White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Statistical Parsing by Machine Learning from a Classical Arabic Treebank

Dukes, Kais (2013) Statistical Parsing by Machine Learning from a Classical Arabic Treebank. PhD thesis, University of Leeds.

[img]
Preview
Text
Dukes_K_School of Computing_PhD_2013.pdf - Final eThesis - complete (pdf)
Available under License Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales.

Download (4Mb) | Preview

Abstract

Research into statistical parsing for English has enjoyed over a decade of successful results. However, adapting these models to other languages has met with difficulties. Previous comparative work has shown that Modern Arabic is one of the most difficult languages to parse due to rich morphology and free word order. Classical Arabic is the ancient form of Arabic, and is understudied in computational linguistics, relative to its worldwide reach as the language of the Quran. The thesis is based on seven publications that make significant contributions to knowledge relating to annotating and parsing Classical Arabic. Classical Arabic has been studied in depth by grammarians for over a thousand years using a traditional grammar known as i’rāb (إعغاة ). Using this grammar to develop a representation for parsing is challenging, as it describes syntax using a hybrid of phrase-structure and dependency relations. This work aims to advance the state-of-the-art for hybrid parsing by introducing a formal representation for annotation and a resource for machine learning. The main contributions are the first treebank for Classical Arabic and the first statistical dependency-based parser in any language for ellipsis, dropped pronouns and hybrid representations. A central argument of this thesis is that using a hybrid representation closely aligned to traditional grammar leads to improved parsing for Arabic. To test this hypothesis, two approaches are compared. As a reference, a pure dependency parser is adapted using graph transformations, resulting in an 87.47% F1-score. This is compared to an integrated parsing model with an F1-score of 89.03%, demonstrating that joint dependency-constituency parsing is better suited to Classical Arabic. The Quran was chosen for annotation as a large body of work exists providing detailed syntactic analysis. Volunteer crowdsourcing is used for annotation in combination with expert supervision. A practical result of the annotation effort is the corpus website: http://corpus.quran.com, an educational resource with over two million users per year.

Item Type: Thesis (PhD)
Academic Units: The University of Leeds > Faculty of Engineering (Leeds) > School of Computing (Leeds)
Identification Number/EthosID: uk.bl.ethos.658551
Depositing User: Leeds CMS
Date Deposited: 14 Jan 2020 09:51
Last Modified: 18 Feb 2020 12:47
URI: http://etheses.whiterose.ac.uk/id/eprint/25746

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)