Karnik, Rucha (2010) Trafficking motifs in potassium channels. PhD thesis, University of Leeds.
Abstract
The pancreatic ATP-sensitive potassium (KATP) channels couple glucose metabolism to excitability of the pancreatic β-cells to regulate insulin secretion. The channel
subunits, Kir6.2 and SUR1, are encoded by the KCNJ11 and ABCC8 genes respectively. Genetic polymorphisms in these genes, which reduce channel activity, cause congenital hyperinsulinism (CHI) characterized by insulin hyper-secretion and hypoglycemia. The hERG (human ether-a-go-go related gene) potassium channels,encoded by the KCNH2 gene, contribute to the rapidly activating delayed rectifier K+
current (IKr), which is responsible for rapid repolarisation of the cardiac action potential.
Decreased hERG channel function causes the Long QT syndrome 2 (LQTS2) and life threatening cardiac arrhythmias. Several mutations in these two clinically important
potassium ion channels alter their surface density leading to disease. Therefore, it is of fundamental importance to investigate the trafficking mechanisms that regulate the
surface density of these channels.
Techniques in cell biology, molecular biology and biochemistry were employed to identify the molecular basis of Sar1-GTPase dependent ER exit of the KATP and hERG
channels in COPII vesicles. Blocking the cargo binding sites on the Sec24 protein of the COPII coat with membrane-permeable synthetic peptides prevented ER exit of both
these channels. While the diacidic 280DLE282 sequence on the Kir6.2 subunit of KATP channels was found to be the ER exit motif required for entry of the channels into
COPII vesicles at the ER exit sites, such a motif was found to be absent on hERG Cterminus. Further, endocytic trafficking mechanism of hERG channels was studied in
recombinant (HEK MSRII and HeLa) and native (neonatal rat cardiac myocytes) systems using cell biological and pharmacological tools. hERG channels were found to
be internalised by a dynamin-independent, raft-mediated, and ARF6-dependent pathway. A prolonged block of this pathway revealed that the channels could also
undergo internalisation by an alternate dynamin-mediated pathway. Internalised hERG channels were found to recycle back to the cell surface and undergo lysosomal
degradation. Degradation of the channels was enhanced when Rab11a-GTPase function was disrupted leading to reduced surface density indicating that recycling is
crucial to maintain cell surface density of the channels. Thus this study investigated and compared the previously unknown mechanisms of biosynthetic and endosomal trafficking of the KATP and hERG potassium channels with a conclusion that these processes play an important role in maintaining surface density and thereby in the
function of these channels in physiological and patho-physiological conditions.
Metadata
Supervisors: | Sivaprasadaro, A. |
---|---|
ISBN: | 978-0-85731-052-1 |
Awarding institution: | University of Leeds |
Academic Units: | The University of Leeds > Faculty of Biological Sciences (Leeds) > Institute of Membrane and Systems Biology (Leeds) |
Identification Number/EthosID: | uk.bl.ethos.555865 |
Depositing User: | Ethos Import |
Date Deposited: | 16 Mar 2011 10:23 |
Last Modified: | 07 Mar 2014 11:24 |
Open Archives Initiative ID (OAI ID): | oai:etheses.whiterose.ac.uk:1364 |
Download
Rucha_Karnik__Thesis_17.12.2010
Filename: Rucha_Karnik__Thesis_17.12.2010.pdf
Licence:
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License
Export
Statistics
You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.