scenario based on the DVS camera, R-UCF50 dataset is used to evaluate the

proposed method. Despite R-UCF50 being recorded in a controlled environment, we expected

that the amount of the noisy events has less effect on the accuracy of recognition. Therefore, the

de-noising pre-processing was not applied on R-UCF50. The accuracies of action recognition

are illustrated in Table 5.4 and the corresponding confusion matrix is shown in Figure 5.15.
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Table 5.3: Accuracy (%) of action recognition using N-Actions: before and after the de-noising.

Method
N-Actions

before de-noising
N-Actions

after de-noising
DVS camera + Proposed handcrafted

(local only)+KNN 38.06 51.21

DVS camera + Proposed handcrafted
(local only)+QSVM 33.91 58.48

DVS camera + Proposed handcrafted
(global only)+KNN 32.87 44.29

DVS camera + Proposed handcrafted
(global only)+QSVM 36.33 43.25

DVS camera + Proposed handcrafted
(local-global)+KNN 29.07 53.29

DVS camera + Proposed handcrafted
(local-global)+QSVM 37.37 61.94
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Figure 5.14: Confusion matrix of recognising the actions in [6] using the concatenated feature
vectors with QSVM (Overall accuracy: 61.94%). The descriptors have been applied on native
NVS domain-based camera after removing the noisy events.
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Table 5.4: Accuracy (%) of action recognition of R-UCF50 dataset.

Method R-UCF50
DVS camera + Proposed handcrafted

(local only)+KNN 52.07

DVS camera + Proposed handcrafted
(local only)+QSVM 42.49

DVS camera + Proposed handcrafted
(global only)+KNN 44.64

DVS camera + Proposed handcrafted
(global only)+QSVM 43.6

DVS camera + Proposed handcrafted
(local-global)+KNN 68.96

DVS camera + Proposed handcrafted
(local-global)+QSVM 65.32
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Figure 5.15: Confusion matrix of recognising the actions in R-UCF50 dataset using the concatenated feature vectors with KNN (Overall
accuracy: 68.96%).
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We observe in Table 5.4 that the accuracy rates of this dataset are less than those generated

by the emulator, which are presented in Table 5.2. The reason is that the events generated by

the emulator are localised around the objects with a higher density compared to the version

that are generated by recording the events using a DVS camera. Another reason is that this

scenario seems to generate noisy events more than the emulator-based scenario. These reasons

are shown in Figure 5.16, and we notice the localisation of the events based on the emulator

in Figure 5.16 (a) compared to those in Figure 5.16(b) and the amount of the noisy events in

both figures. However, the de-noising algorithm can be adapted to process the noisy events in

R-UCF50 and any dataset that will be recorded using the same scenario to improve the results.

5.5.4 Neuromorphic domain vs. RGB domain: a comparison

We have outlined the accuracy rates of action recognition based on the NVS and RGB do-

mains to compare the performance in the achievement in different domains. The accuracies are

collected from Chapter 4 and the current chapter and are shown in Table 5.5 using the RGB,

Temporal salience, and NVS versions. The obtained accuracies based on the proposed method

are comparable or better than RGB state of the art in most cases. These results make the NVS

domain a promising area of research in the applications of privacy protection and HAR.

5.5.5 Computational complexity of the proposed method

All experiments in this chapter were implemented using Matlab R2018a on a PC with Intel

processor, CPU@3.6GHz and RAM 16GB. The breakdown of the average times of each step

of the algorithm is shown in Table 5.6. This table also shows the computational complexity

Table 5.5: The accuracy rates of action recognition obtained by the RGB, temporal salience,
and NVS domains: a comparison.

Dataset Accuracy (%)
RGB Temporal salience [229] Proposed NVS

KTH 96.8 [126] 99.06 93.14
UCF11 96.94 [199] − 94.55

HMDB51 82.48 [211] 99.03 87.61
UCF50 96.4 [204] − 69.45
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Table 5.6: The complexity of the proposed method.

Step Computational complexity
De-noising O(NC)

Time slice local feature extraction O(N)
HRLEP feature extraction O(NH)

Max RLE O(1)
Max time O(1)

Number of ON events O(N)
Number of OFF events O(N)

Total O(3N) +O(NC) +O(NH) +O(2)

of each step. In the step of calculating HRLEP based on RLE algorithm, the average time

complexity of run RLE on each event is O(N), where N is the number of the events in (x, y)

over W . Because RLE is run over each event through W , the total time of performing RLE on

E becomes O(NH). Besides, the pre-processing step of de-noising requires O(LC)), where

C is the number of events in each 3D local window on (x, y, t) plane, since this step is applied

on each 3D local block. The total computational complexity by including all steps is O(3N) +

O(NC) +O(NH). However, the total complexity can be measured by considered O(N) only.

