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Abstract

Quantum states that are symmetric with respect to permutations of their subsystems

appear in a wide range of physical settings, and they have a variety of promising appli-

cations in quantum information science. In this thesis the entanglement of symmetric

multipartite states is categorised, with a particular focus on the pure multi-qubit case

and the geometric measure of entanglement. An essential tool for this analysis is the

Majorana representation, a generalisation of the single-qubit Bloch sphere representation,

which allows for a unique representation of symmetric n qubit states by n points on the

surface of a sphere. Here this representation is employed to search for the maximally

entangled symmetric states of up to 12 qubits in terms of the geometric measure, and an

intuitive visual understanding of the upper bound on the maximal symmetric entangle-

ment is given. Furthermore, it will be seen that the Majorana representation facilitates

the characterisation of entanglement equivalence classes such as Stochastic Local Opera-

tions and Classical Communication (SLOCC) and the Degeneracy Configuration (DC).

It is found that SLOCC operations between symmetric states can be described by the

Möbius transformations of complex analysis, which allows for a clear visualisation of the

SLOCC freedoms and facilitates the understanding of SLOCC invariants and equivalence

classes. In particular, explicit forms of representative states for all symmetric SLOCC

classes of up to 5 qubits are derived. Well-known entanglement classification schemes

such as the 4 qubit entanglement families or polynomial invariants are reviewed in

the light of the results gathered here, which leads to sometimes surprising connections.

Some interesting links and applications of the Majorana representation to related fields

of mathematics and physics are also discussed.
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Chapter1
Introduction

In this preliminary chapter the subject of the present thesis is motivated

and its objectives are formulated. This is followed by a brief review of some

basic concepts of quantum information science, with a particular focus on

entanglement theory and permutation-symmetric states, the two topics that

form the main focus of this work. An overview of the subsequent chapters

and the main results presented therein can be found at the end of this

chapter.

1.1 Motivation

Symmetry principles hold a special place in physics, and it is easy to undervalue their

significance for the historical development of many important physical theories. Newton

himself did not consciously formulate his revolutionary equations of motion for any

particular frame of reference, thus implicitly considering all directions and points in

space to be equivalent [1]. Nearly two centuries later the symmetries of electrodynamics

were encapsulated into Maxwell’s equations, taking into account both Lorentz and

gauge invariance [2], but it was not before Einstein that it was realised that Maxwell’s

equations are merely a consequence of the relativistic invariance, and thus symmetry, of

space-time itself. In the standard model of modern particle physics the CPT-symmetry

postulates that our universe is indistinguishable from one with inverted particle charges

C : q 7→ −q (C-symmetry), parity inversion P : r 7→ −r (P-symmetry) as well as

time reversal T : t 7→ −t (T-symmetry). And going beyond the standard model, the

theory of supersymmetry postulates a further physical symmetry between bosons and

fermions, thus leading to the postulation of yet-to-be-observed superpartners of the

existing elementary particles.

Noether’s theorem outlines how continuous symmetries of physical systems give rise

to conserved quantities. For example, the conservation of energy arises from translations

1



Chapter 1. Introduction

in time, and the conversation of linear and angular momentum arises from translations

and rotations in space, respectively. In quantum mechanics the corresponding conser-

vation laws follow directly from the kinematics of the underlying theory, with physical

quantities such as position and momentum being expressed by operators on vectors of a

Hilbert space [1]. Many other important consequences of symmetry can be observed in

quantum mechanics: The selection rules governing atomic spectra are the consequence

of rotational symmetry, the different aggregation behaviour of bosons and fermions is

due to the invariance or sign-change of the wave function under exchange of identical

particles, and in relativistic quantum mechanics the representations of the full symmetry

group – the Poincaré group – allows for a complete classification of the elementary

particles [2].1

The ground state of a quantum mechanical system with a finite number of degrees

of freedom is symmetric [2], i.e. the state remains invariant under permutations of

the system’s parts, and no part is in any way different from any other. This is a first

indication that symmetric quantum states play a particular role in quantum physics.

Recently it has become possible to implement certain symmetric states [3–5] or even

arbitrary symmetric states [6] actively in experiments, so it is only natural to gauge

their possible applications in various areas of physics. In this thesis the permuta-

tion-symmetric quantum states will be investigated from the perspective of quantum

information theory [7], a young, vibrant and highly interdisciplinary research field that

combines aspects of physics, mathematics, computer science, chemistry and recently even

biology [8, 9]. The realisation that information is physical has lead to a revision of our

understanding of how nature works, and it has given rise to a multitude of fascinating

new applications. The most famous among these is probably the quantum computer,

initially suggested by Feynman for efficient simulations of quantum systems [10]. Since

then theorists have unearthed several intriguing algorithms where a computer operating

with qubits (quantum mechanical spin-1
2

systems) rather than ordinary bits would

provide an exponential speedup (such as Shor’s algorithm for factorisation [11]), or

at least a quadratic speedup (Grover’s algorithm for database searches [12]). Other

exciting applications of quantum information are the teleportation of quantum states

over large distances via quantum teleportation [13], and in principle unconditionally

secure communication between remote parties via quantum cryptography [14, 15].

While the experimental realisation of quantum computation and teleportation is still in

its infancy, the technically more mature status of quantum cryptography has allowed the

1Slightly ironically, many phenomena in the world around us are due to symmetry breaking. The more
fundamental kind of symmetry breaking, spontaneous symmetry breaking, gives rise to non-symmetric
states despite the laws of physics being symmetric themselves. Examples of such manifestations are crystals
(broken translational invariance), magnetism (broken rotational invariance) and superconductivity (broken
phase invariance) [2]. Phase transitions between symmetric and non-symmetric states appear everywhere in
physics, from down-to-earth occurrences in condensed matter physics to the unification of the fundamental
forces of nature during the first moments after the big bang.

2



1.1. Motivation

first commercial enterprises (e.g. ID Quantique) to enter the market.

Along with the superposition principle, the non-local property of entanglement is

considered to be one of the most striking consequences of quantum physics. Entangle-

ment describes quantum correlations between separate parts of a system that cannot

be explained in terms of classical physics, and these correlations are of particular im-

portance in quantum information science. Entanglement is an essential ingredient for

quantum teleportation [13], superdense coding [16], measurement-based quantum com-

putation (MBQC) [17] and some quantum cryptography protocols [15]. It can therefore

be considered as a “standard currency” in many applications, and it is desirable to know

which states of a given Hilbert space are the most entangled ones. Unfortunately, for

systems consisting of more than two parts the quantification of entanglement is difficult

due to the existence of different types of entanglement, each of which may capture

a different desirable quality of a state as a resource [18]. It is therefore unsurprising

that many different entanglement measures have been proposed in order to quantify

the amount of entanglement of multipartite quantum states [19]. Some entanglement

measures are not useful for the analysis of larger systems, due to their bipartite definition,

and most measures are notoriously difficult to compute. For these reasons the present

thesis focuses on the geometric measure of entanglement (GM) [20, 21], an inherently

multipartite entanglement measure that is not too difficult to compute.

Returning to the concept of symmetry in physics, we recall that permutation-sym-

metric quantum states appear naturally in some systems [22, 23], that it is possible to

prepare them experimentally [3–6], and that they have found some applications [24–

27]. Many canonical states that appear in quantum information science are symmetric,

e.g. Bell diagonal states, Greenberger-Horne-Zeilinger (GHZ) states [28], W and Dicke

states [29], and the Smolin state [30]. These aspects make it worthwhile to investigate

the theoretical properties as well as the practical usefulness of symmetric states for

specific quantum information tasks. In particular, not much is known so far about

how to categorise the entanglement present in symmetric states, and which symmetric

states exhibit a high degree of entanglement. New operational implications (in terms of

usefulness for certain tasks) or visualisations of symmetric states and their entanglement

would also be highly desirable. With this we formulate the following goals for the thesis:

• How can the entanglement of symmetric states be classified?

• Which symmetric states are maximally entangled?

• What operational meaning do symmetric states (or their entanglement) have?

• How can symmetric states (or their entanglement) be visualised?

• What kind of links exist between symmetric states and other fields of physics and

mathematics?

3



Chapter 1. Introduction

A central tool for our analysis of symmetric entanglement will be the Majorana

representation [31], a generalisation of the Bloch sphere representation of single qubits.

This will not only provide us with a very useful visual representation of symmetric

states, but also allows us to classify the different types of entanglement present in

symmetric states, and to simplify the search for maximal entanglement. The Majorana

representation will be introduced, along with other elementary concepts of quantum

information theory, during the remainder of this introductory chapter.

1.2 Quantum entanglement

In this section we will review some elementary concepts from the theory of quantum

entanglement and quantum information. This is by no means a comprehensive overview,

but rather a selection of those aspects that will be of particular importance in this thesis.

For a comprehensive and recent review of quantum entanglement it is suggested to

consult the review article composed by the Horodecki family [19].

1.2.1 Qubit and Bloch sphere

In analogy to the bit from classical information theory the smallest unit of information

in quantum information theory is called the qubit, an abbreviation of “quantum bit”. In

contrast to the classical bit which either takes the value 0 or 1, a qubit can be in any

superposition of the two basis vectors |0〉 and |1〉, known as the computational basis.

Physically a qubit can be realised by any quantum 2-level system, such as the spin of an

electron or the polarisation of a photon. The state of a pure qubit system can be written

as |φ〉= a |0〉+ b |1〉, with complex coefficients a and b that satisfy the normalisation

condition |a|2+ |b|2 = 1. By means of an unphysical global phase the complex phase of

the first coefficient can be eliminated without restricting generality, which allows one to

employ the notation |φ〉= cos θ
2
|0〉+ eiϕ sin θ

2
|1〉 with two real parameters θ ∈ [0,π]

and ϕ ∈ [0, 2π). Because of the frequent use of this notation throughout the thesis, the

trigonometric expressions will be abbreviated as cθ := cos θ
2

and sθ := sin θ
2

. The famous

Bloch sphere representation [7] employs this parameterisation to uniquely identify any

pure qubit state with a unit vector in R3, as shown in Figure 1.1. In this picture the two

basis vectors |0〉 and |1〉, which correspond to the possible values of a classical bit, are

represented by the north pole and south pole of the Bloch sphere, respectively. Any other

point on the surface of the sphere represents a state |φ〉= cθ |0〉+ eiϕsθ |1〉 that is in a

superposition of the two basis states |0〉 and |1〉. The measurement of such a state in

the computational basis {|0〉 , |1〉} yields the outcome |0〉 with probability |cθ |2 and the

outcome |1〉 with probability |sθ |2. The natural metric on the Bloch sphere is given by

the Fubini-Study metric [32], and the distance between two normalised qubits, |φ1〉 and

4



1.2. Quantum entanglement

|φ〉
θ

ϕ

Figure 1.1: Every pure state of a single qubit |φ〉 = cθ |0〉+eiϕsθ |1〉 can be parameterised
by two angles, the inclination θ ∈ [0,π] and the azimuth ϕ ∈ [0,2π). They give rise
to the Bloch sphere representation on the surface of a unit sphere, with the Cartesian
coordinates given by (sinθ cosϕ, sinθ sinϕ, cosθ).

|φ2〉, in this metric is γ(φ1,φ2) = arccos|〈φ1|φ2〉|, i.e. the geometrical angle between

the two corresponding points on the Bloch sphere.

Pure qubit states are mathematically expressed as vectors of the two-dimensional

Hilbert space H = C2, but they are unique only up to normalisation and an unphysical

global phase, which results in the two real degrees of freedom that manifest themselves

as the surface of the Bloch sphere. If only partial information is known about a quantum

state, it has to be treated as a mixed state2. While pure qubit states correspond to points

on the surface of the Bloch sphere, mixed qubit states correspond to the interior of the

sphere by means of the Pauli matrix representation of the density matrix

ρ =
1

2
(1+ xσx + yσy + zσz) =

1

2
(1+ rσ) , (1.1)

with |r|2 = |x |2 + |y|2 + |z|2 ≤ 1, and where r = (x , y, z) ∈ R3 is the corresponding

Bloch vector within the unit sphere. The more mixed a state is, the closer it lies to the

centre of the Bloch sphere, with the maximally mixed state ρ = 1 lying at the origin of

the sphere. The Pauli matrices σx , σy and σz give rise to the rotation operators which

rotate Bloch vectors around the X -, Y - or Z-axis by an angle ϑ:

2Mixed states are mathematically expressed as density matrices acting on the Hilbert space H. Any
mixed state can be cast as a probability distribution of pure states, ρ =

∑n
i=1 pi |ψi〉〈ψi |, and in general

there exists an infinite number of such decompositions. Every mixed state ρ must fulfil the following:
1.) self-adjoint: ρ = ρ†, 2.) semi-positive: ρ ≥ 0 (i.e. non-negative probabilities), and 3.) unit trace:
Tr[ρ] = 1 (i.e. probabilities sum up to one). The set of mixed states is called the state space S(H), and a
state ρ ∈ S(H) is pure if and only if ρ2 = ρ.

5



Chapter 1. Introduction

Rx(ϑ) = e−i ϑ
2
σx =

 

cos ϑ
2
−i sin ϑ

2

−i sin ϑ
2

cos ϑ
2

!

, (1.2a)

Ry(ϑ) = e−i ϑ
2
σy =

 

cos ϑ
2
− sin ϑ

2

sin ϑ
2

cos ϑ
2

!

, (1.2b)

Rz(ϑ) = e−i ϑ
2
σz =

 

e−i ϑ
2 0

0 ei ϑ
2

!

. (1.2c)

A rotation around an arbitrary axis n= (nx , ny , nz), with |n|= 1, that runs though

the origin of the Bloch sphere is given by Rn(ϑ) = e−i ϑ
2
nσ and can be straightforwardly

calculated with the equations above. In mathematical terms the unitary operations

are elements of SU(2), and in general they do not keep the coefficient of the |0〉 vector

of a pure state real and non-negative, so a multiplication with a suitable global phase

may be necessary after rotation in order to return to the standard qubit notation |φ〉=
cθ |0〉+ eiϕsθ |1〉. For Z-axis rotations Rz(ϑ) this global phase is simply ei ϑ

2 , independent

of the Bloch vector |φ〉 that is being rotated.

While measurements destroy the state of an unknown qubit, this is not the case

with the rotation operators described above. Applying such a unitary operation on an

unknown qubit in the laboratory has the effect of a rotation of its Bloch vector around

an axis on the Bloch sphere, without measuring or destroying the state unknown to the

experimenter.

1.2.2 Bipartite and multipartite systems

Quantum systems that consist of two subsystems (e.g. two qubits) are commonly known

as bipartite systems, while systems with three or more subsystems are referred to as

multipartite systems3. This seemingly arbitrary distinction will become more meaningful

later when considering the qualitatively different manifestations of entanglement in

bipartite and multipartite systems. Coined by Einstein as spukhafte Fernwirkung (“spooky

action at a distance”), entanglement describes an inherently nonlocal correlation between

detached quantum systems that is predicted by quantum theory, and which cannot be

adequately described or explained in the language of classical physics, at least without

making assumptions about hidden variables [35]. The nonexistence of such hidden

variables in nature has been sufficiently validated experimentally over the last few

decades [36], thanks to the ingenious Bell inequalities [37].

3Note that bipartite and multipartite quantum systems do not need to manifest themselves as an
accumulation of distinct physical objects such as electrons, photons, etc., each of which gives rise to the
Hilbert space of one subsystem. Instead, entanglement can exist between different degrees of freedom of
a single physical particle, or even between different particle numbers, although the latter may lead to a
violation of superselection rules [33, 34].
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1.2. Quantum entanglement

In the language of quantum mechanics, an entangled quantum system is one whose

state vector cannot be expressed as the tensor product of vectors of its subsystems. In the

simplest case of a bipartite quantum system this is the case if |ψ〉 6= |φ1〉 ⊗ |φ2〉, i.e. no

description of one part is complete without information about the other. One example for

two qubits is the Bell state |ψ+〉= 1p
2

�

|0〉1 |0〉2+ |1〉1 |1〉2
�

where the two subsystems

are perfectly correlated with each other in the sense that the measurement of one part

of the system in a suitably chosen measurement basis (for |ψ+〉 the computational basis

{|0〉 , |1〉}) mediates a “collapse” of the other part into the same state. For example, if

a measurement of part 1 in the computational basis yields |0〉1, then part 2 collapses

to |0〉2, so any subsequent measurement of part 2 yields |0〉2. In other words, the

measurement turns the initially entangled state into one of the two product states

|ψ1〉 = |0〉1 |0〉2 or |ψ2〉 = |1〉1 |1〉2 with equal probability. The most striking aspect

of this is that the measurement of one part instantaneously affects the other part,

regardless of the spatial distance between the subsystems. This cannot be used for

superluminal communication, however, because the randomness of the measurement

outcomes prevents the transmission of information by quantum measurements alone,

thus preserving a central tenet of special relativity.

The Hilbert space of a multipartite system is given by the tensor product of the

subsystems’ Hilbert spaces, i.e. H =H1⊗ · · · ⊗HN , where Hi is the Hilbert space of the

i-th subsystem. Since quantum states are uniquely described only up to normalisation

and a global phase, it makes sense to introduce the projective Hilbert space PH as the

set of all unique pure quantum states. The standard metric on PH is the Fubini-Study

metric [38].

A multipartite pure quantum state |ψ〉 ∈H is separable if and only if (iff) it can be

written as a tensor product of states from the individual subsystems:

|ψ〉= |φ1〉 ⊗ · · · ⊗ |φN 〉 , with |φi〉 ∈Hi ∀ i . (1.3)

States that are not separable are entangled. For mixed quantum states ρ ∈ S(H) of a

multipartite system separability is defined by the existence of a (non-unique) convex

sum of product states

ρ =
∑

j

p j ρ
j
1⊗ · · · ⊗ρ

j
N , with ρ

j
i ∈ S(Hi) ∀ i, j . (1.4)

For finite-dimensional subsystems an orthonormalised basis {|0〉 , . . . , |di − 1〉}i can be

chosen for each subsystem, with di denoting the dimension of Hi . A pure quantum state

of the composite system can then be cast as

7



Chapter 1. Introduction

|ψ〉=
d1−1
∑

i1=0

· · ·
dn−1
∑

in=0

ai1,...,in |i1〉1⊗ · · · ⊗ |in〉n , (1.5)

where the ai1,...,in are complex coefficients, and j 〈iA|iB〉 j = δAB for all j ∈ {1, . . . , n}
and all A, B ∈ {0, . . . , d j−1}. For brevity the basis states |i1〉1⊗· · ·⊗|in〉n of the composite

system will be abbreviated as |i1〉 |i2〉 · · · |in〉, or simply |i1i2 · · · in〉. The normalisation

〈ψ|ψ〉 = 1 will be implied throughout this thesis, except for a few cases where states are

easier to represent in unnormalised form and where the normalisation does not matter.

Of particular interest in this thesis will be states whose coefficients are all real or

positive. We call a quantum state |ψ〉 of the form (1.5) real if ai1,...,in ∈ R for all i1, . . . , in,

and positive if ai1,...,in ≥ 0 for all i1, . . . , in. It should be noted that these properties

intrinsically depend on the chosen basis, and that states which are real or positive in

one computational basis (a basis made up of tensors of local bases) generally do not

exhibit this property in another basis. In turn, a state that is not real or positive in one

basis may be recast as a real or positive state by choosing a different basis, although

this is in general not possible. Only for bipartite states it is always possible to find

orthonormalised bases for the subsystems so that a given state can be expressed as a

positive state in the form (1.5). This is possible thanks to the Schmidt decomposition

of linear algebra which – applied to quantum information – states that any pure state of

a bipartite system |ψ〉 ∈HA⊗HB with d =min{dim(HA), dim(HB)} can be expressed in

the form

|ψ〉=
d−1
∑

i=0

αi |i〉 |i〉 , with α0 ≥ . . .≥ αd−1 ≥ 0 , (1.6)

where the non-negative numbers αi are called the Schmidt coefficients [7]. The

minimum number of nonvanishing coefficients required for the Schmidt decomposition

is known as the Schmidt rank. The Schmidt decomposition and the Schmidt rank are

important tools for the analysis of bipartite states, which will become clear in the next

section.

Unfortunately, the elegant Schmidt decomposition (1.6) does not exist in the mul-

tipartite setting, a first indication that the bipartite case is qualitatively different from

the multipartite case. Several attempts have been made to find a generalised Schmidt

decomposition, a standard form for the multipartite setting which imposes certain

restrictions on the coefficients of a given state by choosing suitable orthonormal bases

for all subsystems [39–43]. Here we mention the generalised Schmidt decomposition of

Carteret et al. [40] which is defined for arbitrary finite-dimensional multipartite states.

For the sake of simplicity, we consider n equal subsystems, each of dimension d. In

analogy to the 2-level qubit, we refer to such a d-level quantum system as a qudit. The

standard form imposes the following conditions on the coefficients in Equation (1.5) for

8



1.2. Quantum entanglement

the n qudit case:

a i...ik
︸︷︷︸

j indices

i...i = 0 ∀ j, i ∀ i < k ≤ d − 1 , (1.7a)

a(d−1)...(d−1)i
︸ ︷︷ ︸

j indices

(d−1)...(d−1) ≥ 0 ∀ j, i , (1.7b)

|aii...ii| ≥ |a j1... jn | ∀ i ∀ i ≤ jr (r = 1, . . . , n) . (1.7c)

These conditions clearly do not necessarily result in a real or positive state in general,

and most multipartite states do not allow for a real or positive representation. If the

subsystems do not have equal dimensions, then the conditions are of a more complicated

form. However, Equation (1.7a) straightforwardly generalises to

a i...ik
︸︷︷︸

j indices

i...i = 0 ∀ j, i ∀ i < k ≤ d j − 1 , (1.8)

where d j is the dimension of subsystem j.

A multipartite generalisation of the Schmidt rank has also been put forward, and

is commonly referred to as the tensor rank [18, 44]. This quantity is given by the

minimum number of product states needed to expand a given state. The tensor rank

has featured prominently in some recent works, and has been employed to find further

evidence of a qualitative difference between the bipartite and multipartite setting [45].

Two well-known multipartite states with interesting entanglement features are the

GHZ state [28] and the W state. In the general case of n qubits their form is

|GHZn〉=
1p
2
(|00 . . . 00〉+ |11 . . . 11〉) , (1.9)

|Wn〉=
1p
n
(|10 . . . 0〉+ |010 . . . 0〉+ . . .+ |00 . . . 01〉) . (1.10)

These two states have found a broad range of uses in quantum information science [19].

For example, the 3 qubit GHZ state has been employed to tell Bell’s theorem without

inequalities [28], and the n-qubit GHZ state can be considered the most non-local with

respect to all possible two-output, two-setting Bell inequalities [46]. However, the GHZ

state loses all its entanglement if a particle is lost, because its one-particle reduced

density matrix Tri(|GHZn〉〈GHZn|) =
1
2
(|00 . . . 00〉〈00 . . . 00|+ |11 . . . 11〉〈11 . . . 11|) is a

separable state. On the other hand, W states still retain a considerable amount of

entanglement after the removal of an arbitrary particle, and it has been shown that

the n-qubit W state is the optimal state for leader election [24]. This shows that the

entanglement of GHZ and W states is of a different nature, and such qualitative aspects

of entanglement and their characterisation will be investigated in the next section.
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Chapter 1. Introduction

1.2.3 Entanglement classes

In order to categorise different types of entanglement, it makes sense to partition the

given Hilbert space into equivalence classes4, with an operationally motivated definition

of equivalence. The most intuitive classification scheme is that of Local Unitary (LU)

equivalence. In Section 1.2.1 the effect of unitary operations on a single qubit was

outlined. When generalising this concept to an arbitrary number of quantum particles

distributed among spatially separated experimenters, then the local application of

unitary operations on each particle is referred to as an LU operation. Such operations

are both deterministic and reversible, and – from a mathematical viewpoint – equivalent

to selecting a different orthonormalised basis for the computational representation

of a given state. Therefore two LU-equivalent states ρψ
LU←→ ρφ are expected to

have precisely the same physical properties, in particular the same entanglement. A

comprehensive analysis of the equivalence classes of n qubit pure states under LU

operations has recently been achieved by Kraus [42], and subsequently employed to find

the different LU equivalence classes of up to five qubits [43].

In order to perform quantum information tasks, it is necessary for the experimenters

to manipulate the states of their quantum particles in more ways than by LU operations

alone. The different types of quantum operations [47] that can be performed on a

given state ρ are the following:

• unitary transformation: ρ 7−→ UρU† ,

where U is a unitary operator.

• selective projective measurement: ρ 7−→ {pi ,σi} ,

i.e. the measurement outcome σi is observed with probability pi .

• non-selective projective measurement: ρ 7−→
∑

i
piσi ,

i.e. discarding the measurement outcome yields a mixture of all possible outcomes.

• addition of an ancilla system: ρ 7−→ ρ⊗ω ,

where ω is an auxiliary quantum system (“ancilla”) added to the system.

• removal of a subsystem: ρ 7−→ TrA[ρ] ,

where subsystem A is removed from the quantum system by a partial trace.

These different kinds of quantum evolution can all be subsumed under linear completely

positive maps E : S(H)→ S(H) with the help of Kraus operators [7].

As it is typically not possible in practice to perform joint operations on spatially

separated particles, the quantum operations act locally. The experimenters are however

4In mathematical terms F = {F1, . . . ,Fk} is a partition of a set G if it satisfies the conditions Fi 6=∅ for

all i, Fi ∩F j =∅ for all i 6= j, and
k
⋃

i=1
Fi = G. The Fi are the equivalence classes of F .
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1.2. Quantum entanglement

able to coordinate their actions by communicating with each other over a classical

channel, e.g. by telephone. This leads to the paradigm of Local Operations and

Classical Communication (LOCC) whereby quantum states are modified by performing

Local Operations (LOs) on the subsystems and allowing the transmission of classical

communication between the parties. As seen from the list of quantum operations above,

such LOCC operations are in general irreversible. For the case of pure states, however,

it has been shown (see Corollary 1 of [48] or Theorem 4 of [47]) that two states are

LOCC-equivalent iff they are LU-equivalent. This defines a partition of the pure Hilbert

space which is equivalent to the partition generated by LU equivalence. For two pure n

qudit states LOCC equivalence is mathematically expressed as

|ψ〉 LOCC←→ |φ〉 ⇐⇒ ∃A1, . . . ,An ∈ SU(d) : |ψ〉=A1⊗ · · · ⊗An |φ〉 , (1.11)

and by definition the LOCC equivalence of two general states (denoted as ρψ
LOCC←→ ρφ)

requires that a deterministic conversion is possible in both directions. This is a much

more stringent requirement than deterministic LOCC conversion in only one direction

(denoted as ρψ
LOCC7−→ ρφ). For the pure bipartite case the latter conversions are fully

characterised by the theory of majorisation [49], which induces a partial order with the

help of the Schmidt decomposition (1.6). More precisely, the necessary and sufficient

conditions for deterministically converting a pure two-qudit state into another one are

|ψ〉 LOCC7−→ |φ〉 ⇐⇒ ∀0≤ j ≤ d − 1 :
j
∑

i=0

α2
i ≤

j
∑

i=0

α′
2
i , (1.12)

where the {αi} and {α′ i} are the Schmidt coefficients of |ψ〉 and |φ〉, respectively. From

this is can be seen that pure bipartite states are LOCC-equivalent (or LU-equivalent) to

each other iff they have the same Schmidt coefficients:

|ψ〉 LU←→ |φ〉 ⇐⇒ |ψ〉 LOCC←→ |φ〉 ⇐⇒ αi = α
′
i ∀ i . (1.13)

The conditions (1.12) give rise to LOCC-incomparable states which cannot be con-

verted into each other either way. On the other hand, there are maximally entangled

states from which all other states, pure or mixed, can be generated with certainty using

only LOCC operations. For two d-level systems the maximally entangled states are those

that are LU-equivalent to

|Ψd〉=
1
p

d

d−1
∑

i=0

|ii〉 . (1.14)

The non-existence of an analogous result for multipartite systems – due to the absence of

the Schmidt decomposition – is one of the reasons for the qualitative difference between

the bipartite and multipartite case.
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As useful as the concept of LOCC equivalence is from an operational point of view,

it is of little help to categorise the wealth of inequivalent entanglement types found in

multipartite Hilbert spaces. Many attempts have been made to find further operationally

motivated classifications, and the most prominent one among these is the equivalence

under Stochastic Local Operations and Classical Communication (SLOCC), which

is identical to LOCC equivalence except that the interconversion of two states need

not be deterministic. Instead the success probability of a conversion only needs to be

non-zero. The concept of stochastic interconvertibility was first introduced by Bennett et

al. [48] and later formalised by Dür et al. [18]. SLOCC operations are mathematically

expressed as Invertible Local Operations (ILOs) [18], and are also known as local filtering

operations. In the case of pure n qudit states the SLOCC-equivalence reads

|ψ〉 SLOCC←→ |φ〉 ⇐⇒ ∃B1, . . . ,Bn ∈ SL(d,C) : |ψ〉= B1⊗ · · · ⊗Bn |φ〉 . (1.15)

It is clear that SLOCC-equivalence implies LOCC-equivalence, and therefore the partition

of the Hilbert space into LOCC equivalence classes is a refinement5 of the partition into

SLOCC classes.

SLOCC operations have a clear operational interpretation in the sense that on average

they cannot increase the amount of entanglement, although it is possible to obtain more

entangled states with a certain probability. The latter is of importance for experimen-

talists, because joint operations on multiple copies of a state are often unfeasible, in

which case SLOCC operations on a single copy are the best available entanglement distil-

lation strategy [41]. While SLOCC operations have the power to dramatically increase

or decrease the amount of entanglement shared between parties, they cannot create

entanglement out of nowhere or completely destroy it, due to their local nature. In

particular, it is not possible to generate entangled states from separable states by SLOCC,

even probabilistically, something that is clear from the definition of separability.

Multiqubit entanglement has been well studied in terms of SLOCC equivalence, in

particular for a single copy of a pure n qubit state. In the 2 qubit case there exist only

two SLOCC equivalence classes, the class of separable states, and the generic class of

entangled states to which almost all states belong. In particular, any pure entangled

state can be converted into any other pure entangled state with non-zero probability.

For 3 qubits there exist six SLOCC classes [18], namely the separable class, the

three biseparable classes AB-C, AC-B, BC-A, the class with W-type entanglement and

the generic class with GHZ-type entanglement. The canonical example of SLOCC-

inequivalent entangled states are the three qubit |GHZ3〉 and |W3〉 state. Their tensor

rank is 2 and 3, respectively [18], and the tensor rank has been shown to be an SLOCC

5In the language of set theory, if A and B are two partitions of a set M , then the partition A is a
refinement of B (A ≤ B) if every element of A is a subset of some element of B. For the entanglement
classification schemes introduced here this means that LOCC≤ SLOCC.
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1.2. Quantum entanglement

invariant [18, 44]. Another way to distinguish between GHZ-type and W-type states is

the 3-tangle, an entanglement measure for three qubits [18, 50]. The 3-tangle is zero

not only for all states that are separable under any bipartite cut, but even for states

where this is not the case, e.g. the |W3〉 state. The only SLOCC class with nonzero

3-tangle is that with GHZ-type entanglement, and in this sense |GHZ3〉 is said to contain

genuine6 tripartite entanglement [41].

For 4 qubits the number of SLOCC classes becomes infinite, and there is no generic

class to which almost all states belong. Because of this, various attempts have been

made to find alternative and physically meaningful classification schemes tailored for

the 4 qubit case. Techniques employed for this include Lie group theory [51], the

hyperdeterminant [52], an inductive approach [53], polynomial invariants [54] and

string theory [55]. For example, Verstraete et al. [51] introduced the concept of

Entanglement Families (EFs) with the help of normal forms, and found nine different

EFs. Since every SLOCC equivalence class belongs to exactly one EF, the SLOCC classes

are a refinement of the EFs.

An important tool for the study of entanglement equivalence classes are quantities

that do not change under a set of local operations such as LU or SLOCC operations. Such

quantities are known as invariants, and they can provide information about the type of

entanglement present in a system. Examples are the Schmidt rank and the tensor rank,

which are known to be invariant under SLOCC operations.

One popular approach to find SLOCC invariants is to study polynomial invariants.

These are polynomials in the coefficients of pure states that remain invariant under

SLOCC operations. Such polynomial invariants are entanglement monotones with respect

to SLOCC operations [41], and they allow one to construct entanglement measures

[50, 56–59]. In the two and three qubit case the well-known concurrence (also known

as 2-tangle) [56] and 3-tangle [50] are special cases of polynomial invariants [52].

For four and five qubits polynomial invariants have also been constructed [57–62]. In

[57, 60] the polynomial invariants were constructed from classical invariant theory, and

the values of these invariants for the EFs [51] were derived. An alternative approach

is to employ the expectation values of antilinear operators, with an emphasis on the

permutational invariance of the global entanglement measure [58, 59].

1.2.4 Entanglement measures

In the previous section entanglement was characterised qualitatively in the form of

equivalence classes. Now entanglement will be analysed from a quantitative viewpoint

6There is no universally accepted definition for the concept of “genuine” (or “true”) entanglement, but
a common theme is that most or all of the local density matrices should be maximally mixed. The GHZ
states exhibit this property, but the W states do not. Although W states are entangled over all parties, their
multipartite entanglement is of a pairwise nature, i.e. within parts of the system.
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by means of entanglement measures. These help to assess the usefulness of given

states as resources for certain quantum informational tasks, and different entanglement

measures may capture different desirable qualities of a state. For bipartite, pure quantum

states it is known that all entanglement measures are essentially equivalent [7, 19, 63],

and one can find a unique total order in the asymptotic regime of many copies. For

mixed states of bipartite systems, as well as in the multipartite case, however, no total

ordering and therefore no unique entanglement measure exists [7, 64, 65].

An entanglement measure E : S(H) → R+ is a functional which maps the set of

density matrices acting on a Hilbert space H to non-negative numbers, ρ 7→ E(ρ)≥ 0,

and which satisfies certain axioms. Some of the most common axioms are the following

[47, 63, 66]:

1. Separable states: E(ρ) = 0 , if ρ is separable.

2. Invariance under LU: E(ρ) = E(σ) , if ρ
LU←→ σ.

3. Monotonicity under LOCC: E(ρ)≥
∑

i
pi E(σi) , if ρ

LOCC7−→

(

{pi ,σi}
∑

i piσi

4. Convexity: E(ρ)≤
∑

i
pi E(ρi) , where ρ =

∑

i
piρi .

5. Additivity: E(ρ⊗n) = nE(ρ) , for all n ∈ N.

6. Strong Additivity: E(ρ⊗σ) = E(ρ) + E(σ) , for all σ ∈ S(H).

It is natural to require that an entanglement measure be zero for non-entangled states,

and from the previous section it is clear that the measure should remain invariant under

LU. Axiom 3 is the most fundamental one, as the non-increase of entanglement under

local transformations (i.e. LOCC) [47, 63] lies at the heart of our understanding of

entanglement as a non-local resource shared between parties. The natural extension

of this axiom to SLOCC operations is that the entanglement shall not increase on

average. The fourth axiom guarantees that entanglement cannot be increased by mixing,

something that can be understood as the information loss encountered when going from

a selection of identifiable states to a mixture of those states. Since mixing is a local

operation, Axiom 4 is automatically fulfilled if Axiom 3 holds7.

Axioms 1 to 4 are regarded as the most important criteria for any entanglement

measure, and they coincide with the necessary properties of entanglement monotones,

7At first glance the mathematical forms of Axiom 3 and Axiom 4 seem to contradict each other, so we
stress the difference between their physical motivations: Axiom 3 describes a (non-)selective projective
measurement of a given state ρ (l.h.s.), resulting in a random measurement outcome σi or a superposition
thereof (r.h.s.). Axiom 4 starts with a selection of identifiable states ρi (r.h.s.) which are transformed into a
mixture ρ (l.h.s.), something that can be physically realised if an ancilla system (with orthonormal basis
{|i〉}) attached to the initial state is lost:

∑

i pi |i〉〈i| ⊗ρi 7→
∑

i piρi .
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1.3. Symmetric states

as defined by Vidal [47]. Indeed, entanglement monotones derive their name from the

crucial requirement of monotonicity under LOCC.

Axioms 5 and 6 are only two of many further properties that could be required from

any well-behaved entanglement measure. Even though additivity looks like a natural

requirement for entanglement measures and is closely related to various operational

meanings [67–69], many measures lack this property. The strong additivity, also known

as full additivity, is an even more elusive property which is featured only by very few

measures, e.g. the squashed entanglement [67]. From the definition it is clear that

strong additivity implies regular additivity. The property of (strong) additivity can not

only be defined for entanglement measures, but also for individual states: A state ρ is

additive with respect to an entanglement measure E if E(ρ⊗n) = nE(ρ) holds for all

n ∈ N, and strongly additive if E(ρ⊗σ) = E(ρ) + E(σ) for any state σ.

Many different entanglement measures have been defined, with either operational

or abstract advantages in mind. We will refrain from providing an overview here, and

instead refer to the review articles [19, 70]. The single most important entanglement

measure for this thesis, the geometric measure of entanglement, will be comprehensively

reviewed in Chapter 2.

1.3 Symmetric states

Permutation-symmetric quantum states are states that are invariant under any permuta-

tion of their subsystems. For an n-partite state |ψ〉 this is the case iff P |ψ〉= |ψ〉 for all

P ∈ Sn, where Sn is the symmetric group of n elements. In the n qubit case the symmetric

sector Hs ⊂H of the Hilbert space is spanned by the n+ 1 Dicke states |Sn,k〉, 0≤ k ≤ n,

the equally weighted sums of all permutations of computational basis states with n− k

qubits being |0〉 and k being |1〉 [29, 71]:

|Sn,k〉=
�

n

k

�−1/2
∑

perm

|0〉 |0〉 · · · |0〉
︸ ︷︷ ︸

n−k

|1〉 |1〉 · · · |1〉
︸ ︷︷ ︸

k

. (1.16)

From a physical point of view the Dicke states are the simultaneous eigenstates of

the total angular momentum J and its z-component Jz [29, 71, 72]. Dicke states

were recently produced in several experiments [3–5, 73, 74], they can be detected

experimentally [71, 74–76], and they have been proposed for certain tasks [27]. We

will abbreviate the above notation of the Dicke states to |Sk〉 whenever the total number

of qubits is clear.

A general pure symmetric state of n qubits |ψs〉 is a linear combination of the n+ 1
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orthonormalised Dicke states,

|ψs〉=
n
∑

k=0

ak |Sn,k〉 , (1.17)

with ak ∈ C. A generalisation to the qudit case is straightforward [21], with a general

symmetric state of an n qudit system being a linear combination of the Dicke states,

|Sn,k〉=

r

k0!k1! · · · kd−1!

n!

∑

perm

|0〉 · · · |0〉
︸ ︷︷ ︸

k0

|1〉 · · · |1〉
︸ ︷︷ ︸

k1

· · · |d − 1〉 · · · |d − 1〉
︸ ︷︷ ︸

kd−1

, (1.18)

with k = (k0, k1, · · · , kd−1), and
∑d−1

i=0 ki = n. The main focus of this thesis will however

be symmetric states of n qubits, as defined in Equation (1.17).

The theoretical and experimental analysis of symmetric states, e.g. as entanglement

witnesses or in experimental setups [3–6, 25, 26, 77], is valuable for a variety of reasons.

Symmetric states have found use in quantum information tasks such as leader election

[24] or as the initial state in Grover’s algorithm [27], and they could possibly be useful

for measurement-based quantum computation (MBQC) [78] because they are not too

entangled for being computationally universal [79]. Symmetric states are known to

appear in the Dicke model [80], as eigenstates in various models of solid states physics

such as the Lipkin-Meshkov-Glick (LMG) model [22, 23], and in the study of macroscopic

entanglement of η-paired high Tc superconductivity [81]. Furthermore, symmetric states

have been actively implemented experimentally [3–6], and their symmetric properties

facilitate the analysis of their entanglement properties [82–87]. In experiments with

many qubits, it is often not possible to access single qubits individually, necessitating a

fully symmetrical treatment of the initial state and the system dynamics [71].

For these reasons symmetric states have featured prominently in recent studies of

entanglement theory, such as the characterisation of their entanglement classes under

SLOCC [82, 85, 86, 88], or the determination of their maximal entanglement in terms

of the geometric measure of entanglement [89–91].

