White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

The analysis and design of inflatable dams.

Alwan, Adil Dawood (1980) The analysis and design of inflatable dams. PhD thesis, University of Sheffield.

[img] Text (237047.pdf)
237047.pdf

Download (20Mb)

Abstract

An alternative method to overcome the high cost and time required for the design, analysis, construction and operating of a conventional water control structure is an inflatable dam. The basic aim of this project is to study both theoretically and experimentally the behaviour and performance of inflatable dams under hydrostatic and hydrodynamic conditions and to develop a design method. A finite element approach is developed in order to analyse air, water and a combination of air and water inflated dams to determine the shape and tension of the membrane of the dam under hydrostatic and hydrodynamic conditions. A series of models of inflatable dams were constructed and tested under hydrostatic and hydrodynamic conditions. The shapes of these models were compared with the theoretical shapes obtained from the theoretical analysis. The comparison shows there was a good relationship between the experimental and theoretical shapes. A new formula was derived for calculating the rate of flow over the air, water and air/water inflated dams theoretically. This develops the potential for applying an inflatable dam as a device for measuring discharge. A design technique for a dam was developed to design air, water and air/water inflated dams under hydrostatic conditions. This,technique can be used for the design of dams with different geometry of base length. computer programs were written for the analysis and design of the dams based on the finite element approach and considerable efforts were undertaken to simplify the input data and the output results. A sub-program was developed to provide the results in graphic form if required.

Item Type: Thesis (PhD)
Keywords: Water control, hydrostatic, hydrodynamic
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Civil and Structural Engineering (Sheffield)
Identification Number/EthosID: uk.bl.ethos.237047
Depositing User: EThOS Import Sheffield
Date Deposited: 12 Jan 2017 14:47
Last Modified: 12 Jan 2017 14:47
URI: http://etheses.whiterose.ac.uk/id/eprint/14709

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)