White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Visual Speech in Technology-Enhanced Learning

Dey, Priya (2012) Visual Speech in Technology-Enhanced Learning. PhD thesis, University of Sheffield.

Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (8Mb)


This thesis investigates the use of synthetic talking heads, with lip, tongue and face movements synchronized with synthesized or natural speech, in technology-enhanced learning. This work applies talking heads in a speech tutoring application for teaching English as a second language. Previous studies have shown that speech perception is aided by visual information, but more research is needed to determine the effectiveness of visualization of articulators in pronunciation training. This thesis explores whether or not visual speech technology can give an improvement in learning pronunciation. This thesis investigates techniques for audiovisual speech synthesis, using both viseme-based and data-driven approaches to implement multiple talking heads. Intelligibility studies found the audiovisual heads to be more intelligible than audio alone, and the data-driven head was found to be more intelligible than the viseme-driven implementation. The talking heads are applied in a pronunciation-training application, which is evaluated by second-language learners to investigate the benefit of visual speech in technology-enhanced learning. User trials explored the efficacy of the software in demonstrating the /b/–/p/ contrast in English. The results indicate that learners showed an improvement in listening and pronunciation after using the software, while the benefit of visualization compared to auditory training alone varied between individuals. User evaluations found that the talking heads were perceived to be helpful in learning pronunciation, and the positive feedback on the tutoring system suggests that the use of talking heads in technology-enhanced learning could be useful in addition to traditional methods.

Item Type: Thesis (PhD)
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Computer Science (Sheffield)
The University of Sheffield > Faculty of Science (Sheffield) > Computer Science (Sheffield)
Identification Number/EthosID: uk.bl.ethos.570097
Depositing User: Dr Priya Dey
Date Deposited: 17 Apr 2013 10:55
Last Modified: 27 Apr 2016 14:11
URI: http://etheses.whiterose.ac.uk/id/eprint/3329

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)