White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Improvements in Testing and Performance of Batteries for Automotive Applications

Smith, Matthew J (2018) Improvements in Testing and Performance of Batteries for Automotive Applications. PhD thesis, University of Sheffield.

[img]
Preview
Text
Thesis_MJS_V5-1_final.pdf
Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (18Mb) | Preview

Abstract

Batteries are increasingly important in modern technologies. This is particularly true in the automotive sector, with hybrid vehicles using batteries to augment the traction power traditionally provided by the internal combustion engine. In such applications, one of the most important factors is the Dynamic Charge Acceptance (DCA) performance of the battery. This study investigates the standard method for establishing DCA performance and determines how the individual parameters of the test procedure and external factors influence the performance of lead-acid cells. This work identifies shortcomings of the standard test, which result in the true DCA performance being better than the standard test suggests. A series of modifications are proposed, which are shown to produce a more representative result. An investigation is performed to determine the effect of cell degradation on charge acceptance. This shows that the DCA test itself is not well suited to assessing the effects of degradation on DCA, and causes the results to appear worse than reality. The work also demonstrates that the usual methods of characterising degradation do not correlate well with DCA performance, and there is very little reduction in charge acceptance over the operational life of the cell. Investigations are undertaken into methods by which DCA performance may be improved. This shows that the application of ac ripple currents to batteries causes a significant increase in charge acceptance, and demonstrates how the frequency of the ripple is important in achieving the best results. This study also shows that the ripple currents have no detrimental effects on the health of the battery. Finally, the work is extended to cover lithium cells. This shows that whilst the DCA performance of lithium is more consistent, maximum charge acceptance is less than lead. It is shown that, by reducing maximum charge voltage, cycle life of cells can be extended without significant loss of stored energy.

Item Type: Thesis (PhD)
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Electronic and Electrical Engineering (Sheffield)
Depositing User: Mr Matthew J Smith
Date Deposited: 01 Apr 2019 09:40
Last Modified: 01 Apr 2019 09:40
URI: http://etheses.whiterose.ac.uk/id/eprint/23326

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)