White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Intelligibility model optimisation approaches for speech pre-enhancement

Al Dabel, Maryam (2016) Intelligibility model optimisation approaches for speech pre-enhancement. PhD thesis, University of Sheffield.

Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (1886Kb) | Preview


The goal of improving the intelligibility of broadcast speech is being met by a recent new direction in speech enhancement: near-end intelligibility enhancement. In contrast to the conventional speech enhancement approach that processes the corrupted speech at the receiver-side of the communication chain, the near-end intelligibility enhancement approach pre-processes the clean speech at the transmitter-side, i.e. before it is played into the environmental noise. In this work, we describe an optimisation-based approach to near-end intelligibility enhancement using models of speech intelligibility to improve the intelligibility of speech in noise. This thesis first presents a survey of speech intelligibility models and how the adverse acoustic conditions affect the intelligibility of speech. The purpose of this survey is to identify models that we can adopt in the design of the pre-enhancement system. Then, we investigate the strategies humans use to increase speech intelligibility in noise. We then relate human strategies to existing algorithms for near-end intelligibility enhancement. A closed-loop feedback approach to near-end intelligibility enhancement is then introduced. In this framework, speech modifications are guided by a model of intelligibility. For the closed-loop system to work, we develop a simple spectral modification strategy that modifies the first few coefficients of an auditory cepstral representation such as to maximise an intelligibility measure. We experiment with two contrasting measures of objective intelligibility. The first, as a baseline, is an audibility measure named 'glimpse proportion' that is computed as the proportion of the spectro-temporal representation of the speech signal that is free from masking. We then propose a discriminative intelligibility model, building on the principles of missing data speech recognition, to model the likelihood of specific phonetic confusions that may occur when speech is presented in noise. The discriminative intelligibility measure is computed using a statistical model of speech from the speaker that is to be enhanced. Interim results showed that, unlike the glimpse proportion based system, the discriminative based system did not improve intelligibility. We investigated the reason behind that and we found that the discriminative based system was not able to target the phonetic confusion with the fixed spectral shaping. To address that, we introduce a time-varying spectral modification. We also propose to perform the optimisation on a segment-by-segment basis which enables a robust solution against the fluctuating noise. We further combine our system with a noise-independent enhancement technique, i.e. dynamic range compression. We found significant improvement in non-stationary noise condition, but no significant differences to the state-of-the art system (spectral shaping and dynamic range compression) where found in stationary noise condition.

Item Type: Thesis (PhD)
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Computer Science (Sheffield)
The University of Sheffield > Faculty of Science (Sheffield) > Computer Science (Sheffield)
Identification Number/EthosID: uk.bl.ethos.701746
Depositing User: Mrs Maryam Al Dabel
Date Deposited: 24 Jan 2017 13:25
Last Modified: 12 Oct 2018 09:33
URI: http://etheses.whiterose.ac.uk/id/eprint/15830

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)