1.3.1 Majorana representation

In classical physics, the angular momentum J of a system can be represented by a point

on the surface of the 3D unit sphere S2, which corresponds to the direction of J . No

such simple representation is possible in quantum mechanics, but Ettore Majorana [31]

pointed out that a pure state of spin- j (in units of ħh) can be uniquely represented by

2 j not necessarily distinct points on S2. Given that S2 can be associated with the Bloch

sphere, it is clear that this is a generalisation of the spin-1
2

(qubit) case, where the 2D

Hilbert space is isomorphic to the unit vectors on the Bloch sphere. As seen in Figure 1.2,
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1.3. Symmetric states

(a) (b) (c)

Figure 1.2: The Majorana representations of the three eigenstates (a) |1,−1〉, (b) |1, 0〉
and (c) |1, 1〉 of a spin-1 particle are shown, with the Majorana points indicated by white
circles. By means of the isomorphism between spin- j states and the symmetric states
of 2 j qubits, these are also the Majorana representations of the three symmetric basis
states of two qubits, the Dicke states (a) |S0〉= |00〉, (b) |S1〉=

1p
2
(|01〉+ |10〉), and (c)

|S2〉= |11〉.

the three eigenstates |1,−1〉, |1, 0〉 and |1, 1〉 of a spin-1 particle correspond to two

points being at the north pole, one at the north pole and the other at the south pole and

both of them at the south pole, respectively.

An equivalent representation can be shown to exist for permutation-symmetric states

of n spin-1
2

particles [31, 92], with an isomorphism mediating between all states of a

spin- j particle and the symmetric states of 2 j qubits. For a system of n spin-1
2

particles

the eigenbasis of the square of the total spin operator S2 and its z component Sz can

be represented in the form |S, m〉, where S(S + 1)ħh2 and mħh are the corresponding

eigenvalues. It is the n+ 1 states from the maximum spin sector S = n
2

that are fully

permutation-symmetric, and it is those states that are identified as the symmetric basis

states, the Dicke states |Sn,k〉 ≡ |
n
2
, k− n

2
〉, with k = 0, . . . , n. A general state belonging

to the maximum spin sector
n/2
∑

m=−n/2
am |

n
2
, m〉 is therefore equivalent to the previous

definition (1.17) of symmetric states.

By means of the Majorana representation any symmetric state of n qubits |ψs〉
can be uniquely composed, up to an unphysical global phase, from a sum over all

permutations P ∈ Sn of n indistinguishable single qubit states {|φ1〉 , . . . , |φn〉}, with Sn

being the symmetric group of n elements.

|ψs〉=
eiδ

p
K

∑

perm

|φP(1)〉 ⊗ |φP(2)〉 ⊗ · · · ⊗ |φP(n)〉 , (1.19)

with |φi〉= cos θi

2
|0〉+ eiϕi sin θi

2
|1〉 , and K = n!

∑

perm

n
∏

i=1

〈φi|φP(i)〉 .

Here eiδ is a global phase, and the normalisation factor K is in general different for

different |ψs〉. The qubits |φi〉 are uniquely determined by the choice of |ψs〉 and they

determine the normalisation factor K. By means of Equation (1.19), any n qubit state

|ψs〉 can be unambiguously visualised by a multiset of n points (each of which has a

Bloch vector pointing in its direction) on the surface of S2. We call these points the
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Majorana points (MPs), and the sphere on which they lie the Majorana sphere.

One nice property of the Majorana representation is that the MP distribution rotates

rigidly on the Majorana sphere under the effect of LU operations on the subsystems.

We have already seen in Section 1.2.1 that unitary operations U ∈ SU(2) acting on a

single qubit, U |φ〉= |ϑ〉, correspond to rotations of the Bloch vector around an axis on

the Bloch sphere. Applying the same single-qubit unitary operation U on each of the n

subsystems of a symmetric state |ψs〉 yields another symmetric state |ϕs〉 by means of

the map

|ψs〉 7−→ |ϕs〉= U ⊗ · · · ⊗ U |ψs〉 , (1.20)

and from Equation (1.19) it follows that

|ϕs〉=
eiδ

p
K

∑

perm

|ϑP(1)〉 |ϑP(2)〉 · · · |ϑP(n)〉 , with |ϑi〉= U |φi〉 ∀ i . (1.21)

In other words, the MP distribution of |ϕs〉 is obtained by a joint rotation of the MP

distribution of |ψs〉 along a common axis on the Majorana sphere. Therefore the

two LOCC-equivalent states |ψs〉 and |ϕs〉 have different MPs, but the same relative

distribution (i.e., unchanged distances and angles) of the MPs [85].

To present some examples of MP distributions, we consider the three symmetric

basis states of two qubits, the Dicke states |S0〉 = |00〉, |S1〉 =
1p
2
(|01〉+ |10〉), and

|S2〉 = |11〉. Their Majorana representations, shown in Figure 1.2, are two points on

the north pole (|φ1〉 = |φ2〉 = |0〉), one on the north pole and the other on the south

pole (|φ1〉 = |0〉 , |φ2〉 = |1〉), and two points on the south pole (|φ1〉 = |φ2〉 = |1〉),
respectively. While |S0〉 and |S2〉 are separable states with zero entanglement, |S1〉 is the

Bell state |ψ+〉= 1p
2
(|01〉+ |10〉), a maximally entangled state of two qubits. This state

is represented by an antipodal pair of MPs, and it is easy to verify that the amount of

bipartite entanglement directly increases with the distance between the two MPs. For

symmetric states of three and more qubits this picture is not as clear, but one would

expect that symmetric states with a high degree of entanglement are represented by MP

distributions that are well spread out over the sphere. We will use this idea along with

other symmetry arguments to look for the most entangled symmetric states in Chapter 4.

It is important to realise that the MP states |φi〉 that make up the Majorana represen-

tation (1.19) do not belong to a particular subsystem of the underlying physical system.

Instead, the MPs should be viewed as abstract qubit states from which the symmetric

state of a physical system can be reconstructed. In the next section we will see that

the relationship between a symmetric state and its MPs is equivalent to the relationship

between the coefficients and the zeroes of a complex polynomial.

If the MPs of a symmetric state are known, then the explicit form of the composite

state can be directly calculated from Equation (1.19). On the other hand, if the MPs of
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1.3. Symmetric states

a given symmetric state |ψs〉 =
∑n

k=0 ak |Sk〉 are unknown, they can be determined by

solving a system of n+ 1 equations equivalent to Vieta’s formulas [93]:

ak =
�

n

k

�
1
2 ∑

perm

SP(1) · · ·SP(k)CP(k+1) · · ·CP(n) , (1.22)

with Ci = cos θi

2
, Si = eiϕi sin θi

2
.

The Majorana representation has been rediscovered several times [94, 95], and

has been put to many different uses across physics. In relation to the foundations of

quantum mechanics, it has been used to find efficient proofs of the Kochen-Specker

theorem [95, 96] and to study the “quantumness” of pure quantum states in several

respects [97, 98], as well as the approach to classicality in terms of the discriminability

of states [99]. It has also been used to study Berry phases in high spin systems [100] and

quantum chaos [94, 101], and it has been put into relation to geometrically motivated

SLOCC invariants [61]. Within many-body physics it has been used for finding solutions

to the Lipkin-Meshkov-Glick (LMG) model [22], and for studying and identifying phases

in spinor Bose-Einstein-condensates [102–105]. It has also been used to look for optimal

resources for reference frame alignment [106], for phase estimation, and in quantum

optics for the multi-photon states generated by spontaneous parametric down-conversion

[107]. Furthermore, the Majorana representation has been employed for finding a

new proof of Sylvester’s theorem on Maxwell multiples [108], and for analysing the

relationship between spherical designs [109] and anticoherent spin states [97]. The

Majorana representation has recently become a useful tool in studying and characterising

the entanglement of permutation-symmetric states [82, 85, 86, 88], which has interesting

mirrors in the classification of phases in spinor condensates [85, 103]. Very recently

further operational interpretations of the MP distribution have been discovered with

respect to additivity [110] and the equivalence of different entanglement measures [85].

1.3.2 Stereographic projection

The stereographic projection, a well-known concept from complex analysis [111], de-

scribes an isomorphism between the points on the surface of the S2 sphere and the points

of the extended complex plane C = C ∪ {∞}. As seen in Figure 1.3, the projection is

mediated by rays originating from the north pole of the Riemann sphere, thus projecting

points from the surface of the sphere along rays onto the complex plane. By definition,

the north pole is projected onto the “point at infinity”. The inverse projection from the

plane onto the sphere is also possible, and if the centre of the Riemann sphere coincides

with the origin of the complex plane, as shown in Figure 1.3(a), the inverse stereographic
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projection v : C→ R3 has the form

v(z) =







1
|z|2+1

�

2 Re(z), 2 Im(z), |z|2− 1
�

for z ∈ C

(0, 0,1) for z =∞
(1.23)

(a)

Re
Im

z1 z2

z3

(b)
Re

Im

z1 z2

z3

Figure 1.3: An example of a stereographic projection of points on the Riemann sphere
onto the complex plane is shown for two different positions of the sphere.

The stereographic projection is well-defined as long as the sphere’s north pole lies

above the complex plane, and a frequently used alternative position for the Riemann

sphere is shown in Figure 1.3(b). Here the sphere rests on the plane, and the inverse

stereographic projection reads

ev(z) =







1
1
2
|z|2+2

�

2 Re(z), 2 Im(z), |z|2
�

for z ∈ C

(0,0, 2) for z =∞
(1.24)

The stereographic projection is of interest to us, because it is closely linked to the

Majorana representation of symmetric states. For a given symmetric state |ψs〉 =
∑n

k=0 ak |Sn,k〉 the coefficients ak uniquely define a function ψ(z) : C→ C known as the

Majorana polynomial, or alternatively the characteristic polynomial, amplitude function

[112], or coherent state decomposition [94]:

ψ(z) =
n
∑

k=0

(−1)k
�

n

k

�
1
2

ak zk = A
n
∏

k=1

(z− zk) . (1.25)

The Majorana polynomial represents symmetric states in terms of spin coherent states

[106], which can be seen from its definition asψ(z) = 〈σ(z)|⊗n|ψs〉, where z := eiϕ tan θ
2

uniquely parameterises the single qubit states |σ(z)〉= |0〉 − z∗ |1〉. The right-hand side

of the equation follows from the fundamental theorem of algebra which states that every

polynomial of degree n has n not necessarily distinct complex roots, and can be uniquely

factorised up to a prefactor A. We will call the {zk}k the Majorana roots, and from the
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preceding discussion it is clear that there exist one-to-one correspondences between the

unordered set of MPs of a symmetric state, its coefficients and the Majorana roots

MPs {|φk〉}k ⇐⇒ coefficients {ak}k ⇐⇒ Majorana roots {zk}k . (1.26)

Intriguingly, the isomorphism between the MPs and the Majorana roots is precisely

described by the (inverse) stereographic projection if the Riemann sphere is considered

to be the Majorana sphere. The MPs |φk〉, represented on the sphere by the end points

of their Bloch vectors, are then projected onto the Majorana roots zk ∈ C lying in the

complex plane. If any MPs lie at the north pole, they are associated with the “point at

infinity”, and in this case the sum and product in Equation (1.25) only run up to n− r,

where r is the number of MPs being |0〉.

1.4 Overview of the thesis

With the recapitulation of some basic concepts of quantum information theory behind

us, we can now shift our focus towards new results. Chapter 2 through Chapter 6 are all

research chapters with original results. Nevertheless, most of these chapters are inter-

spersed with introductory notes on non-elementary topics in quantum information and

related fields. Among these are the introduction of the geometric measure of entangle-

ment (Section 2.1), measurement-based quantum computation (MBQC) (Section 2.4.3),

an overview of spherical optimisation problems (Section 3.2), the review of symmet-

ric entanglement classification schemes (Section 5.1), the Möbius transformations of

complex analysis (Section 5.2.1), symmetric SLOCC invariants (Section 5.6) and global

entanglement measures (Section 5.7). In Chapter 6 several topics from mathematics and

physics that are viewed in light of results obtained in this thesis are introduced.

An overview of the contents presented in this thesis is given in the following, sorted

by chapters. At the end of each summary of a chapter reference is made where work has

been published or is the result of a collaboration.

Chapter 2: Geometric Measure of Entanglement

The geometric measure of entanglement, an entanglement measure particularly suited

for the analysis of multipartite states, is discussed in Chapter 2. After a comprehensive

review of this measure in Section 2.1, it is applied to the general case of arbitrary

quantum systems in Section 2.2, where a high number of distinct closest product states is

conjectured for maximally entangled states. In Section 2.2.2 a standard form is derived

for arbitrary n qubit states with the help of the geometric measure. This is followed by

an examination of states with positive coefficients in Section 2.3, with the conclusion

that in general the addition of complex phases to the coefficients of a positive state leads
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to a considerable increase of the entanglement. The case of symmetric n qubit states

is considered in Section 2.4, where a new proof for the upper bound on the maximal

symmetric entanglement is presented in connection with Theorem 7. This proof has the

advantage of an intuitive visualisation by means of a constant integration volume of a

spherical function, something that will be valuable for later chapters. In Section 2.4.3

arguments are presented that symmetric n qubit states are not useful as resources for

MBQC, even in the context of stochastic approximate MBQC.

Section 2.2.2 is based on unpublished work with Seiji Miyashita, Mio Murao and

Damian Markham. The results of Section 2.4.2 and 2.4.3 were published in [89, 91].

Chapter 3: Majorana Representation and Geometric Entanglement

In Chapter 3 the Majorana representation is applied to analyse the geometric entan-

glement of n qubit symmetric states. The first section combines the review of some

known aspects with the presentation of new results or methods. After a discussion in

Section 3.1.1 about the visualisation of all the information about symmetric states and

their entanglement, the well-understood properties of two and three qubit symmetric

states are reviewed from the perspective of our methodology in Section 3.1.2. This is

followed by an introduction of the concept of totally invariant states in Section 3.1.3,

where it is shown that totally invariant positive symmetric states are additive with respect

to three distance-like entanglement measures. By means of the Majorana representa-

tion the search for the maximally entangled symmetric states can be understood as a

spherical optimisation problem, and because of this, Section 3.2 reviews two classical

point distribution problems, Tóth’s problem and Thomson’s problem, and puts them in

contrast to the “Majorana problem”. This is followed in Section 3.3 by the derivation

of several analytical results which connect the coefficients of symmetric states to their

Majorana representation. In particular, it will be seen that the Majorana representation

of states with real coefficients exhibits a reflective symmetry, and that particularly strong

restrictions are imposed on the Majorana representation of positive states. Theorem 13

presents a generalisation of the Majorana representation which is useful to simplify the

analysis of many symmetric states.

The contents of Section 3.1.2 were published in [89], and most of the results

presented in Section 3.2 and 3.3 were published in [89, 91].

Chapter 4: Maximally Entangled Symmetric States

In Chapter 4 the conjectured maximally entangled symmetric quantum states of up

to 12 qubits in terms of the geometric measure of entanglement are derived by a

combination of numerical and analytical methods. First, the methodology employed

for the search is outlined in Section 4.1, and then a comprehensive discussion of all
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the solutions, accompanied with visualisations, is given in Section 4.2. Along the way

the obtained solutions are compared to those of the classical point distributions of Tóth

and Thomson. In Section 4.3 the results obtained are summarised and interpreted from

various points of view, such as entanglement scaling, positive versus general states,

operational implications and distribution patterns in the Majorana representation.

Parts of Section 4.1 and 4.3 were published in [89], and the majority of the results

presented in Section 4.2 were published in [89, 91].

Chapter 5: Classification of Symmetric Entanglement

While the preceding chapter focused on the quantitative characterisation of the entan-

glement of symmetric states, Chapter 5 shifts the focus towards qualitative aspects.

Three different entanglement classification schemes, namely LOCC, SLOCC and the

Degeneracy Configuration, are reviewed for symmetric states in Section 5.1. It is found

that the Möbius transformations of complex analysis, reviewed in Section 5.2, accurately

describe SLOCC transformations between symmetric states, and that they provide a

straightforward visualisation of the innate SLOCC freedoms. The insights gained from

this relationship motivate the subsequent sections. In Section 5.3 representative states

with simple Majorana representations are derived for all symmetric SLOCC classes of

up to 5 qubits, and in Section 5.4 the results gathered for the 4 qubit case are put into

relation to the concept of Entanglement Families introduced in [51]. In Section 5.5

examples are given how known properties of the Möbius transformations can be of

practical value to determine whether two symmetric states are SLOCC-equivalent or not,

and in Section 5.6 a connection is made between SLOCC invariants of 4 qubit symmetric

states and areas on the Majorana sphere. Finally, Section 5.7 compares the maximally

entangled symmetric states in terms of the geometric measure with the extremal states

of so-called “global entanglement measures”, such as those that detect “genuine” n-party

entanglement.

The results presented in this chapter have not been published yet, but most of the

contents of Section 5.1 through Section 5.5 can be found in the preprint [88].

Chapter 6: Links and Connections

In Chapter 6 several smaller findings are outlined. First, in Section 6.1 our results about

maximally entangled symmetric n qubit states are compared to two different concepts of

“maximally non-classical” spin- n
2

states, namely the “anticoherent” spin states [97] and

the “queens of quantum” [98]. In Section 6.2 a quantum analogue to the concept of the

Platonic duals from classical geometry is unearthed, and in Section 6.3 the ground states

of the LMG model [113–115], a spin model, are discussed and investigated in light of

the Majorana representation.
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The topic of Section 6.1 was briefly touched on in [89] and presented in detail in

[91]. The results of Section 6.2 were published in [91].

Chapter 7: Conclusions

The thesis concludes with Chapter 7. First a summary of the main results obtained in the

previous chapters is given in Section 7.1. This is followed in Section 7.2 by an outlook

on some open questions, as well as new ideas or research directions that are worthy of

being tracked further.
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Chapter2
Geometric Measure of Entanglement

The first research chapter starts with an introduction to the geometric

measure of entanglement, an entanglement measure particularly suited for

multipartite states. The properties of this measure are analysed for a variety

of systems, starting with arbitrary finite-dimensional multipartite systems,

and then becoming more specific by considering n qubit systems, positive

states, and symmetric states.

Among the results found is the observation that in general the maximally

entangled states are expected to have a large number of closest product

states, and that positive states are less entangled than non-positive states. A

new proof with the advantage of a straightforward geometric interpretation

is found for the upper bound on maximal symmetric n qubit entanglement,

and arguments are brought forward that symmetric quantum states cannot

be used as resources for measurement-based quantum computation (MBQC),

even in the setting of approximate MBQC.

2.1 Introduction and motivation

The geometric measure of entanglement (GM) is an entanglement measure which sat-

isfies all the desired properties of an entanglement monotone [116]. It was initially

proposed for pure bipartite states by Shimony [20], and was subsequently generalised

by Barnum et al. [117] as well as Wei et al. [116]. Unlike many other entanglement

measures, the GM explicitly accommodates multipartite systems. Such a holistic char-

acterisation of many-body entanglement instead of considering bipartite splits of the

system (e.g. by means of the concurrence of reduced density matrices) will be par-

ticularly valuable for the analysis of symmetric states where no part of the system is

distinguished from any other.

Furthermore, many other entanglement measures, such as the relative entropy of
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entanglement [66, 118, 119], are notoriously difficult to compute in the multipartite

setting even for pure states, in part because of the absence of the Schmidt decomposition.

In contrast to this, the GM allows for a comparatively easy calculation, because the

variational problem runs only over pure product states. It will be seen that for symmetric

states the computational complexity is further reduced.

The GM has found applications in several fields, including signal processing, par-

ticularly in the fields of multi-way data analysis, high order statistics and independent

component analysis (ICA), where it is known under the name rank one approximation

to high order tensors [120–125]. In the area of quantum phase transitions the GM has

been used to analyse the Lipkin-Meshkov-Glick (LMG) model [23] as well as other spin

models [126–128]. The survival of entanglement in thermal states was studied with

the GM [129], and in quantum information theory the measure has been employed

to derive the generalised Schmidt decomposition of Carteret et al. [40] and for the

study of entanglement witnesses [83, 116]. On top of this, the measure has a variety of

operational interpretations, including the usability of initial states for Grover’s algorithm

[130, 131], additivity of channel capacities [132] and classification of states as resources

for MBQC [17, 79, 133]. In state discrimination under LOCC the role of entanglement

in blocking the ability to access information locally is strictly monotonic – the higher the

geometric entanglement, the harder it is to access information locally [134]. The reverse

does not hold, i.e. less entanglement does not necessarily make discrimination easier.

The GM is a distance-like entanglement measure, which means that it assesses the

entanglement in terms of the “remoteness” of the given state from the set of separable

states. In the case of the GM this remoteness is expressed by the maximal overlap of

a given pure multipartite state |ψ〉 with all pure product states [20, 116, 117], which

can also be defined as the geodesic distance with respect to the Fubini-Study metric

[38]. Here we present the GM in the inverse logarithmic form1, because this allows for

an easier comparison with related entanglement measures and because it has stronger

operational implications e.g. for channel capacity additivity [132] or the (strong)

additivity [110, 116, 135].

Eg(|ψ〉) = min
|λ〉∈HSEP

− log2|〈ψ|λ〉|
2 =− log2|〈ψ|Λ〉|

2 . (2.1)

This entanglement measure satisfies Axioms 1 to 4 introduced in Section 1.2.4, and

additionally the values of Eg are strictly positive for all entangled states. Although not

additive in general, it is known that for some classes of states this measure is additive

or even strongly additive. The definition of the GM can be viewed as an optimisation

1There are different definitions of the geometric measure in the scientific literature, with the two most
common ones being EG(|ψ〉) = 1− |〈ψ|Λ〉|2, as defined in [116], and Eg(|ψ〉) =− log2|〈ψ|Λ〉|2, introduced
in [21]. With the exception of Section 2.4.3, where EG is more useful for comparison with the literature, we
will use Eg throughout this thesis.
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problem in the sense that one looks for the best approximation of an entangled state

|ψ〉 by a product state |λ〉, i.e. a state with zero entanglement. The product state which

has maximal overlap with |ψ〉 is denoted by |Λ〉 ∈HSEP, and will be referred to as the

closest product state (CPS). It should be noted that a given |ψ〉 can have more than

one CPS. Indeed, it will follow from Theorem 1 that some states are likely to have a

large number of distinct CPSs.

For bipartite systems the optimisation problem (2.1) is trivial if the given state |ψ〉 is

provided in its Schmidt decomposition (1.6), because |00〉 is a CPS [40, 136], yielding

the geometric entanglement Eg(|ψ〉) =− log2α
2
0. For the maximally entangled two qudit

states (1.14) this gives Eg(|Ψ〉) = log2 d.

Although defined for pure states, the GM can be extended to mixed states by means

of a convex roof construction [70],

Eg(ρ) = min
{pi ,|ψi〉}

∑

i

pi Eg
�

|ψi〉
�

, (2.2)

over all decompositions of ρ into pure states ρ =
∑

i pi |ψi〉〈ψi|. This minor deficiency

of the GM – the absence of a generic definition for mixed states – does not need to

concern us, because we will focus on the entanglement of pure states2.

Due to its compactness, the pure Hilbert space of a finite-dimensional system (e.g. n

qudits) always contains at least one maximally entangled state |Ψ〉 with respect to the

GM, and to each such state relates at least one CPS. The task of determining maximal

entanglement can therefore be formulated as a max-min problem, with the two extrema

not necessarily being unambiguous:

Emax
g = max

|ψ〉∈H
min
|λ〉∈HSEP

− log2|〈ψ|λ〉|
2

= max
|ψ〉∈H

− log2|〈ψ|Λ(ψ)〉|
2 =− log2|〈Ψ|Λ(Ψ)〉|

2 .
(2.3)

Werner et al. [132] have defined the function G(|ψ〉) = max
|λ〉∈HSEP

|〈ψ|λ〉|= |〈ψ|Λ〉| as the

injective tensor norm, a quantity that is known as the maximal probability of success

in Grover’s search algorithm [12], and which has been used to define an operational

entanglement measure, the Groverian entanglement3 [130, 131]. Note that G2 is simply

the fidelity between the states |ψ〉 and |Λ〉, so Eg can be viewed as the negative logarithm

of a fidelity [7, 137, 138]. Because of the relationship Eg = − log2 G2, and because

f (x) = − log x2 is a strictly monotonic function, the task of finding the maximally

2Pure states usually carry more entanglement than mixed states, and it is believed that the maximally
entangled states can be found among pure states. At least for the subset of symmetric states the search for
the maximally entangled state in terms of the GM can be restricted to pure states, because the maximally
entangled symmetric state is pure [90].

3The Groverian measure is in fact identical to EG = 1− |〈ψ|Λ〉|2, up to a square operation.
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Chapter 2. Geometric Measure of Entanglement

entangled state is equivalent to solving the min-max problem

min
|ψ〉∈H

G(|ψ〉) = min
|ψ〉∈H

max
|λ〉∈HSEP

|〈ψ|λ〉| . (2.4)

The geometric measure Eg has close links to other distance-like entanglement mea-

sures, namely the relative entropy of entanglement ER [66, 119] and the logarithmic

robustness of entanglement ERob = log2(1+ R), where R is the usual global robustness

of entanglement [139, 140]. Between these measures the inequalities

Eg(|ψ〉)≤ ER(|ψ〉)≤ ERob(|ψ〉) (2.5)

hold for all pure states [21, 83, 134, 139]. These inequalities do not hold for mixed

states4, but a generalisation is possible by defining eEg(ρ) := Eg(ρ) − S(ρ), where

S(ρ) =−Tr(ρ logρ) is the von Neumann entropy, which is zero for all pure states:

eEg(ρ)≤ ER(ρ)≤ ERob(ρ) . (2.6)

For pure states the relationship (2.5) implies that the GM is a lower bound for both the

relative entropy of entanglement and the logarithmic robustness of entanglement. For

stabiliser states (e.g. GHZ state), Dicke states (e.g. W state), permutation-antisymmetric

basis states [83, 134, 143] and symmetric states with totally invariant MP distributions

[85] (which will be discussed in Section 3.1.3) the three distance-like entanglement

measures coincide:

Eg = ER = ERob . (2.7)

This equivalence is intriguing because the three measures have different interpretations.

As an entropic quantity, ER has information theoretic implications, while ERob measures

the resistance of entanglement against arbitrary noise.

Next we consider the geometric entanglement of the two paradigmatic n qubit states

of Equation (1.9), the GHZ state and W state. The set of their CPSs are

|ΛGHZ〉= {|00 . . . 00〉 , |11 . . . 11〉} , (2.8)

|ΛW〉=
��

p
n−1p

n
|0〉+ eiϕ 1p

n
|1〉
�⊗n |ϕ ∈ [0, 2π)

	

, (2.9)

From this it can be seen that the GHZ state has two different CPSs, while the W state has

4A counterexample is the Smolin state [30], a bound entangled mixed positive symmetric state, which
has Eg = 3 [135, 141], but ER = ERob = 1 [135, 142]. Its von Neumann entropy is S = 2, yielding
eEg = Eg − S = 1 [135].
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a one-parametric continuum of CPSs. The amount of geometric entanglement follows as

Eg(|GHZn〉) = 1 , (2.10)

Eg(|Wn〉) = log2
� n

n−1

�n−1 . (2.11)

For the GHZ state the amount of geometric entanglement is 1, regardless of the number

of qubits. On the other hand, the entanglement of the W state goes asymptotically

towards log2(e) as n→∞. For n ≥ 3 the GHZ state has less geometric entanglement

than the W state, a property not exhibited by many other entanglement measures.

Next we will briefly review the known upper and lower bounds on the maximal

possible amount of geometric entanglement for n qubit states. It should be kept in mind,

however, that the maximally entangled state and its amount of entanglement depends on

the chosen entanglement measure [70], and therefore different entanglement measures

may not only yield different values for the maximal entanglement, but also different

maximally entangled states.

For the general case of pure n qubit states the upper bound Eg(|ψ〉)≤ n− 1 on the

geometric entanglement has been derived in [144]. Although no states of more than

two qubits reach this bound [144], most n qubit states come close. For n> 10 qubits the

inequality Eg > n− 2 log2(n)− 3 holds for almost all states, something that makes the

overwhelming majority of states too entangled to be useful for MBQC [79]. A similar

result that holds for arbitrary dimensions of the parties was derived by Zhu et al. [135],

and for n qubits their Proposition 25 yields Eg > n− 2 log2(n)− log2(9 ln 2). Resources

for MBQC must be considerably less entangled than most states (although this is by no

means a sufficient criterion, cf. Bremner et al. [145]). For example, the entanglement of

2D cluster states consisting of n qubits, a well-known MBQC resource, was found to be

Eg =
n
2
[143].

2.1.1 Symmetric states

Here we will briefly review some known results about permutation-symmetric states

with respect to the GM. Firstly, the definition of the GM (2.1) suggests that the overlap

of a symmetric state |ψs〉 with a product state will be maximal if the product state is also

symmetric. This straightforward conjecture has been actively investigated [21, 83], but

a proof is far from trivial. After some special cases were proven [146, 147], Hübener et

al. [84] were able to give a proof for the general case of pure symmetric states5. They

showed that for n≥ 3 qudits the CPSs of a pure symmetric state are necessarily symmetric,

thus greatly reducing the complexity of finding the CPSs and the entanglement of

5One could ask whether this result also holds for translationally invariant states (which appear in spin
models), but this is not the case. A trivial counterexample is the state |ψ〉= 1p

2
(|0101〉+ |1010〉), which is

LU-equivalent to the GHZ state and which has the two non-symmetric closest product states |0101〉 and
|1010〉 [84].
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symmetric states. A generalisation of this result to mixed symmetric states was recently

achieved by Zhu et al. [135]. Pure symmetric product states of n qubits can be written as

|Λs〉 = |σ〉⊗n with only one single-qubit state |σ〉 ∈ C2. Therefore every CPS |Λs〉 = |σ〉⊗n

of a multi-qubit symmetric state |ψs〉 can be visualised on the Majorana sphere by the

Bloch vector of |σ〉, and in analogy to the MPs we refer to |σ〉 as a closest product

point (CPP) of |ψs〉.

For positive symmetric states, i.e. states that are symmetric as well as positive, it

is known that they have at least one CPS that is positive symmetric itself [146, 147].

However, while each CPS of a positive symmetric state is necessarily symmetric for

n≥ 3 qudits [84], it need not be positive, and counterexamples for this will appear in

Chapter 4.

Upper and lower bounds on the maximal geometric entanglement of n qubit states

were already reviewed, with the observation that Eg scales linearly with n. We will now

look at the same question for symmetric states, i.e. how does the entanglement of the

maximally entangled symmetric n qubit state scale?

In order to derive a simple lower bound, consider the Dicke states introduced in

Equation (1.16). For a given Dicke state |Sn,k〉 with 0≤ k ≤ n it is known [21, 116] that

any of the states

|Λ〉=
�

q

n−k
n
|0〉+ eiϕ

q

k
n
|1〉
�⊗n

, (2.12)

with ϕ ∈ [0,2π), is a CPS. With this the geometric entanglement of |Sn,k〉 can be

calculated to be

Eg(|Sn,k〉) = log2







� n
k

�k� n
n−k

�n−k

�n
k

�






. (2.13)

From this formula it can be seen that the maximally entangled Dicke state is |Sn, n
2
〉

for even n and the two equivalent states |Sn,b n
2
c〉 and |Sn,d n

2
e〉 for odd n. Using the

Stirling approximation n!∼
p

2πn( n
e
)n, the asymptotic amount of entanglement of the

maximally entangled n qubit Dicke state for large n is found to be

EDicke
g ≈ log2

Æ

nπ
2

. (2.14)

In general the maximally entangled symmetric state of n qubits is a superposition of Dicke

states, so Equation (2.14) is a lower bound on the maximal symmetric entanglement.

An upper bound on the GM for symmetric n qubit states has been derived from the

separable decomposition of the identity on the symmetric subspace (denoted 1Symm),

see e.g. [148],
∫

S2

(|θ 〉〈θ |)⊗nω(θ) =
1

n+ 1
1Symm , (2.15)
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where ω denotes the uniform probability measure over the unit sphere S2 of normalised

single qubit vectors. It is easy to see that G(|ψ〉)2 = max
ω∈HSEP

Tr(ω |ψ〉〈ψ|)≥ 1
n+1

. Hence,

the entanglement of a symmetric n qubit state |ψs〉 is bounded from above by

Eg(|ψs〉)≤ log2(n+ 1) . (2.16)

From Equation (2.14) and (2.16) one can see that the maximal symmetric entanglement

scales logarithmically with the number of qubits. This is a qualitative departure from the

linear scaling behaviour observed in general n qubit states.

2.2 Results for general states

2.2.1 Closest product states of the maximally entangled state

We will now show that for systems with arbitrary dimensions and an arbitrary number

of parties the maximally entangled states can be cast as superpositions of their CPSs. In

other words, if |Ψ〉 is maximally entangled, then the span of its CPSs contains |Ψ〉 itself.

Furthermore, |Ψ〉 has at least two linearly independent CPSs. These results are obtained

without any knowledge about which states are the maximally entangled ones, and the

set of CPSs itself does not form a vector space in general, because linear combinations

of product states do not need to be product states themselves. The idea of the proof

is that for any state not lying in the span of its CPSs it is possible to find an explicit

variation which increases the geometric entanglement of the state. The main ingredient

of the proof is the multipartite Schmidt decomposition of Carteret et al. [40] which was

already introduced in Section 1.2.2.

Theorem 1. Let |Ψ〉 ∈H =H1⊗· · ·⊗Hn be a normalised pure state of an n-partite system

with finite-dimensional subspaces dim(Hi) = di ≥ 2, and let Λ ⊂ H be the set of CPSs of

|Ψ〉. If |Ψ〉 is maximally entangled with respect to the GM, then |Ψ〉 ∈ span(Λ) and there

exist at least two linearly independent CPSs.

Proof. Let us assume that |Ψ〉 is maximally entangled, but |Ψ〉 /∈ U := span(Λ). This

implies U 6= H, and one can use the orthogonal complement V := U⊥ = {|v〉 ∈ H :

〈v|u〉 = 0 ∀u ∈ U} of U , with 0 < dim(V ) < dim(H), to write H as an internal direct

sum of two complex vector spaces: H = U⊕V . Because of |Ψ〉 /∈ U there exists a |ζ〉 ∈ V

so that 〈Ψ|ζ〉 6= 0. We can then define the variation

|ψ(ε)〉 := (1− ε) |Ψ〉+ ε |ξ〉 , with ε > 0 and |ξ〉 := 2
〈Ψ|ζ〉+〈ζ|Ψ〉 |ζ〉 . (2.17)

Obviously lim
ε→0
|ψ(ε)〉 = |Ψ〉, and 〈ψ(ε)|ψ(ε)〉 = 1+O(ε2). In the following |ψ(ε)〉 can be

considered to be normalised, because second order variations play no role in subsequent
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calculations and can thus be ignored. Since |ξ〉 ∝ |ζ〉 it follows that |ξ〉 ∈ V and thus

〈ξ|Λi〉 = 0 for all i. Writing f (ε) := max
|λ〉∈SEP

|〈ψ(ε)|λ〉|, we will show that f (ε) < f (0)

for sufficiently small, but nonzero ε and therefore |Ψ〉 cannot be maximally entangled.

Because we consider infinitesimal variations, it suffices to investigate gε(λ) := |〈ψ(ε)|λ〉|
near the global maxima |λ〉 = |Λi〉 of g0(λ). It will turn out that the value of gε
consistently decreases in the neighbourhood of each |Λi〉 as ε is turned on. Note that the

value of gε(λ) may increase near its non-global maxima, but this is not of concern to us,

because the variation can be chosen sufficiently small, as seen in Figure 2.1.

|λ〉
|Λ1〉 |Λ2〉

gε(λ)

max
|λ〉∈SEP

gε(λ)

ε= 0
ε 6= 0

Figure 2.1: Schematic representation of the change in gε(λ) as ε is turned on. For
sufficiently small ε only the areas near the CPSs of |Ψ〉 need to be considered in order to
determine the largest value of gε(λ). The blue curve representing ε 6= 0 attains only one
global maximum, which lies in the vicinity of |Λ1〉.

In the following we will choose an arbitrary |Λi〉 – denoted as |Λ〉 – and show that

gε(λ) = |〈ψ(ε)|λ〉| decreases near |λ〉= |Λ〉. This procedure can be performed for each

|Λi〉, thus proving that |ψ(ε)〉 is more entangled than |Ψ〉. Note that even though the

following calculations rely on a basis that depends on the chosen |Λi〉, the variation

|ψ(ε)〉 of Equation (2.17) is independent of any basis, and thus |ψ(ε)〉 is the same for

each |Λi〉.
In the proof of Theorem 2 of [40] the factorisable orthonormal basis was chosen

in a way so that the state |λ〉 = |00 · · ·00〉 is a maximum of the overlap function

g(λ) = |〈ψ|λ〉|. Since the choice of this maximum is arbitrary, this means that there

exists a basis so that |Λ〉 = |00 · · ·00〉 is a CPS, and that the coefficients ai1,...,in of the

state |Ψ〉 (cf. Equation (1.5)) satisfy the conditions outlined in Theorem 2 of [40]. In

particular, 〈Ψ|Λ〉= a00···00, and the following special case of Equation (1.8) holds:

a00...0k
︸︷︷︸

j indices

0...00 = 0 ∀1≤ j ≤ n ∀1≤ k ≤ d j − 1 . (2.18)

Arbitrary variations of |Λ〉= |00 · · ·00〉 can be defined as follows:

|λ(δ)〉= |δ1〉 ⊗ |δ2〉 ⊗ . . .⊗ |δn〉 , with

|δ j〉= (1−δ j
0) |0〉+δ

j
1 |1〉+ . . .+δ j

d j−1 |d j − 1〉 ∀ j .
(2.19)
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Here the δ j
i are small complex-valued variations that are independent from each other

with the only restriction being the n normalisation conditions 〈δ j|δ j〉 = 1. The variation

|λ(δ)〉 remains a product state satisfying lim
δ→0
|λ(δ)〉= |Λ〉 as well as 〈λ(δ)|λ(δ)〉= 1.

We will proceed to show that |〈ψ(ε)|λ(δ)〉| < |〈Ψ|Λ〉| in the entire neighbourhood

of δ = 0 for small but nonzero values of ε. For this purpose we can ignore any terms

of order O(ε2), O(δ2), O(εδ), and higher. From Equation (2.17), (2.18), (2.19) and

〈ξ|Λ〉= 〈ξ|00 · · ·00〉= 0 it follows that

〈ψ(ε)|λ(δ)〉= (1− ε) 〈Ψ|λ(δ)〉+ ε 〈ξ|λ(δ)〉 (2.20a)

= (1− ε)






a00...00−







n
∑

j=1

d j−1
∑

i=1

δ
j
i a00...0i
︸︷︷︸

j indices

0...00






+O(δ2)







+ ε 〈ξ|
�

(1−δ1
0) |0〉 ⊗ . . .⊗ (1−δn

0) |0〉
�

+O(εδ) (2.20b)

≈ (1− ε)a00...00+ ε 〈ξ|00 · · ·00〉= (1− ε) 〈Ψ|Λ〉 , (2.20c)

and therefore |〈ψ(ε)|λ(δ)〉| ≈ (1− ε)|〈Ψ|Λ〉|< |〈Ψ|Λ〉|.
The existence of at least two linearly independent CPSs for the maximally entangled

state |Ψ〉 immediately follows from the observation that the span of a single product

state cannot contain entangled states.

For the special case of qubit systems (d1 = . . . = dn = 2) Equation (2.18) directly

follows from Theorem 2 (which will be introduced in the following section) without

the need to invoke the generalised Schmidt decomposition of Carteret et al. [40].

Furthermore, it is straightforward to adapt Theorem 1 to the case of symmetric states.

This will be done in Corollary 6 in Section 2.4.

Given a maximally entangled state, is the set of distinct CPSs discrete or continuous?

And if it is continuous, can it be parameterised in some way? Tamaryan et al. [149,

150] noticed that some highly entangled n qubit W-type states have a continuous

one-parametric range of closest separable states, and for the W-states themselves this

continuous range was already given in Equation (2.9). For three qubits |W3〉 is known

to be the maximally entangled state [151], and with the parameterisation |Λ(ϕ)〉 =
�

Æ

2
3
|0〉 + eiϕ

Æ

1
3
|1〉
�⊗3 for its CPSs Theorem 1 can be verified by considering the

relation |W3〉 =
3
8

�

|Λ(0)〉 − i |Λ(π
2
)〉 − |Λ(π)〉 + i |Λ(3π

2
)〉
�

. It remains interesting to

see whether continuous ranges of CPSs also exist for larger number of particles. This

question will be reviewed in Section 4.3.3 in light of results gained in later chapters.

