Aulbach, Martin (2011) Classification of entanglement in symmetric states. PhD thesis, University of Leeds.
Abstract
Quantum states that are symmetric with respect to permutations of their subsystems appear in a wide range of physical settings, and they have a variety of promising applications in quantum information science. In this thesis the entanglement of symmetric multipartite states is categorised, with a particular focus on the pure multi-qubit case and the geometric measure of entanglement. An essential tool for this analysis is the Majorana representation, a generalisation of the single-qubit Bloch sphere representation, which allows for a unique representation of symmetric n qubit states by n points on the surface of a sphere. Here this representation is employed to search for the maximally entangled symmetric states of up to 12 qubits in terms of the geometric measure, and an intuitive visual understanding of the upper bound on the maximal symmetric entanglement is given. Furthermore, it will be seen that the Majorana representation facilitates the characterisation of entanglement equivalence classes such as Stochastic Local Operations and Classical Communication (SLOCC) and the Degeneracy Configuration (DC). It is found that SLOCC operations between symmetric states can be described by the
Möbius transformations of complex analysis, which allows for a clear visualisation of the SLOCC freedoms and facilitates the understanding of SLOCC invariants and equivalence classes. In particular, explicit forms of representative states for all symmetric SLOCC
classes of up to 5 qubits are derived. Well-known entanglement classification schemes such as the 4 qubit entanglement families or polynomial invariants are reviewed in the light of the results gathered here, which leads to sometimes surprising connections. Some interesting links and applications of the Majorana representation to related fields of mathematics and physics are also discussed.
Metadata
Supervisors: | Vedral, V. and Dunningham, J. |
---|---|
ISBN: | 978-0-85731-124-5 |
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Maths and Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.541402 |
Depositing User: | Repository Administrator |
Date Deposited: | 14 Nov 2011 14:52 |
Last Modified: | 07 Mar 2014 11:24 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:1923 |
Download
Aulbach_M_Physics_PhD_2011
Filename: Aulbach_M_Physics_PhD_2011.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.