5.6 Concluding Remarks

In this chapter, a new de-noising algorithm has been proposed to remove the noisy events that

can be recorded, especially in the case of using a native camera for recording the events. Fur-

thermore, two new descriptors exploring the NVS domain for HAR have been proposed. The

purpose for proposing these descriptors is to prove that the NVS data satisfies the utility in

addition to provide a new tool to anonymise the identity and preserve the privacy in the appli-

cation of home monitoring, e.g., AAL. The first descriptor extracts locally a set of higher-order

descriptive statistics from the events in a time window slice. The second descriptor calculates

nine global features by tracking the events along with the whole time interval of the sequence.

These descriptors have been tested on several standard datasets. These datasets are categorised

into two groups: emulator-based and native DVS camera-based recording. Conducting several

experiments using these datasets has proved the reliability of the proposed descriptors to deal

with NVS domain and how this domain is worthy of being exploited beyond other computer
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vision applications.

The presented results of the accuracy show the superiority of the proposed descriptor over

the existing methods. Demonstrating that the proposed method of exploring the events achieves

overall accuracy rates of 93.14%, 94.55%, 87.61%, 69.81%, 61.94% and 68.96% for E-KTH,

E-UCF11, E-HMDB51, E-UCF50, N-Actions and R-UCF50 datasets, respectively, outper-

forming the existing work for all datasets used in the neuromorphic domain. The proposed

method improves the accuracy rates by 0.54%, 19.42% and 25.61% for E-KTH, E-UCF11 and

E-HMDB50, respectively. The accuracy rates show that the emulator-based NVS domain action

recognition achieves the DVS camera-based data. The reason is that the amount of noisy events

that are generated from changing the light conditions in the scene when using the DVS camera

affects the reliability of extracting the features and then reduces the accuracy of recognition.

Besides, applying the de-noising preprocessing on N-Actions dataset duplicates the accura-

cies, since the number of noisy events is reduced, making the feature vectors more reliable

for HAR. Moreover, the proposed method proves its ability to deal with different scenarios of

NVS domain-based data. These scenarios include multi-view and real-world video sequences in

order to pay attention to increase the interest in using the NVS domain in real-life applications.

However, the proposed de-noising algorithm can be improved to avoid losing action events.

Such a case can be noticed in Figure 5.4, whenever, some action’s events have been lost from the

body of the subject (see Figure 5.4(b)). Another improvement that can be made is by converting

the stream of events into frequency domain and extracting frequency-based features, such as,

the energy of frequencies. Furthermore, we can apply the graph theory on the stream of events

since these events can be considered as points in the spatio-temporal space and find a graph

model to link these events. Then, a set of informative features can be extracted from the graph

signal.

Lately, deep learning has captured the interest of researchers in various fields. However,

the results of applying the deep leaning for HAR based on events are not as good as expected

[144, 146]. Therefore, this research area needs more efforts to find out the potential information

in the events that can be explored for HAR.
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(a) Native DVS camera

Figure 5.16: Two examples for the same frame from a fencing sequence in UCF50 dataset
explaining the amount and the distribution of the events in each frame: (a) PIX2NVS emulator
has been used to generate the stream of the events and (b) The DVS240C camera has been used
to acquire the events. For visualisation, the ON and OFF events are plotted with green and red
colours, respectively.
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Conclusions

6.1 Summary of achievements

This thesis has explored the utility of the anonymity domain and addressed the problem of

privacy for daily human action recognition in AAL regardless of the trade-off between privacy

and utility. Two different anonymity domains have been presented and tested to provide a

reliable privacy preservation method. These anonymity domains are categorised into: software-

based and device-based, depending on the framework that is used to provide the anonymisation.

Each proposed domain takes into account the utility of the obfuscated data for HAR beyond

the privacy. We have proposed different methods based on the category of anonymity domain

to explore the utility of this domain using a set of publicly available HAR datasets since it is

difficult to find real AAL datasets for the reason of ethics.