Given a maximally entangled state |Ψ〉, how large is U = span(Λ)? Theorem 1

only tells us that dim U ≥ 2. For three qubits the maximally entangled state |W3〉
is symmetric, from which it follows that all its CPSs must be symmetric [84], which

implies U ⊂Hs. Because the symmetric subspace Hs is strictly smaller than H (consider

e.g. biseparable states), U is strictly smaller than H. Nevertheless, there is reason to
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believe that dim U is in general high: For sufficiently large n qubit systems (n > 10)

the maximal geometric entanglement scales as Eg ≈ n−O(log2(n)) or higher [79], and

the relationship Eg ≤ log2(r) +O(1) has been found to hold with high probability for

random states with tensor rank r [145]. Although the maximally entangled state is by

no means a “random state”, the property of the Schmidt measure P = log2(r) being an

entanglement measure [44] makes it reasonable to expect that maximally entangled

states in terms of the geometric measure have a tensor rank r > 2n−O(log2(n)). Since

|Ψ〉 ∈ span(Λ), this means that every expansion of |Ψ〉 in terms of linearly independent

CPSs consists of at least r terms, which in turn implies the existence of at least r linearly

independent CPSs. Therefore we conjecture that dim U > 2n−O(log2(n)), which is close to

dimH = 2n.

2.2.2 Standard form of coefficients

The generalised Schmidt decomposition of Carteret et al. [40] for multipartite states

was already mentioned in the introductory Section 1.2.2. Here I present a similar

standard form for the coefficients of n qubit states that I derived in collaboration with

Seiji Miyashita and Mio Murao. I was unaware of the former work in [40] while doing

so, and there are similarities between the two forms. The following Theorem 2 can be

understood as a special case of the standard form in [40] with weaker implications on

the coefficients. It is nevertheless interesting, because our proof is different, and because

we make the connection to the GM more explicit.

Consider an n qubit state |ψ〉 written in the notation of (1.5). The state has at least

one CPS, and by choosing the computational basis accordingly, we can set |Λ〉 = |00 . . . 0〉
to be a CPS. The injective tensor norm (which determines the amount of geometric

entanglement) is then G(|ψ〉) = |〈ψ|00 . . . 0〉| = |a00...0|, i.e. the amount of entanglement

of |ψ〉 is given by the first coefficient a00...0. By means of the global phase this coefficient

can be taken to be positive.

Theorem 2. For every pure n qubit state |ψ〉 one can choose a computational basis with

the notation of (1.5) in which |Λ〉 = |0〉⊗n is a CPS, the coefficient a00...0 is positive, and

the following conditions hold:

For 2 qubits:

a10 = a01 = 0 , (2.21a)

a2
00 ≥ |a11|2 . (2.21b)
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For 3 qubits:

a100 = a010 = a001 = 0 , (2.22a)

a2
000 ≥ |a110|2 , (2.22b)

a2
000 ≥ |a101|2 , (2.22c)

a2
000 ≥ |a011|2 , (2.22d)

a3
000− 2|a110a101a011| − a000

�

|a110|2+ |a101|2+ |a011|2
�

≥ 0 . (2.22e)

For n qubits:

a{1} = 0 , (2.23a)

a2
00...0 ≥ |a{11}|2 , (2.23b)

a3
00...0− 2 |a{110}a{101}a{011}| − a00...0

�

a{110}+ a{101}+ a{011}
�

≥ 0 , (2.23c)

where a{1} stands for any of the n coefficients a10...0 , a01...0 , . . . , a0...01 ,

a{11} stands for any of the
�n

2

�

coefficients a110...0 , a101...0 , . . . , a0...011 ,

and the tuple {a{110} , a{101} , a{011}} can be any of the
�n

3

�

different tuples

{a1100...0 , a1010...0 , a0110...0} ,

{a11000...0 , a10010...0 , a01010...0} ,

...

{a0...0110 , a0...0101 , a0...0011} .

Proof. The possibility of finding a computational basis in which |Λ〉 = |0〉⊗n is a CPS and

a00...0 is positive was already explained, so we only need to verify the conditions on the

other coefficients. For this we consider the first and second partial derivatives of the

overlap function g(λ) = |〈ψ|λ〉| around the point of the maximum |Λ〉= |0〉⊗n.

We start with the 2 qubit case. Let |ψ〉 = (a00 a01 a10 a11)T be the given state in

an appropriate basis. A general product state (up to a global phase) can be written as

|λ〉=

 
p

1− b2
1

b1 eiβ1

!

⊗

 
p

1− b2
2

b2 eiβ2

!

=















p

1− b2
1

p

1− b2
2

b1

p

1− b2
2 eiβ1

b2

p

1− b2
1 eiβ2

b1 b2 ei(β1+β2)















,

with b1, b2 ∈ [0,1] and β1,β2 ∈ [0,2π). Expanding b1, b2 by a Taylor series around
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|Λ〉= |00〉 gives

|00〉+δ |00〉=















1− 1
2
(δb2

1 +δb2
2)

δb1eiβ1

δb2eiβ2

δb1δb2ei(β1+β2)















, and

�

�〈ψ|
�

|00〉+δ |00〉
�

�

�=
�

�a00−
1
2
a00(δb2

1 +δb2
2)

+ a∗01δb1eiβ1 + a∗10δb2eiβ2 + a∗11δb1δb2ei(β1+β2)
�

� . (2.24)

|〈ψ|λ〉| must have a maximum at |Λ〉 = |00〉, so the first partial derivatives of Equa-

tion (2.24) with respect to b1 and b2 must be zero. This yields a01 = a10 = 0. With the

freely variable β1,β2 chosen s.t. a∗11ei(β1+β2) ∈ R, Equation (2.24) becomes

a00−
1
2
a00(δb2

1 +δb2
2) + |a11|δb1δb2 .

The Hessian Matrix of the second partial derivatives with respect to b1 and b2 is then

H =

 

−a00 |a11|
|a11| −a00

!

.

At the maximum |Λ〉 = |00〉 the Hessian Matrix must be negative semidefinite [152].

This is equivalent to the conditions

a00 > 0 and a2
00 ≥ |a11|2 .

Calculations for higher (n≥ 3) qubit numbers run analogously. For the general n qubit

case the Equations (2.23a) are obtained by setting the first partial derivatives to zero.

The second partial derivatives give rise to an n× n Hessian Matrix

H =



















−a00...0 ea110...0 ea101...0 · · · ea100...1

ea110...0 −a00...0 ea011...0 · · · ea010...1

ea101...0 ea011...0 −a00...0 · · · ea001...1
...

...
...

. . .
...

ea100...1 ea010...1 ea001...1 · · · −a00...0



















,

with ea110...0 = Re
�

a110...0eiβ1+β2
�

, ea101...0 = Re
�

a101...0eiβ1+β3
�

, and so on. Considering

only the 3× 3 leading principal minor (the top left 3× 3 submatrix) of H, we find that
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by suitably choosing the three variables β1,β2,β3 as

β1 =
1
2
(−α110...0−α101...0+α011...0) ,

β2 =
1
2
(−α110...0+α101...0−α011...0) ,

β3 =
1
2
(+α110...0−α101...0−α011...0) ,

where αi jk... is the phase of ai jk... (i.e. ai jk... = |ai jk...|eiαi jk...), we obtain

H3×3 =









−a00...0 |a110...0| |a101...0|
|a110...0| −a00...0 |a011...0|
|a101...0| |a011...0| −a00...0









. (2.25)

The negative semidefinity of H results in necessary conditions for all leading principal

minors. The 2 × 2 and 3 × 3 leading principal minors can be taken from H3×3 of

Equation (2.25), and they yield the first inequality in (2.23b) and (2.23c), respectively.

Since |Λ〉 = |0〉⊗n is symmetric, the indices of the qubits are interchangeable, thus giving

rise to all the permutations incorporated in (2.23b) and (2.23c).

For two qubits the conditions (2.21) directly lead to a set of maximally entangled

states |φ〉= 1p
2

�

|00〉+ eiϕ |11〉
�

with a00 =
1p
2
, and hence Eg = 1. For three and more

qubits, however, it is not easy to locate the maximally entangled states. This is because

the function g(λ) = |〈ψ|λ〉| has in general several maxima, and because the conditions

of Equation (2.23) were derived only from the property that |Λ〉 = |0〉⊗n is a local

maximum. Therefore, given a state |ψ〉 that satisfies the conditions (2.23), we cannot

be sure that |Λ〉 = |0〉⊗n is a CPS (i.e. global maximum). For example, the arbitrarily

weakly entangled state
p
ε |000〉+

p
1− ε |111〉, ε→ 0 satisfies the conditions (2.22),

because |λ〉 = |000〉 is a local maximum of g(λ), even though the global maximum is

|Λ〉 = |111〉. This simple example shows that already the pure 3 qubit case exhibits a

much more diverse structure of the overlap function g(λ) than the bipartite one.

Theorem 2 provides necessary conditions for |Λ〉 = |0〉⊗n being a CPS, and can

therefore be considered as a special case of the generalised Schmidt decomposition of

Carteret et al. [40]. This can be most easily seen by comparing Equation (2.23a) and

(2.23b) to Theorem 1 of [40]. One difference between the theorems is that we make the

connection to the CPS and thus the GM explicitly clear. In [40] the fact that |Λ〉= |0〉⊗n

is a maximum of g(λ) is touched upon only in the proof, and this maximum is not

required to be global.
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Chapter 2. Geometric Measure of Entanglement

2.3 Results for positive states

Positive states are particularly easy to treat with respect to the GM due to the absence of

complex phases in their coefficients. Perhaps the most intriguing result in this respect is

that all positive states are strongly additive with respect to the GM6, whereas almost all

other states lack this property, as shown by Zhu et al. [135].

Here we prove two results, namely that positive states have positive CPSs, and that

positive states generally have less entanglement than non-positive states with the same

weightings of their basis states. The proofs of these two findings are similar to each

other.

Lemma 3. Every pure state |ψ〉 of a finite-dimensional system that is positive with respect

to some computational basis has at least one positive CPS in that basis.

Proof. Picking any computational basis in which the coefficients of |ψ〉 are all positive,

we denote the orthonormal basis of subsystem j with {|i j〉}, i j = 0, . . . , d j − 1, and can

write the state as |ψ〉 =
∑

i ai |i1〉 · · · |in〉, with i = (i1, . . . , in) and ai ≥ 0 for all i. We pick

one CPS of |ψ〉 and write it as |Λ〉=
⊗

j |σ j〉, where |σ j〉=
∑

i j
b j

i j
|i j〉 (with b j

i j
∈ C) is

the state of subsystem j. Now define a new normalised product state as |Λ+〉 =
⊗

j |σ
+
j 〉,

where |σ+j 〉 =
∑

i j

�

�

�b j
i j

�

�

� |i j〉. Because of |〈ψ|Λ+〉| =
∑

i ai
∏

j

�

�

�b j
i j

�

�

� ≥
�

�

�

∑

i ai
∏

j b j
i j

�

�

� =

|〈ψ|Λ〉|, the positive state |Λ+〉 is also a CPS of |ψ〉.

This result, which I published together with Damian Markham and Mio Murao in

[89], was independently found by Zhu et al. [135]. Lemma 3 asserts that positive

states have at least one positive CPS, but the existence of non-positive CPSs is not ruled

out. Most positive states have only one CPS (which is necessarily positive), but it is not

difficult to find examples of positive states with non-positive CPSs. For example, one

of the CPSs of the Bell state |ψ〉= |S1〉=
1p
2
(|01〉+ |10〉) is |Λ〉= 1

2
(|0〉+ i |1〉)⊗2, and

more examples will appear in Chapter 4.

A statement analogous to Lemma 3 does not hold for real states, i.e. there exist

real states that have no real CPS. A trivial example are the rotated n qubit GHZ states

Rs
x(
π
2
) |GHZn〉 for which it follows from Equation (2.8) and Equation (1.2a) that they

only have the two CPSs |Λ1〉=
1p
2n (|0〉+ i |1〉)⊗n and |Λ2〉=

1p
2n (|0〉 − i |1〉)⊗n.

The next theorem asserts that the amount of geometric entanglement of multipar-

tite states of any dimension is in general higher for phased states, i.e. states whose

coefficients are not restricted to positive values in a given computational basis. For this

purpose we define the corresponding positive state |ψ+〉 =
∑

i|ai| |i〉 of a given state

|ψ〉 =
∑

i ai |i〉 to be the state that is obtained from |ψ〉 by removing the complex phases

6The geometric measure can be additive only in the logarithmic form Eg defined in Equation (2.1). The
alternative definition EG used in [116] does not exhibit additivity properties.
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2.3. Results for positive states

from all coefficients, and we call |ψ+〉 the corresponding non-phased7 state. Note that

|ψ+〉 automatically inherits the normalisation of |ψ〉, and that |ψ+〉 subtly depends on

the basis in which |ψ〉 is represented.

Theorem 4. Every pure state |ψ〉 of a finite-dimensional system contains at least the

same amount of geometric entanglement as the corresponding non-phased state |ψ+〉, i.e.

Eg(|ψ〉)≥ Eg(|ψ+〉).

Proof. Using the same notation as in the proof of Lemma 3, we write the given state as

|ψ〉=
∑

i ai |i1〉 · · · |in〉, with i= (i1, . . . , in), and the corresponding non-phased state as

|ψ+〉 =
∑

i|ai| |i1〉 · · · |in〉. We take one of the CPSs of |ψ〉 and denote it as |Λ〉 =
⊗

j |σ j〉,
where |σ j〉 =

∑

i j
b j

i j
|i j〉 is the state of subsystem j. The corresponding non-phased state

of |Λ〉 is a normalised product state with positive coefficients |Λ+〉 =
⊗

j |σ
+
j 〉, with

|σ+j 〉=
∑

i j

�

�

�b j
i j

�

�

� |i j〉. Using the following inequality

|〈ψ+|Λ+〉|=
∑

i

|ai|
∏

j

�

�

�b j
i j

�

�

�≥
�

�

�

�

∑

i

ai
∏

j

b j
i j

�

�

�

�

= |〈ψ|Λ〉| ,

it follows that Eg(|ψ〉) =− log2|〈ψ|Λ〉|2 ≥− log2|〈ψ+|Λ+〉|2 ≥ Eg(|ψ+〉).

It should be noted that – unlike Lemma 3 – Theorem 4 is valid for arbitrary choices of

the computational basis, and to each such basis relates a non-phased state |ψ+〉. These

non-phased states are in general all different from each other and thus carry different

amounts of entanglement, but their unifying feature is that they do not carry more

entanglement than |ψ〉.
Theorem 4 has not been published yet, but it has been cited in the form of a private

communication with Dagmar Bruß in [73]. There they propose the experimental creation

and detection of “phased Dicke states” [75] by means of hyperentangled photons [153],

and from Theorem 4 it is clear that these states carry at least the same amount of

geometric entanglement as regular Dicke states. It is reasonable to expect that for

sufficiently large systems the phased states are much higher entangled than their non-

phased counterparts, and indeed Zhu et al. [135] provide all the ingredients necessary

to prove the following corollary:

Corollary 5. Every positive n qubit state |ψ〉 has entanglement Eg(|ψ〉) ≤
n
2
, and this

bound is strict for even n.

Proof. According to Theorem 5 of [135], every positive n qubit state is strongly additive

with respect to GM. On the other hand, from Proposition 23 of the same paper it follows

that Eg ≤
n
2

holds for all strongly additive n qubit states. A trivial example of a positive n

qubit state with Eg =
n
2

for even n is |ψ〉= (|00〉+ |11〉)⊗
n
2 , i.e. n

2
Bell pairs.

7The term “non-phased” has been chosen over “dephased” to avoid confusion with the physical process
of phase coherence loss.
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As outlined in Section 2.1, the known bounds on the maximal entanglement for

general n qubit states |ψ〉 are n− 2 log2(n)−O(1)≤ Eg(|ψ〉)≤ n− 1, and most states

surpass the lower bound [79, 135, 144]. This implies that the overwhelming majority of

states is significantly higher entangled than the corresponding non-phased states.

Does a similar result hold for real states? Surprisingly, the restriction to real coeffi-

cients has only little impact on the maximal entanglement, as outlined in Proposition 25

of [135]. More specifically, for real states the lower bound found for GM is only 1 ebit

less than for general states, regardless of the number of parties and their dimensions.

The property of real states being closer in spirit to general states than to positive states

can also be seen from that fact that antisymmetric basis states are much higher entangled

than symmetric basis states, even though the two differ only by the phase factors that

induce a sign change under odd permutations of the parties [83].

2.4 Results for symmetric states

2.4.1 Closest product states of the maximally entangled state

As mentioned in Section 2.2.1, it is possible to derive a symmetrised version of Theo-

rem 1, where the maximally entangled state among all symmetric multi-qudit states is

considered8.

Corollary 6. Let |Ψs〉 ∈Hs ⊂H =H0⊗ · · · ⊗H0 be a normalised pure symmetric state of

an n-partite (n ≥ 3) qudit system with dim(H0) = d. The set of CPSs of |Ψs〉 is denoted

by Λ⊂Hs and the set of CPPs is denoted by Σ⊂H0. If |Ψs〉 is maximally entangled with

respect to the GM, then |Ψs〉 ∈ span(Λ) and there exist at least two linearly independent

CPSs.

Proof. One can restrict to fully symmetric CPSs, because symmetric states of three or

more qudits have no nonsymmetric CPSs [84]. In particular, this means that there

exists a one-to-one correspondence between the CPSs and CPPs, i.e. if |σi〉 ∈ Σ then

|Λs
i〉 = |σi〉

⊗n ∈ Λ, and vice versa. The proof is performed analogously to the one of

Theorem 1, so we focus only on aspects that are not immediately clear from comparison.

Firstly, the restriction to symmetric states |Ψs〉 ∈Hs does not prevent one from using the

generalised Schmidt decomposition [40], because the symmetric basis states |Sn,k〉 can

be trivially expanded with the computational basis states |i1i2 · · · in〉, and the same is

done with the symmetric CPSs |Λs
i〉= |σi〉

⊗n.

Secondly, the variation |ψs(ε)〉 of |Ψs〉 according to Equation (2.17) is performed

with a symmetric product state |ζs〉 = |κ〉⊗n ∈ Hs with |κ〉 ∈ V ⊂ H0, where V is the

8For Lemma 4 of [89] I previously provided an explicit proof for the existence of at least two CPPs for
maximally entangled symmetric n qubit states. This proof will not be reiterated here, because Corollary 6 is
a strictly stronger result.
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orthogonal complement of U := span(Σ) 6= H0. Equivalently, the variation |λs(δ)〉 of

|Λs〉 = |0〉⊗n should be fully symmetric: |λs(δ)〉 = |δ〉⊗n, with |δ〉 = (1−δ0) |0〉+δ1 |1〉+
. . .+δd−1 |d − 1〉.

Corollary 6 provides a useful necessary condition for checking whether candidates

for maximal symmetric n qubit entanglement (which will be studied in Chapter 4) are

indeed maximally entangled, namely that the states must lie in the span of their CPSs.

2.4.2 Upper bound on symmetric entanglement

An upper bound on the maximal symmetric entanglement was already introduced with

Equation (2.16). Here I present an alternative proof for this bound with the advantage

of having an intuitive geometric meaning. The same proof as mine which I published

in [89] was independently found by Martin et al. [90]. The known lower bounds on

maximal symmetric entanglement will be reviewed later in Section 4.3.1.

Theorem 7. For every symmetric n qubit state |ψs〉 the following equality holds:

2π
∫

0

π
∫

0

|〈ψs|λ(θ ,ϕ)〉|2 sinθ dθdϕ =
4π

n+ 1
, (2.26)

where |λ(θ ,ϕ)〉=
�

cθ |0〉+ eiϕsθ |1〉
�⊗n

.

Proof. A symmetric n qubit state can be written as |ψs〉=
∑n

k=0 akeiαk |Sk〉, with ak ∈ R,

αk ∈ [0, 2π) and the normalisation condition
∑

k a2
k = 1. Writing the CPS as |λ〉 = |σ〉⊗n

with |σ〉= cθ |0〉+ eiϕsθ |1〉, we obtain

〈ψs|λ〉=
n
∑

k=0

ei(kϕ−αk)akcn−k
θ sk

θ

r

�

n

k

�

. (2.27)

Using the set of qubit unit vectors S2 and the uniform measure over the unit sphere dB,

the squared norm of Equation (2.27) can be integrated over the unit sphere:

∫

|σ〉∈S2

|〈ψs|λ〉|2dB =
2π
∫

0

π
∫

0

|〈ψs|λ(θ ,ϕ)〉|2 sinθ dθdϕ . (2.28)
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Taking into account that
∫ 2π

0
eimϕdϕ = 0 for any integer m 6= 0, one obtains

2π
∫

0

π
∫

0





n
∑

k=0

a2
kc2(n−k)
θ

s2k
θ

�

n

k

�



 sinθ dθdϕ (2.29a)

= 2π
n
∑

k=0

a2
k

�

n

k

�

π
∫

0

c2(n−k)
θ

s2k
θ sinθ dθ (2.29b)

= 4π
n
∑

k=0

a2
k

�

n

k

�

Γ(k+ 1)Γ(n− k+ 1)
Γ(n+ 2)

= 4π
n
∑

k=0

a2
k

1

n+ 1
=

4π

n+ 1
. (2.29c)

The equivalence of Equation (2.29b) and (2.29c) follows from the different definitions

of the Beta function [154].

Since the mean value of |〈ψs|λ(θ ,ϕ)〉|2 over the Bloch sphere is 4π
n+1

, it follows that

G2(|ψs〉) = |〈ψs|Λs〉|2 = max
|λ〉∈HSEP

|〈ψs|λ〉|2 must be at least 1
n+1

. This leads to the upper

bound Eg(|ψs〉)≤ log2(n+ 1) for any symmetric n qubit state.

The integral in Equation (2.26) is the same for all symmetric n qubit states, and in

Section 3.1 it will be seen that this allows for an intuitive visualisation of the geometric

entanglement of symmetric states by means of spherical distributions with constant

volume in R3. From a mathematical perspective, the constant integral is a consequence

of Schur’s Lemma which implies that the uniform mixture of the product states |λ〉〈λ| =
(|σ〉〈σ|)⊗n equals the identity 1, up to the prefactor

�n+d−1
n

�−1
, where d is the dimension

of the subsystems (see e.g. [148, 155]). In particular, this implies that Theorem 7 can be

readily generalised to the qudit case, yielding the upper bound Eg(|ψs〉)≤ log
�n+d−1

n

�

for any symmetric n qudit state.

2.4.3 Measurement-based quantum computation

One of the leading schemes for the physical implementation of quantum computing is

measurement-based quantum computation (MBQC), also known as one-way quan-

tum computation. Before the start of the computation an entangled resource state, for

example a two-dimensional cluster state [156], is prepared. A proper choice of subse-

quent single qubit measurements then allows one to deterministically create any desired

state on the unmeasured qubits, as long as the initially prepared state is sufficiently

large and a universal resource state. A family of n qubit states Ψ= {|ψn〉}n is said to

be a universal resource if any given state can be prepared deterministically and exactly

by MBQC from a state |ψn〉 with sufficiently large n [17]. The resource character of

the initial state is evident from the fact that only local operations are performed, and

the consequently irreversible reduction of entanglement explains the term “one-way
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quantum computation”.

In order for states to be useful for MBQC their entanglement must come in the “right

dose”. On the one hand, universal resources for MBQC must be maximally entangled

in a certain sense [17, 133], and if the entanglement of a set of MBQC resource states

scales anything below logarithmically with the number of parties, it cannot be an

efficient resource for deterministic universal MBQC [17]. On the other hand, somewhat

surprisingly, if the entanglement is too large, it is also not a good resource for MBQC:

If the geometric entanglement of an n qubit system scales as n − O(log2 n), then a

computation performed with such a resource can be simulated efficiently on a classical

computer [79]. Indeed, most quantum states are too entangled for being computationally

universal [79], although the right amount of geometric entanglement is by no means a

sufficient condition [145].

It was seen that the maximal geometric entanglement of symmetric states scales

much slower than that of general states, namely logarithmically rather than linearly. One

could therefore ask whether symmetric states are useful for MBQC, because they are not

too entangled. Unfortunately, Equation (2.16) implies that symmetric states scale at most

logarithmically, whereas the entanglement of exact, deterministic MBQC resources must

scale faster-than-logarithmically [17]. Somewhat weaker requirements are imposed

upon approximate, stochastic MBQC resources [133], although this generally leads only

to a small extension of the class of suitable resources in the vicinity of exact, deterministic

resources (e.g. 2D cluster states with holes). One can therefore expect that symmetric

states cannot be used even for approximate, stochastic MBQC.

To underline this conjecture, we will show that Dicke states with a fixed number

of excitations cannot be useful for ε-approximate, deterministic MBQC [133]. To be

consistent with the notation used in [133], we temporarily switch to the alternative

definition of the geometric measure EG(|ψ〉) = 1− |〈Λψ|ψ〉|2 for the duration of this

section. Roughly speaking, ε-approximate universal resource states can be converted

into any other state by LOCC with an inaccuracy of at most ε. The ε-version of the GM

is defined as [133]

EεG(ρ) =min{EG(σ) |D(ρ,σ)≤ ε} , (2.30)

where D is a distance that is “strictly related to the fidelity”, meaning that for any two

states ρ and σ, D(ρ,σ) ≤ ε ⇒ F(ρ,σ) ≥ 1− η(ε), where 0 ≤ η(ε) ≤ 1 is a strictly

monotonically increasing function with η(0) = 0. EεG(ρ) can be understood as the

guaranteed entanglement obtained from a preparation of ρ with inaccuracy ε. One

possible choice of D is the trace distance, which for pure states reads Dt(|ψ〉 , |φ〉) =
p

1− |〈ψ|φ〉|2 =
p

1− F , where F is the fidelity. In this case one can choose η(ε) = ε2.

As shown in Example 1 of [133], the family of W states ΨW = {|W〉n}n, with

|Wn〉 ≡ |Sn,1〉, is not an ε-approximate universal resource for η(ε) ® 0.001. In the

following we generalise this result to families of Dicke states ΨSk
= {|Sn,k〉}n with an
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arbitrary, but fixed number of excitations k ∈ N.

Theorem 8. For any fixed k ∈ N the family of Dicke states ΨSk
= {|Sn,k〉}n cannot be an

ε-approximate universal MBQC resource for η(ε)® 0.001 k−3/2.

Proof. Using Equation (2.13) and the Stirling approximation for high n, the asymptotic

geometric entanglement of the family ΨSk
is found to be

EG(ΨSk
) = 1−

kk

ekk!
.

Specifically, the amount of geometric entanglement remains finite for arbitrary values of

n, allowing us to apply Proposition 3 and Theorem 1 of [133] to show that the necessary

condition for ε-approximate deterministic universality,

EG(ΨSk
)> 1− 4η

1
3 + 3.4η

2
3 ,

is violated for η(ε)® 0.001 k−
3
2 .

Of course, many other quantum information tasks are not restricted by the require-

ments of MBQC-universality, and thus highly entangled symmetric states can be valuable

resources for tasks such as the leader election problem [24] or LOCC discrimination

[134].

It should be noted that the uselessness of n qubit symmetric states for quantum

computation can also be inferred from the observation that the tensor rank of such states

scales only polynomially9. Superpositions of a polynomial number of product states can

be simulated efficiently classically, because these states and all subsequent states arising

during the computation have an efficient classical description [145], due to the tensor

rank being an entanglement monotone.

9The (n+ 1)-dimensional space of n qubit symmetric states can be spanned by the continuous set of spin
coherent states [155], i.e. Hs = span{|σ〉⊗n , |σ〉 ∈ C2}. This implies that symmetric n qubit states have a
tensor rank of at most n+ 1.

44



Chapter3
Majorana Representation and

Geometric Entanglement

In this chapter the Majorana representation of symmetric states will

be employed to investigate symmetric n qubit states with respect to the

geometric measure of entanglement. Starting with a discussion of different

visualisation techniques and a review of two and three qubit symmetric

states, we move on to the concepts of totally invariant states and spherical

optimisation problems. This is followed by the derivation of a variety of

analytical results about the Majorana representation. These results will be

helpful for the study of the geometric entanglement of symmetric states in

later chapters.

3.1 Preliminaries

3.1.1 Visualisation of symmetric states

In Section 1.3.1 the Majorana representation was introduced for symmetric n qubit states,

and a visualisation by means of the Majorana points (MPs) on the Majorana sphere was

shown in Figure 1.2. This approach is now extended to encompass information about

the geometric entanglement of states.

By means of its definition (2.1) the geometric entanglement of a state is determined

by its closest product states (CPSs). As mentioned in Section 2.1, for symmetric states

there exists at least one symmetric CPS |Λs〉= |σ〉⊗n, and for n≥ 3 qudits all CPSs are

symmetric [84]. Here we consider the case of n qubit symmetric states. The single-qubit

states |σ〉 are then called closest product points (CPPs), because they can be represented

on the Majorana sphere by their Bloch vectors. In this way the set of CPPs can be visually

represented alongside the MPs. Figure 3.1 shows such Majorana representations for
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(a)

|φ1〉

|φ2〉

|φ3〉

|σ1〉

|σ2〉
(b) (c)

|φ1〉 |φ2〉

|φ3〉

|σ1〉

θ

(d)

Figure 3.1: Different visualisations of the three qubit GHZ state and W state are shown.
The MPs (white circles) and CPPs (crosses) of |GHZ3〉 are shown in (a), and those of
|W3〉 in (c). Plots of the corresponding spherical amplitude functions g2(θ ,ϕ) are shown
in (b) and (d). The global maxima and zeros of g2 coincide with the CPPs and the
antipodes of the MPs, respectively. The maximal values of g2 are indicated by circles
with radii G2(|GHZ3〉) =

1
2

and G2(|W3〉) =
4
9
, respectively.

the three qubit GHZ and W state, two states that are symmetric as well as positive,

and whose entanglement may be considered extremal (see e.g. [157]). The state

|GHZ3〉=
1p
2
(|000〉+ |111〉) has the MPs

|φ1〉=
1p
2

�

|0〉+ |1〉
�

, |φ2〉=
1p
2

�

|0〉+ ei
2π
3 |1〉

�

, |φ3〉=
1p
2

�

|0〉+ ei
4π
3 |1〉

�

,

(3.1)

and its two CPPs are

|σ1〉= |0〉 , |σ2〉= |1〉 . (3.2)

From this it follows that G2 = |〈GHZ3|σ〉
⊗3|2 = 1

2
and hence the geometric entanglement

is Eg(|GHZ3〉) = 1. Figure 3.1(a) shows the distribution of MPs and CPPs on the Majorana

sphere. The three MPs form an equilateral triangle on the equator, and the two CPPs

lie at the north and south pole, respectively. The general n qubit GHZ state (1.9) is

represented by n equidistant MPs on the equator, and the CPPs are the same as in (3.2)

[85].

The W state |W3〉= |S3,1〉=
1p
3
(|001〉+ |010〉+ |100〉) is a Dicke state with the MPs

|φ1〉 = |φ2〉 = |0〉 and |φ3〉 = |1〉, and due to the azimuthal symmetry the set of CPPs

is formed by the continuum |σ〉=
Æ

2
3
|0〉+ eiϕ

Æ

1
3
|1〉, with ϕ ∈ [0,2π). Figure 3.1(c)

shows the MPs and the circle of CPPs, with the positive CPP denoted by a cross. The

entanglement is Eg(|W3〉) = log2

�

9
4

�

≈ 1.17, which is higher than that of the GHZ state.

It was recently shown that in terms of the GM, the W state is the maximally entangled

three qubit state [151], and therefore it is also the maximally entangled symmetric one.

Mediated by the stereographic projection, the amplitude function ψ(z) : C → C
defined on the complex plane in Equation (1.25) corresponds to the function f (θ ,ϕ) =

〈ψs|σ(θ ,ϕ)〉⊗n with |σ(θ ,ϕ)〉 = cθ |0〉 + eiϕsθ |1〉 defined on the Majorana sphere.

Taking the absolute value of this function, we define a real-valued function g : S2→ [0, 1]
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as follows

g(θ ,ϕ) = |〈ψs|σ(θ ,ϕ)〉⊗n| , (3.3)

and call it the spherical amplitude function. This function has already played an

important role in Theorem 7 for the derivation of the upper bound on the maximal

symmetric entanglement. Comparing Equation (3.3) to the definition of the GM (2.1),

it is seen that the global maxima of g are the CPPs of |ψs〉. Furthermore, from the

definition of the Majorana representation (1.19) it is clear that the zeros of g are the

antipodes1, i.e. the diametrically opposite points of the MPs. The plots of g2 shown for

the GHZ and W state in Figure 3.1 demonstrate that the spherical amplitude function

allows for an intuitive and powerful visualisation of the entire information about a

symmetric state and its geometric entanglement. For a given |ψs〉 it is often not easy to

calculate the MPs and CPPs analytically, but g makes it very easy to do so numerically.

This makes the spherical amplitude function a powerful tool for the numerical search

for high and maximal geometric entanglement. The amount of entanglement present in

a symmetric state decreases with increasing values of the injective tensor norm, which

is simply the maximum value of the spherical amplitude function: G =max|σ〉 g(θ ,ϕ).

Circles indicating the value of G2 are shown in Figure 3.1, and they provide a visual

representation of the difference in entanglement between the GHZ and W state.

As another example we present the “tetrahedron state”, the symmetric state of four

qubits whose MPs are uniquely defined (up to LU) by the vertices of a regular tetrahedron

inscribed in the Majorana sphere. In the orientation shown in Figure 3.2(a) the MPs are

|φ1〉= |0〉 , |φ2,3,4〉=
q

1
3
|0〉+ eiκ

q

2
3
|1〉 , (3.4)

with κ= 0, 2π
3

, 4π
3

. From this the tetrahedron state follows as

|Ψ4〉=
q

1
3
|S0〉+

q

2
3
|S3〉 , (3.5)

and its entanglement is Eg(|Ψ4〉) = log2 3 ≈ 1.585. Figure 3.2(b) shows the spherical

amplitude function g2(θ ,ϕ) from which it is clear that there exist four CPPs, which

coincide with the locations of the MPs.

Considering the form of the integral appearing in Theorem 7, one could suspect that

the three-dimensional volume described by the values of the function g2(θ ,ϕ) is the

same for all n qubit states. This is however not the case, because Equation (2.26) does

not describe a volume integration. Fortunately, as stated by the following corollary, this

can be easily remedied by considering g
2
3 (θ ,ϕ) instead.

1In mathematical terms, the antipode of a Bloch vector |φ〉 = cθ |0〉+ eiϕsθ |1〉 is the unique Bloch vector
|φ〉⊥ = sθ |0〉 − eiϕcθ |1〉 which is orthogonal to the first one: 〈φ|φ〉⊥ = 0.
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(a)

|φ1〉

|φ2〉 |φ3〉

|φ4〉

(b) (c) (d)

Figure 3.2: Different visualisations of the “tetrahedron state” of 4 qubits. The MPs
and CPPs are shown in (a), with each vertex of the regular tetrahedron occupied by
one MP and one CPP. The spherical amplitude function g2(θ ,ϕ) is shown in (b), and
the spherical volume function g

2
3 (θ ,ϕ) in (c) and (d). The volume described by g

2
3 is

V = 4π
15

, and a red sphere with the same volume is inscribed in (c). The area where the

values of g
2
3 are smaller than the radius r = 3

p

1/5 of the sphere is coloured red in (d).

The largest value of g
2
3 is G

2
3 = 3

p

1/3.

Corollary 9. For every n qubit symmetric state the three-dimensional volume bordered by

the values of the function g
2
3 (θ ,ϕ) is V = 4π

3(n+1) .

Proof. The volume of an object can be determined mathematically by integrating the

constant function 1 over the interior:

V =

2π
∫

0

π
∫

0

R(θ ,ϕ)
∫

0

r2 sinθ drdθdϕ =

2π
∫

0

π
∫

0

R3(θ ,ϕ)
3

sinθ dθdϕ

=
1

3

2π
∫

0

π
∫

0

g2(θ ,ϕ) sinθ dθdϕ
(2.26)
=

4π

3(n+ 1)
,

(3.6)

where R(θ ,ϕ)≡ g
2
3 (θ ,ϕ) are the radial values in spherical coordinates.

This corollary implies that the object described by the contour of g
2
3 (θ ,ϕ) has the

same volume as a sphere with radius r = 1
3pn+1

. We will call g
2
3 (θ ,ϕ) the spherical

volume function, and it is depicted in Figure 3.2 for the tetrahedron state.

Let us make the difference between the integrals of Equation (2.26) and (3.6) more

explicit. The integral appearing in Equation (2.26) is a two-dimensional spherical

integral over the unit sphere with g2(θ ,ϕ) as its integrand. This integral has the value
4π

n+1
, and because the surface area of the unit sphere is 4π, this means that the average

value of g2 is 1
n+1

, implying G2 ≥ 1
n+1

and thus Eg(|ψs〉) ≤ log2(n+ 1). In contrast to

this, Equation (3.6) describes a three-dimensional volume integral over a shape bordered

by the values of the function g
2
3 (θ ,ϕ). This integral has the value 4π

3(n+1) , which is equal

to the volume of a sphere with radius r = 1
3pn+1

. Because of this, the largest value of g
2
3
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satisfies G
2
3 ≥ 1

3pn+1
, which results in the same upper bound on Eg as derived from the

spherical integral.

Because an exponent on g(θ ,ϕ) does not change the qualitative properties of this

function, it is mostly a matter of taste with which power to work with. The merit

of the spherical volume function g
2
3 is that (for fixed n) its volume is the same for

all n qubit symmetric states. This allows for a clear operational interpretation as a

constant volume which has to be moulded as uniformly as possible to obtain the highest

symmetric entanglement. Nevertheless, most of the plots of the spherical amplitude

function displayed in this thesis for n qubit symmetric states rely on g2, because the

shape of the volume is then more pronounced for lower n, and thus easier to interpret

(see e.g. Figure 3.2(b) and (d)).

3.1.2 Two and three qubit symmetric states

As a first application of the Majorana representation we review the well-studied cases

of two and three qubits. Remarkably, for two qubits the Schmidt decomposition (1.6)

allows one to cast every pure state as a positive symmetric state of the form |ψs〉 =
α0 |00〉+ α1 |11〉, with α0 ≥ α1 and with |Λ〉 = |00〉 being a CPP. The MPs are then,

up to normalisation, |φ1〉=
p
α0 |0〉+ i

p
α1 |1〉 and |φ2〉=

p
α0 |0〉 − i

p
α1 |1〉, and the

geometric entanglement is Eg =− log2α
2
0. The spherical distance between the two MPs

is the only degree of freedom present in this Majorana representation2. Coinciding MPs

correspond to separable states (here |ψs〉 = |00〉), and antipodal MPs correspond to

maximally entangled states (here the Bell state |ψs〉 = 1p
2
(|00〉+ |11〉)) with Eg = 1.

Since the CPP is fixed at |Λ〉 = |00〉, the geometric entanglement increases monotonically

with the spherical distance between the MPs. This unambiguous characterisation by

means of a two-point-distance is a signature of the existence of a total order for the

entanglement of pure two qubit states.

In contrast to this, there is no unique way in geometry to measure the “distance”

between three points on a sphere. Similarly, no unique entanglement measure and no

total order exists for three qubit states. Furthermore, unlike the two qubit case, a generic

state of three qubits cannot be cast positive or symmetric [18]. We therefore focus on

a subset of three qubit symmetric states that include highly entangled states. For this

consider the following three MPs

|φ1〉= |0〉 , |φ2,3〉= cθ |0〉 ± i sθ |1〉 , (3.7)

with the parametrisation θ ∈ [0,π]. Starting out with all MPs on the north pole (θ = 0),

two of the MPs are moved southwards as a complex conjugate pair until they reach

2The definition EG = 1 − |〈ψ|Λ〉|2 makes the relationship between the spherical distance and the
entanglement explicitly clear: With an angle 2θ between the two MPs, it follows that EG = sin2 θ [116].
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Figure 3.3: The diagram shows how the values of Eg and the location of the positive
CPP change as the MP distribution of (3.7) is modified. The CPP remains on the north
pole until the moving MPs have reached a latitude slightly below the equator, as seen
in the Majorana representation (c). From that point onwards the CPP rapidly moves
southwards and reaches the equator at the GHZ state (d). After this, the CPP and Eg
undergo only small changes until the W state (e) is reached. Plots of the spherical
amplitude function g2 for the five marked states are shown on top of their Majorana
representations. The values of G2 are G2

a = 1, G2
b =

3
4
, G2

c =
4
7
, G2

d =
1
2

and G2
e =

4
9
, and

they give the radii of the dashed concentric circles.
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the south pole (θ = π). The change of the CPPs and the entanglement is studied as a

function of θ . From Equation (1.19) it is found that the MPs give rise to the state

|ψs(θ)〉=

p
3c2
θ |S0〉+ s2

θ |S2〉
p

3c4
θ
+ s4

θ

. (3.8)

This state is positive, so it suffices to find a positive CPP. Determining the absolute

maximum of the spherical amplitude function (3.3) with the ansatz |σ〉 = cϕ |0〉+ sϕ |1〉
is straightforward, yielding the relationship between ϕ and θ :

c2
ϕ =

s2
θ

6s2
θ
− 3

. (3.9)

The codomain of the left-hand side is [0,1], but the right-hand side lies outside this

range for θ < arccos(−1
5
). For these values |σ〉= |0〉 is the only CPP. Figure 3.3 shows

the change of ϕ with θ . It is seen that from θ = arccos(−1
5
) onwards the CPP abruptly

leaves the north pole and moves towards the south pole along the positive half-circle.

