White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Energy Efficient IP over WDM Networks Using Network Coding

Musa, Mohamed Osman Ibrahim (2016) Energy Efficient IP over WDM Networks Using Network Coding. PhD thesis, University of Leeds.

[img]
Preview
Text
ThesisFinalAllCorrections.pdf - Final eThesis - complete (pdf)
Available under License Creative Commons Attribution-Noncommercial-Share Alike 2.0 UK: England & Wales.

Download (931Kb) | Preview

Abstract

In this thesis we propose the use of network coding to improve the energy efficiency in core networks, by reducing the resources required to process traffic flows at intermediate nodes. We study the energy efficiency of the proposed scheme through three approaches: (i) developing a mixed integer linear programme (MILP) to optimise the use of network resources. (ii) developing a heuristic based on minimum hop routing. (iii) deriving an analytical bounds and closed form expressions. The results of the MILP model show that implementing network coding over typical networks can introduce savings up to 33% compared to the conventional architectures. The results of the heuristic show that the energy efficient minimum hop routing in network coding enabled networks achieves power savings approaching those of the MILP model. The analytically calculated power savings also confirm the savings achieved by the model. Furthermore, we study the impact of network topology on the savings obtained by implementing network coding. The results show that the savings increase as the hop count of the network topology increases. Using the derived expressions, we calculated the maximum power savings for regular topologies as the number of nodes grows. The power savings asymptotically approach 45% and 23% for the ring (and line) and star topology, respectively. We also investigate the use of network coding in 1+1 survivable IP over WDM networks. We study the energy efficiency of this scheme through MILP, a heuristic with five operating options, and analytical bounds. We evaluate the MILP and the heuristics on typical and regular network topologies. Implementing network coding can produce savings up to 37% on the ring topology and 23% considering typical topologies. We also study the impact of varying the demand volumes on the network coding performance. We also develop analytical bounds for the conventional 1+1 protection and the 1+1 with network coding to verify the results of the MILP and the heuristics and study the impact of topology, focusing on the full mesh and ring topologies, providing a detailed analysis considering the impact of the network size.

Item Type: Thesis (PhD)
Academic Units: The University of Leeds > Faculty of Engineering (Leeds) > School of Electronic & Electrical Engineering (Leeds) > Institute of Integrated Information Systems (Leeds)
Identification Number/EthosID: uk.bl.ethos.706009
Depositing User: Dr Mohamed Musa
Date Deposited: 20 Mar 2017 13:49
Last Modified: 25 Jul 2018 09:54
URI: http://etheses.whiterose.ac.uk/id/eprint/16644

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)