The first problem was to convert the RGB output into anonymisation form while maintaining

data quality. We have presented a new method to preserve the privacy by modelling the action

instead of covering the action. The proposed privacy method provides a useful domain that

protects privacy, and, at the same time, outputs an action abstraction that can be exploited

for action recognition without rendering the original RGB intensities. The proposed method

includes a motion detection by computing the difference map between each consecutive frames

followed by computing the spectral-based entropy to form temporal saliency map. The salience

map contains the obfuscated data by modelling the action silhouette in the frame instead of

covering the silhouette. This modelling method creates an anonymisation map based on the
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change of the action rather than the structure of the human silhouette. This action modelling

has been explained before in Figure 3.4, where different salience maps for different actions are

shown. The proposed method has been evaluated using subjective and objective evaluations.

These metrics showed that the temporal salience based anonymisation reduces the concern of

privacy from the perspective of the individuals. The collected results of the subjective evaluation

illustrate that the proposed anonymity domain achieves up to 100% of concealment.

The informative temporal salience map for modelling the action is considered a useful piece

of information that is reliable to be used for HAR. The temporal salience based action repre-

sentation provides the required data of the action model and removes the temporal redundancy

of the visual data. The salience data is used to guide the descriptor toward the ROA to extract

a new feature, i.e., HOG-S, to train the classifier. The performance of HOG-S improves the

accuracy rates of state of the art on most datasets. We observed that the proposed algorithm

increases the accuracies of DHA, KTH, UIUC1, UCF sports, and HMDB datasets by 3.04%,

3.14%, 0.83%, 3.67%, and 0.16%, respectively.

The third problem focuses on using a new vision domain, i.e., NVS, for new applications,

e.g., anonymisation. The events in the NVS domain represent the intensity changes instead of

the intensities without violating privacy as well as outputs useful information that is used for

recognising the human actions. The local and global details that are included in the structure

of distributing the events spatially and temporally are analysed to extract a new set of features

for HAR. The proposed method is applied in two different scenarios, i.e., emulator and native

camera. This NVS feature learning performance evaluation showed that the proposed local and

global feature vectors improve the accuracies compared to state of the art on E-KTH, E-UCF11,

and E-HMDB51 datasets by 0.54%, 19.42% and 25.61%, respectively. In the other scenario,

where a native camera is used to acquire the events, the proposed method achieves accuracy

rates of 61.94% and 68.96% for N-Actions and R-UCF50 datasets, respectively, and, to our

knowledge, these are the first results on these two datasets.
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6.2 Future directions

In this section, the presented contributions in this thesis are expanded into some possible future

work as follows:

1. In Chapter 3, a new method was presented for privacy preservation based on temporal

salience detection. This method modelled the human action instead of the human body

and omitted the redundant information in the visual data. This approach proves its ability

to provide informative abstract that can be used beyond the anonymisation. The pro-

posed method can be developed to provide both anonymity and compression domain at

the same time, since it filters the redundancy in the visual data. This compressed and

anonymised data, thus, can be transmitted through the cloud without the concern about

privacy violation.

2. Chapter 4: Since the temporal salience presents a useful abstract and can be used in

many applications, the salience abstract can be exploited by the Convolution Neural Net-

work (CNN) for deep feature learning for more semantic tasks, such as activity video

understanding and activity video segmentation.

3. In Chapter 5, we presented a new method for HAR based on NVS domain events. The

proposed method was used for both the anonymisation and feature learning purposes,

using the NVS domain. The obtained results indicate the outperforming of the proposed

algorithm, however, the achievements are still lower than the results of the corresponding

RGB versions. Since the acquired events can be represented in the form of cloud point

using three dimensions x, y and timestamp, it is easy to formulate these events and their

relations as a graph formulation. In this domain, we can apply the presented method

in [261] to represent the actions as 3D graph formulation using the relations between

the events. This graph modelling can be used to extract local details included in the

obtained graph, such as graph spectral features, and used them to recognise the actions

since different actions generate different graphs and then different feature vectors.

4. Representing the events as a graph can be applied in many applications. One of the pos-

sible applications may include a Graph Convolution Neural Network (GCNN) for classi-
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fication or feature representation. Another application is using the graph formulation for

graph-based salience silhouette modelling using the sign of the Fiedler vector.