This behaviour can be explained with the shape of the spherical amplitude function. As

seen in Figure 3.3(c), the function g2 is very flat around the north pole which facilitates

fast changes in the position of the global maximum. From Equation (3.8) and (3.9)

the GM can be calculated and its graph is displayed in Figure 3.3. It is found that Eg is

monotonously increasing, which is in accordance with the results of [157]. Interestingly,

the entanglement reaches a saddle point at the GHZ state (θ = 2π
3

) before it peaks at

the W state (θ = π).

3.1.3 Totally invariant states and additivity

Quantum states that are the stationary points of an energy functional regardless of the

parameter values of the underlying system are called inert states. The inert states of

spin- j systems have been fully characterised by their MPs: A state is inert iff its MP

distribution is invariant under a subgroup of the rotation group SO(3) acting on the

Majorana sphere, but any small variation of the MPs (excluding the joint rotations (1.20))

results in a change of the symmetry group [105]. Because of the isomorphism between

the states of a spin- j particle and the symmetric states of 2 j qubits, this definition can

be extended to symmetric n qubit states. To avoid confusion, the physically motivated

term “inert” is replaced with “totally invariant” [85]. Regardless of the underlying

physical system, an MP distribution is thus called totally invariant if it is invariant under

a subgroup of SO(3), but any small variation of the MPs changes the subgroup.

Examples of totally invariant states are the Platonic states, which are defined as

the quantum states whose MPs lie at the vertices of the Platonic solids, the five highly

symmetric convex polyhedra whose edges, vertices and angles are all congruent. The
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tetrahedron state was already introduced as a four qubit symmetric state in Section 3.1.1.

Treated as a state of a spin-2 system, the tetrahedron state represents an inert state.

Taking LU equivalence into account, the subgroups of SO(3) and their symmetry

implications can be listed as follows:

• special orthogonal group SO(2): continuous Z-axis rotational symmetry

• orthogonal group O(2): continuous Z-axis rotational symmetry & X -Y-plane symmetry

• cyclic group Cm: discrete Z-axis rotational symmetry

• dihedral group Dm: discrete Z-axis rotational symmetry & X -Y-plane symmetry

• tetrahedral group T : symmetry group of tetrahedron

• octahedral group O: symmetry group of octahedron and cube

• icosahedral group Y : symmetry group of icosahedron and dodecahedron

The continuous symmetries O(2) and SO(2) can be fulfilled only by Dicke states. The

Dicke state |Sn,k〉 is a totally invariant state of SO(2) for all n and k, with the exception

of k = n
2

for even n. This is because the equally balanced states |Sn, n
2
〉 are the totally

invariant states of O(2). There are no totally invariant states for the cyclic group Cm, but

the remaining groups Dm, T , O and Y all give rise to a multitude of totally invariant

states [85, 105].

Markham [85] recently found that all totally invariant symmetric n qubit states

satisfy Equation (2.7), i.e. their amount of entanglement is the same for the three

distance-like entanglement measures:

Lemma 10. Let ρ = |ψs〉〈ψs| be a totally invariant symmetric n qubit pure state. Then

Eg(ρ) = ER(ρ) = ERob(ρ) . (3.10)

Zhu et al. [135] showed that positive states are strongly additive under the GM:

Lemma 11. Let ρ be a positive state, pure or mixed. Then ρ is strongly additive under Eg,

i.e. the following holds for all states σ:

Eg(ρ⊗σ) = Eg(ρ) + Eg(σ) . (3.11)

In general the three measures Eg, ER and ERob are not additive in the multipartite

scenario (cf. [132, 158]), and for the GM it was shown that beyond a certain amount of

entanglement (which is present in almost all states) states can never be strongly additive

[135]. Lemma 11 is not in conflict with this, since we already argued at the end of

Section 2.3 that positive states are in general considerably less entangled than generic

states. Chen et al. [110] found that symmetric states whose MPs are all distributed
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within some half sphere are additive with respect to the GM. In particular, this implies

the additivity of all two and three qubit symmetric states. For larger n, however, it is clear

from the Majorana representation and the spherical amplitude function that states with

such an imbalance in their MP distribution cannot have much geometric entanglement.

We can therefore conclude that additivity of states under the GM is a signature of low

entanglement.

What can be said about the additivity of symmetric states under the relative entropy

of entanglement ER and the logarithmic robustness of entanglement ERob? We will

combine Lemma 10 and Lemma 11 to show that many symmetric states of interest are

additive under ER and ERob in a sense of additivity that is stronger than regular additivity,

but weaker than strong additivity. For this we will use the quantity eEg = Eg− S which

was introduced in Section 2.1 and which coincides with Eg for pure states.

Theorem 12. Let ρ = |ψs〉〈ψs| be a pure symmetric n qubit state that is positive and

totally invariant. Then ρ is strongly additive under Eg and additive under ER and ERob.

Furthermore, for arbitrary states σ the following holds

eEg(σ) = ER(σ) =⇒ ER(ρ⊗σ) = ER(ρ) + ER(σ) , (3.12a)

eEg(σ) = ERob(σ) =⇒ ERob(ρ⊗σ) = ERob(ρ) + ERob(σ) . (3.12b)

Proof. It is known [66] or obvious that the three measures Eg, ER and ERob are subad-

ditive, i.e. E(ρ⊗σ)≤ E(ρ) + E(σ) for arbitrary ρ and σ, and that the von Neumann

entropy is strongly additive, i.e. S(ρ⊗σ) = S(ρ) + S(σ) for arbitrary ρ and σ. Now let

ρ be a pure symmetric n qubit state that is positive and totally invariant, and let σ be an

arbitrary state for which eEg(σ) = Ex(σ) holds, where Ex can be either ER or ERob. Then

Eg(ρ) + eEg(σ)
(3.11)
= eEg(ρ⊗σ)

(2.6)
≤ Ex(ρ⊗σ)≤ Ex(ρ) + Ex(σ)

(3.10)
= Eg(ρ) + eEg(σ) ,

which implies that Ex(ρ⊗σ) = Ex(ρ) + Ex(σ). The strong additivity of ρ under Eg is

clear from Lemma 11, and the additivity of ρ under ER or ERob follows as a special case

from the previous equation by setting σ := ρ.

The main result of this theorem is that a considerable amount of symmetric states

is additive under ER and ERob. Trivial examples are the Dicke states |Sn,k〉 and the GHZ

states 1p
2
(|Sn,0〉+ |Sn,n〉), which are positive and totally invariant, thus satisfying the

conditions of Theorem 12. In Chapter 4 it will be seen that for systems with a low

number of qubits many highly or maximally entangled symmetric states are positive as

well as totally invariant. This automatically results in the interesting property that these

states are additive and equivalent under the three distance-like entanglement measures.

The strong additivity under ER and ERob could not be proven, but the statements

(3.12a) and (3.12b) represent a considerable extension of the regular additivity. The

53



Chapter 3. Majorana Representation and Geometric Entanglement

necessary condition for this is automatically fulfilled by states that fulfil Equation (2.7),

in particular stabiliser states, Dicke states, permutation-antisymmetric basis states [83,

134, 143] and totally invariant symmetric states [85]. In this way we were able to extend

the set of symmetric states that is known to be additive under ER and ERob. It still remains

an open question, however, whether arbitrary symmetric states are additive or even

strongly additive under the entanglement measures discussed here. This is one of the

open questions put forward in the conclusion of [135], and to date no counterexamples

for the additivity of symmetric states are known.

Finally, we remark that Theorem 12 could also have been formulated by omitting

the requirement of positivity, and instead requiring that the MPs of ρ are all confined

to some half-sphere on the Majorana sphere, including the bordering great circle. This

property would then guarantee the additivity of ρ under GM [110] required to prove all

implications of the theorem (except the strong additivity under GM). However, it is clear

that the only totally invariant symmetric states whose MPs occupy at most half of the

Majorana sphere are the Dicke states and the GHZ states. Since these states are positive,

they are already accounted for in the given formulation of Theorem 12, thus making the

alternative formulation redundant.

3.2 Extremal point distributions

For symmetric states the injective tensor norm appearing in the definition (2.1) of the

GM can be concisely expressed in terms of the MPs and one CPS |Λ〉= |σ〉⊗n:

|〈ψs|Λ〉|=
n!
p

K

n
∏

i=1

|〈φi|σ〉| . (3.13)

This is precisely the global maximum of the spherical amplitude function (3.3). Therefore,

to determine the CPP of a given symmetric state, the absolute value of a product of scalar

products has to be maximised. From a geometrical point of view, the factors 〈φi|σ〉 are

the angles between the corresponding Bloch vectors on the Majorana sphere, and thus

the determination of the CPP can be viewed as an optimisation problem for a product of

geometrical angles.

From a comparison with the min-max problem (2.4) of the general case it is clear

that the task of finding the maximally entangled symmetric states can be concisely

formulated as the geometrical optimisation problem

min
{|φi〉}

1
p

K

 

max
|σ〉

n
∏

i=1

|〈φi|σ〉|

!

. (3.14)

In other words, the maximum value of the spherical amplitude function must be as small
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as possible. This Majorana problem bears all the properties of an optimisation problem

on the surface of a sphere in R3. These kinds of problems deal with arrangements of

a finite number of points on a sphere so that an extremal property is fulfilled [159].

There are infinite possibilities to define such optimisation problems, but two particularly

well-known problems that have been extensively studied in the past are the following:

Tóth’s problem, also known as Fejes’ problem and Tammes’ problem, asks how n

points have to be distributed on the unit sphere so that the minimum distance of all pairs

of points becomes maximal [159]. This problem was first raised by the biologist Tammes

in 1930 while trying to explain the observed distribution of pores on pollen grains [160].

Recasting the n points as unit vectors ri ∈ R3, the following cost function needs to be

maximised:

fTóth(r1,r2, . . . ,rn) =min
i< j
|ri − r j| . (3.15)

The point configurations that solve this problem are called spherical codes or sphere

packings [161]. The latter term refers to the equivalent problem of placing n identical

spheres of maximal possible radius around a central unit sphere, touching the unit sphere

at the points that solve Tóth’s problem.

Thomson’s problem, also known as Coulomb problem, asks how n point charges

which are confined to the surface of a sphere can be distributed so that the potential

energy is minimised. The charges interact with each other only through Coulomb’s

inverse square law. Devised by J. J. Thomson in 1904, this problem raises the question

about the stable patterns of up to 100 electrons on a spherical surface [162]. Its cost

function is given by the Coulomb energy and needs to be minimised.

fThomson(r1,r2, . . . ,rn) =
∑

i< j

1

|ri − r j|
. (3.16)

The original motivation for Thomson’s problem was to determine the stable electron

distribution of atoms in the plum pudding model. While this model has been superseded

by modern quantum theory, there is a wide array of novel applications for Thomson’s

problem or its generalisation to similar interaction potentials. Among these are multi-

electron bubbles in liquid 4He [163, 164], surface ordering of liquid metal drops confined

in Paul traps [165], the shell structure of spherical viruses [166], “colloidosomes” for

encapsulating biochemically active substances [167], fullerene patterns of carbon atoms

[168] and the Abrikosov lattice of vortices in superconducting metal shells [169].

It should be noted that, to some extent, the definition of Thomson’s problem runs

contrary to classical electrical theory, because Earnshaw’s theorem rules out the existence

of stable equilibrium configurations of a collection of discrete charges under the influence

of the electric force alone [170]. For example, if one were to place n negative charges

−q around a central positive charge +nq, then this configuration would quickly collapse
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instead of assuming a solution of Thomson’s problem. This explains why the definition

of Thomson’s problem requires the rather mathematical assumption of the point charges

being confined to the surface of a sphere. The existence of physical appearances of

stable electron patterns in liquid Helium [163, 164] can be readily explained by the

surface tension of the macroscopic drops which exhibit a positive mirror charge on their

surface, in conjunction with the quantum-mechanical Pauli principle [163]. The latter

prevents the electrons from falling back into the liquid Helium, thereby turning them

into a 2D electron gas described by a 1D hydrogenic spectrum [171]. In this sense, the

macroscopic system provides the electrons with a restriction to a spherical surface, akin

to the mathematical definition of Thomson’s problem.

The definitions of Tóth’s problem and Thomson’s problem are clearly different from

each other, but they share the same solutions for n = 2− 6,12. Leech [172] showed

that for these numbers the equilibrium distributions of Thomson’s problem are invariant

under replacing Coulomb’s r−2 law by the limiting form r−l , l →∞, and this “infinitely

repulsive interaction” gives rise to the solutions of Tóth’s problem. Exact solutions to

Tóth’s problem are known for nTo = 2− 12,24, and therefore the exact solutions to

Thomson’s problem for nTh = 2− 6, 12 are automatically derived this way [173]. Exact

solutions to Thomson’s problem are furthermore known for nTh = 7,8, but even for

numbers as small as 9 and 11, exact solutions remain elusive [159]. With the help of

numerics, however, putative and approximate solutions have been found for a wide

range of n in both problems [174–177].

The solutions to n= 2, 3 are trivial and given by the dipole and equilateral triangle,

respectively. For n= 4, 6, 8, 12, 20 the vertices of the highly symmetric Platonic solids –

the five regular convex polyhedra whose edges, vertices and angles are all congruent –

are natural candidates, but, as seen in Figure 3.4, they are the actual solutions only for

n = 4, 6, 12 [178]. For n = 8, 20 the solutions are not Platonic solids and are different for

the two problems. The solutions for n = 4− 12 will be covered in more detail alongside

the Majorana problem in Chapter 4.

The restriction of the points to the surface of the unit sphere, as opposed to the

interior of the sphere, is decisive for the solutions of both problems. In Tóth’s problem it

is clear that for larger n the nearest-neighbour distances would be decreased by placing

some points inside the sphere. For Thomson’s problem this is not as obvious, and several

decades passed before it was realised that only for n< 12 the electrons will all remain

on the surface if given the opportunity to occupy the interior of the sphere [179, 180].

Both the classical problems and the Majorana problem are isotropic in the sense that

all directions in space are equal, and this makes it reasonable to expect that the solutions

exhibit certain symmetric features. For example, one could expect that the centre of mass

of the n points always coincides with the sphere’s middle point. This is, however, not

the case, as the solution to Tóth’s problem for n= 7 [173] or the solution to Thomson’s
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(a) (b) (c) (d) (e)

(f) (g)

Figure 3.4: Displayed from left to right in the top row are the five Platonic solids, the
tetrahedron, octahedron, cube, icosahedron and dodecahedron. Their number of vertices
is n = 4,6,8,12 and 20. The solutions to Tóth’s and Thomson’s problem are given by
the Platonic solids only for n= 4,6 and 12. For Tóth’s problem the solutions for n= 8
and n = 20 are shown in (f) and (g), respectively. The polyhedron in (f) is the cubic
antiprism, which is obtained from the regular cube by rotating one face by 45◦, followed
by a slight compression along the direction perpendicular to the rotated face in order to
return all edges to equal length. The polyhedron shown in (g) consists of 30 triangles
and 3 rhombuses.

problem for n= 11 shows [173, 174]. Furthermore, the solutions need not be unique.

For Tóth’s problem, the first incident of this is n = 5 [181], and for Thomson’s problem at

n= 15 [173] and n= 16 [174]. These aspects show that it is, in general, hard to make

statements about the form of the “most spread out” point distributions on the sphere.

The Majorana problem (3.14) is considered to be equally tricky, especially because the

normalisation factor K depends on the MPs.

The Majorana problem shares a similarity with Tóth’s problem in that it is formulated

as a min-max-problem, but a crucial difference is that the positions of all n points

jointly influence the value of the cost function. In Tóth’s problem the cost function

only depends on the smallest two-point distance, ignoring all other distances. The

prefactor K = K({|φi〉}i=1...n) depends on the relative positions of the MPs, and from

Equation (1.19) it is seen that K increases with decreasing angles between the individual

Majorana points. Therefore, while the factor in brackets in Equation (3.14) assumes

small values for highly spread out MP distributions, the outer factor 1p
K

will be large.

Conversely, when MPs move together, the factor in brackets increases while the outer

factor decreases. This makes the solutions of the Majorana problem highly nontrivial,

and the solutions need not be maximally spread out over the sphere in a conventional

sense, as the two coinciding MPs of the three qubit |W〉 state demonstrate.
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3.3 Analytic results about MPs and CPPs

This section is mainly concerned with the interdependence between the mathematical

form of n qubit symmetric states and their Majorana representation. For example, it is

examined how the MPs and CPPs are distributed for states whose coefficients are real,

positive or vanishing. In some of these cases the MPs and CPPs form distinct patterns on

the Majorana sphere that can be described by symmetries. In this context, care has to be

taken as to the meaning of the word “symmetric”: Permutation-symmetric states were

introduced in Section 1.3, and such states can be visualised on the Majorana sphere.

Their MP distributions may or may not exhibit certain geometric symmetries in R3, such

as rotational and reflective symmetries. For example, the GHZ, W and tetrahedron

state of Figure 3.1 and Figure 3.2 all have a discrete or continuous rotational symmetry

around the Z-axis, as well as several reflective symmetries along planes running through

the origin of the sphere, e.g. the X -Z-plane.

3.3.1 Generalised Majorana representation

In the following a generalised version of the Majorana representation (1.19) will be

derived which will prove helpful e.g. for the analysis of real and positive states. The

property of a symmetric state to be real or positive can often be inferred from its MP

distribution. As an example, the tetrahedron state |Ψ4〉=
Æ

1
3
|S0〉+

Æ

2
3
|S3〉 is positive,

even though its MPs are not all positive. The first MP |α〉 := |φ1〉 = |0〉 is a positive

qubit state, and a permutation of the remaining MPs according to Equation (1.19)

yields a positive GHZ-type three qubit symmetric state |β〉 :=
∑

perm |φ2〉 |φ3〉 |φ4〉 =
2p
3
|000〉+ 4

p
2p
3
|111〉. The tetrahedron state can be reconstructed, up to normalisation,

from all the permutations of |α〉 and |β〉 over the bipartitions of the physical qubits into

two subsets with one and three qubits, respectively:

|Ψ4〉 ∝ |α〉1 |β〉234+ |α〉2 |β〉134+ |α〉3 |β〉124+ |α〉4 |β〉123 . (3.17)

In the following this idea is formalised to arbitrary states and arbitrary partitions. It

should be remembered that the MPs representing a symmetric n qubit state are abstract

entities rather than physical parts of the underlying system, and therefore partitions

of the set of MPs are fundamentally different from partitions of the system’s qubits.

Partitions of the MPs will be denoted by S = {S1, . . . ,Sk} with Si = {|φi1〉 , . . . , |φimi
〉}

for i = 1, . . . , k, and
∑k

i=1 mi = n. Partitions of the physical qubits of the system will be

denoted by P = {P1, . . . ,Pl} with Pi = {i1, . . . , iri
} for i = 1, . . . , l, and

∑l
i=1 ri = n. The

notation |φ〉ix
is used to describe a single qubit state of particle ix , and |ψ〉Pi

is used to

describe an ri-qubit state over the particles i1, i2, . . . , iri
.
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Theorem 13. Let |ψs〉 be a symmetric state of n qubits with MPs |φ1〉 , . . . , |φn〉, and let

S = {S1, . . . ,Sk} be a partition of the MPs. |ψs〉 can then be written, up to a prefactor, as

|ψs〉 ∝
{P j

1,...,P j
k}

∑

partitions

|ψS1
〉P j

1
⊗ · · · ⊗ |ψSk

〉P j
k

, (3.18)

where the mi-qubit symmetric states |ψSi
〉 :=

∑

perm |φi1〉 · · · |φimi
〉 are composed from

Si = {|φi1〉 , . . . , |φimi
〉} via the Majorana representation (1.19), and where the sum runs

over all the partitions P j = {P j
1, . . . ,P j

k} that satisfy |P j
i |= |Si| for all i.

Proof. For simplicity, we only consider a bipartition S = {S1,S2} of the MPs, with

S1 = {|φ1〉 , . . . , |φm〉} and S2 = {|φm+1〉 , . . . , |φn〉}. The general case directly follows

from this by mathematical induction. The bipartitions of the system’s qubits are denoted

by P j = {P j
1,P j

2}, j = 1, . . . ,
�n

m

�

, with P j
1 = { j1, . . . , jm} and P j

2 = { jm+1, . . . , jn}. Note

that the subsystems in a product state can be shuffled, e.g. |α〉1 |β〉2 |γ〉3 ≡ |β〉2 |γ〉3 |α〉1.

|ψs〉 ∝
{1,...,n}
∑

perm

|φP(1)〉1 · · · |φP(n)〉n =
{1,...,n}
∑

perm

|φ1〉P(1) · · · |φn〉P(n)

=
{1,...,n}
∑

perm

�

|φ1〉P(1) · · · |φm〉P(m)
��

|φm+1〉P(m+1) · · · |φn〉P(n)
�

=
{P j

1,P j
2}

∑

bipartitions

� { j1,..., jm}
∑

perm

|φ1〉P( j1) · · · |φm〉P( jm)

�� { jm+1,..., jn}
∑

perm

|φm+1〉P( jm+1)
· · · |φn〉P( jn)

�

=
{P j

1,P j
2}

∑

bipartitions

|ψS1
〉P j

1
|ψS2
〉P j

2
.

From the identity n!=
�n

m

�

m!(n−m)! it can be verified that the second and third line

contain the same number of summands.

Equation (3.18) can be understood as a generalised Majorana representation for

arbitrary partitions, which contains the regular Majorana representation as the special

case S = {S1, . . . ,Sn}, with Si = {|φi〉} for all i.

The following corollary asserts that the number of MPs lying on either pole of

the Majorana sphere is immediately given by the smallest and largest nonvanishing

coefficient of a symmetric state.

Corollary 14. Let |ψs〉=
n
∑

m=0
am |Sm〉 be a symmetric state of n qubits.

• l = min{m| am 6= 0} ⇐⇒ l MPs lie on the south pole |1〉.

• k =max{m| am 6= 0} ⇐⇒ n− k MPs lie on the north pole |0〉.
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Proof. Assume that l MPs of |ψs〉 lie on the south pole. From Theorem 13 it follows

that one can write |ψs〉 ∝
∑

partitions |1〉
⊗ l |ϕ〉, where |ϕ〉 =

∑n−l
i=0 bi |Si〉 is an (n− l)-

qubit symmetric state. Since the MPs of |ϕ〉 all have nonvanishing |0〉-components,

it follows that b0 6= 0, and therefore min{m| am 6= 0} = l. The converse statement3

follows by assuming that the number of MPs lying on the south pole is r 6= l, leading to

l 6= r =min{m| am 6= 0}.
The statement about MPs on the north pole follows by the same arguments.

This corollary is easily verified by examples such as |GHZ3〉=
1p
2
(|S0〉+ |S3〉) which

has no MPs on the poles, or |W3〉= |S1〉 which has two MPs on the north pole and one

MP on the south pole.

Rotational symmetries appear frequently in the Majorana representations of sym-

metric states, and by means of the LU-equivalence mediated by the symmetric unitary

operations U s = U ⊗ · · ·⊗U in Equation (1.20) and (1.21), it suffices to investigate only

rotations around the Z-axis of the Majorana sphere. These are of a particularly simple

mathematical form, with the single-qubit rotation Rz of (1.2c) generalising to Z-axis ro-

tations of a symmetric n qubit state as Rs
z := R⊗n

z . The effect of Rs
z on |ψs〉 =

∑n
k=0 ak |Sk〉

is then

Rs
z(ϕ) |ψ

s〉=
n
∑

k=0

akeikϕ |Sk〉 . (3.19)

|ψs〉 is rotationally symmetric around the Z-axis iff Rs
z(ϕ) |ψ

s〉 ∝ |ψs〉 for some 0< ϕ <

2π. In the case of a discrete rotational symmetry the possible rotational angles are (up

to multiples) restricted to ϕ = 2π
m

, with m ∈ N, 1 < m ≤ n. From Equation (3.19) it is

then easy to determine the necessary and sufficient conditions for a rotational Z-axis

symmetry of the MPs.

Lemma 15. The MPs of a symmetric n qubit state |ψs〉 have a rotational Z-axis symmetry

with rotational angle ϕ = 2π
m

(1< m≤ n) iff

∃0≤ l < m : |ψs〉=
b n−l

m c
∑

j=0

al+ jm |Sl+ jm〉 . (3.20)

Proof. Assume that |ψs〉 can be written in the above form. Then

Rs
z

�2π
m

�

|ψs〉=
∑

j

al+ jm exp
�

i2π
m
(l + jm)

�

|Sl+ jm〉

=
∑

j

al+ jm exp
�

i2πl
m

�

|Sl+ jm〉= eiδ |ψs〉 ,

3In terms of logic the statement “l =min{m|am 6= 0} =⇒ l MPs are |1〉” is equivalent to the statement
“r 6= l MPs are |1〉 =⇒ l 6=min{m|am 6= 0}”.
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with δ = 2πl
m

, and therefore |ψs〉 is rotationally symmetric around the Z-axis.

Conversely, if |ψs〉 =
∑n

k=0 ak |Sk〉 is rotationally symmetric, then Rs
z(

2π
m
) |ψs〉 =

∑n
k=0 ak exp

� i2πk
m

�

|Sk〉 = eiδ |ψs〉 for some δ ∈ R. For this to hold, the value of

exp
� i2πk

m

�

must be the same for all k with ak 6= 0, and because of this, the k can

be cast as k j = l + jm with integers 0≤ l < m and 0< j < b n−l
m
c.

In other words, a sufficient number of coefficients need to vanish, and the spacings

between nonvanishing coefficients must be multiples of m. For example, a symmetric

state of the form |ψs〉 = a3 |S3〉+ a7 |S7〉+ a15 |S15〉 is rotationally symmetric with ϕ = π
2

,

because the spacings between nonvanishing coefficients are multiples of 4.

We remark that Lemma 15 could also have been proved with the generalised Ma-

jorana representation of Theorem 13. The idea for this is that the discrete rotational

symmetry around the Z-axis necessitates that the MPs that do not lie on the poles must

be equidistantly spaced along horizontal circles. Each such circle of MPs then repre-

sents a GHZ-type state |ψSi
〉= αi |00 . . . 0〉+ βi |11 . . . 1〉. Combining all these |ψSi

〉 via

Equation (3.18) then gives rise to a state of the form (3.20).

3.3.2 Real symmetric states

For symmetric states with real coefficients the following result is immediately clear from

Equation (3.18).

Corollary 16. If the |ψSi
〉, i = 1, . . . , k of the generalised Majorana representation (3.18)

are all real, then |ψs〉 is also real.

Next it is shown that the MPs and CPPs of real states exhibit a reflection symmetry

with respect to the X -Z-plane which cuts the Majorana sphere in half. In mathematical

terms, the reflection of a Bloch vector |φ〉= cθ |0〉+ eiϕsθ |1〉 along the X -Z-plane is the

complex conjugate vector |φ〉∗ = cθ |0〉+ e−iϕsθ |1〉.

Lemma 17. Let |ψs〉 be a symmetric state of n qubits. |ψs〉 is real iff all its MPs are

reflective symmetric with respect to the X -Z-plane of the Majorana sphere.

Proof. (⇒) Let |ψs〉 be a real state. Then |ψs〉= |ψs〉∗, and since Majorana representa-

tions are unique up to a global phase, |ψs〉 has the same MPs as |ψs〉∗. Therefore the

complex conjugate |φi〉
∗ of each MP |φi〉 is also an MP.

(⇐) Let the MPs of |ψs〉 be symmetric with respect to the X -Z-plane. Then for

every non-real MP |φi〉 = cθi
|0〉+ eiϕi sθi

|1〉 its complex conjugate |φi〉
∗ is also an MP.

Define a partition S = {S1, . . . ,Sk} of the MPs where S1 contains all the real MPs and

the remaining Si each contain a complex conjugate pair of MPs: Si = {|φi〉 , |φi〉
∗}. The

two qubit states |ψSi
〉 = |φi〉 |φi〉

∗+ |φi〉
∗ |φi〉 ∝ c2

θi
|S0〉+

p
2cθi

sθi
cosϕi |S1〉+ s2

θi
|S2〉

are all real, and from Corollary 16 it follows that |ψs〉 is real.
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Corollary 18. Let |ψs〉 be a symmetric state of n qubits. If |ψs〉 is real, then all its CPPs

are reflective symmetric with respect to the X -Z-plane of the Majorana sphere.

Proof. Consider the complex conjugate of the optimisation problem (3.14). It follows

from Lemma 17 that for any CPP |σ〉 the complex conjugate |σ〉∗ is also a CPP.

3.3.3 Positive symmetric states

Particularly strong results can be obtained for the Majorana representations of symmetric

states with positive coefficients. First, we restate Corollary 16 for the positive case:

Corollary 19. If the |ψSi
〉, i = 1, . . . , k of the generalised Majorana representation (3.18)

are all positive, then |ψs〉 is also positive.

In the remainder of this section it will be shown that the Majorana representations

of positive symmetric states are of two basic types. The first type exhibits a rotational

Z-axis symmetry which forces the MPs and CPPs into predictable and easily analysable

patterns on the Majorana sphere. In particular, an upper bound for the number of CPPs

of such states can be derived. The other type of Majorana representation does not exhibit

a Z-axis symmetry, and its CPPs are all restricted to the half-circle of positive Bloch

vectors.

The only states with a continuous rotational Z-axis symmetry are the Dicke states,

i.e. the states whose MPs all lie on the poles. This trivial case will not be considered

in the following, and instead it is assumed that at least one MP does not lie on a pole.

Rotational Z-axis symmetries must then be discrete, with a minimal rotational angle

ϕ = 2π
m

, m ∈ N and 1 < m ≤ n. From this symmetry and from Lemma 17 the allowed

distribution patterns of the MPs can be fully characterised: All MPs that do not lie on the

poles must be equidistantly spread along horizontal circles with neighbouring spherical

distances of ϕ = 2π
m

. The m MPs of such a circle represent an m qubit GHZ-type state

|ψS〉= α |S0〉+ β |Sm〉 by means of the Majorana representation (1.19).

If |ψS〉 is real (denoted as |ψ±S 〉), then Lemma 17 implies that the complex conjugate

of each MP is also an MP of that circle. A horizontal circle of MPs with this property is

shown in Figure 3.5.

If |ψS〉 is not real, then Lemma 17 implies that for some MPs the complex conjugate

is not part of this circle. For the composite state |ψs〉 to be real, this necessitates that the

MPs of the “complex conjugate circle” |ψS〉
∗ are also part of |ψs〉. As shown in Figure 3.5,

this gives rise to two intertwined horizontal circles |ψ+ϑS 〉 = α |S0〉+ eimϑβ |Sm〉 and

|ψ−ϑS 〉 = α |S0〉+ e−imϑβ |Sm〉, where the azimuthal angle of each MP is shifted by an

angle ±ϑ from the position it would occupy for the corresponding non-phased state

|ψ+S 〉= α |S0〉+ β |Sm〉 with α,β ≥ 0.

All horizontal circles of MPs present in a real symmetric state with Z-axis rotational

symmetry can be decomposed into these two principal types, and from Equation (3.18)
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|ψ+S 〉

|ψ+ϑS 〉

|ψ−ϑS 〉

ϕ

ϑ ϑ

Figure 3.5: An exemplary MP distribution of a positive symmetric 18 qubit state with a
Z-axis rotational symmetry is shown. The minimal rotational angle is ϕ = 2π

5
. Two MPs

lie on the north pole, one on the south pole, five on a single basic circle and 10 on two
intertwined circles. The circles of MPs which give rise to the five qubit GHZ-type states
|ψ+S 〉, |ψ

+ϑ
S 〉, and |ψ−ϑS 〉 are coloured gray, black and white, respectively.

it is clear that the resulting state |ψs〉 is real, rotationally symmetric and that the degrees

of freedom present in the horizontal circles of MPs manifest themselves in the freedoms

of the nonvanishing coefficients of |ψs〉. The additional requirement of positivity for |ψs〉
merely restricts the basic type of MP circle to positive states |ψ+S 〉, and the intertwined

type to those with an angle ϑ ≤ π
2m

.

The following lemma asserts strong restrictions on the possible locations of the CPPs

of positive symmetric states with or without Z-axis rotational symmetries.

Lemma 20. Let |ψs〉 be a positive symmetric n qubit state, excluding the Dicke states.

(a) If |ψs〉 has a Z-axis rotational symmetry with minimal rotational angle ϕ = 2π
m

, then

all its CPPs |σ(θ ,ϕ)〉 = cθ |0〉+ eiϕsθ |1〉 are restricted to the m azimuthal angles

ϕr =
2πr
m

with r ∈ Z. Furthermore, if |σ(θ ,ϕr)〉 is a CPP for some r, then it is also

a CPP for all other values of r.

(b) If |ψs〉 has no Z-axis rotational symmetry, then all its CPPs are positive.

Proof. The proof runs similar to the one of Lemma 3, where the existence of at least one

positive CPP was established. We use the notation |ψs〉 =
∑

k ak |Sk〉 with ak ≥ 0, and

|λ〉= |σ〉⊗n.

Case (a): Consider a non-positive CPP |σ〉 = cθ |0〉+ eiκsθ |1〉 with κ = 2πs
m

, s ∈ R,

and define |λ+〉 := |σ+〉⊗n =
�

cθ |0〉+ sθ |1〉
�⊗n. Then

|〈ψs|λ〉|=
�

�

�

�

∑

k

eikκakcn−k
θ sk

θ

Æ

�n
k

�

�

�

�

�

≤
∑

k

akcn−k
θ sk

θ

Æ

�n
k

�

= |〈ψs|λ+〉| .

If this inequality is strict, then |σ〉 is not a CPP. Since this would contradict the initial as-

sumption, we must have an equality. Then for any two indices ki and k j of nonvanishing
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coefficients aki
and ak j

the following must hold: eikiκ = eik jκ. This can be reformulated

as ki s mod m= k j s, or equivalently

(ki − k j) s mod m= 0 . (3.21)

Because ϕ = 2π
m

is the minimal rotational angle, m is the largest integer that satisfies

Equation (3.20), and thus there exist ki and k j with aki
, ak j
6= 0 s.t. ki − k j = m. From

this and from Equation (3.21) it follows that s ∈ Z. Therefore all CPPs are of the form

|σ(θ ,ϕr)〉 with r ∈ Z, and if |σ(θ ,ϕr)〉 is a CPP for some r, then it is also a CPP for all

other r ∈ Z.
Case (b): Considering a CPP |σ〉 = cθ |0〉+ eiρsθ |1〉 with ρ = 2πr and r ∈ R, we

need to show that r ∈ Z. Defining |σ+〉 = cθ |0〉+ sθ |1〉, and using the same line of

argumentation as above, the equation eikiρ = eik jρ must hold for any pair of nonvanishing

aki
and ak j

. This is equivalent to

(ki − k j) r mod 1= 0 , (3.22)

or (ki − k j) r ∈ Z, in particular r ∈ Q. If there exist indices ki and k j of nonvanishing

coefficients s.t. ki − k j = 1, then r ∈ Z, as desired. Otherwise consider r = x
y

with

coprime x , y ∈ N, x < y. Because |ψs〉 is not rotationally symmetric, the negation of

Lemma 15 yields that, for any two ki and k j (aki
, ak j
6= 0) with ki − k j = α > 1, there

must exist a different pair kp and kq (akp
, akq
6= 0) with kp − kq = β > 1 s.t. α is not a

multiple of β and vice versa. From r = x
y

and Equation (3.22), it follows that y = α as

well as y = β . This is a contradiction, so r ∈ Z.

A trivial consequence of the previous theorem is the following statement that consid-

erably simplifies the determination of the geometric entanglement.

Corollary 21. Every positive symmetric state has at least one positive symmetric CPP.

With the confinement of the CPPs to certain azimuthal angles, as described by

Lemma 20, it is possible to make the following statements about the number and

locations of the CPPs.

Theorem 22. The Majorana representation of every positive symmetric state |ψs〉 of n

qubits, excluding the Dicke states, belongs to one of the following three mutually exclusive

classes.

(a) |ψs〉 has a Z-axis rotational symmetry, with only the two poles as possible CPPs.

(b) |ψs〉 has a Z-axis rotational symmetry, and at least one CPP is non-positive.

(c) |ψs〉 has no Z-axis rotational symmetry, and all CPPs are positive.
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Regarding the states from class (b) and (c), the following assertions can be made about the

number of CPPs for n≥ 3:

(b) If both poles are occupied by at least one MP each, then there are at most 2n−4 CPPs,

else there are at most n CPPs.

(c) There are at most d n+2
2
e CPPs.

Proof. We start with the first part of the theorem. Case (c) has already been shown in

Lemma 20, so we only need to consider states |ψs〉 with a Z-axis rotational symmetry.

If all CPPs are either |0〉 or |1〉, then we have case (a), otherwise there is at least one

CPP |σ〉 which does not lie on a pole. If this |σ〉 is non-positive, we have case (b), and if

|σ〉 is positive, Lemma 20 states the existence of another, non-positive CPP, thus again

resulting in case (b). This concludes the first part of the proof.

Now consider the second part of the theorem. We start with case (b), i.e. positive

states that have a Z-axis rotational symmetry with minimal rotational angle ϕ = 2π
m

,

and 1 < m ≤ n. According to Equation (3.13), any CPP |σ〉 maximises the function
∏n

i=1|〈σ|φi〉|, and from Corollary 21 it follows that there must be at least one positive

CPP |σ〉 = cθ |0〉+ sθ |1〉. First we derive the maximum possible number of positive CPPs,

from which an upper bound for the total number of CPPs follows from Lemma 20.

For an MP distribution with k MPs on the north pole, l MPs on the south pole and

the remaining n− k− l MPs on horizontal circles, the function whose absolute value has

to be maximised is

f (θ) = 〈σ|0〉k 〈σ|1〉l
∏

r
h1(θr)

∏

s
h2(ϑs,θs) ,

where h1(θr) =
∏m

i=1 〈σ|φi(θr)〉 contains the factors contributed by a single circle

with m MPs at inclination θr , and h2(ϑs,θs) =
∏m

i=1 〈σ|φi(+ϑs,θs)〉 〈σ|φi(−ϑs,θs)〉
represents the factors contributed by two circles intertwined at azimuthal angles ±ϑs

with 2m MPs, and inclination θs. A simple calculation yields

h1(θr) = cm
θ cm
θr
+ sm

θ sm
θr

, h2(ϑs,θs) = c2m
θ c2m

θs
+ 2cos(mϑs)c

m
θ sm
θ cm
θs

sm
θs
+ s2m

θ s2m
θs

.

Thus f can be written in the form

f (θ) = ck
θ sl
θ

p
∑

i=0

aic
(p−i)m
θ

sim
θ =

p
∑

i=0

aic
k+(p−i)m
θ

sl+im
θ

,

where the ai are positive-valued coefficients, and p is the number of basic circles

(k + l + pm = n). The number of zeros of f ′(θ) in θ ∈ (0,π) gives a bound on the

number of positive CPPs. The form of f ′(θ) is qualitatively different for m = 2 and
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m> 2. With the substitution x = tan θ
2

the equation f ′(θ) = 0 for m= 2 becomes

a0l +

 

p
∑

i=1

bi x
2i

!

− apkx2p+2 = 0 ,

with bi = ai(l + 2i)− ai−1(k+ 2(p− i) + 2) ∈ R .

This is a real polynomial in x , with the first and last coefficient vanishing if no MPs lie on

the south pole (l = 0) and north pole (k = 0), respectively. Descartes’ rule of signs states

that the number of positive roots of a real polynomial is at most the number of sign

differences between consecutive nonzero coefficients, ordered by descending variable

exponent. From this and the fact that the codomain of x is R+, a calculation yields

that for m = 2 there are at most p− 1, p or p+ 1 extrema of f (θ) lying in θ ∈ (0,π),

depending on whether k and l are zero or not.

