White Rose University Consortium logo
University of Leeds logo University of Sheffield logo York University logo

Active Control of Voltage Ripples in Power Electronic Converters

Ming, Wen-Long (2016) Active Control of Voltage Ripples in Power Electronic Converters. PhD thesis, University of Sheffield.

[img]
Preview
Text (PhD Thesis)
Ming_thesis_final.pdf
Available under License Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 UK: England & Wales.

Download (8Mb) | Preview

Abstract

Two major challenges, i.e., bulky electrolytic capacitors and isolation transformers, remain as critical obstacles for further improvement on reliability, power density and efficiency of power electronic converters, which are mainly used to reduce low-frequency voltage ripples and high-frequency common-mode voltage ripples, respectively. In order to overcome the two challenges, the most straightforward way is to simply combine existing solutions developed for each of them. However, this would considerably increase system complexity and cost, which should be avoided if possible. In this thesis, these two challenges are innovatively addressed in a holistic way by using active control techniques. This thesis first focuses on the reduction of low-frequency voltage ripples in conventional half-bridge converters, after adding an actively-controlled neutral leg. As a direct application of this strategy, a single-phase to three-phase conversion is then proposed. After that, a ρ-converter with only four switches is proposed to significantly reduce both low-frequency ripples and high-frequency common-mode ripples in a holistic way. It is found that the total capacitance can be reduced by more than 70 times compared to that in conventional full-bridge converters. As a result, there is no longer a need to use bulky electrolytic capacitors and isolation transformers. Then, the ρ-converter equipped with the synchronverter technology is operated as an inverter for PV applications. Another converter is also proposed for the same purpose but with reduced voltage stress. In order to further reduce the total capacitance and to reduce the neutral inductor in the ρ-converter, a new type of converter, called the θ-converter, is proposed. Finally, two actively-controlled ripple eliminators are proposed to reduce low-frequency ripples in general DC systems while the aforementioned research is focused on some specific topologies. Extensive experimental results are presented to validate most of the developed systems while the rest are validated with simulation results.

Item Type: Thesis (PhD)
Academic Units: The University of Sheffield > Faculty of Engineering (Sheffield) > Automatic Control and Systems Engineering (Sheffield)
Identification Number/EthosID: uk.bl.ethos.684594
Depositing User: Dr Wen-Long Ming
Date Deposited: 03 May 2016 09:14
Last Modified: 12 Oct 2018 09:25
URI: http://etheses.whiterose.ac.uk/id/eprint/12343

You do not need to contact us to get a copy of this thesis. Please use the 'Download' link(s) above to get a copy.
You can contact us about this thesis. If you need to make a general enquiry, please see the Contact us page.

Actions (repository staff only: login required)