5. Since the neuromorphic domain presents a meaningful motion information for the dy-

namic objects in the scene, this information seems to be reliable to propose a temporal

saliency model based on the NVS domain. The distribution of the saliency can be mod-

elled based on the density of the events in the spatial and temporal coordinates of the

stream of events. It may be that exploiting a local graph construction is more productive

in this scenario since it links the events in a local region and finds latent details that can

be used to form the saliency.
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[135] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu, “Action recognition by dense trajectories,”
in International Conference on Computer Vision and Pattern Recognition (CVPR), 2011,
pp. 3169–3176.

[136] H. Wang and C. Schmid, “Action recognition with improved trajectories,” in Interna-
tional Conference on Computer Vision (ICCV)., 2013, pp. 3551–3558.

[137] X. Peng, L. Wang, X. Wang, and Y. Qiao, “Bag of visual words and fusion methods
for action recognition: Comprehensive study and good practice,” Computer Vision and
Image Understanding, vol. 150, pp. 109–125, 2016.

[138] Z. Lan, M. Lin, X. Li, A. G. Hauptmann, and B. Raj, “Beyond gaussian pyramid: Multi-
skip feature stacking for action recognition,” in International Conference on Computer
Vision and Pattern Recognition (CVPR), 2015, pp. 204–212.

[139] S. J. Berlin and M. John, “Human interaction recognition through deep learning net-
work,” in International Carnahan Conference on Security Technology (ICCST), 2016,
pp. 1–4.

149



Chapter 6 – BIBLIOGRAPHY

[140] A. Klaser, M. Marszałek, and C. Schmid, “A spatio-temporal descriptor based on 3D-
gradients,” in Proceedings of British Machine Vision Conference (BMVC), 2008, pp.
275–1.

[141] S. Zhang, Z. Wei, J. Nie, L. Huang, S. Wang, and Z. Li, “A review on human activity
recognition using vision-based method,” Journal of healthcare engineering, vol. 2017,
2017.

[142] F. Perronnin, J. Sánchez, and T. Mensink, “Improving the fisher kernel for large-scale
image classification,” in European conference on computer vision, 2010, pp. 143–156.

[143] S. A. Baby, B. Vinod, C. Chinni, and K. Mitra, “Dynamic vision sensors for human
activity recognition,” in IAPR Asian Conference on Pattern Recognition (ACPR), 2017,
pp. 316–321.

[144] A. Chadha, Y. Bi, A. Abbas, and Y. Andreopoulos, “Neuromorphic vision sensing for
CNN-based action recognition,” in International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2019, pp. 7968–7972.

[145] Y. Bi, A. Chadha, A. Abbas, E. Bourtsoulatze, and Y. Andreopoulos, “Graph-based ob-
ject classification for neuromorphic vision sensing,” in IEEE International Conference
on Computer Vision, 2019, pp. 491–501.

[146] K. Sullivan and W. Lawson, “Representing motion information from event-based cam-
eras,” in International Symposium on Robot and Human Interactive Communication (RO-
MAN), 2017, pp. 1465–1470.

[147] J. H. Lee, P. K. J. Park, C.-W. Shin, H. Ryu, B. C. Kang, and T. Delbruck, “Touchless
hand gesture UI with instantaneous responses,” in International Conference on Image
Processing (ICIP), 2012, pp. 1957–1960.

[148] A. N. Belbachir, S. Schraml, and A. Nowakowska, “Event-driven stereo vision for fall de-
tection,” in Proceedings of Computer Vision and Pattern Recognition Workshops, 2011,
pp. 78–83.

[149] M. Mahowald, “VLSI analogs of neuronal visual processing: a synthesis of form and
function,” Ph.D. dissertation, 1992.

[150] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 dB 15µs latency asyn-
chronous temporal contrast vision sensor,” IEEE Journal of Solid-State Circuits, vol. 43,
no. 2, pp. 566–576, 2008.

[151] C. Posch, D. Matolin, and R. Wohlgenannt, “A QVGA 143 dB dynamic range frame-free
PWM image sensor with lossless pixellevel video compression and time-domain CDS,”
IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 259–275, 2011.

[152] C. Brandli, R. Berner, M. Yang, S.-C. Liu, and T. Delbruck, “A 240× 180 130 db 3 µs la-
tency global shutter spatiotemporal vision sensor,” IEEE Journal of Solid-State Circuits,
vol. 49, no. 10, pp. 2333–2341, 2014.

150



Chapter 6 – BIBLIOGRAPHY

[153] B. Son, Y. Suh, S. Kim, H. Jung, J.-S. Kim, C. Shin, K. Park, K. Lee, J. Park, J. Woo
et al., “A 640× 480 dynamic vision sensor with a 9µm pixel and 300Meps address-event
representation,” in International Solid-State Circuits Conference (ISSCC), 2017, pp. 66–
67.