For m> 2, we obtain the analogous result

a0l +

� p
∑

i=1

−ci x
im−(m−2)+ di x

im

�

− apkx pm+2 = 0 ,

with ci = ai−1(k+ (p− i)m+m) ∈ R+ , and di = ai(l + im) ∈ R+ .

From Descartes’ rule of signs it is found that there exist 2p− 1, 2p or 2p+ 1 extrema of

f (θ) in θ ∈ (0,π), depending on whether k and l are zero or not.

With these results the maximum number of global maxima of f (θ ) can be determined.

Case differentiations have to be performed with regard to m = 2 or m > 2, whether k

and l are zero or not and whether p is even or odd. The non-positive CPPs are obtained

by considering the rotational Z-axis symmetry. For any positive CPP not lying on a pole,

there are m− 1 other, non-positive CPPs lying at the same inclination (cf. Lemma 20).

For m = 2, the maximum possible number of CPPs is n
2
+1 (n even) or n+1

2
(n odd). This

is significantly less than in the general case m > 2 where a lengthy calculation yields

2n− 4 as the maximum number of CPPs. Interestingly, this bound decreases to n if at

least one of the two poles is free of MPs.

Now consider case (c), i.e. states with no Z-axis rotational symmetry. All MPs of a

positive state must either lie on the positive half circle or form complex conjugate pairs

(cf. Lemma 17 and Theorem 13). From this the optimisation function follows as

f (θ) =
n
∑

i=0

aic
n−i
θ si

θ ,
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with real ai . Calculating f ′(θ) yields the condition for the extrema:

a1+

 

n−1
∑

i=1

bi x
i

!

− an−1 xn = 0 , with bi = ai+1(i+ 1)− ai−1(n− i+ 1) .

The maximum number of CPPs again follows from Descartes’ rule. All CPPs are now

restricted to the positive half circle (which includes the poles), yielding at most n+3
2

CPPs

for odd n and n+2
2

for even n.
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Chapter4
Maximally Entangled Symmetric

States

In this chapter we present the candidates for maximal symmetric en-

tanglement of up to 12 qubits with respect to the geometric measure of

entanglement. These solutions of the “Majorana problem” were found by a

combination of analytical and numerical methods, which are explained in

the first part of this chapter. With the help of the Majorana representation

the point distributions of the solutions can be compared to those of Tóth’s

and Thomson’s classical optimisation problems on the sphere. The chapter

concludes with a summary and discussion of the obtained results.

4.1 Methodology

Exact solutions for Tóth’s and Thomson’s problem of distributing n points over the surface

of a sphere are known only for a few values of n, with the highest one being n = 24.

Still, this compares favourably to the Majorana problem (3.14) for which no analytical

solution beyond n = 3 is known [151]. Due to the complexity of an analytical treatment

of this optimisation problem, it makes sense to employ the help of numerics. The

combination of analytical and numerical methods used for our search for the maximally

entangled symmetric states will be outlined in the following.

4.1.1 Positive states

For several reasons a particular emphasis has been placed on the search for the maximally

entangled symmetric state among positive states. Firstly, positive states are considerably

easier to investigate, because the number of parameters in the general form of the state is

reduced by half, and because the existence of at least one positive CPP (cf. Corollary 21)
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Chapter 4. Maximally Entangled Symmetric States

simplifies the determination of the geometric entanglement. In particular, it is sometimes

possible to analytically determine the exact form of the estimated maximally entangled

state by requiring that the values of the spherical amplitude function (3.3) coincide at

two local maxima on the positive half-circle of the Majorana sphere, thus fulfilling the

necessary condition of at least two CPPs from Corollary 6. This strategy will be employed

for determining the exact form of some states discussed in this chapter. Additionally,

the positive case is easier to investigate because Lemma 20 and Theorem 22 restrict

the number and locations of CPPs. To determine the locations of all CPPs, it suffices to

find the positive CPPs, because all other CPPs follow from Lemma 20. In the case of

“Platonic states” with positive coefficients it will be seen that the CPPs follow without

any calculations from Lemma 20 and the rotation groups alone.

It is reasonable to expect that the Majorana representations of highly entangled posi-

tive symmetric states are rotationally symmetric around the Z-axis, because otherwise

the CPPs can only lie on the positive half-circle of the Majorana sphere (cf. Lemma 20),

which results in an imbalance of the spherical amplitude function g(θ ,ϕ). Because of

Lemma 15, rotationally symmetric states have a large number of vanishing coefficients,

which considerably reduces the complexity of numerical searches for high and maximal

entanglement.

Another argument is that – recast as quantum states by means of the Majorana

representation – many of the solutions to Tóth’s and Thomson’s problem for lower n are

given by positive states1. One could thus expect that in many cases the solutions to the

Majorana problem can be cast as positive states too. On the other hand, arguments were

presented in Section 2.3 that for systems with sufficiently many parties the entanglement

of positive states is considerably lower than that of general states, and a similar behaviour

is expected for the subset of symmetric states.

Symmetric states with no more than two basis states can always be cast positive,

regardless of the number of parties. Some exemplary calculations were performed

with such states, and the results are shown in Table 4.1. Listed are the entanglement

of some n qubit Dicke states and superpositions of two Dicke states, both for fixed

n and in the asymptotic limit n → ∞. It can be seen that states tend to have more

geometric entanglement if they contain Dicke states with a relatively balanced number

of excitations. For example, the entanglement of the most balanced Dicke state |S n
2
〉

scales as Eg =O(log2
p

n), while |GHZn〉 =
1p
2

�

|S0〉+ |Sn〉
�

has an entanglement of only

Eg = 1, regardless of n.

Finally, we outline how the most entangled positive symmetric states were found.

Case differentiations were performed for all combinations of vanishing and nonvanishing

1One reason for this is that these point distributions often exhibit a rotational symmetry, thus leading to
a low number of nonvanishing basis states (cf. Lemma 15), which in turns makes it more likely that the
state can be cast without phases.
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4.1. Methodology

Table 4.1: Geometric entanglement of some n qubit Dicke states and superpositions of
two Dicke states. For the first four states the CPPs and Eg can be determined exactly,
while for the latter four states precise values are known only in the asymptotic limit
n→∞. The weight of the basis states in superpositions was chosen to yield maximal
entanglement. With the exception of 1p

1+e

�p
e |S1〉+ |Sn〉

�

all states are totally invariant,
and therefore they are additive under Eg, ER and ERob, with the amount of entanglement
coinciding for these three measures (cf. Theorem 12).

|ψs
n〉 positive CPPs |σ〉 Eg

�

|ψs
n〉
�

lim
n→∞

Eg
�

|ψs
n〉
�

|S0〉 |0〉 0 0

|S1〉
Æ

n−1
n
|0〉+

Æ

1
n
|1〉 log2

�

n
n−1

�n−1
log2(e)

|S n
2
〉 1p

2
(|0〉+ |1〉) log2

�

2n

( n
n/2)

�

log2

p nπ
2

1p
2

�

|S0〉+ |Sn〉
�

|0〉 and |1〉 1 1

|ψs
n〉 positive CPPs |σ〉 for n→∞ lim

n→∞
Eg
�

|ψs
n〉
�

1p
1+e

�p
e |S1〉+ |Sn〉

�

Æ

n−1
n
|0〉+

Æ

1
n
|1〉 log2(1+ e)

1p
2

�

|S1〉+ |Sn−1〉
�

Æ

n−1
n
|0〉+

Æ

1
n
|1〉 and

Æ

1
n
|0〉+

Æ

n−1
n
|1〉 log2(2e)

1p
2

�

|S n
3
〉+ |S 2n

3
〉
�

Æ

2
3
|0〉+

Æ

1
3
|1〉 and

Æ

1
3
|0〉+

Æ

2
3
|1〉 log2

�4
3

p
nπ
�

1p
2

�

|S n
4
〉+ |S 3n

4
〉
�

p
3

2
|0〉+ 1

2
|1〉 and 1

2
|0〉+

p
3

2
|1〉 log2

Æ

3nπ
2

basis states, with the approximate value of the maximal entanglement determined nu-

merically in each case. In this fashion all the cases with significantly lower entanglement

could be ruled out. For the cases that exhibited high entanglement the precise amount

was calculated analytically (where possible) or approximated numerically to a high preci-

sion. In all cases it was found that the maximally entangled states can be expressed with

a low number of nonvanishing basis states. This finding justifies the omission of some

cases with large numbers of nonvanishing basis states in the numerical search of n> 5

qubits due to their complexity. However, all possible states with a rotational symmetry

around the Z-axis were taken into account. For these reasons we can be confident that

the most entangled states found this way are indeed the maximally entangled positive

symmetric ones.

4.1.2 General states

In the case of general symmetric states we do not have as many analytic tools as for

positive states, so the search is over a far bigger set of possible states, and we can be less

confident in our results. In particular, the candidates for maximal entanglement in the

general case should be treated with a certain amount of caution, because states with yet

more entanglement may exist.
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A helpful result from a theoretical viewpoint is Corollary 6 which provides the

necessary conditions of at least two CPPs and that the maximally entangled symmetric

state must lie in the span of its CPSs. For all of our candidates for maximal symmetric

entanglement it was verified that these conditions are met. From a numerical viewpoint

the known solutions to Tóth’s and Thomson’s problem – converted to symmetric n qubit

states via Equation (1.19) – readily provide nontrivial lower bounds on the maximal

symmetric entanglement. Martin et al. [90] computed the geometric entanglement

of these states for up to n = 110 and found that the solutions of Thomson’s problem

generally yield higher entanglement than those of Tóth’s problem. Furthermore, they

found that the entanglement of Thomson’s solutions scales as ETh
g ≈ log2

(n+1)
1.71

, which is

close to the upper bound Eg ≤ log2(n+ 1) derived in Section 2.4.2, and thus leaves only

a narrow corridor for the maximal values of Eg. The classical solutions, particularly those

for Thomson’s problem, are therefore a good starting point for an explicit search for the

maximally entangled symmetric state. In some cases (for n = 10 in Section 4.2.7 and

n = 11 in Section 4.2.8) we found the conjectured maximally entangled symmetric state

by making small modifications to the point distributions of the classical solutions. Another

strategy to find highly entangled states is to consider states with certain symmetry

features in their MP distribution, such as rotational and reflective symmetries.

4.2 Results

Before discussing the cases of 4 to 12 qubits as well as the 20 qubit case, we remark that

another study of highly and maximally entangled symmetric states was independently

performed by Martin et al. [90], and that their results are similar to ours. In their paper

they focused on using databases [176, 177] with the known numerical solutions of Tóth’s

and Thomson’s problem to derive the geometric entanglement of the corresponding

symmetric states for up to n = 110 in a straightforward manner, and they found the

maximally entangled symmetric states for up to n = 6 qubits. In our publication [89] we

studied the cases of up to n = 12 qubits in much more detail. In particular, we presented

candidates for maximal symmetric entanglement for each n, discussed the Majorana

representations of highly entangled states, and discovered that the spherical volume

function is a very useful tool for understanding the distribution patterns of MPs and

CPPs. A summary of the properties of the symmetric states investigated in this chapter

can be found in Table 4.4.

4.2.1 Four qubits

The MPs, CPPs and the geometric entanglement of the tetrahedron state were already dis-

cussed in Section 3.1.1, with different visualisations shown in Figure 3.2. For four points

both Tóth’s and Thomson’s problem are solved by the vertices of the regular tetrahedron
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(a)

1

2
3

4

(b)

3

1
2

4

(c)

2

3
1

4

Figure 4.1: The four CPPs of the tetrahedron state can be directly obtained from the
tetrahedral symmetry group and from Lemma 20. Rotations from T ⊂ SO(3) amount to
permutations of the MPs and thus provide additional restrictions to the allowed locations
of the CPPs. An R(2π

3
)-rotation along the axis given by the Bloch vector of MP |φ4〉 is

performed twice between (a) and (c). Any CPP must lie at the intersections of the blue,
green and red lines shown in (c), yielding the locations of the four MPs.

[159], and our numerical search for the maximally entangled symmetric state returned

this Platonic solid too. Furthermore, the tetrahedron state |Ψ4〉 =
Æ

1
3
|S0〉+

Æ

2
3
|S3〉

satisfies the necessary conditions of Corollary 6, because it can be written as a linear

combination of its CPSs: |Ψ4〉 =
p

3
4

�

|φ1〉
⊗4+|φ2〉

⊗4+|φ3〉
⊗4+|φ4〉

⊗4 �. In the following

we focus on the various interesting properties of the tetrahedron state.

Firstly, we note that the tetrahedron state is totally invariant under the tetrahedral

symmetry group T ⊂ SO(3), and because |Ψ4〉 is a positive state, Theorem 12 gives us

the equivalence and additivity of this state under Eg, ER and ERob. Further results can

be derived from the tetrahedral symmetry group: Even though R⊗4
T |Ψ4〉 = |Ψ4〉 holds

for all RT ∈ T , the individual MPs are not necessarily left invariant: RT |φi〉 = |φ j〉,
with i, j ∈ {1, 2, 3, 4}. As seen in Figure 4.1, this can be viewed as a permutation of the

MPs. Naturally, the RT can also be viewed as rotations of the Majorana sphere along

an axis running though the sphere. Because |Ψ4〉 is positive, Lemma 20 restricts the

allowed locations for CPPs to the three half-circles shown as blue lines in Figure 4.1(a).

These lines rotate with the Majorana sphere under the action of RT , which allows us to

apply Lemma 20 again in the new orientation. As shown in Figure 4.1(b) and (c), two

successive rotations give rise to further restricting areas, coloured green and red. Any

CPP can only lie at the intersections of the blue, green and red lines. From Figure 4.1(c)

it can be seen that these intersections are precisely the locations of the four MPs, thus

providing us with all the CPPs of |Ψ4〉 without the need for any calculations. This is

remarkable, because the determination of CPPs is usually a highly nontrivial task which

requires at least some analytical or numerical effort.

Apart from being the unique state with maximal geometric entanglement among

symmetric states, the special position of the tetrahedron state in H = (C2)⊗4 can be

noticed in other ways. As a Platonic state, it is an optimal state for reference frame

alignment [106], and in terms of symmetric informationally complete positive-operator-
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valued measures (SIC POVM) [182, 183] it was found that the tetrahedron state is the

unique state that can be generated in the setting of a two-dimensional Hilbert space

[110, 183]. In Section 5.7 it will be outlined that – along with the four qubit cluster

state and GHZ state – the tetrahedron state is one of the three maximally entangled four

qubit states under a monotone that requires all k-tangles with k < 4 to vanish [58, 62].

Under more stringent requirements it is even the only state to be maximally entangled

[184]. Furthermore, witnesses for all types of 4 qubit symmetric entanglement can

be constructed from the tetrahedron state, something that is not possible with other

prominent states [77]. Finally, through a private communication with Mio Murao I

became aware of the following bipartite decomposition of the tetrahedron state:

|Ψ4〉=
1p
3
|00〉 |00〉+ 1p

6
(|01〉 |11〉+ |10〉 |11〉+ |11〉 |01〉+ |11〉 |10〉)

= 1p
3
(|a〉 |a〉+ |b〉 |c〉+ |c〉 |b〉) ,

(4.1)

with |a〉= |00〉, |b〉= 1p
2
(|01〉+ |10〉) and |c〉= |11〉 as orthonormalised 2-qubit states.

In this sense the tetrahedron state contains maximally entangled bipartite qutrit (three-

level) systems along any split into two 2-qubit subsystems. Viewed as such a 2-qutrit

system, the entanglement of the state (4.1) is Eg = ER = ERob = log2 d = log2 3, and

because it is a pure bipartite state, it is additive under all three measures. Therefore the

tetrahedron state retains its entanglement and additivity properties when viewed as a

2-qutrit state instead of a 4-qubit state. This bears resemblance to the 4 qubit cluster

state [156], which can be written in the form

|Ψc
4〉=

1
2

�

|0000〉+ |0101〉+ |1010〉 − |1111〉
�

. (4.2)

This state has the entanglement Eg = ER = ERob = 2 and is additive under the three

measures [143]. Taking the bipartite cut along neighbouring qubits (12−34 or 14−23)

clearly results in a maximally entangled bipartite state of two four-level subsystems

yielding the entanglement Eg = ER = ERob = log2 d = 2. Unlike the tetrahedron

state, however, the cluster state is not symmetric, and indeed the bipartite cut along

diametrically opposite qubits (13− 24) yields less entanglement:

|Ψc
4〉13−24 =

1
2

�

|00〉 |00〉+ |00〉 |11〉+ |11〉 |00〉 − |11〉 |11〉
�

= 1p
2

�

|a〉 |ea〉+ |b〉 |eb〉
�

,
(4.3)

with |a〉 = |00〉, |b〉 = |11〉, |ea〉 = 1p
2
(|00〉+ |11〉) and |eb〉 = 1p

2
(|00〉 − |11〉). Under this

bipartition only 1 ebit of entanglement is obtained.
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(a)

|φ1〉

|φ2〉

|φ3〉

|φ4〉

|φ5〉
(b) (c)

|φ1〉

|φ2〉 |φ3〉

|φ4〉|φ5〉

(d)

Figure 4.2: For five qubits the Majorana representation and the spherical amplitude func-
tion g2(θ ,ϕ) of the “trigonal bipyramid state” |ψ5〉 is shown in (a) and (b), respectively.
The same visualisations are shown for the “square pyramid state” |Ψ5〉 in (c) and (d),
respectively. The dashed circles in (b) and (d) mark the maximum values of g2, with
the outer gray circle corresponding to the less entangled state |ψ5〉 and the inner black
circle to the more entangled state |Ψ5〉.

4.2.2 Five qubits

For five points, the solution to Thomson’s problem is given by three of the charges

lying on the vertices of an equatorial triangle and the other two lying at the poles

[174, 185]. Such a trigonal bipyramid is also a solution to Tóth’s problem, but it is not

unique2 [181, 186, 187]. The corresponding quantum state, the “trigonal bipyramid

state” |ψ5〉=
1p
2
(|S1〉+ |S4〉), has the MPs

|φ1〉= |0〉 , |φ2,3,4〉=
1p
2
(|0〉+ eiκ |1〉) , |φ5〉= |1〉 , (4.4)

with κ = 0, 2π
3

, 4π
3

. As seen in Figure 4.2(a) and (b), the state has three CPPs which

coincide with the equatorial MPs, yielding Eg(|ψ5〉) = log2

�

16
5

�

≈ 1.678 072. The

trigonal bipyramid state is positive and totally invariant under the dihedral symmetry

group Dm for m = 3, which implies that |ψ5〉 is equivalent and additive under Eg, ER

and ERob.

However, a numerical search among symmetric five qubit states yields states with

higher entanglement. The conjectured maximally entangled state has the MP distribution

of the square pyramid3 shown in Figure 4.2(c), which corresponds to the analytic form

|Ψ5〉=
|S0〉+ A |S4〉
p

1+ A2
, (4.5)

2An example of another solution is the square pyramid obtained from the regular octahedron by removing
one vertex, and a continuum of solutions is given by two fixed vertices on the poles and the other three
vertices lying on the equatorial circle with spherical distances π

2
≤ smin ≤

2π
3

between each pair. In all of
these configurations the minimum pairwise distance is smin =

π

2
.

3This square pyramid cannot be a solution of Tóth’s problem, because the spherical distance between
some MPs (e.g. |φ2〉 and |φ3〉) is smin <

π

2
.

75



Chapter 4. Maximally Entangled Symmetric States

where the MPs are

|φ1〉= |0〉 , |φ2,3,4,5〉=
p
α |0〉+ eiκ

p

1−α |1〉 , (4.6)

with κ= π
4

, 3π
4

, 5π
4

, 7π
4

. The relationship between A and α is

A=
(1−α)2
p

5α2
. (4.7)

The value of A which maximises the entanglement of |Ψ5〉 gives rise to a state with five

CPPs, one on the north pole and the other four lying on a horizontal circle below the

plane with the MPs, i.e.

|σ1〉= |0〉 , |σ2,3,4,5〉= xm |0〉+ k ym |1〉 , (4.8)

with x2
m+ y2

m = 1 and k = 1, i,−1,−i. Approximate values of these quantities are:

A≈ 1.531 538 191 , α≈ 0.350 806 560 , xm ≈ 0.466 570 328 . (4.9)

The exact values can be determined analytically. Since |Ψ5〉 is positive, it suffices to

investigate the maxima of the spherical amplitude function g(θ ,ϕ) along the positive

half-circle: g(θ) ≡ g(θ , 0). Using the parameterisation x := cθ ∈ [0,1], an analysis

shows that the global maximum of g(x) becomes minimal when the value g(1) at the

local maximum x = 1 equals the value g(xm) at the non-trivial maximum xm ∈ (0,1).

With the ansatz g(1) = g(xm) it follows that A= 1−x5
mp

5xm y4
m

, and the requirement dg
dx
(xm) =

0 yields 4x5
m − 5x2

m + 1 = 0. A polynomial division by the trivial root xm = 1 reduces

this quintic equation to a quartic one:

4x4
m+ 4x3

m+ 4x2
m− xm− 1= 0 . (4.10)

The real root in the interval [0, 1] can be determined analytically by a reduction to cubic

equations and Cardano’s Formula [188]:

xm =
1

4

�

p

8z− 3− 1+
q

10p
8z−3

− 2− 8z
�

,

with z =
1

24

�

3

q

550+ 30
p

345+
3

q

500− 30
p

345

�

+
1

6
.

(4.11)

This xm establishes the nontrivial positive CPP |σ2〉 = xm |0〉+
p

1− x2
m |1〉, and by

inserting it into A = 1−x5
mp

5xm y4
m

(4.10)
=

p
5

4xm(1−x2
m)

, it yields the explicit form of |Ψ5〉. The

parameter α of the MPs follows by solving Equation (4.7). From the MP distribution in

Figure 4.2(c) it is clear that |Ψ5〉 remains invariant under the cyclic symmetry group Cm
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(a)

|φ1〉

|φ2〉

|φ3〉 |φ4〉

|φ5〉|φ6〉

(b) (c)

1

2

3 4

56

(d)

5

3

1 4

26

Figure 4.3: For six qubits the Majorana representation and the spherical amplitude
function of the “octahedron state” |Ψ6〉 are shown in (a) and (b), respectively. Analogous
to the tetrahedron state, the CPPs follow directly from the octahedral symmetry group
O ⊂ SO(3). Only one R(π

2
)-rotation along the axis spanned by the MPs |φ4〉 and |φ6〉 is

necessary to unambiguously determine the eight CPPs at the intersections of the blue
and green lines in (d).

with m= 4. However, it is not totally invariant, because the latitude of the horizontal

circle of MPs can be varied without changing the rotation group.

The amount of entanglement Eg(|Ψ5〉) = log2(1+ A2) ≈ 1.742 269 of the square

pyramid state is considerably higher than that of the trigonal bipyramid state. Martin

et al. [90] independently found a square pyramid state as the maximally entangled

symmetric five qubit state, and we verified that their state is the same as ours.

4.2.3 Six qubits

The regular octahedron, a Platonic solid, is the unique solution to Tóth’s and Thomson’s

problem. The corresponding “octahedron state” |Ψ6〉=
1p
2
(|S1〉+ |S5〉) was numerically

found to solve the Majorana problem for six qubits too. In the orientation shown in

Figure 4.3(a) the MPs are

|φ1〉= |0〉 , |φ2〉= |1〉 , |φ3,4,5,6〉=
1p
2

�

|0〉+ eiκ |1〉
�

, (4.12)

with κ= π
4

, 3π
4

, 5π
4

, 7π
4

. The octahedron state has a positive computational form and is

totally invariant under the octahedral symmetry group O ⊂ SO(3), implying that it is

equivalent and additive under Eg, ER and ERob. Furthermore, the rotational invariance

enables us to determine the CPPs with Lemma 20. As seen in Figure 4.3(d), only one

rotation suffices to determine the eight CPPs at the centre of each face of the octahedron,

forming a cube inside the Majorana sphere:

|σ1,2,3,4〉=
qp

3+1
2
p

3
|0〉+ k

qp
3−1

2
p

3
|1〉 , |σ5,6,7,8〉=

qp
3−1

2
p

3
|0〉+ k

qp
3+1

2
p

3
|1〉 , (4.13)

with k = 1, i,−1,−i. The geometric entanglement follows as Eg(|Ψ6〉) = log2

�

9
2

�

≈
2.169 925. In contrast to the tetrahedron state, where the MPs and CPPs overlap, the
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CPPs of the octahedron state lie as far away from the MPs as possible. This is because

the MPs of |Ψ6〉 form antipodal pairs, which leads to the spherical amplitude function

being zero at the location of each MP.

4.2.4 Seven qubits

For seven points, the solutions to the two classical problems become fundamentally

different for the first time. Tóth’s problem is solved by two triangles asymmetrically

positioned about the equator and the remaining point at the north pole [173, 187], or

(1-3-3) in the Föppl notation [159]. Converting Tóth’s solution to Bloch vectors yields

the MPs

|φ1〉= |0〉 , |φ2,3,4〉= cθ |0〉+ eiκsθ |1〉 , |φ5,6,7〉= cϑ |0〉 − eiκsϑ |1〉 , (4.14)

with κ= 0, 2π
3

, 4π
3

, and their inclinations are given by

cθ =
1
2

csc(2π
9
) , cϑ =

q

1
2
−
p

3
6

cot(2π
9
) . (4.15)

This non-positive state is of the form |ψTó
7 〉 = α |S0〉−β |S3〉−γ |S6〉, with the approximate

values for the coefficients being

α≈ 0.295 510 , β ≈ 0.602 458 , γ≈ 0.741 430 . (4.16)

The state is rotationally symmetric around the Z-axis and has three CPPs |σ1,2,3〉 =
cφ |0〉+ eiκsφ |1〉, with κ = 0, 2π

3
, 4π

3
and φ ≈ 2.089 603, yielding G2 ≈ 0.309 326 and

Eg(|ψTó
7 〉) ≈ 1.692 798. Figure 4.4 shows the Majorana representation and the highly

imbalanced spherical amplitude function of |ψTó
7 〉. The entanglement can be considerably

increased by varying the parameters (4.16), which corresponds to changing the latitude

of the two MP circles shown in Figure 4.4(a). In this way a state with seven CPPs and

Eg ≈ 2.146 81 can be obtained.

Thomson’s problem is solved by the vertices of a pentagonal dipyramid [173, 174,

185], where five points lie on an equatorial pentagon and the other two on the poles. The

corresponding “pentagonal dipyramid state”, shown in Figure 4.4, is numerically found

to be the solution to the Majorana problem, too. The state is |Ψ7〉 =
1p
2
(|S1〉+ |S6〉), and

its MPs are

|φ1〉= |0〉 , |φ2,3,4,5,6〉=
1p
2

�

|0〉+ eiκ |1〉
�

, |φ7〉= |1〉 , (4.17)

with κ= 0, 2π
5

, 4π
5

, 6π
5

, 8π
5

. Despite this simple analytical form, the determination of the

CPPs is not trivial. With the parameterisation x := cos2 θ = (2c2
θ − 1)2 the positions of
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(a) (b) (c) (d)

Figure 4.4: For seven qubits the Majorana representation and the spherical amplitude
function g2(θ ,ϕ) of the solution of Tóth’s problem |ψTó

7 〉 is shown in (a) and (b), and
for the “pentagonal dipyramid state” |Ψ7〉 in (c) and (d), respectively. The outer and
inner circle correspond to the maximum values of g2 for |ψTó

7 〉 and |Ψ7〉, respectively.

the ten CPPs

|σ1,2,3,4,5〉= cθ |0〉+ eiκsθ |1〉 , |σ6,7,8,9,10〉= sθ |0〉+ eiκcθ |1〉 , (4.18)

κ= 0, 2π
5

, 4π
5

, 6π
5

, 8π
5

, are given by the real root of the cubic equation

49x3+ 165x2− 205x + 55= 0 (4.19)

in the interval [0, 1
2
]. Approximate values are cθ ≈ 0.920 574 and sθ ≈ 0.390 567,

yielding G2 ≈ 0.203 247 and Eg(|Ψ7〉) ≈ 2.298 691 396. Since |Ψ7〉 is positive and

totally invariant under the dihedral symmetry group D5, it satisfies the requirements of

Theorem 12.

4.2.5 Eight qubits

The regular cube is a Platonic solid with eight vertices, and therefore a natural candidate

to study. Its MP locations can be directly obtained from the CPPs (4.13) of the octahedron

state, which were found to form a cube, as seen in Figure 4.3(a). In the configuration

shown in Figure 4.5(a) the MPs are

|φ1,2,3,4〉= cθ |0〉+ eiκsθ |1〉 , |φ5,6,7,8〉= sθ |0〉+ eiκcθ |1〉 , (4.20)

with κ= π
4

, 3π
4

, 5π
4

, 7π
4

, and c2
θ =

p
3+1

2
p

3
, s2
θ =

p
3−1

2
p

3
. This gives rise to the cube state

|ψc
8〉=

1

2
p

6

�p
5 |S0〉+

p

14 |S4〉+
p

5 |S8〉
�

. (4.21)

This state is positive and totally invariant under the octahedral symmetry group O ∈
SO(3), thus meeting the prerequisites of Theorem 12. Its CPPs can be obtained in the

same manner as for the tetrahedron and octahedron state by applying Lemma 20. From

Figure 4.5(c) it can be seen that two rotations (e.g. Rx(
π
2
) and Ry(

π
2
)) give rise to
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(a) (b) (c)

Figure 4.5: For eight qubits the Majorana representation and the spherical amplitude
function g2(θ ,ϕ) of the cube state |ψc

8〉 are shown in (a) and (b), respectively. The
CPPs can be directly determined from Lemma 20 and the octahedral symmetry group
O ∈ SO(3) by performing an Rx(

π
2
) and Ry(

π
2
) rotation, as shown in (c). The outer

and inner circle in (b) correspond to the cube state |ψc
8〉 and the maximally entangled

symmetric eight qubit state |Ψ8〉, respectively.

three areas, coloured blue, green and red. The intersection of these three areas are six

points that form the vertices of a regular octahedron. Thus the CPPs of the cube state

are identical to the MPs (4.12) of the octahedron state, up to an Rz(
π
4
)-rotation. The

entanglement of the cube state follows as Eg(|ψc
8〉) = log2

�

24
5

�

≈ 2.263 034.

A numerical search yields states that are considerably higher entangled than the

cube state. The “asymmetric pentagonal dipyramid state” shown in Figure 4.6(a) is

numerically found to have the highest amount of entanglement. The exact analytic

form of this positive state is not known, but it can be numerically approximated to

high precision. The form of the state is |Ψ8〉= α |S1〉+ β |S6〉, with approximate values

α≈ 0.671 588 032 and β ≈ 0.740 924 770, and the MPs are

|φ1,2〉= |0〉 , |φ3,4,5,6,7〉= cθ |0〉+ eiκsθ |1〉 , |φ8〉= |1〉 , (4.22)

with κ = 0, 2π
5

, 4π
5

, 6π
5

, 8π
5

and θ ≈ 1.715 218 732. In particular, there is a two-fold

MP degeneracy at the north pole, similar to the W state of three qubits. As seen in

Figure 4.6(a), there are two rings with five CPPs each,

|σ1,2,3,4,5〉= cϑ |0〉+ eiκsϑ |1〉 , |σ6,7,8,9,10〉= cφ |0〉+ eiκsφ |1〉 , (4.23)

with κ = 0, 2π
5

, 4π
5

, 6π
5

, 8π
5

, cϑ ≈ 0.928 479 and cφ ≈ 0.525 434. From this it follows

G2 ≈ 0.183 619 and Eg(|Ψ8〉)≈ 2.445 210.

As mentioned in Section 3.2, the classical solutions are not solved by the regular

cube. Tóth’s problem for eight points is solved by the cubic antiprism introduced and

discussed in Figure 3.4. This antiprism is regular in the sense that all its sides have the

same length. The solution to Thomson’s problem is a slightly different antiprism that

is not regular and which can be obtained from Tóth’s antiprism by a slight expansion
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(a) (b) (c) (d)

Figure 4.6: For eight qubits the “asymmetric pentagonal dipyramid state” |Ψ8〉 shown
in (a) and (b) is conjectured to be the maximally entangled state. A similarly highly
entangled state is the optimal antiprism state |Ψa

8〉, shown in (c) and (d). The outer and
inner circles correspond to the cube state |ψc

8〉 and to |Ψ8〉, respectively.

along the direction perpendicular to the rotated face [173, 174, 185]. Cast as symmetric

states, antiprisms have the form

|ψa
8〉=

|S0〉+ A |S4〉 − |S8〉
p

2+ A2
, (4.24)

where the real parameter A depends on the latitude of the two MP rings. The MPs can

be parameterised as

|φ1,2,3,4〉=
p

a |0〉+ ei(κ+π
4
)
p

1− a |1〉 ,

|φ5,6,7,8〉=
p

1− a |0〉+ eiκpa |1〉 ,
(4.25)

with a ∈ [0,1], κ= 0, π
2

,π, 3π
2

, and the maxima of the spherical amplitude function as

|σ1〉= |0〉 , |σ2〉= |1〉 ,

|σ3,4,5,6〉= x |0〉+ eiκ
p

1− x2 |1〉 ,

|σ7,8,9,10〉=
p

1− x2 |0〉+ ei(κ+π
4
)x |1〉 ,

(4.26)

with x ∈ [0, 1], κ= 0, π
2

,π, 3π
2

. The maximally entangled antiprism state |Ψa
8〉 can then

be found by a calculation similar to the one performed for the maximally entangled

five qubit state. From numerics it is clear that |Ψa
8〉 has ten CPPs, one on each pole

and the others lying on two horizontal planes, see Figure 4.6(c) and (d). It suffices to

determine the latitude of the nontrivial positive CPP, so we use g(θ)≡ g(θ , 0) and the

parameterisation x := cθ . To turn all local maxima into CPPs the value of g(x) at x = 1

needs to equal the value at the non-trivial maximum xm ∈ (0, 1). From g(1) = g(xm) it

follows that A= 1−x8
m+y8

mp
70 x4

m y4
m

, and from dg
dx
(xm) = 0 it follows that

x6
m− x4

m+ 2x2
m− 1= 0 . (4.27)
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Table 4.2: Comparison of all the eight qubit symmetric states studied in Section 4.2.5.
For each state the latitude θ of the topmost circle of MPs as well as the geometric
entanglement Eg is listed. The entanglement of antiprism states decreases with increasing
deviance of the MP angle θ from that of the optimal antiprism state |Ψa

8〉.

State MP angle θ [rad] Entanglement Eg

Majorana solution |Ψ8〉 ≈ 1.715 218 732 ≈ 2.445 210 159
regular cube |ψc

8〉 arccos 1p
3
≈ 0.955 log2

�24
5

�

≈ 2.263
optimal antiprism |Ψa

8〉 ≈ 0.933 368 783† ≈ 2.436 587 205†

Thomson antiprism |ψTh
8 〉 ≈ 0.975 883 252 ≈ 2.084 181 528

Tóth antiprism |ψTó
8 〉 arctan

p

2
p

2≈ 1.034 ≈ 1.711 525 327†

† Closed-form analytic expressions are known, but not displayed due to their complicated form.

This amounts to solving a cubic equation, yielding the single real root

xm =

r

1

3

�

1+ z−
5

z

�

, with z =
3

r

11+ 3
p

69

2
. (4.28)

This xm establishes the locations of all nontrivial CPPs and by inserting it into A, it yields

the explicit form of (4.24), as well as the entanglement Eg(|Ψa
8〉) = log2(2+ A2). The

latitude of the MPs is found by solving a quartic equation that arises when determining

the MPs from the given form of the state: The value of a is given by the real root of
p

70a2(1− a)2A− a4+ (1− a)4 = 0. Approximate values of the quantities are:

x ≈ 0.754 878 , A≈ 1.847 592 , a ≈ 0.797 565 . (4.29)

The latitude of the upper MP circle follows as θ ≈ 0.933 368 783, and the amount of

entanglement is Eg(|Ψa
8〉)≈ 2.436 587 205. The optimal antiprism state |Ψa

8〉 is thus only

slightly less entangled than the numerically determined maximally entangled symmetric

state of eight qubits. Intriguingly, the maximally entangled state |Ψ8〉 is a positive state,

whereas the antiprism states cannot be cast with positive coefficients.

The antiprism states that solve Tóth’s and Thomson’s problem each have only the

two CPPs |σ1〉 = |0〉 and |σ2〉 = |1〉. This imbalance of their spherical amplitude

functions is due to the two horizontal MP circles being closer to the equator than in

the configuration seen in Figure 4.6(c). As listed in Table 4.2, this leads to a reduction

of the geometric entanglement. No analytic form is known for the antiprism state

|ψTh
8 〉 which solves Thomson’s problem, but the latitude of its MPs can be numerically

determined by minimising a nonlinear function [185], yielding θ ≈ 0.975 883 252 and

Eg(|ψTh
8 〉) ≈ 2.084 181 498. On the other hand, the solution |ψTó

8 〉 of Tóth’s problem

can be determined analytically from the known spherical distance smin = arccos
�

p
8−1
7

�

between neighbouring pairs of points. The latitude of the MP circle then follows as
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θ = arctan
p

2
p

2, and the analytical form of the state (4.24) is given by A = 1−τ2
p

70τ
,

with τ := tan4(θ
2
) = 1

8

�

p

1+ 2
p

2− 1
�4. The entanglement follows as Eg(|ψTó

8 〉) =
log2(2+ A2)≈ 1.712.

4.2.6 Nine qubits

For nine points, the solutions to Tóth’s and Thomson’s problem are slightly different

manifestations of a “triaugmented triangular prism”. As shown in Figure 4.7(a), three

equilateral triangles are positioned parallel but asymmetric to each other, with a reflective

symmetry along the X -Y -plane. The MPs of this configuration are

|φ1,2,3〉= cθ |0〉 − eiκsθ |1〉 ,

|φ4,5,6〉=
1p
2

�

|0〉+ eiκ |1〉
�

, (4.30)

|φ7,8,9〉= sθ |0〉 − eiκcθ |1〉 ,

with κ= 0, 2π
3

, 4π
3

. This gives rise to a real state

|ψ9〉=
|S0〉 − A

�

|S3〉+ |S6〉
�

+ |S9〉
p

2+ 2A2
, (4.31)

where the relationship between A and the MPs is Aτ
p

84 =−τ2+τ−1 with τ := tan3(θ
2
).

The single freedom of this configuration is the inclination θ (or π− θ) of the MPs that

lie outside the equator.

For all values of A the spherical amplitude function of |ψ9〉 has local maxima at the

three equatorial MPs and at the poles. From this it can be inferred that the most entangled

state of the form (4.31) is the one where these maxima yield the same value. The optimal

state thus has the five CPPs shown in Figure 4.7(a), and a simple calculation yields

A= 1+8
p

2
2
p

21
and Eg(|ψ9〉) = log2

213+16
p

2
42

≈ 2.488. In contrast to this, the configurations

that solve the classical problems are not optimal. In the solution to Thomson’s problem

the latitudes of the outer MPs are closer to the equator than in Figure 4.7(a), and even

more so in the solution to Tóth’s problem. This induces an imbalance in the spherical

amplitude function, resulting in the two poles being the only CPPs. The geometric

entanglement is Eg(|ψTh
9 〉)≈ 2.434 192 780 and Eg(|ψTó

9 〉)≈ 2.150 714 397, respectively.

The maximally entangled symmetric nine qubit state, however, does not assume

the form of a triaugmented triangular prism. A numerical search determines the state

|Ψ9〉=
1p
2
(|S2〉+ |S7〉), shown in Figure 4.7(c), with the MPs

|φ1,2〉= |0〉 , |φ3,4,5,6,7〉=
1p
2

�

|0〉+ eiκ |1〉
�

, |φ8,9〉= |1〉 , (4.32)

and κ= 0, 2π
5

, 4π
5

, 6π
5

, 8π
5

. This is a positive state with MP degeneracies, and the state is
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(a) (b) (c) (d)

Figure 4.7: For nine qubits the optimal “triaugmented triangular prism state” is shown
in (a) and (b), and the “pentagonal dipyramid state” |Ψ9〉 which is conjectured to be the
maximally entangled symmetric nine qubit state is shown in (c) and (d). The latter state
has a two-fold MP degeneracy on each pole.

totally invariant under the dihedral symmetry group D5. The CPPs lie on two circles

|σ1,2,3,4,5〉= cθ |0〉+ eiκsθ |1〉 , |σ6,7,8,9,10〉= sθ |0〉+ eiκcθ |1〉 , (4.33)

with κ = 0, 2π
5

, 4π
5

, 6π
5

, 8π
5

. Unlike the MPs, the CPPs do not have a simple analytical

form. They can however be determined in the same way as done for the seven qubit

case. With the substitution x := cos2 θ , the inclination follows from the real root

of 81x3 + 385x2 − 245x + 35 = 0 in the interval [0,0.3]. Approximate values are

cθ ≈ 0.860 122 and sθ ≈ 0.510 087, from which one obtains Eg(|Ψ9〉)≈ 2.553 960 277,

which is a significantly higher amount of entanglement than for the most entangled

triaugmented triangular prism state.

