White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Structure-Preserving Matrix Methods for Computations on Univariate and Bivariate Bernstein Polynomials

Bourne, Martin (2017) Structure-Preserving Matrix Methods for Computations on Univariate and Bivariate Bernstein Polynomials. PhD thesis, University of Sheffield.

[img]
Preview
Text
Compiled.pdf
Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (9Mb) | Preview

Abstract

Curve and surface intersection finding is a fundamental problem in computer-aided geometric design (CAGD). This practical problem motivates the undertaken study into methods for computing the square-free factorisation of univariate and bivariate polynomials in Bernstein form. It will be shown how these two problems are intrinsically linked and how finding univariate polynomial roots and bivariate polynomial factors is equivalent to finding curve and surface intersection points. The multiplicities of a polynomial’s factors are maintained through the use of a square free factorisation algorithm and this is analogous to the maintenance of smooth intersections between curves and surfaces, an important property in curve and surface design. Several aspects of the univariate and bivariate polynomial factorisation problem will be considered. This thesis examines the structure of the greatest common divisor (GCD) problem within the context of the square-free factorisation problem. It is shown that an accurate approximation of the GCD can be computed from inexact polynomials even in the presence of significant levels of noise. Polynomial GCD computations are ill-posed, in that noise in the coefficients of two polynomials which have a common factor typically causes the polynomials to become coprime. Therefore, a method for determining the approximate greatest common divisor (AGCD) is developed, where the AGCD is defined to have the same degree as the GCD and its coefficients are sufficiently close to those of the exact GCD. The algorithms proposed assume no prior knowledge of the level of noise added to the exact polynomials, differentiating this method from others which require derived threshold values in the GCD computation. The methods of polynomial factorisation devised in this thesis utilise the Sylvester matrix and a sequence of subresultant matrices for the GCD finding component. The classical definition of the Sylvester matrix is extended to compute the GCD of two and three bivariate polynomials defined in Bernstein form, and a new method of GCD computation is devised specifically for bivariate polynomials in Bernstein form which have been defined over a rectangular domain. These extensions are necessary for the computation of the factorisation of bivariate polynomials defined in the Bernstein form.

Item Type: Thesis (PhD)
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Computer Science (Sheffield)
The University of Sheffield > Faculty of Science (Sheffield) > Computer Science (Sheffield)
Identification Number/EthosID: uk.bl.ethos.745656
Depositing User: Mr Martin Bourne
Date Deposited: 10 Jul 2018 11:34
Last Modified: 12 Oct 2018 09:54
URI: http://etheses.whiterose.ac.uk/id/eprint/20860

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)