[154] M. Guo, J. Huang, and S. Chen, “Live demonstration: A 768× 640 pixels 200Meps
dynamic vision sensor,” in International Symposium on Circuits and Systems (ISCAS),
2017, pp. 1–1.

[155] M. L. Katz, K. Nikolic, and T. Delbruck, “Live demonstration: Behavioural emulation of
event-based vision sensors,” in International Symposium on Circuits and Systems, 2012,
pp. 736–740.

[156] T. Delbruck, “Frame-free dynamic digital vision,” in Proceedings of Intl. Symp. on
Secure-Life Electronics, Advanced Electronics for Quality Life and Society, 2008, pp.
21–26.

[157] E. Mueggler, H. Rebecq, G. Gallego, T. Delbruck, and D. Scaramuzza, “The event-
camera dataset and simulator: Event-based data for pose estimation, visual odometry,
and slam,” The International Journal of Robotics Research, vol. 36, no. 2, pp. 142–149,
2017.

[158] W. Li, S. Saeedi, J. McCormac, R. Clark, D. Tzoumanikas, Q. Ye, Y. Huang, R. Tang,
and S. Leutenegger, “Interiornet: Mega-scale multi-sensor photo-realistic indoor scenes
dataset,” in British Machine Vision Conference (BMVC), 2018, p. 77.

[159] H. Rebecq, D. Gehrig, and D. Scaramuzza, “Esim: an open event camera simulator,” in
Conference on Robot Learning, 2018, pp. 969–982.

[160] G. P. Garcı́a, P. Camilleri, Q. Liu, and S. Furber, “pyDVS: An extensible, real-time dy-
namic vision sensor emulator using off-the-shelf hardware,” in IEEE Symposium Series
on Computational Intelligence (SSCI), 2016, pp. 1–7.

[161] Y. Bi and Y. Andreopoulos, “PIX2NVS: Parameterized conversion of pixel-domain video
frames to neuromorphic vision streams,” in International Conference on Image Process-
ing (ICIP), 2017, pp. 1990–1994.

[162] J. H. Lee, T. Delbruck, M. Pfeiffer, P. K. J. Park, C.-W. Shin, H. Ryu, and B. C. Kang,
“Real-time gesture interface based on event-driven processing from stereo silicon reti-
nas,” IEEE transactions on neural networks and learning systems, vol. 25, no. 12, pp.
2250–2263, 2014.

[163] T. Serrano-Gotarredona, B. Linares-Barranco, F. Galluppi, L. Plana, and S. Furber, “Con-
vNets experiments on SpiNNaker,” in International Symposium on Circuits and Systems
(ISCAS), 2015, pp. 2405–2408.

[164] S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reassignment in time,” in
Advances in Neural Information Processing Systems, 2018, pp. 1412–1421.

151



Chapter 6 – BIBLIOGRAPHY

[165] Q. Wang, Y. Zhang, J. Yuan, and Y. Lu, “Space-time event clouds for gesture recogni-
tion: From RGB cameras to event cameras,” in Winter Conference on Applications of
Computer Vision (WACV), 2019, pp. 1826–1835.

[166] G. Chen, J. Chen, M. Lienen, J. Conradt, F. Roehrbein, and A. C. Knoll, “FLGR: Fixed
length gists representation learning for RNN-HMM hybrid-based neuromorphic contin-
uous gesture recognition,” Frontiers in neuroscience, vol. 13, 2019.

[167] A. Chadha, “From pixels to spikes: Efficient multimodal learning in the presence of
domain shift,” Ph.D. dissertation, UCL (University College London), 2019.

[168] Y. Bi, A. Chadha, A. Abbas, E. Bourtsoulatze, and Y. Andreopoulos, “Graph-based
spatial-temporal feature learning for neuromorphic vision sensing,” arXiv preprint
arXiv:1910.03579, 2019.

[169] N. Ikizler-Cinbis and S. Sclaroff, “Web-based classifiers for human action recognition,”
IEEE Transactions on Multimedia, vol. 14, no. 4, pp. 1031–1045, 2012.

[170] D. Wu and L. Shao, “Silhouette analysis-based action recognition via exploiting human
poses,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 23, no. 2,
pp. 236–243, 2013.