4.2.7 Ten qubits

The solution to Tóth’s problem is an arrangement of the form (2-2-4-2) in the Föppl

notation [159, 181], with only two CPPs, and the numerically determined entanglement

Eg(|ψTó
10〉)≈ 1.958 874 344 is relatively low.

Thomson’s problem is solved by a “gyroelongated square bipyramid”, a polyhedron

that arises from a cubic antiprism by placing square pyramids on each of the two square

surfaces4. The MPs, shown in Figure 4.8(a), have the form

|φ1〉= |0〉 , |φ2,3,4,5〉= cθ |0〉+ ksθ |1〉 ,

|φ10〉= |1〉 , |φ6,7,8,9〉= sθ |0〉+ keiπ
4 cθ |1〉 ,

(4.34)

4In a narrower sense, the gyroelongated square bipyramid is the unique polyhedron that arises from the
regular antiprism (sides of equal length) by the requirement that all faces are equilateral triangles, which
makes it one of the eight convex deltahedra. This deltahedron does however not have a circumsphere that
touches all its vertices, and therefore it does not directly translate to a spherical point distribution.
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(a) (b) (c) (d)

Figure 4.8: For 10 qubits the conjectured maximally entangled state |Ψ10〉, shown
in (a) and (b), takes the form of a gyroelongated square bipyramid. The Majorana
representation of the numerically determined maximally entangled positive state |Ψpos

10 〉
is shown in (c), and the positive state |ψpos

10 〉 shown in (d) has almost the same amount
of entanglement as |Ψpos

10 〉. The state |Ψpos
10 〉 has three CPPs, with the locations of further

local maxima of g2(θ ,ϕ) indicated by dashed crosses. The outer and inner circle in (b)
corresponds to the value of G2 for |Ψpos

10 〉 and |Ψ10〉, respectively.

with k = 0, i,−1,−i. This gives rise to a real state

|ψ10〉=
|S1〉+ A |S5〉 − |S9〉

p

2+ A2
. (4.35)

The relationship between A and the MPs is described by Aτ
p

252 = 1− τ2 with τ :=

tan4(θ
2
). The state |ψ10〉 has eight CPPs

|σ1,2,3,4〉= cϑ |0〉+ ksϑ |1〉 , |σ5,6,7,8〉= sϑ |0〉+ keiπ
4 cϑ |1〉 , (4.36)

with k = 0, i,−1,−i, and where the latitude ϑ depends on the precise form of Equa-

tion (4.35). An analytical treatment of Equation (4.35) and (4.36) is very difficult, so

we limit ourselves to numerics.

The entanglement obtained from the point distribution of Thomson’s solution is

Eg(|ψTh
10〉)≈ 2.731 632 770, and a numerical analysis reveals that this state is very close

to the maximally entangled state of the form (4.35). A small modification of the latitude

of the MPs yields the extremal entanglement Eg(|Ψ10〉)≈ 2.737 432 003 at θ ≈ 1.142 46,

with the latitude of the CPPs given by ϑ ≈ 1.048. The state is shown in Figure 4.8(a),

and it is proposed to be the maximally entangled 10 qubit symmetric state.

The 10 qubit case is the first one where the conjectured maximally entangled sym-

metric state cannot be cast with positive coefficients. Since the search for maximal

entanglement is more reliable within the subset of positive states, we will separately

consider the positive case.

A numerical search returns a state of the form |Ψpos
10 〉 = α |S0〉+β |S4〉+ γ |S9〉 as the

positive state with the highest amount of geometric entanglement, namely Eg(|Ψ
pos
10 〉)≈
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2.679 763 092. The approximate values of the coefficients are

α≈ 0.395 053 091 , β ≈ 0.678 420 822 , γ≈ 0.619 417 665 . (4.37)

The MP distribution is shown in Figure 4.8(c). From Lemma 15 it is clear that this state

is not rotationally symmetric around the Z-axis. The state has only three CPPs, which are

all positive (cf. Theorem 22), but the spherical amplitude function g(θ ,ϕ) has six other

local maxima with values close to those at the CPPs. The positions of these local maxima

are shown as dashed crosses in Figure 4.8(c). One would expect that the MPs on the

two “circles”, one with five MPs and another with four MPs, have the same latitude and

are equidistantly spaced apart. However, this is not the case, as the locations of the MPs

deviate by very small amounts from such a regular distribution. Indeed, since equidistant

circles of MPs correspond to GHZ-type states, it can be seen from Theorem 13 that for

perfect MP rings the state |Ψpos
10 〉 would need to have four nonvanishing basis states.

We mention that there exists a fully rotationally symmetric and totally invariant

(under the dihedral group D6) positive state that comes very close to |Ψpos
10 〉 in terms of

entanglement. Its form is |ψpos
10 〉 =

1p
2
(|S2〉+ |S8〉), and its Majorana representation is

shown in Figure 4.8(d). The 12 CPPs can be determined as the solutions of a quadratic

equation, yielding

|σ1,2,...,6〉=
1p

3−
p

3
|0〉+ eiκ 1p

3+
p

3
|1〉 ,

|σ7,8,...,12〉=
1p

3+
p

3
|0〉+ eiκ 1p

3−
p

3
|1〉 ,

(4.38)

with κ = 0, π
3

, 2π
3

,π, 4π
3

, 5π
3

. The entanglement is Eg(|ψ
pos
10 〉) = log2

�

32
5

�

≈ 2.678 072,

which is less than 0.1% difference from Eg(|Ψ
pos
10 〉).

4.2.8 Eleven qubits

The known numerical solution to Thomson’s problem has the form (1-2-4-2-2) in Föppl

notation [159], yielding the approximate entanglement Eg(|ψTh
11〉) ≈ 2.482 570. On

the other hand, the solution to Tóth’s problem is obtained by removing one vertex of

the regular icosahedron, yielding a pentagonal antiprism with a pentagonal pyramid

on one of the two pentagonal surfaces, or (1-5-5) [181]. From the known geometric

properties of the icosahedron the solution is found analytically to be |ψTó
11〉 =

p
462
25
|S0〉+

11
25
|S5〉 −

p
42

25
|S10〉. Unsurprisingly, the corresponding spherical amplitude function is

very imbalanced, with the single CPP lying antipodal to the removed icosahedron vertex,

yielding Eg(|ψTó
11〉) = log2

�

625
462

�

≈ 0.435 963. By varying the latitude of the MP circles,

however, it is possible to obtain a state with much higher entanglement: The state shown

in Figure 4.9(a) is rotationally symmetric around the Z-axis and has 11 CPPs. The form
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(a) (b) (c) (d)

Figure 4.9: For 11 qubits the candidate for maximal entanglement |Ψ11〉 is shown in (a)
and (b). The numerically determined maximally entangled positive state |Ψpos

11 〉, shown
in (c) and (d), has only two CPPs, but its spherical amplitude function has seven more
local maxima with values very close to those at the CPPs.

of the state is |Ψ11〉= α |S0〉+ β |S5〉 − γ |S10〉, with approximate values

α≈ 0.376 611 967 , β ≈ 0.715 661 256 , γ≈ 0.588 211 181 . (4.39)

Its MPs are

|φ1〉= |0〉 , |φ2,3,4,5,6〉= cθ |0〉−eiκsθ |1〉 , |φ7,8,9,10,11〉= sϑ |0〉+eiκcϑ |1〉 , (4.40)

with κ = 0, 2π
5

, 4π
5

, 6π
5

, 8π
5

, and approximate latitudinal angles θ ≈ 1.168 499 343 and

ϑ ≈ 2.253 247 569. The entanglement is Eg(|Ψ11〉)≈ 2.817 698 505, making this state

the potentially maximally entangled symmetric state of 11 qubits.

Analogous to the 10 qubit case, the numerically determined maximally entangled

positive symmetric state does not have a rotational symmetry. The state, shown in Fig-

ure 4.9(c) and (d), is of the form |Ψpos
11 〉 = α |S1〉+β |S5〉+γ |S10〉, with the approximate

values

α≈ 0.550 982 113 , β ≈ 0.578 058 577 , γ≈ 0.601 886 195 . (4.41)

This state has only two CPPs, but the spherical amplitude function has seven more local

maxima with values close to the CPPs. The geometric entanglement of this state is

Eg(|Ψ
pos
11 〉)≈ 2.773 622 669.

4.2.9 Twelve qubits

For 12 points both Tóth’s and Thomson’s problem are solved by the icosahedron. Due

to the high symmetry present in Platonic solids, the icosahedron state is also a strong

candidate for maximal symmetric entanglement in the 12 qubit case. The state can

be cast with real coefficients |Ψ12〉 =
p

7
5
|S1〉 −

p
11
5
|S6〉 −

p
7

5
|S11〉, and its MPs can be
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(a) (b) (c)

Figure 4.10: For 12 qubits the icosahedron state |Ψ12〉, shown in (a) and (b), is conjec-
tured to be the maximally entangled symmetric state. In the subset of positive states the
state |Ψpos

12 〉 shown in (c) is detected as the maximally entangled one.

derived from the known angles and distances in the icosahedron:

|φ1〉= |0〉 , |φ2,3,4,5,6〉=
q

3+
p

5
5+
p

5
|0〉+ eiκ

q

2
5+
p

5
|1〉 ,

|φ12〉= |1〉 , |φ7,8,9,10,11〉=
q

2
5+
p

5
|0〉 − eiκ

q

3+
p

5
5+
p

5
|1〉 ,

(4.42)

with κ = 0, 2π
5

, 4π
5

, 6π
5

, 8π
5

. The MP distribution is shown in Figure 4.10(a). From the

icosahedral symmetry and the antipodal pairs of MPs, it can be easily inferred that

there exist 20 CPPs, one at the centre of each face of the icosahedron, describing a

dodecahedron on the Majorana sphere. Although Lemma 3 and Lemma 20 cannot be

applied to the icosahedron state, its CPPs can be verified analytically by considering

the values of the spherical amplitude function g(θ ,ϕ) within the area of one spherical

triangle spanned by three neighbouring MPs. The CPPs thus obtained are

|σ1,2,3,4,5〉= a+ |0〉 − eiκa− |1〉 , |σ11,12,13,14,15〉= b− |0〉+ eiκb+ |1〉 ,

|σ6,7,8,9,10〉= b+ |0〉 − eiκb− |1〉 , |σ16,17,18,19,20〉= a− |0〉+ eiκa+ |1〉 ,
(4.43)

with κ= 0, 2π
5

, 4π
5

, 6π
5

, 8π
5

, and

a± =

Ç

1
2
± 1

2

q

5+2
p

5
15

, b± =

Ç

1
2
± 1

2

q

5−2
p

5
15

. (4.44)

With the knowledge of the exact positions of the MPs and CPPs, the entanglement

follows as Eg(|Ψ12〉) = log2

�

243
28

�

≈ 3.117458. Naturally, the icosahedron state is totally

invariant under the icosahedral rotation group Y , so it follows from Lemma 10 that its

entanglement is the same for the three distance-like entanglement measures. However,

since |Ψ12〉 is not positive, the conditions of Theorem 12 are not fulfilled, and it is not

known whether |Ψ12〉 is additive under the various entanglement measures.
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The numerical search for the maximally entangled positive state yields a state of the

form |Ψpos
12 〉= α |S1〉+ β |S6〉+α |S11〉 with

α≈ 0.555 046 977 , β ≈ 0.619 552 827 . (4.45)

From Figure 4.10(c) it can be seen that this state is similar to the icosahedron, with one of

the horizontal circles of MPs rotated by 36◦ so that it is aligned with the MPs of the other

circle. There are 15 CPPs distributed on three circles, with one circle coinciding with the

equator. The approximate amount of entanglement is Eg(|Ψ
pos
12 〉)≈ 2.993 524 700.

4.2.10 Twenty qubits

For the sake of completeness we mention the 20 qubit case, because it contains the

dodecahedron, the Platonic solid with the largest number of vertices. It was seen that

the 20 CPPs of the icosahedron state describe a regular dodecahedron, and therefore the

MPs of the dodecahedron state are immediately given by Equation (4.43). The analytic

form of the dodecahedron state is

|ψ20〉=
1

25
p

3

�p

187 |S0〉+
p

627 |S5〉+
p

247 |S10〉−
p

627 |S15〉+
p

187 |S20〉
�

. (4.46)

Its Majorana representation is shown in Figure 4.11(a), and its spherical volume function

g
2
3 (θ ,ϕ) is shown in Figure 4.11(b). From the icosahedral symmetry and the antipodal

configuration of the MPs it can be easily inferred that this state has 12 CPPs, one

at the centre of each face of the dodecahedron. Therefore the CPPs are given by

Equation (4.42). With |σ1〉 = |0〉 being a CPP, we immediately obtain G2 = 187
1875

and

Eg(|ψ20〉) = log2
1875
187
≈ 3.325 780. Like the icosahedron state, the dodecahedron state

is totally invariant under the icosahedral symmetry group Y , but it cannot be cast

as a positive state. Therefore its entanglement coincides for the three distance-like

entanglement measures, but additivity results are not known.

As mentioned in Section 3.2, the dodecahedron does not solve either of the classical

problems. Here we show that it does not solve the Majorana problem either. This

can be easily seen by converting the numerically known point distributions of Tóth’s

and Thomson’s problem into 20 qubit symmetric states and determining their entan-

glement. Their spherical volume functions g
2
3 (θ ,ϕ) are shown in Figure 4.11(c) and

(d), respectively, and the numerically derived values of their geometric entanglement

are Eg(|ψTó
20〉)≈ 3.327 075 and Eg(|ψTh

20〉)≈ 3.418 012. Thus the solution of Tóth’s prob-

lem is only marginally more entangled than the dodecahedron state, but the solution

of Thomson’s problem has a significantly higher amount of entanglement. The latter

state has only three CPPs, which describe an equilateral triangle on the equator, so it is

reasonable to expect that yet higher entangled 20 qubit symmetric states exist.
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(a) (b) (c) (d)

Figure 4.11: For 20 qubits the Majorana representation and the spherical volume function
g

2
3 (θ ,ϕ) of the dodecahedron state |ψ20〉 is shown in (a) and (b), respectively. This

state is not maximally entangled, and two counterexamples are the solutions of Tóth’s
and Thomson’s problem, numerically computed as spherical volume functions in (c) and
(d), respectively. The radius of the outer and inner circle are the maximal values of g

2
3

for |ψ20〉 and |ψTh
20〉, respectively.

4.3 Summary and Discussion

In the following we discuss the results gathered about highly and maximally entangled

symmetric states from several viewpoints, and formulate some results and conjectures.

4.3.1 Entanglement properties

In Chapter 2 it was found that the maximal geometric entanglement of n qubit states

scales linearly, whereas the maximal symmetric entanglement scales logarithmically.

Combining the upper and lower bounds for the symmetric case, it is seen that the

maximal symmetric n qubit entanglement scales as

log2

Æ

nπ
2
≤ Emax

g ≤ log2(n+ 1) , (4.47)

i.e. polylogarithmically between O(log
p

n) and O(log n). Stronger lower bounds can

be found numerically from the known solutions of Tóth’s and Thomson’s problem

by translating their point distributions into the corresponding symmetric states and

determining their entanglement. Martin et al. [90] did this for up to n= 110 and found

Eg(|ΨTh
n 〉) ≈ log2

(n+1)
1.71

= log2(n+ 1)− 0.775 for the solutions of Thomson’s problem.

While this comes close to the upper bound, the fluctuations for the individual n can be

large. In contrast to this, the explicit form of equally weighted superpositions of Dicke

states with pseudorandom phases is known for all n and their entanglement exhibits

very small fluctuations [90]. The best entanglement scaling found for such states is

Eg(|Ψn〉)≈ log2
(n+1)
2.22

, which is slightly below that of Thomson’s solutions [90].

For 3 qubits the maximally entangled state |W〉 is symmetric. On the other hand, for

n> 5 qubits the maximally entangled state can be neither symmetric nor LU-equivalent

to a symmetric state, because the lower bound Eg ≥
n
2

for general states is higher than
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Table 4.3: Entanglement values for symmetric n qubit states in terms of the geometric
measure. Listed from left to right are the entanglement of the most entangled Dicke state,
the maximally entangled positive symmetric state, the conjectured maximally entangled
symmetric state and the upper bound on symmetric entanglement. The inequalities
Eg
�

|Sbn/2c〉
�

≤ Eg
�

|Ψpos
n 〉
�

≤ Eg
�

|Ψn〉
�

< log2(n+ 1) hold for all n, and wherever the
amount of entanglement does not increase from left to right, the respective right-hand
cell has been left blank.

n Eg
�

|Sbn/2c〉
�

Eg
�

|Ψpos
n 〉
�

Eg
�

|Ψn〉
�

log2(n+ 1)

2 1 log2 3
3 log2(9/4) 2
4 log2(8/3) log2 3 log2 5
5 ≈ 1.532 824 877 ≈ 1.742 268 948† ≈ 2.584 962 501
6 log2(16/5) log2(9/2) log2 7
7 ≈ 1.767 313 935 ≈ 2.298 691 396† 3
8 ≈ 1.870 716 983 ≈ 2.445 210 159 ≈ 3.169 925 001
9 ≈ 1.942 404 615 ≈ 2.553 960 277† ≈ 3.321 928 095
10 ≈ 2.022 720 077 ≈ 2.679 763 092 ≈ 2.737 432 003 ≈ 3.459 431 619
11 ≈ 2.082 583 285 ≈ 2.773 622 669 ≈ 2.817 698 505 ≈ 3.584 962 501
12 ≈ 2.148 250 959 ≈ 2.993 524 700 log2(243/28) ≈ 3.700 439 718

† Closed-form analytic expressions are known, but not displayed due to their complicated form.

the upper bound Eg ≤ log2(n+ 1) for symmetric states. Regarding the cases of n= 4, 5

qubits, we consider the entanglement of the maximally entangled symmetric states

derived in the previous section, and find that Eg(|Ψn〉)<
n
2

in both cases, which implies

that the maximally entangled states of the general Hilbert space can be symmetric only

for n≤ 3 qubits.

Table 4.3 summarises the largest entanglement values that we found for symmetric

n qubit states with positive and general coefficients for up to 12 qubits. For comparison

purposes, the upper and lower bound are also listed. Where closed-form expressions

could not be found for the entanglement of the positive and general solutions, numerical

values were calculated with a precision of at least ten digits. The values for Eg

�

|Ψpos
n 〉
�

can be considered reliable in the sense that we detected the maximally entangled state

with a high likelihood. In contrast to this, the values Eg
�

|Ψn〉
�

for general symmetric

states are less reliable: While the entanglement of the candidates was calculated with

high precision, there is no guarantee that these states are indeed the maximally entangled

ones. However, even if more entangled states do exist, they are likely to have only a

slightly higher amount of entanglement.

The diagram in Figure 4.12 displays the entanglement of our candidates and solutions

along with the entanglement of the classical problems and the upper and lower bounds.

It is seen that the solutions of Thomson’s problem generally exhibit a higher amount

of entanglement than those of Tóth’s problem, thus demonstrating that for large n the
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Figure 4.12: The geometric entanglement of different n qubit symmetric states is shown.
The numerically determined maximally entangled symmetric states are represented
by blue crosses. For n = 10− 12 these states are not positive, and the corresponding
maximally entangled positive states are denoted by red crosses. The known upper
and lower bound on maximal symmetric entanglement is shown as a black and gray
line, respectively, with the Stirling approximation of the equally balanced Dicke states
displayed as a dotted gray line. The solutions of Tóth’s problem (olive diamonds)
and Thomson’s problem (green circles) yield nontrivial lower bounds for the maximal
symmetric entanglement. The fitting EThomson

g ≈ log2
(n+1)
1.71

for the solutions of Thomson’s
problem of up to n= 110 was derived in [90] and is displayed as a dashed green line.
Because of the relationship (2.5) the values of Eg are lower bounds for the maximal
symmetric entanglement of the relative entropy of entanglement ER and the logarithmic
robustness of entanglement ERob.
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Table 4.4: Summary of the properties of the symmetric states discussed in Chapter 4. The
second column indicates whether the states are positive or not (the non-positive states
listed here cannot be turned into positive states by symmetric LU operations). The third
column indicates whether states are totally invariant, and if they are, the corresponding
symmetry group is listed (cf. Section 3.1.3). All positive states are strongly additive
under Eg (cf. Lemma 11), and for all totally invariant states the three measures Eg ER
and ERob coincide (cf. Lemma 10). States that are positive as well as totally invariant
are furthermore additive under ER and ERob (cf. Theorem 12). The last three columns
indicate whether the listed states are the (conjectured) solutions of the point distribution
problems discussed in Section 3.2.

Families of states
positive

totally Tóth Thomson Majorana
(n≥ 3 and 0< k < n

2
) invar. solution solution solution

balanced Dicke states |Sn, n
2
〉 3 O(2) 7 7 7

imbalanced Dicke states |Sn,k〉 3 SO(2) 7 7 n= 3
GHZ states |GHZn〉 3 Dn n= 3 n= 3 7

1p
2

�

|Sk〉+ |Sn−k〉
�

3 Dn−2k
n= 5, 6 n= 5,6, 7 n= 6,7, 9
(k = 1) (k = 1) (k = 1, 2†)

States discussed in
positive

totally Tóth Thomson Majorana
Section 4.2 invar. solution solution solution

tetrahedron |Ψ4〉 3 T 3 3 3

trigonal bipyramid |ψ5〉 3 D3 3 3 7

square pyramid |Ψ5〉 3 7 7 7 3

octahedron |Ψ6〉 3 O 3 3 3

(1-3-3) |ψTó
7 〉 7 7 3 7 7

pentagonal dipyramid |Ψ7〉 3 D5 7 3 3

regular cube |ψc
8〉 3 O 7 7 7

asymmetric pentagonal
3 7 7 7 3

dipyramid |Ψ8〉
antiprism states |ψa

8〉 7 7 3∗ 3∗ 7

triaugmented triangular
7 7 3∗ 3∗ 7

prism states |ψ9〉
pentagonal dipyramid |Ψ9〉 3 D5 7 7 3

(2-2-4-2) |ψTó
10〉 7 7 3 7 7

gyroelongated square
7 7 7 3∗ 3∗

bipyramid states |ψ10〉
maximal. ent. positive |Ψpos

10 〉 3 7 7 7 7

rotat. symm. positive |ψpos
10 〉 3 D6 7 7 7

(1-2-4-2-2) |ψTh
11〉 7 7 7 3 7

(1-5-5) states |ψ11〉 7 7 3∗ 7 3∗

maximal. ent. positive |Ψpos
11 〉 3 7 7 7 7

icosahedron |Ψ12〉 7 Y 3 3 3

maximal. ent. positive |Ψpos
12 〉 3 7 7 7 7

dodecahedron |ψ20〉 7 Y 7 7 7

∗ The solutions correspond to different values of the parameter(s) that describe the states.
† k = 1 for n= 6, 7, and k = 2 for n= 9.
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solutions for Thomson’s problem are generally a better approximation for the Majorana

problem than the solutions of Tóth’s problem.

In Table 4.4 the qualitative properties (positive, totally invariant, solution of an

optimisation problem) of all the symmetric states investigated in this chapter are listed.

Note that positivity automatically implies strong additivity under Eg (Lemma 11), that

total invariance implies Eg = ER = ERob (Lemma 10), and that the simultaneous existence

of these two properties additionally implies additivity under ER and ERob (Theorem 12).

4.3.2 Number and locations of MPs

The spherical amplitude function g(θ ,ϕ) = |〈ψs|σ(θ ,ϕ)〉⊗n| proved to be a valuable tool

for numerically determining the MP locations of a given symmetric state |ψs〉, because

the zeroes of this function coincide with the antipodes of the MPs. By considering

the power g
2
3 (θ ,ϕ) of this function, we obtained the spherical volume function which

describes a three-dimensional volume that is constant for all n qubit symmetric states (cf.

Corollary 9). This function can be used to explain the Majorana representation of highly

entangled symmetric states: A “bunching” of MPs in a small area, e.g. in one half-sphere

of the Majorana sphere leads to high values of g
2
3 in that area, and this imbalance of

the spherical volume function leads to low entanglement. This explains the tendency of

MPs to spread out widely over the sphere, in a similar fashion to the classical problems.

Rather surprisingly, however, there also exist highly entangled states where two or more

MPs coincide (as seen for n = 3, 8, 9). This is intriguing because such configurations are

the least optimal ones for classical point distributions. Again, this can be explained with

the constant integration volume: Because the zeroes of g
2
3 are the antipodes of the MPs,

a lower number of different MPs means that the spherical volume function has fewer

zeroes, and due to the constant volume, this can lead to smaller values at the global

maxima.

With regard to the Platonic solids, it was found that they solve the Majorana problem

only for n = 4,6,12, which is in full analogy to the classical problems. How can

this be understood? For Tóth’s problem an intuitive description was already given

for n = 8 in Figure 3.4: By turning the cube into a regular antiprism, the nearest

neighbour distances can be increased, at the expense of breaking the Platonic symmetry.

In general, Thomson’s problem and the Majorana problem also favour such increased

nearest-neighbour distances. For n = 4, 6, 12 the Platonic solids are composed of regular

triangles, whereas the cube (n = 8) is composed of regular squares and the dodecahedron

(n= 20) of regular pentagons. From this it can be inferred that the vertices of optimal

point distributions tend to form triangles with their nearest neighbours.

Summing up the behaviour of MPs of maximally entangled symmetric states, we can

say that they prefer to be either well spaced apart from each other, or to coincide into

degeneracies. Like the classical point distributions, the MPs tend to describe polyhedra
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that are made up mostly or entirely of triangles. Because phased states are in general

considerably higher entangled than positive states (cf. Theorem 4, Corollary 5 and

[135]), and because positive coefficients impose strong restrictions on the locations of

MPs and CPPs (cf. Section 3.3.3), it is expected that for larger n the maximally entangled

symmetric states no longer exhibit any rotational and reflective symmetries in their

Majorana representation. For Thomson’s problem, the first distribution without any

symmetry features (and therefore no representation as a real state, cf. Corollary 18)

arises at n= 13, and for Tóth’s problem at n= 15. It is therefore reasonable to expect

that the situation is similar for the solutions of the Majorana problem.

From a mathematical point of view, an interesting question is in which cases the

MPs and CPPs of certain states (such as the maximally entangled ones) can be derived

analytically as an algebraic or closed-form number. The positions of the MPs and CPPs

are often given by the roots of polynomial equations. Abel’s impossibility theorem states

that the general quintic and higher equation is impossible to solve algebraically [188].

In the cases n = 7 and n = 9 we encountered such polynomials, but we could reduce

them to cubic equations by suitable substitutions. This may not be possible in general,

and Galois theory may then be useful in answering the question of algebraic solvability

[188].

4.3.3 Number and locations of CPPs

Excluding the Dicke states with their continuous ring of CPPs, one observes that can-

didates for maximal entanglement tend to have a large number of CPPs. The prime

example is the case of five qubits, where the classical solution with only three CPPs is

less entangled than the “square pyramid” state which has five CPPs. In Theorem 22 it

was shown that 2n−4 is an upper bound on the number of CPPs of positive symmetric n

qubit states. In Table 4.5 this bound is compared to the number of CPPs of all candidates

and solutions. It can be seen that the bound is obeyed by all states, including those that

cannot be cast with positive coefficients. In many cases the number of CPPs comes close

to the bound (n = 5,8) or coincides with it (n = 4,6,7,12). This raises the question

whether the upper bound of 2n− 4 on the number of CPPs also holds for general sym-

metric states. One indication in favour of this conjecture is given by Euler’s formula for

convex polyhedra, which states that a convex polyhedron with n vertices can have at

most 2n−4 faces, with the bound being strict iff all faces are triangles. This is intriguing

because our proof of Theorem 22 is of a very technical nature, where the number 2n− 4

arises in a seemingly arbitrary fashion. This hints at a deeper lying connection between

the faces spanned by the MPs and the number of local maxima present in the spherical

amplitude function g(θ ,ϕ). We therefore formulate the following conjecture:

Conjecture 23. With the exception of the Dicke states, every n qubit symmetric state has
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Table 4.5: The number of CPPs and polyhedral faces in the Majorana representation
of the solutions or conjectured solutions are listed. The upper bound 2n− 4 must hold
for the number of faces (due to Euler’s formula) and for the number of CPPs (due to
Theorem 22) of |Ψpos

n 〉. Entries are omitted where the underlying state is the same as the
conjectured solution |Ψn〉 of the Majorana problem.

n CPPs |ψTó
n 〉 CPPs |ψTh

n 〉 CPPs |Ψpos
n 〉 CPPs |Ψn〉 faces |Ψn〉 2n− 4

4 4 4 4
5 3 3 5 5 6
6 8 8 8
7 3 10 10 10
8 2 2 10 10 12
9 3 3 10 10 14
10 2 8 3 8 16 16
11 1 2 2 11 16 18
12 15 20 20 20

at most 2n− 4 CPPs.

What can we say about lower bounds on the number of CPPs? For maximally

entangled symmetric n qubit states Corollary 6 predicts the existence of only two distinct

CPPs, but our results show that in general there is a considerably larger number of CPPs,

and that the CPPs tend to be well spread out over the sphere. This makes sense from

the viewpoint of the necessary condition outlined in Corollary 6, namely that it must be

possible to write maximally entangled symmetric states as linear combinations of their

CPSs.

For n= 10, 11 the numerically determined maximally entangled positive symmetric

states do not exhibit a rotational symmetry. This is somewhat surprising, because

Lemma 20 implies that the CPPs can then only lie on the positive half-circle of the

Majorana sphere, thus likely resulting in an imbalance of the spherical amplitude

function g(θ ,ϕ). However, this imbalance is only very weakly pronounced for the

positive solutions of n = 10,11, with the non-global maxima of g(θ ,ϕ) coming very

close to the value at the CPPs. It was seen that both |Ψpos
10 〉 and |Ψpos

11 〉 are cast with only

three nonvanishing basis states, and that Theorem 13 implies that shifting the MPs in a

way that each horizontal MP ring assumes a rotational Z-axis symmetry would result

in four nonvanishing basis states. It thus seems that, at least for positive symmetric

states, a lower number of nonvanishing basis states is more favourable than Majorana

representations with certain symmetry features.

It was found that for 3< n≤ 12 the maximally entangled symmetric n qubit states

are not Dicke states. This result can be easily extended to n > 12 by comparing the

entanglement scaling of the equally balanced Dicke state (2.14) to e.g. the superpositions

of Dicke states shown in Table 4.1, or to the entanglement scaling of the symmetric
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states defined for all n in [90]. Since Dicke states are the only states whose Majorana

representation exhibits a continuous rotational symmetry, we obtain the following result:

Corollary 24. For n> 3 the maximally entangled symmetric n qubit states with respect to

the geometric measure have only a finite number of CPPs.

This finding is interesting in light of the question raised in Section 2.2, namely

whether maximally entangled states of arbitrary multipartite systems have a discrete

or continuous amount of CPSs (see also Tamaryan et al. [149, 150]). The answer for

the general (non-symmetric) case is not known, but the investigation of the symmetric

n qubit case gives reason to believe that for most multipartite systems the maximally

entangled states have only a finite number of distinct CPSs.
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Chapter5
Classification of Symmetric State

Entanglement

In the previous chapter the entanglement of symmetric states was inves-

tigated primarily from a quantitative point of view. Now the focus shifts

towards the qualitative characterisation of symmetric states. The concepts

of LOCC and SLOCC equivalence are adapted to the symmetric case, and

the Degeneracy Configuration (DC), an entanglement classification scheme

specifically for symmetric states, is reviewed. It is found that SLOCC opera-

tions between symmetric states are described by the Möbius transformations

of complex analysis. This allows for an intuitive visualisation, as well as

practical uses such as the determination of whether two symmetric states be-

long to the same SLOCC class. The symmetric SLOCC and DC classes for up

to five qubits are studied in detail, and representative states are derived for

each entanglement class. Connections are made to known SLOCC invariants

as well as related works, such as the Entanglement Families (EFs) [51] or

alternative definitions of maximal entanglement [58, 184].

5.1 Entanglement classification schemes for symmetric states

The entanglement classification schemes LOCC and SLOCC were already discussed in

Section 1.2.3. In particular, it was seen that SLOCC equivalence gives rise to a coarser

partition than LOCC equivalence in the sense that every LOCC operation is also an

SLOCC operation, but not vice versa. The concepts of LOCC and SLOCC equivalence

are now applied to the subset of symmetric states, and a comparison is made to the

Degeneracy Configuration (DC) [82], an entanglement classification scheme designed

specifically for symmetric states.
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5.1.1 Symmetric LOCC and SLOCC operations

The condition for LOCC equivalence between two arbitrary n qudit states formulated in

Equation (1.11) is a special case of the SLOCC equivalence (1.15). The special linear

group SL(d,C) contains all invertible d × d complex matrices with unit determinant,

which explains why SLOCC operations are also known as Invertible Local Operations

(ILOs) [18]. Note that SL(d,C) contains SU(d) as a subgroup. In the following we focus

on the qubit case (d = 2) and on permutation-symmetric states.

Given two symmetric n qubit states |ψs〉 and |φs〉, is there a way to simplify Equa-

tion (1.11) and Equation (1.15) to take permutation-symmetry into account? Mathonet

et al. [86] recently discovered that there always exists a symmetric ILO between two

SLOCC-equivalent symmetric states:

|ψs〉 SLOCC←→ |φs〉 ⇐⇒ ∃B ∈ SL(2,C) : |ψs〉= B⊗n |φs〉 . (5.1)

This statement is far from obvious, in a fashion that bears resemblance to the existence

of symmetric CPSs for all symmetric n qubit states. Just as the result of Hübener et al.

[84] greatly simplifies the quantitative determination of the geometric entanglement

of symmetric states, Equation (5.1) greatly simplifies the qualitative decision problem

of whether two given n qubit symmetric states belong to the same SLOCC class or not.

Instead of considering arbitrary ILOs B1⊗ · · · ⊗Bn ∈ SL(2,C)⊗n with 6n real degrees of

freedom (d.f.), it suffices to consider only the six d.f. present in SL(2,C), regardless of

the number of qubits.

Another similarity between the results of Hübener et al. [84] and Mathonet et

al. [86] is that there are exceptions to the converse statements. Regarding the first

result, while symmetric n qubit states always possess at least one symmetric CPS, all

the CPSs are necessarily symmetric only for n ≥ 3 qubits [84]. Regarding the second

result, if two symmetric n qubit states are SLOCC-equivalent, then there must exist

a symmetric ILO between them, but there may also exist non-symmetric ILOs [86].

However, non-symmetric ILOs between symmetric states exist only for states that belong

to the separable class, the W class and the GHZ class. For n ≥ 4 qubits these three

SLOCC classes constitute only an infinitesimal fraction in the set of all SLOCC classes

[86].

From the arguments in [86] it can be easily inferred that Equation (5.1) holds in

analogous form for LOCC operations1:

|ψs〉 LOCC←→ |φs〉 ⇐⇒ ∃A ∈ SU(2) : |ψs〉=A⊗n |φs〉 . (5.2)

This reduces the complexity of determining the LOCC-equivalence of two symmetric

1This was also explicitly derived alongside an extension to mixed symmetric states in [189].
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(a) (b) (c)

SLOCC⇐⇒ LOCC⇐⇒

Figure 5.1: The MP distributions of three GHZ-type symmetric states of three qubits are
shown. The GHZ-state |S0〉+ |S3〉 displayed in (b) is LOCC-equivalent to the rotated
GHZ-state |S0〉 +

p
3 |S2〉 shown in (c). The GHZ-type state α |S0〉 + β |S3〉 in (a) is

SLOCC-equivalent, but not LOCC-equivalent to the others.

states from the 3n d.f. present in A1 ⊗ · · · ⊗An ∈ SU(2)⊗n to the three d.f. of SU(2).

The three real d.f. present in SU(2) were already identified as the rotations (1.20) of

the MP distribution on the Majorana sphere. Therefore Equation (5.2) implies that two

symmetric n qubit states are LOCC-equivalent iff their MP distributions can be converted

into each other by a rotation on the Majorana sphere.

Is it possible to make a similar operational statement with regard to the MP distribu-

tion of SLOCC-equivalent symmetric states? From Equation (1.19) and Equation (5.1)

it is clear that B ∈ SL(2,C) acts on each MP individually. Therefore, once the action of

SL(2,C) on an individual Bloch vector is understood, one automatically understands how

MP distributions transform under the action of symmetric SLOCC operations. Because

of SU(2) ⊂ SL(2,C), three of the six d.f. of the special linear group SL(2,C) can be

identified as the usual rotations on the Bloch sphere. From mathematics it is known that

the Lie group SL(2,C) is a double cover of the Möbius group, the automorphism group on

the Riemann sphere. Because of this, the transformation of the MPs under a symmetric

SLOCC operation is described by a Möbius transformation of complex analysis, with

the Majorana sphere in lieu of the Riemann sphere. The Möbius transformations will

be covered in detail in Section 5.2, and here we only present the example in Figure 5.1,

showing three GHZ-type states that are LOCC or SLOCC-equivalent to each other.

5.1.2 Degeneracy configuration

The Degeneracy Configuration (DC) is an entanglement classification scheme intro-

duced specifically for n qubit symmetric states [82]. Its definition incorporates the

Majorana representation by counting the number of identical MPs of a given symmet-

ric state. Each n qubit symmetric state belongs to exactly one DC class Dn1,...,nd
with

n = n1+ . . .+ nd (n1 ≥ . . .≥ nd), and where n1 stands for the number of MPs coinciding

on one point of the Bloch sphere, n2 for those coinciding at a different point, and so on.

We call the ni the degeneracy degrees, and the number d the diversity degree. The

number of different DC classes into which the Hilbert space of n qubits is partitioned

is given by the partition function p(n). The usefulness of the concept of DC classes can
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be seen from the fact that, due to the non-singular nature of ILOs, the MP degener-

acy of a given symmetric state remains invariant under symmetric SLOCC operations:

|φi〉= |φ j〉⇔ B |φi〉= B |φ j〉 for all |φi〉 , |φ j〉 ∈ C2 and all B ∈ SL(2,C). On the other

hand, two states that belong to the same DC class do not necessarily belong to the same

SLOCC class [82]. Thus we arrive at the following refinement hierarchy:

Theorem 25. The symmetric subspace of every n qubit Hilbert space has the following

refinement hierarchy of entanglement partitions:

LOCC≤ SLOCC≤ DC . (5.3)

An obvious advantage of DC classes over SLOCC classes is that the number of

entanglement classes remains finite for arbitrary n. This is in stark contrast to the number

of SLOCC classes, which becomes infinite for n≥ 4 qubits, even when considering only

the symmetric subset. Furthermore, operational implications have been found for the

concept of DC classes: Each DC class can be unambiguously associated with specific

parameter configurations in experiments [82].

5.2 Möbius transformations

As mentioned in the previous section, SLOCC operations between multiqubit symmetric

states can be understood by means of the Möbius transformations from complex analysis.

This intriguing link was independently discovered and described2 by me [88] and by

Ribeiro and Mosseri [190]. First, the definition of Möbius transformations is recapitu-

lated, and then the transformations are employed to analyse and visualise the freedoms

present in symmetric SLOCC operations.

5.2.1 Introduction

The Möbius transformations are defined in complex analysis as the bijective holomorphic3

functions that project the extended complex plane C = C∪ {∞} onto itself [111]. These

isomorphic functions f : C→ C take the form of rational functions

f (z) =
az+ b

cz+ d
, (5.4)

2Unbeknownst to me as well as to Ribeiro and Mosseri during the writing of our manuscripts, some
partial properties were already discovered by Kolenderski [107]. In that paper the effect of GL(2,C)
operations on Bloch vectors is described, but the connection to the Möbius transformations of complex
analysis is not made.