[171] V. Veeriah, N. Zhuang, and G.-J. Qi, “Differential recurrent neural networks for action
recognition,” in Proceedings of the IEEE international conference on computer vision,
2015, pp. 4041–4049.

[172] G. K. Yadav, P. Shukla, and A. Sethfi, “Action recognition using interest points captur-
ing differential motion information,” in Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 1881–1885.

[173] D. Weinland and E. Boyer, “Action recognition using exemplar-based embedding,” in
Proceedings of the International Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2008, pp. 1–7.

[174] A.-P. Ta, C. Wolf, G. Lavoue, A. Baskurt, and J.-M. Jolion, “Pairwise features for human
action recognition,” in International Conference on Pattern Recognition (ICPR), 2010,
pp. 3224–3227.

[175] Y. Xie, H. Chang, Z. Li, L. Liang, X. Chen, and D. Zhao, “A unified framework for lo-
cating and recognizing human actions,” in International Conference on Computer Vision
and Pattern Recognition (CVPR)., 2011, pp. 25–32.

[176] T. Zhang, L. Xu, J. Yang, P. Shi, and W. Jia, “Sparse coding-based spatiotemporal
saliency for action recognition,” in IEEE International Conference on Image Process-
ing (ICIP), 2015, pp. 2045–2049.

[177] S. Zeng, G. Lu, and P. Yan, “Enhancing human action recognition via structural average
curves analysis,” Signal, Image and Video Processing, pp. 1–8, 2018.

152



Chapter 6 – BIBLIOGRAPHY

[178] K. Xu, X. Jiang, and T. Sun, “Two-stream dictionary learning architecture for action
recognition,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 27,
no. 3, pp. 567–576, 2017.

[179] M. Rodriguez, C. Orrite, C. Medrano, and D. Makris, “One-shot learning of human activ-
ity with an MAP adapted GMM and simplex-HMM,” IEEE Transactions on Cybernetics,
vol. 47, no. 7, pp. 1769–1780, 2017.

[180] M. D. Rodriguez, J. Ahmed, and M. Shah, “Action mach a spatio-temporal maximum
average correlation height filter for action recognition.” in International Conference on
Computer Vision and Pattern Recognition (CVPR), vol. 1, no. 1, 2008, p. 6.

[181] S. O’Hara and B. A. Draper, “Scalable action recognition with a subspace forest,” in
International Conference on Computer Vision and Pattern Recognition (CVPR), 2012,
pp. 1210–1217.

[182] L. Shao, X. Zhen, D. Tao, and X. Li, “Spatio-temporal laplacian pyramid coding for
action recognition,” IEEE Transactions on Cybernetics, vol. 44, no. 6, pp. 817–827,
2013.

[183] K. Soomro and A. R. Zamir, “Action recognition in realistic sports videos,” in Computer
vision in sports, 2014, pp. 181–208.

[184] T. Wang, Y. Chen, M. Zhang, J. Chen, and H. Snoussi, “Internal transfer learning for
improving performance in human action recognition for small datasets,” IEEE Access,
vol. 5, pp. 17 627–17 633, 2017.

[185] A. Ghodrati, A. Diba, M. Pedersoli, T. Tuytelaars, and L. Van Gool, “Deepproposals:
Hunting objects and actions by cascading deep convolutional layers,” International Jour-
nal of Computer Vision, vol. 124, no. 2, pp. 115–131, 2017.

[186] L. Wang, Y. Xu, J. Cheng, H. Xia, J. Yin, and J. Wu, “Human action recognition by
learning spatio-temporal features with deep neural networks,” IEEE Access, vol. 6, pp.
17 913–17 922, 2018.

[187] M. H. Siddiqi, M. Alruwaili, A. Ali, S. Alanazi, and F. Zeshan, “Human activity recog-
nition using gaussian mixture hidden conditional random fields,” Computational Intelli-
gence and Neuroscience, vol. 2019, 2019.

[188] D. Parikh and K. Grauman, “Relative attributes,” in International Conference on Com-
puter Vision (ICCV), 2011, pp. 503–510.
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[232] M. Kümmerer, T. S. A. Wallis, and M. Bethge, “Information-theoretic model comparison
unifies saliency metrics,” Proceedings of the National Academy of Sciences, vol. 112,
no. 52, pp. 16 054–16 059, 2015.