3A complex-valued function of a complex variable is holomorphic if it is complex differentiable every-
where on its domain. Complex differentiability is a very strong requirement, resulting in many fascinating
properties of holomorphic functions.
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Im

z1
z′
1

z2

z′
2

z3

z′
3

Figure 5.2: A stereographic projection through the north pole of the Majorana sphere
mediates between the Majorana roots in the complex plane and the MPs on the surface
of the sphere. The SLOCC operation of Figure 5.1 is facilitated by the transformation
f (z) = z

2
which maps the set of roots {z1, z2, z3} onto the set {z′1, z′2, z′3}, thus lowering

the ring of MPs.

with a, b, c, d ∈ C, and ad − bc 6= 0. The latter condition ensures that f is invertible. In

the case c 6= 0 the domain of f is C\{− d
c
} and the codomain is C\{ a

c
}, while for c = 0

both the domain and codomain are C. The extension to a bijective mapping f : C→ C
is mediated by f (− d

c
) := ∞, f (∞) := a

c
for c 6= 0, and f (∞) := ∞ for c = 0. The

coefficients give rise to the matrix representation B =
�

a b
c d

�

of the Möbius group, and

from Equation (5.4) it is clear that it suffices to consider those B with determinant one

(i.e., ad− bc = 1). Since +B and −B describe the same transformation f (z), the Möbius

group is isomorphic to the projective special linear group PSL(2,C) = SL(2,C)/{±1}.

As outlined in Section 1.3.2, all points of C can be projected onto the Riemann

sphere by means of an inverse stereographic projection. With this projection the roots

{z1, . . . , zn} of the Majorana polynomial (1.25) are projected to the surface of the Ma-

jorana sphere, where they become the MPs. The action of a Möbius transformation

f : C→ C on the roots {z1, . . . , zn} in the extended complex plane then translates on

the Majorana sphere to a generalised rotation B ∈ SL(2,C) acting on each MP, which

is precisely a symmetric SLOCC operation of the form (5.1). We can therefore view

the Möbius transformations (or equivalently symmetric SLOCC operations) either as

automorphisms on C or as automorphisms on S2, with the isomorphism between these

two manifolds described by the stereographic projection.

As an example, Figure 5.2 shows the action of the Möbius transformation f (z) = z
2

which transforms the MPs of the distribution shown in Figure 5.1(b) into that of Fig-

ure 5.1(a). It can be seen that circles remain circles under the action of this transfor-

mation, both on the sphere and in the complex plane. Intriguingly, this property holds

for all Möbius transformations: Both on the Riemann sphere and in the complex plane

circles are projected onto circles, where we consider straight lines in the complex plane
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to be circles too [191]. Furthermore, angles are preserved under Möbius transforma-

tions, i.e. two lines or circles that meet at an angle α will still meet at an angle α after

the transformation. These properties4 become more understandable when taking into

account that every Möbius transformation (5.4) can be composed from the following

elementary operations [111]:

• Rotation & Dilation: z 7−→ az , with a ∈ C\{0}.

i) Rotation: z 7−→ eiϕz , with ϕ ∈ R.

ii) Dilation: z 7−→ rz , with r > 0.

• Translation: z 7−→ z+ b , with b ∈ C.

• Inversion: z 7−→ 1
z

.

Möbius transformations can be categorised into different types, depending on the

values of the trace and eigenvalues of the transformation matrix B. There exist parabolic,

elliptic, hyperbolic and loxodromic Möbius transformations [191], but a unifying feature

is that two not necessarily antipodal or distinct points on the Riemann sphere are

left invariant. This generalises the SU(2) rotations, where the two invariant points

are the intersections of the rotation axis with the sphere. As an example, the SLOCC

operation shown in Figure 5.2 is mediated by a hyperbolic Möbius transformation. These

transformations are characterised by the two invariant points (here the north and south

pole) acting as attractive and repulsive centres, with the MPs moving away from the

repulsive centre towards the attractive one.

A well-known property of Möbius transformations is that for any two ordered sets

of three pairwise distinct points {v1, v2, v3} and {w1, w2, w3} there always exists exactly

one Möbius transformation that maps one set to the other [191]. This is in general not

possible for two sets of four pairwise distinct points, but the cross-ratio preservation

of Möbius transformations [191] can be employed to derive a necessary and sufficient

condition: An ordered quadruple of distinct complex numbers {v1, v2, v3, v4} can be

projected onto another quadruple {w1, w2, w3, w4} by a Möbius transformation iff

(v1− v3)(v2− v4)
(v2− v3)(v1− v4)

=
(w1−w3)(w2−w4)
(w2−w3)(w1−w4)

. (5.5)

5.2.2 Relationship to SLOCC operations

From the preceding introduction of the Möbius transformations and Equation (5.1) the

following theorem is clear.

4It is said that one picture is worth a thousand words, and this is probably even more true for a video. To
gain a good understanding of the Möbius transformations it is recommended to watch the beautiful video
clip of Arnold et al. [192] which has featured in a visualisation competition of Science magazine.
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Theorem 26. Two symmetric n qubit states |ψs〉 and |φs〉 are SLOCC-equivalent iff there

exists a Möbius transformation (5.4) between their Majorana roots.

How to determine whether such a Möbius transformation exists? Naturally, |ψs〉
and |φs〉 must belong to the same DC class, as SLOCC equivalence is a refinement of DC

equivalence. One crucial property of Möbius transformations in this regard is that any

set of three pairwise distinct points can be projected onto any other. This immediately

leads to the following important result, first described in [82].

Corollary 27. If two symmetric n qubit states |ψs〉 and |φs〉 belong to the same DC class

Dn1,...,nd
with diversity degree d ≤ 3, then they are SLOCC-equivalent.

This corollary implies that DC classes with a diversity degree of three or less consist

of a single SLOCC class. In particular, this means that for two and three qubit systems

the partition into SLOCC classes is the same as the partition into DC classes. The reverse

of Corollary 27 clearly does not hold in general, and for states with diversity degree

d = 4 the cross-ratio preservation (5.5) yields the following result:

Corollary 28. Let |ψs〉 and |φs〉 be two symmetric n qubit states that belong to the same

DC class Dn1,...,n4
with diversity degree d = 4. The Majorana roots of |ψs〉 and |φs〉

corresponding to the degeneracy ni are labelled vi and wi , respectively. If the vi and wi fulfil

Equation (5.5), then |ψs〉 and |φs〉 are SLOCC-equivalent.

Note that the ordering of the roots has to be taken into account, because Equa-

tion (5.5) does in general not remain true under permutations, and because Majorana

roots corresponding to degenerated MPs have to be projected onto Majorana roots with

the same degeneracy. In case of a DC class that contains the same degeneracy degree

several times5, i.e. ni = n j for some i 6= j, there is obviously more than one way to

designate the indices ni to the roots in decreasing order, and Equation (5.5) needs to

hold only for one such ordering to obtain SLOCC-equivalence.

Next we investigate the constituents of SLOCC operations, and identify the freedoms

that do not correspond to LOCC operations. The Möbius transformations (5.4) have

six real d.f., and are described by SL(2,C). The polar decomposition of linear algebra

states that every invertible complex matrix can be uniquely decomposed into a unitary

matrix and a positive-semidefinite Hermitian matrix [193]. We use this result to factorise

the d.f. that genuinely belong to SLOCC operations (i.e., which cannot be realized by

LOCC operations), and show that this factorisation corresponds to a clear and intuitive

visualisation with the Majorana sphere.

5This is the case for all DC classes of up to and including 9 qubits, as the 10 qubit class D4,3,2,1 is the first
DC class with four different degeneracy degrees.
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Theorem 29. Every SLOCC operation between two symmetric n qubit states can be fac-

torised into an affine Möbius transformation of the form

ef (z) = Az+ B , with A> 0 , B ∈ C , (5.6)

and an LOCC operation. This decomposition is unique, and the set of transformations (5.6)

forms a group that is isomorphic to SL(2,C)/SU(2).

Proof. First, the existence of a factorisation of each SLOCC operation into a transforma-

tion ef of the form (5.6) and an LOCC operation is shown. For each B =
�

a b
c d

�

∈ SL(2,C)
we define eB = λB with λ =

p
aa∗+ cc∗ > 0. Since eB describes the same SLOCC op-

eration as B, it suffices to show that eB can be decomposed into an LOCC operation

A ∈ SU(2) and a Möbius transformation of the form (5.6):

 

λa λb

λc λd

!

=

 

α −β∗

β α∗

!

⊗

 

A B

0 1

!

,

with A > 0 and α,β , B ∈ C, αα∗ + ββ∗ = 1. For given parameters a, b, c, d ∈ C with

ad − bc = 1, this is fulfilled for α = a
λ

, β = c
λ

, A = λ2 and B = λ2 b+c∗

a
= λ2d−a∗

c
(for

a = 0 or c = 0 only one of the two identities holds). This proves the existence of a

factorisation.

To show the uniqueness of factorisations, it is assumed that a given SLOCC operation

B ∈ SL(2,C) can be factorised, up to scalar prefactors λ1,λ2 ∈ C\{0}, in the above way

by two sets of parameters {α1,β1, A1, B1} and {α2,β2, A2, B2}. Elimination of B from the

resulting matrix equations yields the condition

λ2

λ1

 

α1 −β∗1
β1 α∗1

!

⊗

 

A1 B1

0 1

!

=

 

α2 −β∗2
β2 α∗2

!

⊗

 

A2 B2

0 1

!

.

A straightforward calculation yields
�

�

λ2

λ1

�

� = 1, and from this it readily follows that

the two sets of parameters must coincide. This uniqueness implies that the set of

transformations ef is isomorphic to SL(2,C)/SU(2), and their group properties are easily

verified explicitly.

Theorem 29 is closely related to the polar decomposition of matrices, which has

also been mentioned in connection with the Bloch sphere in [107]. However, while the

matrices describing the affine transformations ef are positive, they are in general not

Hermitian (unlike in the polar decomposition), and the introduction of the prefactor λ

in the proof is necessary because A and B are defined to have unit determinants.

The orthodox way to visualise Möbius transformations is to fix the Riemann sphere

in R3, and points {z1, . . . , zn} on the complex plane are transformed to different points

{z′1, . . . , z′n} under the action of (5.4). Alternatively, the points in the plane can be
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z2

z3
z4
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M3

Figure 5.3: Alternative visualisation of Möbius transformations where a fixed set of
complex points is projected onto the surface of a moving sphere. The three innate
freedoms of SLOCC operations not present in LOCC operations are then described by
the translations of the Majorana sphere in R3. The north pole of sphere M1 (with the
MP distribution of the five qubit “square pyramid state”) lies 2 units above the origin
of the complex plane, while the one of M2 lies 5 units above, and M3 is additionally
displaced horizontally by a vector 5−5i. The parameters (A, B) of Equation (5.6) for the
transformation of M1 to M2 and M3 are (5

2
, 0) and (5

2
, 5− 5i), respectively.
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considered fixed, and instead the Riemann sphere moves in R3, as shown in Figure 5.3.

The six d.f. of the Möbius transformations are then split into three translational freedoms

(movement of sphere in R3) and three rotational freedoms (SU(2)-rotations of sphere).

By considering these elementary operations it can be verified by calculation that this is an

equivalent way of viewing the change of MPs on the sphere under the action of Möbius

transformations. A general SLOCC operation between two symmetric states is then

described by a translation of the Majorana sphere in R3, followed by a rotation. In this

approach the affine transformations (5.6) exactly describe the set of translations in R3

that leave the sphere’s north pole above the complex plane. The parameters of the affine

function ef (z) = Az+ B correspond to the translation as follows: The parameter A= h2

h1
is

the ratio of the heights of the north pole before (h1) and after (h2) the transformation,

and B is the horizontal displacement vector (cf. Figure 5.3). Regarding the subsequent

rotation of the Majorana sphere, it is clear that it leaves the relative MP distribution

invariant and can be described by an LOCC operation.

5.3 Representative states for SLOCC classes

In the following the SLOCC and DC classes of symmetric states of up to 5 qubits are

characterised, and representative states are given for each equivalence class. The aim

is to provide representations that are not only unique (i.e. the representative states

are all inequivalent to each other), but that also allow for a simple analytical form as

well as simple MP distributions. Before tackling this problem, we briefly investigate

the relationship between general and symmetric states under SLOCC operations. For

example, if it were possible to transform every nonsymmetric state into a symmetric

state by SLOCC, then the restriction to symmetric states would be merely an artificial

one, because all states in H could be represented by symmetric states.

5.3.1 Relationship between symmetric and nonsymmetric states

From a comparison of parameters it can be easily seen that the aforementioned sym-

metrisation of generic states by SLOCC operations is a rare exception: Unnormalised

pure states of n qubits are described by 2n complex coefficients, and taking the global

phase into account, this leads to 2n+1 − 1 independent real degrees of freedom (d.f.).

General SLOCC operations (which include LU operations that can be associated with

basis transformations and standard forms) are described by SL(2,C)n and have 6n real

d.f., so the number of remaining independent d.f. is 2n+1− 6n− 1. On the other hand,

unnormalised symmetric n qubit states are described by n+ 1 Dicke states, yielding

2(n+ 1)− 1 independent real freedoms. Since 2n+1 − 6n− 1 ≤ 2(n+ 1)− 1 holds

only for n ≤ 4 qubits, it is clear that generic states of five and more qubits cannot be

symmetrised by SLOCC. In Section 1.2.3 the SLOCC equivalence classes of systems
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D2

|S0〉
(separable)

D1,1

|S1〉
(entangled)

D3

|S0〉
(separable)

D2,1

|S1〉
(W-type)

D1,1,1

|S0〉+ |S3〉
(GHZ-type)

Figure 5.4: The SLOCC and DC classes of 2 and 3 qubit symmetric states are represented
by the MP distributions of characteristic states. Because of Corollary 27 each DC class
consists of a single SLOCC class. Excluding the biseparable 3 qubit states, every 2 or
3 qubit state can be transformed into one of the symmetric states shown here by a
(generally nonsymmetric) SLOCC operation.

with up to four qubits were already reviewed, and we will now follow up on this by

investigating whether these equivalence classes contain symmetric states.

First, we note that the symmetrisation of the SLOCC class of n qubit product states is

trivial, because every product state can be turned into a symmetric state (e.g. |0〉⊗n) by

an LU operation. This SLOCC class coincides with the DC class Dn.

The other extreme with regard to symmetrisation are the SLOCC classes with states

that are neither product states nor entangled over all parties. As an example, the three

qubit state |ψ〉A-BC = |000〉+ |011〉 = |0〉 ⊗ (|00〉+ |11〉) is biseparable, because the

first qubit is not entangled with the rest. This inherently asymmetric property cannot

be lifted by SLOCC operations, since local operations cannot create entanglement over

disentangled parts. Thus the SLOCC class to which |ψ〉A-BC belongs does not contain

a single symmetric state. As symmetric states are either fully separable or entangled

over all parties [194], this implies that for three and more qubits there always exist

fundamentally nonsymmetric SLOCC classes.

Every pure bipartite state (which includes the 2 qubit case) can be cast as a symmetric

state by means of the Schmidt decomposition (1.6), which means that every state is LU-

equivalent to a symmetric state. For 2 qubits there are two SLOCC equivalence classes,

containing the separable and entangled states, respectively. Choosing the states |S0〉 and

|S1〉 as representatives of these SLOCC classes, we display their Majorana representations

in Figure 5.4.

For 3 qubits there exist six different SLOCC classes, the separable class, the three

biseparable classes, and the two inequivalent classes with GHZ-type and W-type entan-

glement [18, 195]. All states of the latter two classes are SLOCC-equivalent to the |GHZ〉
and |W〉 state, respectively [18]. Therefore, with the exception of the biseparable states,

every three qubit state can be turned into a symmetric state by SLOCC. In Figure 5.4 the

three symmetric SLOCC classes are represented by the states |S0〉, |S1〉 and |S0〉+ |S3〉.
From Corollary 27 it is clear that the DC classes coincide with the SLOCC classes, with
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D3 containing the separable states, D2,1 the W-type entangled states and D1,1,1 the

GHZ-type entangled states.

For 4 qubits the number of SLOCC classes becomes infinite [18], even when con-

sidering only the subset of symmetric states. The symmetric entanglement classes of 4

qubits will be investigated in detail in the next section, and in Section 5.4 these classes

will be linked to the Entanglement Families (EFs) of Verstraete et al. [51].

5.3.2 Four qubit symmetric classes

For symmetric states of 4 qubits there exist five DC classes and a continuum of SLOCC

classes [82]. As shown in Figure 5.5, four of the DC classes coincide with SLOCC

classes (which is clear from Corollary 27), while the generic class D1,1,1,1 with no MP

degeneracy is comprised of a continuum of SLOCC classes (cf. Figure 2 in [85]). We

will now parameterise this continuum in a way that exactly one state, acting as the

representative state, is chosen from every SLOCC class6. The high symmetry present

in an equidistant distribution of three MPs along the equator facilitates the restriction of

the remaining MP to a well-defined, connected area on the sphere’s surface:

Theorem 30. Every pure symmetric state of 4 qubits is SLOCC-equivalent to exactly one

state of the set

{|S0〉 , |S1〉 , |S2〉 , 2 |S0〉+ t |S1〉+ |S3〉+ 2t |S4〉} ,

with t = eiϕ tan θ
2

, and (θ ,ϕ) ∈ {[0, π
2
)× [0, 2π

3
)}∪ {{π

2
} × [0, π

3
]} .

Proof. First it will be shown that every symmetric 4 qubit state |ψs〉 can be transformed

by SLOCC into one of the above states. From the previous discussion and Figure 5.5,

this is clear for all DC classes except D1,1,1,1. Given an arbitrary state |ψs〉 ∈ D1,1,1,1,

there always exists a Möbius transformation f : |ψs〉 7→ |ψ′s〉 s.t. three MPs are projected

onto the three corners of an equilateral triangle in the equatorial plane. If the fourth

MP |φ4〉 is not projected into the area parameterised by (θ ,ϕ) ∈ {[0, π
2
)× [0, 2π

3
)}∪

{{π
2
}× (0, π

3
]} (cf. Figure 5.5), then it can be projected into that area by a combination

of {Rs
x(π), Rs

z(
2π
3
)}-rotations which preserve the equatorial MP distribution.

It remains to show that this set of states is unique, i.e., two different MPs |φ4〉
and |φ′4〉 within the aforementioned parameter range give rise to two different states

|ψs〉 6= |ψ′s〉 which are SLOCC-inequivalent. By considering all 4! possible projections

between the MPs of |ψs〉 and |ψ′s〉 it can be easily verified explicitly with the cross-ratio

preservation (5.5) that a transformation is possible only if |φ4〉= |φ′4〉.

6The uniqueness implied by “exactly one” is an improvement over alternative representations such as
the EFs [51] where some of the representative states are SLOCC-equivalent to each other.
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D4

|S0〉

D3,1

|S1〉

D2,2

|S2〉

D2,1,1

2|S0〉+|S1〉+
|S3〉+2|S4〉

D1,1,1,1

2c|S0〉+s|S1〉+
c|S3〉+2s|S4〉

Figure 5.5: Only four of the five DC classes of 4 qubit symmetric states coincide with
a single SLOCC class. Due to the continuum of SLOCC classes present in D1,1,1,1, only
three MPs can be fixed in its representative state, with the unique locations for the
fourth MP c |0〉+ s |1〉 parameterising the set of representative states. Here c = cos θ

2
and s = eiϕ sin θ

2
, and the range of parameters is (θ ,ϕ) ∈ {[0, π

2
)× [0, 2π

3
)}∪ {{π

2
} ×

(0, π
3
]}, shown as a black grid. The fixed equatorial MPs of the representative states are

equidistantly spaced.

5.3.3 Five qubit symmetric classes

The DC classes of 5 qubits and representative states for the SLOCC classes can be seen in

Figure 5.6. The SLOCC classes of the generic class D1,1,1,1,1 can be parameterised by two

complex variables, corresponding to two MPs in the black and white area, respectively.

Unlike the 4 qubit case, however, this parameterisation is neither unique, nor confined

to the generic DC class. Different sets of parameters (θ1,ϕ1,θ2,ϕ2) 6= (θ ′1,ϕ′1,θ ′2,ϕ′2)

can give rise to SLOCC-equivalent states, and for (θ1,ϕ1) = (θ2,ϕ2) the corresponding

state does not even belong to D1,1,1,1,1 because of an MPs degeneracy. A unique set of

representative states can therefore be provided only for the subset of symmetric states

with at least one MP degeneracy:

Theorem 31. Every pure symmetric state of 5 qubits with an MP degeneracy (i.e., diversity

degree d < 5) is SLOCC-equivalent to exactly one state of the set

{|S0〉 , |S1〉 , |S2〉 ,
p

10
�

|S0〉+ t |S5〉
�

+ t |S2〉+ |S3〉+
p

2 (1+ t)
�

|S1〉+ |S4〉
�

} ,

with t = eiϕ tan θ
2

, and (θ ,ϕ) ∈ {[0, π
2
)× [0,2π)}∪ {{π

2
} × [0,π]} .

Proof. The proof runs analogous to the one of Theorem 30, with the observation that the

representative states of the D3,1,1 and D2,2,1 class are readily subsumed in the parameter

range of D2,1,1,1. The fixed MPs of D2,1,1,1 are left invariant under a Rs
x(π)-rotation, thus

ensuring that the remaining MP can be projected into the desired parameter range. The

uniqueness is again verified by considering all possible cross-ratios.

An over-complete set of representative states for the general case can be given as

follows:
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D5

|S0〉

D4,1

|S1〉

D3,2

|S2〉

D3,1,1

(see D2,1,1,1

with c = 1,
and s = 1)

D2,2,1

(see D2,1,1,1

with c = 1,
and s = ei 2π3 )

D2,1,1,1

√
10 (c|S0〉 + s|S5〉) +
s|S2〉 + c|S3〉+√

2(c+s) (|S1〉 + |S4〉)

D1,1,1,1,1

√
10 (c1c2|S0〉 + s1s2|S5〉) +
s1s2|S2〉 + c1c2|S3〉 +√

2(s1c2 +c1s2) (|S1〉 + |S4〉)

Figure 5.6: The first five of the seven DC classes of 5 qubit symmetric states coincide with
SLOCC classes, while the representative states of D2,1,1,1 are parameterised by one MP
c |0〉+ s |1〉 (black grid), and those of D1,1,1,1,1 by two MPs (black and white grid). The
parameter range for D2,1,1,1 is (θ ,ϕ) ∈ {[0, π

2
)×[0, 2π)}∪{{π

2
}×(0,π]}\{{π

2
}×{2π

3
}}.

For D1,1,1,1,1 the range of (θ1,ϕ1) is the same as (θ ,ϕ), and (θ2,ϕ2) ∈ {[0,π] ×
[0, 2π

3
)}\{{π

2
} × {0}}. The fixed equatorial MPs of the representative states are all

equidistantly spaced.
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Corollary 32. Every pure symmetric state of 5 qubits is SLOCC-equivalent to one or more

state of the set

{|S0〉 , |S1〉 , |S2〉 ,
p

10
�

|S0〉+ t1 t2 |S5〉
�

+ t1 t2 |S2〉+ |S3〉+
p

2
�

t1+ t2
��

|S1〉+ |S4〉
�

} ,

with t i = eiϕi tan θi

2
, and (θ1,ϕ1) ∈ {[0, π

2
]× [0,2π)}∪ {{π

2
} × (0,π]} ,

(θ2,ϕ2) ∈ {[0,π]× [0, 2π
3
)} .

Proof. Only the generic class D1,1,1,1,1 needs to be considered. Given an arbitrary state of

this class, three of its MPs can be projected onto the vertices of an equilateral triangle by

means of a Möbius transformation. These MPs are left invariant under {Rs
x(π), R

s
z(

2π
3
)}-

rotations. If the fourth MP does not lie in the (θ1,ϕ1)-area, it can be projected there

by a Rs
x(π)-rotation. Subsequent Rs

z(
2π
3
)-rotations can project the fifth MP into the

(θ2,ϕ2)-area, while leaving the fourth MP in the (θ1,ϕ1)-area.

As the number of qubits increases, the picture gradually becomes more complicated,

because DC classes with diversity degree n contain a continuous range of SLOCC classes

that is parameterised by n− 3 variables [82].

5.4 Entanglement families of four qubits

The concept of Entanglement Families (EFs) was already briefly touched upon in

Section 1.2.3. Derived by Verstraete et al. [51] with some advanced methods of linear

algebra, this classification scheme reduces the complexity of the four qubit case by

replacing the infinite amount of SLOCC classes with nine different EFs. The EF a state

belongs to does not change under SLOCC operations, thus making the partition into

SLOCC classes a refinement of the partition into EF classes (SLOCC ≤ EF). The nine

EFs are represented by the following ranges of states, with a, b, c, d ∈ C being arbitrary

complex parameters.

• Gabcd =
a+d

2

�

|0000〉+ |1111〉
�

+ a−d
2

�

|0011〉+ |1100〉
�

+ b+c
2

�

|0101〉+ |1010〉
�

+ b−c
2

�

|0110〉+ |1001〉
�

• Labc2
= a+b

2

�

|0000〉+|1111〉
�

+ a−b
2

�

|0011〉+|1100〉
�

+c
�

|0101〉+|1010〉
�

+|0110〉

• La2 b2
= a
�

|0000〉+ |1111〉
�

+ b
�

|0101〉+ |1010〉
�

+ |0110〉+ |0011〉

• Lab3
= a
�

|0000〉+ |1111〉
�

+ a+b
2

�

|0101〉+ |1010〉
�

+ a−b
2

�

|0110〉+ |1001〉
�

+ ip
2

�

|0001〉+ |0010〉+ |0111〉+ |1011〉
�

• La4
= a
�

|0000〉+ |0101〉+ |1010〉+ |1111〉
�

+
�

i |0001〉+ |0110〉 − i |1011〉
�

• La203⊕1̄
= a
�

|0000〉+ |1111〉
�

+
�

|0011〉+ |0101〉+ |0110〉
�

• L05⊕3̄
= |0000〉+ |0101〉+ |1000〉+ |1110〉
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• L07⊕1̄
= |0000〉+ |1011〉+ |1101〉+ |1110〉

• L03⊕1̄03⊕1̄
= |0000〉+ |0111〉

Up to permutations, every pure 4 qubit state is SLOCC-equivalent to a state from exactly

one of these families. Unlike in our Theorem 30, however, the parameterisation of

the EFs is not unique, i.e. two different sets of parameters (a, b, c, d) 6= (a′, b′, c′, d ′)

can give rise to two SLOCC-equivalent states. This non-uniqueness can be already

seen from the non-normalised nature of the generic family Gabcd which is due to the

choice of the parameters a, b, c, d as the eigenvalues of a matrix employed for the

proof in [51]. A less trivial example are the two symmetric states |ψa〉 = |S2〉 and

|ψb〉 = (|S0〉 + |S4〉) +
Æ

2
3
|S2〉 which are both present in the family Gabcd . Their

LU equivalence |ψa〉 LU←→ |ψb〉 can be immediately seen from their MP distributions

|φa
1,2〉= |0〉, |φ

a
3,4〉= |1〉, and |φb

1,2〉=
1p
2
(|0〉+ i |1〉), |φb

3,4〉=
1p
2
(|0〉 − i |1〉).

Here we are interested in the subset of symmetric 4 qubit states. In the following

we will determine in which EFs the symmetric SLOCC classes are located, and we will

elucidate the relationship between the DC and EF classes, both of which are coarser

partitions than the SLOCC classes.

First, we identify the EFs of the SLOCC and DC classes shown in Figure 5.5. The

separable state |S0〉, and therefore the entire D4 class, is LU-equivalent to the state

|0110〉 embedded in the family Labc2
for parameters a = b = c = 0. The W state |S1〉

representing D3,1 is recovered from the family Lab3
by setting a = b = 0 and spin-

flipping the last two qubits. The state |S2〉 representing D2,2 can be found in the general

family Gabcd by setting a = 1, b = 2, c = 0, d = −1. A state of the degeneracy class

D2,1,1 is found in Labc2
by setting a = 1, b = 0, c = 1

2
and spin-flipping the second and

third qubit, yielding the state |ψ〉 =
Æ

2
5
|S0〉+

Æ

3
5
|S2〉 which is made up of the MPs

|φ1,2〉= |0〉 and |φ3,4〉=
1
2
|0〉 ± i

p
3

2
|1〉. The continuum of SLOCC classes present in the

generic class D1,1,1,1 has previously been parameterised in [82] as
�

|S0〉+ |S4〉
�

+µ |S2〉,
with µ ∈ C\{±

Æ

2
3
}. These states are recovered from the general family Gabcd for

a = 1+ µp
6
, b =

Æ

2
3
µ, c = 0, d = 1− µp

6
. The reason for the exclusion of µ = ±

Æ

2
3

is

that the MP distribution then becomes degenerate, and it was already seen above that

|ψb〉=
�

|S0〉+ |S4〉
�

+
Æ

2
3
|S2〉 is LU-equivalent to |S2〉 ∈ D2,2. Summing up, we found

• D1,1,1,1, D2,2 ⊂ Gabcd

• D2,1,1, D4 ⊂ Labc2

• D3,1 ⊂ Lab3

In particular, only three of the nine EFs contain all the states of the symmetric subspace

of the 4 qubit Hilbert space, including those non-symmetric states that are SLOCC-

equivalent to symmetric states. The other six EFs only contain genuinely non-symmetric
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states that cannot be symmetrised by SLOCC operations. Furthermore, it is noteworthy

that the families Gabcd and Labc2
each contain two different DC classes. This is somewhat

unexpected, because there exist nine different EFs, but only five different DC classes. We

can therefore conclude that the EFs are not a particularly useful classification scheme

for symmetric states, due to their coarseness. Since all states of a given DC class are

contained in only one EF, Theorem 25 can be specified for the 4 qubit case:

Theorem 33. The symmetric subspace of the 4 qubit Hilbert space has the following

refinement hierarchy of entanglement partitions:

LOCC< SLOCC< DC< EF . (5.7)

5.5 Determining SLOCC inequivalence from the

MP distribution

The known properties of Möbius transformations can be employed to immediately

determine whether two symmetric n qubit states with the same degeneracy of their MPs

could be SLOCC-equivalent. As outlined in Section 5.2.1, circles on the surface of the

Majorana sphere are always projected onto circles, and the angles at which two circles

meet are preserved. These properties can be exploited by identifying and comparing

circles with MPs on them.

As an example, Figure 5.7 shows the MP distributions of some states investigated

in Chapter 4. The two 5 qubit states |ψ5〉 and |Ψ5〉 are not SLOCC-equivalent, because

|Ψ5〉 exhibits a ring with four MPs, whereas no ring with four MPs can be found for

|ψ5〉. Similarly, it can be shown that most of the states investigated in Chapter 4 are

SLOCC-inequivalent to each other. For 12 qubits it is not immediately clear that the

positive solution |ψ12〉 and the icosahedron state |Ψ12〉, shown in Figure 5.7, are SLOCC-

inequivalent, since both states have several rings with four or five MPs each. In the

icosahedron state |Ψ12〉 it is possible to identify 20 circles, each through three adjacent

MPs (the corners of all faces of the icosahedron), so that the interior of each circle is free

of MPs. This property must be preserved under Möbius transformations, but for |ψ12〉 it

is not possible to find such twenty distinct circles that are all free of MPs in their interior.

Markham [85] determined the SLOCC-inequivalence of the four qubit GHZ state

|GHZ4〉 and tetrahedron state |T〉 analytically from the values of their Schmidt rank

and geometric entanglement. Interestingly, with the geometrically motivated approach

employed here there is no need for such calculations: The MPs of |GHZ4〉 all lie on the

single ring, but those of |T〉 don’t.

The SLOCC-inequivalence of all totally invariant states of up to 7 qubits was deter-

mined in [85] by considering the MP degeneracies as well as the Schmidt rank, and a
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|ψ5〉 |Ψ5〉 |ψ12〉 |Ψ12〉

(a) (b) (c) (d)

Figure 5.7: The MP distributions of four highly or maximally entangled symmetric states
introduced in Chapter 4 are shown. The 5 qubit “trigonal bipyramid state” |ψ5〉 is SLOCC-
inequivalent to the “square pyramid state” |Ψ5〉. Likewise, the 12 qubit icosahedron state
|Ψ12〉 cannot be reached from |ψ12〉 by SLOCC operations.

conjecture was made that all totally invariant symmetric states are SLOCC-inequivalent

to each other. Using the preservation of circles and angles under Möbius transformations,

it is expected that this conjecture becomes much easier to verify.

The existence of n qubit states that are not LOCC or SLOCC-equivalent to their

complex conjugates has been affirmed [39, 43], and the operational consequences of

this for distinguishing such states have been discussed [43, 196]. Taking the complex

conjugation into account, the number of parameters to describe pure three qubit states

up to LU were reduced from six to five [196]. In the case of symmetric states we

immediately see that complex conjugation corresponds to a reflection of the MPs along

the X -Z-plane. We can therefore explain the LOCC-inequivalence of complex conjugate

symmetric states with the geometric concept of chirality, or handedness: Although

having the same distances and angles (and therefore the same geometric entanglement),

the mirror image of an arbitrary MP distribution is in general not LU-equivalent to the

original. This idea can be easily extended to SLOCC-equivalence, with the result that

general symmetric states are not even SLOCC-equivalent to their complex conjugate.

5.6 Symmetric SLOCC invariants on the Majorana sphere

We are already familiar with the property of Möbius transformations to preserve circles

and angles, as well as the cross-ratios (5.5) of ordered quadruples of points. These

quantities can therefore be considered to be symmetric SLOCC invariants.

A detailed study of symmetric LU and SLOCC invariants with the Majorana rep-

resentation was recently undertaken by Ribeiro and Mosseri [190]. With regard to

symmetric LU operations (which are equivalent to LOCC operations between symmetric

states, cf. Equation (5.2)), they found that the well-known six LU invariants for 3 qubits

[50, 197] can be expressed in terms of the 3! angles between pairs of MPs. With regard

to symmetric SLOCC operations, the cross-ratios were identified as a natural basis for
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(a)

D1,1,1,1

2c |S0〉+ s |S1〉+
c |S3〉+ 2s |S4〉

-2 -1 0 1 2 3
-2

-1

0

1

2

Re(λ)

Im(λ) λ1 λ3λ6 λ4

λ5 λ2

(b)

(c)

Figure 5.8: An alternative parameterisation of the generic 4 qubit DC class D1,1,1,1 is
shown in (a), with the parameterisation of the fourth MP c |0〉+ s |1〉 being (θ ,ϕ) ∈
{[0,π)× [0, π

3
)}. The six different areas {λi} in the complex plane that correspond

to permutations of the entries in Equation (5.8) are shown in (b). The plane is cut by
the line Re(z) = 1

2
, as well as two unit circles with centres z = 0 and z = 1. Aligning

the poles of the sphere (a) with the points z = 1
2
+ i and z = 1

2
− i in (b) yields the

arrangement (c), which can be understood as a stereographic projection of the parameter
range (θ ,ϕ) onto one of the six areas {λi}.

invariants. Given a cross-ratio,

λ :=
(v1− v3)(v2− v4)
(v2− v3)(v1− v4)

∈ C , (5.8)

the 24 different possible ways to permute the entries {v1, v2, v3, v4} generally leads to six

different values {λi} for the cross ratio: {λ, 1
λ

, 1−λ, 1
1−λ , λ

λ−1
, λ−1
λ
} [190]. These differ-

ent values partition the complex plane into six distinct regions, as seen in Figure 5.8(b).

Here we point out a relationship of this partition to the generic SLOCC equivalence

classes of 4 qubits, namely the degeneracy class D1,1,1,1 studied in Section 5.3.2. The

parameter range chosen for the unique representative states of D1,1,1,1 in Figure 5.5 is

not the only possibly choice, and an equivalent parameterisation with a high degree of

symmetry is shown in Figure 5.8(a). There the fourth MP |φ4〉 = c |0〉+ s |1〉 has the

parameterisation (θ ,ϕ) ∈ {[0,π)× [0, π
3
)}. As shown in Figure 5.8, this parameter

range can be projected onto one of the six areas {λi} in the complex plane by means of
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a stereographic projection. This is by no means a coincidence, but rather a consequence

of SLOCC invariants: Every value within the parameter range of (θ ,ϕ) corresponds to a

unique state that is SLOCC-inequivalent to any other value within that range. Likewise,

two 4 qubit symmetric states with no MP degeneracies are SLOCC-inequivalent iff the

cross-ratios (5.8) of their Majorana roots are different for all possible permutations,

which implies that the values of their cross-ratios need to be considered only for one of

the six areas {λi}.

5.7 Global entanglement measures

Polynomial SLOCC invariants that provide information about the type of entanglement

present in a system were already mentioned at the end of Section 1.2.3. Here we review

two well-known approaches in light of our results about symmetric states.

5.7.1 Maximal n-tangles

Osterloh and Siewert [58, 59] constructed entanglement monotones from antilinear

operators that are invariant under SLOCC operations, and that can be understood as

generalisations of the concurrence (2-tangle) [56] and the 3-tangle [50]. This allows

for the construction of a “global entanglement measure” with the aim to detect only

genuine n qubit entanglement in the sense that it is blind for k-partite entanglement with

k < n. More formally, an n qubit state |Ψn〉 is a “maximal n-tangle” if the following

two conditions hold [58, 59, 198]:

i) All reduced density matrices of |Ψn〉 with rank ≤ 2 are maximally mixed.

ii) All k-site reduced density matrices of |Ψn〉 have zero k-tangle7 (1< k < n).

This definition of maximal entanglement is very similar to those proposed in [41, 184].

The first condition implies that a maximal amount of information is gained when reading

out a qubit, something that is closely related to the stochastic states of [41]. The second

condition excludes hybrids of various types of entanglement, thus following the concept

of monogamy [50], i.e. that the total entanglement is a resource distributed among

different types of entanglement. Occasionally, a third condition is imposed, namely that

the maximally n-tangled states have a phase-independent canonical form, i.e. that the

first two properties shall be unaffected by relative phases in the coefficients [59]. This

implies that maximally n-tangled states can always be written with positive coefficients,

7No unique definition of the k-tangle for k > 3 exists in the literature, apart from the requirement that it
should be an entanglement monotone generalising the 2-tangle and 3-tangle. Often the tangles are defined
as polynomial SL(2,C)-invariants which are entanglement monotones by construction, and which take the
form of homogeneous functions of the coefficients of the given state [41]. For example, in [58, 59] these
entanglement monotones are constructed from the expectation values of antilinear operators.
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which is quite interesting for us because of our focus on positive states. On the other hand,

this is a first indication that “global entanglement measures” are qualitatively different

from e.g. the geometric measure, because the latter is not expected to be maximised for

positive states in general. Another interesting property of global entanglement measures

is that they are closely related to the concept of symmetry, in the sense that permutational

invariance was identified as a characteristic property of such measures [50].

The n qubit GHZ state is a maximally n-tangled state for all n, and in the case of 3

qubits it is the only such state. Therefore the SLOCC class of 3 qubit states with genuine

tripartite entanglement is represented by the GHZ state.

Another maximally n-tangled state for every n≥ 3 is the following state,

|Xn〉=
p

n |S1〉+
p

n− 2 |Sn〉 , (5.9)

coined the X-state [198]. Note that in the 3 qubit case the state |X3〉 is LU-equivalent to

|GHZ3〉. The maximally n-tangled states |GHZn〉 and |Xn〉 are the two extremes in the

sense that |GHZn〉 is always the maximally n-tangled state of minimal length whereas

|Xn〉 is the one of maximal length. Here, length means the number of components in the

canonical form of a state [59].

For 4 qubits there exist three inequivalent SLOCC invariants8, and a correspond-

ing “basis” of three inequivalent maximally 4-tangled states with neither 3-tangle nor

concurrence has been determined [58, 62]. These states are the GHZ state

|Ψa
4〉=

1p
2

�

|S0〉+ |S4〉
�

, (5.10)

the 4 qubit X-state

|Ψb
4〉=

q

2
3
|S1〉+

q

1
3
|S4〉 , (5.11)

and the 4 qubit cluster state

|Ψc
4〉=

1
2
(|1111〉+ |1100〉+ |0010〉+ |0001〉) . (5.12)

We immediately notice that |Ψb
4〉 is identical to the tetrahedron state defined in (3.5),

up to a Rs
x(π)-rotation (spin-flip). Quite surprisingly, this link does not seem to have

been discovered before, despite the state (5.11) having periodically appeared in various

analytical forms in the literature since at least 1998. In [184] the state was determined as

the symmetric state that maximises a more stringent version of the global entanglement

measure (outlined further below), and it is also the unique state that maximises a variant

8Ren et al. [199] discovered that one of the three entanglement monotones defined in [58] is not
permutation-invariant, and they proposed a new permutation-invariant monotone in place of the old one.
The states detected by the corresponding invariant (the 4 qubit cluster states) are not affected by this
redefinition.
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of the global measure defined in [200]. The distinguished position of the tetrahedron

state for polynomial invariants and global measures is further seen from the fact that

it is the only one of the three maximally 4-tangled states that can be detected by the

hyperdeterminant introduced by Miyake [52]. This is yet further proof that the Platonic

symmetry of the Majorana representation is a signature of distinguished properties of

the underlying symmetric states.

The 4 qubit cluster state and its permutations are representative states of one of

the two classes of graph states that exist for 4 qubits, with the other class of graph

states being represented by the GHZ state [62, 199, 201, 202]. The positive state |Ψc
4〉

displayed in Equation (5.12) is LU-equivalent to the canonical form for cluster states

introduced by Briegel et al. [156], which can be seen by flipping the first two qubits and

applying the Hadamard gate H = 1p
2

�

1 1
−1 1

�

on the last two qubits:

σx ⊗σx ⊗H ⊗H |Ψc
4〉=

1
2

�

|00−−〉+ |00++〉+ |11−+〉+ |11+−〉
�

= 1
2

�

|0000〉+ |0011〉+ |1100〉 − |1111〉
�

.
(5.13)

Somewhat surprisingly, |Ψc
4〉 is neither symmetric nor LU-equivalent9 to a symmetric state,

which implies that maximally n-tangled states are not necessarily symmetric, despite the

monotones for global entanglement being invariant under qubit permutations.

The three different types of genuine entanglement detected by the 4-tangle are not

distinguished by the EFs of [51], because the states (5.10), (5.11) and (5.12) all belong

to the generic family Gabcd . Therefore, the global entanglement measure can be more

useful than the EFs to distinguish different types of 4 qubit entanglement.

States of 5 and 6 qubits with maximal global entanglement were found in [59], and

in the case of 5 qubits four different types of entanglement are detected [59, 60]. The

normal forms of the corresponding states are the GHZ state, two states that can be easily

verified to be LU-nonsymmetric, as well as the 5 qubit X-state

|Ψd
5〉=

q

5
8
|S1〉+

q

3
8
|S5〉 . (5.14)

Unlike the other three states, however, the state |Ψd
5〉 does not satisfy all the conditions

imposed on maximal 5-tangles, because it has a nonvanishing 4-tangle [59]. Never-

theless, |Ψd
5〉 can be considered to have an extremal amount of global entanglement.

A comparison of Equation (5.14) with Equation (4.5) reveals that the Majorana repre-

sentation of |Ψd
5〉 is a spin-flipped square pyramid state. Defining |Φ5〉= Rs

x(π) |Ψ
d
5〉=

Æ

3
8
|S0〉+

Æ

5
8
|S4〉, we compare the 5 qubit X-state to the maximally entangled sym-

9The LU-inequivalence can be verified e.g. by the different eigenvalues of the reduced density matrices
ρ12 = Tr34

�

|Ψc
4〉〈Ψ

c
4|
�

and ρ23 = Tr14

�

|Ψc
4〉〈Ψ

c
4|
�

. The question of whether |Ψc
4〉 is SLOCC-equivalent to a

symmetric state is irrelevant in this context, because the resulting state would no longer be in the normal
form required for maximally n-tangled states.
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metric 5 qubit state |Ψ5〉 in terms of the geometric measure, derived in Section 4.2.2.

The latitudinal angle of the MP circle of |Ψ5〉 is θ ≈ 1.874, whereas for |Φ〉 one obtains

tan4(θ
2
) = 5p

3
, yielding θ ≈ 1.833. The imbalance present in the spherical amplitude

function of |Φ5〉 results in |σ〉 = |0〉 being the only CPP, and the geometric entanglement

is Eg(|Φ5〉) = log2(
8
3
)≈ 1.415, which is well below that of |Ψ5〉 and which coincides with

the entanglement of the maximally entangled 5 qubit Dicke state Eg(|S2〉) = log2(
8
3
).

Even though the small difference in the latitudinal MP angle leads to a large decrease of

the entanglement, the fidelity remains very close to the original state:

F = |〈Φ5|Ψ5〉|
(4.5)
=

p
3+
p

5A

2
p

2
p

1+ A2
≈ 0.996 752 . (5.15)

It is remarkable that the 5 qubit X-state – apart from the GHZ state the only symmetric

state to be detected by the global entanglement measure – is so close to the square

pyramid state which we found to solve the Majorana problem of 5 qubits. In contrast to

this, the classical optimisation problems of Tóth and Thomson are solved by the trigonal

bipyramid state, a state with a qualitatively different MP distribution, as evidenced by

the SLOCC-inequivalence shown in Section 5.5.

5.7.2 Maximal mixture in all reduced density matrices

Gisin et al. [184] introduced and studied five different criteria for maximal global

entanglement. Their investigation is limited to symmetric states, which they justified

with the argument that all of the n qubits of maximally entangled states should be

equivalent, with no privileged part. The conclusion is that four of the five criteria

are compatible (with GHZ states having maximal global entanglement), while the fifth

criterion is qualitatively different from the others. This criterion is that all reduced density

matrices shall be maximally mixed, which is a more stringent variant of condition 1

outlined at the beginning of Section 5.7.1. States that satisfy this strong criterion exist

only for n= 2, 3,4 and 6 qubits. Recast in our notation, the states found in [184] are:

|Ψ3〉±1 =
1p
2

�

|S0〉 ± |S3〉
�

, (5.16a)

|Ψ3〉±2 =
1

2
p

2

�

|S0〉 ±
p

3 |S1〉 −
p

3 |S2〉 ∓ |S3〉
�

, (5.16b)

|Ψ4〉±1 =
1
4

�

−
p

3 |S0〉 ± 2 |S1〉+
p

2 |S2〉 ± 2 |S3〉 −
p

3 |S4〉
�

, (5.16c)

|Ψ4〉2 =
1
2

�

|S0〉+ i
p

2 |S2〉+ |S4〉
�

, (5.16d)

|Ψ6〉±1 =
1p
2

�

|S1〉 ± |S5〉
�

, (5.16e)

|Ψ6〉2 =
1
4

�

−
p

3 |S0〉+
p

5 |S2〉+
p

5 |S4〉 −
p

3 |S6〉
�

, (5.16f)

|Ψ6〉±3 =
1
3

�
p

2 |S0〉 ± i
p

5 |S3〉+
p

2 |S6〉
�

. (5.16g)
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The first index denotes the number n of qubits and the second index counts the different

states. Interestingly, the states with same n are all LU-equivalent to each other. This can

be verified by calculating and comparing their Majorana representations. For example,

|Ψ3〉±1 and |Ψ3〉±2 are all equivalent to the 3 qubit GHZ state via symmetric LUs:

|Ψ3〉+1 = Rs
z(π) |Ψ3〉−1 = Rs

z(π)R
s
x(
π
2
) |Ψ3〉+2 = Rs

z(π)R
s
x(
π
2
)Rs

z(π) |Ψ3〉−2 . (5.17)

Analogous identities hold for the 4 and 6 qubit states listed above, and these states

represent the tetrahedron state and the octahedron state, respectively. We thus arrive at

the conclusion that symmetric states whose reduced density matrices are all maximally

mixed possess an exceptionally high amount of geometric symmetry in their MP distribu-

tions. Only four such states exist: Two antipodal points (n= 2), the equilateral triangle

(n= 3), the regular tetrahedron (n= 4), and the regular octahedron (n= 6).

A common property of these point distributions is that they look exactly the same

from the viewpoint of each vertex10. It is therefore legitimate to ask why only two of the

five Platonic solids give rise to this kind of maximal global entanglement. Considering

that the cube (n= 8) and the dodecahedron (n= 20) neither solve the classical point

distribution problems nor maximise the GM, it is perhaps not surprising that they

are missing. But how to explain the absence of the icosahedron (n = 12)? We put

forward the conjecture that this is because the icosahedron state cannot be cast with

positive coefficients. It is well-known that the maximally n-tangled states generally

allow for a positive representation, which is why the criterion of a phase-independent

canonical form is sometimes added to the list of conditions for maximally n-tangled

states [59]. It is therefore conceivable that a positive computational representation (up

to LU-equivalence) is a necessary property for any state whose reduced density matrices

are all maximally mixed.

10This is one of the possible ways to define the Platonic solids. Since polyhedra (three-dimensional
polytopes) need to have at least four vertices, the configurations of two antipodal points (n= 2) and the
equilateral triangle (n= 3) are not considered to be Platonic solids.
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Chapter6
Links and Connections

The aim of this penultimate chapter is to outline some novel links be-

tween the study of quantum states in terms of the Majorana representation

and other topics in mathematics and physics. On their own these results are

not strong enough to warrant their own chapters, and so they are subsumed

as independent sections under this chapter.

Firstly, the “Majorana problem” is compared and contrasted to spherical

point distribution problems that seek to find the most non-classical states,

such as “anticoherent” spin states and the “queens of quantum”. Secondly,

the dual polyhedra of the five Platonic solids are linked to the Majorana

representations of the corresponding symmetric states, thus discovering

a quantum analogue to the Platonic duals of classical geometry. Thirdly,

the Majorana representation is employed to investigate the permutation-

symmetric ground states of the LMG model, with a new proof given for the

derivation of its CPPs.

6.1 “Anticoherent” spin states and “queens of quantum”

As outlined in Section 1.3.1, there exists an isomorphism between the states of a single

spin- j particle and the symmetric states of 2 j qubits, and this isomorphism is mediated by

the Majorana representation. The coherent states of a quantum mechanical particle are

considered to be the most classical states, and in terms of the Majorana representation

these states are those whose MPs all coincide at a single point, thus describing as

precisely as possible a “classical” spin vector. This classical nature of coherent states

can furthermore be seen from their resistance to entanglement formation [99]. It is

therefore natural to ask whether there also exist “least classical states” which are the

opposite of spin-coherent states in some sense, with the expectation that such states

exhibit a large amount of non-locality. Zimba [97] defined the “anticoherent” spin
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states as those whose polarisation vector vanishes, p = 〈ψ|nS|ψ〉 = 0, and whose

corresponding variance 〈ψ|(nS)2|ψ〉 is uniform over the sphere. Here n is a unit

vector in R3, and S = (Sx , Sy , Sz) is the spin operator. This concept is sometimes

generalised to higher-order anticoherence, with a state |ψ〉 being anticoherent of order

k if 〈ψ|(nS)i|ψ〉 is independent of n for all i ≤ k [109]. It has been shown that the

quantum states represented by the five Platonic solids are all anticoherent [97], and this

can be understood by means of the mathematical concept of spherical designs [109].

Bearing in mind the isomorphism between general spin- j states and symmetric states

of 2 j qubits, we put forward the question whether the Majorana representation of the

maximally entangled symmetric states coincides with that of anticoherent spin states,

and vice versa. This question is motivated by the observation that the coherent states of

a spin- j particle are described by 2 j coinciding MPs, which precisely corresponds to the

symmetric 2 j qubit states with zero entanglement. Unfortunately, it turns out that no

such direct link exists for the “opposite” case. From the fact that the maximally entangled

symmetric state of eight qubits is not a Platonic solid, it follows that anticoherent MP

distributions do not guarantee extremal entanglement. On the other hand, the maximally

entangled symmetric state of five qubits, the square pyramid state |Ψ5〉 discussed in

Section 4.2.2, is neither anticoherent nor a spherical design, because the “centre of mass”

of the five MPs does not coincide with the origin of the Majorana sphere. In terms of

anticoherent spin states this leads to 〈Ψ5|Sz|Ψ5〉 6= 0. For spherical designs we observe

that by setting p(x) = x in Definition 2 of [109], it follows that for all spherical designs

the “centre of mass” must coincide with the sphere’s origin.

Anticoherent spin states are only one possibility to define the most non-classical

states. Giraud et al. [98] put forward the concept of the “queens of quantum”. These

states have the property to be furthest away (in terms of the Hilbert-Schmidt metric

‖A‖ = Tr(A†A)1/2) from the set of “classical states”, with the latter defined as those states

that can be written as a convex sum of projectors onto coherent states. This definition

bears resemblance to that of the relative entropy of entanglement [66, 119]. It turns out

that the “queens of quantum” can always be found in pure states, and that their Majorana

representations have a high degree of geometric symmetry with no MP degeneracies.

In general, however, their Majorana representations differ from those of our maximally

entangled symmetric states, and they are not identical to the solutions of Tóth’s and

Thomson’s problem either.

Intriguingly, Martin et al. [90] found that the “queens of quantum” coincide with the

solutions of the Majorana problem if the Hilbert-Schmidt distance is replaced with the

Bures distance DB. For product states the “Bures quantumness” reads

QB
�

|ψ〉〈ψ|
�

= min
ρc∈C

DB
�

|ψ〉〈ψ| ,ρc
�

= min
ρc∈C

q

2− 2
p

〈ψ|ρc|ψ〉 , (6.1)
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where C is the convex hull of spin coherent states. Thus every ρc can be written as

ρc =
∑

i λi |Φi〉〈Φi|, where the |Φi〉 are coherent states. This problem can be reduced to

finding the largest overlap of |ψ〉 with a coherent state |Φ〉,

QB
�

|ψ〉〈ψ|
�

=
q

2− 2 max
|Φ〉
|〈Φ|ψ〉| , (6.2)

which is equivalent to the Majorana problem (3.14) of symmetric states. In other words,

the Majorana representation of the spin- j state with the largest “Bures quantumness” is

identical to that of the maximally entangled symmetric state of 2 j qubits in terms of the

geometric measure [90].

Concluding this section, we have seen that the Majorana representations of our

maximally entangled symmetric states are in general different from “anticoherent” spin

states as well as the original definition of the “queens of quantum”, but they are identical

to the “queens of quantum” in terms of the Bures metric. This link means that any

solution found for the Majorana problem of 2 j qubits will also be a spin- j “Bures-queen

of quantum”, and vice versa.

6.2 Dual polyhedra of the Platonic solids

For a given polyhedron in 3D space the corresponding dual is obtained by associating

each vertex with a face, and vice versa. The dual polyhedra of the five Platonic solids are

particularly simple, as they are Platonic solids themselves [203]. As seen in Figure 6.1,

the octahedron and cube form a dual pair, and so do the icosahedron and dodecahedron,

while the tetrahedron is self-dual, i.e. it is its own dual.

Interestingly, these duality relationships can also be spotted in the Majorana rep-

resentations of the corresponding symmetric quantum states. For example, we have

already seen that the 20 CPPs of the icosahedron state |Ψ12〉 form the vertices of a

dodecahedron. On the other hand, when considering the 20 qubit dodecahedron state

(4.46), it is easy to verify that this state has 12 CPPs, one at the centre of each face, thus

forming the vertices of an icosahedron. The Majorana representations of the icosahedron

and dodecahedron state are therefore dual to each other with respect to an interchange

of the MPs and CPPs.

As shown in Figure 6.2, the same duality relationship can be observed between the

octahedron state and the cube state. Furthermore, the tetrahedron state is its own dual,

with the MPs and CPPs being identical. Unlike the dual of the Platonic solid, however,

the dual state of the tetrahedron state is not turned “upside down”, but rather coincides

with the original state.

We thus find that the five “Platonic solid states” exhibit the same duality relationships

as the classical Platonic solids, in the sense that the vertex-face association is replaced
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Figure 6.1: The relationship between the Platonic solids and their duals.

Figure 6.2: The MP and CPP distributions of the five “Platonic solid states”.

with a MP-CPP association. We do not know the benefits of this mathematical property

for quantum information science and related fields, but it is imaginable that uses can

be found, since the five “Platonic solid states” are exceptional states. They have been

coined the “perfect states” [97], and it was found that their property of being spherical

designs directly implies their anticoherence [97, 109]. Furthermore, they were found to

be the optimal states for aligning Cartesian reference frames [106]. With these recent

discoveries in mind, it is conceivable that the quantum analogue to the Platonic duals

could come in handy at some point in the future.

6.3 Lipkin-Meshkov-Glick model

Quantum phase transitions are transitions between qualitatively distinct phases of

quantum many-body systems [204]. Such transitions play an important role in physical

systems, and recent studies have focused on analysing their phase diagrams in terms of

entanglement. One-dimensional models such as Ising spins in a magnetic field allow for

exact solutions, but they do not exhibit a particularly rich structure. Higher-dimensional

models are usually accessible only through difficult numerical treatment, although

certain symmetries of the Hamiltonian can make the model exactly solvable. One such

integrable model is the Lipkin-Meshkov-Glick (LMG) model, whose solutions can be

derived from an algebraic Bethe ansatz [205], but the model can also be efficiently

treated numerically. Originally introduced for nuclear physics [113–115], the LMG

model has since been employed to describe the quantum tunnelling of bosons between

two levels, and thus the Josephson effect in two-mode Bose-Einstein-condensates [206].

It consists of a system of n mutually interacting spin-1
2

particles embedded in a transverse
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magnetic field h:

H =−
1

n
(γxS2

x + γyS2
y)− hSz . (6.3)

Due to the symmetries of the Hamiltonian it suffices to consider h≥ 0 and |γy | ≤ γx . This

anisotropic X -Y -system is known to undergo a second-order quantum phase transition

at h= γx or h= γy . Investigating the zero-temperature phase diagram for the ground

state reveals two phases, namely a symmetric phase for h> γx where the ground state

is unique, and a broken phase for h < γx where the ground state becomes two-fold

degenerate in the thermodynamic limit (n→∞). The full spectrum is more complicated,

with four different zones arising in the phase diagram [22, 207]. The ground state always

lies in the maximum spin sector, and is therefore symmetric. In the large-field limit

(h→∞) the ground state becomes separable |ψ〉 = |↑〉⊗N , and in the thermodynamic

limit (n→∞) the spectrum of H remains discrete.

Among other entanglement measures, the von Neumann entropy S(h), which char-

acterises the entanglement of a bipartite decomposition, has been used to analyse the

LMG model [208]. A maximum at the critical point was found, which is consistent with

a theoretical conjecture in [209]. Furthermore, the von Neumann entropy of the ground

state scales logarithmically with the block size L of the bipartite decomposition [208].

6.3.1 Distribution of the MPs

The symmetric eigenstates of the LMG model [22, 207] can be represented in the spin

coherent basis by their Majorana polynomial ψ(α)∝
∏2s

k=1(α−αk), and the Majorana

roots αk become the MPs |φk〉 of the corresponding Majorana representation by means

of an inverse stereographic projection.

As outlined in [207], the Schrödinger equation of the LMG model has the form

�

P2(α)
(2s)2

∂ 2
α +

P1(α)
2s

∂α+ P0(α)
�

Ψ(α) = εΨ(α) , (6.4)

where P0, P1 and P2 are polynomials in α ∈ C, and Ψ(α) is the Majorana polynomial

of the eigenstate. We easily verify that if Equation (6.4) is solved for a tuple of roots

{α1, . . . ,α2s}, then this is also the case for the tuples {−α1, . . . ,−α2s} and {α∗1, . . . ,α∗2s}.
This implies that if αk is a Majorana root, then so are −αk, α∗k and −α∗k. On the Majorana

sphere this leads to reflective symmetries of the MP distribution along the X -Z-plane

and the Y -Z-plane, and combining these two reflections, they give rise to a rotational

symmetry along the Z-axis with rotational angle ϕ = π. These symmetries are also visible

in the examples of eigenstates shown in [22, 207]. From Lemma 15 and Lemma 17

we obtain the result that the coefficients of all eigenstates |ψ〉=
∑s

m=−s am |s, m〉 of the

LMG model are constrained to am ∈ R for even m and am = 0 for odd m.

It is known that for all eigenstates of the LMG model the MPs are distributed along
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two curves C0 and C1 on the Majorana sphere [22, 207]. The curve C0 always coincides

with the imaginary great circle, and while C1 coincides with the real great circle in

the simplest case, it is in general different. The MPs on the curves change with the

parameters of the Hamiltonian (6.3). For the ground state all MPs lie on C0, as shown in

Figure 6.3(a), and transitions between neighbouring energy levels correspond to pairs of

MPs switching from one curve to the other. This implies that the k-th excited state has 2k

MPs on C1 and 2(s− k) MPs on C0. From our discussion in Section 5.5 it is clear that this

qualitative difference of the MP distributions renders these states SLOCC-inequivalent to

each other, which means that the different energy levels of the LMG model correspond

to different types of entanglement.

In order to study the phase transition of the ground state in the thermodynamic limit,

it is convenient to simplify the Hamiltonian (6.3) as follows

H =−
1

n
γS2

y − hSz . (6.5)

This simplified Hamiltonian does not give rise to the full phase diagram anymore, but

otherwise it is expected to exhibit the same qualitative behaviour as the Hamiltonian

(6.3). In the thermodynamic limit the amount of MPs becomes infinite, so the discrete

distribution of MPs turns into a continuous probability distribution. From the simplified

Hamiltonian (6.5) the following distribution has been derived for the latitudinal angle

of the MPs in the ground state [22, 210]:

Ph(θ) =







γ+hcosθ
2πγ

for h≤ γ (broken phase)
p

h(1+cosθ)(2γ−h+hcosθ)
2πγ

for h≥ γ (symmetric phase)
(6.6)

These two expressions converge at h = γ, and since only the ratio h
γ

is physically

significant, we can set γ= 1 in the following. The function Ph(θ) is normalised for all

values of h within the respective areas where it is well-defined, i.e. θ ∈ [−π,π] for

h ≤ 1, and θ ∈ [−arccos h−2
h

, arccos h−2
h
] for h ≥ 1. Plots of Ph(θ) for three different

values of h are shown in Figure 6.3(b).

In the corresponding finite-spin case the MPs are distributed along the imaginary

circle in a pairwise fashion |φi〉= cθ |0〉 ± isθ |1〉, as shown in Figure 6.3(a). The total

state |Ψ〉 is therefore positive, and because of Lemma 3 it suffices to determine a positive

CPP. The CPPs come in pairs too, |σ〉= cϑ |0〉 ± sϑ |1〉, so the overlap between any MP

and CPP has the form 〈φi|σ〉= cθ cϑ ± isθ sϑ.
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Figure 6.3: The MP distribution of the ground state of the LMG model at the phase
transition (h = 1) is shown in (a) for total spin s = 30. The 60 MPs all lie on the
imaginary great circle, and the corresponding eigenstate is positive. The latitudinal
probability distribution (6.6) of the MPs is shown in (b) for the three values h = 1

2
(orange), h= 1 (black) and h= 2 (blue). The finite-spin case and the thermodynamic
limit are shown as point distributions and continuous lines, respectively. It is seen that
the ring of MPs closes at the phase transition. [Figures generated from MATHEMATICA

code provided by Pedro Ribeiro.]

6.3.2 Determination of the CPPs

In the finite-spin case the location of the positive CPP is determined by the maximum

of the spherical amplitude function g2(ϑ) = |〈Ψ|σ(ϑ)〉⊗n|2 =
∏n

i=1|〈φi|σ(ϑ)〉|2 over all

single-qubit states |σ(ϑ)〉= cϑ |0〉+ sϑ |1〉. In order to find a continuous variant of this

quantity for the thermodynamic limit, we consider its logarithm because it will turn the

product into a sum, which naturally becomes an integral over a probability distribution

in the infinite limit:

G(ϑ) :=− log2 g2(ϑ) =− log2





n
∏

i=1

|〈φi|σ(ϑ)〉|2


=−
n
∑

i=1

log2|〈φi|σ(ϑ)〉|2 (6.7a)

n→∞−−−→ −

2π
∫

0

Ph(θ) log2|〈φ(θ)|σ(ϑ)〉|
2 dθ . (6.7b)

The monotonicity of the logarithm ensures that the maximum, and thus the CPP, remains

the same. The integral runs over the imaginary great circle where the MPs lie. Note

that g2(ϑ) is missing the normalisation factor K required for calculating the geometric

entanglement, and an analytic calculation of this factor is believed to be intractable.

For the determination of the CPPs, however, we do not need the normalisation factor,

and our derivation of the CPPs can prove helpful for further studies of the geometric

entanglement of the LMG ground state.
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In the following we present an analytic calculation of the positive CPP in the broken

phase (h≤ 1). The logarithmic amplitude function along the real great circle is then

G(ϑ) =−
2π
∫

0

(1+ hcosθ)
2π

log2

�

c2
θ c2
ϑ + s2

θ s2
ϑ

�

dθ

=−
1

2π

2π
∫

0

(1+ hcosθ) log2

�

1
2
(1+ cosϑ cosθ)

�

dθ .

(6.8)

This integral can be solved with the help of the following two definite integrals

(found with MATHEMATICA) that hold for a ∈ [0,1]:

2π
∫

0

ln [1+ a cosθ]dθ = 2π ln
�

1
2

�

1+
p

1− a2
��

, (6.9)

2π
∫

0

cosθ ln [1+ a cosθ]dθ =
2π

a

�

1−
p

1− a2
�

. (6.10)

With this we obtain

G(ϑ) = 2− log2

�

1+
p

1− cos2 ϑ

�

−
h

ln2

1−
p

1− cos2 ϑ

cosϑ
. (6.11)

A numerical integration of Equation (6.8) verifies that Equation (6.11) is correct.

Setting the first derivative to zero yields the locations of the CPP:

∂ G(ϑ)
∂ ϑ

=
1

ln2

�

h− cosϑ

1+ sinϑ

�

,
∂ G(ϑ)
∂ ϑ

= 0 ⇐⇒ h= cosϑ . (6.12)

Thus the relationship between the parameter h and the latitude ϑ of the CPPs is

h = cosϑ, yielding the two CPPs in the broken phase: |σ〉 =
Æ

1+h
2
|0〉 ±

Æ

1−h
2
|1〉.

This result has previously been obtained via the mean-field approach in [211], but

our method is different because instead of minimising the energy, we maximised the

spherical amplitude function of the geometric measure.

In the symmetric phase (h≥ 1) the logarithmic amplitude function reads

G(ϑ) =−

arccos h−2
h

∫

−arccos h−2
h

1
2π

p

h(1+ cosθ)(2− h+ hcosθ) log2

�

1
2
(1+ cosϑ cosθ)

�

dθ . (6.13)

An analytic solution of this integral is not known, but it is easily verified numerically that
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the only CPP is the north pole |σ〉 = |0〉 for all h > 1, something that has been noted

before [23].

Surprisingly, the MPs and CPPs of the LMG ground state exhibit precisely the same

qualitative behaviour under variation of the magnetic field h as observed in the simple 3

qubit model that we investigated in Section 3.1.2. In Figure 3.3 the CPP initially stays

at the north pole until the pair of MPs has moved sufficiently far downwards. At the

distribution in Figure 3.3(c) a “phase transition” occurs, where the CPP abruptly leaves

the north pole. This is the same behaviour that the CPP of the LMG ground state exhibits

around the phase transition h= 1 in the thermodynamic limit, i.e. for infinitely many

MPs.
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Chapter7
Conclusions

The aim of this final chapter is to provide a brief review of the main

results presented in this thesis, and to give an outlook at promising further

ideas and strategies that may be worthy of further investigation.

7.1 Summary of main results

In this thesis permutation-symmetric quantum states were investigated from various

perspectives, such as entanglement classification, extremal entanglement, invariants,

and connections to related physical phenomena. For this the Majorana representation as

well as the geometric measure of entanglement were the essential tools.

Chapter 2: Geometric Measure of Entanglement

A variety of analytical results about the GM was derived in Chapter 2. Theorem 1 predicts

that the maximally entangled pure state in terms of the GM lies in the span of its CPSs,

and this theorem can be straightforwardly adapted for the case of permutation-symmetric

states. Considering arbitrary n qubit states with |0〉⊗n as a CPS, the necessary conditions

for the coefficients of these states were presented in Theorem 2, and it was argued that

the conditions can be viewed as a standard form similar to the one of Carteret et al. [40].

From Theorem 4 and Corollary 5 we can conclude that complex phases are in general

an indispensable ingredient for highly entangled multipartite states. A new proof for

the upper bound Eg ≤ log2(n+ 1) on the maximal geometric entanglement of n qubit

symmetric states was derived in Theorem 7, and the proof of this theorem ignited the

idea of visualising symmetric states by spherical bodies of constant volume. Finally, it

was shown in Theorem 8 that W states of an arbitrary, but fixed number of excitations

cannot be useful for MBQC, not even in the approximate regime.
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Chapter 3: Majorana Representation and Geometric Entanglement

In Chapter 3 the Majorana representation was employed to gain a better understanding

of the geometric entanglement of permutation-symmetric multiqubit states. Effective

visualisations of the entire information about the entanglement of symmetric states were

presented in Section 3.1.1, and in Section 3.1.2 they were applied to review the two and

three qubit case. With regard to the concepts of totally invariant states and additivity,

we discovered in Section 3.1.3 that states which are both positive and totally invariant

(e.g. the tetrahedron, octahedron and cube state) are additive with respect to three

distance-like entanglement measures. The relationship between the “Majorana problem”

of determining the maximal symmetric entanglement and classical optimisation problems

on the sphere was elucidated in Section 3.2. In Section 3.3 a variety of analytical results

were derived that link the analytic form of symmetric states to the distribution of their

MPs and CPPs. For example, Lemma 15 established that for a cyclic symmetry around the

Z-axis of the Majorana sphere to exist, many coefficients of the underlying state need to

vanish, and Lemma 17 showed that states are real iff they exhibit an X -Z-plane reflective

symmetry. In Theorem 13 a “generalised Majorana representation” was derived where

the sum over all permutations of the n MPs is replaced with a sum over all permutations

of the subsets of an arbitrary, but fixed partition of the MPs. This generalisation has the

advantage that the analytical treatment of many MP distributions can be simplified by

considering certain subsets of MPs, e.g. those MPs that are equidistantly distributed over

a circle. In the concluding Section 3.3.3 some interesting results were obtained for the

Majorana representation of positive symmetric n qubit states. In particular, they can

have at most 2n− 4 CPPs, with the possible locations narrowly pinned down to either

the positive half-circle of the Majorana sphere, or to horizontal circles corresponding to

a cyclic Z-axis symmetry.

Chapter 4: Maximally Entangled Symmetric States

Strong candidates for the maximally entangled symmetric states of up to 12 qubits in

terms of the GM were found in Chapter 4. The combination of analytical and numerical

methods employed for the search were outlined in Section 4.1. Visualisations by means

of the MPs and CPPs, as well as the spherical amplitude and volume functions proved to

be very useful tools in the search for high and maximal entanglement. The CPPs of the

positive-valued Platonic states (tetrahedron, octahedron and cube) were found to follow

immediately from the rotation properties of the MPs. Comparisons with the extremal

distributions of Tóth’s and Thomson’s problems show that, in some cases, the optimal

solution to the Majorana problem is the same, but in other cases it significantly differs.

In Section 4.3 the results obtained were interpreted and discussed, and an overview

of the properties of the investigated states was presented in Table 4.4. With regard to
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the entanglement scaling it was found that our results are consistent with the theory

and similar studies, and that maximally entangled symmetric states seem to admit a

positive computational form only for n< 10 qubits. The distribution behaviour of the

MPs and CPPs could be appropriately explained with the spherical amplitude and volume

functions, which is due to the fact that the global maxima and minima are manifestations

of the CPPs and MPs, respectively. Motivated by Euler’s formula, Conjecture 23 affirms

our belief in a deeper-lying geometric connection between the MP distribution and the

maxima of the spherical amplitude function, something that would yield a general upper

bound of 2n− 4 CPPs.

Chapter 5: Classification of Symmetric Entanglement

In Chapter 5 the entanglement of n qubit symmetric states was investigated from

qualitative viewpoints. The three entanglement classification schemes LOCC, SLOCC

and the Degeneracy Configuration (DC) were reviewed for symmetric multiqubit states

in Section 5.1. It was found in Section 5.2 that the Möbius transformations from complex

analysis do not only allow for a simple and complete description of the freedoms present

in symmetric SLOCC operations, but also provide a straightforward visualisation of these

freedoms by means of the Majorana sphere. The symmetric SLOCC classes of up to 5

qubits were fully characterised by representative states with simple MP distributions

in Section 5.3, and in the 4 qubit case these representations are unique, unlike other

classification schemes such as the EFs. Comparing the symmetric SLOCC classes to

the EFs, it is found in Section 5.4 that the partition into symmetric SLOCC classes is a

refinement of the partition into EFs. In Section 5.5 it was seen how “invariants” of Möbius

transformations, such as circles, angles and cross-ratios, allow one to check whether

symmetric states are SLOCC-equivalent or not. In particular, the (S)LOCC-inequivalence

of complex conjugate states could be readily explained with geometric chirality. The

different values of the cross-ratio under permutations was linked to the generic DC

class of 4 qubits by means of SLOCC invariants in Section 5.6. Global entanglement

measures were reviewed in Section 5.7, and it was found that the tetrahedron state and

other symmetric states with high geometric entanglement or symmetries in their MP

distribution play a prominent role in the maximisation of these entanglement monotones.

Chapter 6: Links and Connections

In the tripartite Chapter 6 several links between the Majorana representation and related

topics in mathematics and physics were highlighted.

Two different definitions of maximally non-classical spin- j states, namely the “anti-

coherent” spin states and the “queens of quantum”, were linked to the corresponding

symmetric states by means of the Majorana representation in Section 6.1. It was found
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that the MP distribution of maximally entangled symmetric n qubit states in terms of the

geometric measure does in general not describe anticoherent spin states, but it coincides

with the “Bures-queens of quantum”.

In Section 6.2 it was discovered that an analogue to the dual polyhedra of the five

Platonic solids exists for the corresponding symmetric states, in the sense that the sets of

MPs and CPPs are interchanged. This deepens the relationship between the Majorana

representation and the polyhedra of classical geometry.

Finally, the permutation-symmetric ground state of the LMG model in the thermo-

dynamic limit was investigated in light of the Majorana representation in Section 6.3.

By making a suitable transition from a discrete to a continuous MP distribution for the

thermodynamic limit, we found a new method to prove the degeneracy and locations

of the CPPs in the broken phase, something that could be used for investigating the

geometric entanglement of the LMG ground state.

7.2 Outlook and new ideas

It is all too natural that some of the ideas and strategies that spring up during a research

degree cannot be investigated with the rigour they deserve. This is especially true for

major open questions which may require a substantial amount of further literature

review, calculations or programming. Here I will briefly outline several open questions

and promising new ideas related to topics of the present thesis.

Quantum computing with liquid Helium

Liquid Helium bubbles with stable electron patterns above their surface were already

mentioned in Section 3.2. When liquid 4He undergoes an electrohydrodynamic instability

in a vacuum, the system can emanate small bubbles of liquid Helium with millions to

billions of electrons hovering above the surface [163, 164]. The electrons are localised in

a stable potential well generated by the long-range positive mirror charge in the dielectric

Helium surface, and the (short-range) Pauli principle which prevents the electrons from

falling back into the liquid Helium [163, 164]. This leads to the creation of a nearly

ideal 2D electron gas described by a 1D hydrogenic spectrum [163, 171].

The radius of such Helium drops is typically between 10µm and 100µm, with the

electrons located around 100Å above the surface, and separated by 2000Å or more from

their nearest neighbours [163], see Figure 7.1. Typical electron numbers are 105 to 107,

but there can be as many as 109. Lifetimes for the Helium drop of more than 100ms have

been achieved experimentally, and the feasibility of much longer times in a quadrupole

configuration has been proposed [163]. Very low decoherence rates can be achieved

by cooling the system down into the millikelvin range, yielding spin coherence times

beyond 100s for the electrons above the Helium [212].
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Figure 7.1: Schematic diagram of electrons hovering above the surface of a liquid
4Helium drop. The number of electrons is typically in the range of 105 to 107, and when
cooling the system down into the millikelvin range the electrons are expected to “freeze”
into a pattern that solves Thomson problem (3.16).

For these reasons several schemes have been proposed for quantum computing

with liquid Helium, utilising the spin of electrons above a flat Helium layer on a gate

electrode arrangement [212], or by employing the lowest two hydrogenic levels of

individual electrons in the potential well above a Helium film [171]. Here we briefly

sketch a scheme employing the spin of the electrons around a Helium bubble, as seen

in Figure 7.1. The Coulomb energy between pairs of neighbouring electrons is of the

order 10K which is much larger than kBT in a system that is cooled down to millikelvins,

and a phase transition of the electrons into a “frozen” 2D pattern has been observed

experimentally [213]. Considering that the electrons describe a nearly ideal 2D Coulomb

system, we expect this pattern to be a solution of Thomson’s problem (3.16). Since

the point distributions of Thomson’s problem have been verified to represent highly

entangled symmetric states, one can ask whether the geometry of the physical setup

could be employed to generate almost maximally entangled n qubit symmetric states

with possible values of n spanning several orders of magnitude. To do so, one would need

to find a way to associate the spin of the electrons with the states of the corresponding

MPs in the Majorana representation of the symmetric state. It is not clear how exactly

this could be achieved experimentally, and in particular how the permutation present

in the Majorana representation (1.19) translates to an experimental setup, but any

technique should take advantage of the fact that the spatial distribution of the spin-1
2

systems precisely matches the Majorana representation of the desired symmetric state.

If it were possible to do this, one could easily generate highly entangled symmetric

quantum states that are subject to very little decoherence and that could be used for

applications in quantum information theory that rely on symmetric states. To do so,

it would also be necessary to devise techniques for addressing and manipulating the

individual spins in a controlled way.
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Maximally entangled states

The question of which states of a given Hilbert space are maximally entangled with

respect to the geometric measure (or other entanglement measures) is still not solved,

although we were able make significant progress for symmetric states. For symmetric n

qubit states we found the solutions for the first few n, and in the process of doing so we

gained a good understanding of how the MPs and CPPs of highly entangled symmetric

states are distributed. For arbitrary multipartite systems we found in Theorem 1 that

the maximally entangled state always lies in the span of its CPSs. The dimension of this

span remains an open problem, although we expect it to be large in general, namely of

the same order as the Hilbert space itself. Another open question is whether the set of

CPSs is in general discrete or continuous.

In the context of maximally 4-tangled states Ðoković and Osterloh recently stated that

“The account of the complementary set of non-graph states as a resource for quantum

information processing is largely unexplored” [62]. Being the single non-graph state

among the three maximally 4-tangled states, the tetrahedron state should therefore be

considered a prime focus of future research. A summary of the exceptional position that

the tetrahedron state holds in the 4 qubit Hilbert space was already given in Section 4.2.1,

and it is likely that further intriguing properties can be found for this state or similar

states (e.g. the other Platonic states).

Morse theory

There are still open questions with regard to the number and distribution of the CPPs of

symmetric states. Most notably, it was shown in Section 3.3.3 that with the exception

of the Dicke states (which are the only ones with a continuous rotational symmetry of

the MP distribution) all positive symmetric n qubit states have at most 2n− 4 CPPs. In

Section 4.3.3 the same upper bound was conjectured to hold for general symmetric states

as well, with Euler’s formula for convex polyhedra being a strong indication in favour

of this. The conjectured relationship between the surfaces of the polyhedron described

by the MPs and the local maxima in the spherical amplitude function is particularly

apparent for the five “Platonic states” shown in Figure 6.2: each CPP of the tetrahedron

state lies antipodal to the centre of a face, and the CPPs of the other four Platonic states

all lie at the centre of a face.

One potential way to shed light on this relationship is Morse theory, a branch of

differential topology that investigates how the topology of a manifold is related to the

stationary points, such as maxima and minima, of real-valued functions defined on that

manifold [214, 215]. To give an example, the different topologies of a line and a circle

manifest themselves in the fact that a line admits continuous functions with arbitrarily

large values (e.g. f (x) = x2), while the codomain of continuous functions defined on

138



7.2. Outlook and new ideas

a circle is limited to finite values, thus assuming a maximum value somewhere on the

circle. Recalling that the global maxima of the spherical amplitude function are the CPPs,

and that the global minima – the zeroes – lie diametrically opposite to the MPs, it is

straightforward to expect that the topology of the Majorana sphere, which is simply the

3D sphere S2, can tell us more about the number of CPPs.

Extensions of the Majorana representation

Finally we remark that questions still remain open as to how the elegant Majorana

representation of pure spin-J states – or equivalently pure symmetric states of 2J qubits –

can be extended to mixed states or to states of several spin-J particles. Efforts have been

made to find meaningful generalisations to n spin-J particles, most notably in [107],

where an insightful generalisation was derived with the help of the Schur-Weyl duality.

A generalisation to mixed states is considered much more difficult, because the number

of parameters present in mixed states of a spin-J particle scales much faster with the

dimension than 2J Bloch vectors in the interior of the Majorana sphere can account for

[107]. Nevertheless, an SLOCC entanglement classification of mixed symmetric n qubit

states has been achieved very recently with the help of the DC classes [77].

Judging by the attention that the Majorana representation has gathered in recent

years, and the multitude of recently discovered results, it would not be surprising to see

significant further progress in this area.
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