[233] W. Lin, M.-T. Sun, R. Poovendran, and Z. Zhang, “Activity recognition using a combina-
tion of category components and local models for video surveillance,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 18, no. 8, pp. 1128–1139, 2008.

[234] I. Rodomagoulakis, N. Kardaris, V. Pitsikalis, E. Mavroudi, A. Katsamanis, A. Tsiami,
and P. Maragos, “Multimodal human action recognition in assistive human-robot interac-
tion,” in International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2016, pp. 2702–2706.

[235] E. Adeli Mosabbeb, K. Raahemifar, and M. Fathy, “Multi-view human activity recog-
nition in distributed camera sensor networks,” Sensors, vol. 13, no. 7, pp. 8750–8770,
2013.

[236] I. Fatima, M. Fahim, Y.-K. Lee, and S. Lee, “A unified framework for activity
recognition-based behavior analysis and action prediction in smart homes,” Sensors,
vol. 13, no. 2, pp. 2682–2699, 2013.

[237] Y. Han, Y. Yang, Y. Yan, Z. Ma, N. Sebe, and X. Zhou, “Semisupervised feature selec-
tion via spline regression for video semantic recognition,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 26, no. 2, pp. 252–264, 2015.

[238] K. Guo, P. Ishwar, and J. Konrad, “Action recognition from video using feature covari-
ance matrices,” IEEE Transactions on Image Processing, vol. 22, no. 6, pp. 2479–2494,
2013.

[239] R. Minhas, A. A. Mohammed, and Q. M. J. Wu, “Incremental learning in human action
recognition based on snippets,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 22, no. 11, pp. 1529–1541, 2012.

[240] X. Peng, Y. Qiao, Q. Peng, and X. Qi, “Exploring motion boundary based sampling and
spatial-temporal context descriptors for action recognition.” in BMVC, vol. 20, 2013, pp.
93–96.

[241] L. Wang, Y. Qiao, and X. Tang, “Latent hierarchical model of temporal structure for
complex activity classification,” IEEE Transactions on Image Processing, vol. 23, no. 2,
pp. 810–822, 2014.

[242] Y. Ye, X. Yang, and Y. Tian, “Exploring pooling strategies based on idiosyncrasies of
spatio-temporal interest points,” in Proceedings of the International Conference on Mul-
timedia Retrieval, 2015, pp. 339–346.

157



Chapter 6 – BIBLIOGRAPHY

[243] A.-A. Liu, N. Xu, W.-Z. Nie, Y.-T. Su, Y. Wong, and M. Kankanhalli, “Benchmarking a
multimodal and multiview and interactive dataset for human action recognition,” IEEE
Transactions on cybernetics, vol. 47, no. 7, pp. 1781–1794, 2017.

[244] K.-P. Chou, M. Prasad, D. Wu, N. Sharma, D.-L. Li, Y.-F. Lin, M. Blumenstein, W.-C.
Lin, and C.-T. Lin, “Robust feature-based automated multi-view human action recogni-
tion system,” IEEE Access, vol. 6, pp. 15 283–15 296, 2018.

[245] J. Uijlings, I. C. Duta, E. Sangineto, and N. Sebe, “Video classification with densely
extracted HOG/HOF/MBH features: an evaluation of the accuracy/computational ef-
ficiency trade-off,” International Journal of Multimedia Information Retrieval, vol. 4,
no. 1, pp. 33–44, 2015.

[246] L. Shao, X. Zhen, D. Tao, and X. Li, “Spatio-temporal laplacian pyramid coding for
action recognition,” IEEE Transactions on Cybernetics, vol. 44, no. 6, pp. 817–827,
2014.

[247] S. Goferman, L. Zelnik-Manor, and A. Tal, “Context-aware saliency detection,” IEEE
transactions on pattern analysis and machine intelligence, vol. 34, no. 10, pp. 1915–
1926, 2011.

[248] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Pro-
ceedings of the International Conference on Computer Vision and Pattern Recognition
(CVPR), vol. 1, 2005, pp. 886–893.

[249] F. Liu, X. Xu, S. Qiu, C. Qing, and D. Tao, “Simple to complex transfer learning for
action recognition,” IEEE Transactions on Image Processing, vol. 25, no. 2, pp. 949–
960, 2016.

[250] F. Murtaza, M. H. Yousaf, and S. A. Velastin, “Multi-view human action recognition
using 2D motion templates based on MHIs and their HOG description,” IET Computer
Vision, vol. 10, no. 7, pp. 758–767, 2016.
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